

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UNCOOLED INFRARED IMAGING FACE RECOGNITION
USING KERNEL-BASED FEATURE VECTOR SELECTION

by

Ioannis M. Alexandropoulos

September 2006

 Thesis Committee Supervisor: Monique P. Fargues
 Thesis Committee Members: Roberto Cristi
 Carlos Borges

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Engineer’s Thesis

4. TITLE AND SUBTITLE: Uncooled Infrared Imaging Face Recognition Using
Kernel-Based Feature Vector Selection
6. AUTHOR(S) Ioannis M. Alexandropoulos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
A considerable amount of research has been recently conducted on face recognition tasks, due to increasing demands

for security and authentication applications. Recent technological developments in uncooled IR imagery technology have
boosted IR face recognition research applications. Our study is part of an on-going research initiated at the Naval Postgraduate
School that considers an uncooled low-resolution and low-cost IR camera used for face recognition applications. This work
investigates a recent approach which approximates nonlinear kernel-based methods at a significantly reduced computational
cost. Our research was applied to an IR database. Results show that this scheme may perform sufficiently close to its
“kernelized” version considered in a previous study, at a fraction of the computational cost, provided that the associated
parameters are well tuned. The thesis considers a relative comparison between the two algorithms, based on identification and
verification experiments and considers a statistical test to investigate whether classification performance differences may be
considered statistically significant. Results show that, from a cost perspective, a low-resolution uncooled IR camera in
conjunction with a low computational-cost classification scheme can be embedded in a robust face recognition system to
efficiently address the issue of authentication in security-related tasks.

15. NUMBER OF
PAGES

155

14. SUBJECT TERMS Face Recognition, Pattern Classification, Infrared, FVS, Distances, Feature
Vectors

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UNCOOLED INFRARED IMAGING FACE RECOGNITION USING KERNEL-
BASED FEATURE VECTOR SELECTION

Ioannis M. Alexandropoulos

Lieutenant Junior Grade, Hellenic Navy
B.S., Hellenic Naval Academy, 1999

Submitted in partial fulfillment of the
requirements for the degrees of

ELECTRICAL ENGINEER
and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Ioannis M. Alexandropoulos

Approved by: Monique P. Fargues

Thesis Committee Supervisor

Roberto Cristi
Thesis Committee Member

 Carlos Borges
Thesis Committee Member

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A considerable amount of research has been recently conducted on face

recognition tasks, due to increasing demands for security and authentication applications.

Recent technological developments in uncooled IR imagery technology have boosted IR

face recognition research applications. Our study is part of an on-going research initiated

at the Naval Postgraduate School that considers an uncooled low-resolution and low-cost

IR camera used for face recognition applications. This work investigates a recent

approach which approximates nonlinear kernel-based methods at a significantly reduced

computational cost. Our research was applied to an IR database. Results show that this

scheme may perform sufficiently close to its “kernelized” version considered in a

previous study, at a fraction of the computational cost, provided that the associated

parameters are well tuned. The thesis considers a relative comparison between the two

algorithms, based on identification and verifications experiments and considers a

statistical test to investigate whether classification performance differences may be

considered statistically significant. Results show that, from a cost perspective, a low-

resolution uncooled IR camera in conjunction with a low computational-cost

classification scheme can be embedded in a robust face recognition system to efficiently

address the issue of authentication in security-related tasks.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THEORETICAL BACKGROUND ...2
B. THE DATABASE CONSIDERED AND THE EQUIPMENT USED4
C. THESIS OVERVIEW ...7
D. SUMMARY ..7

II. LINEAR CLASSIFICATION ALGORITHMS..9
A. INTRODUCTION..9
B. PRINCIPAL COMPONENTS ANALYSIS ..9

1. Introduction..9
a. Algorithm Description ..10
b. Feature Extraction..10
c. Classification...11

C. LINEAR DISCRIMINANT ANALYSIS (LDA)...12
1. Introduction..12
2. Algorithm Description...13

D. BAYES CLASSFIER APPROACH ...15
1. Introduction..15
2. Algorithm Description...16

E. ALGORITHM COMPARISONS...20

III. NONLINEAR CLASSIFICATION ALGORITHMS...23
A. KERNEL-BASED SCHEMES ...23

1. Theoretical Background..23
2. Introduction to Kernel Theory: The Kernel Trick.........................25
3. Support Vectors ...29
4. Generalized Discriminant Analysis ..31

B. FEATURE VECTOR SELECTION AND PROJECTION USING
KERNELS ..32
1. Introduction..32
2. Algorithm Description...33

C. ALGORITHMS COMPARISON...37

IV. RESULTS ...47
A. THEORETICAL BACKGROUND ...47

1. Introduction..47
2. The Nearest Centroid Classifiers and Distance Metrics47
3. Classifier Performance Measures...48

a. Identification Experiment: The Cumulative Matching
Characteristic (CMC)..49

b. Verification Experiment: The Receivers Operating
Characteristic (ROC) ..51

4. Confidence Interval ...53
5. Kernel Selection ...54

 viii

a. Kernel Function Types Considered..54
b. Parameters Selection: The Cross-Validation Scheme...........54

6. The 5x2cv Paired t-Test ...55
B. EXPERIMENT DESCRIPTION..57

1. Database Information..57
2. Software Implementation..58
3. Bayes Classifier Results...58
4. FVS-LDA Distance and Kernel Parameters’ Impact on

Classification Results ...64
5. Identification Experiment ...65
6. Verification Experiment..65
7. Comparing GDA and FVS-LDA Algorithms..................................67

a. The 5x2cv Paired t Test...68
b. Verification Experiment ...70
c. Computational Costs Differences...71

C. CONCLUSIONS ..72

V. CONCLUSIONS ..75

APPENDIX A. MATHEMATICAL BACKGROUND ...77
A. ANALYSIS ...77

1. D’Agostino-Pearson K2 Test...77

APPENDIX B. MATLAB SOURCE CODE ..81
A. DESCRIPTION..81

1. Bayes Classifier Algorithm..81
a. Normality Test ...81
b. Bayes-PCA Comparison ...81

2. Kernel-Function Parameters Tuning Issues....................................82
a. FVS-LDA on Iris Data..82
b. Cross-Validation Scheme..82

3. FVS-LDA Algorithm Implementation on IR Data, the
Identification Type of Experiment ...83

4. FVS-LDA and GDA Algorithms Implementation on IR Data,
the Verification Type of Experiment..83
a. FVS-LDA Scheme...83
b. GDA Scheme ...84

5. Comparison of the FVS-LDA and GDA Algorithms on Iris
Data Based on Experimental Results of the Identification
Experiment Results, the 5x2cv Paired t-Statistical Test.................84

B. MATLAB CODE LISTING..85

LIST OF REFERENCES..133

INITIAL DISTRIBUTION LIST ...137

 ix

LIST OF FIGURES

Figure 1.1 Electromagnetic spectrum wavelengths (from [Berkeley, 2006]).2
Figure 1.2 Blackbody spectrum for temperatures near that of the human body (from

[Pereira, 2002]). ...5
Figure 1.3 Equipment used for IR-images database collection (from [Lee, 2004])............6
Figure 1.4 Lateral aspect of IR data-collection system layout (from [Pereira, 2002])........6
Figure 1.5 Forward aspect of IR data-collection system layout (from [Pereira, 2002]).7
Figure 2.1 Separating two classes of a simple two-dimensional dataset. Seeking

directions that are efficient for discrimination, the LDA approach (from
[Duda, 2001]). ..13

Figure 2.2 PCA and LDA projections for a toy dataset (from [Schölkopf and Smola,
2002]). ..21

Figure 3.1 Binary classification example. Note: The dot product in the three-
dimensional space can be computed without computing the mapping
function φ , (after [Schölkopf and Smola, 2002])..27

Figure 3.2 A separable classification problem along with a separating hyperplane
written in terms of an orthogonal weight vector w and a threshold b. (from
[Schölkopf and Smola, 2002]). ..29

Figure 3.3 The optimal hyperplane for a two-class problem, bisects the shortest
connection between the convex hulls of the two classes. (after [Schölkopf
and Smola, 2002]). ...30

Figure 3.4 SVM “kernelizing” the optimal margin hyperplane (from [Schölkopf and
Smola, 2002])...31

Figure 3.5 Architecture of FVS-LR (from [Baudat, 2001]). ...36
Figure 3.6 Optimal boundary and FVS-LR boundary; features are represented by

circles (from [Baudat, 2003])...37
Figure 3.7 FVS-LDA projection of Iris data set, variation (2 2σ =0.007), 15 FVs

selected (max 150 FVs). ..39
Figure 3.8 FVS-LDA projection of Iris data set, variation (2 2σ =0.7), 15 FVs selected

(max 150 FVs). ..39
Figure 3.9 FVS-LDA projection of Iris data set variation (2 2σ =70), 15 FVs selected

(max 150 FVs). ..40
Figure 3.10 FVS-LDA projection of Iris data set, variation (2 2σ =700), 15 FVs

selected (max 150 FVs). ..40
Figure 3.11 FVS-LDA projection of Iris data set, variation (2 2σ =0.07), 10 FVs

selected (max 150 FVs). ..41
Figure 3.12 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 50 FVs

selected (max 150 FVs). ..41
Figure 3.13 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 90 FVs

selected (max 150 FVs). ..42
Figure 3.14 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 130 FVs

selected (max 150 FVs). ..42

 x

Figure 3.15 GDA projection of Iris data set, small variance (2 2σ =0.3) (from
[Domboulas, 2004]). ..43

Figure 3.16 FVS-LDA projection of Iris data set, small variation (2 2σ =0.1), 130 FVs
selected (max 150 FVs). ..43

Figure 3.17 GDA projection of Iris data set, moderate variation (2 2σ =0.7) (from
[Domboulas, 2004]). ..44

Figure 3.18 FVS-LDA projection of Iris data set, moderate variation (2 2σ =0.3), 100
FVs selected (max 150 FVs)..44

Figure 3.19 GDA projection of Iris data set, large variation (2 2σ =7) (from
[Domboulas, 2004]). ..45

Figure 3.20 FVS-LDA projection of Iris data set, large variation (2 2σ =7), 15 FVs
selected (max 150 FVs). ..45

Figure 4.1 Example of the Cumulative Match Characteristic Curve (from
[Biometrics, 2006]). ...51

Figure 4.2 Example of the Receiver Operating Characteristic curve (from
[Biometrics, 2006]). ...53

Figure 4.3 Classification rates for Bayes and FVS-LDA histogram classifiers.
Populations are non-normally distributed..54

Figure 4.4 Goodness-of-fit test, marginal densities per class considered.59
Figure 4.5 Bayes Classifier: the “peaking effect”. ..60
Figure 4.6 Bayes Classifier: optimal number of features..61
Figure 4.7 Bayes Classifier Cummulative Rank Score for 11 singular values.61
Figure 4.8 Bayes Classifier compared to PCA when 15 features are selected..................62
Figure 4.9 Bayes classifier based on an optimum features selection.63
Figure 4.10 Per-class classification performance of the Bayes classifier.63
Figure 4.11 FVS-LDA verification performance for a second-order polynomial kernel

combined with the Mahalanobis angle distance. ...66
Figure 4.12 FVS-LDA verification performance for a second-order polynomial kernel

combined with the Euclidean angle distance. ..67
Figure 4.13 Comparison of the FVS-LDA and the GDA algorithms using the 5x2cv

paired t test...69
Figure 4.14 Verification experiment for the GDA approach; 100 experiments;

Mahalanobis angle distance. ..70

 xi

LIST OF TABLES

Table 4.1 McNermar’s contingency table (after [Dietterich, 1998]).56
Table 4.2 Bayes Classifier performance compared to PCA...64
Table 4.3 Kernel parameters selection using a cross-validation scheme.........................64
Table 4.4 FVS-LDA average recognition rates and 95% confidence intervals, 1,000

iterations...65
Table 4.5 Equal Error Rates(EER) for a verification experiment: 30 subjects in the

gallery, 50 subjects in the probe, 100 iterations...67
Table 4.6 GDA average recognition rates and 95% confidence intervals, 1,000

iterations, after [Domboulas, 2004])..68
Table 4.7 Equal Error Rates (EER) for the verification experiment: 30 subjects in

gallery, 50 subjects in probe, 100 experiments..71
Table 4.8 FVS-LDA computational load in terms of the mean iteration running time. ..72

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

To my parents, Michail and Paraskevi and my wife Maria, for her enduring

support.

Also to my thesis advisor Dr. Monique P. Fargues, for her guidance,

professionalism, encouragement and patience that made the subject study a worthwhile

learning experience. Finally I am grateful to Dr Fatiha Anouar and Gaston Baudat for

their willingness in sharing their Matlab code for Feature Vector Selection scheme and

providing additional information regarding this scheme.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

A considerable amount of research has been conducted on face recognition tasks

over the last few years, due primarily to the rapidly increasing demand for alternative

means to ensure security and authentication. Traditional means of identification such as

ID cards and passwords are vulnerable to being compromised, unlike face recognition,

which may offer a robust natural mean of identification. In the past, most of the research

was focused on visible imaging, due to the high cost of infrared (IR) cooled cameras in

conjunction with low-resolution image analysis. Recently, however, IR camera

technology has significantly improved, resulting in improvements also in uncooled IR

camera sensitivity (i.e., higher resolution) at a fraction of the cost associated with cooled

devices.

This study is an extension of the research conducted by [Domboulas, 2004],

which investigated a nonlinear kernel-based classification scheme, the Generalized

Discriminant Analysis (GDA). The GDA scheme was applied to an IR database, first

generated by Pereira [Pereira, 2002] to include fourteen adult subjects collected in a

controlled indoor environment using an uncooled low-resolution IR camera (IR-160).

The database was further expanded by Lee to a total of fifty adult subjects [Lee, 2004].

Both Pereira’s and Lee’s studies considered two classic linear classification schemes,

namely, the Principal Components Analysis (PCA) and the Linear Discriminant Analysis

(LDA).

In our work, we first considered a linear scheme implementing the Bayes

Classification algorithm. Next, a novel approach to nonlinear kernel methods was

implemented by using a data selection process called the “Features Vector Selection”

(FVS). Use of the FVS scheme followed by the classic linear classification scheme LDA

can achieve performances similar to those obtained with the GDA method at a

significantly reduced computational cost, since only a portion of the available data is used

for extracting features that best represent the dataset.

 xvi

We considered two different types of experiments in order to evaluate the

performance of the FVS method followed by the classic linear classification LDA

scheme. Specifically, we investigated identification and verification experiments along

with their performance metrics and Cumulative Match Characteristic (CMC) and

Receiver Operating Characteristic (ROC) curves. Kernel-functions tuning issues were

discussed, while parameters for the Gaussian and the polynomial kernels in conjunction

with three different types of distances (i.e., the Euclidean norm, the Euclidean angle, and

the Mahalanobis angle) were selected, using the 5-fold cross-validation scheme. The

thesis also investigates whether differences in the performance of the two schemes, may

be considered as statistically significant in the identification experiment scenario. Results

show that selecting the number of features for the FVS-LDA scheme from a third to a

half of the available features results in close to the standard GDA performance at a

fraction of the computational cost.

Our research concludes that, from a cost perspective, a low-resolution uncooled

IR camera in conjunction with a low computational-cost classification scheme can be

embedded in a robust face recognition system to efficiently address the issue of

authentication in security-related tasks.

1

I. INTRODUCTION

In the last few years, a considerable amount of research has been conducted on

face recognition tasks [Chen, 2005], [Socolinsky, 2003], [Lu, 2003], [Wang, 2004],

[Thomaz, 2005]. It was mostly based on the rapidly increasing demand for alternative

means for security and authentication. Traditional means of identification such as ID

cards and passwords are vulnerable to compromise, unlike face recognition, which offers

“a non-intrusive, and probably the most natural way of identification” [Kong, 2005].

Although most of the face recognition research is based on visible imaging, visual face

recognition-based systems perform poorly under poor illumination conditions and in

distinguishing skin-color variations [Prokoski, 2000]. An alternative approach for

illumination invariant face recognition tasks is the thermal infrared (IR) imagery.

However, although it is a promising alternative, at first it received little attention, due to

the high cost of IR cameras in conjunction with low-resolution image analysis. Recently,

IR camera technology has been significantly improved, which led to improvements also

in IR camera sensitivity (i.e., higher resolution) and price reductions. Indeed, it is those

factors that boosted the IR face recognition research [Socolinsky, 2001], [Chen, 2003].

This study is an extension of the research conducted by [Domboulas, 2004],

which investigated a nonlinear kernel-based classification scheme, the Generalized

Discriminant Analysis (GDA) proposed by Baudat and Anouar [Baudat, 2000]. The GDA

scheme was applied to an IR database, first generated by Pereira [Pereira, 2002] to

include fourteen adult subjects collected in a controlled indoor environment, and was

further expanded by Lee to a total of fifty adult subjects [Lee, 2004]. Both Pereira’s and

Lee’s studies considered two classic linear classification schemes, namely, the Principal

Components Analysis (PCA) and the Linear Discriminant Analysis (LDA). This study

investigated in our work first considers a linear scheme implementing the Bayes

Classification algorithm. Next, a recently proposed approach to nonlinear kernel methods

is implemented by using a data selection process called “Features Vector Selection”

(FVS) [Baudat, 2003]. Use of the FVS scheme followed by the classic linear

classification scheme LDA can achieve performances similar to the GDA method at a

significantly reduced computational cost. In fact, FVS-LDA turns out to be a good

2

approximation of its “kernelized” version (i.e., GDA) [Baudat, 2003]. This study also

considers the relative classification performance of the FVS-LDA and GDA methods.

A. THEORETICAL BACKGROUND

One type of electromagnetic radiation that has received a lot of attention recently

is infrared (IR) radiation. IR radiation refers to the region beyond the red end of the

visible color spectrum, the region located between the visible region and the microwave

region of the electromagnetic spectrum [FLIR, 2006].

Figure 1.1 Electromagnetic spectrum wavelengths (from [Berkeley, 2006]).

A crucial feature of IR applications in imaging technology is that, by using IR

sensors, we are able to capture information that is not visible. Note that all objects radiate

some energy in the infrared, even objects at room temperature and frozen objects such as

ice [FLIR, 2006]. Thus, even though IR wavelengths are not in the visible spectrum, IR

radiation can be measured in terms of the thermal energy radiated.

Next, we briefly introduce some of the basic principles behind IR applications.

First, as infrared energy strikes an object, it can be

1. Abstracted and Emitted (E),

2. Reflected (R), and

3. Transmitted (T).

3

Because most materials do not transmit infrared energy, for a total amount of

energy EIR the following is true: EIR=E+R. The measure of materials’ features to absorb

and emit or to reflect IR energy are the emissivity E and the reflectance R, respectively.

Emissivity and reflectance values are bounded between zero and one; in practice, we

usually refer mostly to a material’s emissivity values. Emissivity is defined as the ratio of

the IR energy that an object absorbs and radiates with respect to the energy that a “black

body” (i.e., perfect emmiter, emissivity one) would radiate. Materials of high emissivity

emit IR more than they reflect it; thus good reflectors appear to be of the same

temperature as their background and are not distinguishable by an IR sensor. The amount

of radiation emitted is proportional to the temperature of the object and its emissivity.

Next, we present the human-face characteristics that are well suited for IR image face

recognition applications.

The scope of the research involving biometrics that is conducted by the security

industry is aimed at developing identification schemes that are based on characteristics

unique to a single individual (e.g., fingerprints). According to Prokoski, “the anatomical

information which is utilized by infrared identification involves subsurface features

unique to each person” [Prokoski, 2000]. Interestingly, even identical twins appear to

have different thermal face patterns. The mechanism behind the collection of IR images

is related to the pattern of superficial blood vessels that transfer heat throughout the

human body. The area of the skin that is directly above a blood vessel is, on average,

0.1 oC warmer than the adjacent skin [Prokoski, 2000]. Moreover, the temperature

variation for a typical human face is in the range of about 8 oC [Prokoski, 2000]. Recent

improvements in IR-imaging technology enable us to capture details for the values of

temperature range and sensitivity.

A complementary approach to IR imaging, namely, visual imaging based on the

reflectance information of a face object, has received most of the recent research

attention, due to the low cost and high resolution of visible-light spectrum cameras.

However, changes in illumination introduce variability in the within-class information

that results in the degradation of a classification’s performance. In fact, variations

between the images of the same face due to changes in illumination, viewing direction,

4

facial expressions, and pose are typically larger than the variations introduced when

different objects are considered [Kong, 2005]. Thermal IR imagery is invariant to those

types of distortions, since it captures the anatomical information. However, thermal

imaging has limitations in identifying a person wearing glasses, since glass is a material

of low emissivity, or when the thermal characteristics of a face have changed due to

increased body temperature (e.g., physical exercise) [Kong, 2005].

B. THE DATABASE CONSIDERED AND THE EQUIPMENT USED

The IR-images database considered in this study was initially collected by Pereira

[Pereira, 2002] and further extended by Lee [Lee, 2004] at the Naval Postgraduate School

(NPS). The IR camera used (IR-160) was developed by Infrared Solutions Inc. and

belongs to the family of uncooled (i.e., no cryogenic cooling of the sensor is required) IR

long-wavelength thermal imagers. The IR-160 imager provides a (160 120 pixel)× NTSC

or PAL video signal, it is tuned to the long-wavelength infrared band (LWIR, 8–14 µ m),

and its sensitivity is about 60mK (i.e., less than 0.1 oC) [Infrared Solutions Inc., 2006].

Although the performance characteristics of the IR-160 camera are relatively

poor, the operational demands related to face imaging are well within the spatial and

temperature resolutions provided by the camera. More specifically, recall that the

temperature variation for a typical human face is in the range of about 8 oC and that the

area of the skin that is directly above a blood vessel is on average 0.1 oC warmer than the

adjacent skin [Prokoski, 2000]. Moreover, “humans, at normal body temperature, radiate

most strongly in the infrared at a wavelength of about 10 µ m” [NASA, 2006]. The

blackbody spectrum for temperatures near that of the human body is depicted in Figure

1.2.

5

Figure 1.2 Blackbody spectrum for temperatures near that of the human body (from
[Pereira, 2002]).

The IR-160 imager is connected via its RS-232 serial communication link to a

monitor, thus allowing for a manual optimization of the images (e.g., brightness and

contrast adjustments) before their collection. Images are 8-bit/pixel with 160 120× pixels

spatial and 60mK temperature resolutions. The database includes frontal views of 50

adult subjects, each sampled 10 times with 3 facial expressions each, resulting in 1,500

grey-scale images. Images were cropped down to 60 45× pixels to retain the middle

section of the face only [Lee, 2004].

Specifically, the variations introduced in terms of facial expressions included

neutral, smiling, and pronouncing the vowel “u” expressions. Further variations were

introduced for a given facial expression by considering nine fixed, predefined gazing

directions for the individuals, while a tenth image variation was collected for the random-

gazing positions. Note that variation due to the time-lapse between images of the same

individual collected at different time periods was not considered. Additional information

regarding the database collection and the IR images’ final formation can be found in

[Lee, 2004].

6

The equipment used (i.e., imager IR-160, monitor, and PC) along with the lateral

and frontal aspect layouts set-up followed for the IR data collection system are depicted

in the following figures.

Figure 1.3 Equipment used for IR-images database collection (from [Lee, 2004]).

Figure 1.4 Lateral aspect of IR data-collection system layout (from [Pereira, 2002]).

7

Figure 1.5 Forward aspect of IR data-collection system layout (from [Pereira, 2002]).

C. THESIS OVERVIEW

This study consists of five chapters. Chapter I introduced the idea behind IR

imaging face recognition tasks. Chapter II presents the underlying theory of linear

classification schemes. Nonlinear classifiers and specifically, a generalization of linear

schemes using nonlinear kernel functions are discussed in Chapter III. Experimental

results obtained using the IR-images database are illustrated and discussed in Chapter IV.

Finally, Chapter V includes conclusions and proposals for future work. Appendix A

contains mathematical background information when more details are needed. The

software implementation considered for this study is included in Appendix B.

D. SUMMARY
This chapter briefly introduced some basic concepts related to IR imaging

applications. Specifically, we discussed the mechanism behind IR-imaging face

recognition tasks. A comparison with an alternative (i.e., visual imaging) approach was

considered and major shortcomings and limitations noted. Next we presented the process

followed for the IR-images database collection along with the equipment used. Next

section, we first consider two classical linear-classification schemes, and second, review

a nonlinear kernel-based scheme already investigated in a previous study [Domboulas,

2004].

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. LINEAR CLASSIFICATION ALGORITHMS

This chapter first introduces three linear classification algorithms widely used in

pattern recognition applications, namely the Principal Component Analysis (PCA), the

Linear Discriminant Analysis (LDA), and the classifier based on Bayes Decision Theory.

Next, it discusses similarities and deficiencies present in each.

A. INTRODUCTION
An important preprocessing step of an overall automatic pattern recognition

system is feature extraction which is designed to capture relevant information with high

discriminating capability. Facial recognition applications need to cope with large

dimensionality issues, which are due to the nature of the imaging data. Note that, for the

IR camera used in our study [Lee, 2004], images of size (160 120)× collected were

reshaped as column vectors of dimension 19200,N = resulting in a very large covariance

matrix of dimension .N N× Decomposing matrices of such a dimension is

computationally intensive unless dimensional reduction preprocessing schemes are

applied. The PCA method, which was initially designed for data compression

applications, is also applied in numerous pattern recognition tasks. However, a projection

scheme designed to best represent the data in a least-square sense is not optimum for

discrimination tasks, unlike the LDA algorithm that seeks a projection that best separates

the data. In the Bayesian Classifier approach, PCA is first applied for dimensionality

reduction, followed by a recognition step in the reduced subspace which follows the

Maximum A-Posteriori (MAP) decision rule. Recall the MAP decision rule is optimal for

classification since it considers the class separation. We consider each of these

approaches applied to our IR image database and compare their performances.

