
University of California

Santa Cruz

Ordered Core Based Trees

A thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Clay Shields

June 1996

The thesis of Clay Shields is approved:

Prof. J.J. Garcia-Luna Aceves

Prof. Tracy Larrabee

Prof. Darrell Long

Dean of Graduate Studies and Research

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1996 2. REPORT TYPE

3. DATES COVERED
 00-06-1996 to 00-06-1996

4. TITLE AND SUBTITLE
Ordered Core Based Trees

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

64

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c
 by

Clay Shields

1996

iii

Contents

Abstract vii

Acknowledgments viii

1. INTRODUCTION 1

2. BACKGROUND 4

2.1 Looping in CBT : 5

3. THE OCBT PROTOCOL 11

3.1 Di�erences between OCBT and CBT : 11

3.2 Core Placement : 13

3.3 Tree Construction : 14

3.4 Tree Maintenance : 18

3.5 Network Partitions : 19

3.6 OCBT Speci�cation : 21

4. CORRECTNESS OF OCBT 27

4.1 Connectivity in a Connected Network : 27

4.2 Loop Freedom : 28

4.3 Connectivity in a Partitioned Network : 41

5. PERFORMANCE OF OCBT 44

5.1 OCBT and CBT : 46

5.2 CBT implementations : 50

6. CONCLUSIONS 53

6.1 Future Work : 54

iv

References 56

v

List of Figures

2.1 Looping in a disconnected CBT subtree. : 6

2.2 Deadlock or loop formation in tree formation : : : : : : : : : : : : : : : : : 7

2.3 Undetected loop during tree construction under routing instability : : : : : 9

2.4 Permanent loops in the core backbone formed under routing instability : : : 10

3.1 Initial OCBT Tree Building Process : 15

3.2 Building the tree from the Lower-Level Cores : : : : : : : : : : : : : : : : : 16

3.3 Building the tree from the Higher-Level Cores : : : : : : : : : : : : : : : : 16

3.4 Build completion and Data Tra�c Routing : : : : : : : : : : : : : : : : : : 17

3.5 Link Failures : 18

3.6 Routing Loop Unrolling : 19

3.7 Common OCBT Functions : 23

3.8 OCBT Protocol for Core Nodes : 24

3.9 OCBT Protocol for Router Nodes : 25

3.10 OCBT Protocol for Timeouts and Parent Link Failures : : : : : : : : : : : 26

5.1 Arpanet Simulation Topography : 45

vi

List of Tables

5.1 Cores used in simulation : 47

5.2 OCBT vs. CBT : 48

5.3 The performance of CBT implementations : : : : : : : : : : : : : : : : : : : 52

Ordered Core Based Trees

Clay Shields

abstract

This thesis presents a new protocol, the Ordered Core Based Tree (OCBT) protocol,

which remedies several shortcomings of the Core Based Tree (CBT) multicast protocol.

The CBT protocol can form loops during periods of routing instability, and it can fail to

consistently build a connected multicast tree, even when the underlying routing is stable.

The OCBT protocol provably eliminates these de�ciencies and reduces the latency of tree

repair following a link or core failure. OCBT also improves scalability by allowing
exible

placement of the cores that serve as points of connection to a multicast tree. Simulation

results show that the amount of control tra�c in OCBT is comparable to that in CBT.

Keywords: Multicast, Routing, Loop-free

viii

Acknowledgments

I would like to thank my advisor, Dr. J.J. Garcia-Luna Aceves for providing the initial

idea that led to this body of work, and for his patience, support and forbearing while the

simulation work was almost complete time and time again. Thanks to Dave Beyer for his

virtually unlimited support on all my questions about CPT, the simulation tool used to

implement the OCBT and CBT simulations. Dr. Tracy Larrabee is responsible for all good

grammar contained in this work, that leads me to thank her for this.

I would like to thank my parents, particularly my mom, for their understanding when I

chose to return to school instead of getting a \real job" and to reassure them that I'll be

out of school and working real soon now, maybe. I certainly also need to acknowledge my

friends and housemates who kept me passably sane the past two years.

This work was supported in part by the O�ce of Naval Research under Contract No.

N-00014-92-J-1807.

1

1. INTRODUCTION

As computer networks become more pervasive and the technology is applied in new and

di�erent ways, transmissions that conserve system resources will become increasingly cru-

cial. One common type of network messages are unicast transmissions; these are sent from

one computer to one other speci�c computer. There are also broadcast transmissions that go

from one station to all other stations, though these are more typical of television and radio

than of the Internet. Becoming increasingly common are multicast transmissions, which �ll

the gap between unicast and broadcast: multicast allows a message to be transmitted to a

select group of other stations. The challenge of multicasting is to do this e�ciently.

Currently, if one were to send an e-mail message to a group of friends who use di�erent

computers, the message would be sent from the originator one time for each recipient. This

is not a problem with e-mail, as the messages are fairly small and the multiple copies that

are being transmitted do not overload the outgoing network link. However, if the same

originator were trying to send a digital high de�nition television signal to a large group

receiving a pay-per-view program, such duplication of the signal would undoubtedly quickly

overload the network. Multicast routing protocols provide ways to route data packets so

that only one copy ever traverses any given link. In a way, both unicast and broadcast are

special cases of multicasting; the �rst being a multicast group with a single receiver and

the latter transmitting to a multicast group of all possible receivers.

There are a variety of routing protocols that approach the problem in di�erent ways.

In some protocols, such as the Distance Vector Multicast Routing Protocol (DVMRP) [1]

and the Protocol Independent Multicast-Dense Mode (PIM-DM) protocol [2] the receiving

group is assumed to be fairly dense. In these protocols the sender initiates the multicast

assuming all routers in the network are interested in receiving the transmission and, initially,

the multicast is sent to all receivers. If any receiver does not wish to receive the multicast,

it must take explicit action and send a message called a prune to remove itself from the

tree. These prune messages have a limited lifetime; every so often the prune messages expire

2

and the multicast goes to all possible recipients, which again have to prune the branch if

they still do not wish to receive the multicast. These types of protocols are termed sender

initiated as the receivers are not required to take any action to receive the multicast. In each

of these protocols the routing tree is formed along the shortest path between each sender

and receiver. This shortest path tree ensures the shortest possible delay in the delivery

of any data packet, but it can create formidable routing requirements as the number of

multicast groups and sources grow. The overhead at each router on a shared tree is O(n �s),

where n is the number of multicast groups and s is the number of sources in the group

Other protocols assume a di�erent approach in forming the tree and the means of

initiating reception of the group. In both the Core Based Tree (CBT) multicast protocol [3]

and in the Protocol Independent Multicast-Sparse Mode (PIM-SM) protocol [4] [5], a single

shared tree is created for all sender and receivers in the group, and receivers initiate their

own connection to the tree. In each of these receiver initiated protocols a well known router

exists that accepts connection requests from other routers. This router is known as the

rendezvous point in PIM ; in CBT it is called a core. The returning acknowledgment builds

a branch of the tree back to the initiator along the reverse path of the connection request.

Instead of forwarding each packet on a per-group per-source basis, each data packet is

instead forwarded over every on-tree link for that group except the one on which it was

received. Accordingly, the router does not have to maintain information about each source

for each group and has a single entry for each group. The router overhead is therefore O(n),

giving the shared tree approach superior scalability. However, because each such packet no

longer travels over its shortest path to each receiver shared trees incur longer average delay

in the delivery of a data packet.

PIM-SM and CBT di�er with respect to the state in which they maintain their branches.

Sparse mode PIM maintains branches in a soft state, in which not all senders are connected

directly to the rendezvous point. Instead, the senders unicast packets to the rendezvous

point, which then forwards the packets to all routers on the tree. A branch is not actually

formed with a sender unless the tra�c from that sender becomes very frequent. By relying

3

on unicast transmission for some packet tra�c, PIM-SM avoids forming �xed branches

that could become heavily burdened and instead relies on the underlying unicast routing

algorithm to distribute packets over di�erent links. In contrast, CBT operates in a hard

state, such that all receivers and senders are connected to the tree by branches that stay

in place once they are created. This allows orderly data packet delivery as long as the

branches remain connected; loops in the underlying routing will not cause a packet to be

lost or delayed.

During times of underlying unicast instability CBT can form loops. Loops in a shared

multicast tree are fatal. When a data packet enters a loop, it circulates the loop endlessly.

As a circulating data packet passes through a router that has an o�-loop branch, the packet

gets forwarded down that branch. This leads to multiple transmissions of each packet in

the loop to the rest of the tree. As more tra�c �nds its way into the loop this situation gets

worse, as more and more o�-loop transmissions occur. Eventually, the loop starts forwarding

so many packets to the rest of the tree that all links on the tree become saturated and are

unable to function. The focus of this work is on improving on the Core Based Tree protocol

to eliminate this looping problem and other problems that can keep a multicast tree from

forming.

The next chapter describes the operation of the CBT protocol. Chapter 3 provides

a complete description of OCBT. Chapter 5 discusses the performance of OCBT, which

is analyzed by simulation and compared with CBT's performance. Chapter 4 shows the

correctness and loop freedom of OCBT. Chapter 6 o�ers conclusions.

4

2. BACKGROUND

The Distance Vector Multicast Routing Protocol (DVMRP) [1] currently used in the

Internet MBONE [6] forms a source-based tree from each sender and requires that each

router maintain information for each source in each group. Additionally, it requires routers

that do not wish to be part of the multicast group to explicitly send messages to prune

themselves from the tree. Within a large network with a multicast group containing many

sources, the overhead required by on-tree routers can be excessive.

CBT [3] [7] [8] [9] forms a backbone within a connected group of nodes called cores. The

backbone is formed by selecting one router, called the primary core, to serve as a connection

point for the other cores, called secondary cores. Secondary cores remain disconnected from

the primary core until they are required to join the multicast group. A router wishing

to participate in the multicast session sends a join-request towards the closest core. This

request travels hop-by-hop on the shortest path to the core, forcing other o�-tree nodes

to join the branch that the router is forming. When the join-request reaches a core or an

on-tree node, a join-acknowledgment is sent back along the reverse path, forming a new

branch from the tree to the requesting router. If the core that is reached is a secondary

core and is o�-tree, it connects to a primary core using the same process. Once the tree

is constructed, data packets
ow from any source to its parent and children. Each parent

node forwards the packet to all children other than the sender and to its parent until the

data packet reaches the backbone. Each packet is then sent along the backbone and down

all other branches, ensuring that all group members receive it.

In the event of a link or node failure, the child node that detects the failure follows a

particular strategy in order to reconnect to the tree. If that node's next hop to the nearest

core is through one of its immediate children, it sends a message, called a
ush message,

to its children. The
ush message travels down the tree, forwarded from parent to child,

removing the connection between the parent and child. This message tears down the tree

to the individual receivers, which then attempt to reconnect along their best path to a

5

core. If the next hop to the core is not through a child, the detecting node attempts to

reconnect itself by sending a rejoin-request towards the nearest core and does not send the

ush message to its children. When the request reaches an on-tree node, that node returns

a join acknowledgment that rebuilds the branch down to the sending node. It also sends the

rejoin-request to its parent for forwarding to a core. The forwarding of the rejoin-request

back up the constructed tree is a mechanism used to detect loops that may have formed.

If a node receives a rejoin-request that it originated, then a loop has formed. The node

detecting the loop removes the link to its parent by sending a message called a quit message

and again attempts to rejoin. Otherwise, if the rejoin-request is received at the primary

core, that core sends a unicast acknowledgment to the originator of the rejoin request to

verify the absence of a loop. This unicast message is needed because if a loop had formed

and the rejoin-request was lost before it was returned to the originator, then the loop would

not have been detected. However, if the originator never receives the ack, it can assume

that a loop has formed, quit from its parent by sending a quit message, and attempt to

rejoin again.

2.1 Looping in CBT

Surprisingly, there have been no prior attempts to show that CBT is correct, that is,

that CBT creates multicast trees in �nite time and that it does not form loops. In fact, the

tree will not always form in CBT. Part of the tree can remain disconnected when a router

seeks to rejoin the multicast tree in response to a failure in the link to its parent. The

router detecting the link failure attempts to maintain the sub-tree below it while rejoining

the rest of the tree by sending a rejoin-request towards the core. If the path to the core is

through an immediate child, the sub-tree is destroyed by transmission of a
ush message.

