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1. Introduction 

When a high-speed projectile hits a brittle material like glass or ceramic, severe fragmentation 
can be observed, preceding the penetration of the projectile.  Several types of glass (1, 2) ceramic 
(3), and a glass-ceramic (4) have already been studied at Ernst-Mach-Institut (EMI) by means of 
the edge-on impact test. 

Fused silica and aluminum oxynitride (AlON) are materials being considered for a variety of 
transparent armor, sensor window, and radome applications.  AlON is a polycrystalline ceramic 
that fulfills the requirements of transparency and requisite mechanical properties for transparent 
armor against armor-piercing ammunition (5).  AlON has a cubic crystal structure (Fd3m) that 
can be processed to transparency in a polycrystalline microstructure.  It differs from glasses 
which do not have any periodic crystalline order, but is akin to polycrystalline opaque ceramics 
such as aluminum oxide. 

In the current study, two different optical configurations were employed.  A regular transmitted 
light shadowgraph set-up was used to observe wave and damage propagation and a modified 
configuration, where the specimens were placed between crossed polarizers and the photo-elastic 
effect was utilized to visualize the stress waves.  Pairs of impact tests at approximately 
equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized 
light.  AlON and fused silica specimens were impacted using solid cylinder steel projectiles with 
velocities ranging from 270 to 925 m/s.  The nucleation of crack centers was observed ahead of 
the apparent fracture front, growing from the impacted edge of the specimens.  A comparison of 
the shadowgraphs to photographs recorded in a reflected light configuration with a coated AlON 
specimen at the same impact conditions indicated fracture nucleation in the interior of the 
ceramic. 

2. Statement of Work 

2.1  Results With Fused Silica 

The optical configurations and the experimental results have been described and discussed in 
detail in the first and second interim reports (6, 7) and in a publication at the 22nd International 
Symposium on Ballistics (8).  Therefore, only a short summary and discussion of the results is 
given here. 
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The tests were performed as one single shot at 125 m/s and three pairs of shots at nominal impact 
velocities of 150, 250, and 350 m/s.  With each pair of shots one test was conducted in the 
regular shadowgraph configuration and the other test with additional crossed polarizers.  The test 
matrix is given in table 1.  The last two columns list the time intervals between the photographs. 
In each test, 20 photographs were recorded. 

Table 1.  Tests with fused silica. 

Test No. Impact Vel. 
(m/s) 

Set-up Time Intervals 
 

14885 125 No polarizers 1-16: 1 µs 16-20: 2 µs 
14880 155 No polarizers 1-16: 1 µs 16-20: 2 µs 
14881 ≈150 Crossed polarizers 1-16: 1 µs 16-20: 2 µs 
14891 ≈260 No polarizers 1-20: 1 µs — 
14893 262 Crossed polarizers 1-20: 1 µs — 
14877 350 Crossed polarizers 1-13: 1 µs 13-20: 2 µs 
14878 348 No polarizers 1-13: 1 µs 13-20: 2 µs 

 
The velocities specified with test nos. 14881 and 14891 were estimated on the basis of the 
thickness of the aluminium diaphragm used in the gas gun.  Due to the high reproducibility 
observed it can be assumed that the impact velocity in those tests was within a range of ±10 m/s 
around the impact velocity of the other test with the same diaphragm thickness. 

Figure 1 shows eight shadowgraphs and the corresponding crossed polarizers photographs of two 
tests conducted at 350 m/s.  Note that damage appears dark on the shadowgraphs and the zones 
with stress birefringence are exhibited as bright zones in the crossed polarizers photographs.  The 
shadowgraphs and crossed polarizers photographs are aligned one below the other, allowing for a 
direct comparison.  The time of each pair of photographs is denoted in the crossed polarizers 
photographs.  The moment of impact (t = 0 µs) was determined by means of a short circuit 
between two trigger foils at the impact edge of the specimens, generated by the projectile. 

On the shadowgraphs it can be seen that damage starts first where the edge of the projectile 
impacts the specimen.  Triangularly shaped damage zones spread towards the upper and lower 
edge of the specimen.  The photographs also show the rapid growth of separated, damage zones 
ahead of the projectile, seemingly due to crack nucleation and growth apparently created by the 
stress wave interaction with pre-existing processing defects or structural inhomogenieties in the 
fused silica.  The stress waves itself exhibits a relatively plane front in the centre and a curved 
shape outwards. 