B. PRINCIPAL COMPONENTS ANALYSIS

1. Introduction

Sirovic and Kirby are among the first researchers that introduced PCA for image

face representation [Liu, 1998]. This approach leads to decomposing any image into its

eigenpictures so that the image can later be economically reconstructed by selecting only

a portion of the eigenpictures and the associated projections onto the eigenpictures

subspace. Next, Turk and Pentland introduced the eigenface approach for face-

10

recognition applications in which eigenvectors associated to the larger eigenvalues

(referred to as eigenfaces) of the image face covariance matrix decomposition span a

feature subspace of smaller dimension [Liu, 1998]. Over the years PCA has been used in

many pattern classification tasks, mostly due to its generalization ability, since the

features (i.e., projection axes) extracted, which are based on the variations of all the

training samples, are fairly robust for representing labeled images. However, the

inefficiency of directly applying the PCA method is due to the fact that the null subspace

information associated to the smaller eigenvalues is ignored, even though it contains

useful class discrimination information [Lu, 2003]. In addition, PCA leads to poor

performance when the distributions of face classes are not separated by the mean-

differences but by the covariance-difference. In such a case, the most expressive features

are not necessarily the most discriminating ones when the training images are

representative of the range of class variations (i.e., between-class scatter information).

a. Algorithm Description
The PCA algorithm for pattern recognition is implemented in two steps.

First, features from high-dimensional data are extracted. Next, a classifier scheme is

designed on the training data and used to assign labels to the testing data.

b. Feature Extraction
Linear methods project the high-dimensional data onto a feature subspace

of significantly lower dimension, and PCA is a powerful method for extracting features

from high-dimensional data sets. That approach reduces the dimensionality of the feature

space by first selecting the directions along which the data scatter is maximized [Duda,

2001]. Next, principal components are obtained by solving an eigenvalue problem.

Assume we have P available images stored in a m n× matrix structure. First, each image

is reshaped into a column vector structure , 1,...,N
ia i P∈ =\ of dimension .N mn= Next,

let us review the standard PCA algorithm steps, as illustrated in [Schölkopf and Smola,

2002]. According to Duda “the sample mean is a zero-dimensional representation of the

data set. It is simple, but it does not reveal any variability in the data.” Hence the given

set of observations (i.e., images) is first centered, by subtracting the overall image mean

vector Nm∈\ defined as:

11

1

1 P

i
i

m a
P =

= ∑ . (2.1)

Thus, the centered dataset is defined as:

 , 1,...,i ix a m i P= − = , 1,..., ,i ix a m i P= − = (2.2)

resulting in the covariance matrix:

1

1 1 , ,
P

T T N N
j j

j

C x x XX C
P P

×

=

= = ∈∑ \ (2.3)

where the data matrix X is defined as:

 []1 2, ,..., , .N P
PX x x x X ×= ∈\ (2.4)

PCA computes the principal components by computing the eigen-

decomposition of C as

 ,CU U= Λ (2.5)

where U, Λ are the eigenvector and eigenvalue matrices, respectively, and the covariance

matrix C is of rank equal to min (P,N). Note that computing the eigen-decomposition of

C is computational expensive when the number of samples P is much smaller than the

dimensionality N [Liu, 1998]. The computation load can be significantly decreased by

computing instead the eigen-decomposition of the matrix C0 defined as:

 0 0
1 , .T P PC X X C
P

×= ∈\ (2.6)

The eigenvectors associated to the first K dominant eigenvalues are

selected to define the projection matrix P as

 1 2 1 2 min(,)[, ,...,] [, ,...,] .k P NP u u u u u u U= = ⊆ (2.7)

Next, the data are projected onto the principal components subspace,

namely the K selected eigenvectors, resulting in a new feature data set with lower

dimensionality ()K N<< computed as

 , .T K PZ P X Z ×= ∈\ (2.8)
c. Classification
Once the features are defined, the classifier may be derived. In this study

we consider a nearest-neighbor classifier. Class-centroids based on the transformed

training dataset Z are computed as

12

1

1 , where refers to the number of samples in the class.
i

i

Pc
th

c j i
ji

m z Pc i
Pc =

= ∑ (2.9)

Next, class decision for each testing image is obtained by computing the

distance between the features set obtained from the testing set and all class-centroids

obtained from the training set, and selecting as class that leading to the smallest distance.

Different types of distances can be used, the most common and simple one to implement

is the Euclidean distance (norm-2).

The PCA algorithm is summarized below:

• Reshape the number of P labeled images forming the training set of
dimension m n× into a column format 1,N × where N mn=

• Center the data set by removing the overall C classes mean,

• Form the training dataset covariance matrix,

• Compute the eigen-decomposition of the covariance matrix,

• Select the K dominant eigenvalues and associated eigenvectors (referred
to as the “top K eigenvectors” in the following) for the projection step.
The features space is spanned by the K top eigenvectors (i.e., principal
components),

• Project the data onto the principal components space,

• Compute the class-centroids from the training data,

• Select a distance metric and compute distances between each projected
image to each of the class-centroids,

• Assign a class label to each testing image by selecting as class that leading
to the smallest distance between the projected testing image information
and all class-centroids.

C. LINEAR DISCRIMINANT ANALYSIS (LDA)

1. Introduction
The Linear Discriminant Analysis (LDA) algorithm is a feature extraction

technique commonly applied in face recognition tasks. The basic idea behind the LDA

approach lies in selecting a projection so that projected class centers are far apart while

the spread within each projected class is kept small. Thus, the overlap between classes is

expected to be small [Schölkopf and Smola, 2002]. Results have shown that the LDA

method extracts the most discriminating features, unlike the PCA that selects the most

representative ones.

13

2. Algorithm Description

In order to introduce the underlying theory of the LDA algorithm let us illustrate

the problem, as considered in [Duda, 2001], of projecting n two-dimensional data

1 2, ,..., nx x x onto a one-dimensional line in the direction of the vector w for the case of

two classes, 1 2and ,C C with 1 2andn n samples, respectively. Samples of the two classes

projected onto two different directions are depicted below in Figure 2.1. Note that the

plot shown on the right of Figure 2.1 leads to better separation between the projected

classes.

Figure 2.1 Separating two classes of a simple two-dimensional dataset. Seeking

directions that are efficient for discrimination, the LDA approach (from
[Duda, 2001]).

Figure 2.1 shows that varying the orientation of the projection vector w has a

direct impact on the separation between projected samples. Thus, we need to derive a

general approach that enables us to find the best projection vector w. Note that the

difference between projected sample means ,im� where

 1 , 1, 2,
i

T
i

Ci

m i
n ∈

= =∑
x

w x� (2.10)

can be considered a separation criterion between the two classes. In fact, a large

difference implies well-separated classes, provided the projected class variances are

small. However, merely increasing the difference 1 2 1 2()Tm m− = −w m m� � by rescaling

w is not adequate to obtain a good separation between projected samples. We also need

14

to consider the class spreads. The scatter for the projected samples is a measure of the

variation for each class that enables us to make such a relative comparison between the

distance of the projected means and the variation of the available data.

The scatter is� is defined as

 2() , 1, 2.
i

T
i i

C
s m i

∈

= − =∑
x

w x� � (2.11)

Now a meaningful cost function that can be used to quantify the separation

between two classes can be defined as follows:

2

1 2
2 2

1 2

| | .m mJ
s s
−

=
+

� �
� �

 (2.12)

Next, Eq. (2.12) can be explicitly expressed in terms of the projection direction vector w

for the N-dimensional data and C-class case [Duda, 2001]. The cost function J is derived

by introducing the scatter matrices, namely the within-class scatter matrix ,wS defined

as:

1
, where is the

C

w i i
i

S S S per class scatter matrix
=

= ∑ defined as (2.13)

()() , is of class
i

T th
i i i i

x C
S x m x m m the mean image i

∈

= − −∑ (2.14)

and the between-class scatter matrix BS defined as:

1

()() ,
C

T
B i i i

i
S n m m m m

=

= − −∑ (2.15)

where m is the mean of the training images and in represents the number samples in the

thi class. Note that for the C-class case “the natural generalization of Fisher’s linear

discriminant involves C-1 discriminant functions” [Duda, 2001]. Thus, the cost function

J can be rewritten in terms of ,wS BS and W, the matrix of the C-1 N-dimensional feature

vectors ,iw and is known as the generalized Rayleigh quotient, defined as:

 () .
T

B
T

W

W S WJ W
W S W

= (2.16)

The problem now becomes to find the transformation matrix W, so that the ratio of the

between-class scatter to the within-class scatter is maximized.

15

It is well known that maximizing the Rayleigh quotient is obtained by computing

the eigenvector associated with the maximum eigenvalue for the generalized eigen-

problem [Duda, 2001], i.e.

, 1, 2,..., 1,B i W iS w S w i Cιλ= = − (2.17)

provided that the within-class scatter matrix wS is invertible. At this point it is interesting

to note that the dimension of the new basis defined by the matrix W is a function of the

total number of classes only, thus the projection is done from a N-dimensional to a C-1

dimensional space.

A few observations about the nature of the within-class scatter matrix wS are in

order.

• First, in most face recognition (FR) tasks the number of training samples
P is much smaller than their dimensionality N (N P>>), which is
referred to as the so-called “small sample size” (SSS) problem, and results
in most cases into a singular matrix wS [Lu, 2003]. Thus, for a data set of
P N-dimensional training samples representing C classes, the N-
dimensional matrix wS has at most P C− non-zero eigenvalues. Thus, the

wS matrix is singular when N is greater than the matrix rank (N P C> −).
A commonly used procedure implemented to tackle the singularity issue is
to add a PCA step to remove the null space of the matrix wS prior to the
maximization of the Rayleigh quotient criterion function.

• Second, the N-dimensional between-class scatter matrix BS has maximum
rank equal to C-1 because it is generated as the sum of C matrices of rank
one, and only C-1 of those are independent (see Appendix A, [Domboulas,
2004]).

Thus, a PCA step is first applied to reduce the dimensionality of the problem and ensure

that the resulting between-class scatter matrix is non-singular, prior to applying the LDA

step. The resulting scheme is known as the “Fisherface Approach.”

D. BAYES CLASSFIER APPROACH

1. Introduction
Pattern recognition schemes based on Bayes decision theory assign an unknown

pattern to the most probable class. That type of approach stems from the statistical

variation of the collected patterns and the statistical nature of the generated features

[Theodoridis, 2003]. The basic idea behind Bayesian classifiers is that the per-class

16

collected multidimensional samples are distributed according to a known (usually

selected as the multivariate Gaussian) probability density function (PDF). Note that the

Bayes classifier yields the minimum error, provided the underlying (PDFs), discussed

next, are known. Bayesian error is the optimal measure for feature effectiveness in

classification tasks, since it measures the class separability [Liu, 1998].

A formulation of such a classifier combines knowledge of the relative frequency

of the instances of a class, namely the a-priori probability, with a measure of the

probability that an observed feature occurs in a class, the likelihood probability (obtained

from the training data). Those serve as inputs to the Bayes rule. Thus, for the testing data

we compute the a-posteriori probability reflecting the more likely class to which

unlabelled patterns belong. In the following we will define and quantify the term “more

likely” based on the Bayes rule.

Note that the PCA will be applied for dimensionality reduction first, prior to any

techniques for estimating probability density functions to ensure that the resulting per-

class covariance matrices are non-singular.

2. Algorithm Description

Let us consider a set of labeled data (training data) 1{ ,..., }Nx x represented by l

features, collected from C different classes. For a given class , 1, 2,..,i Cιω = , each of the

observed l-features of the vector x (i.e., pattern) is considered a random variable whose

distribution depends on the nature of the classification task. For instance, if we describe

each pattern xi, using l-features (i.e., 1[,...,]i i ilx x=x), then xi can be considered a

multivariate Gaussian distributed variable, provided the extracted features are Gaussian

distributed and independent, (see Appendix A). For classification problems the feature

extraction is a crucial issue. Ideally speaking, features are extracted from the available

data such that “features are different for patterns in different classes but as similar as

possible for patterns in the same class” [Duda, 2001]. Thus, in probabilistic terms,

different classes will be represented using the class-conditional

PDFs, (|), 1, 2,.., .p x i Cιω =

17

In classification problems we need to assign an unlabeled pattern (i.e., testing data

sample) represented by the l -features vector, x , to a class out of a set of C

classes 1, ,..., .Cω ω ω2 In fact, the goal is to classify that pattern based on the C conditional

probabilities, namely the a-posteriori probabilities, (|), 1, 2,..., .P x i Cιω = Recall that each

a-posteriori probability represents how likely the unlabeled pattern is to belong to the

respective class ,ιω given that the associated feature vectors take the value x

[Thedoridis, 2003]. In other words, using Bayes’ rule, we assign the class label ιω to an

unlabelled data sample x when the associated posterior probability (|)P xιω is

maximum over all classes. In the following we introduce a discriminant function based

on the Bayes rule that is evaluated for each of the C classes, so that any unlabeled

pattern is assigned to the class corresponding to the maximum of these values.

Recall that the Bayes theorem states that for a C -class problem

 (|) ()(|) , 1,..., ,
()

i
i

p x PP x i C
p x

ιω ωω = = (2.18)

where iω represents the ith class, and (|)p x ιω , 1, 2,..., ,i C= denotes the class-conditional

PDF for the variable x. The PDF (|)p x ιω is called the likelihood function of ιω with

respect to x and is estimated from the training data set. A-priori probabilities ()iP ω are

assumed to be known in most cases or estimated as the ratio of the per-class available

training samples over the number of the total collected samples. Last, the PDF of x

defined as p(x) can be computed as:

1

() (|) ().
C

i
i

p x p x Pιω ω
=

=∑ (2.19)

Next, the Bayes classification rule for an unlabeled pattern represented by the feature

vector x can be stated as

 Assign x to the ith class if (|) (|), .jP x P x j iιω ω> ∀ ≠ (2.20)

In [Thedoridis, 2003] it is shown that the Bayesian classifier minimizes the

probability of classification error in the two-class problem, and that result also holds true

for the generalized multi-class case.

18

Note that minimizing the probability of the classification error via the Bayesian

probabilistic scheme can be considered as partitioning the feature space into C regions

for the C -class task. In the multidimensional feature space those decision thresholds are

represented by surfaces described by the equation

 (|) (|) 0.jP x P xιω ω− = (2.21)

In many cases one may not deal with the posterior probability expressions

directly, but with equivalent functions, referred to as “discriminant

functions” (), 1, 2,.., .ig x i C= For instance, possible discriminant functions may be defined

as

1

(|) ()()
(|) ()

() (|) ()
() log (|) log ()

i
i C

i
i

i i

i i

p x Pg x
p x P

g x p x P
g x p x P

ι

ι

ι

ι

ω ω

ω ω

ω ω
ω ω

=

=

=

= +

∑
 (2.22)

and lead to identical classification results [Duda, 2001]. Note that any multiplication of

the discriminant by a positive scalar or any addition of a constant will not affect the

overall decision, and any monotonically increasing function f such that

() (())i ig x f g x≡ can be used [Duda, 2001]. That choice enables us to obtain a canonical

form for classifiers and leads to analytical and computational simplifications. Thus, the

Bayesian classification rule can be restated in terms of the discriminant function as

 assign x to the class if () (), . th
i ji g x g x j i> ∀ ≠ (2.23)

The Bayesian classifier structure is based on the estimation of the conditional

density, (|), 1, 2,.., ,p x i Cιω = from the training data. However, in many cases this

estimation process is not an easy task. Among the various densities, the Gaussian density

function has received the most attention, as it is computational tractable and models

adequately a large number of cases [Thedoridis, 2003]. The multivariate normal class-

conditional PDF of the l-dimensional patterns x is defined as

 1/ 2/ 2

1 1(|) exp(() ()), 1, 2,..., ,
2(2)

T
l

p x x x i Cι ι ι ι
ι

ω µ µ
π

−1= − − Σ − =
Σ

 (2.24)

19

where []E xιµ = is the mean vector of the thi class and ιΣ the l -dimensional covariance

matrix, defined as

1

()() ,
in

T
j j

j

x xι ι ιµ µ
=

Σ = − −∑ (2.25)

where in represents the number of training samples in the thi class.

At this point we need to consider when the assumption for Gaussian distribution

of the l-dimensional (i.e., features) patterns holds in practical cases such that equation

(2.24) can be used. According to Gnanadesikan, “although marginal normality does not

imply joint normality the presence of many types of non-normality is often reflected in

the marginal distribution as well”. Therefore in practice a preprocessing step for

investigating marginal normality is applied, and multivariate assumption rejected when

any marginal density is found to be not normal. Thus, a goodness-of-fit test may be

performed based on the available training samples for each class to test for marginal

normality. The normality test used in this study is the D’Agostino-Pearson K2 test

proposed by D’Agostino and Stephens, [D’Agostino, 1986]. This test evaluates a dataset

deviation from normality based on estimated skewness and kurtosis values. Further

details regarding this test may be found in Appendix A.

The following discriminant function ()ig x can be selected when dealing with a

normal PDF since it includes the monotonic logarithmic function ln(.) [Thedoridis,

2003]:

 1() () () ln () (/ 2) ln 2 / 2 ln .
2

T
ig x x x P l lι ι ι ι ιµ µ ω π−1= − − Σ − + − − () Σ (2.26)

Recall that the PCA step first gets applied to reduce the dimensionality of the

problem and ensure that the resulting per-class covariance matrix is non-singular. Note

also that the rank of the per-class covariance matrix ιΣ is a function of the number of

training samples per class in (() 1;irank nιΣ = − see Appendix A [Domboulas, 2004]), so

that the number of user-defined principal components can only be at most one less than

20

the rank of the covariance matrix .ιΣ Once discriminant metrics are computed for all

classes, testing images are classified as belonging to the class with the maximum of these

values.

Therefore, the Bayesian classifier process is implemented as follows:

• Reshape the total number of P m n× -dimensional images into a 1N ×
column format, where ,N mn=

• Center the data set by removing the overall C classes mean,

• Form the training dataset covariance matrix,

• Apply the PCA using the snapshoot method presented in [Pereira, 2002],

• Project the original data onto the PCA-based feature space,

• Use the projected low-dimensional training data to estimate the class-
centroids and the class covariance matrices,

• Evaluate the discriminant function (), 1, 2,.., ,ig x i C= for each of the
testing images, and

• Assign unlabelled data sample x to class i when () (), .i jg x g x j i> ∀ ≠

E. ALGORITHM COMPARISONS
As mentioned earlier, the PCA approach does not consider class labels, so

features extracted are better suited for representing the overall data set, unlike the LDA

where the extracted features are designed to preserve separation between classes.

Illustration of the projections of PCA and LDA algorithms for a toy data set are presented

in Figure 2.2.

21

Figure 2.2 PCA and LDA projections for a toy dataset (from [Schölkopf and Smola,

2002]).

Next, some of the algorithms’ main shortcomings and limitations are reviewed.

• The major issue with the PCA approach in classification tasks is the
removal of the null space where most of the details useful for
discrimination are encoded. As a result, some of the recent feature
extraction techniques, such as [Vaswani, 2004] or [Wang, 2004], consider
the null space to preserve that discriminative information.

• LDA-based classification algorithms suffer not only from the removal of
the null space when the PCA preprocessing step is applied, but also from
the small-sample-size problem (SSS), which occurs when the training data
set is small compared to the high-dimensional feature space, resulting in
instability and singularity of the within-class scatter matrix. A
considerable amount of research has been devoted to tackling the SSS
problem, with or without the intermediate PCA step [Lu, 2003], [Chen et
al, 2000], [Yu, 2001], [Wang, 2004], [Thomaz, 2005].

• The Bayes classifier requires accurate estimations of the class density
functions to provide accurate results. In most of the cases only a few
training samples may be available for estimating the conditional density

(|), 1, 2,.., .p x i Cιω = An alternative approach to the density estimation is
to make an assumption of a particular density form – usually normal
distribution is preferred – and estimate the associated parameters (i.e.,
mean and covariance matrices). Thus, the general density estimation
problem is converted into a parametric one [Liu, 1998].

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. NONLINEAR CLASSIFICATION ALGORITHMS

This chapter presents an introduction to recently proposed kernel-based schemes

that provide the foundation for powerful nonlinear classification schemes. First, we

briefly review some of the recent research applied to complex nonlinear classification

tasks. Second, we introduce the underlying theory for kernel-based approaches along

with the so called “Kernel trick.” Next, we discuss the Support Vectors approach (SVs)

and the Generalized Discriminant Analysis (GDA). Finally, we present a recently

proposed approach to nonlinear classification tasks called the kernel-based Feature

Vector Selection scheme.

A. KERNEL-BASED SCHEMES

1. Theoretical Background
Research results have shown that two widely used linear methods, namely, PCA

and LDA, that can be used for low-dimension feature representation may perform poorly

in pattern classification tasks when applied to complex nonlinear data sets, as a result of

the linear projection constraints present in their definitions. Recent results show that

kernel-based schemes lead to better classification performances, as they map the input

patterns in a potentially much higher dimensional feature space where linear decision

boundaries may be determined.

Kernel theory allows us to reframe linear classifiers and extend their applications

to a wide range of nonlinear pattern-recognition tasks such as natural language

processing, biological sequence analysis, face recognition, and text classification. Kernel

theory was first discussed in the literature by Mercer in 1909 and first used for pattern

recognition by Aizerman in 1964 [Baudat, 2003]. More recently, kernel theory has been

used as the underlying foundation for some of the cutting-edge performance schemes in

classification such as Support Vector Machines (SVM), Kernel Principal Components

Analysis (KPCA), and Generalized Discriminant Analysis (GDA), also known as Kernel

Fisher Discriminant Analysis (KFA).

24

Kernel-based schemes have been applied in a variety of research areas, including:

• Speech Technology [Kocsor, 2004]: This study focuses on the
applicability of kernel-based nonlinear feature extraction and classification
algorithms to the phoneme recognition in a phonological awareness
drilling software package.

• Face Recognition: Numerous variations of kernel-based schemes
combined with linear classification algorithms have been reported in both
visible and infrared face recognition tasks, obtaining high classification
rates [Baudat, 2000], [Baudat, 2003], [Liu, 2002], [Lu, 2003], [Liu, 2004].

• Text classification [Joachims, 1998], [Joachims, 1999]: SVM-based
techniques have been used to organize on-line information, such as
document databases, to learn users’ article preferences, etc. Results have
been good, even when the learning process is based on small training
samples.

• 3-D Object Recognition [Pontil, 1998]: This research concentrated on the
problem of recognizing 3-D objects from a single view based on SVM.
Results show that high recognition rates are obtained when a small
number of training samples are used, as compared to the dimensionality of
the object space.

• On-line Handwriting Recognition [Bahlmann, 2002]: On-line data
structure is highly complex due to the variable-size sequence of feature
vectors. In this study, SVMs’ discriminative power previously used with
success for Optical Character Recognition (OCR) is combined with a new
type of kernel function in on-line handwriting recognition tasks [Muller,
2001].

There is currently no doubt that kernel-based approaches are well suited tools for

feature extraction, especially in nonlinear and high-dimensional data sets. However, both

kernel function selection and parameter tuning issues remain challenging and are still

open topics of research. In most cases, trial-and-error or hold-out cross-validation

approaches are used for selecting parameters, which is computationally intensive and

may cause over-fitting problems. Moreover, kernel matrices have dimensions equal to the

number of the available training samples, potentially leading to extremely large

dimensions for large data sets. Recently, a considerable amount of effort has been made

to address kernel parameters optimization issues [Huang, 2004], [Xiong, 2005],

[Centeno, 2006] and kernel matrix dimension reduction problems by removing “outlier”

data points [Kim, 2003], [Baudat, 2003].

25

2. Introduction to Kernel Theory: The Kernel Trick
The kernel trick has been around for a long time. However, it was not until the

mid 1990s that researchers discovered that any dot-product-based algorithm can be

“kernelized.” Kernel methods for pattern recognition can be considered a generalization

of more limited but well-established classical linear classifiers via a mapping function φ .

The basic idea behind kernel-based schemes is to first map the input vectors x X∈ into a

high-dimensional feature space F, in which data are nonlinearly related to the input space

[Baudat, 2000]. Standard linear schemes may then be applied in the transformed space.

 Increasing the number of features representing patterns while keeping the number

of training samples fixed is an important issue in pattern recognition applications. In

classification applications for example, the number of data samples needed to accurately

estimate decision boundaries grows exponentially with the dimension of the feature

space. This characteristic is better known as the “curse of dimensionality” and results in

computationally expensive and memory-consuming methods being required to handle

problems associated with high-dimensional features. However, efficient decision

boundaries may be obtained when classes are well separated in a higher-dimensional

space or any a-priori information about the data structure is known (i.e., a specific type of

distribution, independence between features, etc.), [NAVSEA Newport, 2006].

Next, we introduce the crucial concept used in kernel based schemes, referred to

as the “kernel trick,” following the presentation given in [Schölkopf and Smola, 2002].

Let us define a dataset X of patterns xi (also called observations, training samples, or

inputs) with known labels iy Y∈ (also called targets, or outputs) that form a training set

of m examples 1 1(,),..., (,)m mx y x y X Y∈ × . Note that, following the terminology of

[Schölkopf and Smola, 2002], we will refer to the term “pattern” for an individual

observation which is more common in the machine learning area.

In most machine learning tasks the goal is to find a suitable label y Y∈ for any

new observation x X∈ so that (,)x y is similar to the training examples

1 1(,),..., (,)m mx y x y . In fact, defining the similarity of outputs in a binary classification

task is easy, as labels will either be the same or different. Unlike outputs, selecting

26

similarity measures for the inputs remains a challenging issue [Schölkopf and Smola,

2002]. Therefore, a function that returns a real number representing in a quantitative

manner the similarity between any pair of input patterns is needed. A function k , called

kernel, of the form

:

(, ') (, ')
k X X
x x k x x

× →\
6

 (3.1)

may be used as a measure of similarity between the patterns , 'x x .