Otherwise, the rejoining router sends a rejoin-request towards the core. If this request

reaches a descendent in the sub-tree, it is acknowledged and a link forms between the

descendent and the rejoining router, completing a loop. Figure 2.1 shows the topography

of a CBT sub-tree subject to this transient looping. The grey node is attempting to rejoin

6

Path to Core

Core

Rejoining
Router

On-tree
router

New Shortest

Figure 2.1: Looping in a disconnected CBT subtree.

along a newly formed shortest path to the next reachable core. Because its path passes

through a descendent child, a loop will be formed. This type of loop can occur even when

the underlying routing algorithm, which a CBT node uses to determine the path to the

core, does not contain loops and is said to be stable.

As a loop detection mechanism, the descendent node forwards the rejoin request to its

parent, and this message is passed up tree until it reaches the originating router, at which

point the loop is detected and action taken to correct it. According to the current CBT

protocol speci�cation [9], the rejoining router simply sends a quit request to its parent to

remove the loop. This correction mechanism can fail, however, as the rejoining router takes

no action to destroy its sub-tree and instead attempts to rejoin again, possibly along the

same path forming the same loop. This continual looping denies multicast service to the

disconnected sub-tree, but it can be stopped if the rejoining router is allowed to
ush the

tree upon detecting a loop, after which each member of the sub-tree connects directly to

the core along the shortest path.

If the rejoining router is a secondary core that must reconnect to the primary core, then

ushing the tree by forwarding a
ush message to all children of the router that is rejoining

does not always solve the looping problem. In this case,
ushing the tree can initiate a

race condition in which local routers attempt to rejoin the core as it attempts to rejoin

the primary core. Upon receiving a
ush message, routers with members of their subnets

7

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Request

Secondary CorePrimary Core Joining
Router

Join
Request

Join

Figure 2.2: Deadlock or loop formation in tree formation

desiring the multicast immediately send a join-request on a hop-by-hop basis towards the

closest core. That secondary core could be trying to connect to the primary core. If a router

that lies on the path to the primary core has attempted to join the secondary core, then it

is possible that by the time the join request from the secondary core, which is destined for

the primary core, reaches the router, the router will be awaiting an acknowledgment to its

own join-request. In this join-pending state the router will accept the local core's request,

as illustrated in Figure 2.2. This will lead to a temporary deadlock until the appropriate

timeouts occur. If these timeouts occur close together and there is no mechanism for

selecting an alternate primary core, or if the receiver group near the disconnected secondary

core is dense so that each path to the primary core is blocked, this race condition can occur

many times leading to a long latency in reconnecting the sub-tree, if the sub-tree is able to

connect at all. A solution to this would be to force routers receiving a
ush message to back

o� for some period of time before attempting to rejoin. While this would prevent the routers

from winning the race, it would also lead to long latency times for routers attempting to

rejoin the multicast tree.

The same situation that prevents proper reconstruction of the tree following a link failure

can also prevent initial construction of the tree, and it can form a loop in a disconnected

sub-tree. If a secondary router receives a join-request from a router that lies on the path

from the secondary core to the primary core, the secondary core will be unable to form a

link to the primary core as all join-requests the secondary core sends will be stopped at the

�rst hop towards the joining router. In Figure 2.2, this occurs at the white colored router

between the joining router and secondary core. In this case the race is always won by the

joining router, as it has a head start in sending its join request. As the secondary core

8

sends a join-acknowledgment to the router before attempting to connect to the primary

core, the nodes on the path back to the joining router will consider themselves to be on-

tree and will acknowledge the secondary core's join-request if the acknowledgment arrives

before the secondary core's join-request. A loop, which is undetected by CBT, will then be

formed between the router which is the �rst hop to the joining router and the secondary

core. Notice that this loop does not form when secondary core is attempting to reconnect;

in the case in which reconnection is occuring the forwarding of the rejoin-request back to

the secondary router removes the loop, though the secondary core will still be unable to

connect to the primary core. If the secondary cores do not send a join acknowledgment

before sending a join-request, then deadlock can occur as described above.

If the network is is unstable during construction, the secondary core's attempt to join

can again lead to undetected loops in the disconnected sub-tree. Assume that a router sends

a join-request to a secondary core, which is currently o�-tree. When the join-request reaches

the core, the core acks it and attempts to join the primary core by sending a join-request

of its own. If this request travels a di�erent path due to unicast routing instability and

traverses a branch of its sub-tree, the join-request will be accepted and acked as shown in

Figure 2.3. The transmission of the ack will occur immediately if the receiving node is on

the branch, indicated by path A, or as soon as the ack traveling from the core reaches that

point on the branch, indicated by path B. This ack will travel back to the core and form

a loop that will not be detected; tra�c will circulate within the loop endlessly, dumping

repeat copies of data packets down each other o�-loop branch as it goes by. Again, this type

of loop can only be formed during the initial build of the tree; if the core is attempting to

reconnect and uses a rejoin-request instead of a join-request, the loop detection mechanism

will detect the loop when the rejoin is forwarded to the core.

There is one similar undetected loop that can form when the tree is constructed during

times of network instability or when secondary cores are attempting to contact di�erent

primary cores. In this situation it is possible that the primary core is thought to be

unreachable by part of the secondary core group without that information having been

9

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

�
�
�

�
�
�

������
������
������
������

������
������
������
������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�

�
�
�
�
�

router

A

B

Returning
Join Ack

Path of core join request

Path of initial join request

Core router

On tree router

Join Pending
Router

Off tree

Figure 2.3: Undetected loop during tree construction under routing instability

disseminated through the rest of the group. This inconsistency can occur, due to the

mechanism causing deadlock described above, if some secondary core has been unable to

reach the primary core because its children blocked the connection and it is now attempting

to reach an alternate primary core. If the branches being formed by two secondary cores

cross, either due to di�erences in the destination of the join-request or because of looping

in the unicast routing, a loop can be formed. If the loop is formed during the initial

construction of the tree, it will be undetected and will not be removed.

If two secondary cores are attempting to form the backbone and their branches meet

in a way that forms a loop, one of two things will happen. In the best case, join-pending

nodes on each branch receive the request of the other. This is illustrated in Figure 2.4,

where each join-pending node chooses the hop labeled C. No loop will be formed as no acks

will be sent; instead, each branch will wait for an ack until they time out.

In the second case, one or both of the forming branches will meet the other at a core or

an on-tree node that is a descendent of the core. The core or on-tree router that receives

the request will acknowledge it. The ack will travel back along the reverse path forming the

branch, possibly getting forwarded back down the other branch that was forming as well.

In this case, a loop has been formed in the backbone that will not be detected. Any tra�c

10

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����������

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

Primary
Core

On tree
Router

Join or Rejoin
Pending Router

C
C

A

A

B

B

Figure 2.4: Permanent loops in the core backbone formed under routing instability

entering the loop will circle it endlessly, and each time it reaches a router with an interface

leading out of the loop, and additional copy will travel down the tree to all receivers.

Additional tra�c
owing into the loop only serves to exacerbate the situation, resulting in

a denial of service as the tree is
ooded with the same packets repeatedly. Figure 2.4 shows

how the loop will form if either of any of the next hop choices labeled A or B are taken.

11

3. THE OCBT PROTOCOL

CBT builds a multicast tree from a single level of secondary cores which join at a single

primary core. In contrast, OCBT maintains a hierarchy of cores with an arbitrary number

of levels. Each core is assigned a logical level, which is a label indicating the cores place

in the hierarchy of cores. By using this ordered scheme, OCBT completely eliminates the

problems associated with CBT, reduces control tra�c following a link failure, and allows for

exible core placement. OCBT does this without increasing the complexity of the protocol.

This chapter describes the di�erences between OCBT and CBT, discusses the di�culties

of core placement, shows how an OCBT tree is built and maintained, and presents a formal

description of the protocol.

3.1 Di�erences between OCBT and CBT

OCBT maintains a logical level for each node and core. The cores logical levels are �xed

when the core is selected; the nodes levels are not �xed but are assigned when the node

joins the tree. Any node or cores level is always less than or equal to the level of its parent;

OCBT uses this property to guarantee that no transient or permanent loops ever form in

the structure of the tree and that the protocol is safe and live even when routing-table loops

occur in the underlying routing protocols. In contrast, CBT allows the formation of the

loops as described in Section 2.1.

Join-requests in OCBT carry a �eld which contains the level a node must have to safely

acknowledge the request. If a node receives a join-request carrying a level higher than its

level, it quits from its parent and joins the branch that the join-request is forming. In this

way, OCBT forces lower-level branches to break to allow the construction of higher-level

branches. This prevents the cases in CBT in which a node or core attempting to rejoin

following a link failure is unable to connect to a core because it is blocked by its sub-tree,

preventing that sub-tree from joining the main multicast tree.

12

OCBT limits control messages to within a particular logical level and distributes the

processing of control messages over a larger number of cores. When a link fails,
ush

messages travel down-tree only as far the next lower level of cores; join-requests need only

travel as far as the next higher level of cores. This results in less tra�c following a link failure

than in CBT, in which
ush messages from near a core or rejoin messages originating far

from the core have to travel relatively long distances. More recent speci�cations for CBT [9]

have a single primary core that forms a point of connection for secondary cores that stay

o�-tree until required to join. This single primary core is a limiting factor to the scalability

of CBT, as it must receive and respond to all passive join-requests from the entire multicast

tree. OCBT has no similar single point of tra�c concentration, as cores need only respond

to tra�c within its logical level.

Other di�erences between CBT and OCBT include changes in the mechanism by which

nodes destroy the connection formed with their parent. OCBT replaces the quit request

of CBT with a quit notice, and in OCBT nodes sending the quit request do not wait for

an acknowledgment before leaving the tree. In contrast, under CBT, nodes must wait

for an acknowledgment from the parent before leaving the tree. OCBT uses the keep-

alive mechanism to detect lost quit-notices and
ush messages instead of using explicit

acknowledgments. A parent-assert message is included in OCBT to insure that consistent

state information is maintained between nodes. A parent keeps track of reception of keep-

alive packets from its children. In the event that the parent does not receive a keep-alive

from a child in a set period of time, it sends a parent assert message to ascertain if the

child still is its child; if no reply or a negative reply to a parent assert is received, the child

is assumed to have quit. This guarantees eventual consistent information about the state

of the link between child and parent, even if messages are lost. Because no node accepts or

forwards an on-tree data packet from an o�-tree link, no data packets are received twice,

even if a quit-notice or
ush message is lost.

OCBT is quite similar in complexity to the original CBT. To create a spanning tree

takes O(n) messages, where n is the number of links in the spanning tree and is dependent

13

on the network, core placement and multicast group members. The load on the routers is

only marginally increased. In addition to the state variable required for CBT, each on-tree

router in OCBT is additionally required to track its level and to maintain level information

for each of its children, as well as a marker as to whether that child has transmitted a

keep-alive packet recently.

3.2 Core Placement

There are a number of issues concerning the placement of cores in the network and

the distribution of information about the core location. Currently, we assume that some

mechanism for distributing core information is universally available and that each router can

�nd the address and level of any core. In reality, this is neither desirable nor possible. A leaf

router in the United States has little use for information about local cores in Kazakhstan, nor

does it have the space to maintain what could be large core lists. Instead, some mechanism

for leaf nodes to discover local cores and for lower-level cores to become aware of nearby

higher-level cores is needed. This could take the form of a multicast group server able to

respond with the identities of local cores, similar to the DNS service.

Alternatively, cores could follow a distributed scheme for disseminating their location

and level, broadcasting or
ooding their identity and location with an increasing time-to-

live over each of their interfaces, or they could join a multicast group that existed solely

for the purpose of core location dissemination. Cores need only know the addresses of the

same level and next higher-level cores, so some method of limiting the core information

that gets distributed is desirable. Multicast distribution schemes could also work well in a

situation in which the multicast was being limited to a particular scope, that is, limiting

the area of the network in which the multicast tree forms. Each level of cores in the scoped

area could have its own local multicast address. A scheme similar to this was proposed in

HPIM [10], although this work remains unpublished apparently due to di�culties in de�ning

the constitution of a scope and how to enforce scope limits. The issue of core information

distribution is an area of future work for OCBT and other protocols based on shared trees.

