

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

ENVIRONMENT BEHAVIOR MODELS FOR REAL-TIME
REACTIVE SYSTEM TESTING AUTOMATION

by

Muharrem Ugur Aksu

September 2006

 Co-Advisors: Mikhail Auguston
 Man-Tak Shing

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Environment Behavior Models for Real-Time
Reactive System Testing Automation
6. AUTHOR(S) Muharrem Ugur Aksu

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
We explored the effectiveness of using attributed event grammars (AEG) based environment behavior models

as a method for testing and analyzing real-time, reactive software systems. The AEG specifies possible event traces

and provides a uniform approach for automatically generating and executing test cases. We have demonstrated the

approach through a case study (Paderborn Shuttle System Control Software) and performed three kinds of

experiments: software correctness testing, system performance analysis and study of design alternatives.

15. NUMBER OF
PAGES

163

14. SUBJECT TERMS
Model-based Testing, Testing Automation, Reactive and Real-time System Testing,
Attributed Event Grammars (AEG), Environment Behavior Models.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

ENVIRONMENT BEHAVIOR MODELS FOR REAL-TIME REACTIVE SYSTEM
TESTING AUTOMATION

Muharrem U. Aksu

1st Lt., Turkish Army
B.S., Turkish Army Academy, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
AND

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Muharrem U. Aksu

Approved by: Mikhail Auguston
Co-Advisor

Man-Tak Shing
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

We explored the effectiveness of using attributed event grammars (AEG)

based environment behavior models as a method for testing and analyzing real-

time, reactive software systems. The AEG specifies possible event traces and

provides a uniform approach for automatically generating and executing test

cases. We have demonstrated the approach through a case study (Paderborn

Shuttle System Control Software) and performed three kinds of experiments:

software correctness testing, system performance analysis and study of design

alternatives.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. TASK .. 5
A. BLACK BOX TEST MODEL WITH THE USE OF AN

AUTOMATED TEST GENERATOR... 5
B. WHAT ARE ATTRIBUTED EVENT GRAMMARS (AEG)?.................. 7

1. Attributed Event Grammar Axioms .. 7
2. Automated Random Event-Trace Generation 8
3. An Attributed Event Grammar Example 9

C. AUTOMATED TEST GENERATION.. 12
D. PADERBORN SHUTTLE SYSTEM ... 13

1. System Overview ... 13
2. The Railway Network And Stations...................................... 14
3. Orders... 14
4. Shuttles .. 15
5. Income and Expenses ... 15

a. Toll: .. 15
b. Maintenance: ... 15
c. Penalties: ... 16

E. AEG ENVIRONMENT MODEL FOR PADERBORN SHUTTLE
SYSTEM... 16

F. THE OMNET++ MODEL .. 25
1. What is OMNeT++? .. 25
2. Paderborn Shuttle System Model in OMNeT++................... 26

III. EXPERIMENTS .. 29
A. SOFTWARE CORRECTNESS TESTING .. 29

1. Experiment One ... 29
2. Experiment Two... 33
3. Experiment Three .. 36

B. SYSTEM PERFORMANCE ASSESSMENT 39
1. Experiment Four .. 39
2. Experiment Five ... 42

C. EVALUATION OF DESIGN ALTERNATIVES 45
1. Experiment Six... 48
2. Experiment Seven.. 52
3. Experiment Eight ... 58

IV. RELATED WORK... 63

V. CONCLUSION.. 67

LIST OF REFERENCES.. 71

APPENDICES.. 73
A. OMNET++ SIMULATION MODEL CODES (C++ SOURCE FILES,

C++ HEADER FILES AND OMNET++ RESOURCE FILES):............ 73

viii

B. AEG BASED ENVIRONMENT BEHAVIOR MODEL CODE: 140

INITIAL DISTRIBUTION LIST ... 145

ix

LIST OF FIGURES

Figure 1. Black-Box Testing for Real-Time, Reactive Systems Testing (From
Ref. [12])... 5

Figure 2. The Use of Automated Test Generator (From Ref. [7]). 6
Figure 3. AEG Axioms (From Ref. [6]). .. 8
Figure 4. The Environment Model for the Calculator Scenario (From Ref. [6]) 9
Figure 5. The Attributed Event Grammar (AEG) Model for the Calculator

Scenario (From Ref. [6]) ... 10
Figure 6. The Attributed Event Grammar (AEG) Model for the Calculator

Scenario (From Ref. [6]) ... 11
Figure 7. Proposed Paderborn Shuttle System Railway Network...................... 14
Figure 8. Paderborn Shuttle System AEG Model: Global Variables of

ShuttleSystem Defined ... 16
Figure 9. Paderborn Shuttle System AEG Model: Top Level Rules; Shuttle &

Customers Defined with Their Event Attributes 17
Figure 10. Paderborn Shuttle System AEG Model: Behavior of ShuttleSystem

Defined & Global Variables Initialized... 17
Figure 11. Paderborn Shuttle System AEG Model: Event Shuttles Defined with

Concurrent Shuttle Events.. 18
Figure 12. Paderborn Shuttle System AEG Model: Event Customers Defined.... 18
Figure 13. Paderborn Shuttle System AEG Model: Attributes of Event Shuttle

Initialized .. 19
Figure 14. Paderborn Shuttle System AEG Model: Behavior of Event Shuttle

Defined ... 21
Figure 15. Paderborn Shuttle System AEG Model: Sub-events of Event

Shuttle Defined... 23
Figure 16. Paderborn Shuttle System AEG Model: Sub-events of Event

Shuttle Defined... 23
Figure 17. Paderborn Shuttle System AEG Model: Sub-events of Event

Shuttle Defined... 24
Figure 18. Paderborn Shuttle System AEG Model: Sub-events of Event

Shuttle Defined... 24
Figure 19. Paderborn Shuttle System AEG Model: Sub-events of Event

Shuttle Defined... 25
Figure 20. OMNeT++ Model for Paderborn Shuttle System. 26
Figure 21. OMNeT++ Model for Paderborn Shuttle System That Shows the

Connection Between Modules and the Messages Sent Over Those
Connections. .. 27

Figure 22. Visual Statistical Result of Experiment 1 (Busy Shuttles / Alive
Shuttles) ... 30

Figure 23. Pseudo Code for move_unique_orders() Sub-routine...................... 31
Figure 24. Corrected Pseudo Code for move_unique_orders() Sub-routine..... 32
Figure 25. Visual Statistical Result of Experiment 1 (Busy Shuttles / Alive

Shuttles) ... 33

x

Figure 26. Visual Statistical Result of Experiment 2 (Number of Customers in
Shuttles) ... 34

Figure 27. Pseudo Code for Defective group_matching_orders(order A)
Sub-routine... 35

Figure 28. Pseudo Code for Corrected group_matching_orders(order A)
Sub-routine... 35

Figure 29. Visual Statistical Result of Experiment 2 (Number of Customers in
Shuttles) ... 36

Figure 30. Visual Statistical Result of Experiment 5 (Minimum Shuttle Capital /
Additional Customer Fee)... 41

Figure 31. Visual Statistical Results of Experiment 5 (Average Shuttle Capital /
Additional Customer Fee)... 42

Figure 32. Visual Statistical Result of Experiment 5 (Maximum Customer
Waiting Time (seconds) / Shuttle Capacity).. 44

Figure 33. Visual Statistical Result of Experiment 5 (Average Customer
Waiting Times (seconds) / Shuttle Capacity)...................................... 45

Figure 34. Algorithm 1 for Choosing Primary Orders... 46
Figure 35. Algorithm 2 for Choosing Primary Orders... 46
Figure 36. Algorithm 3 for Choosing Primary Orders... 46
Figure 37. Algorithm 4 for Choosing Primary Orders... 47
Figure 38. System Parameters of Interest In Order To Measure the Efficiency

of Different Algorithms .. 47
Figure 39. Visual Statistical Results of Experiment Six (Average Shuttle

Capacity / Number of Shuttles)... 49
Figure 40. Visual Statistical Results of Experiment Six (Average Shuttle

Capitals / Number of Shuttles).. 50
Figure 41. Visual Statistical Results of Experiment Six (Minimum Customer

Waiting Times (seconds) / Number of Shuttles) 51
Figure 42. Visual Statistical Results of Experiment Six (Maximum Customer

Waiting Times (seconds) / Number of Shuttles) 51
Figure 43. Visual Statistical Results of Experiment Six (Average Customer

Waiting Times (seconds) / Number of Shuttles) 52
Figure 44. Visual Statistical Results of Experiment Seven (Average Shuttle

Capitals / Shuttle Capacity) .. 54
Figure 45. Visual Statistical Results of Experiment Seven (Minimum Customer

Waiting Times (seconds) / Shuttle Capacity)...................................... 55
Figure 46. Visual Statistical Results of Experiment Seven (Maximum

Customer Waiting Times (seconds) / Shuttle Capacity) 56
Figure 47. Visual Statistical Results of Experiment Seven (Average Customer

Waiting Times (seconds) / Shuttle Capacity)..................................... 57
Figure 48. Visual Statistical Results of Experiment Eight (Mean Shuttle

Capacities / Customer Arrival Rate) .. 59
Figure 49. Visual Statistical Results of Experiment Eight (Mean Shuttle

Capitals / Customer Arrival Rate) .. 60
Figure 50. Visual Statistical Results of Experiment Eight (Maximum Customer

Waiting Times / Customer Arrival Rate) .. 61

xi

Figure 51. Visual Statistical Results of Experiment Eight (Average Customer
Waiting Times / Customer Arrival Rate) .. 62

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Parameters of AEG Based Test Driver for Experiment One............... 30
Table 2. Parameters of AEG Based Test Driver for Experiment Two............... 33
Table 3. Parameters of AEG Based Test Drivers for Experiment Three 37
Table 4. Parameters of AEG Based Test Drivers for Experiment Three 38
Table 5. Parameters of AEG Based Test Drivers for Experiment Four 40
Table 6. Parameters of AEG Based Test Drivers for Experiment Five 43
Table 7. Parameters of AEG Based Test Drivers for Experiment Six............... 48
Table 8. Parameters of AEG Based Test Drivers for Experiment Seven.......... 53
Table 9. Parameters of AEG Based Test Drivers for Experiment Eight............ 58

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

The author wants to thank Prof. Mikhail Auguston and Prof. Man-Tak Shing for
their guidance and patience during the work in performing this thesis study.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Statistics show that any nontrivial software system will have, on average,

one to three errors per hundred statements no matter how hard we try to prevent

those errors [1]. On the other hand, the process of testing software and finding

those errors is not easy. As a matter of fact it is time and effort consuming [6] –

testing consumes almost half of the labor expended to produce a working

program [1].

Software testing is the systematic process of exercising software with test

cases in order to find differences between the expected behavior specified by

system models and the observed behavior of the implemented system [2], [3].

The goal of software testing is to maximize the number of discovered faults

through designing test cases in order to increase the reliability of the system by

correcting those faults [2]. “The effort put into testing seems wasted if the tests

don’t reveal bugs [1].”

When we perform system testing for software, two types of testing are

crucial: functional testing and performance testing [2]. We can test the functional

requirements of the system under testing (SUT) to detect errors or we can test

the nonfunctional requirements and additional design goals of the SUT to find

differences between nonfunctional requirements and actual system performance

[2], [3]. Testing functional and performance requirements of real-time, reactive

systems is more complicated than the testing of other software systems.

Real-time reactive systems are those that have timing requirements on

their computations and actions and whose behaviors are primarily caused by

specific reactions to external events rather than being self-generated [4]. Timing

requirements of such systems are specified in terms of deadlines which can be

denoted by either a point in time or a time interval by which a system action must

occur [4].

Timing requirements and event-driven behavior of such systems renders

testing real-time reactive systems very complicated [4], [6].

2

 Performance and timing requirements are present at a program when

keeping pace with an external physical process is mandatory [5]. In this case the

SUT must respond in the time constraints imposed by the external physical

process, so that the response can control the physical process [5]. The difficulty

is that these requirements can only be tested by evaluating the system within the

context of its operating environment [6].

The event driven behavior of real-time reactive systems implies a state-

based system, and testing of a state-based system requires the use of

sequences of inputs [9]. Moreover, in real-time reactive systems the response

sent by the SUT may affect the next sequence of inputs sent from the

environment. This behavior of real-time reactive systems forces us to create test

sequences that will result from applying adaptive test cases in which the input

applied at a step depends upon the output sequence that has been observed [6],

[7], [9].

Continuous interaction with their environment, the adaptive nature of the

environment to the responses sent from real-time reactive systems and the

timing constraints on both their inputs and outputs make the interaction with a

human tester during the testing of real-time reactive systems often impossible

since the overhead incurred in this process will render the test results

meaningless [6]. “Such systems can only be tested via an automated testing

environment with processing characteristics sufficiently close to the actual

operating environment [6].” A common approach to achieve this is to develop two

separate models - one for the system under test (SUT) and the other for the

environment with which it has an interaction or which is under its control – and

run them in tandem [6]. “Hence, correct modeling of the environment is as

important as the correct analysis of the system requirements [6].” Thus, creating

an environment model for the SUT can give us the ability to perform both

functional and performance tests on real-time reactive systems.

The agenda of this thesis is to explore the effectiveness of using

environment behavior models as a method for testing and analyzing real-time,

3

reactive software systems. We will use automatic test case scenario generation,

which is based on an attributed event grammar (AEG) model, in order to define

the environment of a SUT which is a real-time, reactive software system. We will

explore the extent to which experiments with a SUT embedded in an

environment behavior model serve as a constructive method for testing both

functional and performance requirements of real-time, reactive software systems

through quantitative and qualitative experiments.

4

THIS PAGE INTENTIONALLY LEFT BLANK

II. TASK

A. BLACK BOX TEST MODEL WITH THE USE OF AN AUTOMATED TEST
GENERATOR
As we mentioned in the previous section, real-time, reactive software

systems can only be tested via an automated testing environment with

processing characteristics sufficiently close to the actual operating environment

since the overhead incurred by using a tester will render the test results

meaningless for such systems [6].

A common way of achieving this is developing two separate models - one

for the system under test (SUT) and the other for the environment with which it

has an interaction (or which is under its control) – and run them in tandem [6].

In this approach, the SUT is treated as a black-box and it is subjected to

inputs sent from the environment, and its outputs are verified for conformance to

specified behavior [1]. With the black-box model of the software to be tested, we

take the user’s point of view and we are only interested in the outermost

functional layer of the software. Figure 1 shows the interaction between the SUT

and its environment.

5

Figure 1. Black-Box Testing for Real-Time, Reactive Systems Testing (From
Ref. [12]).

However, the real question is how to define the environment of a real-time,

reactive software system which will send inputs to and will receive outputs from

the SUT?

Our approach is to define the environment of the SUT using attributed

event grammars (AEG) and to generate random event-traces which will interact

with the SUT as a test driver and run them together with the help of a run time

monitor. “Hence, correct modeling of the environment is as important as the

correct analysis of the system requirements [6].”

The process of generating test drivers from attributed event grammar

(AEG) models is achieved with the help of an automated test generator, the first

version of which takes an AEG code and generates a test driver in C. The

proposed overall test model with the use of the automated test generator is

described in Figure 2.

Figure 2. The Use of Automated Test Generator (From Ref. [7]).

Specifically, the automated test generator takes an AEG environment

model that specifies a set of possible scenarios (or use cases) for the SUT,

derives a random event trace from it according to the probabilities and iteration

guards in the AEG, and generates a test deriver in C [7].

6

7

B. WHAT ARE ATTRIBUTED EVENT GRAMMARS (AEG)?
Attributed Event Grammars (AEG) [6], [7] are based on the notion of an

event, which is any detectable action in the environment that could be relevant to

the operation of the SUT. A keyboard button pressed by the user, a group of

alarm sensors triggered by an intruder, a particular stage of a chemical reaction

monitored by the system, and the detection of an enemy missile are all examples

of events. An event is usually a time interval, and has a beginning, an end, and

duration. An event has attributes, such as type and timing attributes.

Two basic relations are defined for events: precedence (PRECEDES)

and inclusion (IN). Two events may be ordered in time, or one event may

appear inside another event. The behavior of the environment can be

represented as a set of events with these two basic relations defined for them

(event trace). The basic relations define a partial order of events. Two events

are not necessarily ordered, that is, they can happen concurrently. Usually event

traces have a specific structure (or constraints) in a given environment.

The structure of possible event traces can be specified by an event
grammar. Here identifiers stand for event types, sequence denotes precedence

of events, (…|…) denotes alternative, (*…*) means repetition zero or more times

of ordered events, […] denotes an optional element, {a, b} denotes a set of two

events a and b without an ordering relation between them, and {*…*} denotes a

set of zero or more events without an ordering relation between them.

1. Attributed Event Grammar Axioms
The rule A: B C means that an event of the type A contains (IN relation)

ordered events of types B and C, correspondingly (PRECEDES relation). Both

relations imply partial order and are transitive, noncommutative, nonreflexive,

and satisfy distributivity constraints. The following axioms should hold for any

event trace where a, b, c and d are events of any type:

Mutual Exclusion of Relations

Axiom 1.1: a PRECEDES b ⇒ ¬ (a IN b)

Axiom 1.2: a IN b ⇒ ¬ (a PRECEDES b)

Non-commutativity

Axiom 2.1: a PRECEDES b ⇒ ¬ (b PRECEDES a)

Axiom 2.2: a IN b ⇒ ¬ (b IN a)

Transitivity

Axiom 3.1: (a PRECEDES b) ∧ (b PRECEDES c) ⇒ (a PRECEDES c)

Axiom 3.2: (a IN b) ∧ (b IN c) ⇒ (a IN c)

Distributivity

Axiom 4.1: (a IN b) ∧ (b PRECEDES c) ⇒ (a PRECEDES c)

Axiom 4.2: (a PRECEDES b) ∧ (c IN b) ⇒ (a PRECEDES c)

Axiom 4.3: (∀ a IN b (∀ c IN d (a PRECEDES c))) ⇒ (b PRECEDES d)

Figure 3. AEG Axioms (From Ref. [6]).

2. Automated Random Event-Trace Generation
Attributed event grammars (AEG) are intended to be used as a vehicle for

automated random event-trace generation. It is assumed that the AEG is

traversed top-down and left-to-right and only once to produce a particular event

trace. Randomized decisions about what alternative to take and how many times

to perform an iteration should be made during the trace generation. The major

difference with traditional attributed context-free grammars is in the nature of

objects defined by the grammar: instead of sequences of symbols, AEG deals

with event traces, sets with two basic relations, or directed acyclic graphs.

The event grammar defines a set of possible event traces – a model of

behavior for a certain environment. The purpose is to use it as a production

grammar for random event trace generation by traversing grammar rules and

making random selections of alternatives and numbers of repetitions. All

generated concurrent events within sets start simultaneously.

8

Each event type may have a different attribute set. An event grammar can

contain attribute evaluation rules similar to the traditional attribute grammar.

Attribute values are evaluated during the AEG traversal. The /action/ is

performed immediately after the preceding event is completed.

3. An Attributed Event Grammar Example
The interface with the SUT can be specified by an action that sends input

values to the SUT. This may be a subroutine in a common programming

language like C that hides the necessary wrapping code. In the following

example of specifying a variety of use case scenarios for a simple calculator, we

suppose that the SUT should receive a message about the button pressed by the

user corresponding to the appropriate wrapper subroutine shown in Figure 4:

enter_digit(), enter_operation(), and show_result().

Figure 4. The Environment Model for the Calculator Scenario (From Ref. [6])

Some event types in this model have attributes associated with them.

9

Perform_calculation result

Enter_number digit, value

Enter_operator operation

Use_calculator: (* Perform_calculation *);

Perform_calculation:

Enter_number Enter_operator Enter_number

WHEN (Enter_operator.operation == ‘+’)

/ Perform_calculation.result =

Enter_number[1].value +

Enter_number[2].value; /

ELSE

/ Perform_calculation.result =

Enter_number[1].value −

Enter_number[2].value; /
[P(0.7) Show_result];

Figure 5. The Attributed Event Grammar (AEG) Model for the Calculator

Scenario (From Ref. [6])

The WHEN clause provides for conditional action, Enter_number[1]
refers to the first occurrence of an event in the rule Perform_calculation, and

correspondingly, Enter_number[2] refers to the second occurrence. In this

example all event attribute evaluation can be accomplished at the generation

time. The optional clause Show_result will be generated according to the

probability P(0.7) assigned to it. The value of attribute

Perform_calculation.result can be used as a test oracle for this particular part

of the test case.

