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1 Introduction

Our goal is to develop a fully automated classification scheme for computer-aided diag-
nosis (CAD) in mammography. Traditional CAD classification schemes, and performance
measurement tools such as receiver operating characteristic (ROC) analysis, are based on
the premise that the observations are classified into two groups, most commonly malignant
and benign. Such classification schemes are difficult to fully automate, as they analyze
radiologist-identified lesions; this is because many false-positive (FP) detections produced
by a computerized detection scheme cannot reasonably be classified as benign or malignant
lesions. Our proposed scheme would classify computer detections into three groups: malig-
nant lesions, benign lesions, and FP computer detections. This method presents considerable
difficulties in terms of both signal detection theory and performance evaluation methods such
as ROC analysis. Our efforts in this direction have thus generally been more theoretical than
practical so far, but our results so far are promising.

2 Body

A wide variety of medical decision-making tasks, in particular tasks for which CAD has been
proposed as an aid to the physician, can be formulated as “two-group classification” tasks.
That is, the physician must use the information available about a patient (e. g., a set of
mammographic films of the patient, and the result of computer analysis of those images) to
decide whether a patient belongs to a diseased, or abnormal, group or not (e. g., whether a
breast lesion suspicious enough to warrant further imaging procedures or biopsy is present
or not).

ROC analysis has long been considered the most appropriate methodology for evaluating
the performance of a two-group classifier or observer [1], particularly for medical decision-
making tasks [2]. Furthermore, the optimal or “ideal” observer — that observer which
achieves the best possible performance given a particular population of observational data
— has also been well understood for quite some time [3]. In practice, the ideal observer
requires knowledge of the probability density functions (PDFs) from which the observational
data are drawn, and thus cannot be achieved in non-trivial tasks by human or automated
observers. Nevertheless, successful methods for estimating ideal observer decision variables
from a sample of observational data [4], and for plotting an ideal observer ROC curve from
a sample of decision variable data [5], have been developed.

Although the form of the three-group ideal observer has also been known for some time [3],
the development of a practical three-group classifier and a fully general extension of ROC
analysis to three-group classification has proven quite difficult, primarily due to the tremen-
dous increase in complexity encountered when one moves from two-group to three-group clas-
sification tasks. Briefly, characterizing the performance of a three-group classifier requires an
ROC “hypersurface” with five degrees of freedom in a six-dimensional ROC space [6, 7] (by
contrast, a two-group classifier is fully described by a simple curve in a two-dimensional ROC
space). Despite these difficulties, our research efforts are focused on the development of a
three-group classifier and performance evaluation methodology for breast lesion classification
in a mammographic CAD system.

We strongly believe the development of such a three-group classifier to be of practical and
not merely academic importance. In the past, two types of mammographic CAD schemes
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have been investigated at the University of Chicago: one for automatically detecting mass
lesions in mammograms [8–12], and one for classifying known lesions as malignant or be-
nign [13–17]. Combining these two types of CAD scheme is inherently difficult, because
the output of the detection scheme will necessarily include FP computer detections in ad-
dition to the malignant and benign lesions to be classified. These FP computer detections
correspond to objects which were by design not included in the training sample of the classi-
fication scheme, because they are not members of the data population (benign and malignant
mass breast lesions) for which the classification scheme was created. It is clear then that
the detection scheme’s output cannot be used unmodified as the input to the classification
scheme.

Our approach has been to treat this problem explicitly as a three-group classification
task. That is, the output of the detection scheme should be classified as malignant lesions,
benign lesions, and non-lesions (FP computer detections), and the classifier to be estimated
is the ideal observer decision function for this task. If successful, this approach would allow
radiologists to identify more malignant lesions without increasing biopsy rates for patients
without malignancy.

Our approved Statement of Work is as follows:

Task 1. Develop a three-group classifier for clustered microcalcifications in mammograms, Months
1-12.

(a) Collect cases containing 180 malignant and 180 benign clusters of microcalcifica-
tions.

(b) Determine truth state of imaged lesions by reviewing the images, radiologist re-
ports, and pathology reports for these cases.

(c) Obtain at least 180 FP computer detections from these cases using the existing
detection scheme.

(d) Train and test a three-group classifier on these lesions, using methodology we
previously developed for mass lesions.

Task 2. Design and develop an interface for an intelligent workstation for CAD, Months 11-14.