14

After the cores are identi�ed and a means of determining the location of nearby cores is

established, the issue arises of whether or not to build a backbone of cores prior to allowing

any leaf nodes or lower level to connect. In OCBT this is not strictly necessary, although

it can help prevent some worst case behavior, in which the highest-level cores are forced to

break many existing links if other connections are made before the backbone forms. In CBT

it is not necessary unless one wants to be certain that secondary cores can join the tree. In

OCBT the backbone is formed by choosing one core of the highest-level to be a connection

point for all of the other highest-level cores. This core undergoes a temporary promotion to

one level higher then the rest of the highest level cores. The other highest-level cores then

join the promoted core.

The core placement in OCBT has an important e�ect on the performance of the protocol

in terms of the amount of control tra�c generated and the delay imposed on data packet

delivery. This is true in CBT and PIM-SM as well. While determining optimal core

placement remains an open problem, there have been suggestions made as to methods

of migrating cores to provide better service [11] [10]. We believe that core placement can

be made a matter of policy rather than optimality if the scope of the multicast is limited

at each level. The
exibility of adding additional cores in OCBT supports this approach.

Core placement and migration are important issues for our future work.

3.3 Tree Construction

When a router has a member wishing to receive the multicast session, it locates the

nearest core and sends a join-request towards that core. These join-requests are stamped

with level zero to indicate that the sending router can connect to any on-tree core or node

safely. Join-requests force any o�-tree routers they reach on their path to the core to forward

the request and attempt to join the tree. Figure 3.1a shows a network segment which we

will use to show the operation of OCBT. The larger nodes represent cores and are marked

with the core level. Smaller nodes represent non-core routers, and are initially o�-tree.

Figure 3.1b,shows the gray colored nodes attempting to join their nearest core.

15

n+2

n+1n

n

n

(a) Network Segment

n+1n

n

n+2n
0

0

0

0

0

(b) Initial Joins

Figure 3.1: Initial OCBT Tree Building Process

Once the requests are received at a core, they are answered with a join-acknowledgment

stamped with the core level. The acknowledgments travel the reverse route back to the

sender of the request and bring each node up to the level of the join-acknowledgment.

Figure 3.2a shows the state of the tree after these initial acknowledgments are received. For

each initialized link, the arrow points from child to parent and indicates the level of the

child.

If a core receives a join-request and is not currently on the tree, it too must send a join-

request towards the nearest core at the next higher level. The join-request is, in this case,

stamped one level greater than the core level, indicating the lowest level of an on-tree node

or core that can safely acknowledge the request and adopt the sender as a child. Figure 3.2b

shows the process of the lower cores connecting to the higher.

Once a join-request reaches a node or core of appropriate level, the receiver again returns

a join-acknowledgment stamped with the receiver's level. This reply again traces the reverse

path and brings all nodes on the path up to the core level. This process is illustrated in

Figure 3.3a. In this �gure, the bottom-most requesting core reaches a child of the higher-

level core, with the end result being an extension of the (n + 1)-level branch back to the

lower-level core. The top-most requesting core reaches a core of higher level than necessary,

16

n+1n

n

n n+2
n

n

n

n

n+1

(a) Initial Joins Complete

n+1n

n

n n+2
n+1 n+1

n+1

n+1

n+1

n+1

n

n

n

n

n+1

n+1

(b) Lower-Level Core Joins

Figure 3.2: Building the tree from the Lower-Level Cores

n+1n

n

n n+2
n n+2

n

n

n

n+2

n+1

n+1

n+1

n+1

n+1

n+1

(a) Lower-Level Joins Complete

n+1n

n

n n+2

n

n

n

n

n+1

n+1

n+1

n+1

n+1

n+2 n+2

n+2

n+2

n+2

(b) Higher Core Joins

Figure 3.3: Building the tree from the Higher-Level Cores

and a branch of that higher-level is built back to the sender. The center core reaches the

higher-level core and a branch is built to it directly. Notice that in this branch, the level

changes only at a core.

Once again, the (n + 1)-level core will have to attempt to join the tree to provide

service to its children. It sends a join-request towards the (n + 2)-level core. As shown in

17

n+1n

n

n n+2
n n+2 n+2

n

n

n

n+1

n+1

n+1

n+1

n+1

n+2

n+2

n+2

(a) Higher Level Joins Complete

n+1n

n

n n+2

Source

(b) Data Flow

Figure 3.4: Build completion and Data Tra�c Routing

Figure 3.3b, the �rst hop on the path to the higher-level core passes through a node that is

already on-tree and which in this case happens to be a child of the sender. This does not

create a problem, because the join request is for a node of level n+ 2 and the child is only

of level n+1. The child quits from its parent and forwards the request, becoming parent to

the (n+ 1)-level core. The (n+ 1)-level core, detecting that it will be connecting through

a child, removes that child from its list of children. This prevents loops from forming over

that one hop in the event the quit-notice is lost.

The new parent to the (n+ 1)-level core does not
ush its children by sending a notice

down-tree to quit the tree, as it is expected that, once the join-acknowledgment is received,

data packets can still be forwarded down the lower-level branch. This non-core node where

the level changes is known as a graft, and occurs when a higher-level join request breaks a

lower-level branch and the lower-level branch is maintained below the break. The level of a

branch can only change at either a core or a graft. The graft node is illustrated in stripes

in Figure 3.4a, which shows the tree after the join acknowledgment returns.

When the tree is constructed, data packets
ow in the same manner as in core-based

trees. A data packet from a source is forwarded to the parent, and from that parent over

every other on-tree interface except the one leading back to the sender. In this manner the

18

n+1n

n

n n+2
n n+2 n+2

n

n

n

n+1

n+1

n+1

(a) Link Failure

n

n+1

n+k-2

n+2

n+k-1n+k

(b) Join-Request

Figure 3.5: Link Failures

packet is forwarded to its parent and all other children as many times as required to reach

the backbone. From there, it
ows down every other branch to all on-tree nodes. This

process is illustrated in Figure 3.4b. The gray node is taken to be the source and the
ow

of data packets is indicated by gray arrows.

3.4 Tree Maintenance

When a link failure requires recovery of the tree, cores and grafts respond in di�erent

manners. A core attempts to reconnect for its children; a graft
ushes the tree below it and

expects a core or receiver below it to attempt reconnection. Figure 3.5a illustrates this by

showing the state of the tree after a link failure. Following the link failure, the (n+1)-level

core and the leftmost level-n core would each attempt to reconnect to their higher-level

core. If the network remained partitioned and the (n + 2)-level core was unreachable, the

multicast tree would form up to the (n + 1)-level core, which would then wait until the

partition was corrected to rejoin the multicast tree.

An interesting event can occur when lower-level branches are broken to make way for

higher-level branches. A single router desiring the multicast can create a path spanning

several higher-level cores without branching. If this path passes through itself at a lower

19

n

n+1

n+k-2

n+2

n+k-1n+k

(a) Quit from Parent

n

n+1

n+k-2

n+2

n+k-1n+k

(b) Final Tree

Figure 3.6: Routing Loop Unrolling

level, the path can unroll and shorten. This can be seen in the series of �gures below.

First, in Figure 3.5b, the join-request follows some path and arrives at a node it has already

passed through.

As the request is received at the n-levelnode, it is forced to quit from its parent and go to

the higher level. It then forwards the join-request as in Figure 3.6a. As the (n+1)-level core

now has no children, it is free to quit from the tree. Its quit-notice allows the (n+ 2)-level

core to quit as well. This process continues until the (n + k � 1)-level core quits from the

n-level node. As the n-level node still has a child it cannot quit the tree and the �nal tree

is much shorter than it would have been otherwise. Figure 3.6b shows the �nal tree. This

process cannot occur completely if any of the n + 1-level cores to (n + k � 1)-level cores

have any other children. The unrolling process halts at the �rst node with another child.

3.5 Network Partitions

In the event a link failure results in a network partition such that there exist router pairs

that are out of contact, some special measures need to be taken to insure that a multicast

tree is built within each partition and that the trees merge when the network reconnects.

The network can form discontinuities in the logical level organization in four di�erent ways:

leaf nodes can be separated from contact with a core; a single n-level core can be unable to

reach any of its sibling or higher-level cores; some singular n-level core or group of n-level

20

cores may not be able to reach any n+1-level core but can reach a n+2-level or higher-level

core; or multiple n-level cores can be separated from contact with any higher-level cores.

In the �rst case, there is little to do. The leaf node simply must monitor its unicast

distance to any reachable core to determine connectivity and wait until the network is

reconnected to join the group.

In the second case, there is one highest-level core within the partition and the tree

forms up to that n-level core. That core is not able to join any higher-level cores. It instead

becomes the root of the tree formed within the partition until it is able to connect to a

higher-level core. At that time, it joins the tree that formed within the other partition.

In the third case, one or more n-level cores attempt to join or rejoin the multicast tree

and are not able to reach a n+1-level core. Upon failing to contact a n+1-level core, each

lower-level core attempts to connect to any n + 2-level that are reachable. If that fails, it

increments the level sought and tries to connect again, until it connects to the higher-level

core within the partition. In this case, the higher-level core will service the lower-level cores

within the partition.

In the fourth and �nal case, a group of n-level cores are together in a partition serving

the lover-level routers, but they are unable to reach any higher-level core. In this case,

the same strategy used to build the highest-level backbone is used to connect the n-level

siblings. An election mechanism is used to promote one member of the n-level group to

n + 1 level, at which point all n-level routers connect to the promoted core. The election

mechanism is simple; the n-level core with the lowest IP address is chosen to be promoted.

It is necessary for all n-level cores to agree on which cores are within the partition and

which core is promoted; to this end the n-level core detecting the partition unicasts the list

of cores it believes it can reach to every other reachable n-level core. When a n-level core

receives one of these messages, it veri�es that all of the cores on the list are unreachable,

then returns its list of unreachable cores. As the unicast routing information propagates,

then either all cores will have the same list of reachable cores, in which case the promotion

occurs; otherwise the partition that was detected will turn out to be erroneous, in which

21

case o�-tree cores reconnect to a higher-level core. The promotion information is limited to

the n-level cores within the partition. The promoted core is responsible for monitoring the

state of its unicast routing table to determine when the partition is resolved and the rest

of the network is reachable. When this occurs, the promoted router
ushes the temporary

backbone, demotes itself, and rejoins the rest of the tree with its siblings.

3.6 OCBT Speci�cation

This section formally speci�es OCBT. OCBT's speci�cation is divided into four sections.

The �rst part is shown in Figure 3.7, and consists of the functions used repeatedly in the

operation of the protocol. The operation of core nodes in response to control messages is

shown in Figure 3.8, while that of non-core nodes is presented in Figure 3.9. The response of

both core and non-core routers to a parent link failure or the expiration of a timeout timer

is shown in Figure 3.10. Each part of OCBT's speci�cations follows the same conventions.

Function names are in bold. A call to another function or the name of a particular type of

message is capitalized. Parameters that are part of a received message are in italics. Names

of the variables maintained within the node are plain, lower case.

Each of the cores and routers maintains variables representing the state of the node in

regard to OCBT's operation. Each node has an entry for its OCBT state (on-tree or o�-tree

or join-pending, and core or non-core), level, parent, the core it last attempted to reach,

and a list maintaining the list of the node's children and their level. Core nodes also have

one additional state variable, which is the logical level of their parent. This entry is used

to track the core state in case it is coerced to a higher level; if for some reason it receives a

ush message from its parent it can
ush all children of level greater than the original core

level and return to that level.

Examination of OCBT's speci�cations will reveal that descriptions of some called func-

tions are missing. In particular, Next Hop, Find Core, Subnet Member and Send

Message were omitted for brevity, but are explained below.

22

Subnet Member determines whether the router has some member on its local network

wishing to receive the multicast; if it does, this function returns true.

Send Message transmits a message to the designated recipient that includes the

information speci�ed; if the message being sent is a join-request, Send Message also

starts the timeout timer. Receipt of an appropriate acknowledgment cancels the timer.