10

11

Enter_number:

/ Enter_number.value= 0; /

(* Press_digit_button

/ Enter_number.digit = RAND[0..9];

 Enter_number.value =

 Enter_number.value * 10 +

Enter_number.digit;
enter_digit(Enter_number.digit); / *) (1..6);

Enter_operator:

(P(0.5) / enter_operation(‘+’);

Enter_operator .operation= ’+’; / |

P(0.5) / enter_operation(‘-’);

Enter_operator .operation= ’-’; /) ;

Show_result: /show_result();/ ;

Figure 6. The Attributed Event Grammar (AEG) Model for the Calculator
Scenario (From Ref. [6])

The action /Enter_number.digit = RAND[0..9];/ assigns a random value

from the interval 0..9 to the digit attribute. Each time the rule for Enter_number

event is traversed, the number of iterations will be selected at random from

interval 1..6. The traversal of AEG rules is performed top-down and from left to

right, and for each iteration the attributes Enter_number.digit and

Enter_number.value are recalculated. The action

enter_digit(Enter_number.digit) feeds the corresponding value to the SUT.

When traversing this rule, the choice of action sending the operator

symbol to the SUT is made based on the probability P(prob) assigned to the

corresponding alternative. The event Show_result, when generated, will trigger

a call to the wrapper subroutine that sends a message to the SUT.

12

We can generate a large number of Use_calculator scenarios (event

traces) satisfying this AEG and each event trace will satisfy the constraints

imposed by the event grammar. The event trace generated from the AEG

traversal contains both events and actions that should be performed at

corresponding time moments. The actions (wrapper subroutine calls in this

example) can be extracted from the event trace and assembled into test-driver

code which will perform those actions according to the timing attributes

calculated during the trace generation. Thus, the event trace is used as a

“scaffold” for test driver generation. Separation of the generation phase from test

execution is essential for the performance of the generated test driver: event

selection and attribute evaluation can be performed at generation time, with test

drivers containing only wrapper calls to interact with the SUT, that is, the

“scaffolding” is removed.

C. AUTOMATED TEST GENERATION
As explained in the previous sections, the automated test generator takes

an attributed event grammar (AEG) environment model that specifies a set of

possible scenarios (or use cases) for the system under testing (SUT), sorts (can

be sorted according to the timing attributes) and derives a random event trace

from it according to the probabilities and iteration guards in the AEG, and

generates a test driver that will feed the SUT with inputs and will capture SUT

outputs [7]. Please refer to Figure 2 for more detail.

The underlying principles of the automated test generator [7] are as

follows:

a. Parallel event threads (for sets, like {A, B}) are implemented by

interleaving events/actions within them.

b. All loops in an AEG model are unfolded either using explicit

iteration guards, or by assuming a random number of iterations.

Recursion is not supported in the current version.

13

c. Attributes are evaluated mostly at the generation time, but those

dependent on SUT outputs (on catch clauses) are postponed till the

run time. Certain parts of generated event trace may depend on

those attribute values (for instance, because the delayed attribute

participated in the when clause), in this case both alternatives for

the expected trace segment are generated but protected by

boolean flags, so that at the test run time only the alternatives for

which the guard is enabled will be executed.

D. PADERBORN SHUTTLE SYSTEM
In the context of a series of new research projects at the University of

Paderborn a new rail-based transport system is being developed – Paderborn

Shuttle System [10] – and the requirements defined below are a slightly modified

version of this case study. The system is intended to enable individual transport

of people, which today is mainly conducted by cars and trucks, by autonomously

acting shuttles on rail. This autonomy is supposed to eliminate the disadvantages

of modern trains concerning individual transport.

1. System Overview
The following simplified system is the basis of the case study. Consider a

railway. The railway consists of interconnected stations. Shuttles bid for orders to

transport passengers between certain stations. Successful completion of an

order results in a monetary reward for the shuttle involved. New orders are made

known to all shuttles, thus all shuttles can make an offer. The shuttle with the

best, i.e. lowest, offer will receive the assignment. Using the tracks will incur a

toll, depending on the distance covered. Maintenance of the shuttles is possible

at any station and will cost both time and money.

2. The Railway Network And Stations

The railway network consists of stations and tracks between stations.

Tracks can be traveled in both directions. Railway Network is represented by a

directed graph as shown in the picture below. Each track at the railway network

has the same distance weight.

Figure 7. Proposed Paderborn Shuttle System Railway Network.

Any number of shuttles can be present at a station at the same time. The

duration of a shuttle’s stay at a station is not considered maintenance time.

Maintenance must be explicitly scheduled.

3. Orders
Orders are made known to all shuttles by a broker. An order defines start

and destination stations and the distance between those stations. Order

assignment follows a strict pattern. First, all shuttles are informed of the new

order and any shuttle can make an offer, which defines the payment it will

receive after successful completion of that order. Shuttles calculate their bids

according to the distance of each order informed by the broker. The shuttle

having made the lowest offer will receive the assignment. In the event of two

equal offers, the assignment will go to the shuttle that first made the offer.

14

15

4. Shuttles
Order processing is handled by the shuttles. Every shuttle can transport

passengers up to a maximum capacity determined at the start of the simulation.

This means that a shuttle can transport more than one passenger who requests

the same order or a subset of the order for which the shuttle has made a bid as

long as the number of passengers does not exceed the maximum capacity. To

complete an order a shuttle has to travel to the start station, load the order and

then proceed to the destination station to unload. Order-processing begins with

the loading at the start station and ends with unloading at the destination.

Loading or unloading at other stations is permitted to load passengers requesting

a subset of the currently processed order. A travel decision is made by the broker

before sending an order to the shuttles and at each station during the journey

shuttles request the next station to travel in order to complete their orders.

5. Income and Expenses
At the beginning, every shuttle will receive a fixed starting capital.

Afterwards, a shuttle’s only means of income generation is to successfully

complete orders. Payment occurs after an order is delivered. If a shuttle is at a

station and its account shows a negative balance, it will not be permitted to leave

this station, and is retired.

There are the following three different types of costs:

a. Toll:
Traveling from station to station costs a fee and this fee is the same

for each track.

b. Maintenance:
After traveling a certain distance, maintenance has to be carried

out.

The distance depends on the number of tracks. If a shuttle exceeds

this limit, maintenance will be carried out at the next station automatically, and it

will not be able to leave the station until maintenance is finished. Payment is

immediate.

c. Penalties:
If an order has not been delivered in time, a penalty will be

imposed. If a shuttle currently carries the order, it has to complete it.

E. AEG ENVIRONMENT MODEL FOR PADERBORN SHUTTLE SYSTEM
The following basic SHUTTLE SYSTEM environment model has been

used as a starting point to create several variations of environment models for

SHUTTLE SYSTEM testing purposes, in particular by selecting different

probabilities P(prob) for customer arrival rate (customer order request

frequency), choosing random values for number of shuttles in the Shuttle System

and manipulating shuttle payment and wear values dynamically at run time.

The environment model specification in AEG starts with declarations of

global parameters.

GLOBAL {
 int transit_fee; /* toll for using the tracks */
 int transit_wear; /* wear incurred for using the tracks */
 int maintenance_wear; /* restored wear value after maintenance */
 int maintenance_fee; /* maintenance fee */
}

Figure 8. Paderborn Shuttle System AEG Model: Global Variables of

ShuttleSystem Defined

Attributes for each rule are defined in corresponding declaration sections.

16

17

RULE Shuttle {
 int start; /* start station of an order */
 int destination; /* final station of an order */
 int shuttle_id; /* unique shuttle identification no */
 int shuttle_at_station; /* current location of a shuttle */
 int capital; /* capital status of a shuttle */
 int wear; /* maintenance status of a shuttle */
 int retired; /* a flag for shuttle bankruptcy */
 int payment; /* money received after order completion */
 int bid; /* bid made by a shuttle for a given order */
 int ord_confirmed; /* a flag for order assignment */
 int received_order; /* a flag for order offers from broker */
 int distance; /* number of stations for an order */
 int order_request_no; /* auxiliary variable */
}

RULE Customers {
 int requested_start_station;
 int requested_destination_station;
}

Figure 9. Paderborn Shuttle System AEG Model: Top Level Rules; Shuttle &
Customers Defined with Their Event Attributes

Global parameters are initialized at the top level rule ShuttleSystem. Initial

settings for global parameters and attributes are obtained by calling auxiliary

subroutines for the convenience of changing them dynamically during a long

series of test runs [7].

The behavior model for ShuttleSystem is represented by two concurrent

threads of events: Shuttles and Customers.

ShuttleSystem :
 /
 transit_fee = get_transit_fee();
 transit_wear = get_transit_wear();
 maintenance_wear = get_maintenance_wear();
 maintenance_fee = get_maintenace_fee();
 /
 {Shuttles, Customers};

Figure 10. Paderborn Shuttle System AEG Model: Behavior of ShuttleSystem
Defined & Global Variables Initialized

The behavior of Shuttles is represented by a number of concurrent Shuttle

Events.

18
auxiliary subroutine which returns a unique value that is incremented by one

Shuttles:
 /***CHANGE NUMBER OF SHUTTLES HERE***/
 {*Shuttle*}(==5);

Figure 11. Paderborn Shuttle System AEG Model: Event Shuttles Defined with
Concurrent Shuttle Events

The behavior of Customers is represented by sending random requests

with a probability P(prob) to the MANAGER. The (EVERY 10 sec) clause guides

the event trace generation with the desired time stamps [7]. Using a combination

of a period of time (with the use (EVERY 10 sec) statement) and a probability

enables us to simulate the aperiodic nature of customer arrivals (customer order

request events). The (==1500) construct determines number of iterations

generated, that is, the duration of the customer request events will be

approximately 250 minutes [7].

Customers:
 /
 Customers.requested_start_station = 0;
 Customers.requested_destination_station = 0;
 /
 (* [P(70)/get_random_request(Customers.requested_start_station,

 Customers.requested_destination_station);
send_customer_request(Customers.requested_start_station,

 Customers.requested_destination_station);/]
/***CHANGE NUMBER AND FREQUENCY OF CUSTOMER REQUESTS HERE***/

 *)(==1500)(EVERY 10 sec);

Figure 12. Paderborn Shuttle System AEG Model: Event Customers Defined

The next AEG model defines the behavior of each Shuttle. First Shuttle

attributes are initialized. The Shuttle.shuttle_id attribute is initialized by calling an

each time it is called. This will help us to define a unique id for each Shuttle

thread in the ShuttleSystem event. Initial settings for Shuttle capital values and

starting stations for each are also obtained by calling auxiliary subroutines for the

convenience of manipulating those values dynamically.

19

Shuttle behavior is defined with the following sequential and iterated

proces

Figure 13. Paderborn Shuttle System AEG Model: Attributes of Event Shuttle

Shuttle :
 /

.shuttle_id = unique_id();
uttle.start = 0;

station = get_shuttle_at_station();
l();

 = 0;
order = 0;

 Shuttle
 Sh
 Shuttle.destination = 0;
 Shuttle.shuttle_at_
 Shuttle.capital = get_capita
 Shuttle.wear = maintenance_wear;
 Shuttle.retired = 0;
 Shuttle.payment = 0;
 Shuttle.bid = 0;
 Shuttle.ord_confirmed
 Shuttle.received_
 Shuttle.distance = -1;
 Shuttle.order_request_no = 0;

Initialized

s. Shuttles send ready messages only once at the beginning of the

process to inform the Manager of their existence and their being ready. Then

Shuttles request orders, receive orders sent by the Manager and send their bids

for each order to the Manager. If a confirmation message is received from the

Manager they start processing the order confirmed. If the current station of a

Shuttle is not the same as the start station of the order, Shuttles request and

move to the next station until they are at the start station of the order. Then they

start requesting and moving to the next station until they reach the destination of

the order. When they are at the destination they inform the Manager of

successful completion of the order by sending an order completed message.

20

The main loop encapsulates the overall behavior of requesting orders,

sending bids, receiving order confirmations and processing confirmed orders and

this behavior is iterated 50 times for each shuttle in the system.

The loops are guarded by constant values which determine the maximum

number of iterations for a given set of sequential events. WHEN construct is used

to break out of a loop if the given conditional guard is satisfied. For instance the

move behavior of a Shuttle is implemented by a loop of 5 iterations which is the

maximum distance between two farmost stations (the longest distance to be

traversed by shuttles at the worst case) and this loop is iterated until a given

Shuttle reaches its destination station in order to complete its order.

The attribute evaluation statements and WHEN constructs make the event

generation dependent on the previous events in the trace [7].

send_ready(Shuttle.shuttle_id);/
(*
 /Shuttle.order_request_no = 0;/
 (*
 /request_order(Shuttle.shuttle_id, Shuttle.order_request_no);/
 wait_order_and_send_bid

/***WHEN THERE IS ONLY ONE MORE ORDER TO BE OFFERED IN THE QUEUE…***/
/***REQUEST FOR AN ORDER ONE LAST TIME AND WAIT FOR ORDER CONF.***/

 WHEN (Shuttle.order_request_no == -1)
 (
 /request_order(Shuttle.shuttle_id, Shuttle.order_request_no);
 BREAK; /
)
 /***WHEN THERE IS NO AVAILABLE ORDER IN THE QUEUE…***/
 /***WAIT ONE ORDER PROCESSING PERIOD OF TIME AND REQUEST AGAIN***/
 WHEN (Shuttle.order_request_no == -2)
 /BREAK;/

/***MAKE SURE THIS NUMBER IS EQUAL TO NUMBER OF SHUTTLES***/
 *)(==5)
 wait_order_confirmation
 WHEN (Shuttle.ord_confirmed)
 (
 /Shuttle.payment = Shuttle.bid;/
 (*
 WHEN (ENCLOSING Shuttle.shuttle_at_station != ENCLOSING Shuttle.start)
 (
 /move_to_start_station(Shuttle.shuttle_id, Shuttle.shuttle_at_station);/
 wait_next_station
 process_move
)
 ELSE /BREAK;/
 /***THIS IS THE MAX DISTANCE BETWEEN TWO FARMOST STATIONS***/
 *)(==5)
 (*
 WHEN (ENCLOSING Shuttle.shuttle_at_station != ENCLOSING Shuttle.destination)
 (
 /request_next_station(Shuttle.shuttle_id, Shuttle.shuttle_at_station);/
 wait_next_station
 process_move
)
 ELSE /BREAK;/
 /***THIS IS THE MAX DISTANCE BETWEEN TWO FARMOST STATIONS***/
 *)(==5)
 process_order_completion
)
/***MAIN LOOP - INCREASE TO GENERATE MORE DATA***/
*)(==50);

Figure 14. Paderborn Shuttle System AEG Model: Behavior of Event Shuttle
Defined

21

22

A sequence of events can be grouped under another event in order to

increase the readability of a complex event. It is also useful to group a sequence

of events and create a new event encapsulating the overall behavior of those

events when they are used repeatedly in the attributed event grammar (AEG)

model. This approach can save space and decrease the total number of lines of

AEG codes.

The next two events define the behavior of receiving an order and sending

bids for those orders to the Manager. The CATCH construct represents the

external event of receiving a message from the MANAGER [7] and it is

implemented as a function call order(ENCLOSING Shuttle.shuttle_id,

ENCLOSING Shuttle.start, ENCLOSING Shuttle.destination, ENCLOSING

Shuttle.distance, ENCLOSING Shuttle.order_request_no) which returns a True

value when MANAGER has issued corresponding output. The WAIT behavior for

receiving a message from the MANAGER is represented by a CATCH clause

that is repeated more than once inside a loop. This is very useful in simulating

the time interval in which Shuttles are expecting a message from the MANAGER.

This might be a timing constraint for the SUT and the overall system function

may fail if this constraint is not satisfied or the event stream may proceed to the

next action if there is no input from the SUT at that time interval; the latter is the

case for our model. The WAIT and CATCH constructs encapsulate the interface

with the OMNeT++ message queue [7].

The construct ENCLOSING Shuttle provides for the event

wait_order_and_send_bid to access the attributes of the parent event Shuttle

which are not within the scope of this rule. This reference mechanism is

convenient for event attribute propagation over the generated event trace [7].

Shuttles WAIT for 10 seconds to receive an order and calculate and send

their bids if an order is received. Calculating and sending bids are defined as

another event for simplicity and readability reasons.

23

wait_order_and_send_bid:
 (* CATCH order(ENCLOSING Shuttle.shuttle_id, ENCLOSING Shuttle.start,
 ENCLOSING Shuttle.destination, ENCLOSING Shuttle.distance,
 ENCLOSING Shuttle.order_request_no)
 /ENCLOSING Shuttle.received_order = 1;/
 calculate_and_send_bid
 END_CATCH
 *)(==2)(EVERY 5 sec);

calculate_and_send_bid:
 WHEN(ENCLOSING Shuttle.received_order)
 (
 /ENCLOSING Shuttle.bid = calculate_bid(ENCLOSING Shuttle.distance);/
 WHEN (ENCLOSING Shuttle.order_request_no != -2)
 /send_bid(ENCLOSING Shuttle.shuttle_id, ENCLOSING Shuttle.bid,
 ENCLOSING Shuttle.start, ENCLOSING Shuttle.destination);/
 /ENCLOSING Shuttle.received_order = 0;/
);

Figure 15. Paderborn Shuttle System AEG Model: Sub-events of Event Shuttle
Defined

Shuttles WAIT for 10 seconds to receive an order confirmation and

continue with the next action if an order confirmation is not received. The WAIT

function encapsulates the interface with the OMNeT++ message queue [7].

wait_order_confirmation:
 (* CATCH order_confirmed(ENCLOSING Shuttle.shuttle_id,
 ENCLOSING Shuttle.ord_confirmed,
 ENCLOSING Shuttle.start,
 ENCLOSING Shuttle.destination,
 ENCLOSING Shuttle.bid)
 END_CATCH
 *)(==2)(EVERY 5 sec);

Figure 16. Paderborn Shuttle System AEG Model: Sub-events of Event Shuttle

Defined

Shuttles WAIT for 20 seconds to receive next station values and this time

interval simulates the time elapsed in order to move from one station to the next.

The WAIT function encapsulates the interface with the OMNeT++ message

queue [7].

wait_next_station:
 (* CATCH next_station(ENCLOSING Shuttle.shuttle_id,
 ENCLOSING Shuttle.shuttle_at_station)
 END_CATCH
 *)(==2)(EVERY 10 sec);

Figure 17. Paderborn Shuttle System AEG Model: Sub-events of Event Shuttle

Defined

The event process_move manipulates the capital, wear and maintenance

attributes of Shuttles for each move from one station to the next.

process_move:
 WHEN (ENCLOSING Shuttle.wear > 0)
 (
 /ENCLOSING Shuttle.capital =
 ENCLOSING Shuttle.capital - transit_fee;
 ENCLOSING Shuttle.wear =
 ENCLOSING Shuttle.wear - transit_wear; /
)
 ELSE
 (
 /ENCLOSING Shuttle.capital = ENCLOSING Shuttle.capital –
 maintenance_fee - transit_fee;
 ENCLOSING Shuttle.wear = maintenance_wear;/
);

Figure 18. Paderborn Shuttle System AEG Model: Sub-events of Event Shuttle

Defined

The event process_order_completion manipulates the capital attributes of

Shuttles by making a deposit to the capitals of Shuttles for the successful

completion of an order. Upon the completion of processing an order, Shuttles

send order completed messages to the MANAGER along with their capital values

at that moment.

24

process_order_completion:
 [P(80) order_completed_in_time]
 [P(20) late_order_completion
 /ENCLOSING Shuttle.capital =
 ENCLOSING Shuttle.capital – get_punishment();/]
 /ENCLOSING Shuttle.capital =
 ENCLOSING Shuttle.capital + ENCLOSING Shuttle.payment;
 ENCLOSING Shuttle.ord_confirmed = 0;/
 WHEN (ENCLOSING Shuttle.capital <= 0)
 (
 /ENCLOSING Shuttle.retired = 1;/
)
 /send_order_completed(ENCLOSING Shuttle.shuttle_id,
 ENCLOSING Shuttle.retired,
 ENCLOSING Shuttle.capital);/;

Figure 19. Paderborn Shuttle System AEG Model: Sub-events of Event Shuttle

Defined

F. THE OMNET++ MODEL
1. What is OMNeT++?
OMNeT++, which stands for Objective Modular Network Testbed in C++,

is an object-oriented modular discrete event network simulator primarily designed

for the simulation of communication protocols, communication networks and

traffic models, models of multiprocessor and distributed systems and evaluating

performance aspects of complex software systems [7], [11].

An OMNeT++ model consists of hierarchically nested modules where the

depth of module nesting is not limited [11]. The atomic modules are called simple

modules. They are coded in C++, encapsulate the behavior and are executed as

coroutines on top of the OMNeT++ simulaton kernel [7], [11].

Modules communicate with each other via message passing through

gates and connections [7], [11]. Gates are the input and output interfaces of the

modules and messages are sent out through output gates of the sending module

and arrive through input gates of the receiving module [7]. Input and output gates

are linked together via connections which represent the communication channels

25

and can be assigned properties such as propagation delay, bit error rate and

data rate [7].

26

and batch execution purposes [11]. Advanced user interfaces

allow

2. Paderborn Shuttle System Model in OMNeT++
igure 22 shows the top level of the OMNeT++ simulation model for the

Pader S f two modules,

Enviro

OMNeT++ supports a variety of user interfaces for debugging,

demonstration

control over simulation execution. Users can inspect the variables and

messages in each module and change the values of variables during run-time.

