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Abstract 
 
During the course of the project, we developed four software tools for BioSPICE. 

These include Network Component Analysis, NCA, GeneScreen, lcDNA, and 
MIcroArray Experimental Spice, MIAMESpice. NCA uses available connectivity 
information between genes and transcriptional factors and gene expression level time 
course data (obtainable through DNA microarray experiments) to estimate parameters 
and infer a gene transcriptional network through a Matlab analysis routine. GeneScreen 
processes gene expression data with a collection of computational statistic routines to 
extract significant gene association patterns. lcDNA estimates confidence intervals for 
messenger RNA, mRNA expression levels in microarray experiments, including 
elimination of extreme outliers, quality filtering, normalization of the log10 signal 
intensity ratios, and assessment of expression levels. MIAMESpice packages raw and 
normalized data files from a set of related microarray experiments, saving all associated 
data from an experiment (or set of experiments) into one archive file. Users can also enter 
experimental annotations, array design information, and array design files. 
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Summary 
  

Network component analysis (NCA) is a method for transcriptome network 
decomposition besides principal component analysis (PCA) and independent component 
analysis (ICA), whose goal is to uncover underlying component signals.  Previously, 
NCA as well as PCA and ICA were restricted to analyzing a maximum number of 
regulators equal to the total sample size.  As such, the total number of source signal 
components computed is limited to the total number of experiments rather than the total 
number of biological regulators.   Unfortunately, transcriptional regulation networks 
usually have less transcriptome data points than the number of regulators of interest. It is 
thus imperative to develop methods that allow realistic source signal extraction based on 
relatively few data points.  On the other hand, such methods would inherently increase 
numerical challenges leading to multiple solutions.  Therefore, solutions of both 
problems are needed. 

 
We have improved NCA for transcription factor activity (TFA) estimation for 

limited data, based the fact that most genes are regulated by only a few transcription 
factors. This observation allows the derivation of a new uniqueness criterion which is 
tested during numerical iteration. In addition, data whitening and symmetric 
orthogonalization were used to circumvent the problem of local minimum when data 
error is considerable. A new algorithm was developed that provides a significant speed up 
of computation of TFAs from larger transcription networks than available data points.   

 
We demonstrated the scalability of this algorithm using simulated limited data at 

increasing noise levels using an Escherichia coli connectivity network.  To show 
biological application, we used this algorithm to deduce potential cell cycle regulated 
transcription factors in the Saccharomyces cerevisiae cell cycle microarray data (69 
samples) using a connectivity network of 74 transcription factors.  We find 22 strongly 
periodic cell cycle regulated factors that are statistically significant, 15 of which are 
known cell cycle regulators.   

 
 GeneScreen is a collection of computational statistic routines whose goal is to 
process gene expression data (typically from DNA microarray time-course experiments), 
extracting significant gene association patterns. The basic principle behind the technique 
used in GeneScreen is that stochastic processes, which do not appear to be correlated 
when observed as a whole, often present a great degree of resemblance when they can be 
explained by a common cause. In statistical terms, if we think of gene expression levels 
as random processes, these can appear as independent when observed in an isolated 
manner, but can present a large degree of dependency, conditionally on one or more 
hidden variables. 
 
 In GeneScreen, the conditional mutual information among genes in a cluster (also 
known as the co-information), is used as a measure of conditional dependency. It is well 
known that the mutual information between a set of variables is a positive quantity and it 
is equal to zero if and only if the variables are mutually independent. In the framework 
developed for GeneScreen it is assumed (for the sake of simplicity) that a single 
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controller variable (also named parent node or conditioning factor) influences the 
expression patterns of a set of genes, in such a way that although they might appear 
uncorrelated when observed as a whole, they tend to show a common behavior when the 
common cause is known. The mutual information is used as a scoring metric for its 
capability of detecting dependencies of high-order, as opposed to a simple correlation 
measure which is only capable of expressing second order dependencies in the data. 
 
  The guiding principle of lcDNA is to provide a fundamental framework for the 
design and analysis of two channel cDNA microarray data. Currently, lcDNA provides 
functions for removing outliers from data; this is accomplished by eliminating extreme 
intensity values (intensity value = signal intensity - background intensity), and for 
microarrays with replicate probes an additional quality filtering test can be used to 
remove the intensity values for replicate probes that  are not consistent among 
themselves.  In addition to providing a function for linear normalization of cDNA 
microarray data, lcDNA provides a rank invariant normalization procedure which takes 
into account the non-linearity of cDNA microarray data.  Finally, lcDNA provides a 
robust hierarchical model for assessing the significance of the observed cDNA 
microarray data.  In order to make these mathematical functions easily accessible, lcDNA 
has a graphical user interface that facilitates batch processing and visualization of the raw 
data.   

 
  MIAMESpice packages raw and normalized data files from a set of related 
microarray experiments, saving all associated data from an experiment (or set of 
experiments) into one archive file. Users can also enter experimental annotations, array 
design information, and array design files. 
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Chapter 1.  Network component analysis: 

  
1.1 Introduction 
 

High-throughput techniques in biology, such as DNA microarrays [1], have 
generated a large amount of data that can potentially provide systems-level information 
regarding underlying dynamics and mechanisms. These high-dimensional output data are 
typically the end products of low-dimensional regulatory signals driven through an 
interacting network.  As illustrated in Fig. 1.1, the relationship between the lower 
dimensional regulatory signals (or states) and output data can be modeled by a bipartite 
networked system, where the output signals (e.g., gene expression levels) are generated 
by weighted functions of the intracellular states (e.g., the activity of the transcription 
factors). A major challenge in systems biology is to derive methodologies for 
simultaneous reconstructions of the hidden dynamics of the regulatory signals.  

 
In recent years, statistical techniques for determining low-dimensional 

representations of high-dimensional data sets, e.g., Principal Component Analysis (PCA) 
[2] or Singular Value Decomposition (SVD) [3-5] and Independent Component Analysis 
(ICA) [6] have been applied successfully to deduce biologically significant information 
from high-throughput data sets. It is important to recognize that such dimensionality 
reduction techniques are not designed to address the hidden dynamics reconstruction 
problem addressed in this article. For example, PCA and ICA would both generate linear 
networks for interpreting the observed data set, where the regulatory signals are 
constrained to be mutually orthogonal and statistically independent, respectively. 
However, both the reconstructed signals and the networks do not match the real system, 
and provide only a phenomenological modeling of the observed data. In fact, as we show 
later, it is impossible to reconstruct the underlying regulatory state, without additional 
constraints.  

 
Fortunately, for many biological systems partial prior knowledge about the 

connectivity patterns of the bipartite networks is beginning to become available via high-
throughput experiments [7] or via data-mining of interaction knowledge [8-10], even 
though the detailed mechanisms remain undiscovered.  Currently, however, it is unclear 
whether and how such qualitative connectivity information can be used to generate 
quantitative regulatory signals and further network details. Motivated by this pressing 
question in systems biology, we first derive a set of criteria for such prior connectivity 
information to be sufficient to solve the reverse engineering problem. We then provide a 
framework for the reconstruction process once such criteria are satisfied.  This approach, 
termed network composition analysis (NCA), is experimentally validated using 
absorbance spectra of reconstructed biological solutions where the mixing (connectivity) 
pattern is known.  Finally, we demonstrate the utility of NCA to genome-wide gene 
expression data in yeast Saccharomyces cerevisiae during cell cycle. As the bipartite 
network shown in Fig. 1.1 can represent many different types of data that are determined 
by multiple competing factors, the method developed here, NCA, can be applied to a 
large number of problems, where qualitative network structural information is available.  
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Figure 1.1.  A regulatory system - in which the output data are driven by regulatory 
signals through a bipartite network.  NCA takes advantage of partial network 
connectivity knowledge and is able to reconstruct regulatory signals and the weighted 
connectivity strength. For example, if a regulatory node or factor is known from 
experimental evidence to have negligible or no effect on an output signal, then the 
corresponding edge may be removed or equivalently, its weight set to zero. As discussed 
in the paper, such qualitative knowledge for a number of large biological systems is 
becoming available via high-throughput experiments. In contrast, traditional methods 
such as PCA and ICA depends statistical assumptions and cannot reconstruct regulatory 
signals or connectivity strength. 

 
 
1.2 Mathematical Framework 
 

The multidimensional data are organized in a format where M samples (or time 
points) of N output variables (such as the expression ratio of transcripts) is collected in 

PCA 
•  Orthogonality assumption 
•  Inconsistent connectivity 

ICA 
•  Statistical independent    
 assumption 
•  Inconsistent connectivity 

NCA 
•  No statistical assumption 
•  A prior knowledge of 
 connectivity 

 

 

 1.5 

0.6 

Reconstruction of 
connectivity strength 

Regulatory 
nodes 

Output nodes

Reconstruction of 
regulatory signals 



 

 5

the rows of a matrix [E] (size: N rows× M columns).  We seek to reconstruct a model of 
the type: 

(1) 
 
Here the matrix [P] (size: L×M) consists of samples of L regulatory signals, where L is in 
general much smaller than N, thus resulting in the reduction in dimensionality.  The 
matrix [A] (size: N×L) encodes the connectivity strength between the regulatory layer and 
the output signals (Fig. 1.1).  Eq. 1 represents the linear approximation of any detailed 
mechanistic model and is commonly used as the first approximation when the latter is 
unavailable.   

The decomposition of a matrix [E] into two matrices, [A] and [P], according to Eq 
1 is an inverse problem whose solution is in general not uniquely defined unless further 
assumptions on the matrices [A] or [P] are made.   This can be seen by introducing a non-
singular matrix [X] (L x L) such that [ A ] = [A][X] and [ P ] = [X-1][P], and: 

    [E] = ([A][X]) ([X-1][ P]) = [ A ][ P ]     (2) 
 
Thus, without further constraints, [E] cannot be uniquely decomposed to [A] and [P] 
according to Eq. 1.  Conventional approaches, such as PCA and ICA typically seek a 
matrix [A] such that the resulting reconstructed signal matrix [P] satisfies orthogonality 
or independence criteria, respectively.  When dealing with data generated from structured 
networks, such as biological systems, these decomposition techniques present two 
drawbacks. First, the implicit statistical assumptions on the regulatory signals lack 
biological foundation. Second, the reconstructed connectivity structure is unlikely to be 
consistent with the underlying network structure. Therefore, we seek a decomposition 
method that makes no assumption on the statistical properties of the regulatory signals 
and that, at the same time, allows proper handling of the prior knowledge on the structure 
characterizing a given system.  
 