Unlike the shadowgraphs, in the crossed polarizers pictures an approximately semicircular wave 
front can be recognized, which is further advanced compared to the front visible in the 
shadowgraphs at the same time.  However, the stress wave is not as clearly defined (especially in 
the center) as the actual damage front in the shadowgraphs.  The vertical lines in some pairs of 
photographs indicate the position of the wave front in the crossed polarizers view.
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Figure 1.  Test no. 14877-78:  Selection of eight shadowgraphs and corresponding crossed polarizers 
photographs from impact on fused silica at 350 m/s. 

The photographs taken with the two different recording techniques reveal different processes.  In 
the crossed polarizers arrangement, those zones of the specimen are visible, where the stresses 
are high enough to cause birefringence, so that enough light passes through in order to expose 
the film.  Basically, in the crossed polarized light configuration, the stress field is visualized 
because of stress induced birefringence—i.e., the photoelastic effect.  In the regular shadowgraph 
arrangement, those zones of the specimen appear dark, where the material is either damaged or 
fractured and therefore blocking light transmission or where the light is absorbed more strongly 
due to a pressure induced change in refractive index. 
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The quantitative results for wave and damage/fracture velocities are presented in table 2.  
Considering the wave front velocities, determined with both optical set-ups, the same 
observation was made at all impact velocities:  the wave front was further advanced in the 
crossed polarizers view (see figure 1), but the wave velocity was lower compared to the waves 
observed in the shadowgraphs (see table 2).   

Table 2.  Compilation of measured wave, crack, and damage velocities in fused silica. 

Impact Velocity vP Set-up m/s 150 260 350 

Long. wave speed Shadowgraphs  m/s 5975 6076 5823 

Long. wave speed Crossed polarizers  m/s 5814 5796 5491 

Trans. wave speed Shadowgraphs  m/s — 3500 3670 

Crack velocity Shadowgraphs m/s 2234 2149 2120 

Damage velocity Shadowgraphs  m/s 5641 5728 5121 

 
The correct interpretation of the results requires an understanding of the dependence of the 
deflection of light on the loading of the specimens.  In order to distinguish between light 
deflections caused by surface deformation and deflections caused by changes of the refractive 
index, a reflection Schlieren set-up was devised at EMI by H. Vollkommer (9) in which glass 
plates were loaded at one edge by a wire explosion.  The upper half of the glass specimen was 
coated with a reflective layer at the front surface and the lower half was similarly coated at the 
back surface.  The tests demonstrated that, in the zone of the longitudinal waves, surface 
deformation is irrelevant, while the refractive index changes dominate, whereas behind the 
transversal wave front, light deflection through surface deformation is the dominant effect.  In a 
shadowgraph image the light intensity depends on the second spatial derivative ∂2n/∂x2 of the 
refractive index (10).  When the photo-elastic behavior of a material is known the amplitudes of 
the pressure pulses can be determined.  Beinert (11) developed a method to calibrate a Schlieren 
set-up and measured the amplitude and shape of pressure pulses in glass plates generated by wire 
explosions at one edge. 

In the present study neither the shapes of the pressure pulses are known, nor whether the pulse 
shapes change during propagation in the edge-on impacted plates.  However, the amplitude and 
shape of pressure pulses determine where the change in density, and therefore in the refractive 
index, is strong enough to cause a deflection of light that can be detected with the optical set-up 
used.  The sequence of events along the pressure pulse/wave may be assumed to be as follows: 
rising pressure induces a density increase causing a linear change in refractive index until a 
pressure is reached when the glass becomes birefringent.  The glass continues to densify until the 
structure collapses and irreversible damage begins to form.  If the pressure pulse amplitude and 
shape did not change it could be expected that the same propagation velocity were observed with 
the shadowgraph and the crossed polarizers arrangement.  Due to the specimen geometry a 
sequence of pressure pulses is formed, caused by partial reflections of the first pulse at the 
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surfaces and by the reflection of the transversal waves which are drawn along the surfaces.  This 
phenomenon was also observed and described with the edge-on impact tests in different types of 
glass (12).  Beinert demonstrated that energy is continuously transferred from the first pressure 
pulse to the next one and therefore the amplitude decreases steadily.  The decreasing amplitude 
together with the shape of the pulses could explain the seemingly different velocities, since it can 
be assumed that the sensitivity of the two optical set-ups is different.  Analysis of these results 
and interpretations are still on going.  

