Photo experimental products of an endpanding in the operating of the law endpanding intervent of the construction of the law endpanding intervent of the law endpanding interventent of the law endpanding intervent of the law endpand	F	REPORT DOC		Form Approved OMB No. 0704-0188		
colouring topostate i close or they a survey with CRM construction. PLANE DO NOT AFTURA YOUR FORT TO THE ADOX ADDRESS. TREPORT DATE (DO MAR-YYY)	maintaining the data needed, including suggestions for redu	and completing and reviewing to cing this burden to Department	nis collection of information. Send of Defense, Washington Headqua	I comments regarding this burder arters Services, Directorate for Inf	n estimate or any othe formation Operations a	ching existing data sources, gathering and r aspect of this collection of information, and Reports (0704-0188), 1215 Jefferson Davis
4. TTLE AND SUBTTLE 5a. CONTRACT NUMBER Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides 5b. GRANT NUMBER (bNb/x)s, Ta(x)s); (bN(x),j, and [Ta(x),j,j, and 1: 1 Adducts of Nb(x)s and Ta(x)s; with CH ₂ CN (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(5) EAHTOR(5) 5c. PROGRAM ELEMENT NUMBER Jerry A. Boatz (AFRL/PRSP) 5c. PROGRAM ELEMENT NUMBER 5c. FASK NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFR1 - PRF 7 AFR1 - PRF 7 AFRI - PRF 7 BONSORING / MONITORING AGENCY NAME(5) AND ADDRESS(ES) 4. SPERFORMONTOR'S Air Force Research Laboratory (AFMC) AFR1 - PR - ED-JA - 2006-103 11. SPONSOR/MONTOR'S AFRL - PR 10. SPONSORING / MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAME(5) AND ADDRESS(ES) 11. SPONSOR/MONTOR'S 12. DISTIBUTION / AVAILABILITY STATEMENT NUMBER(6) AFRL - PR - ED-JA - 2006-103 11. SPONSOR/MONTOR'S 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemic. 14. ASSTRACT Numer mail azido-complexes has been reported. ^[1-21] no binary Group 5 azides are known. Only a indical multiper distruttures of NN(N), CHC/N and of the anons (NMA), and Thachy. The	collection of information if it do 1. REPORT DATE (DL	bes not display a currently valid D-MM-YYYY)	OMB control number. PLEASE E 2. REPORT TYPE	O NOT RETURN YOUR FORM	TO THE ABOVE ADD	RESS.
(Nb(Ns))s; Ta(Ns), [N(Ns),] and [Ta(Ns),], and 1:1 Adducts of Nb(Ns); and Ta(Ns), with CH ₂ (N(PREPRINT) 5: PROGRAM ELEMENT NUMBER (AUTHORS) Ralf Haiges, Thorsten Schroer, Muhammed Yousufuddin, & Karl Christe (USC); Jerry A. Boatz (ATRL/PRSP) 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(8) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSP 8. PERFORMING ORGANIZATION RAME(8) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSP 8. PERFORMING ORGANIZATION RAME(8) AND ADDRESS(ES) 8. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(8) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(8) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Solution Drive Solution Drive Solution Drive Solution Drive Solution Drive Submitted to Angevandle Chemic. 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/PR. 13. SUPPLEMENTARY NOTES Submitted to Angevandle Chemic. 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/PR. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azide; are kown. Only a infinited number of partially azide-substituted compounds of vanadium, niobium and thattalum have previously been reported. ^[1-3] no this paper, we wish to communicate the synthesis and characterization of NoNs), Ta(Ns), and ther 1:1 addicts with CH,CN, and of the anioss (NoNs), Ta(TA), The crystal structures of NoNs), CH,CN and [PPh_[IND(Ns),] and ther if is adjuster with the compounds with linear metal-N-N bonds are also reported. 19a. NAME OF RESPONSIBLE Dr. Scott A. Shackelford 19					5a.	. CONTRACT NUMBER
Raif Haiges, Thorsten Schroer, Muhammed Yousufuddin, & Karl Christe (USC); Jerty A. Boatz (AFRL/PRSP) 56: TASK NUMBER 23030423 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSP Edwards AFB CA 93524-7680 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-PR-ED-JA-2006-103 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-JA-2006-103 12. DISTRIBUTION / AVAILABILITY STATEMENT Aproved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of Vanadum, niobium and tantalum hare previously been pertorted. ^[1-3] In this paper, we wish to communicate the synthesis and characterization of NNN \b, TAKU, and ther 1: adducts with CHC/N; and of the anions (NNN, A), and ITAN, A), and ther 1: Adducts with CHC/N; and of the anions (NNN, A), and ITAN, A), and ther 1: Adducts with CHC/N; and of the anions (NNN, A), and ITAN, A), and ther 1: Adducts with CHC/N; and of the anions (NNN, A), and ITAN, A), and ther 1: BAUGEs are known. Only a limited number of partially azide-substititate compounds or Vanadum, niobium and tantalum hare p	$(Nb(N_3)_5, Ta(N_3)_5,$	[Nb(N ₃) ₆] ⁻ and [Ta(I				
23030423 23030423 5. WORK UNIT NUMBER 5. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory (AFMC) AFRL-PR-ED-JA-2006-103 AFRL-PR-ED-JA-2006-103 10. SPONSOR/MONITOR'S Edwards AFB CA 93524-7680 10. SPONSOR/MONITOR'S Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL-PR-ED-JA-2006-103 11. SPONSOR/MONITOR'S Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL-PR-ED-JA-2006-103 11. SPONSOR/MONITOR'S Yollux Drive 11. SPONSOR/MONITOR'S Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Wheras the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azide; are known. Only a limited number of partially azide-substituted compounds of Vanadum, niobum and atanalum have previously been perforted. ^[1-3] no binary Group 5 azide; are known. Only a limited number of partially azide-substituted compounds of Vanadum, niobum and tanalum have previously been perforted. ^[1-3] no binary Group 5 azide; are known. Only a limited number of partially azide-substituted compou		en Schroer, Muhamn	ned Yousufuddin, & K	arl Christe (USC);	5d	. PROJECT NUMBER
Air Force Research Laboratory (AFMC) AFRL/PRSP REPORT NUMBER AFRL-PR-ED-JA-2006-103 AFRL-PR-ED-JA-2006-103 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-JA-2006-103 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. HABSTRACT Vineraus binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 zzides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[1-4] In this paper, we wish to communicate the synthesis and characterization of NN(N ₃), 1a(N ₃), and ther 1:1 adducts with CH,CN, and of the anions (DNN ₃), 21(X ₁ N ₃), The relative structures of NN ₂ N ₃ , CR, N and (PPR ₄)[Nb(N ₃), and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 18. NUMBER OF ABSTRACT Is. NUMBER (A MAR OF RESPONSIBLE PERSON 15. SUBJECT TERMS 17. LIMITATION of ABSTRACT 18. NUMBER A 19a. NAME OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER A 19a. NAME OF RESPONSIBLE PERSON 17. LIMITATION of ABSTRACT b. ABSTRACT c. THIS PAGE A 37 N/A <td>Jerry A. Boatz (AFI</td> <td>RL/PRSP)</td> <td></td> <td></td> <td>23</td> <td>030423</td>	Jerry A. Boatz (AFI	RL/PRSP)			23	030423
Air Force Research Laboratory (AFMC) AFRL/PRSP REPORT NUMBER AFRL-PR-ED-JA-2006-103 AFRL-PR-ED-JA-2006-103 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-JA-2006-103 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. HABSTRACT Vineraus binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 zzides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[1-4] In this paper, we wish to communicate the synthesis and characterization of NN(N ₃), 1a(N ₃), and ther 1:1 adducts with CH,CN, and of the anions (DNN ₃), 21(X ₁ N ₃), The relative structures of NN ₂ N ₃ , CR, N and (PPR ₄)[Nb(N ₃), and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 18. NUMBER OF ABSTRACT Is. NUMBER (A MAR OF RESPONSIBLE PERSON 15. SUBJECT TERMS 17. LIMITATION of ABSTRACT 18. NUMBER A 19a. NAME OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER A 19a. NAME OF RESPONSIBLE PERSON 17. LIMITATION of ABSTRACT b. ABSTRACT c. THIS PAGE A 37 N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
AFRL-PRSP AFRL-PR-ED-JA-2006-103 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL-PR-ED-JA-2006-103 AFRL/PRS 11. SPONSOR/MONITOR'S ACRONYM(S) Follux Drive NUMBER(S) Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, nucbium and tartalum have previously been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, nucbium and tartalum have reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, nucbium and tartalum have reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, nucbium and tartalum have previously been reported. ^[1-3] 15. SUBJECT TERMS 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER FESONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17.	7. PERFORMING OR	SANIZATION NAME(S)	AND ADDRESS(ES)			
Air Force Research Laboratory (AFMC) AFRL/PRS ACRONYM(S) AFRL/PRS NUMBER(S) NUMBER(S) Edwards AFB CA 93524-7048 AFRL-PR-ED-JA-2006-103 12. DISTRIBUTION / AVAILABILITY STATEMENT AFRL-PR-ED-JA-2006-103 Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-31] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃), Ta(N ₃), and their 1:1 adducts with CH ₂ CN, and of the anions [Nb(N ₃) ₂] and [Ta(N ₃) ₂]. The crystal structures of Nb(N ₃) ₂ , Ta(N ₃), and their 1:1 adducts with CH ₂ CN, and of the anions [Nb(N ₃) ₂] and [Ta(N ₃) ₂]. The crystal structures of Nb(N ₃) ₂ , Ta(N ₃), and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 17. LIMITATION of: C THIS PAGE 18. NUMBER of PAGES 19. NAME OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT C. THIS PAGE A 37 NiA 17. LIMITATION of assified b. ABSTRACT C. THIS PAGE A <	AFRL/PRSP 10 E. Saturn Blvd.	- ()			AI	FRL-PR-ED-JA-2006-103
Air Force Research Laboratory (AFMC) AFRL/PRS ACRONYM(S) AFRL/PRS NUMBER(S) NUMBER(S) Edwards AFB CA 93524-7048 AFRL-PR-ED-JA-2006-103 12. DISTRIBUTION / AVAILABILITY STATEMENT AFRL-PR-ED-JA-2006-103 Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-31] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃), Ta(N ₃), and their 1:1 adducts with CH ₂ CN, and of the anions [Nb(N ₃) ₂] and [Ta(N ₃) ₂]. The crystal structures of Nb(N ₃) ₂ , Ta(N ₃), and their 1:1 adducts with CH ₂ CN, and of the anions [Nb(N ₃) ₂] and [Ta(N ₃) ₂]. The crystal structures of Nb(N ₃) ₂ , Ta(N ₃), and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 17. LIMITATION of: C THIS PAGE 18. NUMBER of PAGES 19. NAME OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT C. THIS PAGE A 37 NiA 17. LIMITATION of assified b. ABSTRACT C. THIS PAGE A <	9. SPONSORING / MC	DNITORING AGENCY	NAME(S) AND ADDRES	S(ES)	10.	SPONSOR/MONITOR'S
AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) S Pollux Drive Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT AFRL-PR-ED-JA-2006-103 Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) AFRL-PR-ED-JA-2006-103 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-1] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃) ₂ , Ta(N ₃) ₃ and their 1:1 adducts with CH ₃ CN, and of the anions [Nb(N ₃) ₂] and [Ta(N ₃) ₃]. The crystal structures of Nb(N ₃) ₂ , CH ₃ CN and [PPh4][Nb(N ₃) ₆] and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 17. LIMITATION of ABSTRACT B. ABSTRACT 18. NUMBER of PAGES Dr. Scott A. Shackelford IP, NELEPHONE NUMBER IPLEPHONE NUMBER IPLEPHONE NUMBER INClude area code) N/A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT A 18. NUMBER A 19a. NAME OF RESPONSIBLE PERSON Dr. Scott A. Shackelford IP, NELEPHONE NUMBER IPLEPHONE NUMBER IN/A 16. MEPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE A 18. NUMBER A 19a. NAME OF RESPONSIBLE <b< td=""><td></td><td></td><td></td><td></td><td>AC</td><td>RONYM(S)</td></b<>					AC	RONYM(S)
Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-21] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃) ₅ , Ta(N ₃) ₅ and their 1:1 adducts with CH ₃ CN, and of the anions [Nb(N ₃) ₆] and [Ta(N ₃) ₆]. The crystal structures of Nb(N ₃) ₅ :CH ₃ CN and [PPh ₄][Nb(N ₃) ₆] and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F ABSTRACT 17. LIMITATION 0F ABSTRACT 18. NUMBER 0F PAGES 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F ABSTRACT 18. NUMBER 0F PAGES 19. ABSTRACT 10. ABSTRACT 10. ABSTRACT 11. Unclassified 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscince 11. Subscience 11. Subscience 11. Subscience 11. Subsc	AFRL/PRS 5 Pollux Drive	• 、 ,				NUMBER(S)
Approved for public release; distribution unlimited (AFRL-ERS-PAS-2006-085) 13. SUPPLEMENTARY NOTES Submitted to Angewandte Chemie. 14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-21] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃) ₅ , Ta(N ₃) ₅ and their 1:1 adducts with CH ₃ CN, and of the anions [Nb(N ₃) ₆] and [Ta(N ₃) ₆]. The crystal structures of Nb(N ₃) ₅ :CH ₃ CN and [PPh ₄][Nb(N ₃) ₆] and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F ABSTRACT 17. LIMITATION 0F ABSTRACT 18. NUMBER 0F PAGES 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F ABSTRACT 18. NUMBER 0F PAGES 19. ABSTRACT 10. ABSTRACT 10. ABSTRACT 11. Unclassified 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscience 11. Subscince 11. Subscience 11. Subscience 11. Subscience 11. Subsc			MENT			
14. ABSTRACT Whereas the existence of numerous binary transition metal azido-complexes has been reported. ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported. ^[4-21] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃) ₅ , Ta(N ₃) ₅ and their 1:1 adducts with CH ₃ CN, and of the anions [Nb(N ₃) ₆] and [Ta(N ₃) ₆]. The crystal structures of Nb(N ₃) ₅ ·CH ₃ CN and [PPh4][Nb(N ₃) ₆] and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Dr. Scott A. Shackelford a. REPORT b. ABSTRACT c. THIS PAGE A 37 19a. NAME OF RESPONSIBLE (Include area code) N/A Unclassified Unclassified Unclassified Nuclassified Nuclassified Nuclassified N/A			unlimited (AFRL-EF	2S-PAS-2006-085)		
Whereas the existence of numerous binary transition metal azido-complexes has been reported, ^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported, ^[4-21] In this paper, we wish to communicate the synthesis and characterization of Nb(N ₃) ₅ . Ta(N ₃) ₅ and their 1:1 adducts with CH ₃ CN, and of the anions [Nb(N ₃) ₆] and [Ta(N ₃) ₆]. The crystal structures of Nb(N ₃) ₅ :CH ₃ CN and [PPh ₄][Nb(N ₃) ₆] and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT of ABSTRACT c. THIS PAGE Muclassified Unclassified Unclassified Unclassified Muclassified Unclassified Standard Form 298 (Rev. 8-98)	Submitted to Angev	vandte Chemie.				
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19a. NAME OF RESPONSIBLE PERSON Unclassified Unclassified 18. NUMBER (include area code) 19b. TELEPHONE NUMBER (include area code) N/A 37 Standard Form 298 (Rev. 8-98)	Whereas the known. Only a limited In this pape of the anions [Nb(N ₃)	l number of partially az r, we wish to communi $_{6}^{-}$ and [Ta(N ₃) ₆]. The	ide-substituted compoun cate the synthesis and ch crystal structures of Nb	ds of vanadium, niobium naracterization of Nb(N ₃) (N ₃) ₅ ·CH ₃ CN and [PPh ₄	h and tantalum h $_{5}$, Ta(N ₃) ₅ and t	ave previously been reported. ^[4-21] their 1:1 adducts with CH ₃ CN, and
of ABSTRACT of ABSTRACT of PAGES PERSON a. REPORT b. ABSTRACT c. THIS PAGE Dr. Scott A. Shackelford unclassified unclassified A 37 Value Unclassified Value Standard Form 298 (Rev. 8-98)	15. SUBJECT TERMS					
of ABSTRACT of ABSTRACT of PAGES PERSON a. REPORT b. ABSTRACT c. THIS PAGE Dr. Scott A. Shackelford unclassified unclassified A 37 Value Unclassified Value Standard Form 298 (Rev. 8-98)						
a. REPORT b. ABSTRACT c. THIS PAGE A 37 Unclassified Unclassified Unclassified Standard Form 298 (Rev. 8-98)	16. SECURITY CLASS	SIFICATION OF:				PERSON
Standard Form 298 (Rev. 8-98)				А	37	19b. TELEPHONE NUMBER (include area code)
	Unclassified	Unclassified	Unclassified			