 
1.3 Criteria for Network Component Analysis 
 

According to Eq. 2, multiple [A]’s and [P]’s can reconstruct data [E] equally well. 
However, when certain connectivity constraints are imposed on [A], the [X] matrix in Eq. 
2 can only be diagonal (see Appendix A for proof).  Furthermore, when [A] has full 
column rank and [P] has full row rank, Eq. 2 represents all the possible alternative 
solutions of the decomposition of [E] (see Appendix A for proof).  Under these 
conditions, Eq. 1 results in a unique decomposition of the data, up to a scaling factor. 
Therefore, certain network structure enables the decomposition of data. This type of 
decomposition is defined as network component analysis (NCA).  In summary, the 
criteria for NCA to be feasible are 

 
1. The connectivity matrix [A] must have full-column rank. 
2. When a node in the regulatory layer is removed along with all the output nodes 

connected to it, the resulting network must be characterized by a connectivity 
matrix that still has full-column rank.  This condition implies that each column of 
[A] must have at least L-1 zeros.  

                                               ]][[][ PAE =
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3. [P] must have full row rank. In other words, each regulatory signal cannot be 
expressed as a linear combination of the other regulatory signals.   

 
If these criteria are satisfied, the data matrix [E] can be uniquely decomposed to a 
connectivity matrix [A] and signal matrix [P] when a scaling rule applies. The matrix [A] 
contains the estimated connectivity strength on each edge, while the matrix [P] contains 
the regulatory signals of each regulatory node. 
 

In order to test the feasibility of NCA, one first constructs an initial [A] matrix 
based on knowledge of connectivity. The [A]entry at ith row and jth column (aij) 
represents the control strength of each regulatory node j on output node i.  If this pair is 
not connected, the value for aij is zero. Otherwise, it is arbitrarily set to a non-zero 
number as an initial value. Thus, the [A] matrix has a dimension of NxL, where N is the 
number of output nodes and L is the number of regulatory nodes (e.g. transcription 
factors) considered.   Given the initial connectivity matrix [A] (N x L), we first test 
whether it has full column rank (Criterion 1).  If this criterion is satisfied, we then form a 
set of reduced matrices [Arj], by removing the jth column and all the rows of A 
corresponding to the non-zero entries of its jth column. For example, if: 
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Criterion 2 is satisfied if and only if, for any possible choice of a single regulatory node, 
the corresponding reduced matrix has rank equal to L-1. 

Criterion 3 cannot be tested a priori, but it implies the necessary condition that L 
(the number of regulatory nodes) must be less than M (the number of data points). If L is 
indeed less than M, the matrix [P] is likely to have full row rank for real biological data.  
This rank condition should be checked after [P] is obtained from NCA.  If L>M, a sub-
network should be generated to reduce L. This can be done by removing selected 
regulatory nodes together with all the output nodes they control. If the subsystem satisfy 
L < M, then proceed to test the other criteria.  If the sub-system satisfies all three criteria, 
then it is NCA-compliant.  
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A simple example is shown in Fig. 1.2, which presents a completely identifiable 

network (Fig.  1.2a) and an unidentifiable network (Fig. 1.2b), although the two matrices 
have an identical number of constraints (zero entries). The network in Fig. 1.2b does not 
satisfy the identifiability criterion because of the connectivity pattern of R3.  

 
 

1.4 Method for Network Component Analysis   
 

Once the identifiability of a given system has been established, the regulatory 
signals, [P], and the connectivity strength, [A], can be reconstructed through the 
following procedure. An initial guess for the connectivity matrix A is formed by setting to 
zero all the elements corresponding to missing edges between the regulatory layer and the 
output layer. The remaining elements can be initialized to an arbitrary value.  Since the 
experimental measurements are noisy, an exact solution to the decomposition problem 
does not exist in general. However, when the above NCA criteria are satisfied, the 
estimation problem becomes well-posed, and a solution that provides the best fit in the 
least-squares sense can be computed. We proceed by minimizing the following objective 
function: 
 

[5] 
 
 
 
where Z0 is the topology induced by the network connectivity pattern.    Additional 
constraints on the nature of the regulation (positive or negative) can also be included in 
the optimization framework, but are not strictly required by the method in general. 

 
The above objective function is equivalent to a constrained maximum likelihood 

procedure in the presence of Gaussian noise. The actual estimation of [A] and [P] is 
performed by using a two-step least squares algorithm, which exploits the bi-convexity 
properties of linear decompositions (Appendix B).  The variability of our estimates is 
assessed using a bootstrap procedure (Appendix C).  

 
Normalization of [A] and [P] can be achieved by a non-singular diagonal matrix 

[X] in Eq. 1.2. The elements of [X] should be selected according to the physical or 
biological nature of the data set.  As an example, the columns of [A] (for each regulatory 
node across all the output node) can be normalized so that the mean absolute value of the 
non-zero elements is equal to the number of controlled output nodes. With this 
normalization, the rows of [P] for different regulatory nodes represent the average effect 
of the regulator on the output nodes it controls, and the columns of [A] represent the 
relative control strength for the same regulator on different output nodes. 

 
 
 

 

0

2

   
                                   ]][[][ min

Zs.t. A  
 PA-E

∈
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Figure 1.2.  a) A completely identifiable network, and b) an unidentifiable network. 
Although the two initial [A] matrices describing the network matrices have an identical 
number of constraints (zero entries).  The network in b does not satisfy the identifiably 
conditions because of the connectivity pattern of R3.  The edges in red are the differences 
between the two networks. 
 
 
1.5 Experimental Validation of Network Component Analysis 
 

In order to verify experimentally the NCA method described above, we used a 
network of 7 hemoglobin solutions as test case. Each solution contains a combination of 
three components: oxyhemoglobin (oxyHb), methemoglobin (metHb) and cyano-
methemoglobin (cyanoHb). These solutions were prepared according to Appendix D and 
the absorbance spectra were taken between 380 and 700 nm with 1 nm increments. 
According to Beer-Lambert Law, the absorbance spectra can be described as follows:  

 
[ ] ]][[ εCAbs =                                   [6] 

 
where the rows of [Abs] are the absorbance spectrum of each solution at each 
wavelength, the columns of the connectivity matrix [C] are the concentrations of each 
component, and the rows of [ε] are the spectra of pure components.  The connectivity 
diagram of this solution network is shown in Fig. 1.3a, where the components of the four 
solutions are known, but the concentration of each component and the pure-component 
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spectra are assumed to be unknown and will be determined from the solution spectra 
using NCA.  
 
 The connectivity matrix [C] is initiated by using non-zero random numbers and 
0’s for components present or absent, respectively, in the solution according to Fig. 3a.  
The initial [C] matrix was verified to satisfy the NCA criteria. The decomposition was 
carried out according to the NCA algorithm briefly described above and detailed in 
Appendix B. Results (Fig. 1.3b) show that the pure component spectra ([ε]) resulted from 
NCA agree well with the true spectra obtained from independent measurements of pure 
components.  Despite the similarity among the pure component spectra, NCA was able to 
resolve the differences.  In contrast, SVD or ICA cannot reconstruct the pure component 
spectra faithfully (Fig. 1.3b). In addition, the concentrations estimated from the [C] 
matrix show satisfactory agreement with the true concentrations (Table 1.1).  Note that 
the spectra were decomposed using only the known components, but not the 
concentrations of the solutions. However, the NCA method was able to simultaneously 
determine the concentrations of each component as well as the spectra of pure 
components.  
 
 
1.6 Application to Gene Expression Regulation.  
 

Since the NCA method is experimentally verified using a test system, we now 
explore its utility in a more challenging system – transcriptional regulation in yeast.  In 
general, transcription of genes is controlled by a smaller number of transcription factors, 
whose activation via post-translational modification or ligand binding is the determining 
factor for gene expression.  The activated form of a transcription factor, rather than its 
expression level, is what controls promoters and dictates the physiological state of the 
cell.  We consider the signal transmitted to different promoters as the transcription factor 
activity (TFA). Correspondingly, the control strength (CS) quantifies how each promoter 
receives the signal and it reflects the relative contribution of the transcription factor to the 
expression of different genes (Fig. 1.1). Determining TFAs provides a basis for 
pinpointing perturbations caused by drug effects, genetic mutation, or complex 
environmental challenges. However, these regulatory quantities, even individually, are 
difficult to measure.  

 
Typically, the first-order regulatory relationships between transcription factor and 

gene expression is represented by a bipartite network similar to that shown in Fig. 1.1, 
where the connections (or edges) represent the binding of a transcription factor to the 
gene’s promoter region.  A recently introduced genome-wide location analysis (11,12) 
allows the detection of transcription factor binding to promoter regions, and provides a 
method for reconstructing such genome-wide transcription connectivity diagrams (Fig. 
1.1).   The availability of such information allows further inference of regulatory signal 
represented by the TFA, and the CS of the transcription factors on the genes. 
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Figure 1.3   Experimental validation of the NCA method using absorbance spectra of 
hemoglobin solutions. a) The connectivity (mixing) diagram of the seven Hb solutions 
from three pure components which serve as the regulatory nodes. b) The regulatory 
signals (pure component spectra) derived from NCA agree well with the true values, 
while those derived from PCA or ICA do not. 
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Table 1.1: Concentrations of the hemoglobin solutions estimated from the NCA analysis 
agree reasonably well with the true values (in parenthesis). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 To analyze the gene expression data, we approximate the relationship between 
transcription factor activities and gene expression levels, by a log-linear model of the 
type: 
 

[7] 
 
 
 
where Ei(t) is the gene expression level, TFAj(t), j=1,…,L is a set of transcriptional 
regulator activities, and CSij represents the control strength of transcription factor j on 
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M1 0.13  3.8 0
(0.13) (4.3) (0)

OxyHb MetHb CyanoHb
μM μM μM

M2 5.1 0 5.8
(6.4) (0) (5.8)

M3 0 3.8 1.2 
(0) (4.3) (1.2)

M4 0.13 3.3 1.2 
(0.13) (3.8) (1.2)

M5 2.6 2.9 0
(3.8) (3.3) (0)

M6 2.6 0 9.3
(2.6) (0) (9.3)

M7 0 1.9 5.8 
(0) (2.4) (5.8)
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gene i.  Log-linear models are used in several disciplines as a standard tool to 
approximate nonlinear systems, and have the following advantages: (i) Since they 
represent linear approximations (i.e., in the log-log space), they inherit the usual benefits 
of linearization, i.e., they are locally accurate and computationally tractable. (ii) Unlike 
standard linear models (i.e., in the original data space), the log-linear models still allow a 
restricted nonlinear relationship between inputs and outputs.   In the case of DNA 
microarray data, since gene expression levels are typically measured with respect to a 
reference level, it is particularly convenient to work with relative quantities as in Eq. 7. 
As a further justification of our log-linear model, we show in Appendix E that Eq. 7 can 
be derived by linearizing a phenomenological model, based on Hill’s equations, that has 
been used previously to describe the relationship between promoter activity and 
transcription factor activities [13]. In particular, the value of CSij is determined by the Hill 
coefficients and the transcription factor affinity to the promoter region. The following 
expression in a matrix form can be derived from Eq. 7 after taking the logarithm: 
 

(8) 
 
where the elements Erij(t)= Eij(t)/Eij(0) and TFArkj(t)= TFAkj (t)/TFAkj(0) are the relative 
gene expression levels and transcription factor activities. The rows of [Er](size: NxM) 
and [TFAr] (size: LxM) are the time-courses of relative gene expression levels and 
transcription factor activities, respectively, and [CS] (size: NxL) is the matrix with 
elements CSik. Several linear decompositions of the matrix log[Er] have been used 
extensively in the study of gene expression array: as an example Alter et al. (14) propose 
to use SVD in order to find the lower dimensional projections of the expression data that 
present the largest degree of variation. By using SVD, one implicitly assumes that the 
TFAs possess an orthogonal structure. Alternative approaches based for example on ICA 
have also been investigated [6]. These aim at finding a decomposition of the data into 
statistically independent basis functions, using an unsupervised learning method. 
Although any of these decomposition techniques have strong statistical foundations, their 
molecular basis is difficult to pin-point. 
 
