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Abstract

This paper shows that the large signal behavior of high power factor ac to dc power conditioners

can be analyzed via linear models, by using squared output voltage as the state variable. The

state equation for general loads (e.g. constant power plus resistive) is obtained by a simple

dynamic power balance. Time invariant or periodically varying controllers, acting at the time

scales of the line or switching periods respectively, are then easy to design from the resulting

averaged or sampled data models.
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LINEAR MODELS FOR LARGE SIGNAL CONTROL
OF HIGH POWER FACTOR AC-DC CONVERTERS

1 INTRODUCTION

Recently, there has been much work on designing control schemes for high power factor ac to
dc converters. Schlecht [1] introduces techniques for controlling the pole-zero locations of the
time varying system, based on a quasi-static argument. Subsequent work has largely focused on
the scheme shown in Fig.l, using a boost converter whose input voltage, vin(t), is the rectified

ac waveform. The inner current loop specifies the switching sequence for the transistor in
such a manner that the input current, ii,(t), is regulated around a reference, icmd(t), that is
proportional to the input voltage. The outer voltage loop varies the proportionality constant,
k, from cycle to cycle, to regulate the output voltage, vo(t), about the desired level, Vd. Several
recent papers discuss different approaches to designing the inner and outer loops. Henze and
Mohan [2] use a hysteretic current control loop, and implement the voltage control loop digitally
using a simple PI controller, but some modeling aspects are left unclear. Williams [3] designs
a controller using the small signal 'transfer function' between commanded input current and
output voltage. While his analysis contains insight into the operation of the circuit, it is
mathematically incorrect since it is based on Laplace transform operations on equations with
time varying coefficients even though the conditions for quasistatic analysis do not hold. A
correct small signal model and associated control design are provided by Ridley [4].

The present paper designs and simulates a high power factor control scheme for the boost
converter shown in Fig. 1. Unlike previous papers, however, large signal linear models are

developed for the voltage loop. This allows the simple design of control schemes that permit
recovery from large perturbations away from the operating point. The modeling and control
design are developed for the general case of a constant power load in parallel with a resistive
load. The simulations presented in this paper illustrate the response using the constant power
load only, since this is more relevant when the load itself consists of regulated converters. The
simulations use the following component values:

L = 600/tH C = 940/1F P = 110011

R = oo vi,(t) = Vlsin(120rt) 1V = 200volts
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Figure 1: Boost Converter with Current and Voltage Control Loops

Section 2 describes the operation of the inner current loop shown in Fig. 1. Section 3 presents

models for the dynamics of the outer voltage control loop. Finally Section 4 discusses the design

of the outer control loop, including PI control, and presents simulation results for the behavior

of the full closed loop system. Experimental verification is being planned, and results will be

included in the final paper.

2 CURRENT LOOP DYNAMICS

The current loop is responsible for obtaining the high power factor by drawing a resistive current

from the ac line. Its operation is illustrated in Fig. 2. At the beginning of every switching

period, every T, seconds, a decision is made to have the transistor on or off, as required to force

the inductor current towards the switching boundary, ic,d(t). This is a compromise between

usual fixed frequency operation and hysteresis band control. It provides a natural control

implementation, given that the control is exercised periodically, and was shown in [5] to be

effective in digital sliding mode control of the buck-boost converter.

The commanded input current, icmd(t), is set according to:

ictnd(t) = k(t)a',,(t) (1)

where k(t) is provided by the voltage control loop. In tlsial practice. k(t) is held constant for

the duration of the input period, TL. Its value in Fig. 2 equals 0.055. The power factor during
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Figure 2: Current Loop

this line cycle is calculated to be 0.977. We shall also explore changing k(t) within a cycle
during transients, even as fast as every switching period; results on this will be presented in
the full paper.

The running average, i(t), of the input current over an interval Ts is defined by i(t) =

Y~ ftTs ii,(r)dor. It is reasonable to assume, when the current loop is working well, that
i(t) = icmd(t) = k(t)vin(t).

3 VOLTAGE LOOP DYNAMICS

In this section, dynamic models for the outer control loop are obtained. Ignoring switching
frequency ripple in the output voltage, vr(t), and assuming that the inner current loop maintains

i(t) = k(t)vi,(t), conservation of power for the boost converter is written:

(C=d[v2(t)]/dt = k(t )v,(t) - Ld[k 2(t)vn(t)]/dt - P- t'o(t)/R (2)

This already shows that the use of vo(t) as the state variable. instead of the more cmmonl

ito(t), leads to an essentially linear model for large signal behavior. This observation has also

been made by Sanders [6]. A variety of sampled data model (SDMI) and averaged models

that are more suited to control design can be obtained fr,-iii (2!. 11 ,i,(t) is taken as the state
variable, (2) is a nonlinear description; linearization yields a small signal periodically varying

model, which is the starting point for Williams' discussion of control possibilities [3].
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To obtain an exact SDM on the level of the line frequency, (2) is integrated over the input

period, TL = 1/120 sec, assuming that k(t) is constant over TL. The resulting model, called

the "TL-exact SDM" is shown below, with k(t) in the n th cycle denoted by k[n] and v2(t) at

the beginning of the nth cycle by v2[n]:

v2 [n + 1] = exp(-2TL/RC)v2[n] + (V 2 k[n] - 2P)TL/C (3)