This is a very useful feature for the development and debugging phase of the

model [11]. Moreover, user interfaces also demonstrate how the model works

[11].

F

born huttle System test environment. It consists o

nment - that encapsulates shuttles and customers - and Manager.

Figure 20. OMNeT++ Model for Paderborn Shuttle System.

e Shuttles_And_Customers module contains the C++ code of the test

river fro r module

contain

Th

d generated m the AEG environment model. The Manage

s the C++ code that simulates the functional behavior of the Paderborn

Shuttle System software that receives travel requests from Customers, accepts

parameters sent on each message channels are

display

bids from Shuttles for orders, assigns orders to Shuttles and controls capital and

maintenance status of shuttles.

The messages and their

ed in the figure below.

send_ready(shuttle_id)

 send_orde

send_

send

send

 de

Figure 21.
Co

s

OMNeT++ M
nnection Bet

request order(shuttle id, order no)

r order_request_no)

tart,
stination, accepted_bid, number_of_customers)
order_confirmed(shuttle_id, ord_confirmed, s

 send_bid(shuttle_id, bid, order_id)

(shuttle_id, order_id ,distance, next_

 request_next_station(shuttle_id, shuttle_at_station)
27

 _order_completed(shuttle_id, retired, capital)

_next_station(shuttle_id, shuttle_at_station)

end_customer_request(int start, int dest)

odel for Paderborn Shuttle System That Shows the
ween Modules and the Messages Sent Over Those

Connections.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

III. EXPERIMENTS

We conducted three types of experiments to investigate the effectiveness

of the AEG-based test automation in support of correctness testing, system

performance assessment and evaluation of design alternatives for the

MANAGER software of the Paderborn Shuttle System.

Software correctness testing involves observing unexpected or unsafe

behavior of the SUT, especially when the SUT is subjected to a series of extreme

case test scenarios generated from attributed event grammar (AEG) environment

models. “This type of analysis is especially useful for eliminating errors in the

control software [8].”

On the other hand, system performance assessment is based on the idea

of running a large number of test scenarios and gathering relevant statistical data

that may give insight into the effectiveness of the SUT with respect to

environmental variables [8]. From such results we can better understand which

factors lead to failure in the performance of the SUT and in what way [8].

Last but not least, environment models can be very useful to support the

study of design alternatives to the SUT, especially in order to measure the

efficiency of different algorithm alternatives in the SUT [7]. This kind of

experiment might prove very useful to test whether an algorithm that we think is

efficient is truly efficient in the context of its operating environment. We can

perform such experiments by subjecting each algorithm to the same scenario

batches and comparing the statistical data gathered from those runs for each

algorithm.

A. SOFTWARE CORRECTNESS TESTING
1. Experiment One
After analyzing the visual statistics gathered from our experiment run with

the AEG based automatically generated test driver with the environmental

parameters shown in Table 1, we have identified a serious error within the

MANAGER module.

Test Driver
No

Number of
Shuttles

Number of Order Iterations by
Shuttles

Customer Arrival Rate

1 4 25 Every 10 sec. with P(70)

Table 1. Parameters of AEG Based Test Driver for Experiment One

The figure below demonstrates the number of shuttles alive (not retired),

the number of shuttles processing an order (busy shuttles) and the total number

of order requests waiting to be processed by shuttles in queue.

Figure 22. Visual Statistical Result of Experiment 1 (Busy Shuttles / Alive
Shuttles)

The expected behavior of the experiment was to have all shuttles busy as

long as the shuttles are not retired and there are orders waiting to be processed

30

in the queue (orders unassigned to any shuttles). However, we observed that

some of the shuttles were not assigned any orders even though there were

orders waiting to be processed. We traced the cause of this problem to a sub-

routine (move_unique_orders()) in the manager module.

The Manager software (SUT) uses a sub-routine

(move_unique_orders()) that selects unique orders from a queue (ready_list)
that holds received customer order requests and moves those orders to another

queue (processing_list) the orders in which will be offered to shuttles requesting

orders.

A unique order is the one that where the path (a sequence of stations on a

shuttles route in order to complete its order assignment) of an order in the ready

list neither matches with the path of any primary orders which are in the

processing list nor is a subset path of any of them.

The intended algorithm is described in the figure below.

MOVE_UNIQUE_ORDERS:
for(each order A in processing_list) {
 for(each order B in ready_list) {
 if(B is NOT on the same route with A)
 then move B to processing_list
 if(processing_list.SIZE EQUALS TO number of shuttles alive)

break;
 }
 }

A B C D E
 processing_list

A b b B C c D a d E d e a c b …
 ready_list

Figure 23. Pseudo Code for move_unique_orders() Sub-routine

After carefully analyzing our algorithm we realized that it identified an

order in the ready list as a unique order if it was not on the same route as any

31

one of the orders in the processing list (even though we meant to check it with all

the orders in the processing list) and this sometimes resulted in having multiple

orders with the same start and destination stations in the processing list. Since

orders in the processing list were referred to by their start and destination station

attributes by the MANAGER in order to uniquely identify them, duplicate orders

were never offered to shuttles for bidding since the Manager assumes that they

have already been offered.

We have not only corrected the corrupted move_unique_orders

subroutine algorithm, but also decided to refer to orders in the processing list with

a unique order id instead of using their start and destination station attributes in

order to uniquely identify them. The pseudo code of the corrected algorithm

move_unique_orders subroutine is shown in the figure below.

MOVE_UNIQUE_ORDERS:
for (each order B in ready_list) {

for (each order A in processing_list) {
if (B is NOT on the same route with A)

 continue
 else
 break;
}
if (END OF processing_list)

then move B to processing_list
if (processing_list.SIZE EQUALS TO number of shuttles alive)

break;
}

Figure 24. Corrected Pseudo Code for move_unique_orders() Sub-routine

After debugging the subroutine and using unique order id’s as unique

order identifiers instead of using their start and destination station attributes, we

have rerun the same test driver and observed that the visual statistical data is as

expected as shown in the figure below.

32

Figure 25. Visual Statistical Result of Experiment 1 (Busy Shuttles / Alive

Shuttles)

2. Experiment Two
Exploring the visual statistical data gathered from our second experiment

run with the AEG-based manually generated test driver with the environmental

parameters displayed in Table 2, we have identified another error in the Manager

module.

Test Driver
No

Number of
Shuttles

Number of Order Iterations by
Shuttles

Customer Arrival Rate

1 4 25 Every 10 sec. with P(70)

Table 2. Parameters of AEG Based Test Driver for Experiment Two

Since the capacity of each shuttle in the system is limited to a constant

number of customers (SHUTTLE CAPACITY limit for this experiment was three),

the MANAGER program (control software of the shuttle system) should not be

overloading shuttles by assigning customers more than the SHUTTLE

CAPACITY limit of shuttles. However, as shown in the figure below, we observed
33

in our experiment that two of the shuttles were overloaded by the MANAGER

who assigned four customers for those two shuttles.

Figure 26. Visual Statistical Result of Experiment 2 (Number of Customers in

Shuttles)

The cause of the problem has been found in one of the subroutines

group_matching_orders(order A) which did not check for SHUTTLE

CAPACITY limit when grouping orders. A group of orders are those orders that

are on the same route. The defective algorithm (Figure 29) and the corrected

algorithm (Figure 30) are shown below.

34

35

GROUP_ORDERS(Order A):
 for (each order B in ready_list)
 {
 if (B is on the same route with A)
 then group B with A
 }

Figure 27. Pseudo Code for Defective group_matching_orders(order A) Sub-
routine

GROUP_ORDERS(Order A):
 if (number of orders grouped with order A is
 LESS THAN SHUTTLE CAPACITY)
 for (each order B in ready_list)
 {
 if (B is on the same route with A)
 then group B with A
 if (number of orders grouped with order A
 EQUALS TO SHUTTLE CAPACITY)
 then break loop
 }

Figure 28. Pseudo Code for Corrected group_matching_orders(order A) Sub-

routine

After debugging the subroutine we have rerun the same test driver and

observed that the visual statistical data is as expected as shown in the figure

below.

Figure 29. Visual Statistical Result of Experiment 2 (Number of Customers in

Shuttles)

3. Experiment Three
We have run the manually generated test drivers shown in Table 3 and

encountered another problem when we ran the last test driver where we

increased the number of shuttles in the system compared to the previous test

drivers. In this case our experiment simulating the interaction between the

MANAGER and its environment terminated unexpectedly.

36

37

Test Driver
No

Number of
Shuttles

Number of Iterations of
Order Processing by Shuttles

Customer Arrival Rate

1 4 15 Every 10 sec. with P(70)
2 4 25 Every 10 sec. with P(70)
3 4 30 Every 10 sec. with P(70)
4 5 20 Every 10 sec. with P(70)

Table 3. Parameters of AEG Based Test Drivers for Experiment Three

We have found that this type of error appeared because the MANAGER

grouped a primary order (an order which has the longest distance in a group of

orders) under another order after offering that order to the shuttles for bidding.

Because of this, the MANAGER could no longer refer to that order as a primary

order when shuttles sent their bids back to the MANAGER.

We have added another flag (order.locked attribute) to orders to prevent

grouping an order that has already been offered to shuttles with another order.

After identifying and correcting each error in software correctness testing

we have rerun all the previously generated test drivers. We did so because we

have made changes to the SUT and it needs to be tested from scratch to find out

whether we have introduced new errors to the SUT. This issue addresses

regression testing [6] which is “any repetition of tests (usually after software or

data change) intended to show that the software’s behavior is unchanged except

insofar as required by the change to the software or data [1].” Since changes

made to the SUT did not require us to change the AEG model, we have saved

and reused the previously generated test drivers. This proved to be very useful

for regression testing [6].

We have run the manually generated test drivers shown below in Table 4

after the last correction to the SUT and we did not identify any more errors in the

SUT.

Test drivers 10 through 32 were generated by changing the values of

additional customer fee and shuttle capacity variables of test driver 9 at run-time.

38

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 4 15 Every 10 sec. with P(70) 2 3
2 4 25 Every 10 sec. with P(70) 2 3
3 4 30 Every 10 sec. with P(70) 2 3
4 2 20 Every 10 sec. with P(70) 2 3
5 3 20 Every 10 sec. with P(70) 2 3
6 4 20 Every 10 sec. with P(70) 2 3
7 5 20 Every 10 sec. with P(70) 2 3
8 6 20 Every 10 sec. with P(70) 2 3
9 4 25 Every 5 sec. with P(90) 2 1
10 4 25 Every 5 sec. with P(90) 2 2
11 4 25 Every 5 sec. with P(90) 2 3
12 4 25 Every 5 sec. with P(90) 2 4
13 4 25 Every 5 sec. with P(90) 2 5
14 4 25 Every 5 sec. with P(90) 2 6
15 4 25 Every 5 sec. with P(90) 2 7
16 4 25 Every 5 sec. with P(90) 2 8
17 4 25 Every 5 sec. with P(90) 2 9
18 4 25 Every 5 sec. with P(90) 2 10
19 4 25 Every 5 sec. with P(90) 2 11
20 4 25 Every 5 sec. with P(90) 2 12
21 4 25 Every 5 sec. with P(90) 2 13
22 4 25 Every 5 sec. with P(90) 2 14
23 4 25 Every 5 sec. with P(90) 2 15
24 4 25 Every 5 sec. with P(90) 4 3
25 4 25 Every 5 sec. with P(90) 6 3
26 4 25 Every 5 sec. with P(90) 8 3
27 4 25 Every 5 sec. with P(90) 10 3
28 4 25 Every 5 sec. with P(90) 12 3
29 4 25 Every 5 sec. with P(90) 14 3
30 4 25 Every 5 sec. with P(90) 16 3
31 4 25 Every 5 sec. with P(90) 18 3
32 4 25 Every 5 sec. with P(90) 20 3
33 4 20 Every 5 sec. with P(10) 2 3
34 4 20 Every 5 sec. with P(20) 2 3
35 4 20 Every 5 sec. with P(30) 2 3
36 4 20 Every 5 sec. with P(40) 2 3
37 4 20 Every 5 sec. with P(50) 2 3
38 4 20 Every 5 sec. with P(60) 2 3
39 4 20 Every 5 sec. with P(70) 2 3
40 4 20 Every 5 sec. with P(80) 2 3
41 4 20 Every 5 sec. with P(90) 2 3

Table 4. Parameters of AEG Based Test Drivers for Experiment Three

39

B. SYSTEM PERFORMANCE ASSESSMENT
The purpose of system performance assessment is to get some useful

information about the effectiveness of the SUT with respect to environmental

variables in order to identify the hazardous situations that the system may

encounter.

For the Paderborn Shuttle System, we have identified customer waiting

times and shuttles’ capital statuses as two mission critical variables with which

we might experiment on the effectiveness of the SUT to see the correlation

between these variables and other environmental parameters in order to find out

if they might cause hazardous situations in the system.

1. Experiment Four

In our first experiment for system performance assessment we wanted to

see the correlation between the additional customer fees and shuttles’ capital

statuses.

We think that shuttle capitals are mission critical values for the Paderborn

Shuttle System since the low shuttle capital values indicate imminent shuttle

bankruptcies which will result in decreased number of active shuttles in the

system and larger customer queues. (Larger customer queues might imply

longer customer waiting times and experiments concerning customer waiting

times will be analyzed in Experiment 5.)

The additional customer fee is the money shuttles receive in addition to

their initial bid amounts, for each additional customer (except for the one

customer who is traveling the longest distance and for whom the shuttles make

their bids) assigned to shuttles by the MANAGER.

We have run the test drivers shown in Table 5 below for our experiment.

40

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 4 25 Every 5 sec. with P(90) 2 3
2 4 25 Every 5 sec. with P(90) 4 3
3 4 25 Every 5 sec. with P(90) 6 3
4 4 25 Every 5 sec. with P(90) 8 3
5 4 25 Every 5 sec. with P(90) 10 3
6 4 25 Every 5 sec. with P(90) 12 3
7 4 25 Every 5 sec. with P(90) 14 3
8 4 25 Every 5 sec. with P(90) 16 3
9 4 25 Every 5 sec. with P(90) 18 3
10 4 25 Every 5 sec. with P(90) 20 3

Table 5. Parameters of AEG Based Test Drivers for Experiment Four

Initially each shuttle in the system has 100 units of money. We have

considered any amount below 60 for minimum shuttle capital and any amount

below 100 for average shuttle capital values as a concern of risk at the end of the

time duration in which shuttles have processed at most 25 orders. The

correlation between a range of additional customer fees (2 to 20 incremented by

2 each time) and minimum and average shuttle capitals are shown in the figures

below.

Since we have identified any minimum shuttle capital value below 60 as a

mission critical concern for the Paderborn Shuttle System, after analyzing the

figure below, we may reach the conclusion that additional customer fee values of

2 and 4 may cause some shuttles to have capital balances below 60 which will

be a mission risk for the system. In other terms, the minimum additional customer

fee for all shuttles not to have a balance below 60 is 6 and any value above 6 will

increase the performance of the overall system in terms of shuttle capital values.

Figure 30. Visual Statistical Result of Experiment 5 (Minimum Shuttle Capital /

Additional Customer Fee)

From the figure below, since we have identified any average shuttle

capital values below 100 as a mission critical concern, we may reach the

conclusion that additional customer fee values of 2 and 4 may cause some

shuttles to have capital balances below 100 on average resulting in a system

performance concern. We can also conclude that the minimum additional

customer fee for all shuttles not to have an average balance below 100 is 6 and

any value above 6 will increase the performance of the overall system in terms of

shuttle capital values.

41

Figure 31. Visual Statistical Results of Experiment 5 (Average Shuttle Capital /

Additional Customer Fee)

2. Experiment Five
In our second performance assessment experiment, we wanted to see the

correlation between shuttle capacities in the system and customer waiting times

in order to find out if the shuttle capacities have any effect on customer waiting

times and if so, what values of shuttles capacities may cause unsafe operating

conditions. We have thought that customer waiting times would be of great

concern in terms of system performance since customers would not wait

indefinitely and would eventually leave.

Shuttle capacity determines the maximum number of customers that can

be loaded to any given shuttle in the system. We have run the test drivers shown

in Table 6 below for our experiment.

42

43

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 4 25 Every 5 sec. with P(90) 2 1
2 4 25 Every 5 sec. with P(90) 2 2
3 4 25 Every 5 sec. with P(90) 2 3
4 4 25 Every 5 sec. with P(90) 2 4
5 4 25 Every 5 sec. with P(90) 2 5
6 4 25 Every 5 sec. with P(90) 2 6
7 4 25 Every 5 sec. with P(90) 2 7
8 4 25 Every 5 sec. with P(90) 2 8
9 4 25 Every 5 sec. with P(90) 2 9
10 4 25 Every 5 sec. with P(90) 2 10
11 4 25 Every 5 sec. with P(90) 2 11
12 4 25 Every 5 sec. with P(90) 2 12
13 4 25 Every 5 sec. with P(90) 2 13
14 4 25 Every 5 sec. with P(90) 2 14
15 4 25 Every 5 sec. with P(90) 2 15

Table 6. Parameters of AEG Based Test Drivers for Experiment Five

Our assumption is that any customer waiting more than 1500 seconds and

customer waiting times over 700 seconds on average would be a concern for the

time duration in which shuttles have processed at most 25 orders. The

correlation between a range of shuttle capacities (1 to 15 incremented by 1 each

time) and maximum and average customer waiting times are shown below in the

figures below.

Since we have assumed that any maximum customer waiting time value

above 1500 seconds is a mission critical value, we may reach the conclusion,

from the figure below, that shuttle capacity values of 1, 2 and 3 may cause some

customers to wait more than 1500 seconds. Stated differently, the minimum

shuttle capacity value for all shuttles in order to prevent any customer from

waiting more than this critical level of 1500 seconds is 4 and any value above 4

will increase the performance of the overall system decreasing the customer

waiting times.

Figure 32. Visual Statistical Result of Experiment 5 (Maximum Customer Waiting

Time (seconds) / Shuttle Capacity)

Having identified any average customer waiting time value above 700

seconds as a mission critical value, from the figure below, we may conclude that

shuttle capacity values of 1, 2 and 3 may cause some customers to wait more

than 700 seconds on average. We can also state that the minimum shuttle

capacity value for all shuttles not to cause customers to wait more than this

critical level of 700 seconds average waiting time is 4 and any value above 4 will

increase the performance of the overall system in terms of customer waiting

times.

44

Figure 33. Visual Statistical Result of Experiment 5 (Average Customer Waiting

Times (seconds) / Shuttle Capacity)

C. EVALUATION OF DESIGN ALTERNATIVES

This experiment arose because we wanted to explore the efficiency of four

different algorithms that are used for choosing primary orders in the context of its

operating environment. Without this type of experiment we cannot reach to a

conclusion regarding the efficiency of an algorithm with respect to environmental

parameters. We measure the efficiency of those four different algorithms for this

purpose by running them with the same scenario batches for each algorithm and

comparing the statistics gathered from those runs.

What we are really interested in this experiment is observing and

comparing the efficiency of each algorithm under different environmental factors.

The general algorithm for choosing orders, grouping orders and assigning

them to shuttles is as follows: Choose primary orders from a queue of order

requests waiting to be processed and then group the rest of the orders with

primary orders if they are on the same route as primary orders as long as the

45

number of orders grouped with primary orders does not exceed shuttle capacity

limits.

We have developed four different algorithms to choose primary orders

where the chosen primary orders are moved from the ready list to the processing

list.

The term unique orders used in the algorithms described in the figures

below are those orders where the path (a sequence of stations on a shuttle’s

route in order to complete its assignment) of an order is neither the same as the

path of a primary order which is in the processing list nor is it a subset path of a

primary order.

46

Figure 34. Algorithm 1 for Choosing Primary Orders

CHOOSE PRIMARY ORDERS (algorithm 1):
MOVE_UNIQUE_ORDERS

Figure 35. Algorithm 2 for Choosing Primary Orders

CHOOSE PRIMARY ORDERS (algorithm 2):
while((processing_list SIZE < number of shuttles alive) AND

 (ready_list NOT EMPTY)) {
 MOVE_UNIQUE_ORDERS
 if(processing_list SIZE NOT CHANGED)
 break;
 for(each order in the processing_list) {
 if(an order is on the same route with another order in the list)
 group that order with its superset order
 }
 if(processing_list SIZE NOT CHANGED)
 break;
 }

Figure 36. Algorithm 3 for Choosing Primary Orders

CHOOSE PRIMARY ORDERS (algorithm 3):
while((processing_list SIZE < number of shuttles alive) AND

 (ready_list NOT EMPTY))
 move the first order from the processing_list to ready_list

47

Figure 37. Algorithm 4 for Choosing Primary Orders

We have compared each algorithm changing the values of three

environment parameters, one at a time: number of shuttles in the system, shuttle

capacities and customer arrival rates in order to measure their efficiencies in

terms of efficiency parameters such as average shuttle capacity, average shuttle

capital and minimum, maximum and average customer waiting times.