A widely used similarity measure between two vectors , ' N∈x x \ is the dot

product defined as

 th

1
, ' : [] ['] , where [] is the i coordinate of

N

i j i
i

x x x
=

= ∑x x x. (3.2)

Note that the dot product is considered an attractive similarity measure from the

mathematical perspective, since it characterizes the level of similarity between two

vectors, which can be expressed in terms of angles, lengths, and distances between the

vectors.

Although the dot product is a particularly simple similarity measure, it is not

sufficient for the case of non-vectorial input data. Applications with non-vectorial input

data (also referred as structured data) are usually met in bioinformatics and may include

protein classification (xi is a string of amino acids, or a molecule structure) or in

information extraction (xi is a sentence of words) [Joachims, 2006]. A powerful property

of kernel theory is used when dealing with structured data configurations to convert

structures into real vectors and then implement learning algorithms. The representation of

patterns as vectors is done via the following mapping function φ , defined as:

: .

X
x x
φ

φ
: →

= ()x6
F

 (3.3)

Overall, kernel theory allows the transformation of data in a transformed space F,

referred to as the “dot product space” or “feature space,” via a nonlinear mapping φ ,

where the transformed data can be treated efficiently using linear classification methods.

27

The main benefits of mapping the original data via φ are summarized below

[Schölkopf and Smola, 2002]:

1. Enable to define a similarity measure in the feature space F as

 (, '): , ' , ' .k x x x xφ φ= = () ()x x (3.4)

2. Patterns are treated geometrically. Thus, linear algebra and analytic
geometry methods may apply for learning schemes.

3. Adaptability in selecting the mapping function φ is best suited for
overlapping classes, thus potentially resulting in a nonlinear mapping used
to transform an initially complex representation space into a linear
separable space, where linear classification schemes may then be applied.

Next, we consider a simple example where a kernel-based approach is used to

compute dot products in spaces of monomial features to illustrate the usefulness of

kernels and introduce the “kernel trick.”

Figure 3.1 Binary classification example. Note: The dot product in the three-

dimensional space can be computed without computing the mapping
function φ , (after [Schölkopf and Smola, 2002]).

Let us consider a pair of inputs 2,x y∈\ that are nonlinearly transformed using

the mapping function φ as follows:

2 3

2 2
1 2 1 2 3 1 1 2 2(,) (, ,) (, 2 ,),x x z z z x x x x

φ : →

→ =

\ \
 (3.5)

where the transformed input patterns x and y may be expressed in the transformed space

as a and b defined, as shown below:

2 3φ : →\ \

28

1 2 1 2

2 2
1 2 3 1 1 2 2

2 2
1 2 3 1 1 2 2

(,), (,),
(), (),

(, ,) (, 2 ,),

(, ,) (, 2 ,).

x x x y y y
a x b y

a a a a x x x x

b b b b y y y y

φ φ
= =
= =

= =

= =

 (3.6)

Thus, the corresponding kernel expression (, ') (), (')k x x x xφ φ= is given by

1 1 2 2 3 3

2 2 2 2
1 1 1 2 1 2 2 2

2

, ,

 2

 , ,

x y a b a b a b a b

x y x x y y x y

x y

φ φ() () = = + +

= + +

=

 (3.7)

which shows that the kernel expression is equivalent to

 2(,) ,k x y x y= (3.8)

in the input space. Numerous types of kernel functions may be used, depending on the

data characteristics. Some typical kernel functions are:

Gaussian type:
2

(,) exp ,
2

x y
k x y

σ 2

⎛ ⎞−
= ⎜− ⎟

⎜ ⎟
⎝ ⎠

 where 0σ > , (3.9)

Sigmoid type: (,) tanh(,),k x y a x y b= + where 0, 0a b> < , (3.10)

Polynomial type: (,) (,) , , , 0.dk x y a x y b a b d= + > (3.11)

Note that a kernel k must satisfy specific properties to correspond to some

nonlinear transformation φ and ensure that (, ') (), (') , 'k x x x x x xφ φ= ∀ . The constraints

are summarized below [Schölkopf and Smola, 2002].

1. the mapping (, ')k x x is continuous,

2. the mapping k is symmetric, i.e., (, ') (',) , 'k x x k x x x x= ∀ ,

3. the mapping (, ')k x x , is positive definite, i.e.,
(, ') () (') ' 0,k x x g x g x dxdx g≥ ∀∫ .

Kernel concepts may be extended to spaces other than dot product spaces, where a

vectorial representation of objects is not readily available, including data types such as

text strings, etc. [Schölkopf and Smola, 2002].

29

3. Support Vectors
Support Vectors classification (SVC) schemes are widely applied in pattern

recognition tasks [Joachims, 1998], [Muller, 2001], [Pontil, 1998]. The basic idea behind

SVC schemes is the generation of the separating hyperplane that linearly separates data in

a classification task, as shown in Figure 3.2.

Figure 3.2 A separable classification problem along with a separating hyperplane
written in terms of an orthogonal weight vector w and a threshold b. (from
[Schölkopf and Smola, 2002]).

It has been shown that only one separating hyperplane out of all possible

separating hyperplanes defined for a given classification problem is of maximum margin

to any training point. The term “margin” refers to the distance to the separating

hyperplane from the closest point to it, and further details may be found in [Scholkopf

and Smola, 2002, Chapter 7]. Note that a large margin is usually needed for a learning

algorithm to generalize well [Schölkopf and Smola, 2002].

Computing the optimal hyperplane comes down to solving a constraint

optimization problem (refer to [Schölkopf and Smola, 2002, Chapters 6 and 7] for a

detailed analysis). For a set of training vectors N∈x \ , the solution to the optimal margin

classifier problem, referred to as the vector w, can be decomposed in terms of a subset of

the training patterns lying on the margin of the optimal hyperplane, which are called the

Support Vectors (SVs). Hence, the optimal hyperplane defined by the vector N∈w \ and

30

the constant b∈\ satisfying , 0b+ =w x is defined. As a result, training patterns not

used in the expansion of the vector w can be ignored, resulting in only the patterns

closest in distance to the optimal hyperplane encountered needed to determine class

boundaries. These specific patterns are located on what are referred to as “support

hyperplanes,” as depicted in Figure 3.3.

Figure 3.3 The optimal hyperplane for a two-class problem, bisects the shortest

connection between the convex hulls of the two classes. (after [Schölkopf
and Smola, 2002]).

The SVC approach may be generalized to classify nonlinear separable data by

applying kernel concepts. In such a case, a kernel preprocessing step needs to be

incorporated to transform the input data into a high-dimensional nonlinear space where

the original nonlinearly separable problem may be reframed as a separable one, as

illustrated in Figure 3.4.

31

Figure 3.4 SVM “kernelizing” the optimal margin hyperplane (from [Schölkopf and
Smola, 2002]).

4. Generalized Discriminant Analysis
Nonlinear kernel-based classification algorithms are implemented in two steps.

First, a nonlinear kernel function is selected to map the patterns from the complex input

space into a linear high-dimensional feature space. Next, classic linear methods such as

PCA and LDA may be applied in the new feature space, resulting in the KPCA

[Schölkopf and Smola, 2002] and Generalized Discriminant Analysis (GDA) approaches

[Baudat, 2000], respectively. The main advantage behind the kernel based schemes is that

there is no need to explicitly derive the mapping function, as the transformation to the

new feature space is done implicitly via the “kernel trick.”

Note that reframing the original problem into a high-dimensional space results in

an approach with a high computational load, resulting from storing and processing the

kernel matrix, defined from the kernel function as

 (,), , 1,..., ,ij i jK k i j m= =x x (3.12)

where N
i ∈x \ are the m available training data (examples) and k is a valid kernel

function. As a result, Anouar and Baudat recently proposed an alternative to the

preprocessing step used in the GDA scheme, which selects only a relevant portion of the

32

available data, thereby significantly reducing the scheme computational load. Next, we

introduce the GDA approach and present this extension, called Feature Vector Selection

LDA [Baudat, 2003].

Assume that they are m training data , 1,...,N
i i m∈ =x \ available. Define a

nonlinear mapping ,N M
i i M Nφ φ: ∈ → ()∈ >>x x\ F that transforms input patterns into

a high-dimensional space F. The GDA approach is defined so that the classic LDA

method is applied to the nonlinearly transformed data in the feature space F . Thus, the

GDA implicitly maximizes the ratio of the between-class and within-class scatter

matrices, where SB and SW scatter matrices are defined in the transformed space as:

 1

1 1

1 ()()

1 ()() ,
i

C
T

B i i i
i

mC
T

W ij i ij i
i j

S m
m

S
m

φ φ φ φ

φ φ φ φ

=

= =

= − −

= − −

∑

∑∑
 (3.13)

where m represents the total number of training samples, im is the samples in class i, C is

the number of classes,
1

1,
im

ij ij i ij
jim

φ φ φ φ
=

= () = ()∑x x is the mean vector of class i, and

1 1

1 imC

ij
i jm

φ φ
= =

= ()∑∑ x is the average of the mean vectors over all classes C.

B. FEATURE VECTOR SELECTION AND PROJECTION USING
KERNELS

1. Introduction
The Feature Vector Selection (FVS) approach addresses the issue of the large

dimensional feature space F by selecting a subspace FS as a basis to represent the

available data. Recall that Kernel-based algorithms use kernel matrices of dimensions

equal to the number of training samples resulting in potentially complex and high

computational cost solutions. FVS is designed to dramatically reduce memory

requirements, by dealing with kernel matrices of a size equal to the number of features

selected to span the subspace FS. Moreover, the size of the subspace FS is related to the

model complexity; thus complexity control can be obtained via data selection [Baudat,

2003]. FVS is considered a data-preprocessing step, and linear algorithms may apply to

the transformed data expanded in terms of the basis spanning FS.

33

2. Algorithm Description
This section discusses the FVS algorithm and closely follows the presentation

given by [Baudat, 2003]. Let φ be a mapping function that transforms patterns from an

input space X to a feature Hilbert space F:

.x x

φ
φ

: Χ→
→ ()

F
 (3.14)

Recall the kernel matrix for a set of M training samples is defined as

 1 ,() , where () ()T
ij i j M ij i jK k k x xφ φ≤ ≤= = . (3.15)

The dimensionality of the subspace FS is related to the size of the kernel matrix K and is

selected as the rank of the kernel matrix K, which may be much lower than M. The

proposed method captures the geometrical structure of the training data set in the feature

Hilbert space F, extracting the most relevant data, called feature vectors (FVs), that span

the reduced subspace FS. Those selected FVs are the basis onto which all the remaining

data are linearly projected.

Training samples xi are mapped in the transformed space using the mapping

function ,φ resulting in mapped data 1()i i i Mxφ φ ≤ ≤= , where M represents the total number

of samples in the input space. One can select a subset L of these training samples,

denoted as six , with associated transformed samples 1()si si i Lxφ φ ≤ ≤= , where .L M≤ The

selected L samples are referred to as the “feature vectors” (FVs). Recall that the basic

idea behind the FV approach is to express mapped samples in terms of this specific set of

FVs in the transformed space. Thus, the estimated transformed mapping of any training

vector ix can be expressed as:

 ,
ˆ 1,..., ,i S ia i Mφ = Φ ⋅ = (3.16)

where 1(,...,)S S SLφ φΦ = is the matrix of the selected set of vectors

1
{ ,..., }

LS S SX x x= , 1{ ,..., }LS s s= and 1(,...,)T
i i iLa a a= is the coefficient coordinates vector.

34

Thus, the FVs selection problem comes down to extracting a set S of L feature

vectors (and associated coefficients ia), such that the estimated mapping îφ is a good

approximation of the real mapping iφ . This problem can be formulated as minimizing the

following normalized Euclidean distance:

2

2 .ι ι
ι

ι

φ φ
δ

φ

−
=

�

 (3.17)

The ratio ιδ is a measure of the angle distance iθ between the estimated mapping

îφ and the real mapping iφ . Note that the ratio ιδ evaluates how close in direction the

vectors φ and îφ are, since ιδ is equal to 2sin ()iθ , where iθ represents the angle between

the vectors φ and îφ [Baudat, 2003]. Substituting (3.15) and (3.16) in (3.17) leads to:

 2

() () .
T

i S i i S i
i

a a

ι

φ φδ
φ

−Φ ⋅ −Φ ⋅
= (3.18)

Next, differentiating ιδ with respect to ia leads to

1

2() 2() 0,
()

() .

T T
i S S i S i

T
i i i

T T
i S S S i

a
a

a

δ φ
φ φ

φ−

∂ Φ Φ − Φ
= =

∂

= Φ Φ Φ

 (3.19)

Note that, the matrix ()T
S SΦ Φ is non-singular, provided that the FVs are linearly

independent in F. Thus, replacing coefficient ia in (3.18) leads to

1

2

(())min 1 .
i

T T T
i S S S S i

a ι
ι

φ φδ
φ

−Φ Φ Φ Φ
= − (3.20)

Baudat and Anouar showed that solving Eq. (3.20) is equivalent to solving

[Baudat, 2003]
1

min 1
i

T
Si SS Si

a
ii

K K K
kιδ
−

= −
G G

, where the matrix Kss is the L-dimensional kernel

matrix computed from the L-selected feature vectors and defined as:

 , 1 ,() , ,L L
SS Si Sj i j L ssK k K ×

≤ ≤= ∈\ (3.21)

KSi is the vector of inner products between samples ix and the FVs, and is defined

as

35

 , 1() .Si Sj i j LK k ≤ ≤=
G

 (3.22)

Thus, (3.20) may be rewritten as

1

min 1 .
i

T
Si SS Si

a
ii

K K K
kιδ
−

= −
G G

 (3.23)

Therefore, the goal is to find the set S of input samples that overall maximizes Eq.

(3.23) for all M samples ix , i.e., to find the set S which computes J1,defined as:

1

1
1min 1

1min 1 .

i

i

T
Si SS Si

S x X ii

Si
x X

K K KJ
M k

J
M

−

∈

∈

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑

∑

G G

 (3.24)

Baudat and Anouar showed that JSi, referred to as the local fitness measure, may

be rewritten as [Baudat, 2003]:

2
1

2 .
T
Si SS Si

Si
ii

K K KJ
k

ι

ι

φ

φ

−⎛ ⎞
= =⎜ ⎟
⎝ ⎠

�G G

Note that minimizing Jl is equivalent to maximizing JS, referred to as the global fitness,

where JS is defined as

 1 .
i

S Si
x X

J J
M ∈

= ∑ (3.25)

The FVs selection method is implemented iteratively and extracts FVs close to

linearly independent, thereby avoiding a potentially ill-conditioned solution [Baudat,

2003, Appendix C]. Moreover, the iterative process is computationally attractive, as it

stops when the kernel matrix SSK becomes singular, indicating that the selected data SX

form a well-approximated basis for the remaining data in F. User-specified stopping

parameters are the number of FVs (where the maximum number is equal to the total

number of training samples M) and the maximum bound for the global fitness SJ (with

the SJ maximum value equal to one). Finally, a cross-validation approach may be

applied to estimate the polynomial kernel order or the variance of the exponential kernel

variance parameter best suited for the data under investigation. The last step remaining in

36

the procedure is to map the data into the reduced subspace Fs. Thus, any given input

sample ix is transformed by using the projection matrix of the selected vectors

1(,...,)S S SLφ φΦ = , leading to

 . 1,... .T
i Sz i Mιφ= Φ = (3.26)

At that point, linear classification algorithms may be applied in the transformed data set,

resulting in an overall nonlinear scheme. Figure (3.5) shows the mechanism of the

discussed method combined with a Linear Regression (LR) step used for a function

approximation.

Figure 3.5 Architecture of FVS-LR (from [Baudat, 2001]).

Baudat and Anouar [Baudat, 2003] applied the FVS on a simple two-class, two-

dimensional data classification problem. They generated one hundred training samples

using normal distributions with the following mean and covariance matrices:

 1 2

1 0 1 0
[1,0], , [1,0], ,

0 1 0 0.1
C N C N

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∼ ∼ (3.27)

and showed that results obtained with the FVS approach using 21 feature vectors and a

Gaussian Kernel of unit variance were close to those obtained with the Bayesian

classifier, as illustrated in Figure 3.6.

37

Figure 3.6 Optimal boundary and FVS-LR boundary; features are represented by

circles (from [Baudat, 2003]).

C. ALGORITHMS COMPARISON

The FVS approach offers several advantages over the GDA scheme. First,

memory requirements for matrix storage dramatically reduce from the size of the

available training samples, as is the case for the GDA approach, to the size of the selected

feature vectors only. Second, the GDA approach computes the eigen-decomposition of

the potentially ill-conditioned kernel mapping matrix K, which is computationally

expensive, while the iterative process in the FVS decomposition is designed to stop when

SSK is no longer invertible, thus avoiding singularity issues. Third, FVS is a data-

preprocessing step that can be followed by many classic linear methods (PCA, LDA, LR,

etc.). Moreover, the FVS step combined with a linear classification algorithm can be

considered a good approximation of the full kernel-based version when the following

orthogonal transformation is used to project in the subspace FS,

 1/ 2()T T
i S S Sz ιφ

−= Φ Φ Φ (3.28)

[Baudat, 2003]. Finally, note that applying the above transformation with all the training

data as FVs leads to the kernelized versions of the algorithms [Baudat, 2003].

Next, GDA and FVS-LDA schemes are applied to the “Iris” data for comparison

purposes. The “Iris” data set includes three species of the iris flower characterized by

38

four features, namely, the sepal length, the sepal width, the petal length, and the petal

width. It is well known that two of the classes are linearly separable, while the third is not

linearly separable from the other two. As a result, this dataset is commonly used in

classification applications for benchmarking. A total of one hundred and fifty examples

(fifty per class) are available. The Gaussian kernel function used in both schemes is
2

(,) exp .
2

x y
k x y

σ 2

⎛ ⎞−
= ⎜− ⎟

⎜ ⎟
⎝ ⎠

Two tests were implemented to investigate the effect of selecting the parameters

for FVS-LDA, namely, the number of features (FVs) and the variance of the Gaussian

Kernel function. First, we varied the kernel variance parameter 2σ for a fixed number of

features to investigate the impact of this parameter selection on the resulting classifier

performance. Results are depicted in Figures 3.7 to 3.10. Second, we varied the number

of features while keeping the kernel variance parameter 2σ fixed, as illustrated in Figures

3.11 to 3.14. Results show that the variance parameter plays a crucial role in the resulting

within-class data clustering and the between-class separation. Note that large or small

values of σ result in class overlap, as shown in Figures 3.7 and 3.10. In addition, Figures

3.13 and 3.14 show that better class separation may be obtained by increasing the number

of features. In fact the latter is more efficient when the variance is selected well.

Finally, these simulations also showed that FVS-based results are close to those

reported in an earlier study with the GDA approach [Domboulas, 2004], where three

values for the spread σ were considered. Note that the FVS-LDA approach is designed

to separate the three classes as accurately as the GDA does for a dramatically reduced

computational load. Figures 3.15 to 3.20 show that the FVS-LDA can be considered a

close approximation to GDA, even for a significantly lower feature representation,

provided that the variance for the kernel function is selected judiciously, as shown in

Figure 3.20.

39

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.7 FVS-LDA projection of Iris data set, variation (2 2σ =0.007), 15 FVs
selected (max 150 FVs).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2

class 3

Figure 3.8 FVS-LDA projection of Iris data set, variation (2 2σ =0.7), 15 FVs selected
(max 150 FVs).

40

2 2.5 3 3.5 4 4.5 5

x 10
-3

0.0126

0.0127

0.0128

0.0129

0.013

0.0131

0.0132

0.0133
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.9 FVS-LDA projection of Iris data set variation (2 2σ =70), 15 FVs selected
(max 150 FVs).

4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.4

x 10
-4

1.72

1.725

1.73

1.735

1.74

1.745

1.75

1.755

1.76
x 10

-42-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2

class 3

Figure 3.10 FVS-LDA projection of Iris data set, variation (2 2σ =700), 15 FVs
selected (max 150 FVs).

41

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2

class 3

Figure 3.11 FVS-LDA projection of Iris data set, variation (2 2σ =0.07), 10 FVs
selected (max 150 FVs).

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2

class 3

Figure 3.12 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 50 FVs
selected (max 150 FVs).

42

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.13 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 90 FVs
selected (max 150 FVs).

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2

class 3

Figure 3.14 FVS-LDA projection of Iris data set variation (2 2σ =0.07), 130 FVs
selected (max 150 FVs).

43

Figure 3.15 GDA projection of Iris data set, small variance (2 2σ =0.3) (from
[Domboulas, 2004]).

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.16 FVS-LDA projection of Iris data set, small variation (2 2σ =0.1), 130 FVs
selected (max 150 FVs).

44

Figure 3.17 GDA projection of Iris data set, moderate variation (2 2σ =0.7) (from
[Domboulas, 2004]).

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.18 FVS-LDA projection of Iris data set, moderate variation (2 2σ =0.3), 100
FVs selected (max 150 FVs).

45

Figure 3.19 GDA projection of Iris data set, large variation (2 2σ =7) (from
[Domboulas, 2004]).

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0
2-D Projected Iris training data using FVS-LDA,Gaussian Kernel

class 1

class 2
class 3

Figure 3.20 FVS-LDA projection of Iris data set, large variation (2 2σ =7), 15 FVs
selected (max 150 FVs).

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

IV. RESULTS

This chapter illustrates the application of the Bayesian Classifier presented in

Chapter II and the FVS-LDA approach proposed by Baudat and Anouar to the IR face

database used in our study. First, we discuss the distances combined with the learning

algorithms and the types of the kernels considered for the nonlinear FVS-LDA classifier.

We are interested specifically in determining the effect of combining different distance

metrics with the available kernel functions while varying the kernels’ parameters in the

classification performance. The kernel parameters’ tuning is obtained via a cross-

validation scheme that we will discuss in further detail.

Next, we introduce some commonly used performance measures for evaluating

biometrics systems, namely the Cumulative Matching Characteristic (CMC), or Rank

Score, and the Receiver, or Relative Operating Characteristic (ROC), curve. We also

present the confidence interval, a measure of the reliability of the obtained averaged

results. Finally, we review the 5x2cv paired t-test introduced by [Dietterich, 1998] to

evaluate whether the GDA and FVS-LDA approaches lead to statistically different

classification results. Finally, we apply these concepts to the IR database and present

results obtained.

A. THEORETICAL BACKGROUND

1. Introduction
This section first presents the nearest centroid-classifier approach, and the various

distance metrics considered in our implementation of the FVS-LDA approach. Second,

two types of experiments are discussed for evaluating pattern classification schemes, an

identification and a verification experiment. Next, the confidence interval concept is

reviewed and issues dealing with tuning of the nonlinear kernel function via cross-

validation are introduced. Finally, a 5x2cv paired t-test is applied to compare

classification algorithms performances.

2. The Nearest Centroid Classifiers and Distance Metrics
The type of classifiers considered in our study is derived from nearest-centroid

classification schemes. To classify an unlabeled pattern we consider its “distance” to all

the class centroids estimated based on the training set. The pattern is assigned to the class

48

associated with the closest distance to a class centroid. The centroid of class Cj is defined

as

 1 ,
j

i j

C i
CjC ∈

= ∑
x

m x (4.1)

where ix s are the training samples belonging to class jC . For any unlabeled pattern x the

classification rule assigns a label according to the condition

 () arg min (,),
j

j

C
C

C d=x m x (4.2)

where ()d x, y is a distance metric.

There are many different metrics reported in the literature to express the distance

between two objects [Socolinsky, 2003]. Therefore, the importance of selecting an

appropriate metric must be emphasized. In practice, a reasonable approach is to test the

most commonly used metrics and evaluate them for specific data. In regard to our study,

three different dissimilarity (i.e., distance) measures are defined below:

Euclidean Norm 2: ()22 1

1
(,) , , ,

N
i i N

i
L x y x y x y ×

=

= − ∈∑ \ (4.3)

Euclidean Angle: 1
2 2(,) arccos ,
(0,) (0,)

N i i
i

x y
ang x y

L x L y
== ∑ (4.4)

Mahalanobis Angle: 1
2 2(,) arccos ,
(0,) (0,)

N i i
ang i

x y
M x y

L x L y
ισ
−1

== ∑ (4.5)

where ix and iy are the thi coordinates of the ,x y vectors and ισ
−1 is the inverse of the

data variance estimate along the thi axis. The Euclidean norm 2 is usually preferred over

others due to its simplicity and good behavior, while the Euclidean Angle and the

Mahalanobis Angle are preferred because they take values between [0, π] so they can be

normalized to fall between [0, 1], which is needed for a verification type of test.

3. Classifier Performance Measures
Designing a pattern classification system involves several tasks: data

preprocessing, feature extraction and selection, learning algorithm design, and, finally,

the classifier performance evaluation task. The latter is required not only for a meaningful

comparison between different classification schemes but also to measure their strengths

and limitations when applied to complex scenarios. A significant amount of research has

49

been conducted toward that objective; in fact, the American National Standards Institute

(ANSI) has approved specific standards that deal with the issues of required test sizes,

performance statistics, error reporting, and presentation of performance results.

At this point, we need to introduce some concepts related to biometric

identification technology, such as IR-image face recognition, before reviewing the

classifier performance measures considered in our study. At first glance, biometric terms

such as recognition, identification, and verification may seem identical, but this is

incorrect. Each term denotes a different case:

• Verification is the task of either approving or rejecting a person’s claimed
identity (i.e., the label of a testing sample) based on a comparison of the
collected sample with a previously registered sample (i.e., a training
sample).

• Identification is the task of determining the identity of an individual. In
these cases, the collected sample is compared to all the available patterns
in the database (i.e., the training data). Our study is limited to “closed set”
cases, in which all the possible tested individuals (i.e., classes) are
included in the database. In other words, an answer will be given as the
subject exists in the database.

• Recognition is the awareness that something perceived has been perceived
before. “It is a generic term and does not necessarily imply either
verification or identification.”