Re-revised anie.20051372 Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides Nb(N₃)₅, Ta(N₃)₅, [Nb(N₃)₆]⁻ and [Ta(N₃)₆]⁻, and 1:1 Adducts of Nb(N₃)₅ and Ta(N₃)₅ with CH₃CN ^{**} (Preprint)

Ralf Haiges^{*}, Jerry A. Boatz, Thorsten Schroer, Muhammed Yousufuddin, and Karl O. Christe^{*}

Dedicated to Professor Reint Eujen on the occasion of his 60th birthday

Whereas the existence of numerous binary transition metal azido-complexes has been reported,^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported.^[4-21]

In this paper, we wish to communicate the synthesis and characterization of Nb(N₃)₅, $Ta(N_3)_5$ and their 1:1 adducts with CH₃CN, and of the anions $[Nb(N_3)_6]^-$ and $[Ta(N_3)_6]^-$. The crystal structures of Nb(N₃)₅·CH₃CN and $[PPh_4][Nb(N_3)_6]$ and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds are also reported.

The reactions of NbF5 or TaF5 with excess (CH3)3SiN3 in SO2 solution at -20 °C result in

^[*] Dr. R. Haiges, Dr. T. Schroer, Dr. M. Yousufuddin, Prof. Dr. K. O. Christe Loker Research Institute and Department of Chemistry University of Southern California Los Angeles, CA 90089-1661 (USA) Fax: (+1) 213-740-6679
E-mail: haiges@usc.edu, kchriste@usc.edu Dr. J. A. Boatz
Space and Missile Propulsion Division Air Force Research Laboratory (AFRL/PRSP) 10 East Saturn Boulevard, Bldg 8451
Edwards Air Force Base, CA 93524 (USA)

^[**] This work was funded by the Air Force Office of Scientific Research and the National Science Foundation. We thank Prof. Dr. G. A. Olah, and Dr. M. Berman, for their steady support, and Prof. D. Dixon, Prof. Dr. R. Bau, Drs. R. Wagner and W. W. Wilson, and C. Bigler Jones for their help and stimulating discussions. We gratefully acknowledge grants of computer time at the Aeronautical Systems Center (Wright-Patterson Air Force Base, Dayton, OH), the Naval Oceanographic Office (Stennis Space Center, MS), the Engineer Research and Development Center (Vicksburg, MS), the Army Research Laboratory (Aberdeen Proving Ground, MD), and the Army High Performance Computing Research Center (Minneapolis, MN), under sponsorship of the Department of Defense High Performance Computing Modernization Program Office.

complete fluoride-azide exchange and yield clear solutions of $Nb(N_3)_5$ or $Ta(N_3)_5$, respectively, [Eq. (1) (M = Nb, Ta)].

 $MF_5 + 5 (CH_3)_3 SiN_3 \longrightarrow M(N_3)_5 + 5 (CH_3)_3 SiF$ (1)

When the volatile compounds, SO₂, (CH₃)₃SiF and excess (CH₃)₃SiN₃), are pumped off at -20 °C, pure, yellow, solid, room-temperature stable pentaazides are produced in quantitative yield. As expected for covalently bonded polyazides,^[22] they are shock sensitive and can explode violently when touched with a metal spatula or by heating in the flame of a Bunsen burner. Their identity was established by the observed mass-balances, vibrational spectroscopy and their conversions with N₃⁻ into hexaazido-metalates and with CH₃CN into 1:1 acetonitrile donoracceptor adducts, as shown by the crystal structures of $[P(C_6H_5)_4]^+[Nb(N_3)_6]^-$ and Nb(N₃)₅·CH₃CN.

The observed infrared and Raman spectra of Nb(N₃)₅ and Ta(N₃)₅ are shown in Figures S1 and S2, respectively, of the Supplementary Material, and the observed frequencies and intensities are listed in the Experimental Section. They were assigned (see Tables S1 and S2 of the Supplementary Material) by comparison with those calculated at the B3LYP^[23] and MP2^[24] levels of theory using SBKJ-(d) basis sets.^[25] The agreement between observed and calculated spectra is satisfactory and supports trigonal-bipyramidal structures (Table 1) for Nb(N₃)₅ and Ta(N₃)₅. The internal modes of the azido ligands are split into clusters of five due to in-phase and out-of-phase coupling of the individual motions. There are always one in-phase and four out-of-phase vibrations, with the in-phase one readily identifiable from its higher Raman intensity. The MN₅ skeletal modes can be derived from D_{3h} symmetry in which the double degeneracy of the E modes is lifted due to the presence of the azido ligands which lowers the overall symmetry to C_s and is likely to produce some distortion from D_{3h} .

Whereas trigonal-bipyramidal arrangements of the azido ligands have previously also been found for $[Fe(N_3)_5]^{2-,[26]}$ and theoretically predicted for Sb(N_3)_5 and As(N_3)_5,^[27,28] the details of these structures are very different. In $[Fe(N_3)_5]^{2-}$, As(N_3)_5 and Sb(N_3)_5, all five M-N-N bonds are strongly bent, and the two axial M-N bonds are significantly longer than the equatorial ones, as expected from VSEPR arguments.^[29] In contrast, the axial M-N-N bonds in Nb(N₃)₅ and Ta(N₃)₅ are calculated to be almost linear, while the equatorial ones have angles of about 137 °. Furthermore, all five M-N bonds and the internal N-N distances of the five azido ligands are essentially the same.

Linear M-N-N bonds had previously been predicted also for the tetraazides of d^0 Ti(+IV), Zr(+IV), and Hf(+IV)^[30] and for d^6 Fe(+II),^[31] but the hexazido dianion of d^0 Ti(+IV) was shown experimentally to possess strongly bent Ti-N-N bonds.^[1] These findings show that the linearity of the M-N-N bonds cannot be caused by either a trigonal-bipyramidal structure, multiple M-N bonds, or a d^0 electronic configuration *per se*.