(a) Examine the most useful features of the interface of the existing intelligent CAD
workstation for mammographic lesion detection.

(b) Examine the most useful features of the interface of the existing CAD schemes in
our laboratory for classifying manually detected lesions as malignant or benign.

(c) Develop a simple interface drawing on the advantages of the existing detection
and classification schemes, extended to the three-group classification task.

(d) Test the interface with non-radiologist observers in our laboratory familiar with
the goals of CAD and with interface design principles.

Task 3. Design and perform a pilot observer study measuring radiologists’ performances using
the three-group classification schemes and traditional two-group classification schemes,
Months 15-24.

(a) Recruit radiologists from our institution and neighboring institutions.
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(b) Provide training to the radiologists in the use of the intelligent CAD workstation
interfaces.

(c) Measure radiologist performance using the three-group intelligent workstation,
and using the existing intelligent workstation for detecting lesions followed by
manual selection of lesions to be analyzed by the existing schemes for two-group
classification of lesions.

Task 4. Develop techniques to compare radiologists’ performance in using the proposed three-
group and traditional two-group classification schemes, Months 18-36.

(a) Develop methodology to extend two-group ROC analysis to tasks in which obser-
vations are classified into three groups.

(b) Develop methodology to determine the statistical significance of measured differ-
ences in performance between three-group classifiers.

(c) Use this methodology to analyze the observer data obtained in Task 3.

For Tasks 1(a) and 1(b), we have collected a database of 134 mammographic cases, four
standard views per case; the majority of these cases contain malignant or benign clustered
microcalcification lesions. The truth for the malignant microcalcification lesions is verified
by pathology report, and that for the benign lesions by pathology report when biopsy was
recommended, and by followup when that was recommended by the original radiologist.
This is less than the number of malignant and benign lesions initially proposed for this
project, but we will have the opportunity to supplement these with further such cases from
the database of a colleague in our laboratories.

For Tasks 1(c) and 1(d), we initially encountered difficulties porting the computer code
for the existing detection scheme from the legacy equipment for which it was written (IBM
RISC 6000 machines, whose operating systems are no longer supported and whose hardware
is too old to be considered reliable) to a modern PC workstation running a Linux operating
system. These difficulties were traced to compiler incompatibilities between the two systems.
A computer programmer in our laboratory with extensive experience with both systems
and intimate familiarity with the internals of the detection scheme has investigated and
eliminated the majority of these. It is anticipated that completion of Task 1 will require
another quarter year of effort.

Our research accomplishments to date have focused largely on Task 4. Although the
“methodology we previously developed for mass lesions” [18] was successful for estimating
ideal observer decision variables based on lesion feature data, a practical classifier to make
use of this decision variable data has not yet been implemented. As the difficulties in theo-
retically characterizing the behavior of such a three-group classifier are intimately related to
evaluation of such a classifier’s performance (i. e., the development of a three-group extension
to ROC analysis), such a reordering of the approved tasks seems logically justified.

We investigated in great detail the behavior of the three-group ideal observer. In partic-
ular, it is well-known that the three-group ideal observer makes decisions by partitioning a
plane of two decision variables into three regions using three decision boundary lines [3]. We
showed that the locations and orientations of these decision boundary lines are not arbitrary;
given the slopes and y-intercepts, for example, of two of the lines, those of the third line are
constrained to lie within a particular range of values [19]. (See Appendix A.) A detailed
understanding of such properties of the three-group ideal observer will prove crucial to the
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calculation of observer ROC operating points, and by extension to observer performance
evaluation in general.

In our efforts to develop a three-group classifier and appropriate performance evaluation
methodology, we have made every attempt to keep our analysis as general as possible de-
spite the theoretical difficulties this entails. Other researchers have proposed three-group
methodology by considering observers whose behavior is restricted in particular ways, or by
considering only a subset of the possible performance characterization indices (the axes of
ROC space), or both [20–24]. The inherent complexity of the three-group classification task
makes direct comparison of different methods by different researchers difficult. To facilitate
such a comparison, we analyzed the different methods in terms of the three-group ideal
observer [25]. (See Appendix B.) In addition to providing us with valuable insight and
experience in comparing different classifiers, which should ultimately prove directly relevant
to the completion of Task 4, this work also enabled us to present to the observer performance
and CAD research communities a useful framework within which comparison of superficially
very different classifiers can readily be made. A poster presentation of the theoretical results
of this and the preceding paragraph, as well as our research accomplishments during the first
year of this award, was made at the 2005 US DOD Breast Cancer Research Program Era of
Hope Meeting in Philadelphia, PA [26].