Next Hop examines the unicast routing table and returns the neighbor node on the

next hop to take towards a given destination.

Find Core returns the nearest core of a speci�ed level; if level 0 is speci�ed, it returns

the closest core of any level. Find Core was omitted as the actual OCBT code depends on

the means used to distribute core information. If some means of scoping is desired, Find

Coremay not return the closest core, but instead one that lies within the scoped area. Find

Core changes the node variable core; each time Find Core is called, core is updated to

whatever it returns. In addition to locating cores, Find Core also detects partitions in

the network when higher-level cores are unreachable and instigates the partition-recovery

mechanism described above, either by returning the appropriate core or by starting the

election process. In order to do this, it maintains a list of cores that have been contacted

but failed to respond; this list is cleared when the node is joining and receives an ack.

23

Add Child (child,level)
Add Child to List (child, level)
Send Message (Join Ack, child, level)

Break Branch (source, message level,

core, originator)
Send Message (Quit-Notice, parent)
if (state = On-Tree Core or Join-Pending Core)
parent level = message level

parent = Next Hop (core)
if (On Child List (parent))
Remove Child from List (parent)

Add Child (source, message level)
send message (Join-Request, parent,

message level, core, originator)
if (state = On-Tree Core)
state = Join-Pending Core

else
state = Join-Pending

Forward Message (type, source)
for each child
if (child ! = source)
Send Message (type, child)

if (parent ! = source)
Send Message (type, parent)

Join Tree (level)
if state = Join-Pending Core
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,

level + 1, core)
else /* this should only be reached with level = 0 */
parent = Next Hop (Find Core(level))
Send Message (Join-Request, parent, level, core)
state = Join-Pending

Multicast Message (type, level)
for each child on list
if (level = 0) or (level < child level)
Send Message (type, child, level)

Quit Tree ()
parent = null
if (state = On-Tree Core)
or (state = Join-Pending Core)
parent level = core level
state = o�-tree core

else
state = o�-tree
level = 0

halt /* do not return */

Remove Child (child)
Remove Child from List (child)
if (child list = null) and
not (Subnet Receiver)
Send Message (Quit-Notice, parent)
Quit Tree

else
return to calling function

Remove Children (level)
for each child on list
if (level = 0) or (level < child level)
Remove Child from List (child)

if (child list = null)
and not (Subnet Receiver)
Send Message (Quit-Notice, parent)
Quit Tree

else
return to calling function

Send Data (source, data)
if (source = parent) or
(On Child List (source))
Forward Message (data, source)

else
drop the packet and do not forward to subnet

Figure 3.7: Common OCBT Functions

24

On-Tree Core (message type, message level,source,

core,originator)
case (message type)
Join-Request
if (on child list (source))
/* previous quit-notice must have been lost */
Remove Child (source)

if (source = parent)
parent = null
parent level = level
process message as an O�-Tree Core

if (message level <= level)
Add Child (source, level)

else
if (message level > parent level)
Break Branch (message level,

core, originator)
else
Add Child (source, message level)

Quit-Notice
if (on child list (source))
Remove Child (source)

Flush Message
if (source = parent)
Multicast Message (
ush message, level)
Remove Children (level)
/* only reached if above function returns */
state = Join-Pending Core
Join Tree (level)

Data
Send Data (data, source)

O�-Tree Core (message type, message level,

source, core, originator)
case (message type)
Join-Request
if (message level <= level)
Add Child (source,level)
parent = Next Hop (Find Core(level + 1))
parent level = level +1
Send Message (Join-Request, parent,

level + 1, core)
else
Add Child to List (source, message level)
parent = Next Hop (core)
parent level = message level

Send Message (Join-Request, parent,
message level, core)

state = Join-Pending Core

Join-Pending Core (message type,message level,

source,core,originator)
case (message type)
Join-Request
if (on child list (source))
/* previous quit-notice must have been lost */
Remove Child (source)

if (source = parent)
parent = null
parent level = level
process message as an O�-Tree Core

if (message level <= level)
Add Child (level)

else
if (message level > parent level)
Break Branch (message level,

core,originator)
else
if (originator = self)
/*message looped - unicast instability */
Send Message (Quit-Notice, parent)
Send Message (Flush Message,source)
parent level = level + 1
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,

level + 1, core)
else
Add Child to List (source, message level)

Join Ack
if (source = parent) and (message level > level)
parent level = message level

Multicast Message (Join Ack, message level)
state = On-Tree Core

Quit-Notice
if (on child list (source))
Remove Child (source)

Flush Message
if (source = parent)
Multicast Message (Flush Message, level)
Remove Children (level)
/* only reached if above function returns */
Join Tree (level)

Figure 3.8: OCBT Protocol for Core Nodes

25

On-Tree Router (message type, message level,

source, core, originator)
case (message type)
Join-Request
if (on child list (source))
Remove Child (source)

if (source = parent)
if (message level > level)
Break Branch (message level,

core, originator)
else
/* a
ush message was lost */
Forward Message (Flush Message, parent)
for each child on list
Remove Child from List (child)

parent = Next Hop (core)
level = message level

Send Message (Join-Request, parent,
level, core)

else
if (message level <= level)
Add Child (level)

else
Break Branch(message level,

core, originator)
Quit-Notice
if (on child list (source))
Remove Child (source)

Flush Message
if (source = parent)
Forward Message (Flush Message, source)
Remove Children (0)
/* only reached if above function returns */
level = 0
Join Tree (level)

Data
Send Data (data, source)

O�-Tree Router (message type, message level,

source, core, originator)
case (message type)
Join-Request
parent = Next Hop (core)
level = message level

Send Message (Join-Request, parent,
level,core)

state = Join-Pending

Join-Pending Router (message type, message level,

source, core, originator)
case (message type)
Join-Request
if (on child list (source))
Remove Child (source)

if (source = parent)
if (message level > level)
Break Branch (message level,

core, originator)
else
/* a
ush message was lost */
Forward Message (Flush Message, parent)
for each child on list
Remove Child from List (child)

parent = Next Hop (core)
level = message level

Send Message (Join-Request, parent,
level, core)

else
if (message level <= level)
Add Child to List (source)

else
Break Branch(message level,

core, originator)
Join Ack
if (source = parent) and (message level >= level)
level =message level

Forward Message (Join Ack, level,source)
Quit-Notice
if on child list (source)
Remove Child (source)

Flush Message
if (source = parent)
Forward Message (Flush Message, level, source)
Remove Children (0)
/* only reached if above function returns */
level = 0
Join Tree (level)

Figure 3.9: OCBT Protocol for Router Nodes

26

On Time Out
case (state)
Join-Pending Core
if (parent level > core level + 1)
for each child on list
if (child level > level)
Remove Child from List (child)

if (child list ! = null) or (Subnet Member)
parent = Next Hop (Find Core(level + 1))
parent level = level + 1
Send Message (Join-Request, parent,

level, core)
else
parent = null
parent level = level
state = O�-Tree Core

else
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent, level, core)

Join-Pending Router

for each child on list
Remove Child from List (child)

parent = null
level = 0
if (Subnet Member)
Join Tree (0)

else
state = O�-Tree Router

On Parent Link Failure
case (state)
On-Tree Core or
Join-Pending Core

Multicast Message (Flush Message, level)
for each child
if (child level > level)
Remove Child from List (child)

if (Subnet Member) or (child list ! = null)
parent = Next Hop (Find Core(level + 1))
parent level = level + 1
Send Message (Join-Request, parent, level, core)

else
parent = null
parent level = level
state = O�-Tree Core

On-Tree Router or
Join-Pending Router
Forward Message (Flush Message, parent)
for each child
Remove Child from List (child)

level = 0
if (Subnet Member)
Join Tree (level)

else
parent = null
state = O�-Tree Router

Figure 3.10: OCBT Protocol for Timeouts and Parent Link Failures

27

4. CORRECTNESS OF OCBT

In this chapter we show that the OCBT protocol is correct, which implies that the

OCBT protocol provides a correct multicast tree within a �nite time after a router starts

creating the tree or an input event forces the tree to be modi�ed, and that the OCBT

protocol never creates multicast loops.

It is obvious that no protocol can create a multicast tree across disconnected components

of a network. However, temporary network partitions may occur. We �rst limit our proof

of correctness to the case in which the network is connected, i.e., we assume a connected

network in which there exists some physical path between any pair of nodes that can become

part of the multicast tree. After presenting this proof, we extend it to deal with network

partitions.

4.1 Connectivity in a Connected Network

First, we demonstrate that the OCBT protocol never deadlocks and terminates in a

�nite time producing or modifying a tree.

Showing that OCBT has no deadlocks is straightforward, because all messages that

require a reply in the protocol are sent hop-by-hop or unicast. Accordingly, deadlocks

are prevented in the OCBT protocol by means of a time-out counter initiated whenever

a message is sent for which a reply is expected. In the event that the time-out counter

decrements to zero, the message is re-sent if the node is the initiator of the request;

otherwise, the node goes back to the o�-tree state, rejoining as necessary to provide service

to subnet members or established children. After a maximum number of retransmission

attempts, the sender can simply assume that the intended receiver cannot be reached.

The following theorem demonstrates that the OCBT protocol terminates with the cor-

rect result when the network is connected.

Theorem 1: Given a connected network, the OCBT protocol terminates within a �nite

time with the correct result.

28

Proof: The proof proceeds by contradiction and assumes that no deadlocks occur in any

message exchange. The assumption is valid as any deadlock would eventually result in a

retransmission of the original message upon timer expiration.

Any individual node must join a core in order to join the tree. The node's join-request

travels towards the closest core, and the join acknowledgment, returning from the core or

some member of its tree, creates a branch to the node with a logical level equal to the

core's level. If the core is not connected to the multicast tree, then it connects to the next

higher-level core. Each core connects to the next higher-level core, until the backbone is

reached. For the OCBT protocol to fail in establishing a multicast tree, the join-request

must fail.

Assume that a core attempts to join to the next higher-level core and fails at some point

in between. Three things can happen to a failed join request. First, the request reaches the

higher-level core or a branch of the tree at the higher-level core's level. In this case, a join

acknowledgment is sent back to the lower-level core, extending the branch to the lower-level

core and violating the initial assumption. Second, the request is received at an on-tree node

of level lower than the request. In this case the receiver quits from its parent and joins

the branch that is being built, the branch below the receiver is maintained and because the

branch below is not
ushed it does not e�ect overall construction of the tree. The request

is forwarded on the next hop to the intended core. Finally, the request reaches an o�-tree

node, which is forced to forward the join request. The request must then continue through

some path of o�-tree and lower-level nodes until it reaches a higher-level node or core and

is acknowledged. It is clear that in no case is the branch prevented from forming, violating

our initial assumption; therefore the theorem is true.

4.2 Loop Freedom

We now show that the OCBT protocol maintains a tree structure at all times, that is,

that a data packet introduced onto the tree is never received by any node more than once,

even if the underlying unicast algorithm forms transient routing loops before converging.

29

We divide the proof into several parts. In Lemma 1, we show that if a connection is

completely formed between a child and parent, that is, the parent and child have consistent

state information about the connection, the logical level of the child is always less than or

equal to that of the parent. Lemma 1 also shows that if the state information is incorrect,

that is, if one of the child-parent pair believes the connection to be in place but the other

does not, then the state information will be corrected. Lemma 2 shows that when the

state information is consistent, no loops can form among nodes of varying level. Lemma 3

derives the same result for nodes of the same level. Lemma 4 demonstrates that even if the

state information between a parent and child is inconsistent, no loops will form in the data

transmission path. This �nal result is important to show that loops will not form during

the time that it takes OCBT to correct the state information.

The proof presented in Lemmas 1 through 3 and Theorem 1 below is based on the fact

that OCBT always dissolves a lower-level branch of a tree before allowing a higher-level

branch to be built in its place. This process is termed coercion, as a higher-level message

coerces a lower-level node to higher level. By contradiction to the fact that a child in

OCBT always has a logical level that is smaller than or equal to its parent's level, the

proof �rst shows that with consistent state information, loops cannot form between nodes

of di�erent levels. The proof then shows that loops can only form when the underlying

unicast algorithm contains loops in its routing table, and that under these conditions the

OCBT protocol does not introduce loops into the tree. The following lemmas depend on

the fact that lost messages will eventually cause a timeout and cause a retransmission; lost

packets are therefore ignored.