 
1.7 Application to Saccharomyces cerevisiae Cell Cycle Regulation 
 

In eukaryotes, the transcriptional regulation can be grouped in terms of DNA-
binding transcription factors, which recruit chromatin-modifying enzymes and 
components of transcription apparatus.  Here, we used cell cycle regulation in S. 
cerevisiae as an example to test the applicability of the above approach.  The connectivity 
between transcription factors and genes was obtained from the genome-wide location 
analysis [7]. Microarray data sets used for the yeast cell cycle were taken from cultures 
synchronized by elutriation, α-factor arrest, and arrest of a cdc15 temperature sensitive 
mutant [15]. We focused on the 11 transcription factors which are known to be related to 
cell-cycle regulation [7].  Initially, 570 genes regulated by these 11 transcription 
factors were selected from a total of 1134 genes in the data set.  Because other 
transcription factors also contribute to the regulations of these genes, the network 
contains 44 transcription factors. This network was checked for NCA compliance by 

                         loglog [TFAr] [CS] [Er] =
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examining each of the reduced matrices for its rank.  By trimming transcription factors 
and associated genes that violate this test, the final data set contains 441 genes with 33 
transcription factors.  
 

Interestingly, the NCA provides a very good fit to most of the microarray 
expression data (Fig. 1.4a). The columns of [CS] were normalized so that the mean 
absolute value of the non-zero elements is equal to the number of controlled genes. Thus, 
the rows of [TFA] for different transcription factors represent the average effect of the 
regulator on the genes it controls, and the columns of [CS] represent the relative control 
strength for the same regulator on different genes. It is recognized that binding assays 
may yield false positive or false negative results, and that transcription factor binding 
does not guarantee regulation [16]. The general agreement between data and the NCA 
model provides evidence for the regulatory role of a transcription factor with respect to a 
particular gene. In particular, a very small value of the CS for a particular gene-
transcription factor connection is usually indicative of poor likelihood for such regulatory 
role.   
 

The dynamics of TFAs (Fig. 1.4b) reveal the role of each transcription factor 
during cell cycle regulation.  In contrast, the expression ratios obtained from DNA 
microarray experiments (Fig. 1.4c) do not reveal regulatory features by themselves.  Fig. 
1.4c shows that TFAs of most of the recognized cell cycle regulators exhibited a cyclic 
behavior.    

 
Among the 11 recognized cell cycle regulators [7], Stb1, Mcm1, and Mbp1 

exhibited the greatest amplitudes in their TFAs, whereas Skn7 and Swi6 showed little 
cyclic behavior. Swi6 has been shown to associate with Mbp1 or Swi4 [17] while Skn7 
has to bind to Mbp1 to exert cell cycle regulation [18].  Perhaps the oscillatory feature 
needed for cell cycle regulation comes from their binding partners. Indeed, Skn7 is also 
involved in oxidative stress response and heat shock response, and thus oscillatory 
feature in this transcription factor is not expected. 
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Figure 1.4.  S. cerevisiae cell cycle regulation   a) The histogram of mean absolute errors 
(MAE) shows that the majority of the genes were fitted reasonably well. MAE is defined 
as 
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b) The dynamics of the TFAs for 11 transcription factors involved in cell cycle regulation.  
Different stages in the cell cycle are indicated by the color code. The three rows represent 
experiments using different synchronization methods: elutriation, α factor arrest, and 
arrest of a cdc15 temperature-sensitive mutant. Shaded areas span four standard 
deviations (estimated using a bootstrap technique as explained in Appendix C).    
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c) The comparison between expression levels and activities of selected transcription 
factors shows that the expression levels do not exhibit an oscillatory behavior while 
TFA’s levels do. 
 
  
1.8 Conclusion 
 

We developed a novel data decomposition method, NCA, for reconstructing 
regulatory signals and control strengths using partial and qualitative network connectivity 
information.  As stated above, this method contrasts traditional methods such as PCA and 
ICA in that it does not make any assumption regarding the statistical properties of the 
regulatory signals.  Rather, network structure, even if incompletely known, is used to 
generate a network-consistent representation of the regulatory signals.   This method is 
validated experimentally using absorbance spectra and then applied to transcriptional 
regulatory networks. 

 
Many other types of large-scale data, such as neuronal signals, signal transduction 

data, metabolic fluxes, and protein-protein interaction information, may potentially be 
modeled as the output of underlying functional networks that are driven by regulatory 
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signals. Thus for determining the underlying regulatory states, the network connectivity 
structures cannot be ignored. In these cases, traditional methods such as PCA and ICA 
will yield to NCA as the underlying network topologies are determined or inferred at an 
iterative process to aid the deduction of network topology. Even when the network 
structural information is partially known, trial network structures can be used to generate 
regulatory signals. 

 
As illustrated in this paper, perhaps the most immediate impact of the NCA 

analysis will be for DNA microarray data.   Our technique builds on earlier pioneering 
work in related areas [13,19]. For example, Ronen et al. [13] propose a method for 
estimating the kinetic parameters of simple regulatory network architectures, by fitting a 
kinetic model to high-resolution promoter activity data. Such a method is capable of 
dealing with a basic architecture, where all operons are regulated by a single transcription 
factor, and where the regulatory mechanism is well characterized. Recently, Gardner et al. 
(19) presented a combined experimental-computational technique for inferring genetic 
network structure. This technique determines network connectivity in systems where both 
the input and the output signals are accessible.  

 
Although the connectivity information between genes and transcription factors is 

not currently available for all organisms, it is expected that such information will be 
widely accessible in the near future using various methods [7, 11, 19-20].  Meanwhile, 
the amount of large-scale gene expression data obtained using either microarray or 
equivalent technologies are increasing rapidly, and the accuracy of these data is expected 
to improve.  We expect that with both types of data widely available, quantitative 
reconstructions of transcriptional regulatory networks using NCA analysis will be 
routinely performed.   
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1. 10 Appendix A:  Proof of Network Component Analysis 

Definition:  Connectivity Pattern: Given a matrix A, and a set 2ZZo ⊂ we say that A is 
characterized by the connectivity pattern imposed by Z0 if and only if: oaij ≡   for  

oZji ∈, . Note that a zero in ija represents the absence of an edge connecting regulator j 
to output i in a bi-partite network.                              
 
Network Component Analysis Theorem: Given a matrix E (N x M), where: 

E = A P       (A1)  

    A: (N x L) 

                P: (L x M) 

if the following conditions are satisfied, then the decomposition of E into A and P is 
unique up to a scaling diagonal matrix X (LxL) . Any alternative decomposition PAE =  
where A (N x L) has full column rank and has the same connectivity pattern Z0 as A, 
there exists a diagonal non-singular matrix X (L x L), such that: 

1−= AXA        (A2) 

XPP =        (A3) 

 

Condition 1.  A has full column rank and represents a connectivity pattern defined by Z0.   
Condition 2. The reduced matrix Arj, defined by eliminating the jth column of A and all 
the rows corresponding to non-zero elements in that column (see example in equation 
A17),  has rank L-1 for all j. 
Condition 3. P has full row rank. 
 

Proof:  

Given A, P, A , and P  such that 

PAAPE ==                               (A4) 

 we are going to show there exists a diagonal non-singular matrix X (L x L), such that 

1−= AXA        (A2) 

XPP =        (A3) 
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Since A has full column rank we can write: 

PAAAPA TT
=                       (A5)                               

XPAPAAAP TT
≡⎟

⎠
⎞⎜

⎝
⎛=

−1
            (A6) 

 From (A4) we obtain: 

XPAAP =  

 

( ) 0=− PXAA          (A7) 

Since P has full row rank (Condition 3), the above equation implies that  

XAA =         (A8) 

Now we need to show that X can only be diagonal if Condition 2 is satisfied. 
 
We can write (A8) as: 

∑
=

=
L
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1
       (A9) 

This equation can be rewritten in the following staggered form 
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where Aci and Xci are the ith columns of matrices A and X, respectively. 
Here, the connectivity pattern Z0 imposes the following constraints for the elements in X: 

0
1

,,0 Zjiforxaa
L

l
ljilij ∈≡= ∑

=
       (A11) 

Furthermore, in the above equation the diagonal terms of X do not appear since, if 
0=ija  we necessarily have 0=ija  and that 
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jjjjij xxa 0=        (A12) 

In other words, equation (A11) constrains the L(L-1) off-diagonal elements in X, but not 
the diagonal elements.  Thus, taking the zero elements in A (defined by Zo) and 
eliminating the diagonal terms in X, we convert equation (A10) to 
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or     0=ru XA         (A14) 

where Xri is the ith column of X after deleting the diagonal element. uA  is defined as 
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where irA  is the reduced matrix derived from A   by eliminating ith column and all the 
rows that contain non-zero elements in that column. For example, if   
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Since A and A have the same connectivity pattern, the rank of uA  is the same as the rank 
of uA , which is equal to L(L-1) according to Condition 2.    Note that there are L(L-1) 

unknown variables in Xr. Since uA  has rank L(L-1), the unique solution of the linear 
system of equations defined by (A12) is Xr =0. Thus,  

 jiforxij ≠= 0          (A18) 

jiforarbitraryxij ==     (A19) 

Therefore, X is a diagonal matrix. Because A is full column rank, a zero diagonal entry 
would violate (A8).  This completes the proof. 