CHOOSE PRIMARY ORDERS (algorithm 4):
while((processing_list SIZE < number of shuttles alive) AND

 (ready_list NOT EMPTY)) {
 move the first order from the processing_list to ready_list
 if(processing_list SIZE NOT CHANGED)
 break;
 for(each order in the processing_list) {
 if(an order is on the same route with another order in the list)
 group that order with its superset order
 }
 if(processing_list SIZE NOT CHANGED)
 break;
 }

Number of Shuttles Average Shuttle Capacities

Shuttle Capacities

Figure 38. System Parameters of Interest In Order To Measure the Efficiency of

Different Algorithms

Average Shuttle Capitals

Customer Arrival
Rates

Customer Waiting Times
(Min, Max and Mean)

48

1. Experiment Six
In our first experiment of evaluation of design alternatives, we have

explored the efficiency of four different algorithms (each displayed with a different

color in the figures below) changing the number of shuttles in the system. We

have measured the efficiency of different algorithms in terms of average shuttle

capacity utilization, average shuttle capital and minimum, maximum and average

customer waiting times.

This experiment was conducted using the AEG based test drivers

displayed in the table below.

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 2 25 Every 5 sec. with P(90) 2 3
2 3 25 Every 5 sec. with P(90) 2 3
3 4 25 Every 5 sec. with P(90) 2 3
4 5 25 Every 5 sec. with P(90) 2 3

Table 7. Parameters of AEG Based Test Drivers for Experiment Six

From the first figure below, we can easily make a general conclusion that

increasing the number of shuttles in the system results in decreasing shuttle

capacity utilization. We can also find out which algorithm is more efficient in

terms of shuttle capacity utilization values in a couple of different cases where we

have a varying number of shuttles in the system. For instance, it can be easily

observed that algorithm 3 is the least efficient when there are 4 or 5 shuttles in

the system since it has the lowest average shuttle capacity utilization.

Figure 39. Visual Statistical Results of Experiment Six (Average Shuttle Capacity /

Number of Shuttles)

Analyzing the next figure below, we can conclude generally that increasing

the number of shuttles in the system results in decreasing average shuttle capital

values. We can also find out which algorithm is more efficient in terms of average

shuttle capital values in a couple of different cases where we have a varying

number of shuttles in the system.

49

Figure 40. Visual Statistical Results of Experiment Six (Average Shuttle Capitals /

Number of Shuttles)

Analyzing the three figures below, we can make a general conclusion that

increasing the number of shuttles in the system helps to reduce minimum,

maximum and average customer waiting times. We can also find out which

algorithm is more efficient in terms of customer waiting times in a couple of

different cases where we have a varying number of shuttles in the system.

50

Figure 41. Visual Statistical Results of Experiment Six (Minimum Customer

Waiting Times (seconds) / Number of Shuttles)

Figure 42. Visual Statistical Results of Experiment Six (Maximum Customer

Waiting Times (seconds) / Number of Shuttles)

51

Figure 43. Visual Statistical Results of Experiment Six (Average Customer

Waiting Times (seconds) / Number of Shuttles)

2. Experiment Seven
In our second experiment of evaluation of design alternatives, we have

explored the efficiency of 4 different algorithms (each displayed with a different

color in the figures below) changing the shuttle capacity parameter of the system.

We have measured the efficiency of different algorithms in terms of average

shuttle capital and minimum, maximum and average customer waiting times

parameters of the system.

This experiment was conducted using the AEG based test drivers

displayed in the table below.

52

53

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 4 25 Every 5 sec. with P(90) 2 1
2 4 25 Every 5 sec. with P(90) 2 2
3 4 25 Every 5 sec. with P(90) 2 3
4 4 25 Every 5 sec. with P(90) 2 4
5 4 25 Every 5 sec. with P(90) 2 5
6 4 25 Every 5 sec. with P(90) 2 6
7 4 25 Every 5 sec. with P(90) 2 7
8 4 25 Every 5 sec. with P(90) 2 8
9 4 25 Every 5 sec. with P(90) 2 9
10 4 25 Every 5 sec. with P(90) 2 10

Table 8. Parameters of AEG Based Test Drivers for Experiment Seven

From the figure below, we can conclude generally that increasing shuttle

capacity values in the system results in increased average shuttle capital values.

We can also find out which algorithm is more efficient in terms of average shuttle

capital values in a couple of different cases where we have a varying number of

shuttle capacity values in the system. Algorithm 3 appears to be the least

efficient for each case while algorithm 2 is the most efficient one for all of the

different shuttle capacities.

Figure 44. Visual Statistical Results of Experiment Seven (Average Shuttle

Capitals / Shuttle Capacity)

54

From the figure below, we can conclude generally that increasing shuttle

capacity values up to 4 in the system results in decreasing minimum customer

waiting times and increasing the shuttle capacity above 4 has no effect on

minimum customer waiting times for all algorithms. We can also find out which

algorithm is more efficient in terms of minimum customer waiting times in a

couple of different cases where we vary shuttle capacities in the system.

Algorithm 3 appears to be the least efficient when the shuttle capacity is 3 while

the rest of the algoritms yield the same better result.

Figure 45. Visual Statistical Results of Experiment Seven (Minimum Customer

Waiting Times (seconds) / Shuttle Capacity)

55

From the figure below, we can conclude generally that increasing shuttle

capacity values up to 7 in the system results in decreasing maximum customer

waiting times and increasing the shuttle capacity more than 7 has no effect on

maximum customer waiting times for all algorithms. We can also find out which

algorithm is more efficient in terms of maximum customer waiting times in a

couple of different cases where we have a varying number of shuttle capacities in

the system.

Figure 46. Visual Statistical Results of Experiment Seven (Maximum Customer

Waiting Times (seconds) / Shuttle Capacity)

56

From the figure below, we can conclude generally that increasing shuttle

capacity values results in decreasing average customer waiting times. We can

also find out which algorithm is more efficient in terms of average customer

waiting times in a couple of different cases where we have a varying number of

shuttle capacities in the system. Algorithm 3 appears to be the least efficient for

all cases of different shuttle capacities while the other algorithms have almost the

same values.

Figure 47. Visual Statistical Results of Experiment Seven (Average Customer

Waiting Times (seconds) / Shuttle Capacity)

57

58

3. Experiment Eight
In our third and final experiment evaluating design alternatives, we have

explored the efficiency of 4 different algorithms (each displayed with a different

color in the figures below) changing the customer arrival rate parameter of the

system. We have measured the efficiency of these algorithms in terms of shuttle

capacity utilization, average shuttle capital and maximum and average customer

waiting time parameters of the system.

This experiment was conducted using the AEG based test drivers

displayed in the table below.

Test
Driver
No

Number
of
Shuttles

Number of Order
Processing
Iterations by
Shuttles

Customer Arrival Rate Additional
Customer
Fee

Shuttle
Capacity

1 4 20 Every 5 sec. with P(10) 2 3
2 4 20 Every 5 sec. with P(20) 2 3
3 4 20 Every 5 sec. with P(30) 2 3
4 4 20 Every 5 sec. with P(40) 2 3
5 4 20 Every 5 sec. with P(50) 2 3
6 4 20 Every 5 sec. with P(60) 2 3
7 4 20 Every 5 sec. with P(70) 2 3
8 4 20 Every 5 sec. with P(80) 2 3
9 4 20 Every 5 sec. with P(90) 2 3

Table 9. Parameters of AEG Based Test Drivers for Experiment Eight

From the first figure below, we can easily conclude that increasing

customer arrival rates results in increasing shuttle capacity utilization. We can

also find out which algorithm is more efficient in terms of shuttle capacity

utilization values in a couple of different cases where we have increased

customer arrival rates by P(10) at a time for the range of P(10) to P(90). It can be

easily observed that while algorithm 3 is the least efficient for low customer

arrival rates, there is no significant difference between those algorithms as the

customer arrival rate gets higher.

Figure 48. Visual Statistical Results of Experiment Eight (Mean Shuttle Capacities

/ Customer Arrival Rate)

59

We can conclude from the figure below that for customer arrival rate of

P(10) all of the algorithms cause shuttles to have the same capital values.

However, while algorithm 3 is the least efficient overall for higher customer arrival

rates, algorithm 4 yields higher average shuttle capitals.

Figure 49. Visual Statistical Results of Experiment Eight (Mean Shuttle Capitals /

Customer Arrival Rate)

60

The figure below yields rather interesting results in terms of measuring the

efficiency of different algorithms with respect to maximum customer waiting

times. Generally we can conclude that increasing customer arrival rates results in

increasing maximum customer waiting times. In terms of comparisons of

algorithm efficiencies, while all of the algorithms yields the same maximum

customer waiting times up to customer arrival rate probability of P(50), after this

point, algorithm 3 gives the highest maximum customer waiting times whereas

algorithms 2 and 4 treats customers rather fairly, not causing any of them to wait

too long.

Figure 50. Visual Statistical Results of Experiment Eight (Maximum Customer

Waiting Times / Customer Arrival Rate)

61

From the figure below, we can conclude that increasing customer arrival

rates generally results in increasing average customer waiting times. In terms of

algorithm efficiency comparisons, while all of the algorithms yields the same

average customer waiting times at P(10), after this point, algorithm 3 gives the

highest average customer waiting times whereas the other algorithms gives

lower average customer waiting times with no significant difference among them.

Figure 51. Visual Statistical Results of Experiment Eight (Average Customer
Waiting Times / Customer Arrival Rate)

62

63

IV. RELATED WORK

Hand-crafted testing (manual testing) is the state-of-practice in today’s

software industry [13]. However, this approach has many shortcomings such as

being tedious for the tester, expensive for the company [13], error prone, slow,

and less efficient in the long run [5].

Static test automation [13] (Capture/Playback Approach [14]) is one way

of automating this process. This approach still relies on manually determined test

cases. Capturing the manual test sequences in a test script and rerunning them

[14] for regression testing purposes at a later time is the only improvement in this

approach. However, it is costly to modify test scripts when the system under

testing changes [13], [14]. Moreover, exercising the same sequence of test inputs

over and over again reduces the chance of finding new errors [13].

An even better improvement is using random test programs (dumb

monkeys [13]) which generate test scenarios randomly and aimlessly. Even

though they prove to be very useful in finding crashing bugs by generating

unusual test input sequences [13], they are not systematic and cannot be

directed to the specific parts of the SUT [5], [13].

A systematic and focused [5] testing automation is what we seek.

Systematic testing enables us to enumerate input and state combinations [5] and

measure testing coverage. Focused testing helps us to concentrate on the

specific parts of the SUT where bugs might be likely to be found [5], [13].

Model-based test generation is based on a description of the application’s

behavior to determine what actions are possible and what outcome is expected

[13] and this approach achieves the objectives explained above [5]. The SUT’s

behavior can be represented in a state table from which a computer can

generate test sequences that are randomly selected [13] from available test

sequences that are associated with the current state of the SUT.

64

Whittaker [15] and Maurer [17] describe a solution to determining test

sequence generation problem where regular expressions and grammars can be

used in addition to graph or state diagrams proposed by Robinson [13] to create

a behavior model of the SUT. Using the language theory, in this approach test

inputs are represented as symbols which are generated randomly according to a

template that describes a test format [17]. Then they are combined to make valid

words and sentences that can be applied to the SUT [15].

Blacburn, Busser and Nauman [16] state that “model-based test

generation can be based on various modeling forms, such as state machines,

functional tabular condition/action models, control system models, language

models and hybrids.”

All of the Model-based test generation approaches mentioned above are

based on modeling the behavior of the SUT whereas our approach in

Environment Behavior Modeling for testing automation is totally black-box and

oblivious of the behavior of the SUT. Attributed Event Grammars (AEG), which

are based on context free grammars, are used to describe the events in the

environment of the SUT in order to generate random test sequences that can be

applied to the SUT. Moreover, our approach of automatic scenario generation

from Environment Behavior Models is especially useful for testing of real-time

reactive systems [6], [7].

In order to specify the externally observable behavior of a software

module, Wang and Parnas [18] used trace assertions [7]. They presented a trace

simulator to symbolically interpret the trace assertions and simulate the externally

observable behavior of the module specified using algebraic specifications and

term and term rewriting techniques [7]. This approach is only applicable to non-

real-time applications [7].

Alfonso et al. [19] used event scenarios (events and responses) for

expressing real-time system constraints with a formal visual language [7]. They

proposed to study properties of the formal model of the system under analysis

via model checking and run-time verification with a tool that could translate the

65

scenarios into observer timed automata [7]. However, while this approach is

effective for modeling static environments with fixed scenarios, AEG based

environment behavior modeling can be used to specify dynamic environments

with concurrent events [7].

Randomized test cases against “usage probability distributions [20]” which

aims at minimizing the test input sequence combinations for increasing the

efficiency of test cases are described by Linger in the Cleanroom Software

Engineering approach. Usage probability distributions which “define all possible

usage patterns and scenarios, including erroneous and unexpected usage,

together with their probabilities of occurrence [20]” are natural in the semantics of

Event Grammars. P(prob) constructs of AEG’s can be used efficiently for such

purposes. Moreover, changing environmental parameters of the test cases

(either at compile time or run-time) can help direct the focus of test drivers.

Environment Behavior Models for testing automation and safety

assessment of real-time reactive systems is first described by Auguston, Michael

and Shing in [6] and [7] where the fundamentals of Event Grammars are

explained and possible environment models for three different case studies

(Calculator Program, CARA Infusion Pump System and The Paderborn Shuttle

System Control Software) are shown. In [8], efficiency of Environment Behavior

Models is explored in detail by the CARA Infusion Pump case study (which is a

safety critical real-time reactive system) through three kinds of experiments:

Quantitative Safety Assessment, Qualitative Safety Assessment and

Development/Improvement of the SUT.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

V. CONCLUSION

We have explored the effectiveness of using environment behavior

models as a method for testing and analyzing real-time, reactive software

systems. We have used automatic test case scenario generation, which is based

on an attributed event grammar (AEG) model, to define the environment of a

SUT which is a real-time, reactive software system. This system was a model of

the Paderborn Shuttle System [10] control software which is a real-time reactive

system. We have explored the extent to which experiments with a SUT

embedded in an environment behavior model serve as a constructive method for

testing functional, performance and timing requirements of real-time, reactive

software systems.

Specifically, we have conducted three types of experiments to investigate

the effectiveness of the AEG-based test automation: software correctness

testing, system performance assessment and evaluation of design alternatives

for the control software.

The experience gained from our case study of the Paderborn Shuttle

System [10] control software together with the experiences learned from the

previously exercised case study of CARA [8] control software reveals the main

advantages of the approach as follows:

 “AEG is well structured and hierarchical, as is any formalism based

on formal grammars [7].”

 “Environment models specified by attributed event grammars

provide for automated generation of a large number of random test

drivers [7].”

 Different environment models can be developed throughout the

design process (especially when the spiral method is used) for unit

and system testing purposes. We have developed our SUT

(Paderborn Shuttle System control software) with the spiral

68

software development method and used appropriate environment

models for the prototypes generated at the end of each

development cycle in order to test the SUT at each level.

Environment models proved very useful in identifying both serious

requirements errors and minor coding errors in the SUT throughout

the software development process.

 Generated test drivers can be used for real-time system

correctness testing purposes as demonstrated in experiments one

thru three. Our experiments proved very useful in identifying critical

errors in the SUT which would be very hard to find without the use

of the AEG based automated scenario generation approach.

 Extreme case test scenarios can be generated from attributed

event grammar based environment models for load testing of the

system.

 Usage probability distributions which “define all possible usage

patterns and scenarios, including erroneous and unexpected

usage, together with their probabilities of occurrence [20]” are

natural in the semantics of Event Grammars. P(prob) constructs of

AEG’s can be used efficiently for such purposes.

 “Generated test drivers can be saved and reused for regression

testing. We expect that environment models will be changed

relatively seldom unless significant errors in the requirements are

discovered during testing. The environment model itself is an asset

and could be reused [7].”

 AEG models can be used to gather relevant statistical data (by

generating and running a large number of test scenarios) that may

give insight into the effectiveness of the SUT with respect to

environmental variables [8]. “From such results we can better

understand which factors lead to failure of the SUT and in what way

[8].”

69

 Environment models can be very useful to support the study of

design alternatives for a SUT, especially in order to measure the

efficiency of different algorithm alternatives in the SUT [7]. We have

performed such experiments by subjecting each algorithm to the

same scenario batches and comparing the statistical data gathered

from those runs for each algorithm.

Open questions and areas that needs improvement on AEG based

environment behavior models are discussed below.

 Current prototype of an automated test generator based on

attributed event grammars takes an AEG model and generates a

test driver in C. Since C does not support concurrency, parallel

event threads represented in the AEG model (for sets, like {A, B})

are implemented by interleaving events/actions within them.

However, this approach turned out to be deficient in handling and

controlling the timing of events. Specifically, in our case, parallel

events with false flags appeared to be taking time even though they

were not executed. This kind of problem was caused by interleaved

parallel events some of which had false event flags while the others

had true flags. Future versions of test drivers might be

implemented in a real-time programming language.

 Synchronization of two parallel events is still an open question.

Specifically, in our experiment, we needed to synchronize customer

events with those of shuttles’ in order to make sure that customers

do not send order requests once all the shuttles have retired. This

was an important issue to get meaningful statistical results in our

experiments and we had to adjust the life length of customer events

manually.

 “In the current implementation, all loops in AEG are unfolded either

using explicit iteration guards, or by assuming a random number of

iterations [7].” However, this approach results in having test drivers

70

of great lengths (we have generated a test driver of 150,000 SLOC)

putting the scalability of the approach at risk. Yet, the other option

of not unfolding the loops until runtime raises another disadvantage

that may increase the run time of test drivers. More experiments

need to be done in order to address this problem and resolve the

conflicts that may arise in either case.

71

LIST OF REFERENCES

[1] B. Boizer, Software Testing Techniques, Van Nostrand Reinhold, NY, 1990.

[2] B. Bruegge, A. H. Dutoit, Object Oriented Software Engineering: Using UML, Patterns
and Java, Pearson Prentice Hall, NJ, 2004.

[3] P. C. Jorgensen, Software Testing: A Craftsman’s Approach, CRC Press, FL, 2002.

[4] B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Addison-Wesley, NJ, 2005.

[5] R. V. Binder, Testing Object Oriented Systems: Models, Patterns and Tools, Addison-
Wesley, NJ, 2005.

[6] M. Auguston, J.B. Michael, M. Shing, Environment Behavior Models for Scenario
Generation and Testing Automation, in: Proc. ICSE 2005 Workshop on Advances in
Model-Based Software Testing, ACM, St. Louis, MO, May 2005.

[7] M. Auguston, J.B. Michael, M. Shing, Environment Behavior Models for Automation
of Testing and Assessment of System Safety, Article in Press, To be Published by
Elsevier B.V.

[8] M. Auguston, J.B. Michael, M. Shing, H. Tummala, D. Little, Z. Pace, Implementation
and Analysis of Environment Behavior Models as a Tool for Testing Real-time, Reactive
Systems, in: Proceedings of the 206 IEEE International Conference on System of
Systems Engineering, Los Angeles, CA, April 2006.

[9] R. M. Hierons, H. Ural, Concerning the Ordering of Adaptive Test Sequences, in:
Proc. 23rd IFIP Int. Conf. on Formal Techniques for Networked and Distributed Systems,
Berlin, Germany, September 2003.

[10] Paderborn Shuttle System Case Study at http://wwwcs.upb.de/cs/ag-
schaefer/CaseStudies/ShuttleSystem/. July 2006.

[11] A. Varga, OMNeT++ Discrete Simulation System (Version 3.1) User Manual,
Technical University of Budapest, Dept. of Telecommunications, Hungary, March, 2005.

[12] M. Auguston, New Directions in Software Testing Automation Test Oracle Design,
and Safety Assessment at http://www.nps.navy.mil/cs/auguston/Auguston-HP-
RsearchDay-2005.ppt#444,5,Outlook of this presentation. July 2006.

[13] H. Robinson, Intelligent Test Automation, Software Testing & Quality Engineering
Magazine, September/October 2000.

[14] M. Blackburn, R. Busser, A. Nauman, Understanding the Generations of Test
Automation, Software Productivity Consortium, NFP, 2003.

[15] J. A. Whittaker, What Is Software Testing? And Why Is It So Hard?, IEEE Software,
0740-7459/00, January/February, 2000.

http://wwwcs.upb.de/cs/ag-schaefer/CaseStudies/ShuttleSystem/
http://wwwcs.upb.de/cs/ag-schaefer/CaseStudies/ShuttleSystem/

72

[16] M. Blackburn, R. Busser, A. Nauman, Why Model-Based Test Automation Is
Different And What You Should Know To Get Started, Software Productivity Consortium,
NFP, 2004.

[17] P. M. Maurer, Generating Test Data With Enhanced Context-Free Grammars, IEEE
Software, 0740-7459/90/0700/0050, 1990.