Lemma 1: In an OCBT, a child node always has a logical level smaller than or equal

to its parent if the state information between child and parent is consistent. If the state

information is not consistent it will eventually be made consistent through the use of the

keep-alive mechanism.

Proof:

To prove the Lemma, we �rst examine parent-child connections between non-core nodes.

30

For each of the four connection setup and two modi�cation possibilities, we show by

contradiction that the parent will be of level equal to or greater than its child. Assume

for each case that a connection between two non-core nodes exists and that the child is of

higher level than the parent.

Case pc-1: The connection is formed by two nodes initially o�-tree (with no level). In

this case, the child has a subnet member wishing to receive the multicast and sends a join-

request of level zero to its parent. Its parent forwards the join-request towards some core,

which receives it and returns a join-acknowledgment with the core level, which is greater

than zero. The parent then changes level to the core level and forwards the ack to its

child, which also changes level to the core level. They both then have the same level, which

violates the initial assumption of the child being of higher level. As the child ignores any

join-acknowledgments from other than its parent, such a connection could not form this

way.

Case pc-2: The connection is formed between a child o�-tree node (with no level) and a

parent on-tree (with level greater than zero) node. The child sends a level zero join-request

to the parent. The parent receives it and sends a join-acknowledgment with its own level

in it. The child then sets its level equal to the parents level, again violating the initial

assumption.

Case pc-3: The connection is formed between a join-pending child (with some level)

and an o�-tree parent. The only way the child could have level was if it is forwarding a

join-request from some core down tree, in which case the message is one logical level higher

than the lower-level core. When the forwarded join-request reaches the parent, the parent

sets its level equal to that of the child and again forwards the message. When the ack is

received it is of level equal to or greater than the level of the request. If the level of the

acknowledgment is higher then the parent level, then the parent raises its level to that of

the ack and sends it to its children; otherwise it maintains the same level and forwards the

acknowledgment. If the child receives an ack of higher-level than its level, it also raises its

level, otherwise it maintains the same logical level. As the parent and child either both

31

raise to the level of the ack or remain the level of the request, they both have the same level

and violate the initial assumption.

Case pc-4: The connection is formed between two nodes with some initial level. As

before, the child could only have level by forwarding a request from a down-tree core. The

parent could either be on-tree or in a join-pending state. If the request from the child is

of lower or equal level than the parent, the parent sends an acknowledgment with its own

level and the child's level is changed to the parent's level. In this case both the child's

and parent's level are equal and the initial assumption is violated. If the request from

the child is of higher level than the parent, coercion occurs and the parent quits from its

parent, switches to the child's level and forwards the request. The rest of the case is as

described above | the returning ack dictates the level of both child and parent, and the

initial assumption is violated.

Case pc-5: Initially, the parent is of level equal to or greater than that of its child, but

the parent's level is decreased. There are two ways the parent could reduce its level. First,

it could receive quit-notices from all its children and go o�-tree, but as it still has one child

this is clearly not possible. Second, it could receive a
ush message from its parent. In this

case it forwards the
ush message to all its children, clears its child list and changes its level

to level zero. If the child receives the
ush message, it also decreases its level to zero and

leaves the tree, so therefore the
ush message from parent to child must have been lost and

the child remains at a higher level than the parent. Now the parent either stays at level zero

or rejoins the tree at a lower level than its child and the state information is inconsistent

between child and parent. The keep-alive mechanism acts here to force the child to a lower

level. After the child's keep-alive packet is ignored by the parent who no longer considers

the child part of its child list, the child follows its link failure procedure and lowers its level

to zero and attempts to reconnect. We then would have one of cases 1 through 4 above

when the child attempts to reconnect to its parent, and the state information would once

again be correct. If the parent attempts to connect to the tree again through its former

child before the keep-alive mechanism acts to lower the child level, the join-request from

32

the parent serves as a implicit retransmission of the lost
ush message; the child forwards

a
ush message to its children and joins the forming branch as if it were o�-tree.

Case pc-6: Initially, the parent is of level equal to or greater than that of its child,

but the child's level is increased. The child's level can only increase due to receipt of a

join-request from a down-tree core with higher level. When the child receives the request

it immediately quits from its parent, removes its parent information and changes to the

higher level. If the parent receives the quit-notice then it removes the child from its child

list and sends a quit acknowledgment breaking the link and making the state information

consistent. Hence, there are four possible sub-cases - the quit-notice is either received or

not, and the next hop in forwarding the join-request from the child is either through its

parent or not. If the quit-notice is received and the next hop is not through the parent,

then the initial assumption is violated as there is no link between the child and parent. If

the quit-notice was received and the next hop is through the parent than either case 3 or

case 4 applies. If the quit-notice is not received and the next hop is through the parent,

then when the parent receives the request it removes the child from its child list then it too

changes its level to that of the request and ends with the same level as its child, violating

the initial assumption. Finally, if the quit-notice is not received and the next hop is not

through the parent, then the keep alive mechanism will cause the parent to remove the

child from its list, breaking the link, making the state information consistent and ruining

the initial assumption.

In considering cases involving cores, it is simpler to replace a core with a simple model

that re
ects its operation. Each core can be viewed as two nodes together - a child node

of �xed level equal to the core level and a parent of variable level at least one greater than

the core level. We will refer to these model nodes as the bottom core and the top core. This

re
ects the way that a core has a �xed level (the bottom core), while still being able to

attach itself to higher-level branches (the top core). Messages coming to the core can be

viewed as going to one or the other of this pair depending on the message level.

We will again use contradiction to show that a child cannot be of higher level than

33

a parent in connections between cores and non-cores. First assume that there exists a

connection between a core parent and a non-core child and that the child has level higher

than the top core.

Case c-1: The child has no level and connects to the core. It does this by sending a

level zero join-request to the core. When the core receives the join-request it is handled

by the bottom core as the the message level is less than the core level. If the core is in an

on-tree state, it simply replies with a join-acknowledgment with the core level. When this

reaches the child, the child changes to the logical level of the bottom core, which violates

our assumption. If the core is in the o�-tree state it sends a core-level join ack which raises

the level of the child to the level of the lower core. The top core is then forced to connect to

a higher-level branch. If the join request from the top core passes through the child node,

then the child is forced to quit from its parent and go to the level of the top core pending

receipt of a join-acknowledgment. In quitting from its parent it becomes parent to the core

and hence violates our initial assumption. Even if the quit-notice is lost, the bottom core to

removes the child from its child list when the join-request is sent, again breaking the link,

restoring the state information and violating the initial assumption.

Case c-2: The child has some level and connects to the core. If the child level is less

than the core level, then the bottom core sends a core-level join-acknowledgment which

raises the child to the same level as the parent and violates the initial assumption. If the

child level was higher than the core level then the top core receives the request. If the child

level is greater than the level of the top core then the top core is coerced to the child level,

violating the assumption. If the child level is less than or equal to the top core level but

greater than the lower core level, it receives a join ack equal to the top core level, which

coerces the child to the same level as the top core, again violating the initial assumption.

Case c-3: The lower level child is connected to the core but changes level. The only

way the level could be raised is if the child receives a join-request of higher level and is

coerced to that greater level. When it receives that higher-level request, it immediately

sends a quit-notice to its parent. If that is received then the link is broken, which violates

34

the initial assumption. If the quit-notice is lost, then the keep-alive mechanism eventually

realizes that the child is not responding to the parent and causes the link to be broken by

the parent, restoring the incorrect state information. If the next step in the join-request is

back through the parent, then case 2 above applies.

Case c-4: The child is of lower level than the core but the core decreases its level. The

only way the core can decrease its level is by receiving a
ush message from its parent. In

this case the upper core decreases its level to one greater than that of the bottom core. If

the child is of level equal to or less than the bottom core, then it is not forwarded the
ush

message but remains attached, and its level rules out our initial assumption. If the child

is of level greater than the bottom core but less then or equal to the level of the upper

core, it is forwarded the
ush message which drops its level to zero, violating the initial

assumption. If the
ush message is lost, the keep-alive mechanism from the child to parent

detects the state change and forces the child to drop the link to its presumed parent and

become level zero,
ushing its children. Dropping the link to the parent again violates the

initial assumption and repairs the state information.

We now examine core children connected to node parents. Assume that there exists a

connection between a core child and a non-core parent and that the top core which connects

to the parent has level greater than that of the parent.

Case cn-1: The connection is formed between an o�-tree core child and an o�-tree node

parent. The core sends a join-request of logical level at least one level greater than its level,

coercing the o�-tree parent to that level and placing it in a join-pending status. When the

join-acknowledgment is received it is also at least one level higher than the core level. The

returning ack dictates the level of the parent o�-tree node and child top core node; they

will be the same so the assumption is violated.

Case cn-2: An o�-tree core is connected to an on-tree node. If the node is of level

lower than the top core, then it is coerced to the same level by the join-request. The join-

acknowledgment then makes both the node and the top core the same level when received,

violating the initial assumption. If the node is of level equal to or greater than the top core,

35

it immediately sends an ack with its level, raising the top core to the level of the on-tree

node, violating the initial assumption.

Case cn-3: Initially the core is of level equal to or less than the node parent, but the

core raises its level. The core could only raise the level of the top core, and only in response

to a join request which carried a higher level than the top core. When the core receives

this request it is forced to quit from its parent. If the next hop is not through its parent

and the quit-notice is lost then the keep-alive mechanism forces the breaking of the link

and correction of the state information. If new next hop is through the former parent, then

the parent detects that the quit message was lost and corrects the state information before

processing the request. If the request is then of level greater than that of the parent, it

coerces the parent to level of the higher node and the join ack places both child and parent

at the same level, violating the initial assumption. If the join-request is of lower level than

the parent, then the parent returns a join ack of its level and the top core again becomes

the level of the parent.

Case cn-4: The parent node initially is of level equal to or higher than its core child, but

lowers its level. The only way the parent lowers its level is in response to a
ush message,

at which time it would forwards the message to all its children and goes to level zero. If

the
ush message is received at the core then it severs its link to the parent and the initial

condition would not be possible. If the
ush message does not reach the core then the

keep-alive mechanism eventually causes the state information to be restored. Once the link

is broken, the core would attempt to reconnect to the tree. If the core tries to go through

the same parent then one of cases cn-1 or cn-2 would apply. If the former parent attempts

to reconnect to the tree though the core before the state information is corrected by the

keep-alive mechanism, then the core detects the loss of the
ush implicit in the join-request,

corrects the state information and handles the join-request and in case c-1 or c-2 above.

The last type of connection we need to consider is direct core to core connections. Once

again assume that we have two cores, one a child of the other, and that the child has a

higher level.

36

Case cc-1: Both cores start in an o�-tree state. The child receives a join-request that

is either lower or equal to core level, or is higher than core level. If it is lower than core

level the child forwards a join-request one level higher than the bottom core, otherwise the

child forwards a join-request more than a level higher than the bottom core. When this

request reaches the parent, if it is lower in level or equal in level to the parent's bottom

core, it is received there and immediately acked with the bottom core level. The top core

level of the child will then be raised to the bottom core level of the parent. As an upper

core always has a logical level higher than the bottom core, this means that the highest

level of the child is equal to the lowest level of the parent and the initial assumption is

incorrect. If the join-request is higher in level then the parent's bottom core, it is handled

by the parent's top core, which is coerced to the level of the request. When the parent

forwards the join-request and receives an ack, it forwards that ack and the top core of both

parent and child will have the same level. As the level of the top core is always higher than

that of the bottom core, the assumption is again violated, as the connection that is formed

between the top cores of both parent and child has equal level.

Case cc-2: The child starts in an on-tree state and the parent in an o�-tree state. The

only case in which an on-tree core attempts to join an o�-tree core is if it is reconnecting

after a
ush or if the keep-alive mechanism has detected a failure. Both of these cases

are functionally equivalent to case cc-1, except that the join request is de�nitely one level

greater than the child core.