It is clear that the three terms are not interchangeable in classification tasks. In the

following section we will present two different types of experiments carried out to

evaluate the biometrics system’s performance along with the associated performance

measures.

a. Identification Experiment: The Cumulative Matching
Characteristic (CMC)

The Cumulative Matching Characteristic measure refers to a so-called

closed-set identification experiment according to which every class in the testing data is

also included in the training data set. To be consistent with the terminology used in the

literature regarding data separation, we will define the subsets of the available data,

namely, the gallery G and the probe GP sets [Grother, 2003]. For an identification type

of experiment, gallery G contains the estimated class centroids representing the set of

50

classes (i.e., individuals) collected in our database. Similarly, the probe GP set contains

the testing images, such that every image has a “match” in the gallery.

Next, each of the testing images is presented to the recognition system.

Thus, a matrix of similarity measures ijs is obtained, where i refers to the patterns stored

in the data base, and j to the associated testing pattern. Note that in our study the

similarity measures are considered as the distances between the estimated class centroids

and the testing samples, unlike other studies in which images are compared to images

directly [Grother, 2003]. In the following section, the idea of the rank of the match is

defined as introduced in [Grother, 2003].

For the set of the C-obtained class centroids , 1,..., ,kg k C= for each of the

probe samples , 1,..., ,jp j number of testing samples= given that we know where the

correct match occurs, the rank of the match is defined [Grother, 2003] as

{ }() : ,given that () () , .j k kj ij i j krank p g s s id g id p g= ≥ = ∀ (4.6)

The indices i and k are used to subscript class-centroid elements, and index j to subscript

the probe samples; {.} denotes how many times the condition within the brackets is met

for every kg . The resulting similarity matrix has elements corresponding to the ith row

and the jth column. Identification performance is then regarded as part of the probe

samples whose rank of match is r or lower, that is,

() { : () }, .j j jC r p rank p r p= ≤ ∀ (4.7)

Thus, the Cumulative Match Score as a function of rank r may be defined as

()
() .

G

C r
P r

P
= (4.8)

Now we need to know how likely it is that the top similarity score occurs

at the position of the correct match, which is referred to as the rank-1 score. Accordingly,

rank-2 is defined as the probability of assigning the correct class to a testing label within

the top two choices of the assignment step. Generalizing the concept, we can state that

51

rank-N is the probability of correctly assigning a test sample in the classes associated to

the N top similarity scores. A typical CMC curve is depicted in Figure 4.1 for a case of a

140-individual (i.e., classes) database.

Figure 4.1 Example of the Cumulative Match Characteristic Curve (from

[Biometrics, 2006]).

An interesting feature of the CMC curve is that the probability of identification at

rank-1 is a widely used overall classification-rate measure defined as the ratio of the

number of patterns correctly classified over the total available number of testing patterns.

Moreover, the probability of identification is 1 at the highest rank in a closed set

experiment. Thus it is important to report the number of classes included in the database

when referring to rank scores [Biometrics, 2006].

b. Verification Experiment: The Receivers Operating Characteristic
(ROC)

Unlike the identification task, verification may be viewed by some as a

more realistic type of experiment for application purposes. In practice, this test addresses

the case of an individual’s claimed identity (i.e., class label) at a checkpoint. From the

biometrics collected at the time, a decision should be made whether the claim is true or

false. That task is discussed next following the analysis in [Grother, 2003].

52

Note that for the verification type of experiment the so-called imposter set

NP needs to be defined. The imposter set NP contains the testing images that do not have

a “match” in the gallery, and is used to simulate possible intruders in the system. Like the

identification type of experiment, we compute the same similarity matrix of entries ijs ,

and our decision is based on a selected threshold t, varying between [0, 1], which first

requires normalizing the similarity measures selected for the test, provided they are

bounded.

For any given threshold t, two types of errors may occur: a “false reject in

which the system incorrectly matches the probes below threshold” or a “false accept in

which an imposter claims an identity and is matched by the system above threshold”

[Grother, 2003]. A system with a low probability of the false acceptance rate FAP and a

low probability of the false rejection FRP is desirable; however, this is not feasible. To

see the qualitative behavior of the two types of error, the ROC curve is used.

The ROC curve is the plot of probability of the false acceptance FAP

against the probability of correct identification (or correct verification) CIP (1CI FRP P= −),

where

{ }:

() ,ij ij
FA j N

N

s s t
P t p P

P G

≥
= ∀ ∈

+
 (4.9)

and

{ }: ,given that () ()

() , .j ij i j
CI j G

G

p s t id g id p
P t p P

P

≥ =
= ∀ ∈ (4.10)

A visualization of that trade-off relationship is depicted in Figure

4.2 below, where each operating point in the curve refers to a different threshold value t.

The area under the ROC curve is indicative of the system’s performance; in fact, a large

area implies a well-designed system.

53

Figure 4.2 Example of the Receiver Operating Characteristic curve (from

[Biometrics, 2006]).

4. Confidence Interval
Merely providing a single value for the value of an unknown parameter of a

specific population is not that useful. Obviously, the range of values for the estimated

parameter is related to the available sample. Thus, reporting an estimate for that

parameter should always be in conjunction with the associated confidence interval (CI).

There are alternative CI interpretations; a common one is as follows. For a given

CI (e.g., 95%), “the 95% CI is the interval in which we are 95% certain contains the true

population value as it might be estimated from a much larger study” [Camcode, 2006].

Note that the value under investigation is not restricted to the mean, and CIs can be

computed for the median, the difference between two means, a proportion, etc.

[StatsDirect Ltd, 2006].

The mechanism for computing the CI when the observed data are not from a

normal distribution is the percentile method [StatsDirect Ltd, 2006]. In our case, the

classification rates obtained for over 1,000 iterations are not normally distributed (see

Figure 4.3 below) and the percentile method is used to compute the confidence interval

for the classification rate. We proceed as follows to compute the 95% confidence level

obtained from a set of 1,000 iterations:

54

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100
 Bayes Classifier classification rates for 1000 iterations,non normal distributed

F
re

qu
en

cy

Classifiction rates
90 92 94 96 98 100 102 104

0

50

100

150

200

250
 FVS-LDA classification rates for 1000 iterations,non normal distributed

F
re

qu
en

cy

Classifiction rates
Figure 4.3 Classification rates for Bayes and FVS-LDA histogram classifiers.

Populations are non-normally distributed.

• Arrange in increasing order the 1,000 values for the classification rate.

• Find the values related to the endpoints of a 95% CI (i.e., 2.5*1,000 and
97.5*1,000).

• The endpoints of the interval are the 25th and the 975th values.

5. Kernel Selection
The selection of a suitable type of kernel function remains a challenging issue for

nonlinear kernel-based classifiers. Moreover, setting up the parameters associated with

the type of kernel function is related to the nature of the observed data and is usually

time-consuming and computationally expensive. Next, we list the kernel functions used

in our study and present a widely applied technique for parameter tuning, the cross-

validation method.

a. Kernel Function Types Considered
There are numerous types of kernel functions that may be used, depending

on the data characteristics. In our study, the following types of kernel functions were

considered:

the Gaussian type:
2

(,) exp ,
2

x y
k x y

σ 2

⎛ ⎞−
= ⎜− ⎟

⎜ ⎟
⎝ ⎠

 where 0,σ > and (4.11)

the Polynomial type:
2

2

(,) , ,

(,) (, 1) .

k x y x y

k x y x y

=

= +
 (4.12)

b. Parameters Selection: The Cross-Validation Scheme
In practice, kernel parameters, that is, the polynomial degree or the

variance of the Gaussian kernel, are selected using a K-fold cross-validation scheme. This

55

process involves, first, partitioning the data into K segments of equal size. Next, we

perform K training runs, in which the training in each run is based on K-1 segments and

test on the one left out. We compute the classification error rate for each run and average

over the total K runs. Finally, we choose the parameters associated to the smallest error

rate. For a data set of size n, the extreme case of K is K=n, known as the leave-one-out

method. A typical choice of K=10 or K=5 is adequate to perform the cross-validation

scheme [Hastie, 2001].

6. The 5x2cv Paired t-Test
The 5x2cv paired t-test is a statistical test applied to compare classification

learning algorithms. In other words, we seek an answer to the following question posed

by [Dietterich, 1998]: “Given two learning algorithms A and B and a small data set S,

which algorithm will produce a more accurate classifier when training on a data set of the

same size as S?” Before we can discuss the test in more detail, we need to introduce the

terminology related to the types of tests that are designed to check whether one learning

algorithm outperforms another in a particular learning task, as presented in [Dietterich,

1998]:

• Type I error: The probability of incorrectly detecting a difference when no
difference exists.

• Type II error: The failure to detect a real difference between algorithms.

• Null hypothesis to be tested: For a randomly drawn training set R of fixed
size the two learning algorithms will have the same error rate on a test
example randomly-drawn from an available data set X.

The 5x2cv paired t test to be described next was proposed by Dietterich [1998]. In

fact, this test is a modification of the k-fold cross-validated paired t-test discussed also in

[Dietterich, 1998], including 5 replications of a 2-fold cross-validation. First, the

available data set S is separated into a training set S1 and a test set S2 of equal size. Next,

both A and B learning algorithms are trained on the training set; thus, classification

schemes ˆ
Af and B̂f are obtained. For any given testing sample 2 ,x S∈ we keep track of

whether or not it has been correctly classified. The results may be tabulated in the matrix

format depicted below in Table 4.1:

56

Table 4.1 McNermar’s contingency table (after [Dietterich, 1998]).

Note that the total number of training samples is 00 01 10 11 .+ + + =n n n n n That

process produces the following error estimates: (1)
Ap and (1)

Bp , when trained on S1 and

tested on S2, while (2)
Ap and (2)

Bp , when trained on S2 and tested on S1. The terms Ap and

Bp are the proportions of the test examples incorrectly misclassified by algorithms A and

B respectively defined

() /
() /

A 00 01

B 00 10

p
p .

= +
= +

n n n
n n n

 (4.13)

We obtain two estimated differences, (1) (1) (1)
A Bp p p= − and (2) (2) (2).A Bp p p= − Finally, we

compute the estimated variance

 2 (1) 2 (2) 2() () ,s p p p p= − + − (4.14)

where (1) (2)() / 2.p p p= + The following statistic can be defined, based on the previous

derivation,

(1)
1

5 2
1

,
1
5 ii

pt
s

=

=

∑
� (4.15)

which is called the 5x2cv t� statistic. The term (1)
1p in the numerator refers to the

estimated (1)p from the first replication, while 2
is denotes the variance of the ith

replication. According to [Dietterich, 1998], “ t� has approximately a t distribution with

five degrees of freedom.” Thus the mechanism behind the 5x2cv test is to compare the

distribution of the latter ratio based on the observed counts to the one based on the

assumption that the null hypothesis is true. In fact, it comes down to comparing the ratio

based on the observed counts to the argument of a t distribution with five degrees of

57

freedom for a given level of significance. The null hypothesis is rejected when the

estimated ratio is greater than the threshold, meaning the two algorithms have different

performances.

Note that the experimental results using the 5x2cv test reported in [Dietterich,

1998] show that this is a low Type I error test. Moreover, the 5x2cv test is a powerful

(i.e., low Type II error) when the task is to be confident that there is no observed

performance difference. Unlike other candidate tests, the 5x2cv test also considers the

effect of varying the training sets by repeating the training and testing process for

different data separations.

B. EXPERIMENT DESCRIPTION

1. Database Information
Our experiment used the uncooled IR image face database collected in an earlier

study [Lee, 2004]. Images are 8-bit/pixel with (160 120)× pixels spatially and 60mK

temperature resolutions. The database includes frontal views of 50 adult subjects (i.e.,

classes). Variations in angle and tilt were introduced in the collected photographs, since

each one started at one of ten fixed points behind the camera. Further variations in facial

expression were introduced by considering the following three poses for each class:

• a neutral pose,

• a pronouncing-the-vowel-”u” pose, and

• a smiling pose.

All subjects participated only once (i.e., all images per class were collected the

same day). Further variations due to different lightning conditions were not considered.

In addition, each subject was sampled ten times for each of the three poses, resulting in

1,500 grey-scale images. Next, the images were cropped down to (60 45)× pixels to

retain the middle section of the face only and were reshaped into column vectors of size

(2700 1)× . The overall data matrix used was of dimension (2700 1500)× .

In face-recognition experiments, the following image sets are formed:

• A training set is used to form the feature space for pattern representations,
such that class centroids are estimated.

• A gallery set G according to [Grother, 2003] “contains identically one
signature per subject and represents the set of images that have been

58

enrolled in the system.” However, since for comparisons in our
experiments we used the distances of an image from class centers, the
gallery set include the class centroids as a subject signature.

• A testing set contains the images that will evaluate the system’s
performance. More specifically, the testing set is called probe set PG and
represents a legitimate user when an identification closed-universe
experiment is performed (i.e., when each of the testing images has a match
in the gallery), [Grother, 2003]. On the other hand, the term imposter set
PN is used for the testing data in an open-universe verification experiment
(i.e., when not all of the testing images have a match in the gallery) to
represent individuals attempting to defeat the system [Grother, 2003].

For benchmarking purposes we followed the same percentage data separation

considered in a previous study [Domboulas, 2004], a 60–40% partitioning for training

and testing data, respectively. Similarly, 1,000 iterations were considered to count for the

random variations in the selection of the training and testing data.

2. Software Implementation
The main experiments carried out in this study are listed below:

• Bayesian Classifier algorithm approach to compare results with linear
classifiers considered in previous studies,

• Kernel-function parameters tuning using the cross-validation scheme,

• Implementation of the FVS-LDA algorithm to compare results to the GDA
approach considered in [Domboulas, 2004],

• Evaluation of the classification schemes for the identification and the
verification experiment using the Cumulative Match Characteristic curve,
along with the associated confidence intervals and the Receiver Operating
Characteristic curve, respectively, and

• Application of the 5x2cv paired t-test to compare the FVS-LDA and GDA
classification performances based on experimental results.

The software code developed in this study is included in Appendix B.

3. Bayes Classifier Results
Recall that the underlying theory of the Bayesian scheme investigated here is

based on an estimation of the multivariate density function of the l-dimensional training

patterns. For the data separation considered in our study there are 18 training patterns per

class and the maximum number of features equals 17 (i.e., l=17). This characteristic is

due to the fact that the features used to describe the data are derived from a singular value

decomposition of a per-class covariance matrix of size 18 by 18 based on the training

59

data, which is of rank 17 (see Chapter II). In general, the rank of the class covariance

matrix depends only on the number of training samples per class. Next, we implemented

the D’Agostino-Pearson goodness-of-fit test to evaluate whether the data under

investigation deviates from multivariate normality or not.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

class index

o
f p

op
u
la

tio
ns

 fa
il

th
e

te
st

D Agostino-Pearsons K2 goodness of fit test

fail

Figure 4.4 Goodness-of-fit test, marginal densities per class considered.

For a given class, the images are projected onto a feature space of dimensionality

up to the rank of the per-class covariance matrix (i.e., 17). Next, given that each class is

represented by 18 (i.e., 60%) training samples, the resulting per-class data matrix is of

size (17 x 18). The goodness-of-fit test is performed along each row of the obtained

matrix. Recall that marginal normality does not imply multivariate normality

[Gnanadesikan, 1977]. Results shown in Figure 4.4 indicate that a significant number of

classes fail the marginal normality test on one of their features. For example, one feature

of class 1, 6, 8, 9, fail the normality test, while five features of class 37 fail the normality

test for a level of significance equal to 0.05. Even though results indicate the data deviate

from multivariate normality we still applied the Bayes classifier modeling the data as

multivariate Gaussian as it was simple to implement to provide a baseline performance.

60

Following, we present some points concerning the Bayes Classifier

implementation that are of interest.

• Selecting the optimum number of features is affected by the mechanism
described next. Increasing the number of features (i.e., singular values)
increases the classification performance up to a point beyond which the
classification rates start to decrease. That effect is referred to in the
literature as the “peaking effect” [Lu, 2003]. In our study, the number of
training patterns per class determines the maximum number of features
equal to 17 for the Bayes Classifier. Figure 4.5 illustrates the “peaking
effect.” Note that the per-class covariance matrices become singular when
18 singular values are used; thus the classification ratio becomes zero.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Bayes Classifier,the "peaking effect".

features selected(i.e. singular values of the class covariance matrix)

C
la

ss
ifi

ca
tio

n
ra

te

Figure 4.5 Bayes Classifier: the “peaking effect”.

• Note also that the optimum number of features varies for each iteration
affected by the training and testing data separations. The histogram below
shows the frequency at which the optimum number of features occurs
between nine and fourteen over 1,000 iterations. Obviously, selecting a
fixed value of eleven features is better suited.

61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

450

500
Occurence of the optimal number of features(1000 iterations considered)

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

number of features

Figure 4.6 Bayes Classifier: optimal number of features.

Considering those two points, we implemented a scheme in which we selected a

fixed number of features to 11. Results are depicted below:

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Bayes Classifier based on the 11 singular values of the per class Covariance matrix SVD

C
um

m
ul

at
iv

e
R

an
k

S
co

re

Rank Index

Number of Singular values fixed to 11

Figure 4.7 Bayes Classifier Cummulative Rank Score for 11 singular values.

62

Moreover, the Bayes Classifier with 15 singular values was implemented for

comparison to the PCA with 15 eigenvalues selected (referred to as PCA15), as

previously studied by [Lee, 2004]. Results are depicted in Figure 4.8 in terms of the

Cumulative Rank Score curves.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Bayes Classifier based on the 15 singular values of the per class Covariance matrix SVD

C
um

m
ul

at
iv

e
R

an
k

S
co

re

Rank Index

Number of features fixed to 15

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 PCA Classifier based on the top 15 eigenvalues training data SVD

C
um

m
ul

at
iv

e
R

an
k

S
co

re
Rank Index

Number of features values fixed to 15

Figure 4.8 Bayes Classifier compared to PCA when 15 features are selected.

Note that, the Bayes classifier outperforms the PCA scheme for such a low-

dimensional image representation. Moreover, the comparison to the PCA15 is even

superior when fewer features are selected, since in most of the cases the Bayes classifier

attains its maximum performance for eleven to twelve features. The optimum

performance for the Bayes classifier based on a varying-features basis and the per-class

classification performance are plotted in Figures 4.9 and 4.10.

63

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Bayes Classifier based on the OPTIMUM singular values of the per class Covariance matrix SV

C
um

m
ul

at
iv

e
R

an
k

S
co

re

Rank Index

Number of features vary,

those that obtain the max Classification rate selected

Figure 4.9 Bayes classifier based on an optimum features selection.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Bayes Classifier//Classification per Class Performance

C
la

ss
ifi

ca
tio

n
P

er
fo

rm
an

ce

Class Index

Figure 4.10 Per-class classification performance of the Bayes classifier.

Rank-1 results for the Bayes Classifier are tabulated below, along with the

associated confidence intervals.

64

Table 4.2 Bayes Classifier performance compared to PCA.

4. FVS-LDA Distance and Kernel Parameters’ Impact on Classification
Results

The FVS-LDA classification scheme considered in this study derives from feature

selection schemes. Therefore, the selection of the number of features not only has an

impact on the classification performance but also is associated with the computational

cost, provided the kernel function parameters are well tuned. For that purpose, the first

important step in the FVS-LDA algorithm was to select the variance for the Gaussian

kernel function and the order of the polynomial kernel.

The values for those parameters were obtained using the K-fold cross-validation

scheme for K=5 segments, setting the number of feature vectors (FVs) equal to 350 (the

maximum number of FVs is equal to the number of the available training data, i.e., 900)

while varying the variance from the order of 106 to 108. However, the choice of a specific

distance metric remains a crucial issue and should not be ignored, thus the kernel

parameter tuning was performed in conjunction with the distances considered in our

study. Results are tabulated below. Note also that once the kernel parameters have been

selected, they remain the same when different numbers of FVs are considered.

Table 4.3 Kernel parameters selection using a cross-validation scheme.

65

We selected four different numbers of feature vectors, namely, 250, 350, and 450,

and 600 FVs. The purpose is to compare the FVS-LDA algorithm performance with the

previous study conducted by [Domboulas, 2004] on the GDA approach for a similar size

of the associated kernel matrices. Note that although the complexity of the problem is

related to the number of the FVs or to the eigenvalues of the kernel matrix for the FVS-

LDA and GDA, respectively, the mechanism behind features’ extraction is different.

Thus those terms should not be used interchangeably.

5. Identification Experiment
The data separation considered for the identification experiment was the same as

was followed in the Bayes classifier, namely, 60% of the data used for training (i.e., 900

patterns) and the remaining 40% used for testing (i.e., 600 patterns). The performance

metrics considered for use for that type of experiment is the Cumulative Rank

Characteristic curve (Rank-one score). Rank-one scores (i.e., Average Recognition Rates)

and the associated confidence intervals are tabulated in Table 4.4.

Table 4.4 FVS-LDA average recognition rates and 95% confidence intervals, 1,000
iterations.

6. Verification Experiment

The verification type of experiment requires constructing an imposter set NP .

Recall that the imposter set NP is defined as containing the testing images that do not

have a “match” in the gallery and is used to simulate possible intruders in the system.

Following is the data separation considered for that purpose. The training set contains 30

classes with 18 patterns each, resulting in a total of 540 (18 30 540)× = training patterns

66

used to estimate the class centroids. The probe set includes the remaining patterns of the

same 30 classes, namely, 12 patterns per class, resulting in a total of

360 (12 30 360)× = used for the correct identification process. Thus, what is left is

considered the imposter set, consisting of 20 classes each of 30 patterns, resulting in a

total of 600 (20 30 600)× = patterns used to model the false-alarm rate of a system.

Next, we used the Receiver Operating Characteristic curve (ROC) and the

associated equal error rate (EER) to evaluate the performance of the FVS-LDA scheme.

The EER is defined as the intersection point between the probability of a false-alarm

curve and the probability of incorrect rejection. Equivalently, the area under the ROC

curve may be used to evaluate the performance of a system. A large area implies a system

of high performance when the probability of false alarms is plotted versus the probability

of correct identification. The ROC curve and the associated EER rates obtained for the

FVS-LDA scheme, along with the rank-one scores for 100 iterations, are provided in

Figures 4.11 and 4.12. The FVs selected were such that the percentage to the maximum

possible number of features (i.e., FVsmax=540) is similar to the identification

experiment. The distance metrics considered for this experiment were those that are

bounded, such as the Mahalanobis angle and the Euclidean angle.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

Verification Experiment using ROC for FVS polynomial kernel of order 2

PFA Probability of False Alarm

1-
P

C
I P

ro
ba

bi
lit

y
of

 I
nc

or
re

ct
 R

ej
ec

tio
n

EER line

FVs 150

FVs 210
FVs 270

Figure 4.11 FVS-LDA verification performance for a second-order polynomial kernel
combined with the Mahalanobis angle distance.

67

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

Verification Experiment using ROC for FVS polynomial kernel of order 2

PFA Probability of False Alarm

1-
P

C
I P

ro
ba

bi
lit

y
of

 I
nc

or
re

ct
 R

ej
ec

tio
n

EER line

FVs 150

FVs 210
FVs 270

Figure 4.12 FVS-LDA verification performance for a second-order polynomial kernel
combined with the Euclidean angle distance.

Table 4.5 Equal Error Rates(EER) for a verification experiment: 30 subjects in the
gallery, 50 subjects in the probe, 100 iterations.

Results show that the FVS-LDA approach combined with the Mahalanobis angle

distance outperforms that obtained with the Euclidean angle option for the type of

verification scenario implemented. Next, we consider the same verification experiment to

compare the GDA and FVS-LDA performances.

7. Comparing GDA and FVS-LDA Algorithms
The novel feature-selection algorithm FVS proposed by Baudat and Anouar

[Baudat, 2003], combined with the classical LDA classification scheme, can approximate

closely its “kernelized” version, namely, the GDA scheme previously considered in

[Domboulas, 2004]. Moreover, the related computational time is significantly reduced,

since the size of the associated kernel matrices is reduced from the number of the total

training data (GDA) to only the portion of the selected training data (FVS) [Baudat,

68

2003]. This section first provides a comparison based on obtained experimental results

from the identification experiment using the 5x2cv paired t-test. Then the verification

experiment is considered, along with the ROC curves, for comparing classification

schemes. Finally, the computational load in terms of computational time per iteration is

noted.

a. The 5x2cv Paired t Test
The 5x2cv paired t-test is a “statistical test for determining whether one

learning algorithm outperforms another on a particular learning task” [Dietterich, 1998],

based on estimated classification rates. FVS-LDA based identification results obtained

are tabulated in Table 4.4, while the GDA-based results are depicted in Table 4.6 from a

previous study [Domboulas, 2004].

Table 4.6 GDA average recognition rates and 95% confidence intervals, 1,000
iterations, after [Domboulas, 2004]).

Results show that, in both cases, performance improves when the number

of features/eigenvectors is increased, as expected. In fact, GDA outperforms FVS, and

results become very close to each other only when almost half of the

features/eigenvectors are considered. Thus we performed the 5x2cv paired t-test to check

whether differences in the classification performances are statistically significant as the

associated number of features/eigenvectors varies.

To this end, the available data set (i.e., 1,500 images) was separated into

two equal-sized sets (i.e., each of 750 images); and the test was repeated for a variation of

features/eigenvectors, from 50 to 600, in increments of 50. Since we are interested in

GDA and FVS-LDA’s relative performance, we selected the polynomial kernel function

of second order for both schemes and the Mahalanobis angle distance, respectively.

69

Recall that this statistical test estimates the variable ,t� which is approximated to a t

distribution with five degrees of freedom, provided the null hypothesis is true (i.e., the

algorithms perform the same). Results are depicted below in Figure 4.13. Note that the

threshold for a t distribution of five degrees of freedom is equal to 2.01505thresholdt = ± for

a level of significance equal to 0.05. Thus the null hypothesis is rejected when

2.01505 or 2.01505.t t> + < −� �

0 100 200 300 400 500 600
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
The 5x2cv paired t test on FVS-LDA and GDA schemes

Features/Eigenvalues

t es
tim

at
e

 For a 95% confidence interval

the Null hypothesis is true when

-2.0515 < testimate < 2.0515

Figure 4.13 Comparison of the FVS-LDA and the GDA algorithms using the 5x2cv
paired t test.