[18] Y. Wang, D. Parnas, Simulating the Behavior of Software Modules by Trace
Rewriting, IEEE Trans. Software Eng. 20(10)(1994)750-759.

[19] A. Alfonso, V. Braberman, N. Kicillof, A. Olivero, Visual Timed Event Scenarios,
Proceedings of he 26th International Conference on Software Engineering, ACM Press,
Edinburg, Scot., May 2004, pp.168-177.

[20] R. C. Linger, Cleanroom Software Engineering for Zero-Defect Software, IEEE,
0270-5257/93, 1993.

73

APPENDICES

A. OMNET++ SIMULATION MODEL CODES (C++ SOURCE FILES, C++
HEADER FILES AND OMNET++ RESOURCE FILES):
This section includes C++ source and header files for the behavioral

implementation of OMNeT++ simple modules. And, OMNeT++ resource files are

what define the simulation network, simple modules, module parameters and

module gates used in the Paderborn simulation model.

*** C++ SOURCE FILES ***

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: Shuttle.cpp

***/

//---------------Environment for SHUTTLE System-------------------

//--

#include "Shuttle.h"

Define_Module(Shuttle);

// This method is invoked when shuttles check if they have received

// messages from the Manager. The purpose of this method is to move

// the messages received from the Manager to the appropriate

// message queues.

void Shuttle::get_MANAGER_event()

{

 cMessage *m;

 while (!queue.empty())

 {

 m = (cMessage *)queue.pop();

 switch (m->kind())

 {

 case order_ev:

 order_buffer->write(((IntMsg4 *) m)->getValue1(),

 ((IntMsg4 *) m)->getValue2(),

74

 ((IntMsg4 *) m)->getValue3(),

 ((IntMsg4 *) m)->getValue4());

 ev << "SHUTTLE received message : "

 << m->name() << ", values = "

 << ((IntMsg4 *)m)->getValue1() << " - "

 << ((IntMsg4 *)m)->getValue2() << " - "

 << ((IntMsg4 *)m)->getValue3() << " - "

 << ((IntMsg4 *)m)->getValue4() << "\n";

 break;

 case next_station_ev:

 next_station_buffer->write(((IntMsg2 *) m)->getValue1(),

 ((IntMsg2 *) m)->getValue2());

 ev << "SHUTTLE received message : "

 << m->name() << ", value = "

 << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() <<"\n";

 break;

 case order_confirmed_ev:

 order_confirmed_buffer->write(((IntMsg6 *) m)->getValue1(),

 ((IntMsg6 *) m)->getValue2(),

 ((IntMsg6 *) m)->getValue3(),

 ((IntMsg6 *) m)->getValue4(),

 ((IntMsg6 *) m)->getValue5(),

 ((IntMsg6 *) m)->getValue6());

 ev << "SHUTTLE received message : "

 << m->name() << ", value = "

 << ((IntMsg6 *)m)->getValue1() << "-"

 << ((IntMsg6 *)m)->getValue2() << "-"

 << ((IntMsg6 *)m)->getValue3() << "-"

 << ((IntMsg6 *)m)->getValue4() << "-"

 << ((IntMsg6 *)m)->getValue5() << "-"

 << ((IntMsg6 *)m)->getValue6() << "\n";

 break;

 default:

 break;

 }

 }

};

75

// Shuttles send ready message at the beginning of the simulation

// to inform the Manager of their existence and being ready.

void Shuttle::send_ready(int shuttle_id)

{

 IntMsg *m = new IntMsg("send_ready", send_ready_ev);

 m->setValue(shuttle_id);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", value = "

 << ((IntMsg *)m)-> getValue() << "\n";

 send(m, "send_ready");

};

// Shuttles request an order given a shuttle id and

// order number to be requested.

void Shuttle::request_order(int shuttle_id, int order_no)

{

 IntMsg2 *m = new IntMsg2("request_order", request_order_ev);

 m->setValue1(shuttle_id);

 m->setValue2(order_no);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", values = "

 << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "request_order");

};

// Shuttles send their bids values together with

// their shuttle ids and order id for which the bis is made.

void Shuttle::send_bid(int shuttle_id, int bid, int order_id)

{

 IntMsg3 *m = new IntMsg3("send_bid", send_bid_ev);

 m->setValue1(shuttle_id);

 m->setValue2(bid);

 m->setValue3(order_id);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", value = "

 << ((IntMsg3 *)m)->getValue1() << " - "

 << ((IntMsg3 *)m)->getValue2() << " - "

76

 << ((IntMsg3 *)m)->getValue3() << "\n";

 send(m, "send_bid");

};

// Shuttles request the next station to get to the start station of an order

// given the shuttle's id and its current station.

void Shuttle::move_to_start_station(int shuttle_id, int shuttle_at_station)

{

 IntMsg2 *m = new IntMsg2("move_to_start_station", move_to_start_station_ev);

 m->setValue1(shuttle_id);

 m->setValue2(shuttle_at_station);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", values = "

 << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "request_next_station");

};

// Shuttles request next station enroute to destination station

// given the shuttle's id and its current station.

void Shuttle::request_next_station(int shuttle_id, int shuttle_at_station)

{

 IntMsg2 *m = new IntMsg2("request_next_station", request_next_station_ev);

 m->setValue1(shuttle_id);

 m->setValue2(shuttle_at_station);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", values = "

 << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "request_next_station");

};

// At the completion of an order, shuttles sends this messages to inform

// manager of their capital and retired statuses.

void Shuttle::send_order_completed(int shuttle_id, int retired, int capital)

{

 IntMsg3 *m = new IntMsg3("order_completed", order_completed_ev);

 m->setValue1(shuttle_id);

77

 m->setValue2(retired);

 m->setValue3(capital);

 ev << "SHUTTLE " << shuttle_id << " sent message : "

 << m->name() << ", values = "

 << ((IntMsg3 *)m)->getValue1() << " - "

 << ((IntMsg3 *)m)->getValue2() << " - "

 << ((IntMsg3 *)m)->getValue3() << "\n";

 send(m, "order_completed");

};

// Shuttles check if they have been offered an order by calling this method.

// If so it returns true and informs the shuttle of order id,

// distance of the order and number of the next order to be requested.

bool Shuttle::order(int shuttle_id, int & order_id,

 int & route_no, int & order_request_no)

{

 get_MANAGER_event();

 if ((order_buffer->new_event()) && (shuttle_id == order_buffer->check()))

 {

 order_buffer->read1();

 order_id = order_buffer->read2();

 route_no = order_buffer->read3();

 order_request_no = order_buffer->read4();

 return true;

 }

 else

 return false;

};

// Shuttles check if they have been received next station information.

// If so it returns true and informs the shuttle of next station.

bool Shuttle::next_station(int shuttle_id, int & next_station)

{

 get_MANAGER_event();

 if ((next_station_buffer->new_event()) &&

 (shuttle_id == next_station_buffer->check()))

 {

 next_station_buffer->read1();

 next_station = next_station_buffer->read2();

 return true;

78

 }

 else

 return false;

};

// Shuttles check if they have received order confirmed message by calling this method.

// If so it returns true and informs the shuttle of start and destination stations of

// the order, amount of money the shuttle will be receiving upon on the completion of

// the order and number of customers assigned to the shuttle who are on the same route.

bool Shuttle::order_confirmed(int shuttle_id, int & order_confirmed,

 int & start, int & destination,

 int & accepted_bid, int & number_of_customers)

{

 get_MANAGER_event();

 if ((order_confirmed_buffer->new_event()) &&

 (shuttle_id == order_confirmed_buffer->check()))

 {

 order_confirmed_buffer->read1();

 order_confirmed = order_confirmed_buffer->read2();

 start = order_confirmed_buffer->read3();

 destination = order_confirmed_buffer->read4();

 accepted_bid = order_confirmed_buffer->read5();

 number_of_customers = order_confirmed_buffer->read6();

 return true;

 }

 else

 {

 return false;

 }

};

// Returns the fee incurred by shuttles by moving from one station to the next.

int Shuttle::get_transit_fee()

{

 return TRANSIT_FEE;

}

// Returns the wear incurred by shuttles by moving from one station to the next.

int Shuttle::get_transit_wear()

{

79

 return TRANSIT_WEAR;

}

// Returns the restored wear value for a shuttle after the completion of maintenance.

int Shuttle::get_maintenance_wear()

{

 return MAINTENANCE_WEAR;

}

// Returns the maintenance fee incurred by shuttles.

int Shuttle::get_maintenance_fee()

{

 return MAINTENANCE_FEE;

}

// Returns a unique shuttle id each time this method called.

int Shuttle::unique_id()

{

 static int unique_shuttle_id = -1;

 return ++unique_shuttle_id;

}

// Returns the default current station of all shuttles

// at the beginning of the simulation.

int Shuttle::get_shuttle_at_station()

{

 return SHUTTLE_AT_STATION;

}

// Returns the default capital values of all shuttles

// at the beginning of the simulation.

int Shuttle::get_capital()

{

 return CAPITAL;

}

// Returns the amount of money shuttles will be receiving

80

// for each customer except for the one for whom the shuttles

// have already made bids.

int Shuttle::get_additional_customer_toll()

{

 return ADDITIONAL_CUSTOMER_TOLL;

}

// Returns the bid amount to be offered to the Manager

// given the distance (number of links between nodes) of an order.

int Shuttle::calculate_bid(int distance)

{

 int bid = COST_OF_ONE_MOVE * distance;

 return bid;

}

// Returns the punishment fee shuttles will be incurred unless

// they do not fail to complete the order on time.

int Shuttle::get_punishment()

{

 return PUNISHMENT_FEE;

}

// ******************* CUSTOMERS *************************** //

// Customers request orders by start and destination stations.

void Shuttle::send_customer_request(int start, int dest)

{

 IntMsg2 *m = new IntMsg2("send_customer_request", send_customer_request_ev);

 m->setValue1(start);

 m->setValue2(dest);

 ev << "SHUTTLE " << " sent message : "<< m->name() << ", values = "

 << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "route_demand");

};

// Simulates the behavior of customer order requests.

// Orders are generated randomly according to uniform distribution.

81

void Shuttle::get_random_request(int & start, int & dest)

{

 start = uniform(0,MAXIMUM);

 dest = uniform(0,MAXIMUM);

 while(dest == start)

 dest = uniform(0,MAXIMUM);

}

// ***************** CUSTOMERS END ************************* //

// AEG based randomly generated test drivers are included under this method.

void Shuttle::activity()

{

 order_buffer = new IntBuffer4();

 next_station_buffer = new IntBuffer2();

 order_confirmed_buffer = new IntBuffer6();

 ifstream environment_variables("EnvironmentVariables.txt");

 if(!environment_variables)

 {

 cerr << "File could not be opened" << endl;

 }

 environment_variables >> NAMES >> TRANSIT_FEE

 >> NAMES >> TRANSIT_WEAR

 >> NAMES >> MAINTENANCE_WEAR

 >> NAMES >> MAINTENANCE_FEE

 >> NAMES >> SHUTTLE_AT_STATION

 >> NAMES >> CAPITAL

 >> NAMES >> ADDITIONAL_CUSTOMER_TOLL

 >> NAMES >> COST_OF_ONE_MOVE

 >> NAMES >> PUNISHMENT_FEE;

 environment_variables.close();

 #include "./testgenerator/s4r25.h"

 ev << "SIMULATION ENDED...";

 endSimulation();

 finish();

};

/**

Author: Muharrem Ugur Aksu

82

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: Manager.cpp

**/

#include "Manager.h"

 /* THIS GRAPH IS CREATED AT RUNTIME BY GRAPH METHODS..

 bool matrix[MAXIMUM][MAXIMUM] = {

 {false,true ,false,false,false,true ,true ,false,false,false},

 {true ,false,true ,false,false,false,false,false,false,false},

 {false,true ,false,true ,false,false,true ,false,false,false},

 {false,false,true ,false,true ,false,false,false,true ,false},

 {false,false,false,true ,false,false,false,false,false,true },

 {true ,false,false,false,false,false,true ,false,false,false},

 {true ,false,true ,false,false,true ,false,true ,false,false},

 {false,false,false,false,false,false,true ,false,true ,false},

 {false,false,false,true ,false,false,false,true ,false,true },

 {false,false,false,false,true ,false,false,false,true ,false}};

 */

Define_Module(Manager);

// OMNeT++ Kernel first calls this method for initilization of variables.

// Shuttle system network is also created here by calling graph methods.

void Manager::initialize()

{

 ifstream manager_variables("ManagerVariables.txt");

 if(!manager_variables)

 {

 cerr << "File could no be opened" << endl;

 }

 manager_variables >> DUMMY >> SHUTTLE_CAPACITY;

 manager_variables.close();

 /*---------Create Directed Graph---------*/

 many_nodes = 0;

 add_nodes(10); // Add 10 nodes (stations)..

 add_edge(0,1); add_edge(0,5); add_edge(0,6);

 add_edge(1,0); add_edge(1,2);

83

 add_edge(2,1); add_edge(2,3); add_edge(2,6);

 add_edge(3,2); add_edge(3,4); add_edge(3,8);

 add_edge(4,3); add_edge(4,9);

 add_edge(5,0); add_edge(5,6);

 add_edge(6,0); add_edge(6,2); add_edge(6,5); add_edge(6,7);

 add_edge(7,6); add_edge(7,8);

 add_edge(8,3); add_edge(8,7); add_edge(8,9);

 add_edge(9,4); add_edge(9,8);

 /*--*/

 // DEBUG OUTPUT: Print Directed Graph..

 ev << "DIRECTED GRAPH \n";

 for(int s=0; s<MAXIMUM; ++s)

 {

 for(int r=0; r<MAXIMUM; ++r)

 ev << matrix[s][r] << " ";

 ev <<"\n";

 }

 // DEBUG OUTPUT: USE THIS TO PRINT A PATH..

 /*

 list<int> A = shortest_path(4,2);

 while(!A.empty()) {

 ev << " " << A.front() << " -> ";

 A.pop_front();

 }

 */

 for(i = 0; i < MAXIMUM; ++i)

 {

 shuttle_has_order[i] = false;

 shuttle_alive[i] = false;

 }

 for(i = 0; i < MAX_SHUTTLE_NUM; ++i)

 {

 switch(i)

 {

 case 0:

 capitalVec[i].setName("Capital Vector (Shuttle 0)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 0)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 0)");

84

 capacityVec[i].setName("Number of Customers in (Shuttle 0)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 0)");

 break;

 case 1:

 capitalVec[i].setName("Capital Vector (Shuttle 1)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 1)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 1)");

 capacityVec[i].setName("Number of Customers in (Shuttle 1)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 1)");

 break;

 case 2:

 capitalVec[i].setName("Capital Vector (Shuttle 2)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 2)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 2)");

 capacityVec[i].setName("Number of Customers in (Shuttle 2)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 2)");

 break;

 case 3:

 capitalVec[i].setName("Capital Vector (Shuttle 3)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 3)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 3)");

 capacityVec[i].setName("Number of Customers in (Shuttle 3)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 3)");

 break;

 case 4:

 capitalVec[i].setName("Capital Vector (Shuttle 4)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 4)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 4)");

 capacityVec[i].setName("Number of Customers in (Shuttle 4)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 4)");

 break;

 case 5:

 capitalVec[i].setName("Capital Vector (Shuttle 5)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 5)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 5)");

 capacityVec[i].setName("Number of Customers in (Shuttle 5)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 5)");

 break;

85

 case 6:

 capitalVec[i].setName("Capital Vector (Shuttle 6)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 6)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 6)");

 capacityVec[i].setName("Number of Customers in (Shuttle 6)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 6)");

 break;

 case 7:

 capitalVec[i].setName("Capital Vector (Shuttle 7)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 7)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 7)");

 capacityVec[i].setName("Number of Customers in (Shuttle 7)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 7)");

 break;

 case 8:

 capitalVec[i].setName("Capital Vector (Shuttle 8)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 8)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 8)");

 capacityVec[i].setName("Number of Customers in (Shuttle 8)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 8)");

 break;

 case 9:

 capitalVec[i].setName("Capital Vector (Shuttle 9)");

 bidConfirmedVec[i].setName(

"Cumulative Number of Bids Confirmed (Shuttle 9)");

 bidDeniedVec[i].setName("Cumulative Number of Bids Denied (Shuttle 9)");

 capacityVec[i].setName("Number of Customers in (Shuttle 9)");

 cumulativeCapacityVec[i].setName("Cumulative Capacity of (Shuttle 9)");

 break;

 default:

 break;

 }

 capitals[i] = 100;

 bid_confirmed[i] = 0;

 bid_denied[i] = 0;

 cumulative_shuttle_capacity[i] = 0;

 current_shuttle_station[i] = 0;

 }

 totalRequestVec.setName("Cumulative Number Of Requests Received");

86

 numberOfUnassignedOrdersVec.setName("Cumulative Number of Unassigned Orders");

 aliveShuttleVec.setName("Total Number of Alive Shuttles");

 busyShuttleVec.setName("Number of Busy Shuttles");

 processedRequestVec.setName("Cumulative Number of Orders Processed");

 timeout = new cMessage("timeout",timeout_ev);

 scheduleAt(simTime() + 10.0, timeout);

 ready_list_p = ready_list.begin();

 // common variables initialized..

 shuttle_id = 0;

 order_request_no = 0;

 shuttle_at_station = 0;

 bid = 0;

 shuttle_capital = 0;

 start, destination = -1;

 i = 0;

 alive_shuttle_counter = 0;

 total_order_request_num = 0;

 number_of_busy_shuttles = 0;

 processed_requests = 0;

 shuttle_capacity = 0;

 number_of_customers_in_queue = 0;

 order_id = 0;

};

/*----------------------------GRAPH METHODS--------------------------------*/

// Adds a node (station) to the railway network

void Manager::add_nodes()

{

 int new_node_number;

 int i;

 assert(size() < MAXIMUM);

 new_node_number = many_nodes;

 ++many_nodes;

 for(i=0; i<many_nodes; ++i)

 {

 matrix[i][new_node_number] = false;

 matrix[new_node_number][i] = false;

87

 }

}

// Adds a number of nodes (stations) to the railway network

void Manager::add_nodes(int number)

{

 int new_node_number;

 int i,j;

 for(j=0; j<number; ++j)

 {

 assert(size() < MAXIMUM);

 new_node_number = many_nodes;

 ++many_nodes;

 for(i=0; i<many_nodes; ++i)

 {

 matrix[i][new_node_number] = false;

 matrix[new_node_number][i] = false;

 }

 }

}

// Creates an edge (path) between given two nodes (stations)

void Manager::add_edge(int source, int target)

{

 assert(source < size());

 assert(target < size());

 matrix[source][target] = true;

}

// Removes an edge (path) between two given nodes(stations)

void Manager::remove_edge(int source, int target)

{

 assert(source < size());

 assert(target < size());

 matrix[source][target] = false;

}

// Returns true if there exists an edge (path) between two nodes (stations)

88

bool Manager::is_edge(int source, int target) const

{

 assert(source < size());

 assert(target < size());

 return matrix[source][target];

}

// Returns neighbors of a node (station) in a list.

list<int> Manager::neighbors(int node) const

{

 list<int> answer;

 int i;

 assert(node < size());

 for(i=0; i<size(); ++i)

 {

 if(matrix[node][i])

 answer.push_back(i);

 }

 return answer;

}

// Implements Dijkstra's Shortest Path Algorithm.

// Returns Shortest Path from Start Station s to Target Station T.

list<int> Manager::shortest_path(int s, int t)

{

 // Initialize Distance Vector to Infinity..

 // d[i] is the Distance Value from Start Station to Station i..

 int d[MAXIMUM];

 for(i=0; i<MAXIMUM; ++i)

 {

 d[i] = 100;

 }

 // Initialize Previous Station Vector to Empty..

 // p[i] is the Previous Station of Station i on the Shortest Path..

 int p[MAXIMUM];

 // S: The Settled Stations

 // Stations Whose Shortest Distances From the Source Have Been Found..

 // Q: The Set of Unsettled Stations

89

 // adjacent_nodes: A List of Neighbors for a Given Station..

 list<int> S, Q, adjacent_nodes, Path;

 list<int>::iterator S_i, Q_i, Q_erase, adjacent_nodes_i;

 int u,v = -1;

 Q.push_back(s);

 d[s]=0;

 while(!Q.empty())

 {

 Q_i = Q.begin();

 int min = 100;

 // Find the Smallest (as defined by d) Station (u) in Q

 // And Remove it from Q..

 while(Q_i != Q.end())

 {

 if((d[*Q_i] < min))

 {

 min = d[*Q_i];

 Q_erase = Q_i;

 }

 Q_i++;

 }

 u = *Q_erase;

 Q.erase(Q_erase);

 // Add u to S..