The occurrence of linear metal-N-N groups can be predicted by theoretical calculations.^[30,31] A plausible explanation for the linearity of these M-N-N bonds has recently been given,^[1] based on an analogy with the known crystal structure of $Zr(BH_4)_4$.^[32] A model was proposed in which the N_a atom of the azides acts as a tridative ligand. A detailed analysis of the occurrence of linear M-N-N bonds in the periodic system and of the nature of these bonds is presently being carried out by us and will be the subject of a future publication.

By using CH₃CN instead of SO₂ as solvent for the reactions of NbF₅ and TaF₅ with excess (CH₃)₃SiN₃, yellow solutions of CH₃CN·Nb(N₃)₅ and CH₃CN·Ta(N₃)₅, respectively, were obtained [Eq. (2) (M = Nb, Ta)].

$$MF_5 + 5 (CH_3)_3 SiN_3 \longrightarrow CH_3 CN \cdot M(N_3)_5 + 5 (CH_3)_3 SiF$$
(2)

Removal of the volatile compounds (CH₃CN, (CH₃)₃SiF and excess (CH₃)₃SiN₃) at -20 °C results in the isolation of the acetonitrile-adducts of the pentaazides. Although still dangerous and explosive, both acetonitrile-adducts are less shock-sensitive than the corresponding donor-free pentaazides.

Both acetonitrile-adducts were isolated as yellow solids and were characterized by vibrational spectroscopy, their conversion with N_3^- into the hexaazido-metalates and, in the case of CH₃CN·Nb(N₃)₅, by its crystal structure.^[33] The observed Raman spectra of CH₃CN·Nb(N₃)₅ and CH₃CN·Ta(N₃)₅ are shown in Figures 1 and S3, respectively, and their frequencies and intensities are given in the Experimental Section. A comparison with the calculated spectra is given in Tables S3 and S4 of the Supplementary Material, and the given assignments are in accord with those previously reported^[34,35] for the related CH₃CN·SbF₅ adduct.

 $CH_3CN\cdot Nb(N_3)_5$ crystallizes in the monoclinic space group P2(1)/c. The X-ray structure analysis^[33] (Figure 2) reveals the presence of isolated $CH_3CN\cdot Nb(N_3)_5$ units. The closest Nb…N and N…N contacts between neighboring molecules are 3.98 Å and 3.04 Å, respectively.

The molecule consists of a pseudo-octahedral NbN₆ skeleton with CH₃CN and one azido group in the axial positions. The equatorial positions are occupied by the remaining 4 azido groups which, interestingly, are all bent away from the axial azido ligand. The axial Nb-N₃ distance is about 0.09 Å shorter than the four equatorial ones. The most interesting feature, however, is the fact that the axial azido group exhibits a large Nb-N-NN bond angle of 168.8(3)°, compared to an average angle of 137.8° for the four equatorial ligands, and suggests the presence of a tridative azido ligand. The small deviation of the observed axial Nb-N-N angle from the ideal 180° is attributed to solid state effects, because our theoretical calculations for the free gaseous molecule at the B3LYP and MP2 levels of theory with an SBKJ+(d) basis set resulted in Nb-N-N angles of 179.6° and 178.3°, respectively. For free $CH_3CN \cdot Ta(N_3)_5$, analogous calculations gave values of 179.6 and 180.0°. The significant shortening of the axial Nb-N₃ distance might be attributed to a *trans*-effect caused by the opposite long Nb-NCCH₃ bond.

The average Nb-N_{azide} distance of 1.997 Å in CH₃CN·Nb(N₃)₅ is significantly shorter than those of 2.081 Å and 2.105 Å found for the terminal azides of two isomers of $[Cp*NbCl(N_3)(\mu-N_3)]_2(\mu-O)^{[16]}$ and 2.27 Å found for the cluster $[Nb_6Br_{12}(N_3)_6]^{4-,[18]}$ but slightly longer than that of 1.92 Å found in $[NbCl_5(N_3)]^{-[19]}$ and is attributed to varying degrees of ionicity of the azide ligands in these compounds.

The reactions of the pentaazides with ionic azides, such as $[P(C_6H_5)_4]^+N_3^-$, in CH₃CN solution produce the corresponding $[Nb(N_3)_6]^-$ and $[Ta(N_3)_6]^-$ salts, respectively, [Eq. (3) (M = Nb, Ta].

$$M(N_3)_5 + [P(C_6H_5)_4]N_3 \longrightarrow [P(C_6H_5)_4][M(N_3)_6]$$
(3)

The hexaazido niobates and tantalates were isolated as yellow-orange solids and are stable at room temperature. The compounds were characterized by the observed material balances, vibrational spectroscopy, and in the case of $[P(C_6H_5)_4][Nb(N_3)_6]$ by its crystal structure.^[36] The observed vibrational spectra of $[P(C_6H_5)_4][Nb(N_3)_6]$ and $[P(C_6H_5)_4][Ta(N_3)_6]$ are shown in Figures S4 and S5, respectively, and their frequencies and intensities are given in Table 2 and the Experimental Section, respectively. The free gaseous $[Nb(N_3)_6]^-$ anion is predicted to have perfect $S_6 (\equiv C_{3i})$ symmetry, which is quite rare,^[37] and, therefore, a complete vibrational analysis was carried out (Table 2). $[Ta(N_3)_6]^-$ is slightly distorted from S_6 to C_1 symmetry, but its structure is almost identical to that of $[Nb(N_3)_6]^-$, and the splittings of its degenerate modes are extremely small (Table S5 of the Supplementary Material).

Because of the presence of a large counter-ion which serves as an inert spacer and suppresses detonation propagation, these salts are much less shock sensitive than neat $Nb(N_3)_5$ and Ta(N₃)₅, and are thermally surprisingly stable. Single crystals of $[P(C_6H_5)_4][Nb(N_3)_6]$ were obtained by re-crystallization from CH₃CN. The salt crystallizes in the rare orthorhombic space group P2(1)2(1)2. The X-ray structure analysis^[36] of $[P(C_6H_5)_4][Nb(N_3)_6]$ (Figure 3) reveals no significant cation-anion and anion-anion interactions. The closest Nb-N and N-N contacts between neighboring anions are 4.20 Å and 3.15 Å, respectively. The structure of the $[Nb(N_3)_6]^$ anion in the solid is distorted from the perfect S_6 symmetry, predicted by our theoretical calculations for the free gaseous anion, and is similar to those of $[As(N_3)_6]^{-[28]}$, $[Sb(N_3)_6]^{-,[27]}$ $[Si(N_3)_6]^{-[38]}$ $[Ge(N_3)_6]^{-[39]}$ and $[Ti(N_3)_6]^{2-,[1]}$ and contrary to that of $[Te(N_3)_6]^{2-[40]}$ which contains a sterically active free valence electron pair on its central atom. The average Nb-N distance of 2.027 Å in $[Nb(N_3)_6]^{-1}$ is larger than that of 1.997 Å found for CH₃CN·Nb(N₃)₅, as expected from the formal negative charge in the former which increases the ionic character of the azide ligands. The relatively large variation in the Nb-N-N bond angles, which range from 131.7 to156.2 °, is attributed to intramolecular repulsion effects among the ligands.

In summary, this paper reports the synthesis and characterization of the first examples of binary Group 5 azides and provides the first experimental proof for the existence of linear metal-N-N bonds.

Experimental Section

Caution! Covalent azides are potentially hazardous and can decompose explosively under various conditions! The polyazides of this work are extremely shock-sensitive and can explode violently upon the slightest provocation. They should be handled only on a scale of less than 1 mmol. Because of the high energy content and high detonation velocities of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) is mandatory. Teflon containers should be used, whenever possible, to avoid hazardous shrapnel formation. The manipulation of these materials is facilitated by handling them, whenever possible, in solution to avoid detonation propagation, the use of large inert counter-ions as spacers, and anion formation which increases the partial negative charges on the terminal N_{γ} atoms and thereby reduces the $N_{\beta}N_{\gamma}$ triple bond character and strengthens the weak $N_{\alpha}-N_{\beta}$ single bond. **Ignoring safety precautions can lead to serious injuries**!

Materials and Apparatus: All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line.^[41] All reaction vessels were passivated with ClF₃ prior to use. Nonvolatile materials were handled in the dry argon atmosphere of a glove box.

Raman spectra were recorded directly in the Teflon reactors in the range 3600–80 cm⁻¹ on a Bruker Equinox 55 FT-RA spectrophotometer, using a Nd-YAG laser at 1064 nm with power levels less than 50 mW(!). Infrared spectra were recorded in the range 4000-400 cm⁻¹ on a Midac, M Series, FT-IR spectrometer using KBr pellets. The pellets were prepared inside the glove box using an Econo mini-press (Barnes Engineering Co.) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. The starting materials NbF₅, TaF₅ (both Ozark Mahoning) and $[P(C_6H_5)_4]I$ (Aldrich) were used without further purification. $(CH_3)_3SiN_3$ (Aldrich) was purified by fractional condensation prior to use. Solvents were dried by standard methods and freshly distilled prior to use. $[P(C_6H_5)_4]N_3$ and $[P(C_6H_5)_4]F$ were prepared from $[P(C_6H_5)_4]I$ and stoichiometric amounts of AgN₃ and AgF, respectively, in aqueous solution, filtering off the precipitated AgI.

Preparation of $M(N_3)_5$ (M = Nb, Ta): A sample of NbF₅ (0.55 mmol) or TaF₅ (0.59 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 1 g of SO₂ and (CH₃)₃SiN₃ (5.5 mmol) *in vacuo* at -196 °C. The mixture was warmed to -30 °C. After 2 hours, the temperature was raised to -20 °C and all volatile material was pumped off, leaving behind solid M(N₃)₅.

Nb(N₃)₅: 0.175 g, expected for 0.55 mmol: 0.166 g; Raman (-80 °C): \tilde{v} =2155 [10.0], 2106 [5.5], (v_{as} N₃), 1385 [1.6], (v_s N₃), 628 [0.7], 590 sh, (δ N₃), 427 sh, (v_{as} NbN₃ eq), 413 [3.2], (v_s NbN₃ eq), 360 sh, (v_s NbN₂ ax), 288 [0.7], (δ _{sciss} NbN₃ eq), 234 [0.7], (ρ NbN₂ ax); infrared (KBr): 2124 vs, 2088 vs, (v_{as} N₃), 1374 m, 1347 s, (v_s N₃), 591 mw, 569 w, (δ N₃), 450 sh, (v_{as} NbN₃ eq), 440 mw, (v_{as} NbN₂ ax), 422 w, (v_s NbN₃ eq).

Ta(N₃)₅: 0.247 g, expected for 0.59 mmol = 0.231 g; Raman (-80 °C): \tilde{v} =2182 [10.0], 2129 [3.3], (v_{as} N₃), 623 [1.1], 590 sh, (δ N₃), 450 sh, (v_{as} TaN₃ *eq*), 426 [2.5], (v_s TaN₃ *eq*), 390 sh, (v_s TaN₂ *ax*), 256 [1.7] (δ _{sciss} TaN₃ *eq*), 221 [2.0], (ρ TaN₂ *ax*); infrared (KBr): 2141 vs, 2103vs, (v_{as} N₃), 1403 ms, 1364 m, (v_s N₃), 613 mw, 578 w, (δ N₃), 410 mw, (v_{as} TaN₂ *ax*).