 

1. 11 Appendix B – Network Component Analysis Algorithm 

 
Given a matrix E (N x M) and a connectivity pattern Z0, the goal is to find a 
decomposition of the type: 

E = A P 

 
with A=[ai,j] (N x L) characterized by the connectivity pattern defined by Z0, and P=[pi,j]  
being a matrix of size (L x M). We further assume that A and P satisfy the hypotheses of 
Theorem 1 (Appendix A), so that this decomposition is unique up to diagonal scaling. 
The optimal A and P can be found by solving: 
 

  

 

 
 
 
where the norm is the matrix Frobenius norm. The box constraints defined by ai,j

(l), ai,j
(u), 

pi,j
(l), and pi,j

(u) are included to ensure that the elements of A and P will remain within the 
domain of biologically sensible values. (B2) defines a bi-convex optimization problem 
over the manifold of matrices with connectivity pattern Z0, i.e. given either the matrix A 
or the matrix P, there is always a unique least-squares solution which allows one to 
identify the other matrix, and satisfies all the constraints.  
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This result permits us to solve the problem using an iterative optimization algorithm, 
where the matrices A and P are updated in two different stages. The main steps of the 
algorithm are as follows: 
 
1. Initialization. Initialize A0 to be a matrix with connectivity pattern Z0. In our 
implementation we set all the non-zero entries of A to an arbitrary non-zero number. 
 
2. P update. Given Ak-1 compute a new estimate Pk by solving the following least square 
problem: 
 

 

 

In order to pose the optimization problem defined by (B3) as standard least-squares 
estimation, we can write the matrices E and P as follows: 
 

 

 

 

where ec,i is the ith column of E and pc,i
(k) is the ith column of Pk. Now define the 

following column vectors (size (NM x 1) and (LM x 1), respectively), which are obtained 
stacking the columns of E and P, respectively: 
 

 

 

 

 

Define also the following (NM x LM) block diagonal matrix: 
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Hence, the optimization problem defined by (B3) can be written in canonical form, as 

follows: 

 

 

 

This sparse constrained least squares problem can be solved using a standard convex 
optimization technique. In our implementation, we used the SBLS algorithm developed 
by Björck*, which is based on the interior point method 1. 
 

3. A update. Given Pk compute a new estimate Ak by solving the following least squares 

problem: 

 

 

 
The optimal Ak, satisfying the connectivity pattern constraints, can be obtained by 
observing that, given Pk, this problem can be decomposed, in a set of N de-coupled 
estimation problems, where L is equal to the number of columns of A. If we write: 
 

 

 

 

 

 
where er,i  is the ith row of E  and  ar,i

(k)  is the ith row of Ak,  then (B9) is equivalent to 
the following set of least squares problems: 
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The connectivity constraints on Ak can be removed simply by eliminating from each ar,i
(k)  

those elements that are constrained to be identically zero, resulting in a new set of row 
vectors ar,i

(k). Thus (D11) becomes:  
 
 

 

where Pk is obtained from Pk  by removing the rows corresponding to the identically zero 
entries of  ar,i. This set of constrained least squares problems can be solved using the 
same optimization procedure used to solve (B8). 
 
4. Convergence criterion. If the decrease in total least-square error, at the end of Step 3, 
is above a predetermined value, repeat from Step 2. The convergence threshold can be 
selected according to the desired degree of accuracy. 
 
Because in each step of the iterative optimization procedure, the estimation error is 
guaranteed to be non-increasing, convergence to the optimal solution is assured as long as 
the hypotheses of Theorem 1 are satisfied. 
 

1. 12 Appendix C- Bootstrap Confidence Intervals 

The iterative two-step least square algorithm that we propose allows us to obtain 
estimates of the values of TFA and CS, as defined in our model. How good are these 
estimates? What is their precision? In order to answer these questions, we used a 
bootstrap procedure. Our choice was dictated by two observations: (i) we do not want to 
make any specific distributional assumptions on the errors in our model; (ii) given the 
iterative nature of the algorithm, we do not have a close form expression that links the 
estimated values to the observations. The bootstrap is a very general statistical procedure 
that allows one to learn about sampling variation using the one set of observation at hand1. 
By creating a pool of bootstrap datasets, obtained resampling with replacement from the 
actual data set, and evaluating the variability of our estimates across these bootstrap 
datasets, we can learn about the precision of our estimate. While this conveys the general 
idea of how to gather information on sample variability by pulling ourselves up on the 
bootstraps of our current sample, there are a variety of implementations of the bootstrap. 
Because of the constraints that our model has on both the P and A parameters, we 
implemented what is known as parametric bootstrap: we used our dataset to gather 
estimates P  and A  for P and A, respectively. This automatically leads to estimates of the 
errors in the gene expression values: 
 
     PAEErr −=      

We have then created a pool of bootstrap datasets E* by holding our estimates P and A  
as true and resampling from the estimated errors. So that   
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    )(* ErrResampleErr ii =  

and 

    **
ii ErrPAE +=  

Each of these bootstrap datasets *
iE  is input in the two-step iterative procedure and leads 

to estimated values for *
iA  and *

iP . We carried out 200 of such bootstrap iterations. 

Using the quantiles of *P  and *A  in the bootstrap samples we were able to obtain 95% 
confidence intervals for all the parameter values. 
 
 
1.13 Appendix D: Material and Methods 
 
Hemoglobin preparation. Bovine blood was collected in a heparinized (10 units/ml) tube. 
The plasma and buffer coat were removed after centrifugation at 800 × g for 10 min. The 
cells were resuspended and washed three times in a buffer containing 40 mM Hepes/120 
mM NaCl/5 mM glucose at pH 7.4, 282 milliosmolar (mOsm). After each wash, the cells 

were centrifuged at 800 × g for 10 min. RBCs were purified by filtration through a 
mixture of -cellulose and microcrystalline cellulose. The aliquot was frozen at -80o C 
overnight, then centrifuged at 22,000 × g, 4°C for 12 min to get the cell lysate. 
Oxygenated hemoglobin (oxyHb) was isolated by passing the cell lysate through a 
Sephadex G-25 fine column.  To prepare methemoblobin  (MetHb), K3Fe(CN)6 0.2M was 
added to oxyHb isolated above at 2-fold excess.  MetHb was purified by passing the 
solution through a Sephadex G-25 fine column. To prepare cyano-methemoglobin 
(CyanoHb), K3Fe(CN)6 0.2M and KCN 0.1M were added to purified oxyHb at 2-fold 
excess.  The extra chemical components were removed by passing the solution through a 
Sephadex G-25 fine solution. Mixtures of Hbs at different concentrations were generated 
by mixing pure solutions, and buffer was added to obtain the desired final concentration.  
 
Spectrophotometric measurements: The absorbance spectra of various Hb solutions 
were measured using a UV/Vis spectrophotometer (Beckman DU640) at wavelengths 
from 380 to 700 nm.  Spectra data were collected for a wavelength increment of 1 nm. 
 

 1.14. Appendix E- Transcriptional regulation model 

 
Transcription factors regulate promoter activity through binding to the promoter region.   
One can approximate the promoter activity using the Hill equation   

(C3)
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The messenger RNA, mRNA level in the cell is a balance between rate of mRNA 
synthesis (promoter activity) and the rate of mRNA degradation, which is assumed to 
follow the first-order kinetics 
 ( ) ( )tmRNAktV iidindegradatio ,, =       (E2) 
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On time scales greater than 10 minutes4, the mRNA levels reach a quasi-steady state, and 
the above equation can be set to zero.  Thus, we have 
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Microarray data are commonly expressed in terms of expression ratios, which are 
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Taking the logarithm of the above equation, we obtain 
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where Eri is the expression ratio of mRNAi and TFAr is the ratio of TFA.  When TFAj(t) 
is in the neighborhood of TFAj(0), the second term on the right-hand side can be 
neglected, achieving linearization in the logarithmic space.   Therefore, equation (8) in 
the main text can be regarded as a log-linearized form of the Hill equation. 
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Chapter 2: GeneScreen:  An Information Theoretic Exploratory 

Method for Learning Patterns of Conditional Gene 
Co-expression from Microarray Data 

 
 
2.1 Introduction 
 
 DNA microarray technology has revolutionized the field of life science with the 
introduction of an experimental technique that allows the simultaneous monitoring of the 
expression levels of how different environmental conditions (including those that are 
drug induced) affect the regulatory program undertaken by the cell. It is important to 
recall that gene expression levels quantified in DNA microarray assays are estimates of 
the relative concentrations of the corresponding mRNA molecules. Thus, the expression 
levels constitute snapshots of the transcription process, which is a key but only one 
component of the overall complex mechanisms that determine the functioning and the 
physiological state of the cell. The outputs of the post-transcriptional and post-
translational processes remain hidden. Still, one might hope that the analysis of a large 
amount of expression profiles would result in the capability of indirectly observing the 
results of such complex interactions. 
 
 Historically, biologists have favored simpler analysis tools, which are widely 
accepted mainly because of their straightforward biological interpretation: an example is 
given by correlation analysis and its extension to gene clustering by hierarchical 
agglomeration [1]. Such approaches are based on the simple concept that genes that show 
similar expression profiles are likely to be co-regulated or, in general, functionally related. 
On the other hand, because of the complex dynamics involved in cellular processes, gene 
expression levels are often characterized by nonlinear dependencies, which are not 
adequately described by a linear model. More importantly, a substantial percentage of 
interactions between the products of gene transcription occur post translation and 
therefore they are reflected only indirectly in the expression level of the corresponding 
gene species. For example, in a phenomenon common to many intracellular regulatory 
mechanisms, the expression level of a gene might show no substantial variations, while 
the activity levels of the corresponding protein (generated via the translation process) 
might vary considerably (based on its interactions with other proteins and/or signaling 
molecules).  This results in variations in the expression levels of other genes, that the 
activated form regulates [2] [3]. If one only looked at pair-wise correlations of the gene 
expression profiles, then clearly there will be no correlation between the regulator gene 
and the regulated gene. 
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Figure 2.1. An example of functional relationship between two genes that is not 
discernible from their mutual expression patterns. (a) The protein phosphatase pph3 is 
responsible for the activation of the transcriptional regulator gln3. The scatter plot of the 
expression profiles does not show particular evidence of a functional relationship 
between the two genes. This is essentially due to the fact that pph3 exercises its control 
on the protein translated from gln3 only post-transcriptionally. Therefore, the result of 
this co-activation mechanism is not reflected by the expression levels of gln3. (b) When 
the level of up- or down-regulation of gln3 is used as an indicator variable, two separate 
patterns of co-regulation between the genes vap1 and pph3 are observed. The mechanism 
of interaction between pph3 and gln3 is elucidated by observing the secondary effects 
exercised on vap1. 