2.2  Results With AlON 

AlON specimens of 10-mm thickness and two specimens of 25-mm thickness with lateral 
dimensions 100 × 100 mm were delivered for impact testing to EMI.  The flat surfaces of the 
specimens and all the edges were polished in order to enable observation with high-speed 
cameras from all directions.  However, it turned out that due to light scattering it was not 
possible to get a clear view through a thickness of 100 mm (from edge to edge).  Therefore, the 
pictures recorded with the top view camera did not show any details of the damage progression 
inside the specimens.  Those pictures could be used to control the impact position of the 
projectile, especially in the tests where the powder gun was used, so that the projectile hit the 
specimen after a free flight over a distance of 170 cm.   

The tests with AlON were conducted in the velocity range from 250 to 950 m/s.  The test matrix 
is given in table 3.  As with the fused silica, the tests with AlON were performed in pairs of  
shots at the same nominal velocity, whereas one test was conducted in the shadowgraph 
configuration and the other test with the crossed polarizers set-up.  The nominal impact 
velocities were 270, 380, 600, and 850 m/s. 

Table 3.  Test matrix with AlON. 

Test No. Impact Vel. 
(m/s) 

Set-up Cameras Time Intervals 
 

14894 278 No polarizers 2 1-20: 0.5 µs — 
14895 270 Cr. polarizers 2 1-20: 0.5 µs — 
14897 381 No polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14898 368 Cr. polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14906 820 No polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14907 925 Cr. polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14908 588 No polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14909 664 Cr. polarizers 2 1-18: 0.5 µs 18-20: 1 µs 
14923 390 No polarizers 

inhomog. spec.a 
2 1-16: 0.5 µs 16-20: 1 µs 

14924 385 No polarizers 
spec. with defect

2 1-16: 0.5 µs 16-20: 1 µs 

14925 385 No polarizers 
25-mm specimen

2 1-16: 0.5 µs 16-20: 1 µs 

14940 397 No polarizers 
reflected light 

1 1-20: 0.5 µs — 

aInhomogeneous specimen. 
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The results with test nos. 14894, –895, –897, –898, and 14940 were described and analyzed in 
the second interim report and partly published at the 22nd International Symposium on Ballistics 
(13). Therefore, this report focuses on the analysis of the EOI-tests at high impact velocities 
(14906–14909), tests with specimens with inhomogenieties (14923, 14924), and a test with a 
specimen of 25-mm thickness. 

2.2.1  Tests at High-Impact Velocities 

In order to achieve impact velocities between 400 and 950 m/s, a 30-mm powder gun with a 
rifled barrel had to be used for the acceleration of the projectiles.  Due to the muzzle flash and 
the fumes the specimens could not be placed in a short distance to the muzzle.  In those cases the 
distance between the muzzle and the specimens was 170 cm.  The use of the powder gun and the 
type of projectile (steel cylinder with steel guidance band for transfer of twist) caused a relatively 
high scatter in the muzzle velocity. 

2.2.1.1  Test Nos. 14906/14907; vP = 820/925 m/s.  Figure 2 shows a selection of four 
shadowgraphs and the corresponding crossed polarizers photographs at impact velocities of  
820 and 925 m/s, respectively. 

 

 

Figure 2.  Selection of four shadowgraphs and corresponding crossed polarizers photographs from impact on AlON. 

The series of high-speed photographs shows rapidly growing darkened to opaque regions, which 
reflect changes in the optical transmission due to pressure induced refractive index changes, 
damaged and fractured zones within the specimen.  In addition, the nucleation of crack centers 
ahead of the crack front is clearly visible 6.2 and 8.2 µs after impact.  In contrast to the 
shadowgraphs, where a wave front is not clearly discernable, the crossed polarizers configuration 
reveals an approximately semicircular wave front which is a little further advanced compared to 
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the damage front visible in the shadowgraphs at the same time. The complete series of 
photographs are shown in the appendix (figures A-1 and A-2). 

Figure 3 illustrates path-time data of wave and damage/fracture propagation for the two tests. 
The data of the wave propagation, determined from the crossed polarizers test, are represented by 
the red filled circles. Two linear regions with different slopes can be distinguished. 
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Figure 3.  Path-time data of wave and fracture propagation at impact velocities of 820 and 925 m/s. 