In addition to these bands, the following weak infrared bands were observed which are attributed to overtones or combination bands: $Nb(N_3)_5$: 1667 w, 1263 w, 1195 sh, 1176 w, 1037 vvw, 696 w, 660 w; $Ta(N_3)_5$: 1669 w, 1508 vw, 1274 sh, 1252 w, 1203 w, 1180 sh, 1036 vw, 850 w, 712 w, 683 w.

Preparation of $CH_3CN \cdot M(N_3)_5$ (M = Nb, Ta): A sample of NbF₅ (0.39 mmol) or TaF₅ (0.37 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 2 mL CH₃CN and (CH₃)₃SiN₃ (3.7 mmol) *in vacuo* at -196 °C. The mixture was warmed to -20 °C. After 2 hours, all volatile material was pumped off at this temperature, leaving behind solid CH₃CN·M(N₃)₅.

CH₃CN·Nb(N₃)₅: 0.129 g, expected for 0.39 mmol: 0.136 g. Raman (-80 °C): $\tilde{\nu}$ =2928 [1.8], (v_s CH₃), 2315 [1.2], 2289 [1.1], (v CN), 2140 [10.0], 2121 [1.5], 2097 [1.9], 2090 [1.6], 2074 [2.2], 2058 [1.4], (v_{as} N₃), 1415 [1.3], 1363 [1.2], 1351 [1.1], 1331 [1.1], (\delta CH₃) and (v_s N₃), 947 [1.0], (v CC), 620 [1.2], 610 [1.0], 599 [1.2], 580 [1.1], 566 [1.0], 557 [1.1], (\delta N₃), 441 [3.1], 435 [2.8], 423 [1.7], 419 [1.7], 411 [2.0], (v NbN_x), 281 [1.1], 266 [1.3], 256 [1.3], 248 [1.4], 226 [1.6], (\delta NbN_x), 189 [1.3], 180 [1.3], 139 [1.6], 96 [2.9], (torsional modes).

CH₃CN·Ta(N₃)₅: 0.175 g, expected for 0.37 mmol: 0.161 g. Raman (-80 °C): $\tilde{\nu}$ =2933 [1.7], (v_s CH₃), 2319 [0.5], 2291 [0.5], (v CN), 2172 [10.0], 2162 [1.2], 2123 [1.2], 2103 [1.1], (v_{as} N₃), 1389 [0.4], 1361 [0.4], (\delta CH₃) and (v_s N₃), 948 [1.0], (v CC), 592 [0.3], (\delta N₃), 438 [2.1], 417 [0.6], (v NbN_x), 250 [0.7], 266 [1.3], 226 [0.6], (\delta NbN_x), 192 [0.9], (torsional mode).

Preparation of $[M(N_3)_6]^{-1}$ salts (M = Nb, Ta): Neat PPh₄N₃ (0.25 mmol) was added to a frozen solution of M(N₃)₅ (0.25 mmol) in CH₃CN (15 mmol) at -78 °C. The reaction mixture was warmed to -25 °C and occasionally agitated. After 2 hours, all volatiles were removed at ambient temperature in a dynamic vacuum, leaving behind the solid $[M(N_3)_6]^{-1}$ salts.

 $[P(C_6H_5)_4][Nb(N_3)_6]$: orange solid, 0.160 g, expected for 0.25 mmol: 0.171 g. The IR and Raman spectra of $[Nb(N_3)_6]^-$ are given in Table1.

 $[P(C_6H_5)_4][Ta(N_3)_6]$: pale yellow solid, 0.207 g, expected for 0.25 mmol: 0.193 g. Raman bands due to $[Ta(N_3)_6]^-$ (-80 °C): $\tilde{\nu}$ =2159 [10.0], 2111 [1.0], 2103 [1.0], 2091 [0.8], 2081 [0.7], $(v_{as} N_3)$, 1355 [0.8], $(v_s N_3)$, 609 [0.6], 582 [0.4], (δN_3) , 437 [2.8], 372 [0.7], 364 [0.8], 353 [0.8], $(v TaN_6)$, 225 [1.8], 215 [1.8], (δTaN_6) , 168 [2.6], 160 [2.6], (torsions); infrared bands due to $[Ta(N_3)_6]^-$ (KBr): 2124 vs, 2113 vs, 2096 vs, 2087 vs, $(v_{as} N_3)$, 1383 m, 1372 m, 1360 ms, 1348 s, $(v_s N_3)$, 648 vw, 615 m, 600 mw, 585 mw, 576 w, (δN_3) , 433 w, 418 mw, 414 mw, $(v TaN_6)$.

Theoretical Methods: The molecular structures, harmonic vibrational frequencies, and infrared and Raman vibrational intensities were calculated using second order perturbation theory (MP2, also known as MBPT(2)^[24]) and also at the DFT level using the B3LYP hybrid functional,^[23a] which included the VWN5 correlation functional.^[23b] The Stevens, Basch, Krauss, and Jasien (SBKJ) effective core potentials and the corresponding valence-only basis sets were used.^[25a] The SBKJ valence basis set for nitrogen was augmented with a d polarization function^[25b] and a diffuse s+p shell,^[25c] denoted as SBKJ+(d). Hessians (energy second derivatives) were calculated for the final equilibrium structures to verify them as local minima; i.e., having a positive definite Hessian. All calculations were performed using the electronic structure code GAMESS.^[42]

Received: , 2005

Keywords: Crystal structure, hexaazidoniobate(V), hexaazidotantalate(V), niobium pentaazide, niobium pentaazide - acetonitrile adduct, tantalum pentaazide, tantalum pentaazide – acetonitrile adduct, vibrational spectra, binary Group 5 azides, theoretical calculations, linear metal-nitrogennitrogen bonds

References

- [1] R. Haiges, J. A. Boatz, S. Schneider, T. Schroer, K. O. Christe, *Angew. Chem. Int. Ed.* **2004**, *43*, 3148.
- [2] R. Haiges, J. A. Boatz, R. Bau, S. Schneider, T. Schroer, M. Yousufuddin, K. O. Christe, Angew. Chem. Int. Ed. 2005, 44, 1860.
- [3] A. Kornath, Angew. Chem. Int. Ed. 2001, 40, 3135 and references cited therein.
- [4] K. Dehnicke, J. Strähle, Z. Anorg. Allg. Chem. **1965**, 338, 287.
- [5] K. Dehnicke, J. Inorg. Nucl. Chem. 1965, 27, 809.
- [6] J. Strähle, Z. Anorg. Allg. Chem. **1974**, 405, 139.
- [7] R. Choukroun, D. Gervais, J. Chem. Soc., Dalton Trans. 1980, 1800.
- [8] U. Müller, R. Dübgen, K. Dehnicke, Z. Anorg. Allg. Chem. 1981, 473, 115.
- [9] a) W. Beck, E. Schuierer, P. Poellmann, W. P. Fehlhammer, *Z. Naturforsch. B*, 1966, 21, 811; b) W. Beck, W. P. Fehlhammer, P. Poellmann, E. Schuierer, K. Feldl, *Chem. Ber.* 1967, 100, 2335.
- [10] D. B. Sable, W. H. Armstrong, *Inorg. Chem.* **1992**, *31*, 161.
- [11] J. H. Espenson, J. R. Pladziewicz, *Inorg. Chem.* **1970**, *9*, 1380.
- [12] M. Kasper, R. Bereman, *Inorg. Nucl. Chem. Let.* **1974**, *10*, 443.
- [13] M. Herberhold, A.-M. Dietel, W. Milius, Z. Anorg. Allg. Chem. 1999, 625, 1885.
- [14] J. H. Osborne, A. L. Rheingold, W. C. Trogler, J. Am. Chem. Soc. 1985, 107, 7945.
- [15] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2003, 629, 1162.
- [16] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2003, 629, 1557.
- [17] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2001, 627, 891.
- [18] J. H. Meyer, Z. Anorg. Allg. Chem. **1995**, 621, 921.

- [19] O. Reckeweg, H.-J. Meyer, A. Simon, Z. Anorg. Allg. Chem. 2002, 628, 920.
- [20] H.-J. Meyer, Z. Anorg. Allg. Chem. 1995, 621, 921.
- [21] R. Dübgen, U. Müller, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem. 1980, 471, 89.
- [22] A. M. Golub, H. Köhler, V. V. Stopenko, *Chemistry of Pseudohalides*, Elsevier, Amsterdam, 1986.
- [23] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; R. H. Hertwig, W. Koch, Chem. Phys. Lett. 1997, 268, 345.
 b) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
- [24] C. Moller, M. S. Plesset, *Phys. Rev.* 1934, 46, 618; J. A. Pople, J. S. Binkley, R. Seeger, *Int. J. Quantum Chem. S10*, 1976, 1; M. J. Frisch, M. Head-Gordon, J. A. Pople, *Chem.Phys.Lett.* 1990, 166, 275; R. J. Bartlett, D. M. Silver, *Int. J. Quantum Chem. Symp.* 1975, 9, 1927.
- [25] a) W. J. Stevens, H. Basch, M. Krauss, *J. Chem. Phys.* 1984, *81*, 6026; W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, *Can. J. Chem.* 1992, 70, 612.
 b) P. C. Hariharan, J. A. Pople, *Theoret. Chim. Acta* 1973, *28*, 213.
 c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, *J. Comput. Chem.* 1983, *4*, 294.
- [26] J. Drummond, J. S. Wood, J. Chem. Soc., Chem. Commun. 1969, 1373.
- [27] R. Haiges, J. A. Boatz, A. Vij, V. Vij, M. Gerken, S. Schneider, T. Schroer, M. Yousufuddin, K. O. Christe, *Angew. Chem. Int. Ed.* 2004, 43, 6676.

- [28] a) K. Karaghiosoff, T. M. Klapötke, B. Krumm, H. Nöth, T. Schütt, M. Suter, *Inorg. Chem.* 2002, *41*, 170; b) T. M. Klapötke, H. Nöth, T. Schütt, M. Warchhold, *Angew. Chem. Int. Ed.* 2000, *39*, 2108.
- [29] (a) R. J. Gillespie, I. Hargittai, *The VSEPR Model of Molecular Geometry*, Allyn and Bacon, A Division of Simon & Schuster, Inc.: Needham Heights, MA, **1991**; (b) R. J. Gillespie, P. L. A. Popelier, *Chemical Bonding and Molecular Geometry: from Lewis to Electron Densities*, Oxford University Press, **2001**.
- [30] L. Gagliardi, P. Pyykkoe, *Inorg. Chem.* **2003**, *42*, 3074.
- [31] M. Teichert, J. A. Boatz, private communication.
- [32] P. H. Bird, M. R. Churchill, *Chem. Commun.* **1967**, 403.
- [33] Crystal data for C₂H₃N₁₆Nb: M_r = 344.11, monoclinic, space group P2(1)/c, a = 7.9805(12), b = 10.4913(16), c = 14.695(2) Å, a = 90, β = 96.353(2), γ = 90°, V = 1222.8(3) Å³, F(000) = 672, $\rho_{calcd.}$ (Z = 4) = 1.869 g·cm⁻³, μ = 1.004 mm⁻¹, approximate crystal dimensions 0.25 x 0.08 x 0.02 mm³, θ range = 2.39 to 27.48°, Mo_{Ka} (λ = 0.71073 Å), T = 163(2) K, 3392 measured data (Bruker 3-circle, SMART APEX CCD with χ -axis fixed at 54.74°, using the SMART V 5.625 program, Bruker AXS: Madison, WI, 2001), of which 839 (R_{int} = 0.0204) unique. Lorentz and polarization correction (SAINT V 6.22 program, Bruker AXS: Madison, WI, 2001). Structure solution by direct methods (SHELXTL 5.10, Bruker AXS: Madison, WI, 2001). Structure solution by direct methods (SHELXTL 5.10, Bruker AXS: Madison, WI, 2000), full-matrix least-squares refinement on F^2 , data to parameters ratio: 15.9 : 1, final R indices [$I > 2\sigma(I)$]: RI = 0.0341, wR2 = 0.0692, R indices (all data): RI = 0.0546, wR2 = 0.0746, GOF on F^2 = 1.003. Further crystallographic details can be obtained from the Cambridge Crystallographic Data

Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; email: <u>deposit@ccdc.cam.ac.uk</u>) on quoting the deposition no. CCDC 246594.