 
 

 Consider the following example. Figure 2.1(a) shows the scatter plot of the 
expression levels of two genes of the yeast Saccharomices Cerevisiae, collected during 
several whole-genome microarray experiments (cfr. Section IV). gln3 is a transcription 
factor that is generally inactive unless activated by the protein phosphatase pph3, post-
translationally: although the two genes are functionally related, this is not revealed by 
their mutual expression patterns. On the other hand, their functional relationship can be 
observed when considering their interaction with a third gene, in this case vap1 (Figure 
2.1(b)). The plot shows that vap1 and pph3 follow a pattern of co-regulation, when gln3 
is under-expressed or near the reference level. A negative pattern of correlation between 
the same two genes appears when gln3 is up-regulated. Such opposite patterns of co-
expression can be linked to significantly different, yet rather common, environmental 
conditions (in this case related to nitrogen abundance or deprivation). This simple case 
(further analyzed in Section IV), is a clear example of the fact that several functional 
associations between genes are due to the activities and interactions among their 
respective proteins, and that these dependencies are not reflected in pair-wise 
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dependencies. However, when conditional co-expressions are observed, then some of 
these hidden functional associations might be unveiled. 
 
 Several attempts aiming at adapting well-established statistical learning 
frameworks to gene expression data, such as Bayesian Networks [4], Support Vector 
Machines (SVM) [5], K-means clustering, or Self-Organizing Maps (SOM) [6], have led 
to promising results, which are paving the road to the development of even more 
specialized machine learning frameworks, especially suited for biological data [7]. Many 
of these approaches aim at overcoming the limitations of first-order, linear methods by 
explicitly modeling non-linear or secondary interactions between genes. 
 
 When attempting to model large-scale systems like the one under consideration, 
one must pay close attention to the actual amount of information that the data can provide. 
Highly detailed models containing a large number of parameters require massive amounts 
of data in order to be estimated with a significant degree of accuracy. On the other hand, 
the amount of information carried by microarray data is inherently limited by at least two 
factors: first, the noise component can be significantly large; second, the sampling 
characteristics of time-course experiments are generally poor and characterized by 
frequent missing values. One of the current challenges is therefore that of determining 
what kind of high-order interactions can be systematically discovered by a data-driven 
learning approach, without exceeding the statistical limitations that are inherent to the 
available measurement data. 
 
The proposed gene expression learning framework is based on the concept of co-
information, a measure of statistical conditional dependence that is non-parametric and it 
is not restricted to linear models (Section II). The basic idea consists of estimating how 
the information content shared by a set of M nodes in the network (where each node is 
associated to an expression profile) varies upon conditioning on a set of L conditioning 
variables. In the simplest case the conditioning nodes are also represented by a separate 
set of expression profiles; however, the framework can be extended to include different 
types of descriptors, such as environmental conditions, or experimental settings. The 
algorithm is implemented as a combinatorial search method where for all possible 
selections of M expression profiles, the co-information score is evaluated as a function of 
the set of L conditioning variables (Section III). The combinations of L indicator 
variables and M conditioned nodes yielding the largest values of the objective function 
are stored in order to be further evaluated. In a second stage, the statistical significance of 
the co-information content of such clusters of nodes is estimated, thus allowing one to 
retain only those combinations that achieve a minimum p-value (details in Section IV). In 
order to limit the computational cost associated with the combinatorial approach, an 
efficient moment based approximation of the co-information measure is derived that 
overcomes the problem of estimating high-dimensional multi-variate probability density 
functions from the data (the details are provided in Appendix A). 
 
 The existence of patterns of co-dependency in gene expression data that can be 
systematically extracted by an unsupervised machine learning technique has not been 
clearly established; the results we obtained by analyzing a whole genome microarray 
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assay of Saccharomyces cerevisiae [8] (described in Section IV) provide compelling 
evidence that conditional patterns of interactions between gene expression profiles appear 
frequently and they are characterized by a high level of statistical significance. Several of 
the discovered secondary patterns of co-regulation can be effectively associated to known 
(or partially known) biological mechanisms. On the other hand, not all significant 
patterns detected by the algorithm carry a straightforward biological interpretation. This 
is most likely due to the fact that such patterns of conditional co-expression are often 
mediated by additional hidden factors that are not directly measurable. Nonetheless, the 
proposed framework provides a valuable tool to biologists, being capable of highlighting 
interactions among genes whose biological significance can be elucidated through further 
experimental analysis. 
 
 A software implementation of our exploratory method (dubbed GeneScreen) has 
been incorporated in BioSpice1 since its very first release. BioSpice is an integrated suite 
including a large collection of computational biology and modeling tools, developed 
within DARPA’s BioComp program. 

 
 

2.2  CONDITIONAL CO-EXPRESSION MODEL 
 
 The idea behind the proposed approach consists of identifying groups of genes 
that are co-expressed only conditionally on the expression level of other genes. The 
problem can be broken down as follows: first, how do we choose a measure of statistical 
dependence that is capable of detecting conditional co-expressed genes; second, how can 
one identify a set of genes whose expression levels are indicator functions of a significant 
change in the transcriptional regulation mechanisms affecting a specific set of genes. 
 
 In order to detect patterns of conditional co-expression in the data, one must 
choose a measure of statistical dependence. Although conditional correlation is probably 
the simplest such measure, it is only suitable for detecting patterns of linear dependency 
[7]. A natural measure of statistical dependence that does not make any assumptions on 
the linearity of the model is given by the mutual information [9]. 
 

 
A. Conditional Mutual Information as a Measure of Conditional Co-expression 
 
 Let us start by considering the definition of mutual information between two 
random variables x1 and x2 conditioned on a third random variable y: 

    
 
where D is the Kullback-Leibler distance or relative entropy [9], defined as: 
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It can be shown [9] that the relative entropy is always non-negative and is zero if and 
only if q = r almost everywhere. In the case of continuous random variables (1) can be 
expressed as: 

 
This definition can be extended to the mutual information of M random variables x = 
[x1, . . . , xM]T ,conditioned on a separate set of L variables y = [y1, . . . , yL]T as follows: 

 
 
This expression provides us with a measure of the expected mutual information of x 
conditionally on the value of y. Evidently, when x and y are statistically independent, we 
have trivially that: 

 
Recalling that we are after certain structure in the data that appears only under 
conditioning, this result prompts us with the idea of adopting the following cost function: 
 

 
 
 
Clearly, we have that L(x|y) = 0 when x and y are independent. In this case, even if a 
cluster of genes possesses high information content, i.e. I(x) is large, such structure 
appears regardless of the set of conditioning variables. On the other hand, L(x|y) is a 
large positive number when the information content is significantly increased under 
conditioning. This is the case of interest in our framework. Notice that the quantity in (7) 
might assume negative values and it is not lower-bounded in general. 
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where: 
  

 
 
is the differential entropy of the random variable x. Therefore, recalling that   
 
 
 

 
From this expression we conclude that when considering a simple network with one 
conditioning node and two children nodes, the cost function (7) is indeed equal to the 
negative co-information between the three random variables. The general definition of 
co-information of N random variables can be found in [10]: 
  
 

 
 
where Ej is the power set of j and qj is the M¨obius inversion function, defined as: 
  
 

 
 
and |Ej | is the cardinality of Ej . The co-information provides a measure of the total 
information content shared by all the random variables, unlike the conventional mutual 
information which includes all the information shared by the variables two at a time. 
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Therefore, the maximization of (7) is equivalent to seeking clusters whose nodes yield the 
largest (in absolute value) negative co-information. Equivalently: 

 

 
 

Notice that expression (12) is not altered if we exchange the variables x0, x1, or x2. Hence, 
it holds that: 

 
Thus, the information content of the sub-network does not change if we exchange one of 
the children nodes with the parent node. 
 
 
2.3. METHOD 
 
 When designing a practical implementation of the algorithm seeking clusters that 
maximize the cost function (7), certain issues must be taken into account: 
 
• A direct evaluation of the cost function (7) requires an estimate of the multi-variate 
probability density function (pdf) of the variables included in the cluster. Although for 
small dimensional problems methods for estimating directly the joint pdf have been 
developed [11], for higher dimensional problems the direct estimation of the pdf is 
usually not feasible. 
 
• The noise level in the data might significantly limit the number of parameters that can be 
learned with a certain degree of accuracy.  
 
• Current microarray experiments are affected by inherent limits in the number of 
expression samples that can be measured in a given interval of time. Hence, the sampling 
characteristics of any microarray assay are generally poor in the time-domain. This issue 
imposes a further limitation on the capability of estimating joint probability density 
functions. 
 
• For a sub-network of a given size, finding high values of the cost function (7) requires a 
search through all possible combinations of nodes chosen among the set of genes 
included in the experiment. We will show that such a number of combinations can be 
quite large if the parameters of the search algorithm are not chosen properly, quickly 
yielding an intractable computational cost. 

 
 



 

 36

 
 
 

Figure 2.2. Cluster of genes composed of L conditioning genes and M children nodes. 
This cluster represents the generic sub-network explored to identify conditional structure. 

 
 

A. Combinatorial Search Approach 
 
 The goal is to identify a list of sub-networks that yield large values of the cost 
function (7). Such a goal can be achieved by exhaustively selecting sub-networks (see 
Figure 2.2) consisting of all possible combinations of L genes as conditioning variables 
(which we will refer to as parent nodes), and all possible combinations of M genes among 
the remaining ones as conditioned variables (also known as children nodes), and by 
evaluating the corresponding value of the cost function (7). The cost of this combinatorial 
approach increases quite rapidly with the total number of genes assayed in the experiment, 
and it is a non-linear function of M and L. When a total number of N gene expression 
profiles are measured in the experiment, the total number of possible sub-networks with L 
parent nodes and M children nodes is given by the following expression: 

 

F
or example, when dealing with N = 2, 000 genes, a choice of L = 3 and M = 5 will result 
in 3.5 · 1023 possible combinations! In general, for small values of M and L, we have that:   
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Hence, unless a technique is devised that allows for efficient pruning of non-informative 
clusters, the problem will be computationally tractable only for very small values of M 
and L. In addition, as it will be discussed in more detail in the next section, for large 
values of M and L we will unavoidably incur the problem of having to estimate high-
dimensional multivariate statistics of the data, thus requiring a significantly large number 
of samples in order to get a robust estimate. These constraints clearly suggest that a 
simple framework in which a sub-network involving only three genes (one parent node 
and two children nodes) should be the subject of an initial investigation and validation of 
the proposed approach. From the symmetric expression of the cost function given in (12), 
it is possible to show that the computational complexity associated with evaluating the 
co-information content of each possible sub-network, when L = 1 and M = 2 simplifies 
as: 
 

 
 
 
for a total number of N genes assayed. As an example, when N = 2, 000, approximately 
8 · 109 possible combinations need to be considered, and the corresponding cost function 
evaluated. This kind of task can be completed in a reasonable amount of time by any 
modern off-the-shelf single-processor machine. It is also clear that the algorithm could be 
easily parallelized to run on clusters of processors, since the evaluation of the cost 
function for a given sub-network is an independent task. 
 