Case cc-3: The connection forms between an o�-tree child and an on-tree parent. The

child sends a join-request with level greater than the its bottom core level. When this

message arrives at the parent node, it is either acked by the bottom core of the parent,

in which case the top core of the child becomes the same level as the bottom core parent,

violating the initial assumption, or it is handled by the top core. If the request is of higher

level than the top core, the parent's top core undergoes coercion, and upon the receipt

and forwarding the ack, the top core of both child and parent are equal, violating the

assumption. If the request is of level lower than the top core of the parent, it is acked with

37

the parent's top core level and both top cores are of equal level, again showing the assumed

connection could not occur.

Case cc-4: An on-tree child connects to an on-tree parent. The only case in which an

on-tree core connects to another on-tree core is if it detected a link failure or received a

ush message. In this case the child goes o�-tree and attempts to reconnect, leading to the

situation of case 3.

The lemma then follows, because in every possible case of a connection being formed,

none can result in a child having greater level than its parent.

Lemma 2: No loops can form in an OCBT with nodes of varying level when state

information is consistent.

Proof: If a loop was to form with nodes of di�ering level, then at some point a connection

would be made from a node of lower level to a node of greater level. At another point in the

loop a connection with a corresponding decrease in level would have to form. From Lemma

1, a child cannot have level greater than its parent, so such a loop is impossible.

In fact, if one was to attempt to form such a loop, coercion would make the loop all one

level. If a loop is to form, it must occur with nodes all of the same level. We will show two

results here. First, that loops of just one level can only from when the underlying unicast

algorithm from loops that are established in its routing table, and second, that the OCBT

protocol will prevent them from becoming established in the structure of the tree.

Lemma 3: No loops can form with nodes all of the same level when state information is

consistent.

Proof: Assume that the underlying unicast algorithm is stable and does not contain loops,

and that a loop has formed in the OCBT Tree. This loop must be between nodes of all the

same level, as shown in lemma 2. The loop must be formed when some core sends a join

request towards a speci�c higher level core. The loop forms when the request passes through

some series of non-core nodes (which may have been coerced to the same level as the request)

and top core nodes (the level transition from bottom core to top core would have instanced

a level change, which by lemma 2 is not possible) and returned to the original sender or one

38

of the nodes in the path the request had already traced. That the shortest path from one

speci�c node to another speci�c node passed through itself violates the assumption that

the underlying unicast algorithm was stable and loop free. Therefore such a loop could not

occur.

Now assume that the underlying unicast algorithm is unstable and contains loops in

the routing table while converging. We will use proof by contradiction to show that a loop

cannot form with nodes of all the same level, even in these circumstances. To reduce the

number of cases we need to examine we make the observation that as all nodes have to be

of equal level, we can treat cores as simply the upper core, as any connection to the bottom

core would require a raise in level to depart through top core. Assume that a loop exists

with all on-tree nodes:

Case 1: It is formed of all non-core nodes. There are two ways this could form. First,

some node with a subnet member wishing to receive the multicast sends a level zero request

that goes through a number of other non-core nodes and, because of new instability, arrives

back at one of the initialized nodes in the join-pending state. At this point, the node the

request returned to accepts the request as being of the same level and awaits its join ack

before replying to the request. The network will stall here, as no join-acknowledgments are

ever sent. Eventually, the original sender will time out and attempt to connect again. If

by this time the unicast loop is not resolved then the node wishing to connect would not

receive a return to its join-request and would try to connect to another core. No loop exists

so our initial assumption was incorrect in this case.

If the loop formed with all non-core nodes carrying a request from a core and having

a non-zero level, a similar process occurs. As the message returns to a node where it had

already been received, the request stalls pending a join ack. As the nodes in the loop time

out they do not attempt to rejoin but instead go back to their o�-tree state.

If multiple nodes in the same loop attempt to join at the same time, each receives the

others' join-request and holds them until they time out. Again, no loop would form. As

loops will not occur with all non-core nodes, any possible loop would include a core in the

39

loop.

Case 2: The loop consists of core and possibly non-core nodes. In this case the loop is

started in one of two ways. First, any core sends a join-request. As the request traverses

the loop, each non-core node is coerced to the request level. Later, the request arrives back

at the sending core. At this point the core detects the loop by reading the original sender

ID carried in the request, realizes it was the original sender and takes steps to cancel the

loop by quitting from its parent and sending a
ush message to all its child. Again, the

core attempting to join the tree will fail to connect to the higher-level core until the unicast

loop is removed.

Second, the join-request comes from a core outside the loop through a non-core node.

As it circulates the loop it coerces non-core nodes and top cores to higher level. When it

closes the loop, the non-core node again stalls the protocol until all nodes time out and the

original sending core attempts to join again, possibly to another core.

If two or more simultaneous join-requests are circulating in the loop one of two things

occurs: if all requests are of the same level, then the protocol stalls until time outs occur, no

matter where the requests originate. If the requests are of di�ering levels then the highest

level request coerces all nodes in the loop to that highest level, terminating in a time out

at a non-core node or in detection at a core. In either case no loop forms, and the initial

assumption is contradicted.

Lemma 5: The OCBT protocol does not introduce loops into the multicast tree when the

state information about a link between a child and parent is inconsistent between the child

and parent.

Proof: We have already shown in Lemma 2 that, due to the loss of a quit-notice or a

ush message, the information about the state of a link can di�er between a parent and

child. We have also shown that in every case in which this occurs, the keep-alive mechanism

or receipt of a new join-request from a parent or child causes the information to be made

correct. We will now show that loops cannot form during the transient period of incorrect

state information. The proof is again by contradiction of the assumption that a loop exists

40

as a result of incorrect state information.

Case 1: The loop is formed when a parent node maintains information about a child

after that child has sent a quit-notice that was lost, and that child became a descendent of

the parent upon rejoining the tree. In this case any data packet reaching the parent, child or

any intermediate nodes formed on the branch between them will be forwarded to all nodes

on the branch. In addition, a copy will be sent over the link from parent to child. If this

packet were accepted by the child it would then be forwarded up the branch to the parent,

completing the loop. However, since the child does not consider the parent its parent, the

data packet is dropped and no looping occurs, violating the initial assumption. As the child

no longer sends keep-alive packets to the parent, the incorrect state information about the

child maintained by the parent will be corrected once the parent detects the absence of the

keep-alive messages.

Case 2: The loop is formed when a child node maintains information about a parent after

that parent has sent a
ush message that was lost, and that parent became a descendent

of the child upon rejoining the tree. Again, any data packet reaching the parent, child or

any intermediate nodes formed on the branch between them will be forwarded to all nodes

on the branch. The child would then send a copy to the parent. Again, as the parent no

longer maintains information about that child, the data packet is dropped and the data

packet is not sent around the loop. The incorrect state information maintained by the child

is corrected when it does not receive replies to its keep-alive messages.

Case 3: The loop is formed when a parent node maintains information about a child

after that child has sent a quit-notice that was lost, and that child reconnects directly to

the parent. In this case it is actually impossible that the loop forms, as every on-tree or

join-pending core or node checks the source of a join-request against their child list; if the

sender of the join-request is on the child list, it can be assumed that the quit-notice from

child to parent was lost and the incorrect state information is removed before processing

the join request.

Case 4: The loop is formed when a child node maintains information about a parent

41

after the parent sent a
ush message to the child and that message was lost, and the parent

connects directly to the child. Again, this type of connection could not occur as every on-

tree or join-pending node checks to see if its presumed parent is the source of the message.

If the parent is the source and the message level is lower than the level of the child, a
ush

message must have been lost. The child then removes the incorrect parent information,

forwards a
ush message to its children as appropriate and joins the branch that is forming.

As no loops form in any of the possible cases of inconsistent state information, no

transient loops form.

Theorem 2: The OCBT protocol never introduces loops into a multicast tree.

Proof: The proof is immediate from Lemmas 3,4 and 5. If loops of varying levels are

not formed,loops of the same level are not formed, and loops are not formed when state

information is inconsistent, no loops can be formed.

4.3 Connectivity in a Partitioned Network

Given that OCBT forms a tree and does not loop in a connected network, the question

next arises as to how the protocol performs in a partitioned network. We show here that,

even if the network is partitioned, each network component that contains at least one core

forms a tree without looping, and that within a �nite time after the network is reconnected,

the multicast tree reconnects.

Theorem 3: In a partitioned network, OCBT forms a multicast tree within each

partition and reconnects each tree within a �nite time after the partition is removed.

Proof: It is �rst important to note that, if there is a partition in the network, then each

of the connected components forms a network in and of itself. If the logical ordering is

maintained so that all children are of level less than or equal to their parent, then there

will be no violation of any of the lemmas in Section 4.1 and 4.2. To see that this does not

occur, consider the possible ways in which a network partition could separate the logical

levels we have imposed.

42

Following a network partition, the logical levels in OCBT can be separated in one of

four ways in each half of the component. For each case we consider the highest-level core

available in the component.

First, a leaf node can be separated from all of the cores. Second, a n-level core can be

separated from its siblings and any higher-level core. Third, one or some n-level cores can

be separated from any (n+1)-level to (n+k)-level cores, but be able to reach a (n+k+1)-

level core. Fourth, a group of n-level cores can be unable to reach any higher-level cores.

In each case we consider only one half of the partition as the other half must fall into one

of these four cases as well.

Case 1: In the �rst case we are presented a network component containing no cores

and another containing all cores. The smaller network component will not be able to build

a tree, as it contains no cores. Since no join-request that is sent can be acked due to the

absence of cores to ack them in the network component, no branches and hence no loops can

be formed. The individual leaf nodes will continue to attempt to reach a core until such time

as the partition is removed. When the network is whole we have shown in Section 4.1that

leaf nodes can join the multicast tree within a �nite time in a connected network with cores.

Case 2: In the second case, we are given a component containing a single core of level

n and at least one lower-level core of each level down to some lower level or to the leaf

nodes. In this case, the network is still properly ordered; a tree can form up to the n-level

core. This n-level core will then have the responsibility of monitoring its unicast routing

table to determine when the partition is repaired and of joining to a higher-level core or a

sibling on the other side of the partition. Because the ordering of the logical levels are not

violated, the tree will be built and will reconnect within a �nite time after the network is

reconstituted.

Case 3: In the third case, there are cores of levels up to level n and from level (n+k+1)

in the component; however, all cores of levels between (n+ 1) and (n+ k) are on the other

side of the partition. In this case, even though the core ordering in not continuous, the

logical order is preserved. The n-level cores are able to connect to the (n + k + 1)-level

43

cores once they realize they are unable to reach any core between those levels. This extends

branches of (n+ k+1)-level down to the n-level cores. Once the network reconstitutes and

the components are reconnected, it follows from sections 4.1 and 4.2 that the cores at the

highest level connect to cores in the other partition within �nite time to form one single

tree.

Case 4: In the �nal case, the OCBT protocol takes speci�c action to preserve the logical

ordering. In this case, the component contains a group of n-level cores with no higher-level

cores present and it is not immediately clear how the tree should form as there is no single

highest-level core present. Therefore, after the n-level cores have failed to reach a higher-

level core, they undergo an election process to promote one of their members to level n+1.

This election process results in all the n-level cores selecting the same core to be promoted

within a �nite amount of time. As each n-level core exchanges a list of reachable cores with

all other n-level cores within the component, when the underlying routing has converged

within the partition, all n-level cores within the component are aware of each other. This

happens within �nite time as the underlying routing must converge in �nite time. Once all

n-level cores have the same list of n-level cores, all follow the same election mechanism in

promoting the core with the lowest IP number, so a single n-level is chosen to be promoted.

Once this core has been promoted to level n+1, the other cores join with it forming a tree.

The logical ordering is now correct.

When the network is reconstituted, the promoted core detects that it is able to reach a

core at level n + 1 or higher from the other part of the partition. At that point it
ushes

the tree down to the n-level cores, demotes itself back to level n and attempts to rejoin the

full multicast tree with it siblings. Because the logical ordering is preserved throughout this

process, it follows from the sections above that a multicast tree forms within the partition

without forming loops and that a full multicast tree if formed within �nite time after the

network is reconstituted.

44

5. PERFORMANCE OF OCBT

To examine the performance of CBT and OCBT in a realistic manner,we created a

simulation of each protocol using a simulation package1 that supports protocol layering.