 S.push_back(u);

 // Relax Neighbors of u Modifying d Vector for Each Neighbor..

 adjacent_nodes = neighbors(u);

 S_i = S.begin();

 while(S_i != S.end())

 {

 remove(adjacent_nodes.begin(), adjacent_nodes.end(),*S_i);

 S_i++;

 }

 adjacent_nodes_i = adjacent_nodes.begin();

 while(adjacent_nodes_i != adjacent_nodes.end())

 {

 v = *adjacent_nodes_i;

 if(d[v] > d[u] + 1)

90

 {

 d[v] = d[u] + 1;

 p[v] = u;

 Q.push_back(v);

 }

 adjacent_nodes_i++;

 }

 }

 // DEBUG OUTPUT: Print for each station the previous station on the shortest path..

 /*

 ev << "\nSHORTEST PATH FROM STATION: " << s << " TO STATION: " << t;

 ev << "\n Previous station of 9 : " << p[9];

 ev << "\n Previous station of 8 : " << p[8];

 ev << "\n Previous station of 7 : " << p[7];

 ev << "\n Previous station of 6 : " << p[6];

 ev << "\n Previous station of 5 : " << p[5];

 ev << "\n Previous station of 4 : " << p[4];

 ev << "\n Previous station of 3 : " << p[3];

 ev << "\n Previous station of 2 : " << p[2];

 ev << "\n Previous station of 1 : " << p[1];

 ev << "\n Previous station of 0 : " << p[0] << "\n";

 */

 while (p[t] >= 0)

 {

 Path.push_front(t);

 t = p[t];

 }

 Path.push_front(s);

 return Path;

}

// Implements Dijkstra's Shortest Distance Algorithm..

// Returns Shortest Distance Value from Start Station s to Target Station T..

int Manager::shortest_dist(int s, int t)

{

 // Initialize Distance Vector to Infinity..

 // d[i] is the Distance Value from Start Station to Station i..

 int d[MAXIMUM];

 for(i=0; i<MAXIMUM; ++i)

 {

91

 d[i] = 100;

 }

 // S: The Settled Stations

 // Stations Whose Shortest Distances From the Source Have Been Found..

 // Q: The Set of Unsettled Stations

 // adjacent_nodes: A List of Neighbors for a Given Station..

 list<int> S, Q, adjacent_nodes;

 list<int>::iterator S_i, Q_i, Q_erase, adjacent_nodes_i;

 int u,v = -1;

 Q.push_back(s);

 d[s]=0;

 while(!Q.empty())

 {

 Q_i = Q.begin();

 int min = 100;

 // Find the Smallest (as defined by d) Station (u) in Q

 // And Remove it from Q..

 while(Q_i != Q.end())

 {

 if((d[*Q_i] < min))

 {

 min = d[*Q_i];

 Q_erase = Q_i;

 }

 Q_i++;

 }

 u = *Q_erase;

 Q.erase(Q_erase);

 // Add u to S..

 S.push_back(u);

 // Relax Neighbors of u Modifying d Vector for Each Neighbor..

 adjacent_nodes = neighbors(u);

 S_i = S.begin();

 while(S_i != S.end())

 {

 remove(adjacent_nodes.begin(), adjacent_nodes.end(),*S_i);

 S_i++;

92

 }

 adjacent_nodes_i = adjacent_nodes.begin();

 while(adjacent_nodes_i != adjacent_nodes.end())

 {

 v = *adjacent_nodes_i;

 if(d[v] > d[u] + 1)

 {

 d[v] = d[u] + 1;

 Q.push_back(v);

 }

 adjacent_nodes_i++;

 }

 }

 return d[t];

}

/*---------------------------GRAPH METHODS END-----------------------------*/

// Sends order information to a given shuttle.

// Parameters:

// order_id: unique order id

// distance: distance between start and destination station of the order.

// next_order_request_no:

// (-2): no order waiting in the queue to be offered to the shuttles.

// (-1): all the available orders have been offered,

// ask and wait for order confirmation next time.

// (else): next time request this order.

void Manager::send_order(int shuttle_id, int order_id,

 int distance, int next_order_request_no)

{

 if (check_retired(shuttle_id))

 {

 IntMsg4 *m = new IntMsg4("order", order_ev);

 m->setValue1(shuttle_id);

 m->setValue2(order_id);

 m->setValue3(distance);

 m->setValue4(next_order_request_no);

 ev << "MANAGER sent message for SHUTTLE " << shuttle_id << ": "

 << m->name() << ", values = " << ((IntMsg4 *)m)->getValue2() << " - "

 << ((IntMsg4 *)m)->getValue3() << " - "

 << ((IntMsg4 *)m)->getValue4() << "\n";

 send(m, "order");

 }

93

};

// Sends order confirmation information to a given shuttle.

// Parameters:

// ord_confirmed: (1) to confirm, (0) to deny an offered bid.

// start: start station of the order.

// destination: final station of the order.

// accepted_bid: money the shuttle will be receiving

// upon the completion of the order.

// number_of_customers: Number of customers assigned to the shuttle

// who are on the same route.

void Manager::send_order_confirmed(int shuttle_id, int ord_confirmed,

 int start, int destination,

 int accepted_bid, int number_of_customers)

{

 IntMsg6 *m = new IntMsg6("order_confirmed", order_confirmed_ev);

 m->setValue1(shuttle_id);

 m->setValue2(ord_confirmed);

 m->setValue3(start);

 m->setValue4(destination);

 m->setValue5(accepted_bid);

 m->setValue6(number_of_customers);

 ev << "MANAGER sent message : "

 << m->name() << ", value = " << ((IntMsg6 *)m)->getValue1() << " - "

 << ((IntMsg6 *)m)->getValue2() << " - "

 << ((IntMsg6 *)m)->getValue3() << " - "

 << ((IntMsg6 *)m)->getValue4() << " - "

 << ((IntMsg6 *)m)->getValue5() << " - "

 << ((IntMsg6 *)m)->getValue6() << "\n";

 send(m, "order_confirmed");

};

// Sends next station to be traversed to get to the start station of an order

// for a shuttle given its shuttle id and current station.

void Manager::send_next_station_to_start(int shuttle_id, int shuttle_at_station)

{

 IntMsg2 *m = new IntMsg2("next_station", next_station_ev);

 m->setValue1(shuttle_id);

 list<order_type>::iterator itr = process_list.begin();

94

 while (((*itr).shuttle != shuttle_id) && (itr != process_list.end()))

 itr++;

 list<int> next_station;

 if((*itr).shuttle == shuttle_id)

 next_station = shortest_path(shuttle_at_station, (*itr).start);

 m->setValue2(*(++next_station.begin()));

 current_shuttle_station[shuttle_id] = (*(++next_station.begin()));

 ev << "MANAGER sent message : "

 << m->name() << ", value = " << ((IntMsg2 *)m)->getValue1() << " -"

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "next_station");

};

// Sends next station to be traversed

// for a shuttle given its shuttle id and current station.

void Manager::send_next_station(int shuttle_id, int shuttle_at_station)

{

 IntMsg2 *m = new IntMsg2("next_station", next_station_ev);

 m->setValue1(shuttle_id);

 list<order_type>::iterator itr = process_list.begin();

 while (((*itr).shuttle != shuttle_id) && (itr != process_list.end()))

 itr++;

 list<int> next_station;

 if((*itr).shuttle == shuttle_id)

 next_station = shortest_path(shuttle_at_station, (*itr).dest);

 m->setValue2(*(++next_station.begin()));

 current_shuttle_station[shuttle_id] = (*(++next_station.begin()));

 ev << "MANAGER sent message : "

 << m->name() << ", value = " << ((IntMsg2 *)m)->getValue1() << " - "

 << ((IntMsg2 *)m)->getValue2() << "\n";

 send(m, "next_station");

};

// Returns false if the shuttle is not alive anymore.

int Manager::check_retired(int shuttle_id)

95

{

 return shuttle_alive[shuttle_id];

};

// Returns a unique order id number incremented by one each time called.

int Manager::unique_order_id()

{

 static int unique_order_id = 0;

 return ++unique_order_id;

}

// SOFTWARE CORRECTNESS TESTING - EXPERIMENT ONE

// FOUND BUG NO 1 --> ERRONEOUS ALGORITHM

/*

bool Manager::move_unique_orders()

{

 bool moved = false;

 if(process_list.empty())

 {

 moved = true;

 if(ready_list.size() > 0)

 {

 process_list.push_back(ready_list.front());

 ready_list.pop_front();

 }

 }

 if((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0) && (process_list.size() > 0))

 {

 list<order_type>::iterator p_itr = process_list.begin();

 while(p_itr != process_list.end())

 {

 list<order_type>::iterator r_itr = ready_list.begin();

 while((r_itr != ready_list.end()) && (!ready_list.empty()))

 {

 path = shortest_path((*p_itr).start, (*p_itr).dest);

 sub_path = shortest_path((*r_itr).start, (*r_itr).dest);

 // If sub_path DOES NOT MATCH with or IS NOT A SUBSET of the path..

 if(path.end() == find_end(path.begin(), path.end(),

 sub_path.begin(), sub_path.end()))

 {

96

 moved = true;

 process_list.push_back(*r_itr);

 r_itr = ready_list.erase(r_itr);

 if (process_list.size() >= alive_shuttle_counter)

 break;

 }

 else

 ++r_itr;

 }

 if (process_list.size() >= alive_shuttle_counter)

 break;

 ++p_itr;

 }

 }

 return moved;

}

*/

// Finds orders which are not on the same route

// and moves them to the process list.

bool Manager::move_unique_orders()

{

 bool moved = false;

 if(ready_list.size() > 0)

 {

 if(process_list.empty())

 {

 moved = true;

 if(ready_list.size() > 0)

 {

 process_list.push_back(ready_list.front());

 ready_list.pop_front();

 }

 }

 if((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0) && (process_list.size() > 0))

 {

 list<order_type>::iterator r_itr = ready_list.begin();

 while((r_itr != ready_list.end()) && (!ready_list.empty()))

 {

 list<order_type>::iterator p_itr = process_list.begin();

 while(p_itr != process_list.end())

97

 {

 path = shortest_path((*p_itr).start, (*p_itr).dest);

 sub_path = shortest_path((*r_itr).start, (*r_itr).dest);

 // If sub_path DOES NOT MATCH with or IS NOT A SUBSET of the path..

 if(path.end() == find_end(path.begin(), path.end(),

 sub_path.begin(), sub_path.end()))

 p_itr++;

 else

 break;

 }

 if (p_itr == process_list.end())

 {

 moved = true;

 process_list.push_back(*r_itr);

 r_itr = ready_list.erase(r_itr);

 if (process_list.size() >= alive_shuttle_counter)

 break;

 }

 else

 ++r_itr;

 p_itr = process_list.begin();

 }

 }

 }

 return moved;

}

// Checks if previously added orders to the process list are on the same

// route with the orders added recently to the list and if so,

// groups those orders under superset order.

bool Manager::check_duplicate_reverse()

{

 list<order_type>::iterator previous = process_list.begin();

 list<order_type>::iterator last = --(process_list.end());

 int initial_size = process_list.size();

 if(process_list.size() > 1)

 {

 while(last != process_list.begin())

 {

 while(previous != last)

 {

 if((!(*previous).locked) && ((*previous).number_of_customers +

98

 (*last).number_of_customers < SHUTTLE_CAPACITY))

 {

 path = shortest_path((*last).start, (*last).dest);

 sub_path = shortest_path((*previous).start, (*previous).dest);

 // If sub_path DOES NOT MATCH with or IS NOT A SUBSET of the path..

 if(path.end() == find_end(path.begin(), path.end(),

 sub_path.begin(), sub_path.end()))

 previous++;

 else

 {

 (*last).number_of_customers += (*previous).number_of_customers;

 // *** add sub order to the sub list & modify parent order ids ***

 if((*previous).parent_order_id == -1)

 (*previous).parent_order_id = (*last).order_id;

 else

 {

 (*previous).parent_order_id = (*last).order_id;

 sub_itr = sub_list.begin();

 while(sub_itr != sub_list.end())

 {

 if((*sub_itr).parent_order_id == (*previous).order_id)

 (*sub_itr).parent_order_id = (*last).order_id;

 }

 }

 sub_list.push_back(*previous);

 // *** -- ***

 previous = process_list.erase(previous);

 }

 }

 else

 previous++;

 }

 --last;

 previous = process_list.begin();

 }

 }

 if (initial_size > process_list.size())

 return true;

 else

 return false;

}

99

// Moves the orders in ready list to process list

// in fifo fashion until process list reaches it capacity

// or ready list gets empty.

bool Manager::move_orders()

{

 bool moved = false;

 list<order_type>::iterator p_itr = process_list.begin();

 list<order_type>::iterator r_itr = ready_list.begin();

 if (process_list.size() < alive_shuttle_counter)

 {

 while((process_list.size() < alive_shuttle_counter) &&

 (!ready_list.empty()))

 {

 moved = true;

 process_list.push_back(ready_list.front());

 ready_list.pop_front();

 }

 }

 return moved;

}

// Checks process list to find ordes that might be on the same route.

// Orders on the same route are grouped under the superset order.

bool Manager::group_in_process_list()

{

 list<order_type>::iterator previous = process_list.begin();

 while((*previous).order_assigned == true)

 ++previous;

 //list<order_type>::iterator next = ++(process_list.begin());

 list<order_type>::iterator next = ++previous;

 int initial_size = process_list.size();

 if(process_list.size() > 1)

 {

 while(previous != process_list.end())

 {

 while(next != process_list.end())

 {

 if (previous == next)

 ++next;

 else if(((*previous).number_of_customers +

 (*next).number_of_customers) < SHUTTLE_CAPACITY)

100

 {

 path = shortest_path((*previous).start, (*previous).dest);

 sub_path = shortest_path((*next).start, (*next).dest);

 // If sub_path DOES NOT MATCH with or IS NOT A SUBSET of the path..

 if(path.end() == find_end(path.begin(), path.end(),

 sub_path.begin(), sub_path.end()))

 next++;

 else if(!(*next).locked)

 {

 (*previous).number_of_customers += (*next).number_of_customers;

 // *** add sub order to the sub list & modify parent order ids ***

 if((*next).parent_order_id == -1)

 (*next).parent_order_id = (*previous).order_id;

 else

 {

 (*next).parent_order_id = (*previous).order_id;

 sub_itr = sub_list.begin();

 while(sub_itr != sub_list.end())

 {

 if((*sub_itr).parent_order_id == (*next).order_id)

 (*sub_itr).parent_order_id = (*previous).order_id;

 }

 }

 sub_list.push_back(*next);

 // *** --- ***

 next = process_list.erase(next);

 }

 else

 ++next;

 }

 else

 ++next;

 }

 ++previous;

 next = process_list.begin();

 }

 }

 if (initial_size > process_list.size())

 return true;

 else

 return false;

}

101

// SOFTWARE CORRECTNESS TESTING - EXPERIMENT ONE

// FOUND BUG NO 3 --> ERRONEOUS ALGORITHM

int Manager::group_matching_orders(order_type & order)

{

 int shuttle_capacity = order.number_of_customers;

 // *** FOUND BUG NO 3 ***

 if (shuttle_capacity < SHUTTLE_CAPACITY)

 // *** -------------------------------- ***

 if (!ready_list.empty())

 {

 list<order_type>::iterator r_itr = ready_list.begin();

 path = shortest_path(order.start, order.dest);

 while(r_itr != ready_list.end())

 {

 sub_path = shortest_path((*r_itr).start, (*r_itr).dest);

 sub_path_itr = find_end(path.begin(), path.end(),

 sub_path.begin(), sub_path.end());

 if(sub_path_itr != (path.end()))

 {

 // *** add sub order to the sub list & modify parent order ids ***

 if((*r_itr).parent_order_id == -1)

 (*r_itr).parent_order_id = order.order_id;

 else

 {

 (*r_itr).parent_order_id = order.order_id;

 sub_itr = sub_list.begin();

 while(sub_itr != sub_list.end())

 {

 if((*sub_itr).parent_order_id == (*r_itr).order_id)

 (*sub_itr).parent_order_id = order.order_id;

 }

 }

 sub_list.push_back(*r_itr);

 // *** -- ***

 r_itr = ready_list.erase(r_itr);

 processed_requests++;

 shuttle_capacity++;

 // *** FOUND BUG NO 3 ***

 if (shuttle_capacity == SHUTTLE_CAPACITY)

 break;

 // *** ---------------------------- ***

 }

102

 else

 ++r_itr;

 }

 }

 order.number_of_customers = shuttle_capacity;

 return shuttle_capacity;

}

// For each message received this method is called and

// appropriate action is taken according to the message type.

void Manager::handleMessage(cMessage *msg)

{

 ev << "MANAGER::handleMessage " << msg->name() <<"\n";

 switch (msg->kind()) {

 case timeout_ev:

 {

 list<order_type>::iterator itr;

 itr = ready_list.begin();

 ev << "\n************************************";

 ev << "\nREADY LIST: ";

 while (itr != ready_list.end())

 {

 ev << (*itr).order_id << " - ";

 itr++;

 }

 itr = process_list.begin();

 ev << "\nPROCESS LIST: ";

 while (itr != process_list.end())

 {

 ev << (*itr).order_id << " - ";

 itr++;

 }

 itr = sub_list.begin();

 ev << "\nSUB LIST: ";

 while (itr != sub_list.end())

 {

 ev << (*itr).order_id << " - ";

 itr++;

 }

 ev << "\n************************************\n";

103

 totalRequestVec.record(total_order_request_num);

 numberOfUnassignedOrdersVec.record(ready_list.size());

 aliveShuttleVec.record(alive_shuttle_counter);

 busyShuttleVec.record(number_of_busy_shuttles);

 processedRequestVec.record(processed_requests);

 for(i = 0; i < MAX_SHUTTLE_NUM; ++i)

 {

 capitalVec[i].record(capitals[i]);

 bidConfirmedVec[i].record(bid_confirmed[i]);

 bidDeniedVec[i].record(bid_denied[i]);

 }

 uncompletedOrdersStats.collect(ready_list.size() +

 sub_list.size() + process_list.size());

 scheduleAt(simTime() + 10.0, timeout);

 break;

 }

 case send_ready_ev:

 shuttle_id = ((IntMsg *)msg)->getValue();

 ev << "MANAGER received message : "

 << msg->name() << ", value = " << ((IntMsg *)msg)->getValue() << "\n";

 shuttle_alive[shuttle_id] = true;

 alive_shuttle_counter++;

 break;

 case request_order_ev:

 shuttle_id = ((IntMsg2 *)msg)->getValue1();

 order_request_no = ((IntMsg2 *)msg)->getValue2();

 ev << "MANAGER received message : "

 << msg->name() << ", values = " << ((IntMsg2 *)msg)->getValue1() << " - "

 << ((IntMsg2 *)msg)->getValue2() << "\n";

 /*

 //**************** MOVE ORDERS ALGORITHM 1 ******************

 algorithm_no = ALGORITHM_ONE;

 move_unique_orders();

 */

 /*

 //**************** MOVE ORDERS ALGORITHM 2 ******************

 algorithm_no = ALGORITHM_TWO;

104

 while ((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0))

 {

 if (!move_unique_orders())

 break;

 if (!check_duplicate_reverse())

 break;

 }

 */

 /*

 //**************** MOVE ORDERS ALGORITHM 3 *****************

 algorithm_no = ALGORITHM_THREE;

 move_orders();

 */

 //**************** MOVE ORDERS ALGORITHM 4 ******************

 algorithm_no = ALGORITHM_FOUR;

 while ((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0))

 {

 if (!move_orders())

 break;

 if (!group_in_process_list())

 break;

 }

 /* shuttle will send "-1" to indicate that

 it has received all offered orders and

 has been requesting order confirmation.. */

 if (order_request_no == -1)

 {

 list<order_type>::iterator itr;

 itr = process_list.begin();

 while (((*itr).shuttle != shuttle_id) && (itr != process_list.end()))

 itr++;

 if((*itr).shuttle == shuttle_id)

 {

 number_of_busy_shuttles++;

 bid_confirmed[shuttle_id]++;

 processed_requests++;

 (*itr).order_assigned = true;

105

 shuttle_capacity = group_matching_orders((*itr));

 //capacityVec[shuttle_id].record((*itr).number_of_customers);

 capacityVec[shuttle_id].record(shuttle_capacity);

 cumulative_shuttle_capacity[shuttle_id] += shuttle_capacity;

 cumulativeCapacityVec[shuttle_id].record(

cumulative_shuttle_capacity[shuttle_id]);

 shuttleCapacityStats.collect(shuttle_capacity);

 ev << "\n\n\n CONFIRMED ORDER start end:"

 << (*itr).start << " " << (*itr).dest << "\n";

 send_order_confirmed(shuttle_id, 1, (*itr).start, (*itr).dest,

 (*itr).bid, (*itr).number_of_customers);

 }

 else

 {

 send_order_confirmed(shuttle_id, 0, 0, 0, 0, 0);

 bid_denied[shuttle_id]++;

 }

 }

 // else if requesting an order and there are available orders..

 else if ((order_request_no < process_list.size()) &&

 (order_request_no < alive_shuttle_counter))