 
B. Evaluating the Co-information 
 
 The expression of the cost function given in (12) suggests that some kind of 
estimate of the multivariate joint probability density function of the three variables in the 
cluster is required in order to evaluate the corresponding entropies. However, considering 
that the typical experimental setting in DNA microarray assays results in a limited 
number of samples per gene, such poor sampling properties generally discourage the use 
of standard probability density function estimators such as parametric models or kernel 
methods. Therefore, in the design of a practical implementation of the principle (15), we 
opted for the use of a moment based approximation of the information theoretical 
quantities involved in the calculation of the cost function (the derivation of such an 
approximation is detailed in Appendix A). 
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2.4. RESULTS AND DISCUSSION 
 
 For a given microarray experiment all possible unique combinations of three 
genes are considered and the co-information is evaluated to assign a score to each such 
combination. The highest scoring clusters are recorded in order to be further evaluated. 
The actual software implementation includes a set of tools that are required in order to 
pre-process the expression data and perform a series of tasks which include pruning the 
set of genes according to a user defined criterion (e.g. their sample variance), correcting 
for outliers or accounting for missing values. 
 
 DNA microarray data is conventionally expressed as the logarithm (usually in 
base 10) of the ratio between the estimated expression level and a reference value. 
Therefore, a log-ratio value of zero indicates that the gene is expressed at levels close to 
the reference. For example, a reading of 0.3 or above is equivalent to at least a 2-fold 
increase in the transcription level. Equivalently, when the log-ratio level is −0.3 or less, 
the gene shows at least a 2-fold decrease in the expression level. 
 

Due to the small sample size available, the estimation of the set of conditional 
entropies is most efficiently accomplished by discretizing the expression levels of the 
parent node into three levels, according to whether the gene is down-regulated, close to 
the reference level (baseline), or up-regulated. The choice of the discretization levels is 
arbitrary and will, in general, affect the outcome of the exploratory analysis. Throughout 
our analysis, the default thresholds of −0.3 for down-regulation and 0.3 for up-
regulation were adopted. Such choice should not be considered as generally applicable 
but, rather, should be tailored to each specific dataset. In our case, the significance of a 
two-fold increase or decrease in the expression level was derived from the statistical 
analysis of the set of micro-array experiments reported in [8], which were used to 
validate the proposed exploratory method. 
 
A. Analysis of Saccharomyces cerevisiae Expression Data 
 

In order to evaluate the effectiveness of the proposed approach in unveiling 
hidden dependencies between gene transcription levels, we considered a dataset 
composed of several experiments involving whole-genome assays of the gene expression 
levels of the yeast S.cerevisiae. The data2 consists of a total of 6,152 genes with 173 
sample points per gene. Table 2.1 provides a basic listing of the experimental conditions. 
A detailed description of the actual experimental conditions can be found in [8]. The 
dataset comprises a variety of experimental conditions, including temperature induced 
shock, exposure to various chemicals, amino acid starvation, nitrogen depletion and so on. 
The resulting large oscillations in the expression levels of several genes ensure that the 
dataset m provides enough variability to allow the consistent detection of specific 
patterns, in a statistically meaningful way. A preliminary analysis of the dataset 
suggested the removal of the sample points 113–134, (cfr. Table 2.1), which were 
collected over a considerably larger span of time (few days vs. few hours for the other 
experiments). We observed that in such experiments several genes were characterized by 
a different expression pattern, most likely associated with the fact that the yeast cells had 
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reached a steady state and, as a consequence, the growth process had considerably 
decelerated. Therefore, such points were treated as outliers and were not included in our 
exploratory procedure. 
 
 
TABLE 2. 1 EXPERIMENTAL CONDITIONS AND CORRESPONDING NUMBER 
OF MEASUREMENTS FOR THE S.cerevisiae DATASET. 
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Figure 2.3. Co-expression pattern between the genes aad10 and adh6, when gene gpx2 is 
the conditioning node. The plot shows that when gpx2 is up-regulated, adh6 and aad10 
are in general positively correlated and above the reference level. On the other hand, 
when gpx2 is down-regulated, a negative pattern of correlation appears between adh6 and 
aad10. Such a conditional expression program could be explained by considering that 
gpx2 was found to be considerably under-expressed in those experiments involving a 
depletion in sources of nitrogen. Therefore, in such conditions the enzyme translated 
from adh6 lacks its primary activation mechanism, and its enzymatic role appears to be 
replaced by aad10. 
 
 
 
 Among all the possible triplets of genes whose score was evaluated, 3,124 
resulted in a value of the co-information measure that was above a pre-selected 
significance threshold. Note that such a threshold simply limits the number of significant 
clusters that are logged during the procedure, and it does not affect the algorithm for 
scoring the triplets. Typically, the significance threshold is selected above a pre-defined 
value simply to limit the size of the output file generated by the procedure. 
 
 A selection of the conditional interaction patterns that were identified by the 
algorithm are described in detail below. For each cluster of genes whose conditional co-
expression pattern appeared to be relevant, we evaluated separately the statistical 
significance of the co-information score by using the following procedure. For each 
conditioning node, we randomly permuted its sample points several times (at least 100 
million permutations), and re-evaluated the score of the selected triplet of genes by using 
the permuted version of the conditioning variable. A p-value expressing the statistical 
significance of the interaction is obtained by counting the number of times that the score 
obtained with the scrambled values is larger than the score obtained when using the 
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actual data. Such procedure is analogous to the bootstrapping approach for the 
computation of the statistical significance described in [12, Ch.16]. 
 

 
Figure 2.4. Co-expression pattern between the genes aad10 and adh6, when gene rot2 is 
the conditioning node. The expression levels of aad10 and adh6 switch from a positive to 
a negative correlation pattern when rot2 is under-expressed. 
 
 
 
 The cluster of genes resulting in the highest value of the co-information cost 
function included aad10 and adh6, which were found to be co-expressed conditionally on 
the expression levels of the genes rot2, alg7, and gpx2 (Figures 2.3, 2.4, and 2.5). aad10 
is a putative alcohol dehydrogenase, i.e. an enzyme involved in alcohol degradation. The 
product of adh6 is also an alcohol dehydrogenase, whose activity is NADPH dependent. 
Figure 2.3 shows that when gpx2 (a glutathione peroxidase induced during glucose 
starvation) is up-regulated, adh6 and aad10 are in general positively correlated and above 
the reference level. On the other hand, when gpx2 is down regulated, a negative pattern of 
correlation appears between adh6 and aad10. Such a conditional expression program 
could be explained by considering that gpx2 was found to be considerably under-
expressed in those experiments involving a depletion in sources of nitrogen. Therefore, in 
such conditions the enzyme translated from adh6 lacks its primary activation mechanism, 
and its enzymatic role appears to be replaced by aad10. Figures 2.4 and 2.55 show that 
the genes rot2 (involved in normal cell wall synthesis) and alg7 (responsible for protein 
glycosylation) also act as indicators of such alternative gene expression program, with 
their expression being repressed under the same conditions. 
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Figure 2.5. Co-expression pattern between the genes aad10 and adh6, when gene alg7 is 
the conditioning node. The expression levels of aad10 and adh6 switch from a positive to 
a negative correlation pattern when alg7 is under-expressed. 
 

 
 
Figure 2.6. Statistical significance of the conditional co-expression pattern. The plot 
shows a histogram of the co-information values obtained by scoring the triplet aad10, 
adh6, and gpx2, when the samples of the latter are randomly permuted. The score of the 
actual sub-network is also shown for reference. 
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 The conditional co-expression pattern involving gpx2, aad10 and adh6 was found 
to be significant at a p-value of less than 10−8. A histogram of the scores obtained by 
scrambling the values of the conditioning variable is shown in Figure 2.6, where the score 
obtained by using the actual sample points is also shown for comparison. Figure 2.7, 
shows the conditional co-expression pattern involving genes sul1, sam4, and cwp1. The 
gene sul1 is one of two major mediators (sul2 is the other one) of the sulfate transport 
pathway, being responsible for controlling the concentration of endogenous activated 
sulfate intermediates. Its activity is closely related to the one of sam4, the latter being 
involved in the metabolism of sulfur-containing aminoacids. The gene cwp1, is mainly 
involved in cell wall organization and biogenesis. sam4 and cwp1 appear to be in general 
negatively correlated, possibly due to the fact that their activity peaks in completely 
different stages of the yeast cell cycle. However, when sul1 is over-expressed (signaling 
an increase in the concentration of activated sulfate compounds), the two genes appear to 
be positively correlated as well as generally under-expressed. 
 
 The last example (briefly mentioned in the introduction) involves the genes gln3, 
vap1, and pph3. This case is of particular interest since it demonstrates the method’s 
capability of detecting certain types of regulatory interactions that could not be directly 
derived from simple correlation patterns. gln3 is a transcription factor responsible for the 
regulation of nitrogen utilization. Its product is generally inactive unless activated by the 
protein phosphatase translated from pph3. Figure 2.1(a) shows a scatter plot of gln3 vs. 
pph3: no pattern of co-expression appears when examining the expression profiles of 
these two genes. On the other hand, as it is shown in Figure 2.1(a), these genes are 
conditionally co-expressed. The plot shows that vap1 (whose product is an amino-acid 
transport protein) and pph3 are positively correlated, when gln3 is under-expressed or 
near the reference level. An up-regulation of gln3 results in the opposite correlation 
pattern for vap1 and pph3. This mechanism can be explained considering that most 
of the expression levels responsible for such pattern are relative to conditions of either 
nitrogen depletion or amino-acid starvation. In such conditions, the expression level of 
gln3 rapidly increases (concurrently with the level of its activator pph3), in order to 
repress the transcription of nitrogen demanding gene products. At the same time, vap1 is 
strongly down-regulated due to the fact the amino-acid transport mechanisms are 
significantly slower during this stage. 
 
 In general, not all significant patterns of conditional interaction detected by the 
algorithm carry a straightforward biological interpretation. This is most likely due to the 
fact that such patterns of conditional co-expression are often mediated by several factors 
that are not directly measurable. Moreover, it is often the case that conditionally 
informative clusters include one or more genes whose biological role is only partially 
known or completely unknown. Despite such limitations, the proposed framework 
provides a valuable tool to biologists, being capable of highlighting patterns of 
interaction whose biological significance can be elucidated through further experimental 
analysis. 
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Figure 2.7. Co-expression pattern between the genes sam4 and cwp1, when gene sul1 is 
the conditioning node. sam4 and cwp1 appear to be in general negatively correlated, 
possibly due to the fact that their activity peaks in opposite stages of the yeast cell cycle. 
However, when sul1 is over-expressed (signaling an increase in the concentration of 
activated sulfate compounds), the two genes appear to be positively correlated as well as 
generally under-expressed. 
 