The fact that the training set size (i.e., 750 images) used for the 5x2cv

paired t test is close to the separation used throughout our study for the identification

experiments (i.e., 900 training samples) enables us to further generalize the results of the

paired t test. Thus the following comments can be made on the results:

• GDA outperforms FVS-LDA in all cases. That is reflected in the negative
sign of the obtained statistic .t� Recall that the numerator in Eq. 4.15 is the
estimated difference between the GDA and FVS-LDA error rates for the
first replication; thus the negative sign implies a lesser error rate for GDA.
That is consistent with the results reported in Tables 4 and 5 (a polynomial
kernel of a second-order Mahalanobis angle distance for GDA versus the
Euclidean angle for FVS-LDA).

70

• Selecting the number of features for the FVS-LDA scheme from a third to
a half of the available features results in close to the standard GDA
performance (i.e., the null hypothesis is considered to be true for a 0.05
level of significance). That is consistent with the suggestions made by
Gaston Baudat (in a personal communication) on selecting the number of
features used in the FVS algorithm.

• Further increasing the number of features results in differences between
the algorithms that are not statistically significant (i.e., the null hypothesis
is considered to be true).

b. Verification Experiment
For comparison purposes, we also considered the verification experiment.

To evaluate the performance of the GDA and the FVS-LDA schemes, we used the

Receivers Operating Characteristic curve (ROC) and the associated equal error rate

(EER). The data separation follows the same partitioning as was introduced in the FVS-

LDA performance evaluation using ROC curves. The associated ROC curve for the GDA

algorithm is depicted in Figure 4.14.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Verification Experiment using ROC for GDA polynomial kernel of order 2

PFA Probability of False Alarm

1-
P

C
I P

ro
ba

bi
lit

y
of

 I
nc

or
re

ct
 R

ej
ec

tio
n

EER line

GDA 150eig

GDA 210eig
GDA 270eig

Figure 4.14 Verification experiment for the GDA approach; 100 experiments;
Mahalanobis angle distance.

Table 4.7 presents results used to compare the ROC curves of Figures

4.11, 4.12, and 4.14 in terms of the EER.

71

Table 4.7 Equal Error Rates (EER) for the verification experiment: 30 subjects in
gallery, 50 subjects in probe, 100 experiments.

Results for the verification experiment show that GDA outperforms the

FVS-LDA in terms of the EER metric.

c. Computational Costs Differences
We can obtain an understanding of the associated computational cost for

each of those schemes by considering the mean running time per iteration, given

MATLAB was used for the implementation. Domboulas reported that, the GDA

implementation with the Gaussian kernel-mapping function took about 7.5 to 8 minutes,

while the implementation with a polynomial kernel of second order took about 75

seconds per iteration using a 3-GHz PC on the same database and data partitioning type

as followed in our research [Domboulas, 2004]. For benchmarking purposes, we re-run

the exact code utilized by Domboulas, [Domboulas, 2004] on the same machine used for

our study to remove variations due to machine different characteristics. The

implementation with a polynomial kernel of second order took about 45 to 50 seconds per

iteration for a selection of eigenvectors equal to 250, 350 and 450. In our study, the

running time per iteration implementing the FVS-LDA was significantly reduced. Results

are listed in Table 4.8.

72

Table 4.8 FVS-LDA computational load in terms of the mean iteration running time.

It is interesting that the GDA running times are not affected significantly

for different values of eigenvectors considered unlike for the FVS-LDA scheme. That is

expected since, at each iteration we deal with the decomposition of the kernel matrix

based on the total amount of the available training data. Note that we do not consider

code optimization or machines performance as a basis for comparing the classification

schemes. However, we should expect to see the significantly reduced computational cost

for FVS-LDA over GDA reflected in the amount of time it takes when both algorithms

are executed on the same platform.

C. CONCLUSIONS
This chapter presented the classification performances obtained for the Bayes

Classifier and the FVS-LDA schemes. In the former case, we considered the goodness-

of-fit test for marginal densities and we discussed the peaking effect in the features

selection. Next we introduced two different experiments for evaluating classification

schemes, namely, an identification experiment and a verification experiment. The

associated performance metrics Cumulative Match Score (CMS) and the Receiver

Operating Characteristic (ROC) curves were defined and the concept of confidence

intervals for a non-normal distributed population also discussed. We considered three

different distance metrics in conjunction with two types of kernel functions, and applied

kernel function parameter tuning following a five-fold cross-validation scheme.

73

In addition, we compared GDA and FVS-LDA classification performances. First,

we applied the 5x2cv paired t test to investigate the impact of the selected number of

features/eigenvectors on performance differences. Results showed that selecting between

one third and a half of the feature vectors in the FVS-LDA scheme leads to statistically

non-significant performance differences between FVS-LDA and GDA approaches when

the same number of eigenvectors and well tuned kernel function parameters are used.

Second, the verification experiment was applied to both schemes, and EER results show

that the GDA scheme outperforms the FVS-LDA approach for that type of scenario.

Finally, computational time issues were considered for both schemes and we noted a

significantly reduced computational cost for the FVS-LDA implementation over that

observed for the GDA scheme.

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

V. CONCLUSIONS

This study extended previous research conducted by [Domboulas, 2004] that

investigated a nonlinear kernel-based classification scheme, the Generalized Discriminant

Analysis (GDA) proposed by Baudat and Anouar [Baudat, 2000]. The GDA scheme was

applied to an IR database, first generated by Pereira [Pereira, 2002] to include fourteen

adult subjects collected in a controlled indoor environment and further expanded by Lee

to a total of fifty adult subjects [Lee, 2004]. First, two widely applied linear classification

schemes that had initially been applied in Pereira’s and Lee’s studies were reviewed,

namely, the Principal Components Analysis (PCA) and the Linear Discriminant Analysis

(LDA). Second, a linear classification scheme, the Bayes Classification algorithm, was

considered in this study, to provide a baseline benchmarking performance. Third, the

basic idea behind nonlinear kernel-based schemes was introduced via the GDA scheme

review. Next, we considered an approach recently proposed by Baudat for nonlinear

kernel methods which is based on a Feature Vector Selection (FVS) data selection

process [Baudat, 2003]. Finally, the 5x2cv paired t-test, a statistical test based on

estimated classification rates was applied to compare relative performances between

GDA and FVS approaches to “determine whether one learning algorithm outperforms

another on a particular learning task” [Dietterich, 1998].

We considered two different types of experiments to evaluate the performance of

the FVS method followed by the classic linear classification LDA scheme. Specifically,

identification and verification experiments along with their performance metrics, the

Cumulative Match Characteristic (CMC) and the Receiver Operating Characteristic

(ROC) curves, were investigated. Kernel-functions tuning issues were discussed, and we

selected parameters for the Gaussian and the polynomial kernels in conjunction with

three different types of distances (i.e., the Euclidean norm, the Euclidean angle, and the

Mahalanobis angle) using a 5-fold cross-validation scheme. Results showed that the FVS

scheme followed by the classic linear classification scheme LDA can achieve

performances similar to those obtained with the GDA method at a significantly reduced

computational cost. In fact, FVS-LDA turns out to be a good approximation of its

76

“kernelized” GDA version [Baudat, 2003]. Specifically selecting the number of features

for the FVS-LDA scheme from a third to a half of the available features results in close to

the standard GDA performance.

Our research concludes that, from a cost perspective, a low-resolution uncooled

IR camera in conjunction with a low computational-cost classification scheme can be

embedded in a robust face recognition system to efficiently address the issue of

authentication in security-related tasks.

Future directions of this work may focus on some of the deficiencies of the

kernel-based algorithms, namely the kernel functions parameters selection based on

cross-validation schemes. This method is computationally expensive and does not

guarantee the optimal selection of the parameters or optimal kernel mapping functions.

Recently data-dependent kernel optimization models have been developed and proposed

in the literature, [Xiong, 2005] and [Wang, 2005] to address these issues. The proposed

models address those issues effectively by optimizing the measure of class separation in

the feature space or generalizing classical kernel mapping functions to data-dependent

kernels.

77

APPENDIX A. MATHEMATICAL BACKGROUND

This appendix presents the D’Agostino-Pearson K2 test which is a goodness-of-fit

technique used to check whether class features are normal or not. That test was applied in

the Bayesian classifier implementation to evaluate whether the features selected for

representing the IR images could be considered as likely multivariate normal distributed

random variables or not.

According to [Gnanadesikan, 1977], “although marginal normality does not imply

joint normality, the presence of many types of non-normality is often reflected in the

marginal distribution as well.” Thus, in practice, evaluating the normality of

multidimensional data should, in the first place, be evaluated for the marginal normality

of the observations on each of the variables [Gnanadesikan, 1977].

To this end, a goodness-of-fit test for univariate normality may be applied first to

assess the normality of the marginal distributions. We selected the D’Agostino-Pearson

K2 test over the Kolmogorov-Smirnov and the Shapiro-Wilk normality tests because

reports show that the latter tests do not work well (see [D’Agostino, 1986, Chapter 9] or

[Graphpad, 2006] for further details).

A. ANALYSIS

1. D’Agostino-Pearson K2 Test
The D’Agostino-Pearson normality test is based on the standardized third and

forth moments, better known as skewness and kurtosis, respectively, and defined as:

Skewness:
3() ,E X µβ

σ1 3/2

−
= (A.1)

Kurtosis:
4

4

() .E X µβ
σ2

−
= (A.2)

Note that 0β1 = and 3β2 = indicate a normal distribution. Pearson first used

the concepts of skewness and kurtosis to evaluate deviation from normality. The formulas

for computing those parameters from the sample data of size n are listed below

[D’Agostino, 1986, Chapter 9]:

3
2

1 3 2/ ,b m m= (A.3)

78

 2
2 4 2/ ,b m m= (A.4)

where

 () / , 1k
km X X n k= − >∑ (A.5)

and

 / .X X n=∑ (A.6)

D’Agostino (1970) [D’Agostino, 1986, chap. 9] derived an approximately normal

variable 1Z , based on the skewness parameter 1b , with zero mean and unit variance as

follows:

• First, compute 1b from the sample data using equations (1.4) to (1.7),

• Next, compute

1
2

1
(1)(3) ,

6(2)
n nY b

n
⎧ ⎫+ +

= ⎨ ⎬−⎩ ⎭
 (A.7)

23(27 70)(1)(3) ,

(2)(5)(7)(9)
n n n n
n n n n

β2
+ − + +

=
− + + +

 (A.8)

 { }
1

2 21 2(1) ,W β2= − + − (A.9)

 log ,Wδ =1/ (A.10)

 { }
1

2 21 ,Wα = 2/(−) (A.11)

• Last, compute the variable

 { }
1

2 2
1 log / (/) 1 .Z Y Yδ α α

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
 (A.12)

Similarly, Anscombe and Glynn (1983) [D’Agostino, 1986, chap. 9] derived an

approximately normal variable 2Z , based on the kurtosis quantity 2b , with zero mean and

unit variance as follows:

• First, compute 2b from the sample data using equations (1.4) to (1.7),

• Next, compute the mean and the variance of the parameter 2b , which leads
to

 2
3(1)() ,

1
nE b
n
−

=
+

 (A.13)

and

79

 2 2

24 (2)(3)var() ,
(1) (3)(5)

n n nb
n n n

− −
=

+ + +
 (A.14)

• Compute the standardized value of 2b ,

 2 2

2

() ,
var()

b E bx
b

−
= (A.15)

• Compute the third standardized moment of 2b ,

2

2
6(5 2) 6(3)(5)() ,
(7)(9) (2)(3)

n n n nb
n n n n n

β1
− + + +

=
+ + − −

 (A.16)

• Compute

22 2

8 2 46 1 .
()() ()

A
bb b ββ β 11 1

⎡ ⎤⎧ ⎫
⎢ ⎥= + + +⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

 (A.17)

• Last, compute

1
3

2
2 1 (2 /)1 / {2 /(9)}

9 1 {2 /(4)}
AZ A

A x A

⎛ ⎞
⎡ ⎤−⎛ ⎞⎜ ⎟= − − ⎢ ⎥⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎢ ⎥⎣ ⎦⎜ ⎟

⎝ ⎠

. (A.18)

D’Agostino and Pearson (1973) [D’Agostino, 1986, chap. 9] show that the

parameter

 2 2 2
1 2K Z Z= + (A.19)

has a chi-square distribution with two degrees of freedom when the underlying data is

normal. Thus, the D’Agostino and Pearson test evaluates how well the 2K variable

approximates the chi-square distribution for a given confidence level.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX B. MATLAB SOURCE CODE

Matlab programming utilized in our study is provided in this appendix. Programs

included were developed by the author or borrowed from other sources, reported in the

references. Some programs were also modified accordingly to fulfill the requirements of

our study. Functions or programs that have not been modified are only mentioned with no

further details. Finally, a detailed modified version of the original software

implementation is provided.

Below is listed the software implementation of the main experiments carried out

in this study. First, the main body of the experiment is listed, second the associated

programs/functions are also provided.

A. DESCRIPTION

1. Bayes Classifier Algorithm

a. Normality Test

• IRdataNormalityTest.m: Investigates whether training images features
projected onto the PCA space are samples of a normal distribution before
applying Bayes Classification scheme, utilizing the D'Agostino-Pearson's
K2 test.

• DagosPtest.m: Applies the D'Agostino-Pearson's K2 test, [Trujillo-Ortiz
and Hernandez-Walls, 2003].

• myseparation.m: Randomly separates data into training and testing.

b. Bayes-PCA Comparison

• BayesVsPCA.m: Compares the Bayes Classification scheme to the PCA
approach with a fixed number of fifteen features (i.e. singular values)
selected, in terms of the CMC plots (i.e. rank scores). The effect of
varying the features in Bayes scheme is also illustrated.

• myseparation.m: As above.

• RankScore.m: Computes the cumulative matching scores (i.e. rank scores)
for any testing image.

• confint.m: Returns the confidence intervals for the estimated classification
rates computed over 1,000 iterations.

82

2. Kernel-Function Parameters Tuning Issues

a. FVS-LDA on Iris Data

• IrisdataFVS-LDA.m: Implements the FVS-LDA scheme on the Iris data
for different values of feature vectors (FVs) and variance values of the
Gaussian Kernel mapping. The effect of kernel parameters selection in
class separation is also considered.

• FVSselection2.m: Computes the FVS for a set of M input vectors having
N dimensions. The data must be a matrix MxN. A maximum number of
selected FV can be defined, as well as a maximum for the global fitness
function (up to 1). The function returns a data structure with the list of the
FVs and the explicit projection of all the input data into the FV subspace
of F, (G.Baudat and F.Anouar, pers. comm. 2004).

• FVSProjection2: Use the data structure from FVSelection2 to project any
data (a matrix) into the FV subspace of F, (G.Baudat and F.Anouar, pers.
comm. 2004).

• FVSKernel2.m: This function evaluates the dot products into F using the
selected kernel or a set of vectors. It is used by the previous functions,
(G.Baudat and F.Anouar, pers. comm. 2004).

• dist.m: Compute Euclidean distances for some kernels, (G.Baudat and
F.Anouar, pers. comm. 2004).

• invrec.m: Recursive inversion of a kernel matrix, (G.Baudat and
F.Anouar, pers. comm. 2004).

• fld.m: Applies the LDA method on the data, [Lee, 2004].

• sortem.m: Sorts eigenvectors by decreasing eigenvalue magnitude [Lee,
2004].

b. Cross-Validation Scheme

• crossvalidate.m: Performs the K-fold hold-out cross-validation scheme to
obtain the global parameters associated with the kernel mapping functions.

• discriminate.m: This function computes the classification rates for a pair
of training and testing sets for a given distance metric.

• FVSselection2.m: As above.

• FVSProjection2: As above.

• FVSKernel2.m: As above.

• dist2.m: As above.

• invrec.m: As above.

• fld.m: As above.

• sortem.m: As above.

83

• myseparation.m: As above.

• RankScore.m: As above.

3. FVS-LDA Algorithm Implementation on IR Data, the Identification
Type of Experiment

• FVS_LDA_IRdata_Identification.m: Implements the FVS-LDA scheme on
IR data using the global parameters obtained via cross-validation. The
identification type of experiment is considered for performance
evaluation. The associated confidence intervals for a 95% significance
level are estimated.

• FVSselection2.m: As above

• FVSProjection2: As above

• FVSKernel2.m: As above

• dist2.m: As above

• invrec.m: As above

• confint.m: As above

• discriminate.m: As above

• fld.m: As above

• sortem.m: As above

• myseparation.m: As above

• RankScore.m: As above

4. FVS-LDA and GDA Algorithms Implementation on IR Data, the
Verification Type of Experiment

a. FVS-LDA Scheme

• FVS_LDA_IRdata_Verification.m: Implements the FVS-LDA scheme on
IR data using the global parameters obtained via cross-validation. The
verification type of experiment is considered for performance evaluation.

• FVSselection2.m: As above

• FVSProjection2: As above

• FVSKernel2.m: As above

• dist2.m: As above

• invrec.m: As above

• confint.m: As above

• discriminate.m: As above

• fld.m: As above

84

• sortem.m: As above

• myseparation.m: As above

• RankScore.m: As above

b. GDA Scheme

• GDA_IRdata_Verification.m: Performs the GDA method, for various
kernel functions and distances on IR data. The verification type of
experiment is considered for performance evaluation.

• myseparation.m: As above

• dataST.m: Normalizes input data by setting mean to 0 and standard
deviation to 1. (From [Baudat, October 2000].).

• buildGDA_Opt.m: Applies the GDA algorithm to the input data and
creates the GDA data, which will be used for the input data projection
(from [Domboulas, 2004]).

• eigensystem.m: Performs eigenvalue–eigenvector decomposition of the
input matrix and sorts the eigenvectors by decreasing eigenvalue
magnitude (From [Baudat, 2000].).

• spreadGDA_Opt.m: Projects the input data onto the GDA eigenvectors
(from [Domboulas, 2004]).

• KernelFunctiont.m: Function called only when the Gaussian kernel
function is selected by setting the parameter “degree” equal to 0 (From
[Baudat, 2000].).

5. Comparison of the FVS-LDA and GDA Algorithms on Iris Data
Based on Experimental Results of the Identification Experiment
Results, the 5x2cv Paired t-Statistical Test

• the5x2cvpaired_ttest.m: Implements the 5x2cv paired t test to compare
FVS-LDA versus GDA algorithm based on the estimated classification
rates for various number of feature vectors / eigenvectors selected
respectively.

• myseparation.m: As above

• buildGDA_Opt.m: As above

• spreadGDA_Opt.m: As above

• Datast.m: As above

• eigensystem.m: As above

• KernelFunction.m: As above

• dist2.m: As above

• fld.m: As above

85

• FVSselection2.m: As above

• FVSKernel2.m: As above

• FVSProjection2: As above

• invrec.m: As above

• sortem.m: As above

• myseparation.m: As above.

B. MATLAB CODE LISTING

• IRdataNormalityTest.m:
% %

% % File name: IRdataNormalityTest.m
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: November 2005
% % Description: Implements D'Agostino-Pearson's K2 test to check
% % whether the features of the IR training data projected
% % onto the subspace obtained when the PCA step is applied
% % before applying Bayes Classifier method, are normally
% % distributed.
% % A 95% significance for the test level is considered.
% % Parameters Number of singular values (max 17 for a 60-40%separation
% % into training and testing data respectively).
% % Outputs 1.Plots the number of populations (i.e. features) per
% % class that FAIL the test.
% % Functions used: DagosPtest.m myseparation.m
%
%**
**

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A_all);
clear A_all;

%CONSTANTS DECLARATION

Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Train_Imag = 900; % Total Number of Training Images
Num_Test_Imag = 600; % Total Number of Testing Images

86

Num_Class = 50; % Total Number of Classes
Sample_Class=30; % Samples per class
train=[];
test=[];
[row,col] = size(Atemp);

% % DATA SEPARATION INTO TRAINING & TESTING
[A1,A2]=myseparation(Atemp,Sample_Class,Num_Class,Train_Class_Size);

%APPLY THE PCA USING THE SNAPSHOT METHOD

X=A1-mean(mean(A1));
X=double(X);
[U,S,V] = svd(X,0); % produces the “economy size” decomposition. If X is m-by-n with
m > n, then only the
 % first n columns of U are computed and S is n-by-n.

% figure
% plot(diag(S))
% grid
% title('Singular Values of Training Data SVD')

%SELECT THE NUMBER OF SINGULAR VALUES
for c=1:50 %# classes
 c
singular_values=12;
U_proj=U(:,(1:singular_values)); % projection matrix
X_proj=U_proj'*X; % projected data
Class_c_proj=X_proj(:,(18*(c-1)+1:18*c));

%GOODNESS OF FIT TEST

%APPLY THE D'Agostino-Pearson's K2 test for assessing normality
%of the Class_c_proj data where each row is a feature
%using skewness and kurtosis.
 for k=1:singular_values; % feature vector coordinates
 x_1=sort(Class_c_proj(k,:)');
 H(k,c)=DagosPtest(x_1,0.05);
 % Description performs the D'Agostino-Pearson's K2 test on the input data vector
X
 % and returns H, the result of the hypothesis test.
 % The result H is 1 if you can reject the hypothesis that X has a normal
distribution,
 % or 0 if you cannot reject that hypothesis.
 % you reject the hypothesis if the test is significant at the 5% level.

87

 end
end
figure
bar(sum(H))
axis([0,50,0,12])
set(gca,'xtick',[0:5:50])
set(gca,'ytick',[0:2:12])
set(gca,'fontsize',14)
xlabel('class index')
ylabel('# of populations fail the test')
title('D Agostino-Pearsons K2 goodness of fit test')
h1=legend('fail');
set(h1,'fontsize',12)
grid

• DagosPtest.m:
function [x] = DagosPtest(X,alpha,Fail)
% D'Agostino-Pearson's K2 test for assessing normality of data using skewness and
kurtosis.
%
% Syntax: function [DagosPtest] = DagosPtest(X,alpha)
%
% Inputs:
% X - data vector.
% alpha - significance level (default = 0.05).
%
% Outputs:x %%Modified by Alexandropoulos
% - Whether or not the normality is met.
% - x=1 normality NOT met
% - x=0 normality met
%
%
% Example: From the example 6.8 of Zar (1999, p.89), we are interested to test
% whether or not the data are normally distributed using the D'Agostino-
% Pearson test with a significance level = 0.05.
%
% x Frequency
% ----------------------
% 63 2
% 64 2
% 65 3
% 66 5
% 67 4
% 68 6
% 69 5
% 70 8

88

% 71 7
% 72 7
% 73 10
% 74 6
% 75 3
% 76 2
% ----------------------
%
% Data matrix must be:
%
X=[63;63;64;64;65;65;65;66;66;66;66;66;67;67;67;67;68;68;68;68;68;68;69;69;69;69;69
;
%
70;70;70;70;70;70;70;70;71;71;71;71;71;71;71;72;72;72;72;72;72;72;73;73;73;73;73;73;
% 73;73;73;73;74;74;74;74;74;74;75;75;75;76;76];
%
% Calling on Matlab the function:
% DagosPtest(X)
%
% Answer is:
%
% D'Agostino-Pearson's test to assessing normality: X2= 3.1397, df= 2
% Probability associated to the Chi-squared statistic = 0.2081
% The sampled population is normally distributed.
%

% Created by A. Trujillo-Ortiz and R. Hernandez-Walls
% Facultad de Ciencias Marinas
% Universidad Autonoma de Baja California
% Apdo. Postal 453
% Ensenada, Baja California
% Mexico.
% atrujo@uabc.mx
%
% September 11, 2003.
%
% To cite this file, this would be an appropriate format:
% Trujillo-Ortiz, A. and R. Hernandez-Walls. (2003). DagosPtest: D'Agostino-Pearson's
K2 test for
% assessing normality of data using skewness and kurtosis. A MATLAB file. [WWW
document]. URL
%
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3954&obje
ctType=FILE
%
% References:

89

%
% Zar, J. H. (1999), Biostatistical Analysis (2nd ed.).
% NJ: Prentice-Hall, Englewood Cliffs. p. 89.
%

if nargin < 2,
 alpha = 0.05;
end;

if (alpha <= 0 | alpha >= 1)
 fprintf('Warning: significance level must be between 0 and 1\n');
 return;
end;

n = length(X);

[c,v]=hist(X,X); %record of data in a frequency table form
nc=find(c~=0);
c=[v(nc) c(nc)'];

x = c(:,1);
f = c(:,2);
s1 = f'*x;
s2 = f'*x.^2;
s3 = f'*x.^3;
s4 = f'*x.^4;
SS = s2-(s1^2/n);
v = SS/(n-1);
k3 = ((n*s3)-(3*s1*s2)+((2*(s1^3))/n))/((n-1)*(n-2));
g1 = k3/sqrt(v^3);
k4 = ((n+1)*((n*s4)-(4*s1*s3)+(6*(s1^2)*(s2/n))-((3*(s1^4))/(n^2)))/((n-1)*(n-2)*(n-
3)))-((3*(SS^2))/((n-2)*(n-3)));
g2 = k4/v^2;
eg1 = ((n-2)*g1)/sqrt(n*(n-1)); %measure of skewness
eg2 = ((n-2)*(n-3)*g2)/((n+1)*(n-1))+((3*(n-1))/(n+1)); %measure of kurtosis

A = eg1*sqrt(((n+1)*(n+3))/(6*(n-2)));
B = (3*((n^2)+(27*n)-70)*((n+1)*(n+3)))/((n-2)*(n+5)*(n+7)*(n+9));
C = sqrt(2*(B-1))-1;
D = sqrt(C);
E = 1/sqrt(log(D));
F = A/sqrt(2/(C-1));
Zg1 = E*log(F+sqrt(F^2+1));

G = (24*n*(n-2)*(n-3))/((n+1)^2*(n+3)*(n+5));
H = ((n-2)*(n-3)*abs(g2))/((n+1)*(n-1)*sqrt(G));