- [34] B. v. Ahsen, B. Bley, S. Proemmel, R. Wartchow, H. Willner, F. Aubke, Z. Anorg. Allg. Chem. 1998, 624, 1225.
- [35] D. M. Byler, D. F. Shriver, *Inorg. Chem.* **1973**, *12*, 1412 and **1974**, *13*, 2697.
- [36] Crystal data for $C_{24}H_{20}N_{18}NbP$: $M_r = 684.46$, orthorhombic, space group P2(1)2(1)2, a =18.480(3), b = 23.153(4), c = 6.7831(13) Å, $\alpha = 90$, $\beta = 90$, $\gamma = 90^{\circ}$, V = 2902.3(9) Å³, F(000) = 1384, ρ_{calcd} (Z = 4) = 1.566 g·cm⁻³, $\mu = 0.521$ mm⁻¹, approximate crystal dimensions 0.33 x 0.05 x 0.04 mm³, θ range = 1.41 to 27.51°, Mo_{Ka} (λ = 0.71073 Å), T = 133(2) K, 17936 measured data (Bruker 3-circle, SMART APEX CCD with χ -axis fixed at 54.74°, using the SMART V 5.625 program, Bruker AXS: Madison, WI, 2001), of which 6575 ($R_{int} = 0.0597$) unique. Lorentz and polarization correction (SAINT V 6.22) program, Bruker AXS: Madison, WI, 2001), absorption correction (SADABS program, Bruker AXS: Madison, WI, 2001). Structure solution by direct methods (SHELXTL 5.10, Bruker AXS: Madison, WI, 2000), full-matrix least-squares refinement on F^2 , data to parameters ratio: 16.5 : 1, final R indices $[I > 2\sigma(I)]$: RI = 0.0518, wR2 = 0.0936, R indices (all data): R1 = 0.0858, wR2 = 0.1049, GOF on $F^2 = 1.028$. Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 251934.
- [37] J. Weidlein, U. Mueller, K. Dehnicke, *Schwingungsspektroskopie*, Georg Thieme Verlag, Stuttgart-New York, **1982**, pg. 102.
- [38] A. C. Filippou, P. Portius, G. Schnakenburg, J. Am. Chem. Soc. 2002, 124, 12396.

- [39] A. C. Filippou, P. Portius, D. U. Neumann, K.-D. Wehrstedt, Angew. Chem. Int. Ed.
 2000, 39, 4333.
- [40] T. M. Klapoetke, H. Noeth, T., T. Schuett, M. Warchhold, *Angew. Chem. Int. Ed.* 2000, 39, 2108.
- [41] K. O. Christe, W. W. Wilson, C. J. Schack, R. D. Wilson, *Inorg. Synth.* 1986, 24, 39.
- [42] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.

$R(Nb-N_1)$	=	2	. 0	25	5()	2.	01	.3)	
$R(Nb-N_4)$	=	2	. 0	01	L ()	2.	00	2)	
$R(Nb-N_7)$	=	2	. 0	48	3()	2.	06	(0)	
$R(Nb-N_{10})$	=	2	. 0	80	3 (2.	01	.4)	
$R(Nb-N_{13})$	=	2	. 0	80	3 (2.	01	.4)	
$R(N_1-N_2)$	=	1	. 2	34	1 ()	1.	24	1)	
$R(N_4-N_5)$	=	1	. 2	30)(1.	24	1)	
$R(N_7 - N_8)$	=	1	. 2	43	3(1.	24	9)	
$R(N_{10}-N_{11})$	=	1	. 2	4()(1.	24	5)	
$R(N_{13}-N_{14})$	=	1	. 2	4()(1.	24	5)	
$R(N_2-N_3)$	=	1	.1	62	2()	1.	20	8)	
$R(N_5 - N_6)$	=	1	.1	63	3()	1.	21	.0)	
R(N ₈ -N ₉)	=	1	.1	62	2()	1.	21	.0)	
$R(N_{11}-N_{12})$	=	1	.1	60)(1.	20	8)	
$R(N_{14}-N_{15})$	=	1	.1	60)(1.	20	8)	
α (N ₁ -Nb-N ₄	1)		=	1	71	• •	9(1	L69	.0)
α (N ₁ -Nb-N ₇	,)		=		82	. 8	B (81	.4)
α (N ₁ -Nb-N ₁	L0)		=		91	. () (92	.1)
α (N ₁ -Nb-N ₁	L3)		=		91	. () (92	.1)
α (N ₄ -Nb-N ₇	,)		=		89	•	L (87	.6)
α (N ₄ -Nb-N ₁	L0)		=		93	•	2 (93	.6)
α (N ₄ -Nb-N ₁	L3)		=		93	•	2 (93	.6)
α (N ₇ -Nb-N ₁	L0)		=	1	21	•	3(2	121	.3)
α (N ₇ -Nb-N ₁	L3)		=	1	21	•	3(2	121	.3)
α (N ₁₀ -Nb-N	1 13)	=	1	17	•	2(1	117	.1)
α (Nb-N ₁ -N ₂	2)		=	1	45	• •	3(2	147	.2)
α (Nb-N ₄ -N ₅	5)		=	1	65	. ()(2	157	.3)
α (Nb-N ₇ -N ₈	3)		=						.8)
α (Nb-N ₁₀ -N			=						.8)
α (Nb-N ₁₃ -N	1 14)	=	1	37	•	2(1	138	.8)

$R(Ta-N_1)$	=	1.997(1.996)
$R(Ta-N_4)$	=	1.991(1.993)
$R(Ta-N_7)$	=	2.003(1.997)
$R(Ta-N_{10})$	=	2.008(2.009)
$R(Ta-N_{13})$	=	2.008(2.009)
$R(N_1-N_2)$	=	1.226(1.235)
$R(N_4-N_5)$	=	1.225(1.234)
$R(N_7 - N_8)$	=	1.240(1.242)
$R(N_{10}-N_{11})$	=	1.240(1.244)
$R(N_{13}-N_{14})$	=	1.240(1.244)
$R(N_2-N_3)$	=	1.163(1.209)
$R(N_5-N_6)$	=	1.163(1.209)
R(N ₈ -N ₉)	=	1.160(1.206)
$R(N_{11}-N_{12})$	=	1.160(1.206)
$R(N_{14}-N_{15})$	=	1.160(1.206)
α (N ₁ -Ta-N	4)	= 179.2(177.9)
α (N ₁ -Ta-N	7)	= 89.4(90.2)
α (N ₁ -Ta-N ₂	10)	
α (N ₁ -Ta-N ₂	13)) = 90.2(89.8)
$\alpha(N_4-Ta-N_4)$	7)	= 91.4(91.8)
α (N ₄ -Ta-N ₂	10)	
$\alpha(N_4-Ta-N_1)$	13)	
α (N ₇ -Ta-N ₂	10)	
α (N ₇ -Ta-N ₂	13)	
$\alpha(N_{10}-Ta-N)$	J 13	
α (Ta-N ₁ -N ₂	2)	= 176.9(178.5)
α (Ta-N ₄ -N ₅		= 169.3(173.8)
α (Ta-N ₇ -N ₅	B)	= 137.7(143.0)
α (Ta-N ₁₀ -N	J 11	
α (Ta-N ₁₃ -N	J 14	(138.9) = 137.1(138.9)

Table 1. Stuctures of Nb(N₃)₅ and Ta(N₃)₅ calculated at the B3LYP/SBKJ+(d) level of theory (MP2/SBKJ+(d) values in parentheses).

		observed		Calculated (IR)	
	description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
$\Lambda_{g} V_{1}$	$v_{as}N_3$		2131 (10.0)	2218 (0) [1428]	2129 (0) [1388]
•g • 1	Vas1 V3		2112 (5.6)	2210 (0) [1:20]	212) (0)[1000]
v_2	$v_s N_3$		1342 (2.0)	1432 (0) [49]	1283 (0) [60]
v ₃	δN_3		616 (2.8)	588 (0) [8.8]	565 (0) [39]
V4	δN3			580 (0) [2.2]	524 (0) [2.3]
V5	v _s NbN ₆		433 (5.3)	401 (0) [147]	402 (0) [367]
			414 (4.8)		
ν_6	$\delta_s NbN_6$		225 (3.5)	249 (0) [13]	242 (0) [51]
ν_7	τ			74 (0) [14]	72 (0) [31]
v_8	τ			34 (0) [37]	32 (0) [39]
$E_g v_9$	$\nu_{as}N_3$		2080 (2.1)	2164 (0) [1063]	2146 (0) [110]
	$v_s N_3$		2060 (2.3)	1413 (0) [50]	1279 (0) [154]
v_{10}					
V ₁₁	δN_3			582 (0) [8.4] 580 (0) [0.63]	550 (0) [73] 521 (0) [4 2]
V ₁₂	δN ₃		339 (2.7)	334 (0) [12]	521 (0) [4.2] 350 (0) [38]
V ₁₃	V _s NbN ₆		217 (3.5)	238 (0) [34]	234 (0) [31]
v_{14}	$\delta_s NbN_6$		217 (3.3)	87 (0) [36]	234 (0) [31] 89 (0) [92]
V ₁₅	τ			36 (0) [50]	38 (0) [92] 38 (0) [80]
V ₁₆	τ	2121 .			
u ν ₁₇	$\nu_{as}N_3$	2121 s 2080 vs		2185 (4084) [0]	2152 (2577) [0]
ν_{18}	$v_s N_3$	1336 ms		1406 (677) [0]	1271 (338) [0]
v_{19}	δN_3	640 vw		580 (0.91) [0]	549 (100) [0]
V20	δN_3	624 w		574 (49) [0]	505 (8.0) [0]
V21	$v_{as}NbN_6$	409 mw		400 (536) [0]	418 (629) [0]
V ₂₂	$\delta_{as}NbN_6$			276 (15) [0]	262 (31) [0]
V ₂₃	τ NbN ₆			140 (2.8) [0]	114(0.48) [0]
V ₂₄	τ			27 (0.006) [0]	29 (0.022) [0
V ₂₅	τ			24 (1.6) [0]	14 (0.37) [0]
$E_u v_{26}$	$\nu_{as}N_3$	2069 vs 2060 vs		2170 (4366) [0]	2141 (2681) [0]
V ₂₇	$v_s N_3$	2060 vs 1361 m		1409 (739) [0]	1278 (314) [0]
		1351 m			
ν_{28}	δN_3	600 w		577 (126) [0]	544 (94) [0]
V29	δN_3	583 vw		570 (38) [0]	502 (8.2) [0]
V30	$v_{as}NbN_6$	409 mw	382 (2.8)	391 (874) [0]	404 (1045) [0]
v_{31}	$\delta_{as}NbN_6$			233 (26) [0]	223 (30) [0]
v_{32}	$\delta_{wag/rock}NbN$		151 (4.3)	154 (13) [0]	128 (31) [0]
	6			26 (1.0) [0]	20 (2.1) 523
V33	τ			36 (4.8) [0]	38 (3.1) [0]
v_{34}	τ			15 (1.6) [0]	6 (1.9) [0]

Table 2. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for $[Nb(N_3)_6]^{-[a]}$ in point group S_6

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively; observed spectra are for the solid $[P(C_6H_5)_4]^+$ salt.