 {

 if (order_request_no == 0)

 {

 process_itr = process_list.begin();

 // SOFTWARE CORRECTNESS TESTING - EXPERIMENT ONE

 // FOUND BUG NO 4 --> THE FOLLOWING PART HAS BEEN ADDED

 while ((process_itr != process_list.end()) &&

 (*process_itr).order_assigned == true)

 ++process_itr;

 // *** --- ***

 if(process_itr == process_list.end())

 break;

 (*process_itr).locked = true;

 if (((order_request_no + 1) < process_list.size()) &&

 (order_request_no + 1 < alive_shuttle_counter))

 {

106

 send_order(shuttle_id, (*process_itr).order_id,

 (*process_itr).dist +

 shortest_dist(current_shuttle_station[shuttle_id],

 (*process_itr).start),

 ++order_request_no);

 }

 else

 send_order(shuttle_id, (*process_itr).order_id,

 (*process_itr).dist +

 shortest_dist(current_shuttle_station[shuttle_id],

 (*process_itr).start), -1);

 }

 else

 { // if (order_request_no == 1 or more)

 process_itr = process_list.begin();

 for (i=0; i < order_request_no; i++)

 process_itr++;

 (*process_itr).locked = true;

 if (((order_request_no + 1) < process_list.size()) &&

 (order_request_no + 1 < alive_shuttle_counter))

 send_order(shuttle_id, (*process_itr).order_id,

 (*process_itr).dist +

 shortest_dist(current_shuttle_station[shuttle_id],

 (*process_itr).start),

 ++order_request_no);

 else

 send_order(shuttle_id, (*process_itr).order_id,

 (*process_itr).dist +

 shortest_dist(current_shuttle_station[shuttle_id],

 (*process_itr).start), -1);

 }

 }

 /* no available orders at the moment..

 shuttle(s) should wait until some orders become available.. */

 else

 send_order(shuttle_id, 0, 0, -2);

 break;

 case send_bid_ev:

107

 // SOFTWARE CORRECTNESS TESTING - EXPERIMENT ONE

 // FOUND BUG NO 2 --> CHANGE UNIQUE ORDER IDENTIFICATION

 /*

 shuttle_id = ((IntMsg4 *)msg)->getValue1();

 bid = ((IntMsg4 *)msg)->getValue2();

 start = ((IntMsg4 *)msg)->getValue3();

 destination = ((IntMsg4 *)msg)->getValue4();

 ev << "MANAGER received message : "

 << msg->name() << ", value = " << ((IntMsg4 *)msg)->getValue1() << " - "

 << ((IntMsg4 *)msg)->getValue2() << " - "

 << ((IntMsg4 *)msg)->getValue3() << " - "

 << ((IntMsg4 *)msg)->getValue4() << "\n";

 itr = process_list.begin();

 for(i=0; i<alive_shuttle_counter; ++i)

 {

 if (((*itr).start != start) || ((*itr).dest != destination))

 itr++;

 }

 */

 shuttle_id = ((IntMsg3 *)msg)->getValue1();

 bid = ((IntMsg3 *)msg)->getValue2();

 order_id = ((IntMsg3 *)msg)->getValue3();

 ev << "MANAGER received message : "

 << msg->name() << ", value = " << ((IntMsg3 *)msg)->getValue1() << " - "

 << ((IntMsg3 *)msg)->getValue2() << " - "

 << ((IntMsg3 *)msg)->getValue3() << "\n";

 itr = process_list.begin();

 for(i=0; i<alive_shuttle_counter; ++i)

 {

 if (((*itr).order_id != order_id))

 itr++;

 }

 assert((*itr).order_id == order_id);

 ev << "\n\n " << (*itr).order_id << " " << order_id << " \n";

108

 if (!shuttle_has_order[shuttle_id])

 {

 if (bid < (*itr).bid) {

 shuttle_has_order[(*itr).shuttle] = false;

 (*itr).bid = bid;

 (*itr).shuttle = shuttle_id;

 shuttle_has_order[shuttle_id] = true;

 }

 }

 break;

 case move_to_start_station_ev:

 shuttle_id = ((IntMsg2 *)msg)->getValue1();

 shuttle_at_station = ((IntMsg2 *)msg)->getValue2();

 ev << "MANAGER received message : "

 << msg->name() << ", values = " << ((IntMsg2 *)msg)->getValue1() << " - "

 << ((IntMsg2 *)msg)->getValue2() << "\n";

 send_next_station_to_start(shuttle_id, shuttle_at_station);

 break;

 case request_next_station_ev:

 shuttle_id = ((IntMsg2 *)msg)->getValue1();

 shuttle_at_station = ((IntMsg2 *)msg)->getValue2();

 ev << "MANAGER received message : "

 << msg->name() << ", values = " << ((IntMsg2 *)msg)->getValue1() << " - "

 << ((IntMsg2 *)msg)->getValue2() << "\n";

 // *** collect waiting time stats for primary orders ***

 itr = process_list.begin();

 while (((*itr).shuttle != shuttle_id) && (itr != process_list.end()))

 itr++;

 if((*itr).shuttle == shuttle_id)

 if((*itr).start == shuttle_at_station)

 {

 (*itr).wait_time = simTime() - (*itr).wait_time;

 customerWaitTimeStats.collect((*itr).wait_time);

 }

 // *** --- ***

109

 // *** collect waiting time stats for sub orders ***

 sub_itr = sub_list.begin();

 while(sub_itr != sub_list.end())

 {

 if((*sub_itr).parent_order_id == (*itr).order_id)

 {

 if((*sub_itr).start == shuttle_at_station)

 {

 (*sub_itr).wait_time = simTime() - (*sub_itr).wait_time;

 customerWaitTimeStats.collect((*sub_itr).wait_time);

 sub_itr = sub_list.erase(sub_itr);

 }

 else

 ++sub_itr;

 }

 else

 ++sub_itr;

 }

 // *** --- ***

 send_next_station(shuttle_id, shuttle_at_station);

 break;

 case order_completed_ev:

 ev << "MANAGER received message : "<< msg->name() << ", values = "

 << ((IntMsg3 *)msg)->getValue1() << " - "

 << ((IntMsg3 *)msg)->getValue2() << " - "

 << ((IntMsg3 *)msg)->getValue3() << "\n";

 shuttle_id = ((IntMsg3 *)msg)->getValue1();

 shuttle_alive[shuttle_id] = ((IntMsg3 *)msg)->getValue2();

 shuttle_capital = ((IntMsg3 *)msg)->getValue3();

 shuttleCapitalStats.collect(shuttle_capital);

 shuttle_has_order[shuttle_id] = false;

 capitals[shuttle_id] = shuttle_capital;

 number_of_busy_shuttles--;

110

 itr = process_list.begin();

 while ((*itr).shuttle != shuttle_id)

 itr++;

 if(itr != process_list.end())

 ev << "\n DEBUG THIS ERROR \n";

 if((*itr).shuttle == shuttle_id)

 {

 ev << "\n Deleting : " << (*itr).order_id << "\n";

 process_list.erase(itr);

 }

 /*

 //**************** MOVE ORDERS ALGORITHM 1 ******************

 if (!(process_list.size() >= alive_shuttle_counter))

 move_unique_orders();

 */

 /*

 //**************** MOVE ORDERS ALGORITHM 2 ******************

 if (!(process_list.size() >= alive_shuttle_counter))

 {

 while ((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0))

 {

 if (!move_unique_orders())

 break;

 if (!check_duplicate_reverse())

 break;

 }

 }

 */

 /*

 //**************** MOVE ORDERS ALGORITHM 3 *****************

 if (!(process_list.size() >= alive_shuttle_counter))

 move_orders();

 */

 //**************** MOVE ORDERS ALGORITHM 4 ******************

 if (!(process_list.size() >= alive_shuttle_counter))

 {

 while ((process_list.size() < alive_shuttle_counter) &&

 (ready_list.size() > 0))

111

 {

 if (!move_orders())

 break;

 if (!group_in_process_list())

 break;

 }

 }

 if (!shuttle_alive[shuttle_id]) {

 alive_shuttle_counter--;

 ev << "----------> SHUTTLE " << shuttle_id << " RETIRED !!\n";

 }

 break;

 case send_customer_request_ev:

 {

 ev << "MANAGER received message : "

 << msg->name() << ", values = " << ((IntMsg2 *)msg)->getValue1() << " - "

 << ((IntMsg2 *)msg)->getValue2() << "\n ";

 order_type order;;

 order.start = ((IntMsg2 *)msg)->getValue1();

 order.dest = ((IntMsg2 *)msg)->getValue2();

 order.dist = shortest_dist(order.start, order.dest);

 order.bid = 1000; // Dummy Value..

 order.shuttle = -1; // Dummy Value..

 order.number_of_customers = 1;

 order.wait_time = simTime();

 order.order_id = unique_order_id();

 order.parent_order_id = -1;

 order.locked = false;

 order.order_assigned = false;

 ready_list.push_back(order);

 total_order_request_num++;

 break;

 }

 default:

 ev << "MANAGER: Error in HandleMessage - Unexpected Message Kind...\n";

 break;

 }

};

112

// This method is called by the simulation kernel

// at the end of the simulation and

// simulation results are recorded.

void Manager::finish()

{

 ofstream experiment_stats;

 switch(algorithm_no)

 {

 case ALGORITHM_ONE:

 experiment_stats.open("AlgorithmStatsOne.txt", ios::app);

 break;

 case ALGORITHM_TWO:

 experiment_stats.open("AlgorithmStatsTwo.txt", ios::app);

 break;

 case ALGORITHM_THREE:

 experiment_stats.open("AlgorithmStatsThree.txt", ios::app);

 break;

 case ALGORITHM_FOUR:

 experiment_stats.open("AlgorithmStatsFour.txt", ios::app);

 break;

 default:

 experiment_stats.open("Error.txt", ios::app);

 break;

 }

 if(!experiment_stats)

 {

 cerr << "File could not be opened" << endl;

 }

 ev <<"\nMin of Uncompleted Orders/10 sec : " << uncompletedOrdersStats.min();

 ev <<"\nMax of Uncompleted Orders/10 sec : " << uncompletedOrdersStats.max();

 ev <<"\nMean of Uncompleted Orders/10 sec : " << uncompletedOrdersStats.mean();

 experiment_stats << uncompletedOrdersStats.mean() << " ";

 ev <<"\nStandard Deviation of Uncompleted Orders/10 sec : "

<< uncompletedOrdersStats.stddev();

 ev <<"\n--";

 ev <<"\nMin of Shuttle Capacity/Order : " << shuttleCapacityStats.min();

 ev <<"\nMax of Shuttle Capacity/Order : " << shuttleCapacityStats.max();

 ev <<"\nMean of Shuttle Capacity/Order : " << shuttleCapacityStats.mean();

 experiment_stats << shuttleCapacityStats.mean() << " ";

113

 ev <<"\nStandard Deviation of Shuttle Capacity/Order : "

<< shuttleCapacityStats.stddev();

 ev <<"\n--";

 ev <<"\nMin of Shuttle Capital/Order : " << shuttleCapitalStats.min();

 experiment_stats << shuttleCapitalStats.min() << " ";

 ev <<"\nMax of Shuttle Capital/Order : " << shuttleCapitalStats.max();

 ev <<"\nMean of Shuttle Capital/Order : " << shuttleCapitalStats.mean();

 experiment_stats << shuttleCapitalStats.mean() << " ";

 ev <<"\nStandard Deviation of Shuttle Capital/ Order : "

<< shuttleCapitalStats.stddev();

 ev <<"\n--";

 ev <<"\nMin of Customer Wait Time : " << simtimeToStr(customerWaitTimeStats.min());

 experiment_stats << customerWaitTimeStats.min() << " ";

 ev <<"\nMax of Customer Wait Time : " << simtimeToStr(customerWaitTimeStats.max());

 experiment_stats << customerWaitTimeStats.max() << " ";

 ev <<"\nMean of Customer Wait Time : " << simtimeToStr(customerWaitTimeStats.mean());

 experiment_stats << customerWaitTimeStats.mean() << endl;

 ev <<"\nStandard Deviation Customer Wait Time : "

<< simtimeToStr(customerWaitTimeStats.stddev());

 experiment_stats.close();

 uncompletedOrdersStats.recordScalar("Waiting Requests..");

 shuttleCapacityStats.recordScalar("Shuttle Capacity..");

 shuttleCapitalStats.recordScalar("Shuttle Capital..");

 customerWaitTimeStats.recordScalar("Customer Wait Times..");

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer.cpp

**/

#include "intbuffer.h"

IntBuffer::IntBuffer()

{

 this->new_event_flag = false;

}

int IntBuffer::check()

114

{

 int return_val = value_var.front();

 return (return_val);

}

int IntBuffer::read()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this->new_event_flag = false;

 return (return_val);

}

void IntBuffer::write(int x)

{

 this->value_var.push_back(x);

 this->new_event_flag = true;

};

bool IntBuffer::new_event()

{

 return (this->new_event_flag);

}

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer2.cpp

**/

#include "intbuffer2.h"

IntBuffer2::IntBuffer2()

{

 this->new_event_flag = false;

}

int IntBuffer2::check()

{

 int return_val = value_var.front();

115

 return (return_val);

}

int IntBuffer2::read1()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer2::read2()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this ->new_event_flag = false;

 return (return_val);

}

void IntBuffer2::write(int x, int y)

{

 this->value_var.push_back(x);

 this->value_var.push_back(y);

 this->new_event_flag = true;

};

bool IntBuffer2::new_event()

{

 return (this->new_event_flag);

}

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer3.cpp

**/

#include "intbuffer3.h"

IntBuffer3::IntBuffer3()

{

116

 this->new_event_flag = false;

}

int IntBuffer3::check()

{

 int return_val = value_var.front();

 return (return_val);

}

int IntBuffer3::read1()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer3::read2()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer3::read3()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this->new_event_flag = false;

 return (return_val);

}

void IntBuffer3::write(int x, int y, int z)

{

 this->value_var.push_back(x);

 this->value_var.push_back(y);

 this->value_var.push_back(z);

 this->new_event_flag = true;

};

bool IntBuffer3::new_event()

{

117

 return (this->new_event_flag);

}

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer4.cpp

**/

#include "intbuffer4.h"

IntBuffer4::IntBuffer4()

{

 this->new_event_flag = false;

}

int IntBuffer4::check()

{

 int return_val = value_var.front();

 return (return_val);

}

int IntBuffer4::read1()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer4::read2()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer4::read3()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

118

}

int IntBuffer4::read4()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this->new_event_flag = false;

 return (return_val);

}

void IntBuffer4::write(int x, int y, int z, int m)

{

 this->value_var.push_back(x);

 this->value_var.push_back(y);

 this->value_var.push_back(z);

 this->value_var.push_back(m);

 this->new_event_flag = true;

};

bool IntBuffer4::new_event()

{

 return (this->new_event_flag);

}

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer5.cpp

**/

#include "intbuffer5.h"

IntBuffer5::IntBuffer5()

{

 this->new_event_flag = false;

}

int IntBuffer5::check()

{

119

 int return_val = value_var.front();

 return (return_val);

}

int IntBuffer5::read1()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer5::read2()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer5::read3()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer5::read4()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer5::read5()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this->new_event_flag = false;

 return (return_val);

}

void IntBuffer5::write(int x, int y, int z, int m, int n)

{

120

 this->value_var.push_back(x);

 this->value_var.push_back(y);

 this->value_var.push_back(z);

 this->value_var.push_back(m);

 this->value_var.push_back(n);

 this->new_event_flag = true;

};

bool IntBuffer5::new_event()

{

 return (this->new_event_flag);

}

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer6.cpp

**/

#include "intbuffer6.h"

IntBuffer6::IntBuffer6()

{

 this->new_event_flag = false;

}

int IntBuffer6::check()

{

 int return_val = value_var.front();

 return (return_val);

}

int IntBuffer6::read1()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer6::read2()

121

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer6::read3()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer6::read4()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer6::read5()

{

 int return_val = value_var.front();

 value_var.pop_front();

 return (return_val);

}

int IntBuffer6::read6()

{

 int return_val = value_var.front();

 value_var.pop_front();

 if (value_var.empty())

 this->new_event_flag = false;

 return (return_val);

}

void IntBuffer6::write(int x, int y, int z, int m, int n, int o)

{

 this->value_var.push_back(x);

 this->value_var.push_back(y);

 this->value_var.push_back(z);

 this->value_var.push_back(m);

 this->value_var.push_back(n);

122

 this->value_var.push_back(o);

 this->new_event_flag = true;

};

bool IntBuffer6::new_event()

{

 return (this->new_event_flag);

}

*** C++ HEADER FILES ***

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: EnvironmentParameters.h

**/

#ifndef __ENVIRONMENT_PARAMETERS_H

#define __ENVIRONMENT_PARAMETERS_H

const int TRANSIT_FEE = 2;

const int TRANSIT_WEAR = 1;

const int MAINTENANCE_WEAR = 10;

const int MAINTENANCE_FEE = 10;

const int SHUTTLE_AT_STATION = 1;

const int CAPITAL = 100;

const int ADDITIONAL_CUSTOMER_TOLL = 2;

const int COST_OF_ONE_MOVE = (MAINTENANCE_FEE /

 (MAINTENANCE_WEAR / TRANSIT_WEAR))

 + TRANSIT_FEE;

const int PUNISHMENT_FEE = 4;

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

123

File Name: ManagerParameters.h

**/

#ifndef __MANAGER_PARAMETERS_H

#define __MANAGER_PAREMETERS_H

const int MAXIMUM = 10; // MAXIMUM NUMBER OF NODES IN THE GRAPH..

const int MAX_SHUTTLE_NUM = 10;

#endif __MANAGER_PARAMETERS_H

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: event_kind.h

**/

#ifndef _EVENT_KIND_H_

#define _EVENT_KIND_H_

#define send_ready_ev 1

#define request_order_ev 2

#define move_to_start_station_ev 3

#define request_next_station_ev 4

#define order_ev 5

#define next_station_ev 6

#define order_completed_ev 7

#define send_bid_ev 8

#define order_confirmed_ev 9

#define timeout_ev 10

#define send_customer_request_ev 11

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

124

Date: 20 July 2006

File Name: intbuffer.h

**/

#ifndef _INTBUFFER_H_

#define _INTBUFFER_H_

#include <list>

using namespace std;

class IntBuffer

{

 protected:

 list<int> value_var;

 bool new_event_flag;

 public:

 IntBuffer();

 int check();

 int read();

 void write(int x);

 bool new_event();

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer2.h

**/

#ifndef _INTBUFFER2_H_

#define _INTBUFFER2_H_

#include <list>

using namespace std;

class IntBuffer2

{

 protected:

 //int value_var[2];

 list<int> value_var;

 bool new_event_flag;

125

 public:

 IntBuffer2();

 int check();

 int read1();

 int read2();

 void write(int x,int y);

 bool new_event();

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer3.h

**/

#ifndef _INTBUFFER3_H_

#define _INTBUFFER3_H_

#include <list>

using namespace std;

class IntBuffer3

{

 protected:

 list<int> value_var;

 bool new_event_flag;

 public:

 IntBuffer3();

 int check();

 int read1();

 int read2();

 int read3();

 void write(int x, int y, int z);

 bool new_event();

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

126

Date: 20 July 2006

File Name: intbuffer4.h

**/

#ifndef _INTBUFFER4_H_

#define _INTBUFFER4_H_

#include <list>

using namespace std;

class IntBuffer4

{

 protected:

 list<int> value_var;

 bool new_event_flag;

 public:

 IntBuffer4();

 int check();

 int read1();

 int read2();

 int read3();

 int read4();

 void write(int x, int y, int z, int m);

 bool new_event();

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer5.h

**/

#ifndef _INTBUFFER5_H_

#define _INTBUFFER5_H_

#include <list>

using namespace std;

class IntBuffer5

{

 protected:

 list<int> value_var;

127

 bool new_event_flag;

 public:

 IntBuffer5();

 int check();

 int read1();

 int read2();

 int read3();

 int read4();

 int read5();

 void write(int x, int y, int z, int m, int n);

 bool new_event();

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intbuffer6.h

**/

#ifndef _INTBUFFER6_H_

#define _INTBUFFER6_H_

#include <list>

using namespace std;

class IntBuffer6

{

 protected:

 list<int> value_var;

 bool new_event_flag;

 public:

 IntBuffer6();

 int check();

 int read1();

 int read2();

 int read3();

 int read4();

 int read5();

 int read6();

 void write(int x, int y, int z, int m, int n, int o);

 bool new_event();

128

};

#endif

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: Manager.h

**/

#ifndef __MANAGER_H

#define __MANAGER_H

#include <omnetpp.h>

#include "intbuffer.h"

#include "intbuffer2.h"

#include "event_kind.h"

#include "intmsg_m.h"

#include "intmsg2_m.h"

#include "intmsg3_m.h"

#include "intmsg4_m.h"

#include "intmsg5_m.h"