Most recently, we analyzed a simplified performance evaluation method (i. e., an extension
of ROC analysis to tasks with three groups) which considers only the three “sensitivities” of
the observer — the three probabilities of correctly identifying an observation from one of the
three respective groups. (This can, in general, be expected to yield an incomplete description
of observer performance, which requires a set of six conditional classification probabilities [7].)
This method was originally proposed by Mossman [22] for a pair of essentially ad hoc decision
rules and arbitrary decision variables, and more recently advocated by He et al. [24] for a set
of ideal observer decision variables and a decision rule shown [24,25,27] to be a special case of
the ideal observer decision rule, and also shown [25,27] to be a special case of the decision rule
proposed by Scurfield [21]. We were able to derive a more fundamental motivation for the
decision rules described in those works, given the simplified performance description in terms
of only the sensitivities, by applying previously successful Neyman-Pearson optimization
methodology [3, 7] to this restricted performance evaluation strategy.

Simply put, assuming that one chooses to measure observer performance only in terms
of the observer’s sensitivities, we proved [28] that the optimal observer with respect to this
metric is in fact the special case of the ideal observer proposed by He et al. [24]. (See
Appendix C.) We then applied this analysis technique [29] to other decision strategies and
performance evaluation strategies which we had previously analyzed in terms of the ideal
observer decision rule [25]. (See Appendix D.) Given the difficulties inherent in a fully general
description of three-class ideal observer behavior and performance evaluation, it is possible
that a restricted or simplified model, similar to those proposed already by other researchers,
may ultimately prove of greater practical value than the fully general theoretical model.
We consider this work important, because it provides a principled theoretical framework in
which to evaluate and compare such restricted and simplified models.

A detailed understanding of the properties of the general three-group ideal observer, and
of the restricted and simplified models described above, will prove crucial to the calculation
of observer ROC operating points, and by extension to observer performance evaluation in
general. Since the initiation of funding for this project, the principal investigator and mentor
have been holding regular meetings to discuss the theoretical challenges posed by this project
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and to explore possible ways of overcoming those challenges.

3 Key Research Accomplishments

• Detailed investigation of the relationships among the decision boundary lines used by
the three-group ideal observer (Appendix A)

• Analysis of several proposed three-group classification methods in the literature in
terms of the three-group ideal observer (Appendix B)

• Development of principled theoretical motivation for proposed three-group classifica-
tion methods given selection of restricted or simplified three-group evaluation method-
ology (Appendices C, D)

4 Reportable Outcomes

• Collection of database of 134 mammographic cases containing malignant and benign
clustered microcalcification lesions, with truth determined by pathology (for biopsied
lesions) or mammographic followup (benign lesions only)

• Porting of existing computerized scheme for detecting clustered microcalcifications in
mammograms from legacy computer systems no longer in operation to workstations
currently in use for this project

• D. C. Edwards and C. E. Metz, “Restrictions on the three-class ideal observer’s decision
boundary lines,” IEEE Trans. Med. Imag., vol. 24, pp. 1566–1573, 2005.

• D. C. Edwards and C. E. Metz, “Analysis of proposed three-class classification decision
rules in terms of the ideal observer decision rule,” J. Math. Psychol., 2005, (accepted
for publication 5/25/06).

• D. C. Edwards, C. E. Metz, R. M. Nishikawa, and M. L. Giger, “Investigation of
three-group classifiers to fully automate detection and classification of breast lesions
in computer-aided diagnosis for mammography,” US DOD Breast Cancer Research
Program Era of Hope Meeting, Philadelphia, PA, 2005.

• D. C. Edwards and C. E. Metz, “Optimization of an ROC hypersurface constructed
only from an observer’s within-class sensitivities,” in Proc. SPIE Vol. 6146 Medical
Imaging 2006: Image Perception, Observer Performance, and Technology Assessment,
Yulei Jiang and Miguel P. Eckstein, Eds., SPIE, Bellingham, WA, 2006, pp. 61 460A1–
61 460A7.