Linear regression of the data from 1.2 to 4.2 µs yields an average wave speed of 10,438 m/s, 
which approximately corresponds to the longitudinal wave speed of 10,300 m/s determined by 
means of ultrasonic wave measurements.  Between 4 and 5 µs after impact, a deceleration of the 
wave speed seems to occur, whereas after 5 µs a linear section is observed again.  Linear 
regression of that part of the data yields an average wave speed of 9315 m/s.  The phenomenon 
of an apparent deceleration, followed by another linear section, was already observed more 
distinctly in AlON with the damage front in the tests at lower impact velocities (7).  This optical 
effect was denoted birefringence shift and was attributed to the stress induced birefringence.  
However, it is not clear yet why a change in the average wave speed is observed.  The complete 
series of high-speed photographs from the crossed polarizers set-up (see figure A-2) shows that 
during the first 4.2 µs, the stress wave front, which appears bright on the photographs, is not 
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visible in the centre.  From picture no. 9 (4.7 µs), the stress wave front forms a coherent bright 
zone.  This suggests a correlation between the appearance of the stress wave front and the 
measured velocity.  In the tests at lower impact velocities a coherent stress wave front was 
visible in nearly all the photographs and split-up in sections with different slopes was not 
observed.  The major difference between the high and low velocity tests, with respect to the 
impact conditions, is the accuracy.  The projectile is still guided in the barrel of the gas gun for 
impact velocities below 450 m/s, whereas the free flight distance of 170 cm at high impact 
velocities allows yawing of the projectile and an off-set from the axis through the gun barrel and 
the specimen.  This is illustrated in figure 4, which shows a top view of the impacted specimen 
from test nos. 14906 and 14909. 

  
(a) (b) 

 

Figure 4.  (a) Test no. 14906, top view, t = 0.7 µs and (b) test no. 14909, top view, t = 0.7 µs. 

As the side-view photographs of test no. 14906 show (figure A-1), yaw of the projectile in the 
vertical plane (parallel to the 100 mm-square surfaces) results in an asymmetric formation of the 
damage front.  Yaw in the horizontal plane, perpendicular to the 100-mm square surfaces, also 
strongly affects wave propagation in the specimen.  Since the thickness of the specimen is only 
10 mm, yaw of the projectile can cause a multitude of reflections and superposition of waves, 
which can affect the stress states and the visibility of the stress wave front. 

Considering the velocity of the coherent damage front, which grew at an average velocity of 
8204 m/s, no significant differences to the low velocity impact tests were observed.  The number 
of crack centers ahead of the coherent fracture front was not significantly higher with the high 
impact velocity.  The damage velocity, determined by linear regression through the nucleation 
sites of the crack centers, was 9145 m/s (dashed line, figure 3). 

2.2.1.2  Test Nos. 14908/14909; vP = 588/664 m/s.  Figure 5 shows a selection of four 
shadowgraphs and the corresponding crossed polarizers photographs at impact velocities of 588 
and 664 m/s, respectively.  The complete series of photographs are shown in the appendix 
(figures A-3 and A-4). 
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Figure 5.  Selection of four shadowgraphs and corresponding crossed polarizers photographs from impact on AlON. 

Considering fracture formation, the high-speed photographs basically show the same 
characteristics as observed at other impact velocities.  The positions of the wave front, fracture 
front, and the crack centers are plotted vs. time in figure 6.  The average velocity of the coherent 
fracture front was 8413 m/s.  The development of five crack centers could be observed and linear 
regression through the nucleation points yields a damage velocity of 8976 m/s. 
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Figure 6.  Path-time data of wave and fracture propagation at impact velocities of 588 and 664 m/s. 



 

 10

As observed in test no. 14907, sections with different slopes (wave velocities) can be 
distinguished.  The most obvious change is again observed at about 4 µs.  However, in this test a 
lower wave propagation velocity (8968 m/s) is observed before 4 µs and a higher velocity 
(10,925 m/s) after 4 µs.  The most striking feature of the wave position data during the first 
microseconds is the high off-set. In order to reach the measured positions the wave velocity 
would have to be unrealistically high during the first microsecond after impact.  Therefore, it 
appears more plausible that the off-set is either due to birefringence shift or to a delayed trigger 
signal, caused by a slightly inclined impact of the projectile as can be seen from the top view 
photograph in figure 4(b). 