These simulations ran on top of a Bellman-Ford unicast routing layer and used routing

information from the unicast layer. With this simulation we measured the end-to-end delay

of data packets traversing the tree, measured the number of messages of each type sent before

and after a link failure, and recorded the formation of transient loops in CBT that required

explicit action to remove. In addition, each case in which a CBT sub-tree was unable to

reconnect to the tree, as shown in Figure 2.1, was recorded. We found no mechanism to

determine the formation of loops that CBT would not detect; if it were simple to do this we

could recommend a way to detect and prevent these loops in the CBT protocol. We also

recorded the number of times OCBT did not form transient loops when CBT would have.

For our simulations we used the Arpanet topology shown in Figure 5.1, which contains

47 nodes and 69 edges. We examined the performance of OCBT and CBT under realistic

conditions: the links on the network were con�gured to run at 200 kilobits per second,

with a 1 millisecond delay between hops; the unicast routing updates occured four times

as frequently as the CBT and OCBT keep-alive messages. We selected two receiver groups

for the simulation - a dense group consisting of all nodes and a sparse group consisting of

11 widely distributed nodes. The same single source was used with each receiver group.

For each run of the simulation, we chose a particular set of cores using what is probably

the same \trivial heuristic" used by Ballardie [3], that is, looking at a picture of the network

we picked distributed nodes of relatively high degree to serve as cores. For OCBT, the cores

were divided into two logical levels. We constructed the CBT backbone before allowing

receivers to connect even though the current protocol speci�cation does not; we did this

1The protocols presented in this paper were implemented, tested, and analyzed with the help of the

C++ Protocol Toolkit (CPT) by Rooftop Communications Corp. of Los Altos, CA. Contact Rooftop at

info@rooftop.com or 415/948-2720 for further information on the CPT.

45

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

3738

39 40

41

42

43

44 4546

47

Figure 5.1: Arpanet Simulation Topography

because of the di�culty CBT has in connecting secondary cores to the primary cores.

Building each of the trees for each receiver group, we measured the construction costs in

terms of the tra�c required. We then sent a stream of data packets from the source to all

receivers and recorded the delay each data packet encountered. Finally, we made each link

in the network fail individually and measured the number of messages required to reconnect

the tree and any loops that were formed.

We tested four di�erent implementations of CBT. The current speci�cations for CBT

do not call for the sub-tree to be
ushed when a loop is detected. In cases where a loop

is detected at a non-core node, however,
ushing the sub-tree can prevent the re-creation

of the loop. We therefore included the
ush message on loop detection in two of our

implementations. Older versions of the protocol also included a core-ping message that was

sent to ensure that a path existed to the core to which a router was attempting to connect.

This was removed to promote shorter join latencies. This message could serve to better

CBT behavior in the case of a unstable network, however, as no branch would be built until

a relatively stable path existed to the core. We therefore included the core-ping in two of

our simulation sets to see if putting it back in the protocol would improve its performance

46

under failure. In the four di�erent implementations studied, one had no core ping or
ush

on loop detection; one had no core-pings but did have
ush on loop detection; the other

two implementations were the same as the �rst two but included the core-ping.

In our simulation, link failures were detected in two ways. First, failure of a parent or

child to respond to a set number of keep-alive messages created the link-down condition.

Second, every time a message was sent the unicast routing was checked to see if the next

hop to the destination had changed. Changes in the next hop information re
ect a change

in the underlying unicast routing that came about as result of a link failure. This allowed

the protocol to detect link failures before the set number of keep-alive messages were lost.

5.1 OCBT and CBT

First we compared the performance of OCBT against that of the current CBT proto-

col [9] over the 12 di�erent core sets shown in Figure 5.1. The results are summarized in

Table 5.2. Each run shows the averaged performance of OCBT and CBT for a sparse and

dense receiver group for the selected core set. The delay and the variance of the delay

are normalized to the delay and variance of a source based tree. The source based tree

was created using CBT with a single core located at the sender for the same two receiver

groups. The delay results were then averaged. The Transient Loops entry for CBT shows

the number of transient loops that were able to be corrected. The Disconnected Subtree

column shows the number of times a CBT sub-tree was unable to reconnect to the main

tree following a link failure. The Loops Prevented entry shows the number of loops caused

by instability in the unicast routing that OCBT detected and which would have formed

transient loops in CBT.

The results demonstrate that the major advantage of OCBT is its loop freedom and its

ability to correctly reconstruct a multicast tree following a link failure. In our simulations,

a CBT sub-tree was frequently unable to reconnect to the multicast tree following a link

failure as described in section 2.1. As each set of simulation runs included 138 runs of

the CBT protocol, and an average of 15.6 disconnected sub-trees were formed during those

47

Run Level 1 Level 2
Number Cores Cores

1 3 40 34 15 33 26
2 32 33 40 26
3 40 26 32 33 3 40
4 2 10 46 8 37
5 33 15
6 26 33 40
7 40 26 32 33 15
8 26 44 18 30
9 40 26 32 33 2 10 46
10 37 2 46
11 14 24 31 45 15 30
12 17 44 31 34 32

Table 5.1: Cores used in simulation

runs, we found a disconnection rate of 11.3% under the current protocol speci�cations [9].

Clearly, a routing protocol that is unable to �nd a correct path when one exists one time

out of nine is hardly suitable for use in a large Internet.

The message count for the CBT protocol was kept arti�cially low in situations when

a sub-tree was unable to reconnect, as our simulation enforced a timeout period for any

rejoining node that detected a loop. Had those routers been allowed to attempt to connect

as quickly as possible, the total number of messages would have been much higher. In

addition, we formed the CBT backbone before the receivers were allowed to join; this also

lowered the total message count as it prevented situations in which a secondary core could

not connect to the primary core.

On average, OCBT requires some additional work to build the tree, but once it is

constructed the tra�c required to maintain the tree is reduced. Intuitively, one might

expect the OCBT tree to require less tra�c to build, as lower-level cores remain in an o�-

tree state until they receive a join-request. If a particular core never receives a request for

the multicast session, it can remain o�-tree and no tra�c is required to build the tree out to

it. However, we found that the OCBT takes slightly more messages to form the multicast

tree than that of the version of CBT we tested. This is because many children tried to

connect in close succession to lower-level cores that were o�-tree. As these lower-level cores

sent join acks to the joining nodes before attempting to reach a higher-level core, many links

were formed between the core and its new children. The lower-level core was then forced

48

Run Build Repair Average Delay Transient Disconnected Loops
Number Messages Messages Delay Variance Loops Subtrees Prevented
1

OCBT 71 4.4 1.5 2.5 - - 0
CBT 70 14.2 1.5 2.7 0 9 -

2
OCBT 72.5 4.2 1.4 2.0 - - 0
CBT 68 4.4 1.4 1.9 0 17 -

3
OCBT 71 4.3 1.3 1.6 - - 0
CBT 73 4.4 1.9 3.5 0 19 -

4
OCBT 80 5.5 1.2 1.5 - - 0
CBT 72 4.5 1.7 3.0 0 18 -

5
OCBT 72 5.2 1.3 1.6 - - 0
CBT 70 15.3 1.2 1.6 0 17 -

6
OCBT 70 4.5 1.5 2.1 - - 0
CBT 66 10.9 1.5 2.1 1 18 -

7
OCBT 79.5 4.3 1.6 2.8 - - 0
CBT 69 12 1.6 2.4 1 13 -

8
OCBT 80 7.4 1.4 1.8 - - 0
CBT 69 4.1 1.4 1.8 0 10 -

9
OCBT 78.5 4.5 1.6 3.0 - - 4
CBT 73 21.4 1.2 0.5 1 11 -

10
OCBT 75 6.0 1.7 3.1 - - 2
CBT 72 4.9 1.2 0.5 0 23 -

11
OCBT 87.5 5.9 1.2 1.5 - - 2
CBT 71 4.1 1.5 2.1 0 20 -

12
OCBT 75 4.8 1.4 1.8 - - 0
CBT 68 3.6 1.4 1.8 0 12 -

Average
OCBT 76 5.1 1.43 2.1 - - .67
CBT 70 8.7 1.46 2.0 .25 15.6 -

Source Based 72 1.00 1.00
95% Con�dence
Interval

OCBT 72.7 - 79.3 4.5 - 5.7 1.3 - 1.5 1.7 - 2.5 - - 0.0 - 1.5
CBT 68.7 - 71.5 4.9 - 12.4 1.3 - 1.6 1.4 - 2.6 0.0 - 0.5 12.8 - 18.4 -

Table 5.2: OCBT vs. CBT

to break some of these existing links to reach the higher-level core. Links formed this way

required �ve messages to form - two for the initial node to core join, two for the link to

form from between the lower-level core and the higher-level core, and one quit-notice sent

from the child to its former parent as it was coerced to join the higher-level branch that

was forming.

OCBT did reliably reform the tree after a link failure with fewer messages than CBT. The

49

branches of the CBT tree can grow fairly long, and messages can be required to traverse

the entire length of the branch in the event of a link failure. If the failure is near the

bottom of the branch and a rejoin occurs, CBT requires that a passive rejoin be forwarded

the length of the branch to the primary core, which then sends a unicast message to the

originator acknowledging the passive rejoin-request to ensure that there is no loop formed.

As the unicast message does not necessarily traverse the multicast tree on its return to the

originator, we did not include it in our message count as it may not contribute to on-tree

congestion.

Similarly, if the failure is near the backbone and the branch is
ushed, then the
ush

must travel the length of the branch to the receivers which then send a join-request back

to a core, resulting in messages traversing the branch twice. OCBT reduces the tra�c

requirements in both cases. OCBT does not require that a rejoin-request be forwarded to

the highest-level core; instead it only travels as far as the next higher core as required to

rejoin the tree. The
ush message cannot destroy a branch all the way from the highest-level

core down to the receivers as control tra�c is limited to a single logical level.

As expected, the multicast trees produced by CBT and OCBT produce more delay in

delivering packets than do source-based trees. This can be seen intuitively as the path a

packet would take in a core based tree might not be the shortest to each receiver since

it must detour to pass through a core. The actual delay from a source to a receiver is

dependent on core placement, as no additional delay will be incurred if the core lies on the

shortest path. With poor core placement in an OCBT tree, this could be exacerbated as

the packet may be routed further o� the shortest path to pass through several cores. In

our simulation, the delays experienced by data packets in OCBT were on average about

43% greater than the delay experienced by a packet from a source-based tree. Data packets

sent over the tree formed by CBT experienced an average delay about 46% greater than the

source based tree. Using OCBT, it is possible that this could be reduced by making each

source a lower level core. Nearby nodes would then connect directly to the source, while

nodes further away would receive the multicast over the shared backbone.

50

Both CBT and OCBT construct and operate a �xed tree. This has the clear drawback of

requiring all data packet transmissions to traverse speci�c links in the network, regardless

of congestion. This can create hot spots at cores that must handle an excessive amount

of tra�c. CBT is more susceptible to hot spots, particularly at the primary core which

must receive and reply to each passive rejoin request. Using more cores can alleviate hot

spots somewhat, as this spreads the tra�c over more cores, though this does not reduce

the tra�c at CBT's primary core. OCBT is more amenable to use of additional cores,

and does not require any single core to answer messages from the entire multicast group.

Another partial solution to congestion over �xed links is to allow children to quit from their

parents and connect on a shorter path to the core if one becomes available. This in fact was

�rst suggested by Ballardie for CBT [7], but has not yet been included in our simulation.

Another improvement to be investigated will be to make each source a local core so that

near by nodes can join directly to it, reducing the delay to those nodes.

The slightly increased number of messages required in the construction of the tree is

a very small price to pay for OCBT compared to its major advantage: it works correctly.

CBT, in contrast, is incorrect and does not always form a complete multicast tree during

construction or following a link failure. Permanent, undetected loops can form in CBT that

will eventually cause complete saturation of every link on the tree containing the loop. This

is clearly an undesirable characteristic of CBT; OCBT su�ers from no similar detrimental

traits and can be used safely. In addition, in a tree with many link failures, OCBT's reduced

repair costs actually makes the amortized cost of construction lower than CBT.