Figure 1. Raman spectrum of solid $CH_3CN \cdot Nb(N_3)_5$. The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.

Figure 2. ORTEP drawing of CH₃CN·Nb(N₃). Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: Nb-N1 2.031(3), Nb-N4 1.998(3), Nb-N7 2.004(3), Nb-N10 2.017(3), Nb-N13 1.935(3), Nb-N16 2.259(3), N1-N2 1.217(4), N2-N3 1.139(4), N4-N5 1.212(4), N5-N6 1.133(4), N7-N8 1.212(4), N8-N9 1.129(4), N10-N11 1.211(4), N11-N12 1.132(4), N13-N14 1.205(4), N14-N15 1.137(4), N16-C1 1.139(4), C1-C2 1.447(5), N1-Nb-N4 87.55(12), N1-Nb-N7 165.51(11), N1-Nb-N10 82.89(12), N1-Nb-N13 99.16(12), N1-Nb-N16 84.59(10), N4-Nb-N7 93.90(12), N4-Nb-N10 162.91(12), N4-Nb-N13 96.38(12), N4-Nb-N16 81.15(10), N7-Nb-N10 91.93(11), N7-Nb-N13 95.01(12), N7-Nb-N16 81.40(11), N10-Nb-N13 99.11(12), N10-Nb-N16 83.86(10), N13-Nb-N16 175.45(11), Nb-N1-N2 132.7(2), Nb-N4-N5 141.9(2), Nb-N7-N8 144.1(2), Nb-N10-N11 132.3(2), Nb-N13-N14 168.8(3), Nb-N16-C1 170.6(3).

Figure 3. ORTEP drawing of the anionic part of the crystal structure of [P(C₆H₅)₄][Nb(N₃)₆]. Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: Nb-N1 2.078(5), Nb-N4 2.035(4), Nb-N7 1.989(4), Nb-N10 2.008(4), Nb-N13 2.032(4), Nb-N16 2.026(5), N1-N2 1.164(5), N2-N3 1.126(6), N4-N5 1.198(5), N5-N6 1.128(5), N7-N8 1.192(5), N8-N9 1.133(5), N10-N11 1.196(5), N11-N12 1.118(5), N13-N14 1.203(6), N14-N15 1.137(6), N16-N17 1.173(6), N17-N18 1.137(6), N1-Nb-N4 89.54(19), N1-Nb-N7 173.25(18), N1-Nb-N10 94.23(18), N1-Nb-N13 80.45(18), N1-Nb-N16 85.2(2), N4-Nb-N7 86.30(18), N4-Nb-N10 174.15(18), N4-Nb-N13 95.40(15), N4-Nb-N16 86.78(17), N7-Nb-N10 90.34(17), N7-Nb-N13 94.63(17), N7-Nb-N16 99.86(19), N10-Nb-N13 89.63(18), N10-Nb-N16 89.1(2), N13-N16 165.46(18), Nb-N1-N2 134.4(4), Nb-N4-N5 141.2(4), Nb-N7-N8 156.2(4), Nb-N10-N11 152.3(4), Nb-N13-N14 131.7(4), Nb-N16-N17 142.3(4).

Synopsis

R. Haiges*, J. A. Boatz, T. Schroer, M. Yousufuddin, K. O. Christe*

Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides $Nb(N_3)_5$, $Ta(N_3)_5$, $[Nb(N_3)_6]^-$ and $[Ta(N_3)_6]^-$, and 1:1 Adducts of $Nb(N_3)_5$ and $Ta(N_3)_5$ with CH_3CN

Linear M-N-N bonds: The first binary group 5 azides, Nb(N₃)₅, Ta(N₃)₅, [Nb(N₃)₆] and [Ta(N₃)₆], and 1:1 adducts of Nb(N₃)₅ and Ta(N₃)₅ with CH₃CN, have been prepared and characterized. The crystal structures of the M(N₃)₅·CH₃CN adducts provide the first experimental evidence for the existence of linear metal-N-N bonds.

 $CH_3CN\cdot Nb(N_3)_5$

Supplementary Material

Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides Nb(N₃)₅, Ta(N₃)₅, $[Nb(N_3)_6]^{-}$ and $[Ta(N_3)_6]^{-}$, and 1:1 Adducts of Nb(N₃)₅ and Ta(N₃)₅ with CH₃CN ^{**}

Ralf Haiges^{*}, Jerry A. Boatz, Thorsten Schroer, Muhammed Yousufuddin, and Karl O. Christe^{*}

Figure S1. IR and Raman spectrum of solid Nb(N₃)₅.

Figure S2. IR and Raman spectra of $Ta(N_3)_5$.

Figure S3. Raman spectrum of solid CH₃CN·Ta(N₃)₅.

Figure S4. IR and Raman spectra of [PPh₄][Nb(N₃)₆].

Figure S5. IR and Raman spectra of [PPh₄][Ta(N₃)₆].

Table S1. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for Nb(N₃)₅.

Table S2. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for Ta(N₃)₅.

Table S3. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for CH₃CN·Nb(N₃)₅.

Table S4. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for CH₃CN·Ta(N₃)₅.

Table S5. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for $[Ta(N_3)_6]^{-1}$.

^[*] Dr. R. Haiges, Dr. T. Schroer, Dr. M. Yousufuddin, Prof. Dr. K. O. Christe Loker Research Institute and Department of Chemistry University of Southern California Los Angeles, CA 90089-1661 (USA) Fax: (+1) 213-740-6679
E-mail: haiges@usc.edu, kchriste@usc.edu Dr. J. A. Boatz
Space and Missile Propulsion Division Air Force Research Laboratory (AFRL/PRSP)

10 East Saturn Boulevard, Bldg 8451 Edwards Air Force Base, CA 93524 (USA)

[**] This work was funded by the Air Force Office of Scientific Research and the National Science Foundation. We thank Prof. Dr. G. A. Olah, and Dr. M. Berman, for their steady support, and Prof. D. Dixon, Prof. Dr. R. Bau, Drs. R. Wagner and W. W. Wilson, and C. Bigler Jones for their help and stimulating discussions. We gratefully acknowledge grants of computer time at the Aeronautical Systems Center (Wright-Patterson Air Force Base, Dayton, OH), the Naval Oceanographic Office (Stennis Space Center, MS), the Engineer Research and Development Center (Vicksburg, MS), the Army Research Laboratory (Aberdeen Proving Ground, MD), and the Army High Performance Computing Research Center (Minneapolis, MN), under sponsorship of the Department of Defense High Performance Computing Modernization Program Office.

Figure S1. IR and Raman spectrum of solid $Nb(N_3)_5$. The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.

Figure S2. IR and Raman spectra of $Ta(N_3)_5$. The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.

Figure S3. Raman spectrum of solid $CH_3CN \cdot Ta(N_3)_5$. The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.

Figure S4. IR and Raman spectra of $[PPh_4][Nb(N_3)_6]$. The bands belonging to the $[Nb(N_3)_6]^-$ ion are marked with a diamond (\blacklozenge).

Figure S5. IR and Raman spectra of $[PPh_4][Ta(N_3)_6]$. The bands belonging to the $[Ta(N_3)_6]^-$ ion are marked with a diamond (\blacklozenge). The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.

			observed	calculated (I	R)[Raman]
	description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
ν_1	$v_{as}N_3$		2155 [10.0]	2235 (62) [1340]	2063 (806) [590]
v_1 v_2	$v_{as}N_3$	2124 vs	2100 [1010]	2209 (2722) [241]	2074 (1918) [141]
v ₂ v ₃	$v_{as}N_3$	2088 vs		2204 (1124) [250]	2061 (1261) [34]
v_4	$v_{as}N_3$		2106 [5.5]	2200 (816) [306]	2059 (391) [246]
V5	$v_{as}N_3$			2179 (343) [210]	2044 (415) [28]
V ₆	$v_s N_3$		1385 [1.6]	1435 (172) [117]	1319 (36) [17]
v7	$v_s N_3$	1374 m		1403 (611) [31]	1312 (319) [16]
v_8	$v_s N_3$			1375 (252) [8.4]	1294 (122) [20]
V9	$v_s N_3$	1347 s		1364 (453) [3.9]	1292 (206) [46]
v_{10}	$v_s N_3$			1337 (350) [4.4]	1263 (111) [21]
v_{11}	δN_3			598 (5.6) [2.8]	596 (5.8) [10]
v_{12}	δN_3			587 (0.75) [5.8]	575 (83) [2.6]
v_{13}	δN_3		628 [0.7]	583 (57) [90]	567 (79) [3.4]
v_{14}	δN_3			580 (48) [2.5]	558 (115) [0.5]
V15	δN_3		590 sh	580 (51) [0.22]	533 (3.6) [0.39]
ν_{16}	δN_3	591 mw		579 (84) [6.6]	552 (39) [23]
v_{17}	δN_3			571 (9.7) [77]	521 (4.8) [1.6]
ν_{18}	δN_3	569 w		567 (1.3) [2.1]	519 (6.5) [1.3]
ν_{19}	δN_3			559 (4.2) [0.63]	506 (0.25) [2.3]
v_{20}	δN_3			552 (2.8) [1.2]	499 (6.4) [3.1]
v_{21}	$v_{as}MN_3 eq$	450 sh		472 (164) [5.0]	468 (159) [7.8]
v_{22}	$v_{as}MN_2 ax$	440 mw	107 1	463 (228) [2.9]	466 (247) [9.6]
v_{23}	$v_{as}MN_3 eq$	422 w	427 sh	444 (202) [14]	455 (301) [14]
v_{24}	$v_{s}MN_{3} eq$		413 [3.2]	424 (100) [39]	416 (18) [238]
V ₂₅	$v_{s}MN_{2}ax$		360 sh	363 (0.63) [15]	372 (0.07) [42]
V ₂₆	$\delta_{umbrella}MN_3$		288 [0.7]	285 (9.4) [29] 266 (1.4) [6.3]	281 (8.8) [25]
V ₂₇	$\delta_{sciss}MN_3$			243 (2.1) [16]	253 (0.37) [11] 252 (1.2) [31]
V ₂₈	$\delta_{sciss}MN_3$			243 (2.1) [10] 227 (0.21) [1.2]	212 (0.003) [5.6]
V29	ρMN_2 ρMN_2		234 [0.7]	208 (10) [36]	192 (8.6) [35]
v_{30} v_{31}	$\delta_{sciss}MN_2$		234 [0.7]	143 (0.48) [13]	153 (0.36) [13]
V ₃₁ V ₃₂	$\delta_{sciss}MN_2$			134 (0.06) [1.9]	146 (0.11) [4.4]
V ₃₂ V ₃₃	τ			103 (0.03) [6.5]	101 (0.11) [4.4]
V ₃₃ V ₃₄	τ			100 (0.56) [7.2]	101 (0.11) [11]
V ₃₅	τ			90 (0.13) [0.99]	89 (0.13) [3.7]
V36	τ			57 (0.34) [15]	68 (0.33) [7.2]
V ₃₇	τ			53 (1.1) [6.3]	48 (1.1) [10]
V ₃₈	τ			45 (0.008) [13]	40 (0.05) [16]
V ₃₉	τ			43 (0.44) [23]	39 (0.17) [29]
V ₄₀	τ			41 (0.25) [20]	32 (0.012) [20]
v_{41}	τ			29 (0.67) [16]	27 (0.44) [26]
v_{42}	τ			18 (0.45) [1.7]	6 (0.61) [8.3]

Table S1. Comparison of observed^[a] and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities^[b] for Nb(N₃)₅

[a] In addition to the bands listed in this table, the following weak infrared bands were observed which are attributed to overtones or combination bands: 1667 w, 1263 w, 1195 sh, 1176 w, 1037 vvw, 696 w, 660 w. [b] Calculated IR and Raman intensities are given in km mol⁻¹ and $Å^4$ amu⁻¹.