2.2.2  Tests With Inhomogeneous Specimens 

An optical inspection of the specimens between crossed polarizers on a light box revealed 
inhomogenieties of the material in some cases.  Figure 7 shows a specimen of 10-mm thickness 
on a light box with one sheet polarizer under the specimen (left) and between two crossed 
polarizers (right).  The picture with the crossed polarizers reveals four zones where light passes 
through the specimen, arranged symmetrically like four petals of a blossom, directed towards the 
corners of the AlON specimen.  This phenomenon was observed clearly with both specimens of 
25-mm thickness, with two specimens of 10-mm thickness, and it could be seen faintly with a 
few other specimens.  It is assumed that it is connected to internal stresses due to an 
inhomogeneous temperature distribution in the furnace during sintering and cooling. 

 

  
 

Figure 7.  Specimen with inhomogenieties on a light box with one polarizer 
beneath (left) and between crossed polarizers (right). 

One specimen with inhomogenieties as just described was tested at 390 m/s in a shadowgraph 
configuration.  Figure 8 shows a selection of eight photographs from this test.  The complete 
series of photographs is presented in figure A-5 of the appendix. 

The photographs illustrate that no influence of the inhomogenieties on fracture formation was 
found.  The same phenomena and a fracture front velocity of the same order of magnitude as in 
other tests at similar conditions were observed.  This is demonstrated by the path-time histories 
plotted in figure 9.  The front that was observed during the first 4 µs propagated at an average  
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Figure 8.  Selection of eight shadowgraphs from impact on inhomogeneous AlON specimen, test no. 14923,  
vP = 390 m/s. 
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Figure 9.  Path-time data of wave and fracture propagation in inhomogeneous specimen (internal stress), 
impacted at 390 m/s. 
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velocity of 10,589 m/s, which corresponds to the longitudinal wave velocity.  The average speed 
of the coherent fracture front was 8934 m/s.  Considering the crack centers ahead of the coherent 
fracture front, a damage velocity of 9054 m/s could be determined. 

One AlON specimen of 10-mm thickness contained a flaw that was visible to the naked eye.  It 
was not possible to determine the nature of the flaw, but from its appearance it could be 
concluded that it was either a small bubble or inclusion in the interior of the tile.  However, the 
flaw was not visible in the high-speed photographs.  The specimen was also tested at an impact 
velocity of ≈ 400 m/s.  Figure 10 shows a selection of eight photographs from this test.  The 
complete series of photographs is presented in figure A-6 of the appendix. 

 

 

Figure 10.  Selection of eight shadowgraphs from impact on inhomogeneous AlON specimen, test no. 14924,  
vP = 385 m/s. 

From the view of the camera the position of the flaw was in the upper left quadrant of the 
specimen.  It was expected that the flaw might act as a nucleation site for damage on the arrival 
of the stress wave.  The photographs in figure 10 demonstrate that this hypothesis could not be 
confirmed.  The same phenomena as in test no. 14923 were observed and the coherent fracture 
front velocity of 8918 m/s was nearly equal to fracture front velocity determined in the previous 
test at 390 m/s.  The time dependent progress of the wave and fracture front is illustrated in 
figure 11.  During the first 6 µs a wave front was observed which propagated at an average speed 
of 10,594 m/s.  Considering the crack centers ahead of the coherent fracture front, a damage 
velocity of 9145 m/s could be determined. 
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Figure 11.  Path-time data of wave and fracture propagation in specimen with flaw, impacted at  
385 m/s. 

2.2.3  Test With Specimen of 25-mm Thickness 

In order to test the influence of specimen thickness on damage formation one experiment was 
conducted with a specimen of 25-mm thickness.  The specimen also exhibited the kind of 
inhomogeneity as described with the specimen of test no. 14923 (see figure 7).  Figure 12 shows 
a selection of eight photographs from this test.  The complete series of photographs is presented 
in figure A-7 of the appendix. 

The photographs in figure 12 illustrate that the same phenomena occur in the thick specimen as 
were observed in the 10-mm specimens.  The most advanced front that could be recognized 
propagated at an average velocity of 10,478 m/s and thus was identified as a longitudinal wave. 
Compared to the 10-mm specimens, the wave front was much better discernible in the thick 
specimen.  In contrast to the wave front, the tip of the fracture front was hardly discernible in 
most of the photographs.  Only three photographs allowed an accurate measurement of the 
fracture front position.  The average velocity determined from these data was 8256 m/s. 