5.2 CBT implementations

We next investigated the di�erent implementations of CBT to see if using core-pings to

verify a path to the core or if
ushing the sub-tree upon loop detection would improve the

looping performance of CBT. The results of the non-standard implementations are shown

in Figure 5.3. Implementations using a core-ping are so designated by the addition of a CP

su�x, and those that
ush the tree use an F su�x.

51

The results of our simulations show that none of the simple changes made in the

implementations of CBT make that protocol correct. While di�erent implementations

decrease the number of instances in which CBT is unable to form a complete tree, none

eliminate the possibility of a disconnected sub-tree altogether. In addition, the �xes that

decrease the number of loops in CBT increase the tra�c required to build and repair a

multicast tree and increase the latency of nodes attempting to join or rejoin the tree. For

this reason, the results from the simulations of OCBT are not included in Figure 5.3; even

though OCBT has better performance in repairing the multicast tree following a link failure,

it would be unfair to compare this performance to that of CBT, as CBT does not always

produce a multicast tree whereas OCBT does.

It is evident that
ushing the sub-tree upon detection of a loop reduces but does not

eliminate the number of times that a sub-tree is unable to reconnect to the multicast tree.

This is completely expected; by
ushing the sub-tree routers are able to reconnect to the

core directly. There are still times, however, when a core must rejoin the tree and it may

be unable to if its path lies through its descendents. Using a core-ping also helps to prevent

loops from forming. By sending a unicast core-ping, the protocol avoids building any tree

branches while the unicast routing is unstable. Not until any loops between the sender and

core are removed will the core-ping be able to reach the core and be answered. This helps

avoid building any loops into the tree.

In no case, however, does any CBT implementation examined here eliminate loops

completely as OCBT does. In addition, the better performing CBT implementations have

a high performance penalty. Core-pings add signi�cantly to the tra�c being sent as each

branch that is built now adds at least two messages to the total. The join latency for joining

routers is also increased by the time it takes for the round trip to the core. Neither of these

characteristics are desirable.

52

Run Build Repair Transient Disconnected
Number Messages Messages Loops Subtrees
1

CBT-F 72 14.4 9 0
CBT-CP 114 8.0 0 0
CBT-CP,F 114 8.0 0 0

2
CBT-F 70 5.4 16 1
CBT-CP 109 31.1 0 4
CBT-CP,F 78 5.9 10 0

3
CBT-F 75 5.4 15 2
CBT-CP 115 8.0 0 1
CBT-CP,F 115 8.0 0 1

4
CBT-F 75 5.5 18 0
CBT-CP 115 23.8 0 5
CBT-CP,F 115 23.7 0 5

5
CBT-F 72 17.2 14 3
CBT-CP 110 8.7 0 0
CBT-CP,F 110 8.7 0 0

6
CBT-F 70 5.1 18 0
CBT-CP 103 14.8 0 2
CBT-CP,F 103 14.8 0 2

7
CBT-F 71 16 11 2
CBT-CP 112 9.2 0 1
CBT-CP,F 112 9.1 0 1

8
CBT-F 73 5.6 10 3
CBT-CP 107 23.2 0 4
CBT-CP,F 69 4.9 15 1

9
CBT-F 73 15.1 11 1
CBT-CP 119 15.5 0 2
CBT-CP,F 120.2 8.7 0 2

10
CBT-F 72 6.6 22 1
CBT-CP 110 23.8 0 4
CBT-CP,F 112.3 15.9 0 5

11
CBT-F 71 6.7 16 4
CBT-CP 106 16.2 0 1
CBT-CP,F 108.4 9.6 0 1

12
CBT-F 68 4.8 11 1
CBT-CP 107 16.0 0 2
CBT-CP,F 108.4 8.0 1 1

Average
CBT 70 8.7 .25 15.6
CBT-F 71.8 9.0 14.25 1.5
CBT-CP 110.6 16.5 0 2.2
CBT-CP,F 105.4 10.4 2.2 1.6

95% Con�dence
Interval

CBT 68.7 - 71.5 4.9 - 12.4 0.0 - 0.5 12.8 - 18.4
CBT-F 70.5 - 73.1 5.8 - 12.2 11.7 - 16.7 0.7 - 2.3
CBT-CP 107.7 - 113.5 11.7 - 21.3 0.0 - 0.0 1.1 - 3.2
CBT-CP,F 95.5 - 115.4 7.1 - 13.8 0.5 - 2.7 .48 - 2.7

Table 5.3: The performance of CBT implementations

53

6. CONCLUSIONS

We have described an ordered extension to CBT, called OCBT, that increases scalability,

reduces repair latency, completely eliminates loops, and is provably correct in forming a

multicast tree. By distributing cores throughout the network and by maintaining logical

level information, OCBT allows for a
exible multicast group in which the core structure

does not have to be �xed in advance. The distribution of cores reduces the amount of

repair tra�c by limiting the distance over which repair messages have to travel to within

the logical level.

As our simulation results show, OCBT eliminates the loops and disconnected sub-trees

that occur in the CBT protocol. The cost of OCBT is a slight increase in the initial number

of messages required to construct the multicast tree. This is somewhat balanced by a

reduction in the amount of tra�c required to repair the tree following a link failure, and

a guarantee that the tree will reform correctly. The increase in tree construction tra�c

is a result of the mechanism that breaks lower-level tree branches to allow formation of

a higher-level branch; in some cases, this mechanism also adversely a�ects the number of

messages it takes to repair a failure in the tree. On average, however, OCBT reconstructs

the tree with less tra�c than CBT and does so correctly; in all cases the multicast tree will

be formed correctly and will reform correctly following a link or node failure.

The delay induced in end-to-end packet delivery by OCBT is comparable to that of

CBT: both increase the average delay by about 50% over the delay of a source-based tree.

The actual delay incurred is dependent on the location of the cores. It may be possible to

reduce the delay in OCBT trees by making each source a local core. Nearby nodes would

then be able to connect directly to the source, minimizing their perceived delay, while more

remote receivers would connect via the shared tree.

The relative number of messages and delay induced by CBT and OCBT are hardly

indicative of the overall performance of each protocol. The Core Based Tree protocol is

incorrect; it does not prevent or detect looping nor does it consistently build a correct

54

multicast tree. The correct construction of the multicast tree in all instances and the

guarantee of loop freedom in the Ordered Core Based tree protocol make it superior in

operation to CBT; it is only an added bonus that it does so with a reduced amount of control

tra�c. The changes that make OCBT perform correctly and more e�ciently than CBT

are simple and extensible; work done on the placement of cores and security mechanisms

for CBT are applicable to OCBT with little or no modi�cation. The need for a scalable

multicast routing protocol in the Internet of the future highlight the importance of a shared

tree protocol; OCBT meets that need with correct and e�cient performance.

6.1 Future Work

Core placement for the purpose of minimizing packet delay remains an open question

for both CBT and OCBT. The
exible nature of core placement in OCBT, however,

lends itself to a selection process in which cores could be placed at the convenience of

the organization operating the router, subject to the chosen location providing adequate

delay and performance. This could lead to a hierarchical scheme for placing cores to limit

the scope of the multicast. For example, UCSC could have a single core that would be the

connection point to higher-level cores outside the university. A multicast that was not of

interest to the outside world could be limited to that core; it would not be forwarded to

higher levels.

The major problem with limiting the scope of a multicast using a shared tree is deter-

mining which cores to include within the scope. If, in our example, there were two UCSC

cores of level one and we desired to limit the multicast to UCSC, we would need to connect

these level one routers together. The normal method of doing this would be for each core

to connect to the same level two core and limit the multicast at that level. However, if each

UCSC router were closer to a di�erent level two router, some mechanism would be required

to force them to connect to the same higher level core.

A di�erent solution would be to temporarily promote one level one router to a higher

level, as is done for network partitions. This, however, might force a very bad shape to the

55

multicast tree, resulting in long delays. In addition, this only solves the problem for a single

level. As the number of levels increases, the di�culty in forming the tree grows. To ensure

that the scope is maintained it may be necessary to designate certain cores as the only

connection point to a higher level. All other cores of the same level would connect to that

one core, which would carry on the conversation with all higher levels. This exacerbates the

problem of delay, and creates a de�nite hot spot that could be lessened by spreading the

load among many routers. Future research will look at this solution to attempt to determine

how bad the tree can get while pursuing this solution.

The other research focus will be on using OCBT as a hierarchical protocol linking

together regions that are operating some local multicasting protocol. We would like to

integrate OCBT with other multicast protocols (e.g. PIM [5], HDVMRP [12], CBT [3]) at a

higher or lower level. As a higher-level protocol, a single router in the local multicast group

running the local protocol would be designated the OCBT node for the group. That node

would then join the OCBT tree and provide connectivity for the local group. Similarly, a

single member of a higher-level protocol would also have to be a member of the local OCBT

group to provide connectivity. Our work continues to extend OCBT into a multi-layer

hierarchical multicast routing protocol in which a multicast routing layer is independent of

existing intra-region protocols, much like HDVMRP proposes, but establishing a hierarchical

tree structure across regions. This could be di�cult as OCBT would not necessarily be able

to operate within a particular region; only border routers would be on the OCBT tree. This

is a problem with all hierarchical multicast protocols, and is one that is deserving of further

study.

Finally, the problem of limiting the scope of core information distribution will be

addressed as part of the research outlined above. By limiting core information we can

essentially limit the scope of the multicast. In addition, if we can distribute the core

information in such a way that we know the boundary routers in a hierarchical scheme, it

would simplify the construction of the hierarchical multicast tree.

56

References

[1] S. E. Deering, Multicast routing in a datagram internetwork, PhD thesis, Stanford
University, Palo Alto, California, Dec. 1991.

[2] D. Estrin, D. Farinacci V. Jacobson C. Liu L. Wei P. Sharma, and A. Helmy, \Protocol
independent multicast-dense mode (PIM-DM): Protocol speci�cation", Internet Draft
draft-ietf-idmr-pim-dm-spec-01.txt, U.S.C, L.Bl., CISCO, January 1996.

[3] A.J. Ballardie, P. Francis, and J. Crowcroft, \Core based trees (CBT)", in Proc.of the

ACM SIGCOMM93, San Francisco, California, Sept. 1993, ACM, pp. 85{95.

[4] S. Deering, D. Estrin D. Farinacci M. Handley A. Helmy V. Jacobson C. Liu P.
Sharma D. Thaler, and L. Wei, \Protocol independent multicast-sparse mode (PIM-
SM):protocol speci�cation", Internet Draft draft-ietf-idmr-pim-sm-spec-02.txt, XE-
ROX, USC, CISCO, UCL, LBL, UMICH, May 1996.

[5] S. E. Deering, D. Estrin D. Farinacci V. Jacobson C. Liu, and L. Wei, \An architecture
for wide-area multicast routing", in Proc.of the ACM SIGCOMM94, London, UK, Sept.
1994, pp. 126{135.

[6] S. Casner, \Are you on the MBone?", IEEE Multimedia, Summer 94, pp. 76{79, 94.

[7] A.J. Ballardie, A New Approach to Multicast Communications in a Datagram Inter-

network, PhD thesis, University College London, University of London, London, U.K.,
1995.

[8] A.J. Ballardie, \Core based trees (CBT) multicast architecture", Internet Draft I-D,
University College London, February 1996, Work in progress.

[9] A.J. Ballardie, S. Reeve, and N. Jain, \Core based trees (CBT) multicast protocol
speci�cation", Internet Draft I-D, University College London, April 1996, Work in
progress.

[10] M. Handley, J. Crowcroft, and I.Wakeman, \Hierarchical protocol indepenent multicast
(HPIM)", University College London, November 1995.

[11] K.Calvert,R.Madhavanand, andE.W.Zegura, \Acomparison of twopracticalmulticast
routing schemes", Tech. Rep. GIT-CC-94/25, College of Computing, Georgia Institute
of Technology, Atlanta, Georgia 30332-0280, February 1994.

[12] A. S. Thyagarajan and S. E. Deering, \Hierarchical distance-vector multicast routing
for the MBone", in Proceedings of the ACM SIGCOMM95, Cambridge, Massachusetts,
Sept. 1995.