#include "intmsg6_m.h"

#include <list>

#include <cassert>

#include <algorithm>

#include <iostream>

#include <fstream>

#include <cstdlib>

using std::ifstream;

using std::ofstream;

using std::fstream;

using std::endl;

using std::cerr;

#include "ManagerParameters.h"

using namespace std;

enum algorithm_number {ALGORITHM_ONE = 1, ALGORITHM_TWO,

 ALGORITHM_THREE, ALGORITHM_FOUR} algorithm_no;

129

class Manager : public cSimpleModule

{

 protected:

 cOutVector capitalVec[MAX_SHUTTLE_NUM];

 cOutVector bidConfirmedVec[MAX_SHUTTLE_NUM];

 cOutVector bidDeniedVec[MAX_SHUTTLE_NUM];

 cOutVector capacityVec[MAX_SHUTTLE_NUM];

 cOutVector cumulativeCapacityVec[MAX_SHUTTLE_NUM];

 cOutVector totalRequestVec;

 cOutVector numberOfUnassignedOrdersVec;

 cOutVector processedRequestVec;

 cOutVector aliveShuttleVec;

 cOutVector busyShuttleVec;

 cLongHistogram uncompletedOrdersStats;

 cLongHistogram shuttleCapacityStats;

 cLongHistogram shuttleCapitalStats;

 cLongHistogram customerWaitTimeStats;

 public:

 class order_type {

 public:

 int start;

 int dest;

 int dist;

 int bid;

 int shuttle;

 int number_of_customers;

 int order_id;

 int parent_order_id;

 bool locked;

 bool order_assigned;

 simtime_t wait_time;

 };

 cMessage *m;

 cMessage *order;

 cMessage *next_station;

 cMessage *timeout;

 /*---------------------GRAPH METHODS------------------------*/

130

 void add_nodes();

 void add_nodes(int number);

 void add_edge(int source, int target);

 void remove_edge(int source, int target);

 int size() const { return many_nodes; }

 bool is_edge(int source, int target) const;

 list<int> neighbors(int node) const;

 list<int> shortest_path(int s, int t);

 int shortest_dist(int s, int t);

 /*--*/

 Module_Class_Members(Manager, cSimpleModule, 0);

 virtual void initialize();

 virtual void handleMessage(cMessage *msg);

 virtual void finish();

 void send_order(int shuttle_id, int order_id,

 int distance, int next_order_request_no);

 void send_next_station(int shuttle_id, int shuttle_at_station);

 void send_next_station_to_start(int shuttle_id, int shuttle_at_station);

 void send_order_confirmed(int shuttle_id, int ord_confirmed, int start,

 int destination, int accepted_bid,

 int number_of_customers);

 void move_unique_order();

 int check_retired(int shuttle_id);

 int group_matching_orders(order_type & order);

 int unique_order_id();

 bool move_unique_orders();

 bool check_duplicate_reverse();

 bool move_orders();

 bool group_in_process_list();

 private:

 simtime_t simulation_time;

 list<order_type> ready_list;

 list<order_type>::iterator ready_list_p;

 list<order_type> process_list;

131

 list<order_type>::iterator process_itr;;

 list<order_type>::iterator itr;

 list<order_type> sub_list;

 list<order_type>::iterator sub_itr;;

 list<int> path ,sub_path;

 list<int>::iterator sub_path_itr;

 int shuttle_id;

 int shuttle_at_station;

 int shuttle_capital;

 int bid;

 int start;

 int destination;

 int order_request_no;

 int alive_shuttle_counter;

 int number_of_customers_in_queue;

 int order_id;

 // Number of Nodes in the Graph..

 int many_nodes;

 int i;

 int total_order_request_num;

 int capitals[MAX_SHUTTLE_NUM];

 int bid_confirmed[MAX_SHUTTLE_NUM];

 int bid_denied[MAX_SHUTTLE_NUM];

 int cumulative_shuttle_capacity[MAX_SHUTTLE_NUM];

 int number_of_busy_shuttles;

 int processed_requests;

 int shuttle_capacity;

 int current_shuttle_station[MAX_SHUTTLE_NUM];

 int SHUTTLE_CAPACITY;

 bool shuttle_has_order[MAX_SHUTTLE_NUM];

 bool shuttle_alive[MAX_SHUTTLE_NUM];

 // Adjacency Matrix for the Graph Implementation..

 bool matrix[MAXIMUM][MAXIMUM];

 char DUMMY[50];

};

#endif __MANAGER_H

/**

Author: Muharrem Ugur Aksu

132

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: Shuttle.h

**/

#ifndef __SHUTTLE_H

#define __SHUTTLE_H

#include <omnetpp.h>

#include "intbuffer.h"

#include "intbuffer2.h"

#include "intbuffer3.h"

#include "intbuffer4.h"

#include "intbuffer5.h"

#include "intbuffer6.h"

#include "intmsg_m.h"

#include "intmsg2_m.h"

#include "intmsg3_m.h"

#include "intmsg4_m.h"

#include "intmsg5_m.h"

#include "intmsg6_m.h"

#include "event_kind.h"

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <string>

using std::ifstream;

using std::endl;

using std::cerr;

using std::string;

const int MAXIMUM = 10; // MAXIMUM NUMBER OF NODES IN THE GRAPH..

class Shuttle : public cSimpleModule

{

public:

 Module_Class_Members(Shuttle, cSimpleModule, 16384);

 cQueue queue;

 IntBuffer4 *order_buffer;

133

 IntBuffer2 *next_station_buffer;

 IntBuffer6 *order_confirmed_buffer;

 virtual void activity();

 void get_MANAGER_event();

 void send_ready(int shuttle_id);

 void request_order(int shuttle_id, int order_no);

 void move_to_start_station(int shuttle_id, int shuttle_at_station);

 void request_next_station(int shuttle_id, int shuttle_at_station);

 void send_order_completed(int shuttle_id, int retired, int capital);

 void send_bid(int shuttle_id, int bid, int order_id);

 bool order(int shuttle_id, int & order_id,

 int & route_no, int & order_request_no);

 bool next_station(int shuttle_id, int & next_station);

 bool order_confirmed(int shuttle_id, int & ord_confirmed,

 int & start, int & destination,

 int & accepted_bid, int & number_of_customers);

 int get_transit_fee();

 int get_transit_wear();

 int get_maintenance_wear();

 int get_maintenance_fee();

 int get_additional_customer_toll();

 int get_punishment();

 int unique_id();

 int get_shuttle_at_station();

 int get_capital();

 int calculate_bid(int distance);

 // CUSTOMERS

 void get_random_request(int & start, int & dest);

 void send_customer_request(int start, int dest);

private:

 int TRANSIT_FEE;

 int TRANSIT_WEAR;

 int MAINTENANCE_WEAR;

 int MAINTENANCE_FEE;

 int SHUTTLE_AT_STATION;

 int CAPITAL;

 int ADDITIONAL_CUSTOMER_TOLL;

 int COST_OF_ONE_MOVE;

134

 int PUNISHMENT_FEE;

 char NAMES[50];

};

#endif

*** OMNeT++ RESOURCE FILES ***

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intmsg.msg

**/

message IntMsg

{

 fields:

 int value;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intmsg2.msg

**/

message IntMsg2

{

 fields:

 int value1;

 int value2;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

135

File Name: intmsg3.msg

**/

message IntMsg3

{

 fields:

 int value1;

 int value2;

 int value3;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intmsg4.msg

**/

message IntMsg4

{

 fields:

 int value1;

 int value2;

 int value3;

 int value4;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intmsg5.msg

**/

message IntMsg5

{

 fields:

 int value1;

 int value2;

 int value3;

 int value4;

136

 int value5;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: intmsg6.msg

**/

message IntMsg6

{

 fields:

 int value1;

 int value2;

 int value3;

 int value4;

 int value5;

 int value6;

};

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: omnetpp.ini

**/

contains general settings that apply to all simulation runs

and all user interfaces.

[General]

allows for implementing real_time simulation.

scheduler-class = "cRealTimeScheduler"

realtimescheduler-scaling=1000

this is an instance of the compound module ShuttleSystem.

network = SHUTTLE_SYSTEM

seed initialization for random number generation (any 32-bit value).

137

seed-0-mt=532569

when enabled, lists the name of ini file entries for which

the default values were used.

ini-warnings = yes

warnings = yes

rename statistics output file names.

snapshot-file = ShuttleSystem.sna

output-vector-file = ShuttleSystem.vec

output-scalar-file = ShuttleSystem.sca

duration of the simulation in simulation time.

sim-time-limit = 1000000s

duration of the simulation in real time.

//cpu-time-limit= 600s

#specifies the total stack size in kilobytes.

total-stack-kb = 2048 ; 8MByte, increase if necessary

contains per run settings which

take precedence over the overall settings.

[Run1]

[Run2]

contains cmdenv specific settings.

[Cmdenv]

selects normal or express mode.

express-mode = no

module-messages = yes

//verbose-simulation = yes

display-update = 0.5s

constains tkenv specific settings.

[Tkenv]

138

default-run=1

write ev output to the tkenv main window.

use-mainwindow = yes

print banners for each message.

print-banners = yes

slowexec-delay = 300ms

number of events executed between two display updayes

when in fast execution mode.

update-freq-fast = 10

update-freq-express = 100

breakpoints-enabled = yes

[DisplayStrings]

contains values for module parameters that did not

get a value inside the ned files.

[Parameters]

configures recording of output vectors.

[OutVectors]

**.enabled = yes

/**

Author: Muharrem Ugur Aksu

 Naval Postgraduate School

 Computer Science Department

Date: 20 July 2006

File Name: ShuttleSystem.ned

**/

simple Shuttle //

 gates:

 out: send_ready;

 out: request_order;

 out: request_next_station;

 out: order_completed;

139

 out: send_bid;

 out: route_demand;

 in: order;

 in: next_station;

 in: order_confirmed;

endsimple

simple Manager

 gates:

 in: send_ready;

 in: request_order;

 in: request_next_station;

 in: order_completed;

 in: send_bid;

 in: route_demand;

 out: order;

 out: next_station;

 out: order_confirmed;

endsimple

module PADERBORN_SHUTTLE_SYSTEM

 submodules:

 Shuttles_And_Customers: Shuttle; //

 display: "o=#ff8040,#804000;i=block/users_l,#ff8080;p=112,124";

 Manager: Manager; //

 display: "o=,,4;i=block/browser_l,maroon,10;p=440,124";

 connections:

 Shuttles_And_Customers.send_ready -->

Manager.send_ready display "o=#808040;m=m,20,0,20,0"; //

Shuttles_And_Customers.request_order -->

Manager.request_order display "o=#ffff80;m=m,0,12,0,12"; //

 Shuttles_And_Customers.request_next_station -->

Manager.request_next_station display "o=#ff0080;m=m,60,60,40,60";

 Shuttles_And_Customers.order_completed -->

Manager.order_completed display "m=m,36,84,36,84"; //

 Shuttles_And_Customers.send_bid -->

Manager.send_bid display "o=#00ff80;m=m,8,40,8,40";

 Shuttles_And_Customers.route_demand -->

Manager.route_demand display "o=#ffffff;m=m,48,100,48,100";

140

 Manager.order --> Shuttles_And_Customers.order display "o=#ffff80;m=m,0,26,0,26";

 Manager.next_station -->

Shuttles_And_Customers.next_station display "o=#ff0080;m=m,8,72,8,72";

 Manager.order_confirmed -->

Shuttles_And_Customers.order_confirmed display "o=#0080ff;m=m,16,52,16,52";

endmodule

network SHUTTLE_SYSTEM : PADERBORN_SHUTTLE_SYSTEM

endnetwork

B. AEG BASED ENVIRONMENT BEHAVIOR MODEL CODE:
The code included in this section defines the behavior of the environment

of the SUT with attributed event grammars (AEG). Test drivers were randomly

generated from this AEG based environment behavior model.

/* Author: Muharrem Ugur Aksu */

/* Naval Postgraduate School */

/* Computer Science Department */

/* Date: 20 July 2006 */

/* File Name: s4r25.aeg */

GLOBAL {

 int transit_fee; /* toll for using the tracks */

 int transit_wear; /* wear incurred for using the tracks */

 int maintenance_wear; /* restored wear value after maintenance */

 int maintenance_fee; /* maintenance fee */

}

RULE Shuttle {

 int start; /* start station of an order */

 int destination; /* final station of an order */

 int shuttle_id; /* unique shuttle identification no */

 int shuttle_at_station; /* current location of a shuttle */

 int capital; /* capital status of a shuttle */

 int wear; /* maintenance status of a shuttle */

 int retired; /* a flag for shuttle bankruptcy */

 int payment; /* money received after order completion */

 int bid; /* bid made by a shuttle for a given order */

 int ord_confirmed; /* a flag for order assignment */

 int received_order; /* a flag for order offers from broker */

 int distance; /* number of stations for an order */

 int order_request_no; /* auxiliary variable */

141

}

RULE Customers {

 int requested_start_station;

 int requested_destination_station;

}

ShuttleSystem :

 /

 transit_fee = get_transit_fee();

 transit_wear = get_transit_wear();

 maintenance_wear = get_maintenance_wear();

 maintenance_fee = get_maintenace_fee();

 /

 {Shuttles, Customers};

Shuttles:

 /***CHANGE NUMBER OF SHUTTLES HERE***/

 {*Shuttle*}(==5);

Customers:

 /

 Customers.requested_start_station = 0;

 Customers.requested_destination_station = 0;

 /

 (* [P(70)/get_random_request(Customers.requested_start_station,

 Customers.requested_destination_station);

send_customer_request(Customers.requested_start_station,

 Customers.requested_destination_station);/]

/***CHANGE NUMBER AND FREQUENCY OF CUSTOMER REQUESTS HERE***/

 *)(==1500)(EVERY 10 sec);

Shuttle :

 /

 Shuttle.shuttle_id = unique_id();

 Shuttle.start = 0;

 Shuttle.destination = 0;

 Shuttle.shuttle_at_station = get_shuttle_at_station();

 Shuttle.capital = get_capital();

 Shuttle.wear = maintenance_wear;

 Shuttle.retired = 0;

 Shuttle.payment = 0;

 Shuttle.bid = 0;

142

 Shuttle.ord_confirmed = 0;

 Shuttle.received_order = 0;

 Shuttle.distance = -1;

 Shuttle.order_request_no = 0;

 send_ready(Shuttle.shuttle_id);/

(*

 /Shuttle.order_request_no = 0;/

 (*

/request_order(Shuttle.shuttle_id, Shuttle.order_request_no);/

 wait_order_and_send_bid

/***WHEN THERE IS ONLY ONE MORE ORDER TO BE OFFERED IN THE QUEUE…***/

/***REQUEST FOR AN ORDER ONE LAST TIME AND WAIT FOR ORDER CONF.***/

 WHEN (Shuttle.order_request_no == -1)

 (

/request_order(Shuttle.shuttle_id, Shuttle.order_request_no);

 BREAK; /

)

 /***WHEN THERE IS NO AVAILABLE ORDER IN THE QUEUE…***/

 /***WAIT ONE ORDER PROCESSING PERIOD OF TIME AND REQUEST AGAIN***/

 WHEN (Shuttle.order_request_no == -2) /BREAK;/

/***MAKE SURE THIS NUMBER IS EQUAL TO NUMBER OF SHUTTLES***/

 *)(==5)

 wait_order_confirmation

 WHEN (Shuttle.ord_confirmed)

 (

 /Shuttle.payment = Shuttle.bid;/

 (*

 WHEN (ENCLOSING Shuttle.shuttle_at_station != ENCLOSING Shuttle.start)

 (

/move_to_start_station(Shuttle.shuttle_id, Shuttle.shuttle_at_station);/

 wait_next_station

 process_move

)

 ELSE /BREAK;/

/***THIS IS THE MAX DISTANCE BETWEEN TWO FARMOST STATIONS***/

 *)(==5)

 (*

 WHEN (ENCLOSING Shuttle.shuttle_at_station != ENCLOSING Shuttle.destination)

 (

/request_next_station(Shuttle.shuttle_id, Shuttle.shuttle_at_station);/

 wait_next_station

 process_move

)

143

 ELSE /BREAK;/

/***THIS IS THE MAX DISTANCE BETWEEN TWO FARMOST STATIONS***/

 *)(==5)

 process_order_completion

)

/***MAIN LOOP - INCREASE TO GENERATE MORE DATA***/

*)(==50);

wait_order_and_send_bid:

 (* CATCH order(ENCLOSING Shuttle.shuttle_id,

 ENCLOSING Shuttle.start,

 ENCLOSING Shuttle.destination,

 ENCLOSING Shuttle.distance,

 ENCLOSING Shuttle.order_request_no)

 /ENCLOSING Shuttle.received_order = 1;/

 calculate_and_send_bid

 END_CATCH

 *)(==2)(EVERY 5 sec);

calculate_and_send_bid:

 WHEN(ENCLOSING Shuttle.received_order)

 (

 /ENCLOSING Shuttle.bid = calculate_bid(ENCLOSING Shuttle.distance);/

 WHEN (ENCLOSING Shuttle.order_request_no != -2)

 /send_bid(ENCLOSING Shuttle.shuttle_id, ENCLOSING Shuttle.bid,

 ENCLOSING Shuttle.start, ENCLOSING Shuttle.destination);/

 /ENCLOSING Shuttle.received_order = 0;/

);

wait_order_confirmation:

 (* CATCH order_confirmed(ENCLOSING Shuttle.shuttle_id,

 ENCLOSING Shuttle.ord_confirmed,

 ENCLOSING Shuttle.start,

 ENCLOSING Shuttle.destination,

 ENCLOSING Shuttle.bid)

 END_CATCH

 *)(==2)(EVERY 5 sec);

wait_next_station:

 (* CATCH next_station(ENCLOSING Shuttle.shuttle_id,

 ENCLOSING Shuttle.shuttle_at_station)

 END_CATCH

 *)(==2)(EVERY 10 sec);

144

process_move:

 WHEN (ENCLOSING Shuttle.wear > 0)

 (

 /ENCLOSING Shuttle.capital = ENCLOSING Shuttle.capital - transit_fee;

 ENCLOSING Shuttle.wear = ENCLOSING Shuttle.wear - transit_wear; /

)

 ELSE

 (

 /ENCLOSING Shuttle.capital =

 ENCLOSING Shuttle.capital – maintenance_fee - transit_fee;

 ENCLOSING Shuttle.wear = maintenance_wear;/

);

process_order_completion:

 [P(80) order_completed_in_time]

 [P(20) late_order_completion

 /ENCLOSING Shuttle.capital = ENCLOSING Shuttle.capital – get_punishment();/]

 /ENCLOSING Shuttle.capital = ENCLOSING Shuttle.capital + ENCLOSING Shuttle.payment;

 ENCLOSING Shuttle.ord_confirmed = 0;/

 WHEN (ENCLOSING Shuttle.capital <= 0)

 (

 /ENCLOSING Shuttle.retired = 1;/

)

 /send_order_completed(ENCLOSING Shuttle.shuttle_id,

 ENCLOSING Shuttle.retired,

 ENCLOSING Shuttle.capital);/;

145

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Turkish Army Academy Library
Turkish Army Academy
Ankara, Turkey

4. Mikhail Auguston
Naval Postgraduate School
Monterey, California

5. Man-Tak Shing
Naval Postgraduate School
Monterey, California

	INTRODUCTION
	II. TASK
	A. BLACK BOX TEST MODEL WITH THE USE OF AN AUTOMATED TEST GE
	B. WHAT ARE ATTRIBUTED EVENT GRAMMARS (AEG)?
	1. Attributed Event Grammar Axioms
	Automated Random Event-Trace Generation
	3. An Attributed Event Grammar Example

	C. AUTOMATED TEST GENERATION
	D. PADERBORN SHUTTLE SYSTEM
	1. System Overview
	2. The Railway Network And Stations
	3. Orders
	4. Shuttles
	5. Income and Expenses
	a. Toll:
	b. Maintenance:
	c. Penalties:

	E. AEG ENVIRONMENT MODEL FOR PADERBORN SHUTTLE SYSTEM
	F. THE OMNET++ MODEL
	1. What is OMNeT++?
	2. Paderborn Shuttle System Model in OMNeT++

	III. EXPERIMENTS
	A. SOFTWARE CORRECTNESS TESTING
	1. Experiment One
	Experiment Two
	Experiment Three

	B. SYSTEM PERFORMANCE ASSESSMENT
	1. Experiment Four
	2. Experiment Five

	C. EVALUATION OF DESIGN ALTERNATIVES
	1. Experiment Six
	2. Experiment Seven
	3. Experiment Eight

	RELATED WORK
	V. CONCLUSION
	LIST OF REFERENCES
	APPENDICES
	A. OMNET++ SIMULATION MODEL CODES (C++ SOURCE FILES, C++ HEA
	B. AEG BASED ENVIRONMENT BEHAVIOR MODEL CODE:

	INITIAL DISTRIBUTION LIST