90

J = ((6*(n^2-(5*n)+2))/((n+7)*(n+9)))*sqrt((6*(n+3)*(n+5))/((n*(n-2)*(n-3))));
K = 6+((8/J)*((2/J)+sqrt(1+(4/J^2))));
L = (1-(2/K))/(1+H*sqrt(2/(K-4)));
Zg2 = (1-(2/(9*K))-L^(1/3))/sqrt(2/(9*K));

K2 = Zg1^2 + Zg2^2; %D'Agostino-Pearson statistic
X2 = K2; %approximation to chi-distribution
df = 2; %degrees of freedom

P = 1-chi2cdf(X2,df); %probability associated to the chi-squared statistic
if P >= alpha;
 x=0;%%Modified by Alexandropoulos
%disp('P'); %disp('The sampled population is normally distributed.');
else
% fprintf('D''Agostino-Pearson''s test to assessing normality: X2= %3.4f, df=%2i\n',
X2,df);
% fprintf('Probability associated to the chi-squared statistic = %3.4f\n', P);
%fprintf('With a given significance = %3.3f\n', alpha);
% disp('FAIL') %disp('The sampled population is NOT!!!!!!! normally distributed.');
x=1;%%Modified by Alexandropoulos
end;

• myseparation.m:
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function[training,testing]=myseparation(X,Sample_Class,Num_Class,Train_Class_Size)
% This function separates the initial data in matrix X into training and
% testing data
% Date:April 2006
%
% inputs: X,initial data
% Sample_Class,samples collected per class
% Num_Class,number of classes
% Train_Class_Size,number of samples per class for training
%
% outputs: training,the training data
% testing,the teasting data
%
% Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
[f,t]=size(X);

A_1=reshape(X,f,Sample_Class,Num_Class);
[row,col] = size(A_1);

pose=3;

91

A_neutral=A_1(:,1:10,:);
A_u=A_1(:,11:20,:);
A_smile=A_1(:,21:30,:);

p = randperm(Sample_Class/pose);
ptrain=p(1:Train_Class_Size/pose);
ptest=p((Train_Class_Size/pose)+1:Sample_Class/pose);

Test_Class_Size=Sample_Class-Train_Class_Size;

for k=1:Num_Class;

 for i=1:Train_Class_Size/pose;
 train_neutral(:,i,k)=A_neutral(:,ptrain(i),k);
 train_u(:,i,k)=A_u(:,ptrain(i),k);
 train_smile(:,i,k)=A_smile(:,ptrain(i),k);
 end

 for ii=1:Test_Class_Size/pose;
 test_neutral(:,ii,k)=A_neutral(:,ptest(ii),k);
 test_u(:,ii,k)=A_u(:,ptest(ii),k);
 test_smile(:,ii,k)=A_smile(:,ptest(ii),k);
 end

end
train=[train_neutral train_u train_smile];
test=[test_neutral test_u test_smile];
Train_data=reshape(train,row,1,Train_Class_Size*Num_Class);
Test_data=reshape(test,row,1,Test_Class_Size*Num_Class);

training=squeeze(Train_data); %training data each column is a sample
testing=squeeze(Test_data); %testing data each column is a sample

• BayesVsPCA.m:

% %

% % File name: BayesVsPCA
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: November 2005
% % Description: Implements the Bayes Classification scheme and compares
% % the results for those obtained with the PCA scheme when
% % 15 singular values are selected. Performances compared
% % using the Rank one score. The associated confidence

92

% % intervals for a 95% significance level are estimated.
% % Parameters 1.Number of iterations
% % Outputs 1.CMC plots
% % 2.Per class classification performance plots
% % 3.Rank one performance metrics
% % 4.Confidence Intervals
% % Functions used: RankScore.m, confint.m, myseparation.m
%
%**
**

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A_all;

%CONSTANTS DECLARATION

Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Class = 50; % Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Num_iter=2; %Number of Iterations 1000 used
train=[];test=[];

%%%
%%%%%%%%%%%%%%%%
for iterations=1:Num_iter %ITERATIONS LOOP(OUTER)
%%%
%%%%%%%%%%%%%%%%

% % DATA SEPARATION INTO TRAINING & TESTING
[A1,A2]=myseparation(Atemp,Sample_Class,Num_Class,Train_Class_Size);

% % APPLY THE PCA USING THE SNAPSHOT METHOD

X=A1-mean(mean(A1));
X=double(X);
[U,S,V] = svd(X,0); % produces the “economy size” decomposition. If X is m-by-n with
m > n, then only the

93

 % first n columns of U are computed and S is n-by-n.
Test_data=A2;Train_data=A1;

clear A A1 A2 S V dim1 dim2 test train

% % SELECT THE NUMBER OF SINGULAR VALUES

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for singular_values=1:15; % SINGULAR VALUES LOOP INNER
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
singular_values
U_proj=U(:,(1:singular_values)); % projection matrix
X_proj=U_proj'*X; % projected data
X_train_proj=U_proj'*Train_data; % Projected Training Data 18 samples per
class
X_test_proj=U_proj'*Test_data; % Projected Testing Data 12 samples per class
 % In total 30 samples per class

% % DISCRIMINANT FUNCTION g

for i=1:Num_Class;
 cl=X_train_proj(:,(1+Train_Class_Size*(i-1):Train_Class_Size*i));
 mu(:,i)=mean(cl'); % mean vector of each class
 Sig(:,:,i)=cov(cl'); % covariance matrix of class
 Sigma=cov(cl'); % covariance matrix of class
 D_Sigma(i)=det(Sigma); % its determinant
 Inv_S(:,:,i)=inv(Sigma);
 c(i)=-0.5*log(det(Sigma)+eps); % constant of each class
end

[row,col]=size(X_test_proj);

for n=1:col;
 for i=1:Num_Class;
 %% Bayes
 g(i,n,singular_values)=-0.5*(X_test_proj(:,n)-
mu(:,i))'*Inv_S(:,:,i)*(X_test_proj(:,n)-mu(:,i))+c(i);
 %% PCA
 g_PCA15(i,n,singular_values)=-0.5*(X_test_proj(:,n)-mu(:,i))'*(X_test_proj(:,n)-
mu(:,i));
 end
end

for n=1:col;

94

[value(n),index(n)]=max(g(:,n,singular_values));
[valuePCA15(n),indexPCA15(n)]=max(g_PCA15(:,n,singular_values));
end

clear mu Sig Inv_S X_train_proj cl Sigma D_Sigma c row col value

%plot(index)

% % CONFUSION MATRIX

for i=1:Num_Class
 a(:,i)=index(1+Test_Class_Size*(i-1):Test_Class_Size*i);
 aPCA15(:,i)=indexPCA15(1+Test_Class_Size*(i-1):Test_Class_Size*i);
 for ii=1:Num_Class
 I(ii,i,iterations)=sum(a(:,i)==ii); %Bayes
 IPCA15(ii,i,iterations)=sum(aPCA15(:,i)==ii); %PCA
 end

per_class_classification_rate(i,singular_values,iterations)=I(i,i,iterations)/Test_Class_Siz
e;

per_class_classification_ratePCA15(i,singular_values,iterations)=IPCA15(i,i,iterations)/
Test_Class_Size;
end
overall_classification_rate(iterations,:,singular_values)=100*sum(diag(I(:,:,iterations)))/
Num_Test_Imag;
overall_classification_ratePCA15(:,singular_values)=100*sum(diag(IPCA15(:,:,iterations
)))/Num_Test_Imag;
clear a

end
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%REFERS TO THE SINGULAR VALUES (END OF INNER LOOP)
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

performance(iterations)=max(overall_classification_rate(iterations,:,:));
performancePCA15(iterations)=max(overall_classification_ratePCA15);

%Best performance per each iteration i.e optimum singular value to be used
[best_rate,optimum_singular_value]=max(overall_classification_rate(iterations,:,:));
[best_rate,optimum_singular_valuePCA15]=max(overall_classification_ratePCA15);

95

Performance_per_class=squeeze(per_class_classification_rate(:,optimum_singular_value,
iterations));
Performance_per_classPCA15=squeeze(per_class_classification_ratePCA15(:,optimum_
singular_valuePCA15,iterations));

max_index(iterations)=optimum_singular_value; %indeces where max occurs
max_indexPCA15(iterations)=optimum_singular_valuePCA15; %indeces where max
occurs

%Associated disriminant function for each performance case
g_11=g(:,:,11)'; %Bayes_11
g_15=g(:,:,15)'; %Bayes_15
g_opt=g(:,:,optimum_singular_value)'; %Bayes_optimum
g_optPCA15=g_PCA15(:,:,optimum_singular_valuePCA15)'; %PCA_15

clear optimum_singular_value per_class_classification_rate value
clear X_proj U_proj best_rate

% % %RANK SCORE(CUMULATIVE MATCHING SCORE)

[Rank]=RankScore(g_11,Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_Bayes_11(iterations,:) = Rank;

[Rank]=RankScore(g_15,Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_Bayes_15(iterations,:) = Rank;

[Rank]=RankScore(g_opt,Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_Bayes(iterations,:) = Rank;

[Rank]=RankScore(g_optPCA15,Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_PCA15(iterations,:) = Rank;

clear temp1 temp2 I_rank Rank Prob T_B ii g_opt p
end
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%REFERS TO THE NUMBER OF ITERATIONS (END OF OUTER LOOP)
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % CONFIDENCE INTERVALS

%Bayes 11 singular values
performance_Bayes_11=overall_classification_rate(:,:,11);
interval_11=confint(performance_Bayes_11,0.05,iterations);

96

%Bayes 15 singular values
performance_Bayes_15=overall_classification_rate(:,:,15);
interval_15=confint(performance_Bayes_15,0.05,iterations);

%Bayes optimum singular values
performance_Bayes_opt=performance;
interval_opt=confint(performance_Bayes_opt,0.05,iterations);

% save Bayes_Classifier

figure(1)
stem(mean(Rank_Bayes_15));grid
title(' Bayes Classifier based on the 15 singular values of the per class Covariance matrix
SVD')
ylabel('Cummulative Rank Score')
xlabel('Rank Index')
axis ([-2 52,0 1.2])
text(0,1.05,'Number of Singular values fixed to 15')

figure(2)
stem(mean(Rank_Bayes));grid
title(' Bayes Classifier based on the OPTIMUM singular values of the per class
Covariance matrix SVD')
ylabel('Cummulative Rank Score')
xlabel('Rank Index')
axis ([-2 52,0 1.2])
text(0,1.175,'Number of Singular values vary,')
text(0,1.1,'those that obtain the max Classification rate selected')

figure(3)
stem(Performance_per_class');grid
overall_classification_performance=mean(performance)
title(' Bayes Classifier//Classification per Class Performance')
ylabel('Classification Performance')
xlabel('Class Index')
axis ([-2 52,0 1.2])

figure(4)
stem(mean(Rank_PCA15));grid
title(' PCA Classifier based on the top 15 eigenvalues training data SVD')

97

ylabel('Cummulative Rank Score')
xlabel('Rank Index')
axis ([-2 52,0 1.2])
text(0,1.05,'Number of Singular values fixed to 15')

figure(5)
stem(Performance_per_classPCA15');grid
overall_classification_performancePCA15=mean(performancePCA15)
title(' PCA15 Classifier//Classification per Class Performance')
ylabel('Classification Performance')
xlabel('Class Index')
axis ([-2 52,0 1.2])

figure(6)
stem(mean(Rank_Bayes_11));grid
title(' Bayes Classifier based on the 11 singular values of the per class Covariance matrix
SVD')
ylabel('Cummulative Rank Score')
xlabel('Rank Index')
axis ([-2 52,0 1.2])
text(0,1.05,'Number of Singular values fixed to 11')

figure(7)
stem(squeeze(mean(overall_classification_rate(:,:,:),1)))
axis([0,20,0,100])
title('Bayes Classifier,the “peaking effect”.')
xlabel('features selected(i.e. singular values of the class covariance matrix)')
ylabel('Classification rate')
grid

• RankScore.m:

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Rank] = RankScore(g,Num_Class,Test_Class_Size,Num_Test_Imag)
% g is the discrimination function
% Rank is the Cumulative Rank Score
% Created by Domboulas [Domboulas, 2004]
% Modified by Alexandropoulos
%%% Assign 1-50 Class Indices for each of the test Images
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% T_B = [1,1,1,1,1,1,1,1,1,1,1,1];

98

T_B=ones(1,Test_Class_Size);%%%%Modified by Alexandropoulos to include
% any per centage separation
for m = 1 : Num_Class;
T_B((Test_Class_Size * (m-1) + 1) : (Test_Class_Size * m)) = m * T_B(
1:Test_Class_Size) ;
end; %%% T_B contains the class number of each testing image

%%% Sort Distances per Testing Image - RANK
for k = 1 : Num_Test_Imag ;
temp1 = sort(g(k,:));
I_rank(k) = find((temp1 == g(k,T_B(k))*ones(1,Num_Class)));
end;

%%% Find the probability of each of the 50 Ranks assigned to all the testing images
for k =1 : Num_Class ;
 temp2 = find(I_rank == k * ones(1,Num_Test_Imag));
 Prob(k) = size(temp2 , 2) / Num_Test_Imag;
end;

%%%% RANK SCORE Evaluation - Cummulative Probability of Ranks - Incresing
Order
Rank(1) = Prob(1);
for k = 2 : Num_Class ;
 Rank(k) = Rank(k-1) + Prob(k); %% Rank is 1X50 with accumulated Probability
end;

• confint.m:

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function interval=confint(overall_classification_rate,confidence,iterations)
%%% This function returns the confidence interval bounds using the
%%% percentile method for non normal distributed populations
% inputs: overall_classification_rate are the classification rates
% per each iteration
% confidence is the selected confidence level
% iterations refers to the total repetition of the
% classification experiment
%
% outputs: confidence interval bounds
%
% Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a1=sort(overall_classification_rate);

99

a2=floor((confidence)*0.5*iterations);
low=a1(:,a2);
high=a1(:,iterations-a2);
interval=[low high];

• IrisdataFVS-LDA.m

% %

% % File name: IrisdataFVS-LDA.m
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: February 2006
% % Description: Implements the FVS-LDA scheme on the Iris data for
% % different values of feature vectors FVs and the variance
% % of the Gaussian Kernel mapping. The effect of kernel
% % parameters selection in class separation is considered.
% %
% % Parameters 1.variance p1= sigma^2 for a Gaussian kernel mapping
% % 2.Number of feature vectors FVs (max 150 i.e. the total
% % available training data samples)
% % 3.global fitness (between 0 to 1)
% % Outputs 1.Scatter plots of the projected Iris data classes
% %
% % Functions used: FVSelection2.m, testKFA2.m, FVSProjection2.m, fld.m
% % FVSKernel2.m, applyKFA2.m, dist.m, invrec.m, sortem.m
%
%**
**

clc;
clear;
load fisheriris; %% Load the IrisData
% set up the global parameter p1= sigma^2 for a gaussian kernel
global p1;
p1=700; % sigma^2 = p1
IrisData=meas;
dataL1=meas(1:50,:); %setosa
dataL2=meas(51:100,:); %versicolor
dataL3=meas(101:150,:); %virginica
dataL=[dataL1;dataL2;dataL3];

% launch the feature vector selection

100

fprintf('Feature Vector Selection in progress ...\n');
dataFVS=FVSelection2(meas,'gauss',15,1-eps);

 P=dataFVS.P;
% dataP1=P(1:50,:); %setosa
% dataP2=P(51:100,:); %versicolor
% dataP3=P(101:150,:); %virginica
%
c=ones(1,50);
C=[c 2*c 3*c]; %classes associated to numbers

[W,D]=fld(P',C);

X_proj=W'*P'; %data projected to fisher eigenspace
X_proj_C1=X_proj(:,(1:50)); %class 1
X_proj_C2=X_proj(:,(51:100)); %class 2
X_proj_C3=X_proj(:,(101:150)); %class 3

figure
scatter(X_proj_C1(1,:),X_proj_C1(2,:),'o')
hold on
scatter(X_proj_C2(1,:),X_proj_C2(2,:),'+','r')
hold on
scatter(X_proj_C3(1,:),X_proj_C3(2,:),'d')
hold off
grid
title('2-D Projected Iris training data using FVS-LDA,Gaussian Kernel')
legend('class 1','class 2','class 3',0)

• crossvalidate.m:

%%
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File name: crossvalidate.m
%% Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
%% Author: LTJG(E) Ioannis M.Alexandropoulos
%% Hellenic Navy
%% Date: April 2006
%% Description: Performs the hold out cross-validation scheme to
%% obtain the global parameters associated with the kernel
%% mapping functions
%% Parameters: 1. Kernel mapping function
%% 2. Range of the kernel global parameters
%% 3. Number of feature vectors selected

101

%% 4. Distance type to be used
%% 5. Number of segments used for the hold out scheme
%% Outputs: 1. Rank-(1-50) Scores
%% 2. Classification Performance per Class
%% 3.Classification error rates plots versus global
%% parameters (i.e. order/variance)
%% Functions used: FVSelection2.m, FVSKernel2.m, fld.m,
%% FVSProjection2.m, dist2.m, sortem.m
%% myseparation.m, discriminate.m , invrec.m
%% RankScore.m
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A A_all;

% %CONSTANTS DECLARATION

Train_Class_Size= 24; % Number of Training Images per Class
Test_Class_Size = 6; % Number of Testing Images per Class
Num_Class = 50; % Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Atemp=Atemp-mean(mean(Atemp)); % centering step i.e zero mean
train=[];test=[];

% % CROSS-VALIDATION

%Partitioning of the training data into S segments for use in cross-validation.
hold_out_ratio=Train_Class_Size/Test_Class_Size;
 var1=6:.4:10;
 var2=14:4:50;
 var=[var1 var2]
 for kk=1:length(var);
 kk

global p1; % sigma^2 = p1
p1=var(kk)*10^(6); %varying the p1 parameter
segments=hold_out_ratio+1; %S segments

102

for k=1:segments;
 k
[AA1,AA2]=myseparation(Atemp,Sample_Class,Num_Class,Train_Class_Size);%
Selection of training and testing data

% %FEATURE VECTOR SELECTION
Features=350;
Global_Fitness=1-eps;
fprintf('Feature Vector Selection in progress ...\n'); % set up the global parameter p1=
sigma^2 for a gaussian kernel
dataFVS=FVSelection2(AA1','gauss',Features,Global_Fitness);% Select feature vectors
among the training data
S=dataFVS.S; % S is the new basis subspace spanned by the
selected feature vectors
Ptrain=dataFVS.P; % Training Data projected onto the subspace
of F
Ptest=FVSKernel2('gauss',AA2',AA1(:,S)')'; % Projection of all the testing data
onto the subspace of F
 % the FVs space(explicit projection using the kernel
%After FVs selection using the non-linear kernel mapping data are now linear separable

% %APPLY FLD

%Create C matrix
for i=1:Num_Class;
 c(:,i)=i*ones(1,Train_Class_Size);
end
C=reshape(c,1,Train_Class_Size*Num_Class);
[W,D]=fld(Ptrain',C);
X_train_proj=W'*Ptrain'; % Projected Training Data onto FVs-LDA space
X_test_proj=W'*Ptest'; % Projected Testing Data onto FVs-LDA space
%RECALL that the dimension of the FVS-LDA subspace is always N-1 where N is
%the number of classes in our case N=50

% %DISCRIMINANT FUNCTION
Distance='euclidean';
[per_class_classification_rate,I,g]=discriminate(X_train_proj,X_test_proj,Distance);
%discriminate returns the per class classification rate,
%the confusion matrix I
%the discriminant's values g
overall_classification_rate(:,k)=100*sum(diag(I(:,:)))/Num_Test_Imag;

end
m_error_rate(:,kk)=100-mean(overall_classification_rate) %mean error rate as a function
of p1 variation
clear p1 %pi is global so needs to be cleared

103

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%END OF CROSS VALIDATION SCHEME%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for kk=1:length(var)
 variance(:,kk)=var(kk)*10^(6);
end
upper=max(variance);down=min(variance);
range=[down upper];
figure(1)
 plot(variance,m_error_rate)
 title('Estimating the variance using the hold out method')
 xlabel('variance(p1)')
 ylabel('mean error rate')
 grid
[value index]=min(m_error_rate)
sigma_squared=variance(:,index)

% % Results returned in a structure

% % Results=struct('Segments',segments,'FVs',Features,'BestVariance',sigma_squared,
'Performance', value,'Var_Range',range,'Distance',Distance);
% %
% %
% % clear AA1 col AA2 dataFVS Atemp dim1 C dim2 D g I i Num_Class ii
Num_Test_Imag index Num_Train_Imag k Num_iter kk
% % clear Ptest Ptrain mu S n Sample_Class overall_classification_rate Test_Class_Size
per_class_classification_rate
% % clear Train_Class_Size row W segments X_test_proj test X_train_proj train a value
c cl
% %
% % save Trial_1

• discriminate.m:

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function
[per_class_classification_rate,I,g]=discriminate(X_train_proj,X_test_proj,distance)
% This function computes the classification rate for the below selection of
% discrimination criteria
% Date:12 March 2006
%
% input: Xtrain- matrix containing the data projected in linear separable subspace
% matrix should be in the form samples-by-features

104

% Xtest- matrix containing the data projected in linear separable subspace
% matrix should be in the form samples-by-features
% discrimination-type of discriminatio function to be used
%
% output: Ptrain-Performance when training data are presented
% Ptest-Performance when training data are presented
%
% Ioannis Alexandropoulos
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %DISCRIMINANT FUNCTION
Train_Class_Size= 24; % Number of Training Images per Class
Test_Class_Size = 6; % Number of Testing Images per Class
Num_Class = 50; % Total Number of Classes

for i=1:Num_Class;
 cl=X_train_proj(:,(1+Train_Class_Size*(i-1):Train_Class_Size*i)); % class seperation
 mu(:,i)=mean(cl'); % mean vector of each class or Class
Centroids
end

%used for mahalanobis angular
matrix_1=cov(X_train_proj');
sigma=sqrt(diag(matrix_1));
matrix_2=diag((sigma).^-1);

[row,col]=size(X_test_proj);

for n=1:col;
 for i=1:Num_Class;
 switch lower(distance) % selection of the discrimination function

 case 'euclidean' % euclidean (norm_2) discriminant function
 g(i,n)=-norm(X_test_proj(:,n)-mu(:,i),2);

 case 'mah_angular' % mahalanobis angular
 g(i,n)= -acos(((X_test_proj(:,n)' * matrix_2) * (matrix_2 * mu(:,i))) / (norm(
X_test_proj(:,n).*((sigma).^-1) ,2) * norm(mu(:,i).*((sigma).^-1) ,2)));
% MAHALANOBIS ANGULAR DISTANCE

 case 'euc_angular' % euclidean angular
 g(i,n)= -acos(((X_test_proj(:,n)' * mu(:,i))) / (norm(X_test_proj(:,n),2) * norm(
mu(:,i),2))); % euclidean angular

105

 otherwise
 disp('Discriminat function type unknown')
 end
 end
end

for n=1:col;
[value(n),index(n)]=max(g(:,n)); % find where max occurs
end
% plot(index);

% %CONFUSION MATRIX

for i=1:Num_Class
 a(:,i)=index(1+Test_Class_Size*(i-1):Test_Class_Size*i);
 for ii=1:Num_Class
 I(ii,i)=sum(a(:,i)==ii); % confusion matrix
 end
 per_class_classification_rate(i)=I(i,i)/Test_Class_Size;
end

• FVS-LDA_IRdata_Identification.m

% %

% % File name: FVS-LDA_IRdata_Identification.m
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: March 2006
% % Description: Implements the FVS-LDA scheme on IR data using the
% % global parameters obtained via cross-validation. The
% % identification type of experiment is considered for
% % performance evaluation. The associated confidence
% % intervals for a 95% significance level are estimated.
% % Parameters 1.Kernel mapping function
% % 2.Kernel global parameters
% % 3.Number of FVs
% % 4.Distance simmilarity metrics(i.e. euclidean norm,
% % euclidean angle, mahalanobis angle)

% % Outputs 1.CMC plots
% % 2.Rank one performance metrics
% % 3.Confidence intervals
% % 4.Elapsed time
% % Functions used RankScore.m, confint.m, myseparation.m

106

%
%**
**

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A A_all;

% %CONSTANTS DECLARATION

Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Class = 50; % Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Num_iter=1000; % Number of Iterations 1000 used
train=[];test=[];
Atemp=Atemp-mean(mean(Atemp));
tic
%%%
%%%%%%%%%%%%%%%%
for iterations=1:Num_iter %ITERATIONS LOOP(OUTER)
%%%
%%%%%%%%%%%%%%%%

% % DATA SEPARATION INTO TRAINING & TESTING
[A1,A2]=myseparation(Atemp,Sample_Class,Num_Class,Train_Class_Size);

% %FEATURE VECTORS SELECTION
iterations
fprintf('Feature Vector Selection in progress ...\n'); % set up the global parameter
p1= sigma^2 for a gaussian kernel

Mapping='gauss';
global p1;
p1=14*10^(6); % k=exp(-dist2(x2,x1)/p1),sigma^2 =
p1,for gaussian mapping

% % Mapping='poly';
% % global p1;

107

% % p1=2; % k=(x2*x1').^p1,order = p1 for
polynomial mapping

% % Mapping='poly2';
% % global p1;
% % p1=2; % k=(x2*x1'+1).^p1,order = p1 for
polynomial mapping

% % Mapping='sigmoid';
% % global p1;
% % global p2;
% % p1=9*10^(-9); % k=tanh(p1*x2*x1'+p2),sigmoid
mapping
% % p2=0;

Features=250;
Global_Fitness=1-eps;
dataFVS=FVSelection2(A1',Mapping,Features,Global_Fitness); % Select feature
vectors among the training data
S=dataFVS.S; %Features selected
Ptrain=dataFVS.P; %Training data projected onto the
feature vectors subspace
Ptest=FVSKernel2(Mapping,A2',A1(:,S)')'; %Projection of all the testing
data onto the subspace of F
 %the FVs space(explicit projection using the
kernels)

% %APPLY FLD
%FLD is applied in the projected data onto the FVs
%subspace once they are linearly separable