 
2.5  CONCLUSIONS 
  
 We introduced a novel method capable of detecting linear as well as non-linear 
patterns of conditional co-expression in gene expression measurements. Due to the 
significant computational cost associated with the proposed exploratory method, the 
derivation of an efficient technique for evaluating the co-information score played a key 
role in order to make the method computationally tractable. We applied the method to a 
whole genome micro-array dataset of the yeast S. cerevisiae and were able to detect 
several statistically significant patterns of conditional interaction between genes. This 
result proves unquestionably that such patterns of conditional co-expression appear 
indeed very frequently in the data, and raises the very important question of whether a 
general biological model capable of explaining such interactions can be devised. 
 
 
 
 



 

 45

2.6 REFERENCES 
 
[1] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein,  Proc. Natl. Acad. Sci. USA, 
95:14863–14868, December 1998. 
 
[2] K.C. Kao, Y.-L. Yang, R. Boscolo, C. Sabatti, V.P. Roychowdhury, and J.C. Liao, 
Proceedings of the National Academy of Sciences (PNAS), 101(2):641–646, 2004. 
 
[3] J.C. Liao, R. Boscolo, Y.-L. Yang, L.M. Tran, C. Sabatti, and V.P. Roychowdhury, 
Proceedings of the National Academy of Sciences (PNAS), 100(26):15522–15527, 2003. 
 
[4] N. Friedman, I. Nachman, and D. Pe´er,  Proc. Fifteenth Conf. on Uncertainty in 
Artificial Intelligence (UAI), pages 206–215, San Francisco, 1999.  
 
[5] T. Hastie, R. Tibshirani, and J.H. Friedman,  The Elements of Statistical Learning. 
Springer Verlag, New York, 2001. 
 
[6] T. Kohonen, Biological Cybernetics, 43(1):59–69, 1982. 
 
[7] Ker-Chau Li, Proc. Natl. Acad. Sci. (PNAS) USA, 
99(26):16875–16880, December 2002. 
 
[8] A.P. Gash et al., Mol. Biol. Cell., 11:4241–4257, 2000. 
 
[9] T.M. Cover and J.A. Thomas,  Elements of Information Theory, John Wiley & Sons, 
1991. 
 
[10] A. J. Bell, Proc. 4th International Symposium on Independent Component Analysis 
and Blind Signal Separation (ICA2003), pages 921–926, Nara, Japan, April 2003. 
 
[11] B.W. Silverman, Chapman and Hall, New York, 1985. 
 
[12] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, 
1993. 
 



 

 46

Chapter 3:  A Software Package for cDNA Microarray Data 
Normalization and Assessing Confidence Intervals 
   

3. 1 Introduction 

The complimentary DNA, cDNA, microarray platform is a powerful 
molecular biology tool that can be used to monitor gene expression at a global level.  
Over the past few years, millions of data points have been generated using DNA 
microarray technology [1].  With this avalanche of information comes an increase in the 
complexity associated with its analysis.  Two areas that are greatly impacted by this 
increase in complexity are: 1) data confidence and 2) data interpretation. This article 
addresses the first issue.  

 
DNA microarray data are susceptible to many sources of systematic and 

random errors.  Researchers must employ proper analytical techniques to control for 
systematic errors and assess the extent of random errors.  Many of these techniques are 
rather cumbersome because of their complexity or lack of an intuitive user interface. Here, 
we will describe a software package, lcDNA (available from 
http://receptor.seas.ucla.edu/lcDNA), that is designed to assess the degree of confidence 
of microarray results. This program is specifically designed for use with two-channel 
arrays which utilize either spotted or in situ synthesized probes. lcDNA contains three 
core analytical components: i) data filtering, which removes outliers, ii) normalization 
between two channels, and iii) assessment of confidence intervals using a hierarchical 
Bayesian model to estimate the error distributions.  The detailed methodologies have 
been published previously [2]. lcDNA can generate gene-specific confidence intervals 
with biologically independent measurements and technical replication; however, to fully 
exploit lcDNA’s capabilities, calibration hybridizations should be incorporated into the 
experimental design. 

 
Here the term gene is used to indicate a unique cDNA transcript and the 

term spot indicates the location where a gene is tethered to the array surface.  In the case 
of replicate spotting, a given gene corresponds to multiple spots.  The terms slide, array, 
and microarray are used interchangeably. 
 

3.2 Sources of variations 

The DNA microarray platform is still some distance from technical 
perfection. There are a number of factors that can contribute to variation in the data.  See 
[3] for an overview of the sources of error in and analysis of cDNA microarray 
experiments. The variations can be roughly classified as spot-to-spot, slide-to-slide, and 
experiment-to-experiment variations [2, 4, 5].  To assess and control for these variations, 
spot, slide, and experimental replications are necessary. 

Spot-to-spot variation can result from differences in the print tips, surface 
imperfections, surface contamination or damage, and inhomogenous hybridization.  
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Probe replication for each gene on a slide followed by quality filtering will reduce noise 
due to spot-to-spot variation.  Slide-to-slide variation arises from slide manufacturing 
inconsistency, which is still a common problem for most spotted arrays. In order to 
account for this variation, it is necessary to perform technical replicates which are repeat 
hybridizations of the same labeled RNA mixture to different microarray slides (Fig. 3.1a).  
Experiment-to-experiment variation is meant to encompass biological variations, as well 
as procedural variations (error from sample processing).  Biological variations arise from 
fluctuations in the environment, cell history, and intrinsic noise in the cell.   Procedural 
variation is mainly due to labeling, which is a result of differences in the fluorescent 
properties of the dyes or incorporation efficiency.  Normalizing the data reduces the 
amount of such variation, at the single slide level.  Dye swapping (reverse labeling) 
should be used in replicate experiments to remove the variation arising from differences 
in dye properties.   

 

3.3 Experimental Design 

 To overcome the error arising from systematic and biologic variation, we 
recommend that replicate spots, technical replicates, and experimental replicates are 
included in the experimental design (Fig. 3.1a). Technical replicates are performed by 
hybridizing the same labeled DNA mixture to multiple slides. The same experiment is 
then replicated multiple times.  In addition, calibration hybridizations (Fig. 3.1b) are used 
to provide gene-specific prior information about slide-to-slide and culture-to-culture 
variations. In these experiments, the same RNA pool is divided into two aliquots, which 
are used to generate Cy3- or Cy5-labeled cDNA pools. The two labeled cDNA pools are 
mixed and then hybridized to two different slides. Since the two channels come from the 
same RNA pool, the variation between the slides and experiments can be readily 
identified.  Such calibration experiments should be conducted under representative 
conditions where most of the genes of interests yield a signal. If no single condition fits 
this criterion, a mixture of RNA produced under different conditions can be used.   
 
  Once the calibration experiments are performed, the information could be used for 
all experiments subsequently, as long as slide-to-slide variation and experiment-to-
experiment variation remain unchanged.  Incorporation of calibration hybridizations into 
the experimental design increases the confidence level and the number of differentially 
expressed genes that are categorized as statistically significant.  
   

3.4 Analytical Functions 

 The program contains three core analytical functions: 1) data filtering, 2) 
normalization, and 3) assessment of gene-specific confidence intervals.  An overview of 
the functions is presented below.  The data that is entered into lcDNA must be stored in 
text tab-delimited files that contain the following five columns: channel 1 intensity, 
channel 2 intensity, gene ID number, gene number, and gene name.  Here, we use the 
tutorial data that are provided with lcDNA to illustrate some of the key features of the 
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program.  These data were generated using in-house E. coli genome chips printed on 
Corning GAPS microarray slides.  Unless otherwise specified, the samples were labeled 
with the aminoallyl technique. 
 

3.5 Data Filtering 

 Eliminate Extremes: This function rejects all spots that contain an intensity outside of a 
user specified range.  The main purpose of this function is to eliminate the spots that 
contain values near the upper and lower limits of the measurable intensities. If cDNA 
microarray images are 16-bit the upper bound should be less than 65535 (216-1).  The 
lower bound is the user-defined background level, typically generated from negative 
control spots. 
 

 
Figure 3.1.  Components of the cDNA microarray experimental design supported by 
lcDNA.  A and B are used to denote different sets of RNA, and Cy3 and Cy5 denote the 
commonly used fluorophores of the same names.   (a) Technical replicates are repeat 
hybridizations of the same labeled RNA mixture to different microarray slides.  They are 
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used to account for slide-to-slide variation.  In most cases, two microarray slides per 
biologically independent measurement provide sufficient information about the variation.  
(c) Calibration hybridizations are performed by dividing a pool of RNA into two aliquots, 
labeling each aliquot with a separate fluorophore, mixing the labeled aliquots, and 
hybridizing the mixture to two or more microarray slides.  Calibration hybridizations 
provide information about the effects of intrinsic and environmental factors on variations in gene 
expression levels.  
 
 
1. Quality Filtering:  A number of non-uniform errors can occur on the microarray 
surface.  Some of the common sources of error include contamination by airborne 
particles, non-uniform printing, inhomogeneous hybridization, and surface damage.  One 
method that is used to overcome these errors is printing multiple copies of each gene on 
the array and then comparing the measurements from the replicate spots.  Because these 
problems are usually localized to a sector on the array, it is best to print the replicate 
spots in separate quadrants.   In lcDNA, the coefficient of variation of a gene’s intensity 
ratios between the two channels is used as the quality index (QI).   For each gene, lcDNA 
calculates the QI and the average signal intensity across spots and dyes.  lcDNA then 
ranks the genes by their average signal intensity.  Next, lcDNA assigns each gene to a 
group that contains a specified number of genes with the closest mean rank (default of 
50) and rejects the gene if its QI exceeds a certain percentile (default of 90).  A quality 
plot with cutoff lines for various percentiles is shown in Fig. 3.2a, where the QI for each 
gene is plotted against the genes average intensity across all channels and spots.  Low 
intensity spots are more likely to have a low quality index.  This phenomenon occurs 
because weak signals are more strongly impacted by small fluctuations than strong 
signals.   
 
 
3.6 Normalization   

 Normalization is required to remove systematic variation from the intensity 
readings.  A significant source of variation arises from differences in dye properties, such 
as incorporation efficiency, quantum yield, and stability.   Two common normalization 
techniques are total intensity and invariant set. 
 
1. Total Intensity (TI):  In this technique, the signal (S), from each channel, for each of 
the n spots on the array is divided by the sum of the signal intensities for the respective 
channel.   

∑
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i
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SS
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~       (1) 

The underlying assumption for this method is that each cell, regardless of the 
experimental condition, has the same total amount of mRNA.  If a gene in a test sample is 
expressed at a greater level than in a reference sample then at least one of the other genes 
must be expressed at a lower level in the test sample, relative to the reference sample. 
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Since this technique is linear, and researchers have shown that the systematic variation 
can be highly nonlinear [2, 4, 5], a nonlinear normalization technique may be better 
suited for microarray data.  
 