	4	observed		calculated (infrared) [Raman]	
(description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
1 1	$v_{as}N_3$		2182 [10.0]	2260 (43) [1109]	2134 (696) [316]
	$v_{as}N_3$	2141 vs		2233 (3271) [125]	2132 (2089) [139]
	$v_{as}N_3$		2129 [3.3]	2217 (895) [259]	2097 (823) [53]
	$v_{as}N_3$	2103 vs		2214 (1202) [170]	2086 (1230) [10]
	$v_{as}N_3$			2210 (319) [246]	2085 (673) [48]
	$v_{s}N_{3}$			1473 (7.2) [21]	1348 (29) [88]
	v _s N ₃	1403 ms		1451 (857) [19]	1334 (368) [6.5]
	v _s N ₃			1389 (15) [7.9]	1314 (124) [60]
	v _s N ₃	1364 m		1375 (615) [5.7]	1303 (149) [34]
· · · · · ·	v _s N ₃			1370 (450) [10]	1299 (198) [51]
	5N3			600(2.0) [1.5]	566 (1.6) [0.61]
	SN ₃		623 [1.1]	599 (1.2) [15]	562 (0.98) [1.7]
	SN ₃	613 mw		586 (13) [0.34]	547 (54) [0.10]
	5N ₃			583 (19) [13]	545 (21) [10]
	δN ₃		590 sh	576 (2.7) [66]	550 (1.2) [24]
	δN ₃			572 (18) [0.59]	543 (0.59) [1.4]
	5N3			565 (37) [1.7]	538 (1.1) [0.12]
	5N3	578 w		563 (62) [9.8]	539 (18) [8.2]
	5N3			560 (9.9) [1.7]	530 (16) [0.08]
	δN ₃			552 (4.7) [311]	532 (27) [0.42]
	$v_{as}MN_3 eq$		450 sh	444 (137) [6.5]	443 (188) [4.0]
	$v_{as}MN_2 ax$			442 (149) [1.4]	445 (167) [1.7]
	$v_{as}MN_3 eq$		426 [2.5]	439 (29) [38]	431 (4.3) [172]
	$v_{s}MN_{3}eq$	410 mw		388 (265) [9.1]	391 (349) [7.1]
	$v_{s}MN_{2} ax$		390 sh	360 (12) [47]	359 (2.9) [53]
	$\delta_{umbrella}MN_3$			288 (10) [3.2]	282 (11) [4.1]
	$\delta_{sciss}MN_3$			268 (9.8) [10]	255 (20) [5.9]
28 8	SscissMN3		256 [1.7]	258 (5.5) [63]	259 (1.6) [16]
	MN_2			253 (3.7) [0.23]	238 (7.5) [0.08]
	MN_2		221 [2.0]	207 (22) [21]	189 (22) [4.6]
	$\delta_{sciss}MN_2$			150 (0.18) [5.0]	149 (0.85) [8.9]
	$\delta_{sciss}MN_2$			123 (1.5) [160]	141 (1.5) [11]
33 τ				109 (0) [3.6]	115 (0.006) [2.4]
34 T	τ			101 (0.10) [8.4]	94 (0.11) [13]
35 T	τ			100 (0.11) [11]	93 (0.07) [23]
₃₆ τ	τ			48 (1.0) [2.6]	42 (0.62) [6.7]
₃₇ τ	τ			47 (0.002) [13]	44 (0.07) [11]
₃₈ τ	τ			40 (0.36) [47]	35 (0.29) [28]
₃₉ τ	τ			40 (0.11) [21]	33 (0.19) [15]
₄₀ τ	Ţ			39 (0.13) [17]	35 (0.005) [24]
41 T	τ			21 (0.65) [0.65]	12 (0.80) [0.73]
42 τ				17 (0.70) [3.4]	9 (0.91) [2.2]

Table S2. Comparison of observed^[a] and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities^[b] for Ta(N₃)₅.

[a] In addition to the bands listed in this table, the following weak infrared bands were observed which are attributed to overtones or combination bands: 1669 w, 1508 vw, 1274 sh, 1252 w, 1203 w, 1180 sh, 1036 vw, 850 w, 712 w, 683 w. [b] Calculated IR and Raman intensities are given in km mol⁻¹ and $Å^4$ amu⁻¹.

description	observed Ra	calculated (infr B3LYP/SBK+(d)	ared) [Raman] MP2/SBK+(d)
description	Ka	DJL11/SDK+(u)	MI 2/3DK+(u)
v _s CH ₃	2928 (1.8)	3111 (1.1) [54]	3180 (1.8) [32]
$v_{as}CH_3$		3110 (1.2) [52]	3179 (1.7) [56]
$v_{as}CH_3$		3005 (0.82) [192]	3051 (0.83) [173
vCN	2315 (1.2) 2289 (1.1)	2378 (75) [138]	2218 (22) [62]
$v_{as}N_3$	2140 (10.0)	2238 (751) [1019]	2168 (624) [67]
$v_{as}N_3$	2121 (1.5)	2202 (1935) [364]	2131 (770) [16]
$v_{as}N_3$	2097 (1.9)	2176 (1528) [163]	2129 (514) [45]
$v_{as}N_3$	2090 (1.6)	2176 (1527) [163]	2102 (732) [609]
$v_{as}N_3$	2074 (2.2) 2058 (1.4)	2153 (0.11) [205]	2100 (1690) [88]
$v_s N_3$		1473 (470) [12]	1460 (17) [8.7]
$\delta_{sciss}CH_3$	1415 (1.3)	1434 (14) [7.7]	1460 (11) [4.7]
$\delta_{sciss}CH_3$		1434 (14) [7.6]	1404 (6.6) [8.7]
$\nu_s N_3$	1351 (1.1)	1413 (246) [4.3]	1345 (252) [35]
$v_s N_3$	1331 (1.1)	1394 (374) [2.2]	1294 (29) [22]
$\nu_s N_3$		1394 (379) [2.3]	1288 (160) [11]
$v_s N_3$		1391 (6.5) [4.0]	1276 (35) [22]
$\delta_s CH_3$	1363 (1.2)	1375 (4.9) [16]	1274 (130) [16]
$\delta_{rock}CH_3$		1046 (0.78)[0.10]	1068 (0.42) [0.67
$\delta_{wag}CH_3$		1046 (0.82) [0.10]	1066 (1.4) [0.69]
vCC	947 (1.0)	934 (8.0) [5.6]	954 (12) [2.7]
δN_3	620 (1.2)	609 (5.4) [1.7]	612 (14) [15]
δN_3	610 (1.0)	598 (63) [2.9]	595 (22) [11]
δN_3		598 (63) [2.9]	594 (111) [8.5]
δN_3	599 (1.2)	594 (0.61) [0.12]	583 (92) [12]
δN_3	580 (1.1)	573 (0.006) [0.05]	519 (3.1) [0.31]
δN_3	566 (1.0)	565 (19) [0.50]	516 (0.46) [0.69]
δN_3		565 (20) [0.53]	511 (1.5) [4.9]
δN_3		564 (1.1) [0.03]	509 (6.2) [2.5]
δN_3	557 (1.1)	557 (12) [1.0]	495 (3.2) [0.88]
δN_3		557 (12) [1.0]	487 (15) [0.44]
δN-C-C		456 (21) [0.12]	461 (233) [27]
δN-C-C		456 (22) [0.12]	454 (261) [1.1]
vNbN _{ax}	441 (3.1)	444 (224) [31]	451 (272) [17]
$v_{as}NbN_4$	435 (2.8)	427 (278) [1.5]	429 (14) [4.0]
$v_{as}NbN_4$	423 (1.7)	427 (277) [1.5]	428 (20) [81]
v _{sym} NbN _{4 i p}	419 (1.7)	411 (0.025) [87]	418 (20) [174]
v _{sym} NbN _{4 oo p}	411 (2.0)	352 (0) [3.6]	372 (6.1) [2.9]
vNbN _{CH3CN}	281 (1.1)	296 (.006) [1.4]	294 (14) [1.5]
$\delta_{as}NbN_4$	266 (1.3)	278 (17) [0.63]	265 (8.8) [1.2]
$\delta_{as}NbN_4$	256 (1.3)	278 (17) [0.63]	262 (15) [15]
δNbN_5	248 (1.4)	255 (0.02) [23]	247 (0.50) [15]
δNbN5	226 (1.6)	221 (0.64) [2.1]	232 (1.2) [19]
δNbN₅		221 (0.66) [2.1]	224 (2.2) [1.7]
δ _{CH3CN-NbN5}		203 (0.10) [0.34]	202 (4.8) [6.5]
δ _{CH3CN-NbN5}		203 (0.09) [0.36]	190 (0.01) [2.7]
δNbN₅	189 (1.3)	200 (0.09) [2.7]	182).96) [12]
δNbN ₅	180 (1.3)	183 (0) [16]	164 (0.01) [4.3]
τ	139 (1.6)	119 (0.70) [6.6]	117 (0.28) [14]
τ	96 (2.9)	118 (0.68) [6.6]	115 (1.1)[13]
τ		83 (0) [0]	64 (2.7) [16]
τ		52 (3.3) [31]	62 (0.05) [0.81]
τ		48 (0.004) [24]	59 (0.11) [9.1]
τ		38 (0.009) [16]	55 (1.7) [31]
τ		34 (2.1) [1.7]	48 (0.48) [1.9]
τ		34 (2.0) [1.9]	39 (1.5) [7.3]
τ		29 (1.6) [3.4]	31 (1.9) [3.7]

Table S3. Comparison of observed and unscaled calculated^[a] vibrational frequencies $[cm^{-1}]$ and intensities for $CH_3CN \cdot Nb(N_3)_5$.

V ₅₈	τ	12 (0.11) [145]	25 (0.89) [16]
V59	τ	9 (0.11) [15]	20 (0.55) [13]
v_{60}	unhindered	13i (0.04) [0.01]	16 (0.008) [19]
	$CH_3 \tau$		

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively. The given assignments of the observed frequencies are for the calculated B3LYP frequencies. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.