%Create C matrix
for i=1:Num_Class;
 c(:,i)=i*ones(1,Train_Class_Size);
end
C=reshape(c,1,Train_Class_Size*Num_Class);
[W,D]=fld(Ptrain',C);
X_train_proj=W'*Ptrain'; % Projected Training Data onto FLD space
X_test_proj=W'*Ptest'; % Projected Testing Data onto FLD space

% %DISCRIMINANT FUNCTION
Distance='euc_angular';
[per_class_classification_rate,I,g]=discriminate(X_train_proj,X_test_proj,Distance);
%discriminate returns the per class classification rate,
%the confusion matrix I

108

%the discriminant's values g
overall_classification_rate(iterations)=100*sum(diag(I(:,:)))/Num_Test_Imag;

% %RANK SCORE(CUMMULATIVE MATCHING SCORE)

[Rank]=RankScore(g',Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_FVS(iterations,:) = Rank;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end %ITERATIONS LOOP(OUTER)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time=toc;
classification_rate=mean(overall_classification_rate)
% % CONFIDENCE INTERVAL

interval=confint(overall_classification_rate,0.05,iterations);

% Results returned in a structure

clear A1 col A2 dataFVS Atemp dim1 C dim2 D g I i Num_Class ii Num_Test_Imag
index Num_Train_Imag k Num_iter kk
clear Ptest Ptrain mu S n Sample_Class Test_Class_Size iterations
clear Train_Class_Size row W X_test_proj test X_train_proj train a value c cl

Results=struct('Mapping',Mapping,'FVs',Features,'Order',p1, 'Performance',
classification_rate,'ElapsedTime',time,'Interval',interval,'Distance',Distance);

% save Trial_mapping_FVs

% figure(1)
% stem(mean(Rank_FVS));grid
% title('Classifier based on the FVS data preprocessing')
% ylabel('Cummulative Rank Score')
% xlabel('Rank Index')
% axis ([-2 52,0 1.2])
%
% figure(2)
% stem(overall_classification_rate)
% title(' FVS-LDA classifier ')
% ylabel('Classification rate')
% xlabel('Iteration Index')

• FVS_LDA_IRdata_Verification.m

109

% %

% % File name: FVS_LDA_IRdata_Verification.m
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: March 2006
% % Description: Implements the FVS-LDA scheme on IR data using the
% % global parameters obtained via cross-validation. The
% % verification type of experiment is considered for
% % performance evaluation. The associated confidence
% % intervals for a 95% significance level are estimated.
% % Parameters 1.Kernel mapping function
% % 2.Kernel global parameters
% % 3.Number of FVs (max 540 for 30 classes used for training)
% % 4.Distance similarity metrics(only
% % Euclidean angle, Mahalanobis angle that are evaluated
% % between 0 and pi and can be normalized)
% % Outputs 1.ROC plots (EERs estimated graphically from the ROCs)
% % 2.Rank one performance metrics
% % 3.Elapsed time
% % Functions used: FVSelection2.m, testKFA2.m, FVSProjection2.m, fld.m
% % FVSKernel2.m, applyKFA2.m, dist.m, invrec.m, sortem.m
% % myseparation.m, RankScore.m, confint.m
%
%**
**
clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A A_all;

% %CONSTANTS DECLARATION

Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Class = 30; % Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Num_iter=100; % Number of Iterations 1000 used
train=[];test=[];
Atemp=Atemp-mean(mean(Atemp));
tic

110

%%%
%%%%%%%%%%%%%%%%
for iterations=1:Num_iter %ITERATIONS LOOP(OUTER)
%%%
%%%%%%%%%%%%%%%%

%select only 30 classes for your gallery of 18 samples per class for
%training

Agallery=Atemp(:,1:900);
[A1,A2]=myseparation(Agallery,Sample_Class,Num_Class,Train_Class_Size);
Aprobes=[A2 Atemp(:,901:1500)];

% %FEATURE VECTORS SELECTION
iterations
fprintf('Feature Vector Selection in progress ...\n'); % set up the global parameter
p1= sigma^2 for a gaussian kernel

% % Mapping='gauss';
% % global p1;
% % p1=9*10^(6); % k=exp(-dist2(x2,x1)/p1),sigma^2
= p1,for gaussian mapping
% %
Mapping='poly';
global p1;
p1=2; % k=(x2*x1').^p1,order = p1 for polynomial
mapping

% % Mapping='poly2';
% % global p1;
% % p1=2; % k=(x2*x1'+1).^p1,order = p1 for
polynomial mapping

% Mapping='sigmoid';
% global p1;
% global p2;
% p1=9*10^(-9); % k=tanh(p1*x2*x1'+p2),sigmoid
mapping
% p2=0;

Features=150;
Global_Fitness=1-eps;
dataFVS=FVSelection2(A1',Mapping,Features,Global_Fitness); % Select feature
vectors among the training data
S=dataFVS.S; %Features selected

111

Ptrain=dataFVS.P; %Training data projected onto the
feature vectors subspace
Ptest=FVSKernel2(Mapping,Aprobes',A1(:,S)')'; %Projection of all the
testing data onto the subspace of F

% %APPLY FLD
%FLD is applied in the projected data onto the FVs
%subspace once they are linearly separable

%Create C matrix
for i=1:Num_Class;
 c(:,i)=i*ones(1,Train_Class_Size);
end
C=reshape(c,1,Train_Class_Size*Num_Class);
[W,D]=fld(Ptrain',C);
X_train_proj=W'*Ptrain'; % Projected Training Data onto FLD space
X_test_proj=W'*Ptest'; % Projected Testing Data onto FLD space

% %DISCRIMINANT FUNCTION
Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Class = 30; % Total Number of Classes

for i=1:Num_Class;
 cl=X_train_proj(:,(1+Train_Class_Size*(i-1):Train_Class_Size*i)); % class separation
 mu(:,i)=mean(cl');
 % NOTE!!! mu is the mean vector of each class or Class Centroids
 % is considered as the Gallery Set since it contains one
 % signature(i.e. class centroid) per class

end

%used for mahalanobis angular
matrix_1=cov(X_train_proj');
sigma=sqrt(diag(matrix_1));
matrix_2=diag((sigma).^-1);

[row,col]=size(X_test_proj);

for n=1:col;
 for i=1:Num_Class;
% % Distance='euc_angular'; % euclidean angular
% % g(i,n)= acos(((X_test_proj(:,n)'* mu(:,i))) / (norm(X_test_proj(:,n),2) *
norm(mu(:,i),2)));

112

 Distance='mah_angular' ; % mahalanobis angular
 g(i,n)= acos(((X_test_proj(:,n)' * matrix_2) * (matrix_2 * mu(:,i))) / (norm(
X_test_proj(:,n).*((sigma).^-1) ,2) * norm(mu(:,i).*((sigma).^-1) ,2)));
% MAHALANOBIS ANGULAR DISTANCE

 end
end

% %RANK SCORE(CUMMULATIVE MATCHING SCORE)

[Rank]=RankScore(g',Num_Class,Test_Class_Size,Num_Test_Imag);
Rank_FVS(iterations,:) = Rank;

%normalise the threshold

g=g/pi;

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Num_Class_Gallery=Num_Class; %same as those used for training
Num_Class_Probe_CI=Num_Class; %same as those used for training
Num_Class_Probe_FA=50-Num_Class; %not condidered for training
samples_CI=Num_Class_Probe_CI*Test_Class_Size;
samples_FA=Num_Class_Probe_FA*Sample_Class;
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:100;
 threshold=0.01*i;
 gcompare=g<threshold;
 g_CI=gcompare(:,1:samples_CI);
 g_FA=gcompare(:,samples_CI+1:(samples_CI+samples_FA));

 for n=1:Num_Class
 a_CI(n,:)=g_CI(n,1+Test_Class_Size*(n-1):Test_Class_Size*n);
 end

 PCI(i)=sum(sum(a_CI))/samples_CI;

 sFA=sum(g_FA)>=1;
 PFA(i)=sum(sFA)/samples_FA;

end
P_ci(iterations,:)=PCI;

113

P_fa(iterations,:)=PFA;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end %ITERATIONS LOOP(OUTER)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % CONFIDENCE INTERVAL

interval=confint(overall_classification_rate,0.05,iterations);

time=toc;
clear A1 col A2 dataFVS Atemp dim1 C dim2 D g I i Num_Class ii Num_Test_Imag
index Num_Train_Imag k Num_iter kk
clear Ptest Ptrain mu S n Sample_Class Test_Class_Size iterations Global_Fitness PFA
ans matrix_2 threshold
clear Train_Class_Size row W X_test_proj test X_train_proj train a value c cl
Num_Class_Gallery g_CI sFA
clear Agallery Num_Class_Probe_CI g_FA samples_CI Aprobes Num_Class_Probe_FA
gcompare samples_FA PCI a_CI matrix_1 sigma

classification_rate=mean(Rank_FVS(:,1))
Results=struct('Mapping',Mapping,'FVs',Features,'Order',p1, 'Performance',
classification_rate,'ElapsedTime',time,'Distance',Distance);
% save Trial_FVSLDA_roc_1
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
subplot(2,1,1),plot(mean(P_fa),1-mean(P_ci),'-rs')
title('Verification Experimnt using ROC ')
xlabel('P_F_A Probability of False Alarm')
ylabel('1-P_C_I Probability of Incorrect Rejection')
axis([0 1.2 0 1.2])
line([1 -1],[1 -1])
grid
hold on
subplot(2,1,2),plot(mean(P_fa),mean(P_ci),'-gd')
hold off
title('Verification Experimnt using ROC ')
xlabel('P_F_A Probability of False Alarm')
ylabel('P_C_I Probability of Correct Identification')
axis([0 1.2 0 1.2])
line([1 -1],[1 -1])
grid

114

• GDA_IRdata_Verification.m

%% ***
%% File name: GDA_IRdata_Verification.m
%% Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
%% Author: Captain Dimitrios I. Domboulas
%% Hellenic Air Force. Modified by
%% Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
%% Date: May 2006

%% Description: Performs the GDA method, for various kernel functions
%% and distances on IR data.The verification type of
%% experiment is considered for performance evaluation.
%%
%%
%% Inputs: 1. Kernel function type (Polynomal considered only)
%% 2. Number of K matrix eigenvectors kept
%% 3. Distance type to be used
%% 4. Number of iterations
%% Outputs: 1. ROC plots(EERs estimated graphically from the ROCs)
%% 2. Rank one performance metrics based on 30 classes
%% 3. Classification Performance per Class
%% 4. Elapsed Time
%% Functions used: buildGDA_Opt.m, eigensystem.m, dataST.m,
%% spreadGDA_Opt.m, KernelFunction.m, myseparation.m
%% ***

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A A_all;

% %CONSTANTS DECLARATION

Train_Class_Size= 18; % Number of Training Images per Class
Test_Class_Size = 12; % Number of Testing Images per Class
Num_Class = 30;%%Modified by Alexandropoulos% Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Num_iter=100; % Number of Iterations 1000 used
train=[];test=[];

115

Atemp=Atemp-mean(mean(Atemp));
cs = [18,18,18,18,18,18,18,18,18,18];
% Class_Sizes = [cs, cs, cs, cs, cs]; %%(1 X 50) vector, with class sizes per class
Class_Sizes = [cs, cs, cs]; %%(1 X 30) vector, with class sizes per class%%%%ROC

degree = 2; %%% select Polynomial kernel degree, USE 0 ==> for GAUSSIAN kernel
ONLY
Num_ev = 150; %%% input Number of K matrix eigenvectors (0 => Default)
select_dist = 5; %%% select distance
tic
%%%
%%%%%%%%%%%%%%%%
for iterations=1:Num_iter %ITERATIONS LOOP(OUTER)
%%%
%%%%%%%%%%%%%%%%
loop=iterations
%select only 30 classes for your gallery of 18 samples per class for
%training

Agallery=Atemp(:,1:900);%%Added by Alexandropoulos
[A1,A2]=myseparation(Agallery,Sample_Class,Num_Class,Train_Class_Size);%%Adde
d by Alexandropoulos
% Aprobes=[A2 Atemp(:,901:1500)];%%Added by Alexandropoulos

A1 = DataSt(A1); %% Mean =0, Standard Deviation = 1
A2 = DataSt(A2); %% Mean =0, Standard Deviation = 1

Le = A1'; %%% Learning Data (540 Images are rows)
Te_CI = A2'; %% 360 Testing images of our Data Base (Images are rows)
Te_FA =Atemp(:,901:1500)';%%Modified by Alexandropoulos %Imposter set
[dataGDA,centeredkM,kM] = buildGDA_Opt(Le , Class_Sizes , degree, Num_ev);
%%run GDA
Pgda_A = spreadGDA_Opt(Le, Le, dataGDA, degree); %% Projected Training images
in GDA
Pgda_B_CI = spreadGDA_Opt(Te_CI, Le, dataGDA, degree); %% Projected
Testing_CI images in GDA
Pgda_B_FA = spreadGDA_Opt(Te_FA, Le, dataGDA, degree); %% Projected
Testing_FA images in GDA
Pgda_B = [Pgda_B_CI;Pgda_B_FA];%% Projected Testing_Total images in GDA

%%% FIND VARIANCE of each column of the 900X49 Projected Train Data Matrix.
%%% Covariance is used for other Image Distance types
for k = 1 : size(Pgda_A , 2);
Pr_Tr_Dat_Cov_Col(k) = cov(Pgda_A(:,k)); %% Row Vector 1X49 with variances
%%% of each of the 49 columns of the Projected Training Data Matrix 900X49
end;

116

Pr_Tr_Dat_Cov_Mat = cov(Pgda_A); %% 49X49 covariance matrix of Proj Train Data
Matrix
%%%%%% It is Diagonal!!Invertible & Each Dimension 's features are
%%%%%% independent from each othert ==> It is the Ideal case
Inv_Cov = inv(Pr_Tr_Dat_Cov_Mat); %%% Inverse Covar Matr
%%% For the Approximated Mahalanobis Distance
for k = 1 : size(Inv_Cov,2);
 s_inv(k) = Inv_Cov(k,k); %% ROW VECTOR 1 x 49
end;
sr_s_inv = sqrt(s_inv(k)); %% Row Vector
sr_inv_diag = diag(sr_s_inv); %%Diagonal Matrix with diag elem the sq roots of
%%% the inverse diag elem of cov matrix 49 x 49
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END VARIANCE
SECTION

%% Find Centroids per Each Class Projected Training Images
for k= 1 : Num_Class
ProjTrainCentr(k , :) = mean(Pgda_A(((k-1)*Train_Class_Size + 1) : (k *
Train_Class_Size) , :));
end;

%%% create cell array
DistName = {'Norm-2 ';'Mahalanobis ';
 'Mahalanobis Norm-2 ';'Mahalanobis Norm-1 ';'Mahalanobis Angular'};

%%% Find Various Distances for Testing Images
[a1 a2]=size(Pgda_B);
for k = 1 : a1;
 for m = 1: Num_Class;
 if select_dist == 1; %% NORM-2 Distance
 TestDist(k,m) = norm(Pgda_B(k,:) - ProjTrainCentr(m,:),2);

 elseif select_dist == 2; %% MAHALANOBIS DISTANCE
 TestDist(k,m) = sqrt((Pgda_B(k,:) - ProjTrainCentr(m,:)) * Inv_Cov * (Pgda_B(k,:) -
ProjTrainCentr(m,:))'); %% Mahalanobis Distance

 elseif select_dist == 3; %% Mahalanobis NORM-2 Distance
 temp = (sr_s_inv .* (Pgda_B(k,:) - ProjTrainCentr(m,:))) * (sr_s_inv .* (
Pgda_B(k,:) - ProjTrainCentr(m,:)))' ;
 TestDist(k,m) = sqrt(sum(temp)); %% Approxim Mahalan Dist

 elseif select_dist == 4; %% Mahalanobis NORM-1 Distance
 TestDist(k,m)=sr_s_inv .* norm(Pgda_B(k,:) - ProjTrainCentr(m,:),1);

 else %%%% MAHALANOBIS ANGULAR DISTANCE

117

 TestDist(k,m) = acos(((Pgda_B(k,:) * sr_inv_diag) * (sr_inv_diag *
ProjTrainCentr(m,:)')) / (norm(Pgda_B(k,:).*sr_s_inv ,2) * norm(
ProjTrainCentr(m,:).*sr_s_inv ,2)));

 end; %%% end if

 end
end
%%% Assign 1-50 Class Indeces for each of the 600 test Images
% T_B = [1,1,1,1,1,1,1,1,1,1,1,1];
T_B = ones(1,Test_Class_Size);
for m = 1 : Num_Class;
T_B((Test_Class_Size * (m-1) + 1) : (Test_Class_Size * m)) = m * T_B(
1:Test_Class_Size) ;
end; %%% T_B contains the class number of each testing image (1X600)

%%% Sort Distances per Testing Image - RANK
for k = 1 : Num_Test_Imag ;
temp1 = sort(TestDist(k,:));
I(k) = find((temp1 == TestDist(k,T_B(k))*ones(1,Num_Class)));
end;

%%% Performance Measurement Per Class
for k = 1 : Num_Class;
 temp2 = find(I(((k-1)*Test_Class_Size + 1) : (k * Test_Class_Size)) == ones(
1,Test_Class_Size));
 Perf_Class(k) = size(temp2 , 2) / Test_Class_Size;
end;

%%% Find the probability of each of the 50 Ranks assigned to all the testing images
for k =1 : Num_Class ;
 temp3 = find(I == k * ones(1,Num_Test_Imag));
 Prob(k) = size(temp3 , 2) / Num_Test_Imag;
end;

%%%% RANK SCORE Evaluation - Cummulative Probability of Ranks - Incresing
Order
Rank(1) = Prob(1);
for k = 2 : Num_Class ;
 Rank(k) = Rank(k-1) + Prob(k); %% Rank is 1X50 with accumulated Probability
end;

Rank_718(loop,:) = Rank;
Perf_Class_718(loop,:) = Perf_Class;

clear A TA B TB f L1 L2 Le Te dataGDA centeredkM kM;

118

clear Pgda_A Pgda_B k j Pr_Tr_Dat_Cov_Col Pr_Tr_Dat_Cov_Mat;
clear TrainDist temp Pgda_Aindex Class_Index;
clear Inv_Cov s_inv sr_inv_diag ProjTrainCentr DistName;
clear Pgda_BIndex Class_Index T_B temp1 I temp2 temp3;
clear Prob Delete d dim1 dim2 i m n sr_s_inv;
clear Rank Perf_Class Pgda_AIndex cs rp;

% % save Mah_Ang_Rank_PerfClas_GDA_0_7_040926 Rank_718 Perf_Class_718 ;
% % save Mah_Ang_Rank_PerfClas_GDA_2_100EV_041118 Rank_718
Perf_Class_718 ;

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Lines 174 to the end Added by Alexandropoulos
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%normalize the threshold
g=TestDist';
g=g/pi;
Sample_Class=30; % Samples per class

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Num_Class_Gallery=Num_Class; %same as those used for training
Num_Class_Probe_CI=Num_Class; %same as those used for training
Num_Class_Imposter_FA=50-Num_Class; %not condidered for training
samples_CI=Num_Class_Probe_CI*Test_Class_Size;
samples_FA=Num_Class_Imposter_FA*Sample_Class;
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:100;
 threshold=0.01*i;
 gcompare=g<threshold;
 g_CI=gcompare(:,1:samples_CI);
 g_FA=gcompare(:,samples_CI+1:(samples_CI+samples_FA));

 for n=1:Num_Class
 a_CI(n,:)=g_CI(n,1+Test_Class_Size*(n-1):Test_Class_Size*n);
 end

 PCI(i)=sum(sum(a_CI))/samples_CI;

 sFA=sum(g_FA)>=1;

119

 PFA(i)=sum(sFA)/samples_FA;

end
P_ci(iterations,:)=PCI;
P_fa(iterations,:)=PFA;
end; %%%%%% END OF MAIN ITERATION LOOP
%%
time= toc; %% Stop timing each Main Iteration Loop

classification_rate=mean(Rank_718(:,1))
overall_classification_rate=Rank_718(:,1);
Mapping='polynomial'; %kernel function used
Distance='mah_angular';
% interval=confint(overall_classification_rate,0.05,iterations);

% % Results_GDAroc=struct('Mapping',Mapping,'Eigenvalues',Num_ev,'Order',degree,
'Performance', classification_rate,'ElapsedTime',time,'Distance',Distance);
% %
% % clear A1 g_CI A2 Perf_Class_718 g_FA Agallery Pgda_B_CI gcompare Aprobes
Pgda_B_FA i Atemp Rank_718 iterations
% % clear Class_Sizes Sample_Class loop Num_Class Te_CI n Num_Class_Gallery
Te_FA Num_Class_Probe_CI sFA Num_Class_Probe_FA Test_Class_Size samples_CI
% % clear Num_Test_Imag Train_Class_Size samples_FA Num_Train_Imag a1
select_dist a2 test Num_iter a_CI threshold PCI PFA train
% %
% % save Trial_GDAroc_1

figure(1)
subplot(2,1,1),plot(mean(P_fa),1-mean(P_ci),'-rs')
title('Verification Experimnt using ROC ')
xlabel('P_F_A Probability of False Alarm')
ylabel('1-P_C_I Probability of Incorrect Rejection')
axis([0 1.2 0 1.2])
line([1 -1],[1 -1])
grid
hold on
subplot(2,1,2),plot(mean(P_fa),mean(P_ci),'-gd')
hold off
title('Verification Experimnt using ROC ')
xlabel('P_F_A Probability of False Alarm')
ylabel('P_C_I Probability of Correct Identification')
axis([0 1.2 0 1.2])
line([1 -1],[1 -1])
grid

120

• the5x2cvpaired_ttest.m

% %

% % File name: the5x2cvpaired_ttest.m
% % Thesis Advisor: Prof.M.P.Fargues Naval Postgraduate School
% % Author: Ioannis M.Alexandropoulos LTJG(E) Hellenic Navy
% % Date: July 2006
% % Description: Implements the the 5x2cv paired t test to compare
% % FVS-LDA versus GDA algorithm based on the estimated
% % classification rates for various number of feature
% % vectors/eigen vectors selected respectively.
% % Parameters 1.Kernel mapping function
% % 2.Kernel global parameters
% % 3.Number of FVs/eigenevectors
% % 4.Distance similarity metrics
% % Outputs 1.Estimated value for the random variable following a t
% % distribution.
% % 2.Rank one performance metrics
% %
% % Functions used: FVSelection2.m, FVSProjection2.m, fld.m
% % FVSKernel2.m, dist.m, invrec.m, sortem.m
% % myseparation.m, RankScore.m, confint.m
% % buildGDA_Opt.m, eigensystem.m, dataST.m,
% % spreadGDA_Opt.m, KernelFunction.m, myseparation.m
%
%**
**

clc;
clear;
load A_all;
clear img Db Dme x ans img_name N_class j k m n s s1 sqrs1 tem1 tem2 time;
clear IndSamples N_objects Section im_num1 im_num2 Person T v w i;
Atemp = double(A);
clear A A_all;

% %CONSTANTS DECLARATION

Train_Class_Size= 15; % Number of Training Images per Class
Test_Class_Size = 15; % Number of Testing Images per Class
Num_Class = 50; % Total Number of Classes
Sample_Class=30; % Samples per class
Num_Train_Imag =Train_Class_Size*Num_Class; % Total Number of Training Images
Num_Test_Imag =Test_Class_Size*Num_Class; % Total Number of Testing Images
Num_replic=5; % Number of Iterations 1000 used

121

train=[];test=[];
Atemp=Atemp-mean(mean(Atemp));
for step=1:12;
 step
Num_ev = 50*step; %%% input Number of K matrix eigenvectors (0 => Default)
Features=50*step;

for replications=1:Num_replic;
 replications
[A1,A2]=myseparation(Atemp,Sample_Class,Num_Class,Train_Class_Size);

cs = [15,15,15,15,15,15,15,15,15,15];
Class_Sizes = [cs, cs, cs, cs, cs]; %%(1 X 50) vector, with class sizes per class
degree = 2; %%% select Polynomial kernel degree, USE 0 ==> for GAUSSIAN kernel
ONLY
% Num_ev = 100; %%% input Number of K matrix eigenvectors (0 => Default)
select_dist = 5; %%% select distance

A1 = DataSt(A1); %% Mean =0, Standard Deviation = 1
A2 = DataSt(A2); %% Mean =0, Standard Deviation = 1
Le = A1'; %%% Learning Data (900 Images are rows)
Te = A2'; %%% Testing Data (600 Images are rows)

[dataGDA,centeredkM,kM] = buildGDA_Opt(Le , Class_Sizes , degree, Num_ev);
%%run GDA
Pgda_A = spreadGDA_Opt(Le, Le, dataGDA, degree); %% Projected Training images
in GDA
Pgda_B = spreadGDA_Opt(Te, Le, dataGDA, degree); %% Projected Testing images in
GDA

%%% FIND VARIANCE of each column of the 900X49 Projected Train Data Matrix.
%%% Covariance is used for other Image Distance types
for k = 1 : size(Pgda_A , 2);
Pr_Tr_Dat_Cov_Col(k) = cov(Pgda_A(:,k)); %% Row Vector 1X49 with variances
%%% of each of the 49 columns of the Projected Training Data Matrix 900X49
end;
Pr_Tr_Dat_Cov_Mat = cov(Pgda_A); %% 49X49 covariance matrix of Proj Train Data
Matrix
%%%%%% It is Diagonal!!Invertible & Each Dimension 's features are
%%%%%% independent from each othert ==> It is the Ideal case
Inv_Cov = inv(Pr_Tr_Dat_Cov_Mat); %%% Inverse Covar Matr
%%% For the Approximated Mahalanobis Distance
for k = 1 : size(Inv_Cov,2);
 s_inv(k) = Inv_Cov(k,k); %% ROW VECTOR 1 x 49
end;

122

sr_s_inv = sqrt(s_inv(k)); %% Row Vector
sr_inv_diag = diag(sr_s_inv); %%Diagonal Matrix with diag elem the sq roots of
%%% the inverse diag elem of cov matrix 49 x 49
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END VARIANCE
SECTION