2. Rank Invariant (RI): Although there is no clear consensus on which nonlinear 
normalization technique is the best, a number of researchers have recognized that the 
information provided by non-differentially expressed genes (invariant set) can be used to 
normalize the data [2, 4]. In this case, we assume that a set of genes is expressed at the 
same level in all samples and then use this set as a basis for normalization.  lcDNA uses 
the RI method described in [2] to determine which genes  belong to the invariant set.  In 
the RI method, each gene is assigned two ranks (one for each signal channel; ri,1 and ri,2); 
in the case of replicate spotting the ranks are based on the average intensity.  Next, the 
difference (di = |ri,1 – ri,2|) between the two ranks  is calculated.  If the difference is less 
than a user specified maximum distance then the spot is considered invariant.  When the 
number of expressed genes is large (>2000), lcDNA can perform an iterative version of 
the RI method to select a more conserved set of genes.  After finding the invariant genes, 
lcDNA uses the Lowess procedure [7] to fit a normalization curve to the data.  
 

Comparison of TI and RI:  Because the systematic variation can be nonlinear, the RI 
method should be superior to the TI method.  The expression data often contains a 
number of nonlinearities. In Fig. 3a, we present an MA plot of low quality data.  An MA 
plot is a plot of each spot’s log10 intensity ratio (M) versus its average log10 intensity (A) 
across the two channels.  When dealing with expression data containing nonlinearities, RI 
normalization outperforms TI normalization (Fig. 3.3b).  In Fig. 3.3a, for A greater than 5 
the raw data is biased towards positive log10 ratios; while, for A less than 5 the bias is 
towards negative ratios.  Instead of correcting the bias, TI normalization shifts the bias 
towards negative log10 ratios (Fig. 3.3b).  Application of RI normalization removes this 
bias and shifts the center of the distribution to 0.  However, not all expression data is 
strongly affected by nonlinear sources of error (Fig. 3.3c); if this is the case then the gain 
in performance by using a nonlinear normalization technique (RI) is not always 
substantial (Fig. 3d). 
 
 
3.7 Assessment of Gene-Specific Confidence Intervals 

Gene expression profiles are influenced by biological, environmental, and operational 
factors that vary from experiment to experiment.  In order to realize an estimate of 
expression ratios, it is necessary to design the experiment and subsequent analytical 
procedures to account for sample-to-sample variations.  lcDNA employs the hierarchical 
Bayesian model developed by [2] to account for these variations and estimate confidence 
intervals for cDNA microarray data.  
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Figure 3.2.  Quality filtering removes genes that exhibit a high intra-slide variability. Quality 

index (coefficient of variation of a gene’s log10 intensity ratios) is plotted against the genes 

average signal intensity across the two channels on that particular slide for the data from lcDNA  

 

3.8 The model 

The variations in microarray data are described using the following hierarchical 
model (Tseng et al. 2000) 

),(~ 2
ggegse Ny τμ        (2) 

 ),(~ 2
ggge N σθμ            (3) 

Here gsey  is the normalized log10-ratio of gene g, slide s, and experiment e. As described 
above, gsey  is affected by the slide-effect and uncontrollable variation between biological 
samples. For each biological sample, gsey  is a sampling from a normal distribution of 
slide effect within the same sample, (2). geμ  is the mean from tutorial slide R1S1.  The 
quality curves were generated using a window size of 50 and percentiles of 90 (____), 95 (- - -), 
and 98 (· · ·), and different slides within this sample. 2

gτ  is the slide-to-slide variance for 
gene g. The within-experiment mean, geμ , is in turn a sampling from a normal 
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distribution of biological variation with a mean gθ which measures the true log-fold-

change of gene g and variance 2
gσ  which is the variance between samples. Note that 

only gsey ’s are observed data while 2
gτ , 2

gσ , and gθ  are unobserved parameters.  
 
Under this model, gθ  is the unknown parameter of interest and the derived 

posterior distribution of gθ  is used to assess the expression level of gene g. If gene g is 
non-differentially expressed, then gθ  is distributed around 0. In general, to declare a gene 
differentially expressed means that gsey ’s deviate from 0 in the same direction and that 

the deviations are large compared to the magnitude of the posterior distribution of 2
gτ , 

2
gσ .  

 
We use a Bayesian approach to incorporate prior knowledge generated from 

calibration experiments into the statistical analysis. The calibration experiments are used 
to construct prior distributions of unobserved parameters. The posterior distribution of the 
desired parameters is then computed to represent the combined inference of the 
parameters from the observed data and prior distribution. Since the posterior distributions 
of the parameters do not have closed form solution, a Markov chain Monte Carlo method 
(MCMC) is used to simulate the desired posterior distributions. 

 
 The minimal experimental design that this model can use to make sound estimates 

of expression ratio confidence intervals consists of two biologically independent 
measurements with technical replicates (Fig. 4a).  Addition of two sets of calibration 
hybridizations, with technical replicates, will shorten the CIs (Fig. 3.4b).  The yield of 
differentially regulated genes, at a 95% confidence level, increased from ~100 to over 
1700 when the calibration hybridizations were incorporated into the analysis.  Although 
operation of the current version (0.03) of lcDNA without technical replicates will not 
provide sound confidence interval estimates, the output will follow the same trend as that 
from experiments with technical replicates and could be useful as an exploratory exercise.    

 

3.9 Discussion 

Depending on the design of the experiment, the minimum number of 
biologically independent measurements that must be performed has been estimated to 
range from 6 to 25 [8].  Because of the high cost of microarray experiments, and a 
potentially limited availability of samples, models have been developed to estimate gene-
specific confidence intervals [2, 4] when only a small number of samples are present.  
lcDNA employs the hierarchical Bayesian model described in [2] to estimate gene-
specific confidence intervals.    

 
With this error estimation model it is possible to construct confidence 

intervals for experimental designs that include biological and technical repeats (Fig. 3.4a).  
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If calibration hybridizations are utilized the confidence intervals will be shortened (Fig. 
4b) and the yield of differentially regulated genes increases.  For the data used here, the 
number of differentially regulated genes increased from ~100 to ~1700.  The minimum 
number of arrays that are required to fully utilize the error estimation model is 8 (2 
biological replicates and 2 calibration hybridizations, with a technical replicate for each.).  
When performing a time course study, or repeatedly using the same strain or cell line, the 
number of required arrays can be reduced by recycling the calibration hybridization 
information.  Because the calibration hybridizations provide prior information about 
slide-to-slide and experiment-to-experiment variations, these data can be used as long as 
the same batch of slides and similar experimental conditions are used.  

 
Figure 3.3  MA plots provide information about the type of normalization strategy that 
should be used for the data.  For each spot, M = log10 (Channel 2/Channel 1), A= ½log10 
(Channel 1*Channel 2).  (a) and (b) show the MA plot and the probability density of M 
for a low quality slide before and after normalization. Because the un-normalized data (· · 
·) from (a) contains nonlinear characteristics, rank invariant normalization (____) 
outperforms total intensity normalization (- - -).  (c) and (d) show the MA plot and the 
probability density of M for slide R1S1 from the tutorial data   The un-normalized data 
from (c) does not contain any significant nonlinear features, hence, the difference 
between rank invariant and total intensity normalization is not large.  The data presented 
in panels (a) and (b) are from an experiment performed using the direct labeling approach, 
whereas data in (c) and (d) are from an experiment performed using the aminoallyl 
labeling method. 
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If one suspects that biological noise increased significantly in a different set of conditions, 
new calibration hybridizations should be performed. If the same calibration data are used 
then the minimum number of slides required for a series of n different experiments is 
(4+4n). 

 

 
Figure  3.4.  (a) 95 % confidence intervals of the log10 expression ratios for a set of two 
biologically independent measurements with technical replicates (tutorial slides: R1S1 and R1S2; 
R2S1 and R2S2).  (b) Incorporation of a set of two biologically independent calibration 
hybridizations (tutorial slides: C1S1 and C1S2; C2S1 and C2S2) shortens the confidence 
intervals.  
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In addition to estimating confidence levels, lcDNA contains tools for data filtering, 

normalization across two channels, and data visualization.  The Quality Filtering function 
can be used to reduce the amount of error arising from non-uniform errors on the slide 
surface.  After the filtering is complete, the data can be visualized with an MA plot.  If 
the data appear to contain an anomaly, such as the straight edge on the upper left side of 
Fig. 3a, then the filtering stringency should be increased, by decreasing the percentile, or 
the array should be discarded.  Another way to visually assess the quality of the data is to 
plot the normalized log10 ratios obtained from one slide against its technical and 
biological replicates.  If the measurements were perfect replicas then all points would fall 
on the 45 degree line.  Perfection, however, is not within our grasp and the data will 
exhibit some degree of scatter.  If the data appears to strongly deviate from the 45 degree 
line then one, or both, of the slides should be discarded. 

 
Since the early development of the cDNA microarray, this technology has been 

evolving, [9].  Improvements have been made in the quality of array surfaces, probe 
quantification, and labeling and hybridization technologies.  Eventually, the array 
fabrication and experimental protocols will reach a state where the operational variations 
will be dominated by biological variations.  Once the technology matures to this point, it 
will no longer be necessary to include technical replicates in the experimental design.  In 
order to prepare for this occurrence, we are in the process of augmenting lcDNA with the 
ability to make statistically sound estimates in the absence of technical replicates. 

 

3.10 Methods 

 lcDNA is an open source program for analyzing cDNA microarray data.  The 
lcDNA user interface was designed using the Tcl/Tk package (www.tcl.tk), version 8.4, 
with the BLT (http://sourceforge.net/projects/blt/), version 2.4z, and [incr Tcl] 
(http://incrtcl.sourceforge.net), version 3.2, extensions.  BLT provides advanced data 
handling and graphical representation functions.  [Incr Tcl] provides object-oriented 
programming capabilities.  The computationally intense portions of the code were written 
in C and C++ and embedded into the Tcl code using mktclapp 
(http://www.hwaci.com/sw/mktclapp/).  Standalone executables are available for the 
Microsoft Windows and GNU/Linux platforms (http://receptor.seas.ucla.edu/lcDNA/) 
running on Intel x86 compatible computers.  The computational portions (quality filtering, 
normalization, and assess expression) of lcDNA are part of the DARPA BioSPICE 
program (www.biospice.org).  The source code can be downloaded at the lcDNA website.  
The current version (0.03) has been developed with support from DARPA BioComp and 
is distributed under the DARPA BioCOMP OPEN SOURCE LICENSE version 1.0 
(www.biospice.org). 
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