• D. C. Edwards and C. E. Metz, “Optimization of restricted ROC surfaces in three-class
classification tasks,” IEEE Trans. Med. Imag., 2006, (submitted).

8



5 Conclusions

During the past year, with the assistance of colleagues in our laboratory, we have collected a
database of 134 mammographic cases containing malignant and benign clustered microcalci-
fication lesions, with truth determined by pathology (for biopsied lesions) or mammographic
followup (benign lesions only), and we have ported the existing computerized scheme for
detecting clustered microcalcifications in mammograms from legacy computer systems no
longer in operation to workstations currently in use for this project.

We have continued to advance our theoretical understanding of the three-group ideal
observer and methods of evaluating its performance. We showed that the three decision
boundary lines used by the three-group ideal observer are not arbitrary, but are intricately
related to one another. We analyzed several recently proposed three-group classification
methods in terms of the three-group ideal observer. We reported on the important theoretical
results we had devloped to date at the 2005 Breast Cancer Research Program Era of Hope
Meeting. Finally, we developed principled theoretical motivations for various proposed three-
group classification methods, given in each case the selection of a restricted or simplified
three-group evaluation methodology.

Although our primary research accomplishments have been theoretical, they are crucial
steps in the development of a practical three-group classifier and a fully general three-group
performance evaluation methodology. Despite the considerable difficulties involved in such
development, a CAD scheme incorporating a three-group classifier as we propose could po-
tentially allow radiologists to detect more malignant breast lesions without increasing their
FP biopsy rate. We believe this goal to be worth the necessary effort on our part.
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Restrictions on the Three-Class Ideal Observer’s
Decision Boundary Lines

Darrin C. Edwards* and Charles E. Metz

Abstract—We are attempting to develop expressions for the co-
ordinates of points on the three-class ideal observer’s receiver op-
erating characteristic (ROC) hypersurface as functions of the set
of decision criteria used by the ideal observer. This is considerably
more difficult than in the two-class classification task, because the
conditional probabilities in question are not simply related to the
cumulative distribution functions of the decision variables, and be-
cause the slopes and intercepts of the decision boundary lines are
not independent; given the locations of two of the lines, the location
of the third will be constrained depending on the other two. In this
paper, we attempt to characterize those constraining relationships
among the three-class ideal observer’s decision boundary lines. As
a result, we show that the relationship between the decision criteria
and the misclassification probabilities is not one-to-one, as it is for
the two-class ideal observer.

Index Terms—Ideal observers, ROC analysis, three-class classi-
fication.

I. INTRODUCTION

RECEIVER operating characteristic (ROC) analysis is the
accepted methodology for analyzing the performance of

a two-class classifier [1], in particular for medical decision-
making tasks in which a patient is diagnosed as having or not
having a particular condition based on features of a medical
image [2]. In judging the performance of an observer measured
via ROC analysis, the standard for comparison is the so-called
ideal observer, that observer which outperforms any other pos-
sible observer given the statistical variability of the observa-
tional data being classified [1], [3]. Although the general form
of the ideal observer in a classification task with three or more
classes has been known for some time [3], the considerable com-
plexities inherent to this model compared to the two-class clas-
sification task have hampered the development of extensions
of ROC analysis which are both fully general and practically
useful. (Several researchers have recently proposed restricted
observer models or restricted evaluation methods [4]–[7].)

Despite these difficulties, research continues in this area be-
cause the advantages to be gained from a three-class classifier
and appropriate evaluation methodology are considerable. In
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our own case, we seek to combine existing computer-aided di-
agnosis (CAD) schemes for detecting [8]–[12] mammographic
mass lesions and classifying [13]–[17] them as malignant or be-
nign. The combined scheme would serve as a fully automated
classifier (the existing classifier requires initial manual identifi-
cation of lesions by a radiologist), potentially allowing radiolo-
gists to reduce their false-positive biopsy rate without reducing
their sensitivity for detection of malignancies. Simply concate-
nating the two types of scheme in a two-stage classifier would be
inadequate, because the output of the detection scheme will nec-
essarily include false-positive (FP) computer detections in addi-
tion to the malignant and benign lesions to be classified. These
FP computer detections correspond to objects which were by
design not included in the training sample of the classification
scheme, because they are not members of the data population
(benign and malignant mass breast lesions) for which the clas-
sification scheme was created. It is clear then that the detection
scheme’s output cannot be used unmodified as the input to the
classification scheme.