Since the regulation of vo about its desired level Vd can be accomplished by regulating v2 about

vl2, an alternative state variable z[n] is defined as:

z[n] = v2[nJ - d (4)

z[n + 1] = exp(-2TL/RC)z[n] + (V2 k[n] - 2P)Ti/C (5)

Note that z[n] is not restricted to be small. When R -* oo we obtain the result for a constant

power load and when P = 0 we obtain the result for a purely resistive load. Hence, assuming

that the inner control loop successfully maintains i(t) at its commanded value icd(t), the

dynamics of the boost converter are completely described by the single linear, time invariant

difference equation (5), with state z[n] and control kin]. If voln], rather than v2[n], is taken

as the variable of interest, (3) is nonlinear; linearization yields a small signal time invariant

model that turns out to be the same as what Williams [3] obtains through heuristic and not

very satisfying arguments.

The exact SDM on the level of the switching frequency is derived in a similar manner,

by integrating (2) over the switching period Ts. Assuming that k(t) is constant over Ts, the

resulting model, called the "Ts-exact SDM", can be derived, and will be given in the full paper.

To obtain an averaged model on the level of the line frequency, (2) is averaged over TL

using the fixed lag average defined by ft(t) = t- w(a)da. Denote v2 by y(t). (If the line

frequency ripple is small, then y(t) x vo2.) Assuming that k(t) varies slowly enough to be

considered constant over any interval of length TL, the averaged model is given by:

dy(t)/dt = -2y(t)/RC' + (Vl2 k(t) - 2P)/(' (6)

This form already suffices to design controllers (e.g. PI controllers) for large deviations in y(t).

In contrast to this, Ridley [4] and Williams [3] work with linearized models. and therefore only

guarantee good control for small perturbations. \\ will explore sampled data control as an

alternative, since it is less familiar, and to take better account of the fact that k(t) in present

practice is set only once per input cycle. Integrating (6) over TL results in the following model,
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called the "TL-averaged SDM":

y[n + 1] = exp(-2TL/RC)y[n] + [V2k[n] - 2P]TL/C (7)

The TL-exact SDM (3) and the TL-averaged SDM (7) are the same because the differential
equation (2) is periodic in TL, so integrating over TL to obtain a sampled data model has the
same effect as first averaging and then integrating.

4 CONTROL DESIGN

For purposes of illustration, the control design and analysis will proceed with the TL-exact SDM
with the constant power load. In steady state, z[n + 1] = z[n] = 0, so the constant control
k[n] = K required to maintain equilibrium in steady state is seen from (5) to be:

K = 2P/V2 (8)

which varies as 1/V 2. Rewriting the control as k[n] = K + u[n] reduces the state equation (5)
to:

t[n+ 1] = z[n] + V 2TLu[n]/C (9)

Specifying the control to be in state feedback form,

u[n] = -Cbz[n]/(V 2TL) (10)

yields the closed loop model

z[n + 1] = (1- b)z[n] (11)

The constant b is chosen to place the pole zp = 1 - b at a desired location. (A similar choice of
control is made in [6].)

Placing the pole at zp = 1/2 and initiating the output voltage with a 50V%0 initial perturbation
away from equilibrium results in the output voltage transient shown in Fig. 3 for the model
i10), (11). The output voltage starts at t'v = 173 volts and requires approximately 8 input
periods to attain the desired level Id = 346 volts.

Before connecting the voltage loop to the current loop, the range of values of k[n] specified
by the voltage loop must be checked for consistency with the range allowed by the current loop.
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Figure 3: Voltage Loop with Initial Perturbation

For instance, if k[n] is too large, then the inductor current will be unable to rise fast enough

to follow the conummanded current ic,d(t) = k(t)vi,(t). In this example k[n] = K = .055 results

in the current response shown in Fig. 2. Further simulations demonstrate that for k[n] < .5,

the input current is able to follow its commanded value i,,d(t). Consequently, for k[n] in

the vicinity of K the full closed loop system will perform as expected. In particular, for the

transient in Fig. 3, the current loop will perform as desired.

Results

Figure 4 shows the response of the full closed loop system to an initial 50% perturbation

away from the desired output voltage level, Vd = 346 volts. As predicted by the voltage loop

simulation in Fig. 3, the transient has decayed in about 8 input periods. In Fig. 4, each input

period TL is approximately equal to 830 switching periods Ts. The power factor corresponding

to each cycle of the current response in Fig. 4 is shown in Fig. 5. The power factor in steady

state is close to the power factor of the open loop response in Fig. 2.

Figure 6 illustrates the response of the full closed loop system to an unanticipated step

change in output power at t = 2000. At that time, the power in the load is stepped by 50%

from 1100 watts to 1650 watts. The output voltage attains a new cyclic steady state, but.

exhibits a dc offset of approximately 30 volts, or 9'";. -I ,,rdler to crrrpct for the effect of such

uncertainties in the load power, integral control must be incorporated into the voltage loop
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Figure 6: Closed Loop System with Step Change in Constant Power Load

control scheme, as shown in Fig. 7. The state equations for the outer loop are given by:

q[n+ 11 = q[n) + [n] (12)

z[n + 1] = -blq[n] + (1 - bp)zln] (13)

The design and simulation using integral control will appear in the full paper.
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