Table S4. Comparison of observed and unscaled calculated^[a] vibrational frequencies [cm⁻¹]

and intensities for	$CH_3CN \cdot Ta(N_3)_5$.
---------------------	----------------------------

		observed	calculated (infrared) [Raman]	
	description	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
ν_1	vsCH3		3109 (1.3) [56]	3181 (1.6) [46]
v_2	$v_{as}CH_3$		3109 (1.3) [55]	3179 (2.0) [40]
V3	$v_{as}CH_3$	2933 [1.7]	3004 (0.96) [202]	3051 (0.71) [166]
v_4	vCN	2319 [0.5]	2383 (74) [166]	2235 (23) [79]
V5	vCN	2291 [0.5]	2222(2045) [360]	2168 (1157) [5.2]
ν_6	$v_{as}N_3$	2172 [10.0]	2260 (655) [1025]	2154 (128) [363]
V 7	$v_{as}N_3$	2162 [1.2]	2195 (1739) [125]	2167 (1155) [4.6]
ν_8	$v_{as}N_3$	2123 [1.2]	2195 (1735) [125]	2168 (1157) [5.2]
V9	$v_{as}N_3$	2103 [1.1]	2173 (0.007) [181]	2137 (2378) [92]
v_{10}	$\nu_s N_3$		1487 (428) [28]	1462 (13) [7.1]
v_{11}	$\delta_{sciss}CH_3$	1389 [0.4]	1434 (15) [8.2]	1460 (15) [7.1]
v_{12}	$\delta_{sciss}CH_3$		1433 (15) [8.4]	1404 (4.1) [9.2]
v_{13}	$\nu_s N_3$		1432 (264) [29]	1364 (260) [69]
v_{14}	$v_s N_3$		1410 (417) [6.8]	1318 (59) [42]
V15	$v_s N_3$		1410 (418) [6.9]	1307 (110) [48]
v_{16}	$\nu_s N_3$		1409 (0.08)[12]	1301 (181) [27]
ν_{17}	$\delta_s CH_3$	1361 [0.4]	1374 (3.7) [16]	1298 (89) [44]
ν_{18}	$\delta_{rock}CH_3$		1046 (0.91) [0.055]	1067 (0.41) [0.33]
ν_{19}	$\delta_{wag}CH_3$		1046 (0.93) [0.082]	1067 (0.4) [0.33]
v_{20}	vCC	948 [0.3]	935 (7.5) [15]	958 (12) [3.5]
v_{21}	δN_3		608 (5.7) [1.2]	592 (2.1) [11]
V ₂₂	δN_3		596 (29) [1.7]	572 (50) [7.1]
V ₂₃	δN_3		596 (28) [1.7]	576 (4.0) [7.3]
v_{24}	δN_3	592 [0.3]	593 (0.09)) [28]	572 (46)) [6.6]
V ₂₅	δN_3		585 (0.03) [0]	535 (12) [0.37]
V ₂₆	δN ₃		584 (1.5) [0.06]	529 (0.10) [0.35]
V ₂₇	δN_3		584 (41) [0.28]	534 (12) [0.30]
V ₂₈	δN_3		584 (43) [0.26]	529 (1.6) [0.06]
V29	δN_3		578 (0.11) [1.6]	523 (3.8) [0.28]
V30	δN_3		578 (0.19) [1.6]	523 (2.8) [0.32]
V ₃₁	δN-C-C δN-C-C		471 (1.8) [0.82] 471 (1.9) [0.82]	439 (7.1) [0.05] 440 (16) [23]
V ₃₂	vNbN _{ax}	438 [2.1]	424 (0.53) [83]	433 (21) [69]
V ₃₃	$v_{as}NbN_4$	417 [0.6]	410 (170) [20]	413 (188) [100]
V ₃₄	$v_{as}NbN_4$	417 [0.0]	398 (242) [0.27]	411 (268) [3.0]
V ₃₅ V ₃₆	$v_{as} NbN_{4 i p}$		398 (242) [0.26]	412 (272) [0.67]
V36 V37	$v_{sym}NbN_{4 oo p}$		366 (0) [1.3]	382 (0.32) [3.1]
V ₃₇ V ₃₈	vNbN _{CH3CN}		303 (0) [2.1]	297 (0.06) [0.37]
V 38 V 39	$\delta_{as}NbN_4$		274 (33) [0.32]	253 (38) [2.0]
V ₃₉ V ₄₀	$\delta_{as}NbN_4$		273 (32) [0.31]	253 (40) [1.9]
$v_{40} = v_{41}$	δNbN_5	250 [0.7]	246 (3.5) [24]	236 (0.87) [0.83]
V ₄₁ V ₄₂	δNbN ₅	226 [0.6]	226 (0.43) [0.98]	228 (1.8) [30]
V ₄₃	δNbN ₅		226 (0.43) [0.98]	215 (11) [1.2]
V44	δ _{CH3CN-NbN5}		210 (0.32) [0.12]	215 (10) [1.4]
V45	δ _{CH3CN-NbN5}		210 (0.32) [0.11]	183 (0.96) [0.79]
V46	δNbN ₅		203 (1.2) [0.27]	182 (0.97) [0.83]
V ₄₇	δNbN ₅	192 [0.9]	182 (0.0004) [15]	169 (0) [14]
v_{48}	τ		126 (0) [0]	107 (2.6) [11]
v_{49}	τ		115 (0.95) [6.0]	107 (2.4) [11]
v_{50}	τ		115 (0.96) [6.0]	86 (0.005) [0.006]
v_{51}	τ		57 (0.0004) [24]	45 (0.027) [24]
V52	τ		48 (3.7) [28]	42 (4.1) [33]
v_{53}	τ		40 (2.0) [0.12]	34 (1.1) [2.2]
v_{54}	τ		40 (2.1) [0.13]	37 (1.2) [2.6]
v_{55}	τ		33 (1.0) [6.7]	30 (0.0025) [11]
v_{56}	τ		33 (0.99) [6.7]	17 (0.78) [17]
V57	τ		30 (0.003) [15]	27 (0.019) [12]
V58	τ		26 (0.82) [11]	17 (0.34) [16]

V59	τ	26 (0.77) [11]	15 (0.40) [0.72]
v_{60}	τ	10 (0.0004) [0.019]	7 (0.66) [0.44]

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively. The given assignments of the observed frequencies are for the calculated B3LYP frequencies. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.

Table S5. Comparison of observed and unscaled calculated vibrational frequencies $[cm^{-1}]$ and intensities for $[Ta(N_3)_6]^{-[a]}$ in point group C_1

		ol	bserved	Calculated (IR) [Rama	n [°]
	description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
ν_1	$v_{as}N_3$		2159 [10.0]	2238 (100) [940]	2281 (1924) [5.1]
V2	$v_{as}N_3$	2124 vs	2111 [1.0]	2199 (2670) [120]	2181 (1926) [5.1]
V3	$v_{as}N_3$	2113 vs	2103 [1.0]	2193 (2307) [130]	2168 (534) [0.86]
v_4	$v_{as}N_3$	2096 vs	2091 [0.8]	2189 (3036) [38]	2169 (771) [0.59]
V5	$v_{as}N_3$	2087 vs	2081 [0.7]	2178 (8.1) [221]	2169 (59) [1.5]
v_6	$v_{as}N_3$			2172 (176) [193]	2167 (0.021) [444]
v ₇	$v_s N_3$			1441 (14) [55]	1304 (0.0004) [123]
v_8	$v_s N_3$	1383 m		1421 (197) [25]	1297 (7.1) [103]
V9	$v_s N_3$	1372 m		1417 (118) [28]	1298 (6.9) [103]
v_{10}	$v_s N_3$	1360 ms	1355 [0.8]	1414 (336) [18]	1293 (157) [0.003]
v_{11}	$v_s N_3$	1348 s		1412 (420) [7.7]	1292 (232) [67]
v_{12}	$v_{s}N_{3}$			1409 (338) [13]	1292 (232) [67]
v ₁₂ V ₁₃	δN_3	648 vw		605 (7.4) [0.49]	581 (0.0004) [8.6]
V ₁₃	δN_3	615 m	609 [0.6]	599 (30) [1.2]	563 (13) [4.7]
V ₁₄ V ₁₅	δN_3	600 mw	005 [010]	597 (25) [1.6]	563 (12) [4.7]
	δN_3	000 111		595 (15) [1.9]	553 (23) [8.0]
$v_{16} = v_{17}$	δN_3			594 (0.45) [0.60]	553 (23) [8.0]
	δN_3			592 (10) [0.54]	551 (20) [0.014]
V ₁₈	δN_3			590 (12) [1.4]	534 (0.04) [0.027]
V ₁₉	δN_3			586 (3.4) [0.35]	535 (0) [2.6]
V ₂₀	δN ₃	585 mw		585 (16) [0.39]	534 (0.04) [0.029]
V ₂₁	δN ₃	565 mw		584 (20) [0.44]	530 (0.060) [1.1]
V ₂₂	δN_3		582 [0.4]	583 (16) [1.9]	530 (0.063) [1.1]
V ₂₃	δN_3	576 w	562 [0.4]	578 (17) [0.24]	521 (23) [0]
V ₂₄		433 w	437 [2.8]	418 (1.9) [73]	414 (0.0009) [155]
V25	vMN	433 w 418 mw	437 [2.0]	377 (281) [1.3]	389 (294) [0.10]
V ₂₆	vMN	413 mw	372 [0.7]	375 (288) [1.3]	389 (294) [0.10]
V ₂₇	vMN	414 IIIw	364 [0.8]	369 (306) [0.63]	369 (357) [0]
V ₂₈	vMN		353 [0.8]	344 (7.4) [1.5]	
V ₂₉	vMN		555 [0.8]	337 (41) [2.1]	341 (40) [5.2]
V ₃₀	vMN			271 (31) [3.2]	341 (40) [5.1] 266 (57) [4.8]
V ₃₁	δMN Smn			261 (31) [2.7]	
V ₃₂	δΜΝ				266 (57) [4.8]
V ₃₃	δMN Smn		225 [1.8]	254 (9.6) [6.3] 233 (24) [13]	256 (0) [27] 215 (4.5) [4.7]
V ₃₄	δΜΝ		223 [1.0]		
V ₃₅	δΜΝ		015 [1 0]	228 (17) [11]	215 (4.5) [4.7]
V ₃₆	δΜΝ		215 [1.8]	221 (9.6) [7.4]	209 (40) [0]
V ₃₇	δMN Smn		168 [2.6]	181 (0.76) [18]	167 (0) [19] 161 (0.28) [19]
V ₃₈	δΜΝ		160 [2.6]	176 (0.06) [7.5]	161 (0.28) [19]
V39	δΜΝ		100 [2.0]	172 (0.34) [14]	161 (0.28) [19]
V_{40}	τ			91 (0.55) [7.3]	79 (3.6) [0]
v_{41}	τ			83 (0.13) [10]	44 (0.006) [19]
V ₄₂	τ			79 (0.48) [0.69]	44 (0.004) [19]
V ₄₃	τ			44 (2.4) [19]	43 (0) [28]
v_{44}	τ			41 (0.81) [18]	37 (1.7) [16]
v_{45}	τ			39 (1.2) [18]	37 (1.8) [16]
v_{46}	τ			38 (0.47) [17]	28 (0.73) [28]
v_{47}	τ			36 (2.8) [11]	28 (0.75) [28]
ν_{48}	τ			35 (1.4) [7.3]	27 (0.0004) [3.6]
ν_{49}	τ			30 (0.44) [3.9]	14 (0.60) [6.5]
v_{50}	τ			27 (0.22) [10]	14 (0.58) [6.3]
V ₅₁	τ			22 (0.81) [6.5]	9 (2.8) [0.002]

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively; observed spectra are for the solid $[P(C_6H_5)_4]^+$ salt. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.