%% Find Centroids per Each Class Projected Training Images
for k= 1 : Num_Class
ProjTrainCentr(k , :) = mean(Pgda_A(((k-1)*Train_Class_Size + 1) : (k *
Train_Class_Size) , :));
end;

%%% create cell array
DistName = {'Norm-2 ';'Mahalanobis ';
 'Mahalanobis Norm-2 ';'Mahalanobis Norm-1 ';'Mahalanobis Angular'};

%%% Find Various Distances for Testing Images
for k = 1 : Num_Test_Imag;
 for m = 1: Num_Class;
 if select_dist == 1; %% NORM-2 Distance
 TestDist(k,m) = norm(Pgda_B(k,:) - ProjTrainCentr(m,:),2);

 elseif select_dist == 2; %% MAHALANOBIS DISTANCE
 TestDist(k,m) = sqrt((Pgda_B(k,:) - ProjTrainCentr(m,:)) * Inv_Cov * (Pgda_B(k,:) -
ProjTrainCentr(m,:))'); %% Mahalanobis Distance

 elseif select_dist == 3; %% Mahalanobis NORM-2 Distance
 temp = (sr_s_inv .* (Pgda_B(k,:) - ProjTrainCentr(m,:))) * (sr_s_inv .* (
Pgda_B(k,:) - ProjTrainCentr(m,:)))' ;
 TestDist(k,m) = sqrt(sum(temp)); %% Approxim Mahalan Dist

 elseif select_dist == 4; %% Mahalanobis NORM-1 Distance
 TestDist(k,m)=sr_s_inv .* norm(Pgda_B(k,:) - ProjTrainCentr(m,:),1);

 else %%%% MAHALANOBIS ANGULAR DISTANCE
 TestDist(k,m) = acos(((Pgda_B(k,:) * sr_inv_diag) * (sr_inv_diag *
ProjTrainCentr(m,:)')) / (norm(Pgda_B(k,:).*sr_s_inv ,2) * norm(
ProjTrainCentr(m,:).*sr_s_inv ,2)));

 end; %%% end if

 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%GDA CONFUSION MATRIX%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123

g=TestDist';
[row,col]=size(g)

for n=1:col;
[value(n),index(n)]=min(g(:,n)); % find where min occurs
end

% plot(index);

% %CONFUSION MATRIX

for i=1:Num_Class
 a(:,i)=index(1+Test_Class_Size*(i-1):Test_Class_Size*i);
 for ii=1:Num_Class
 I(ii,i)=sum(a(:,i)==ii); % confusion matrix
 end
 per_class_classification_rate(i)=I(i,i)/Test_Class_Size;
end
%GDA diagonal elements matrix check for correct classification
gg_GDA=zeros(size(g));

for n=1:col;
 gg_GDA(:,n)=g(:,n)<=min(g(:,n));
end

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%FVS
LDA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %FEATURE VECTORS SELECTION

fprintf('Feature Vector Selection in progress ...\n'); % set up the global parameter
p1= sigma^2 for a gaussian kernel

% % Mapping='gauss';
% % global p1;
% % % p1=9*10^(6); % k=exp(-
dist2(x2,x1)/p1),sigma^2 = p1,for gaussian mapping
% % p1=14*10^(6); % k=exp(-dist2(x2,x1)/p1),sigma^2
= p1,for gaussian mapping

Mapping='poly2';
global p1;

124

p1=2; % k=(x2*x1'+1).^p1,order = p1 for
polynomial mapping

% Mapping='sigmoid';
% global p1;
% global p2;
% p1=9*10^(-9); % k=tanh(p1*x2*x1'+p2),sigmoid
mapping
% p2=0;

% Features=100;
Global_Fitness=1-eps;
dataFVS=FVSelection2(A1',Mapping,Features,Global_Fitness); % Select feature
vectors among the training data
S=dataFVS.S; %Features selected
Ptrain=dataFVS.P; %Training data projected onto the
feature vectors subspace
Ptest=FVSKernel2(Mapping,A2',A1(:,S)')'; %Projection of all the testing
data onto the subspace of F
 %the FVs space(explicit projection using the
kernels)

% %APPLY FLD
%FLD is applied in the projected data onto the FVs
%subspace once they are linearly separable

%Create C matrix
for i=1:Num_Class;
 c(:,i)=i*ones(1,Train_Class_Size);
end
C=reshape(c,1,Train_Class_Size*Num_Class);
[W,D]=fld(Ptrain',C);
X_train_proj=W'*Ptrain'; % Projected Training Data onto FLD space
X_test_proj=W'*Ptest'; % Projected Testing Data onto FLD space

% %DISCRIMINANT FUNCTION
Distance='euc_angular';
[per_class_classification_rate,I,g]=discriminate(X_train_proj,X_test_proj,Distance);

%FVS diagonal elements matrix check for correct classification
 gg_FVS=zeros(size(g));

for n=1:col;
 gg_FVS(:,n)=g(:,n)<=min(g(:,n));
end

125

for a=1:Num_Class;
 a_g(a,:)=gg_GDA(a,Test_Class_Size*(a-1)+1:Test_Class_Size*a);%GDA diagonal
elements matrix check for correct classification

 a_f(a,:)=gg_FVS(a,Test_Class_Size*(a-1)+1:Test_Class_Size*a);%FVS diagonal
elements matrix check for correct classification

end

% McNemar 2by2 matrix
% recall and,or,xor tables

%%%n00
%number of examples misclassified by both algorithms
n00=Test_Class_Size*Num_Class-sum(sum(or(a_g,a_f)));

%%%n11
%number of examples misclassified by neither algorithm
n11=sum(sum(and(a_g,a_f)));

%%%n01
%number of examples misclassified by GDA but not by FVS
n01=sum(sum(not(a_g)))-n00;

%%%n10
%number of examples misclassified by FVS but not by GDA
n10=Test_Class_Size*Num_Class-n00-n01-n11;

% McNemar 2by2 matrix
Table1(:,:,replications)=[n00+n01;n10+n11];

disp('Error Estimates')
disp('GDA')
pA1=(n00+n01)/(n00+n01+n10+n11)%classification error rate for GDA

disp('FVS')
pB1=(n00+n10)/(n00+n01+n10+n11)%classification error rate for FVS

clear centeredkM col dataFVS D dataGDA DistName Distance Global_Fitness g
clear I gg_FVS Inv_Cov gg_GDA Le i Mapping ii index k kM m Pgda_A n Pgda_B n00
clear Pr_Tr_Dat_Cov_Col n01 Pr_Tr_Dat_Cov_Mat n10 ProjTrainCentr n11 Ptest Ptrain
S
clear per_class_classification_rate Te row TestDist s_inv sr_inv_diag
clear W sr_s_inv X_test_proj X_train_proj a value a_f a_g

126

%%%%%%%%%%%%%%SWITCH TRANING AND TESTING
PORTIONS%%%%%%%%%%%%%%%%%%%%%%%%%%%

Le = A2'; %%% Learning Data (900 Images are rows)
Te = A1'; %%% Testing Data (600 Images are rows)

[dataGDA,centeredkM,kM] = buildGDA_Opt(Le , Class_Sizes , degree, Num_ev);
%%run GDA
Pgda_A = spreadGDA_Opt(Le, Le, dataGDA, degree); %% Projected Training images
in GDA
Pgda_B = spreadGDA_Opt(Te, Le, dataGDA, degree); %% Projected Testing images in
GDA

%%% FIND VARIANCE of each column of the 900X49 Projected Train Data Matrix.
%%% Covariance is used for other Image Distance types
for k = 1 : size(Pgda_A , 2);
Pr_Tr_Dat_Cov_Col(k) = cov(Pgda_A(:,k)); %% Row Vector 1X49 with variances
%%% of each of the 49 columns of the Projected Training Data Matrix 900X49
end;
Pr_Tr_Dat_Cov_Mat = cov(Pgda_A); %% 49X49 covariance matrix of Proj Train Data
Matrix
%%%%%% It is Diagonal!!Invertible & Each Dimension 's features are
%%%%%% independent from each othert ==> It is the Ideal case
Inv_Cov = inv(Pr_Tr_Dat_Cov_Mat); %%% Inverse Covar Matr
%%% For the Approximated Mahalanobis Distance
for k = 1 : size(Inv_Cov,2);
 s_inv(k) = Inv_Cov(k,k); %% ROW VECTOR 1 x 49
end;
sr_s_inv = sqrt(s_inv(k)); %% Row Vector
sr_inv_diag = diag(sr_s_inv); %%Diagonal Matrix with diag elem the sq roots of
%%% the inverse diag elem of cov matrix 49 x 49
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END VARIANCE
SECTION

%% Find Centroids per Each Class Projected Training Images
for k= 1 : Num_Class
ProjTrainCentr(k , :) = mean(Pgda_A(((k-1)*Train_Class_Size + 1) : (k *
Train_Class_Size) , :));
end;

%%% create cell array
DistName = {'Norm-2 ';'Mahalanobis ';

127

 'Mahalanobis Norm-2 ';'Mahalanobis Norm-1 ';'Mahalanobis Angular'};

%%% Find Various Distances for Testing Images
for k = 1 : Num_Test_Imag;
 for m = 1: Num_Class;
 if select_dist == 1; %% NORM-2 Distance
 TestDist(k,m) = norm(Pgda_B(k,:) - ProjTrainCentr(m,:),2);

 elseif select_dist == 2; %% MAHALANOBIS DISTANCE
 TestDist(k,m) = sqrt((Pgda_B(k,:) - ProjTrainCentr(m,:)) * Inv_Cov * (Pgda_B(k,:) -
ProjTrainCentr(m,:))'); %% Mahalanobis Distance

 elseif select_dist == 3; %% Mahalanobis NORM-2 Distance
 temp = (sr_s_inv .* (Pgda_B(k,:) - ProjTrainCentr(m,:))) * (sr_s_inv .* (
Pgda_B(k,:) - ProjTrainCentr(m,:)))' ;
 TestDist(k,m) = sqrt(sum(temp)); %% Approxim Mahalan Dist

 elseif select_dist == 4; %% Mahalanobis NORM-1 Distance
 TestDist(k,m)=sr_s_inv .* norm(Pgda_B(k,:) - ProjTrainCentr(m,:),1);

 else %%%% MAHALANOBIS ANGULAR DISTANCE
 TestDist(k,m) = acos(((Pgda_B(k,:) * sr_inv_diag) * (sr_inv_diag *
ProjTrainCentr(m,:)')) / (norm(Pgda_B(k,:).*sr_s_inv ,2) * norm(
ProjTrainCentr(m,:).*sr_s_inv ,2)));

 end; %%% end if

 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%GDA CONFUSION MATRIX%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g=TestDist';
[row,col]=size(g)

for n=1:col;
[value(n),index(n)]=min(g(:,n)); % find where min occurs
end

% plot(index);

% %CONFUSION MATRIX

for i=1:Num_Class
 a(:,i)=index(1+Test_Class_Size*(i-1):Test_Class_Size*i);
 for ii=1:Num_Class

128

 I(ii,i)=sum(a(:,i)==ii); % confusion matrix
 end
 per_class_classification_rate(i)=I(i,i)/Test_Class_Size;
end
%GDA diagonal elements matrix check for correct classification
gg_GDA=zeros(size(g));

for n=1:col;
 gg_GDA(:,n)=g(:,n)<=min(g(:,n));
end

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%FVS
LDA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %FEATURE VECTORS SELECTION

fprintf('Feature Vector Selection in progress ...\n'); % set up the global parameter
p1= sigma^2 for a gaussian kernel

% % Mapping='gauss';
% % global p1;
% % % p1=9*10^(6); % k=exp(-
dist2(x2,x1)/p1),sigma^2 = p1,for gaussian mapping
% % p1=14*10^(6); % k=exp(-dist2(x2,x1)/p1),sigma^2
= p1,for gaussian mapping

Mapping='poly2';
global p1;
p1=2; % k=(x2*x1'+1).^p1,order = p1 for
polynomial mapping

% Mapping='sigmoid';
% global p1;
% global p2;
% p1=9*10^(-9); % k=tanh(p1*x2*x1'+p2),sigmoid
mapping
% p2=0;

% Features=100;
Global_Fitness=1-eps;

129

dataFVS=FVSelection2(A2',Mapping,Features,Global_Fitness); % Select feature
vectors among the training data
S=dataFVS.S; %Features selected
Ptrain=dataFVS.P; %Training data projected onto the
feature vectors subspace
Ptest=FVSKernel2(Mapping,A1',A2(:,S)')'; %Projection of all the testing
data onto the subspace of F
 %the FVs space(explicit projection using the
kernels)

% %APPLY FLD
%FLD is applied in the projected data onto the FVs
%subspace once they are linearly separable

%Create C matrix
for i=1:Num_Class;
 c(:,i)=i*ones(1,Train_Class_Size);
end
C=reshape(c,1,Train_Class_Size*Num_Class);
[W,D]=fld(Ptrain',C);
X_train_proj=W'*Ptrain'; % Projected Training Data onto FLD space
X_test_proj=W'*Ptest'; % Projected Testing Data onto FLD space

% %DISCRIMINANT FUNCTION
Distance='euc_angular';
[per_class_classification_rate,I,g]=discriminate(X_train_proj,X_test_proj,Distance);

%FVS diagonal elements matrix check for correct classification
 gg_FVS=zeros(size(g));

for n=1:col;
 gg_FVS(:,n)=g(:,n)<=min(g(:,n));
end

for a=1:Num_Class;
 a_g(a,:)=gg_GDA(a,Test_Class_Size*(a-1)+1:Test_Class_Size*a);%GDA diagonal
elements matrix check for correct classification

 a_f(a,:)=gg_FVS(a,Test_Class_Size*(a-1)+1:Test_Class_Size*a);%FVS diagonal
elements matrix check for correct classification

end

% McNemar 2by2 matrix

130

% recall and,or,xor tables

%%%n00
%number of examples misclassified by both algorithms
n00=Test_Class_Size*Num_Class-sum(sum(or(a_g,a_f)));

%%%n11
%number of examples misclassified by neither algorithm
n11=sum(sum(and(a_g,a_f)));

%%%n01
%number of examples misclassified by GDA but not by FVS
n01=sum(sum(not(a_g)))-n00;

%%%n10
%number of examples misclassified by FVS but not by GDA
n10=Test_Class_Size*Num_Class-n00-n01-n11;

% McNemar 2by2 matrix
Table2(:,:,replications)=[n00+n01;n10+n11];

disp('Error Estimates')
disp('GDA')
pA2=(n00+n01)/(n00+n01+n10+n11)%classification error rate for GDA

disp('FVS')
pB2=(n00+n10)/(n00+n01+n10+n11)%classification error rate for FVS

disp('estimated differences')
pp1(:,replications)=pA1-pB1
pp2=pA2-pB2
pmean=(pp1(:,replications)+pp2)/2
disp('estimated variance')
s2(:,replications)=(pp1(:,replications)-pmean)^2+(pp2-pmean)^2

clear centeredkM col dataFVS D dataGDA DistName Distance Global_Fitness g
clear I gg_FVS Inv_Cov gg_GDA Le i Mapping ii index k kM m Pgda_A n Pgda_B n00
clear Pr_Tr_Dat_Cov_Col n01 Pr_Tr_Dat_Cov_Mat n10 ProjTrainCentr n11 Ptest Ptrain
S
clear per_class_classification_rate Te row TestDist s_inv sr_inv_diag
clear W sr_s_inv X_test_proj X_train_proj a value a_f a_g

end

t_hat(:,step)=(pp1(:,1))/sqrt(.2*sum(s2))
end

131

clear A1 A2 Num_replic dim1 replications Atemp p1 select_dist Num_Class train
clear A Sample_Class dim2 C Class_Sizes Test_Class_Size Features Train_Class_Size
test
clear Num_Test_Imag c Num_Train_Imag cs Num_ev degree ans

step=(1:12)*50;
figure(1)
plot(step,t_hat)
title('The 5x2cv paired t test on FVS-LDA and GDA schemes')
xlabel('Features/Eigenvalues')
ylabel('t_e_s_t_i_m_a_t_e')
text(50,-.8,' For a 95% confidence interval ')
text(50,-1.2,'the Null hypothesis is true when')
text(50,-1.6,'-2.0515 < t_e_s_t_i_m_a_t_e < 2.0515')
grid
% save 5x2cvtest

132

THIS PAGE INTENTIONALLY LEFT BLANK

133

LIST OF REFERENCES

Bahlmann, C., B. Haasdonk, and H. Burkhardt. “Online Handwriting Recognition with
Support Vector Machines-a Kernel Approach.” Frontiers in Handwriting Recognition,
2002.Proceedings.Eighth International Workshop on (2002): 49-54.

Baudat, G., and F. Anouar. “Feature Vector Selection and Projection using Kernels.”
Neurocomputing 55, no. 1 (2003): 21–38.

Baudat, G., and F. Anouar. “Generalized Discriminant Analysis using a Kernel
Approach.” Neural Computation 12, (2000): 2385-2404.

Baudat, G., and F. Anouar. Kernel-Based Methods and Function Approximation.” Neural
Networks, 2001. Proceedings. IJCNN'01. International Joint Conference on 2, (2001):
1244-1249.

Biometrics Catalog, “Biometrics Testing and Statistics,”
[http://www.biometricscatalog.org/NSTCSubcommittee/Documents/Biometrics%20Testi
ng%20and%20Statistics.pdf], last accessed August 2006.

Cosmology Berkeley University, “Light and Spectra:Background,”
[http://cosmology.berkeley.edu/Education/DEMOS/Desk_Top_Stars/LS_Background.ht
ml], last accessed August 2006.

Centeno, T. P., and N. D. Lawrence. “Optimising Kernel Parameters and Regularisation
Coefficients for Non-Linear Discriminant Analysis.” Journal of Machine Learning
Research 7, (2006): 455-491.

Chen, L. F., H. Y. M. Liao, M. T. Ko, J. C. Lin, and G. J. Yu. “New LDA-Based Face
Recognition System which can Solve the Small Sample Size Problem.” Pattern
Recognition 33, no. 10 (2000): 1713-1726.

Chen, X., P. Flynn, and K. Bowyer. “Visible-Light and Infrared Face Recognition.”
Proceedings of the Workshop on Multimodal User Authentication (2003): 48–55.

Chen, X., P. J. Flynn, and K. W. Bowyer. “IR and Visible Light Face Recognition.”
Computer Vision and Image Understanding 99, no. 3 (2005): 332-358.

D'Agostino, RB, and M. Stephens. Goodness-of-Fit Techniques CRC Press, 1986.

Dietterich, T. G. “Statistical Test for Comparing Supervised Classification Learning
Algorithms,” Neural Computation, 10(7), 1895-1924, (1998).

Domboulas, D. I. Infrared Imaging Face Recognition using Nonlinear Kernel-Based
Classifiers. Electrical Engineer Thesis, Naval Postgrduate School, Monterey, CA, (2004).

Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification Wiley New York, 2001.

134

FLIR Infrared Camera Systems, “Thermal Imaging,”
[http://www.flir.uk.com/assets/thermography.htm], last accessed August 2006.

Gnanadesikan, R. Methods for Statistical Data Analysis of Multivariate Observations
Wiley New York, 1977.

GraphPad Software, “Normality Tests FAQ,”
[http://www.graphpad.com/FAQ/viewfaq.cfm?faq=959], last accessed June 2006.

Grother, P. J., R. J. Michaels, and P. J. Phillips. Face Recognition Vendor Test 2002
Performance Metrics Springer, 2003.

Hastie, T., R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction Springer, 2001.

Huang, J., PC Yuen, W. S. Chen, and JH Lai. “Kernel Subspace LDA with Optimized
Kernel Parameters on Face Recognition.” Automatic Face and Gesture Recognition,
2004. Proceedings. Sixth IEEE International Conference on (2004): 327-332.

Infrared Solutions Inc., “IR–160 thermal imager,”
[http://www.infraredsolutions.com/images/downloads/ImagerDS.pdf], last accessed July
2006.

Joachims, T. “Machine Learning” Cornell University Department of Computer Science
[http://www.cs.cornell.edu/courses/cs478/2006sp/lectures/8-svm_kernels.pdf], last
accessed June 2006.

Joachims, T. “Transductive Inference for Text Classification using Support Vector
Machines.” Proceedings of the Sixteenth International Conference on Machine Learning
(1999): 200–209.

Joachims, T “Text Categorization with Support Vector Machines: Learning with Many
Relevant Features.” Proceedings of the 10th European Conference on Machine Learning
(1998): 137-142.

Kim, S. W., and B. J. Oommen. “On using Prototype Reduction Schemes to Optimize
Kernel-Based Nonlinear Subspace Methods.” Pattern Recognition 37, no. 2 (2004): 227-
239.

Kocsor, A., and L. Toth. “Kernel-Based Feature Extraction with a Speech Technology
Application.” Signal Processing, IEEE Transactions on [See also Acoustics, Speech, and
Signal Processing, IEEE Transactions on] 52, no. 8 (2004): 2250-2263.

Kong, S. G., J. Heo, B. R. Abidi, J. Paik, and M. A. Abidi. “Recent Advances in Visual
and Infrared Face recognition—a Review.” Computer Vision and Image Understanding
97, no. 1 (2005): 103-135.

135

Lee, C. K. Infrared Face Recognition, MSEE Thesis, Naval Postgrduate School,
Monterey, CA (2004).

Liu, C., and H. Wechsler. “A Unified Bayesian Framework for Face Recognition.” Image
Processing, 1998.ICIP 98.Proceedings.1998 International Conference on 1, (1998): 151-
155.

Liu, Q., R. Huang, H. Lu, and S. Ma. “Kernel-Based Optimized Feature Vectors
Selection and Discriminant Analysis for Face Recognition.” Proceedings of International
Conference on Pattern Recognition, Canada: Quebec (2002).

Liu, Q., H. Lu, and S. Ma. “Improving Kernel Fisher Discriminant Analysis for Face
Recognition.” Circuits and Systems for Video Technology, IEEE Transactions on 14, no.
1 (2004): 42-49.

Lu, J., KN Plataniotis, and AN Venetsanopoulos. “Face Recognition using Kernel Direct
Discriminant Analysis Algorithms.” Neural Networks, IEEE Transactions on 14, no. 1
(2003): 117-126.

Lu, J., KN Plataniotis, and AN Venetsanopoulos. “Face Recognition using Kernel Direct
Discriminant Analysis Algorithms.” Neural Networks, IEEE Transactions on 14, no. 1
(2003): 117-126.

Muller, K. R., S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. “An Introduction to
Kernel-Based Learning Algorithms.” Neural Networks, IEEE Transactions on 12, no. 2
(2001): 181-201.

NASA, “The Electromagnetic Spectrum,”
[http://imagers.gsfc.nasa.gov/ems/infrared.html], last accessed August 2006.

NAVSEA Newport, “Curse of Dimensionality,”
[http://www.npt.nuwc.navy.mil/Csf/curse.html], last accessed June 2006.

Pereira, D. Face Recognition using Uncooled Infrared Imaging, Electrical Engineer
Thesis, Naval Postgrduate School, Monterey, CA (2002).

Pontil, M., and A. Verri. “Support Vector Machines for 3D Object Recognition.” Pattern
Analysis and Machine Intelligence, IEEE Transactions on 20, no. 6 (1998): 637-646.

Prokoski, F. “History, Current Status, and Future of Infrared Identification.” Computer
Vision Beyond the Visible Spectrum: Methods and Applications, 2000.Proceedings. IEEE
Workshop on (2000): 5-14.

Schölkopf, B., and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, 2002.

136

Socolinsky, D., L. Wolff, J. Neuheisel, and C. Eveland. “Illumination Invariant Face
Recognition using Thermal Infrared Imagery.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Pages I (2001): 527–534.

Socolinsky, D. A., A. Selinger, and J. D. Neuheisel. “Face Recognition with Visible and
Thermal Infrared Imagery.” Computer Vision and Image Understanding 91, no. 1-2
(2003): 72-114.

StatsDirect Ltd, “Confidence Intervals,” [http://www.camcode.com/help/statsdirect.htm],
last accessed July 2006.

Theodoridis, S., and K. Koutroumbas. Pattern Recognition Academic Press, 2003.

Thomaz, CE, and DF Gillies. “A Maximum Uncertainty LDA-Based Approach for
Limited Sample Size Problems—With Application to Face Recognition.” Computer
Graphics and Image Processing, 2005. SIBGRAPI 2005. 18th Brazilian Symposium on
(2005): 89-96.

Trujillo-Ortiz, A. and R. Hernandez-Walls. (2003). DagosPtest: D'Agostino-Pearson's K2
test for assessing normality of data using skewness and kurtosis. A MATLAB file.
[http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3954&obj
ectType=FILE], last accessed November 2005.

Vaswani, N., and R. Chellappa. “Principal Component Null Space Analysis for
image/video Classification.” Submitted to IEEE Trans. on Image Processing (2004).

Wang, X., and X. Tang. “Dual-Space Linear Discriminant Analysis for Face
Recognition.” Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on 2: 564-569.

Wang, X., and X. Tang. “Random Sampling LDA for Face Recognition.” Computer
Vision and Pattern Recognition, 2004. CVPR 2004 .Proceedings of the 2004 IEEE
Computer Society Conference on 2: 259-265.

Xiong, H., M. N. Swamy, and M. O. Ahmad. “Optimizing the Kernel in the Empirical
Feature Space.” IEEE Trans. Neural Netw. 16, no. 2 (Mar, 2005): 460-474.

Yu, H., and J. Yang. “A Direct LDA Algorithm for High-Dimensional Data with
Application to Face Recognition.” Pattern Recognition 34, no. 10 (2001): 2067-2070.

137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Professor Jeffrey B. Knorr

Chairman, Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Professor Monique P. Fargues

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Professor Roberto Cristi
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Professor Carlos Borges

Department of Mathematics
Naval Postgraduate School
Monterey, California

7. Ioannis M. Alexandropoulos
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