Our initial efforts toward the goal of developing a true
three-class classifier have been more theoretical than practical
so far. We have shown that, just as the two-class ideal observer
achieves the optimal two-class ROC curve for a given task,
the -class ideal observer achieves the optimal -class ROC
hypersurface [18]. (Note that the ideal observer is formally
defined as that which minimizes the expected Bayes risk [3],
and not in terms of classification performance, making this
a nontrivial observation in both cases.) More soberingly, we
found recently that an obvious generalization of the well-known
performance metric, the area under the ROC curve (AUC), is
not a useful performance metric in a classification task with
three or more classes [19].

At present we are attempting to develop expressions for the
coordinates of points on the three-class ideal observer’s ROC
hypersurface (the conditional probabilities for misclassifying
observations [18], [20], [21]) as functions of the set of decision
criteria used by the ideal observer. This is considerably more
difficult than in the two-class classification task for two reasons.
First, the conditional probabilities in question are not simply re-
lated to the cumulative distribution functions (cdfs) of the deci-
sion variables, but are integrals of those variables over domains
determined by three decision boundary lines [3]. Second, the
slopes and intercepts of the decision boundary lines are not inde-
pendent; given the locations of two of the lines, we have found
recently that the location of the third will be constrained de-
pending on the other two.

In this paper, we attempt to characterize the constraining rela-
tionships just mentioned among the three-class ideal observer’s

0278-0062/$20.00 © 2005 IEEE
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decision boundary lines. Although this paper is admittedly still
removed from image analysis perse, we hope it may prove of
interest to the CAD community and ultimately of relevance to a
wide variety of medical image analysis tasks. In the next section
we briefly review the structure of the three-class ideal observer
and the notation we have been using to characterize it [18]. In
Section III, we show that for a given location (slope and -inter-
cept) of the decision boundary line separating the first and third
classes, the location of one of the remaining two lines is con-
strained in a particular way based on the location of the other.

These results are discussed in Section IV. Given the arbitrari-
ness of the labels applied to the three classes (ie, which classes
are considered first, second, or third), one would expect the se-
lection of the fixed line in Section III to be similarly arbitrary,
and indeed in Appendices A and B we show that corresponding
and consistent results are obtained if one takes the location of
the decision boundary line separating the second and third, or
first and second, classes, respectively, to be given.

II. THE THREE-CLASS IDEAL OBSERVER

In [18], we showed that an -class ideal observer makes de-
cisions by partitioning a likelihood ratio decision variable space,
where the boundaries of the partitions are given by hyperplanes

(1)

(2)

Here, is the utility of deciding an observation is from class
given that it is actually from class ; is the apriori

probability that an observation is drawn from class ; and
is the th likelihood ratio, defined by the ratio
of the probability density functions of the observational data
(We use boldface type to denote random variables). The par-
titioning is determined by the parameters

(3)

with , , and varying from 1 to , and . Note that these
parameters are not independent, however, because

(4)

We can impose the reasonable condition that the utility for
correctly classifying an observation from a given class should be
greater than any utility for incorrectly classifying an observation
from the same class, i.e., . This gives, for

,

(5)

leaving positive parameters (the rest are derivable
from (4)).

Finally, note that the hyperplanes represented by (1) and (2)
are unchanged if we multiply all of these equations by a single

scalar, such as . This leaves us with
degrees of freedom, as expected.

The behavior of a three-class ideal observer is completely
determined by the three decision boundary lines

(6)

(7)

(8)

which we call, respectively, the “1-vs-2” line, the “1-vs-3” line,
and the “2-vs-3” line. Note that if any two of these lines inter-
sect, the third line must also share this intersection point. We
also emphasize the simple interpretation, from (3), of each of the

parameters appearing in these decision boundary line equa-
tions as the difference in utilities between a “correct” and one
particular “incorrect” decision (scaled by the apriori probability
of the true class in question); and of each difference in the
parameters as a difference in utilities between two possible “in-
correct” decisions [again scaled by the apriori probability of the
true class in question; e.g.,

].
From the conditions on the parameters in (5), we can

readily derive conditions on the decision boundaries themselves.
If we denote the slope of the “ -vs- ” line by , its -intercept
by , and its -intercept by , we have

(9)

(10)

(11)

These are the three conditions stated in [22].

III. RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“1-VS.-3” LINE

Constraints on the decision boundaries, in addition to those
given in (9)–(11), can be obtained by considering the two cases

and . In the first case (ie,
, or ), we have

(12)

(13)

We also have

(14)

This is a weighted sum of the slopes and , where the
weights are positive and sum to one. Since we must have

from (9) and (12), it must therefore be the case that

(15)
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Fig. 1. Example ideal observer decision rules for the case  �  > 0

(implying m < 0 and b > 0) and b < 0. In (a), � < � , and
the “2-vs-3” line can lie anywhere between the two dashed lines shown (the
region between the lower dashed and dotted lines is excluded because b > 0);
observations in the unlabeled region above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), � � � and the “2-vs-3”
line can lie anywhere in the unlabeled region (provided it shares the intersection
point of the “1-vs-2” and “1-vs-3” lines shown); observations above this line will
be decided “� ,” and those below this line will be decided “� .”

Fig. 2. Example ideal observer decision rules for the case  �  > 0

(implying m < 0 and b > 0) and b � 0. In (a), b < b , and the
“2-vs-3” line can lie anywhere in the unlabeled region; observations above this
line will be decided “� ,” and those below this line will be decided “� .” In
(b), b � b and the “2-vs-3” line can lie anywhere between the “1-vs-2” and
“1-vs-3” lines (provided it shares their intersection point); note that observations
in this region will be decided “� ” regardless of the position of this line.

Furthermore

(16)

This is a weighted sum of the -intercepts and , where the
weights are positive and sum to one; thus, in addition to (15), we
have the condition

(17)

If , then (17) immediately reduces to
(by (13), we are considering a special case in which ).
This is illustrated in Fig. 1 for the slightly different situations

and . If, on the other hand, , then
(15) and (17) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 2.

We now consider the case (ie, ,
or ), which yields

(18)

(19)

We now have

(20)

This is again a weighted sum in which the weights are positive
and sum to one, giving

(21)

Furthermore

(22)

This is a weighted sum of the -intercepts and , where the
weights are positive and sum to one; thus, in addition to (21), we
have the condition

(23)

since by (11) and (19).
If , then (21) immediately reduces to

(by (18), we are considering a special case in which
). This is illustrated in Fig. 3 for the slightly different situations

and . If, on the other hand, , then
(21) and (23) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 4.

One may of course ask what happens when
(ie, , or ). In this case, both and

are infinite. Furthermore

(24)
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Fig. 3. Example ideal observer decision rules for the case  �  < 0

(implying m > 0 and b < 0) and m < 0. In (a), � < � , and the
“1-vs-2” line can lie anywhere between the two dashed lines shown (the region
between the lower dashed and dotted lines is excluded because m > 0);
observations in the unlabeled region above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), � � � and the “1-vs-2”
line can lie anywhere in the unlabeled region (provided it shares the intersection
point of the “1-vs-3” and “2-vs-3” lines shown); observations above this line will
be decided “� ”, and those below this line will be decided “� .”

Fig. 4. Example ideal observer decision rules for the case  �  < 0

(implying m > 0 and b < 0) and m � 0. In (a), m < m , and the
“1-vs-2” line can lie anywhere in the unlabeled region; observations above this
line will be decided “� ”, and those below this line will be decided “� ”. In (b),
m � m , and the “1-vs-2” line can lie anywhere between the “1-vs-3” and
“2-vs-3” lines (provided it shares their intersection point); note that observations
in this region will be decided “� ” regardless of the position of this line.

and

(25)

Together, (24) and (25) can be considered either a special case
of the inequalities (15) and (17), if we take and

; or of the inequalities (21) and (23), if we take
and . This situation, for the slightly

different cases and , is illustrated in Fig. 5.
In this section, the possible values of the quantity

were considered in order to determine properties of the ideal ob-
server decision boundary lines. It may be argued that the choice
of a parameter from the “1-vs-3” line, i.e., one of the three avail-
able lines, must be an arbitrary one. In fact, we may consider
taking another parameter (or combination of parameters) from
(6)–(8), and using it to determine conditions on the properties

Fig. 5. Example ideal observer decision rules for the case  �  = 0

(implying m = �1 and b = �1). In (a), b < 0 and the “2-vs-3” line
can lie anywhere between the two dashed lines shown (the region between the
lower dashed and dotted lines is excluded because b > 0); observations in the
unlabeled region above this line will be decided “� ,” and those below this line
will be decided “� .” In (b), b � 0 and the “2-vs-3” line can lie anywhere
in the unlabeled region; observations above this line will be decided “� ,” and
those below this line will be decided “� .”

of the decision boundary lines as above. Given that all possible
values of the quantity were considered, it is expected
that no new conditions should be determinable (let alone con-
ditions inconsistent with those already determined). In fact, this
can readily be shown to be the case; however, due to the repet-
itive nature of the derivations involved, these are relegated to
Appendices A and B.