The path-time histories of the wave and fracture front are depicted in figure 13.  The blurred 
appearance of the fracture front is attributed to the enhanced scatter of light, due to the higher 
thickness of the specimen on one hand.  On the other hand, the effect of birefringence shift is 
stronger with the thicker specimen. 
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Figure 12.  Selection of eight shadowgraphs from impact on AlON specimen of 25-mm thickness, test no. 14925,  
vP = 385 m/s. 
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Figure 13.  Path-time data of wave and fracture propagation in specimen of  
25-mm thickness, impacted at 385 m/s. 
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2.2.4  Summary of Results With AlON 

A compilation of the measured stress wave, coherent fracture front, and damage velocities is 
given in table 4.  The coherent fracture front velocities were all in the range from 8000 to 
9400 m/s, whereas the damage velocities ranged from 8900 to 9800 m/s.  The damage velocities 
are presented as a function of impact velocity in figure 14 along with the data of other types of 
armor ceramics. 

Table 4.  Compilation of wave and fracture velocity data with AlON. 

 
Test No. 

 
Impact Vel. 

(m/s) 

 
Optical Set-up 

 
Stress Wave Velocity 

(m/s) 

Coh. Fracture 
Front Velocity 

(m/s) 

 
Damage Velocity

(m/s) 
14894 278 Shadowgraph — 7994/8081 9066 
14895 270 Cr. polarizers 9944 — — 
14897 381 Shadowgraph — 8381 9156 
14898 368 Cr. polarizers 9367 — — 
14906 820 Shadowgraph — 8204 9145 
14907 925 Cr. polarizers 10438/9315 — — 
14908 588 Shadowgraph — 8413 8976 
14909 664 Cr. polarizers 8968/10925 — — 
14923 390 Shadowgraph 10589 8934 9054 
14924 385 Shadowgraph 10594 8918 9145 
14925 385 Shadowgraph 10478 8256 — 
14940 397 Reflected light 10564 9361 9767 

 
In each of the ceramics the damage velocity increases with rising impact velocity.  The damage 
velocities approach the longitudinal wave velocity cL at high loadings.  With most of the 
materials a steep rise of vD is observed in the range of impact velocities between 150 and 
200 m/s. Since all tests with AlON were conducted at impact velocities above 250 m/s high 
damage velocities had been expected.  The damage velocities were all in the range from 85% to 
95% of the longitudinal wave velocity, which corresponds to the results with aluminum oxide.  

3. Conclusion 

• The edge-on impact technique was modified in order to visualize stress wave propagation 
in transparent ceramics.  The specimens were placed between crossed polarizers and the 
photo-elastic effect was successfully utilized to visualize the stress waves. 

• Pairs of impact tests at approximately equivalent velocities were carried out in transmitted 
plain (shadowgraphs, visualization of damage) and crossed polarized light (visualization of 
wave propagation). 
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Figure 14.  Damage velocity vD vs. impact velocity vP for different armor ceramics. 

 
• The experiments provided direct evidence of ceramic damage by nucleation and growth of 

fracture initiated by the stress waves, ahead of the coherent fracture front growing from the 
impacted edge. 

• A comparison of the results in a reflected light set-up and the shadowgraphs indicated 
fracture nucleation in the interior of the ceramic. 

• The experimental results provide a data basis for a deeper analysis of the damage 
mechanisms by means of numerical simulation. 
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Appendix.  Complete Sets of High-Speed Photographs 

 

Figure A-1.  High-speed photographs:  shadowgraph arrangement, positive patterns, side-view test  
no. 14906, vP = 820 m/s. 
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Figure A-2.  High-speed photographs:  crossed polarizers arrangement, positive patterns, side-view test no. 
14907, vP = 925 m/s. 
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Figure A-3.  High-speed photographs:  shadowgraph arrangement, positive patterns, side-view test no. 14908,  
vP = 588 m/s. 



 

 22

 

Figure A-4.  High-speed photographs:  crossed polarizers arrangement, positive patterns, side-view test  
no. 14909, vP = 664 m/s. 
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Figure A-5.  High-speed photographs:  shadowgraph arrangement, positive patterns, side-view inhomogeneous 
specimen; test no. 14923, vP = 390 m/s. 
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Figure A-6.  High-speed photographs:  shadowgraph arrangement, positive patterns, side-view specimen with 
flaw; test no. 14924, vP = 385 m/s. 
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Figure A-7.  High-speed photographs:  shadowgraph arrangement, positive patterns, side-view specimen of 25-mm 
thickness; test no. 14925, vP = 385 m/s. 
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