IV. DISCUSSION AND CONCLUSION

The repetitive nature of the algebraic manipulations given in
the preceding section and the Appendices should not be allowed
to distract from the fundamental point being made: given the
locations of two of the decision boundary lines, the location
of the third is not completely arbitrary. That is, aside from the
obvious [given (6)–(8)] constraint that the lines must share a
common intersection point, it can also be shown that the slope
of the third line is constrained by the slopes of the first two.

The significance of this result may be difficult to appreciate
at first glance. It is perhaps best illustrated by comparison with
the two-class classifier, for which the ROC operating point coor-
dinates [e.g., the true-positive fraction (TPF) and false-positive
fraction (FPF)] are determined by a single decision criterion ,
which is free to vary without restriction throughout its domain
of definition. For the two-class ideal observer, in particular, an
observation is decided “positive” (assigned to the class ) if

, where can take on any nonnegative value. Further-
more, the FPF and TPF are related in a very simple way to the
cdfs of , and are thus monotonic in the decision criterion .
For the three-class ideal observer, this straightforward relation-
ship is lost; indeed, Figs. 2(b), 4(b), 7(b), 9(b), 12(b), and 14(b)
show that for certain values of four of the five decision criteria

, the misclassification probabilities (ie, the ROC operating
point coordinates) can be independent of the fifth decision cri-
terion.

More succinctly, the relationship between the decision cri-
teria and the misclassification probabilities is not one-to-one,
as it is for the two-class ideal observer. A correct formulation
of the misclassification probabilities as functions of the deci-
sion criteria—necessary for an explicit calculation of the ideal
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Fig. 6. Example ideal observer decision rules for the case  �  > 0

(implying 1=m < 0 and � > 0) and � < 0. In (a), b < b , and
the “1-vs-3” line can lie anywhere between the two dashed lines shown (the
region between the left dashed and dotted lines is excluded because � > 0);
observations in the unlabeled region to the right of this line will be decided “� ,”
and those to the left of this line will be decided “� .” In (b), b � b and the
“1-vs-3” line can lie anywhere in the unlabeled region (provided it shares the
intersection point of the “1-vs-2” and “2-vs-3” lines shown); observations to the
right of this line will be decided “� ,” and those to the left of this line will be
decided “� .”

observer’s ROC hypersurface given the decision variable prob-
ability density functions—will require careful consideration of
this issue. Although we have shown previously that the hyper-
volume under the ROC hypersurface is not a useful performance
metric in general [19], it is still the case that the ROC hyper-
surface in terms of the set of misclassification probabilities (six
in the three-class classification task) is a complete description
of observer performance. We expect that a useful performance
metric, assuming one exists, will be derived in some fashion
from the ROC hypersurface. It is thus important to develop a
complete understanding of the rather complicated relationships
among the quantities involved, and we hope that this paper will
prove of some use toward this goal.

APPENDIX A
RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“2-VS.-3” LINE

Consider the quantity from (8). In particular, when
(ie, , or ), we have

(26)

(27)

Through reasoning similar to that of Section III, we also have

(28)

and

(29)

If , then (29) immediately reduces to
(by (27), we are considering a special case in which

). This is illustrated in Fig. 6 for the slightly different situations

Fig. 7. Example ideal observer decision rules for the case  �  > 0

(implying 1=m < 0 and � > 0) and � � 0. In (a), � < � , and
the “1-vs-3” line can lie anywhere in the unlabeled region; observations to the
left of this line will be decided “� ,” and those to the right of this line will be
decided “� .” In (b),� � � and the “1-vs-3” line can lie anywhere between
the “1-vs-2” and “2-vs-3” lines (provided it shares their intersection point); note
that observations in this region will be decided “� ” regardless of the position
of this line.

Fig. 8. Example ideal observer decision rules for the case  �  < 0

(implying 1=m > 0 and � < 0) and 1=m < 0. In (a), b < b ,
and the “1-vs-2” line can lie anywhere between the two dashed lines shown
(the region between the vertical dashed and dotted lines is excluded because
m > 0 and, therefore, 1=m � 0); observations in the unlabeled region
above this line will be decided “� ,” and those below this line will be decided
“� .” In (b), b � b and the “1-vs-2” line can lie anywhere in the unlabeled
region (provided it shares the intersection point of the “1-vs-3” and “2-vs-3”
lines shown); observations above this line will be decided “� ”, and those below
this line will be decided “� .”

and . If, on the other hand, , then
(28) and (29) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 7.

If (ie, , or ), we have

(30)

(31)

One can also show

(32)

and

(33)

If , then (32) immediately reduces to
(by (30), we are considering a special case in

which ). This is illustrated in Fig. 8 for the slightly
different situations and . If, on the other
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Fig. 9. Example ideal observer decision rules for the case  �  < 0

(implying 1=m > 0 and � < 0) and 1=m � 0. In (a),
1=m < 1=m , and the “1-vs-2” line can lie anywhere in the unlabeled
region; observations above this line will be decided “� ,” and those below this
line will be decided “� .” In (b), 1=m � 1=m and the “1-vs-2” line can
lie anywhere between the “1-vs-3” and “2-vs-3” lines (provided it shares their
intersection point); note that observations in this region will be decided “� ”
regardless of the position of this line.

Fig. 10. Example ideal observer decision rules for the case  �  = 0

(implying 1=m = �1 and � = �1). In (a), � < 0, and the “1-vs-3”
line can lie anywhere between the two dashed lines shown (the region between
the leftmost dashed and dotted lines is excluded because� > 0); observations
in the unlabeled region to the right of this line will be decided “� ,” and those
to the left of this line will be decided “� .” In (b), � � 0 and the “1-vs-3”
line can lie anywhere in the unlabeled region; observations to the right of this
line will be decided “� ,” and those to the left of this line will be decided “� .”

hand, , then (32) and (33) together imply two pos-
sible situations, depending on whether or

. These possibilities are illustrated in Fig. 9.
Finally, we consider the case (

or ), in which both and are infinite. We
now have

(34)

and

(35)

Together, (34) and (35) can be considered either a special
case of the inequalities (28) and (29), if we take
and ; or of the inequalities (32) and (33), if we take

and . This situation, for the slightly
different cases and , is illustrated in Fig. 10.

Notice that every figure in this appendix has one or more
corresponding figures in Section III (depending on the possible

values of the undetermined decision boundary parameter being
illustrated in that figure). Specifically

That is, none of the conditions derived in this section are in-
consistent with those derived Section III. More importantly, note
the symmetry between the corresponding equations and figures
in Section III and this appendix, if one “swaps” the labels of
classes and , and additionally replaces with ,

with , and with ( if , 2 if , and
3 if ; similarly for ). Intuitively, if one “flips” the figures
in one section about the line, one obtains the figures in
the other section.

APPENDIX B
RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“1-VS.-2” LINE

In this appendix, we consider the possible values of the quan-
tity . As in the preceding Appendix, we expect to
obtain no conditions inconsistent with those already derived.

When (ie, , or ), we
have

(36)

(37)

Through reasoning similar to that of Section III, we also have

(38)

and

(39)

If , then (39) immediately reduces to
(by (37), we are considering a special case in

which ). This is illustrated in Fig. 11 for the slightly
different situations and . If, on the
other hand, , then (38) and (39) together imply two
possible situations, depending on whether or

. These possibilities are illustrated in Fig. 12.
If (ie, , or ), we have

(40)

(41)
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Fig. 11. Example ideal observer decision rules for the case  �  > 0

(implying 1=b < 0 and 1=� > 0) and 1=� � 0. In (a), m < m ,
and the “1-vs-3” line can lie anywhere between the two dashed lines shown
(the region between the horizontal dashed and dotted lines is excluded because
� > 0 and, therefore, 1=� � 0); observations in the unlabeled region to
the left of this line will be decided “� ”, and those to the right of line will be
decided “� .” In (b),m � m , and the “1-vs-3” line can lie anywhere in the
unlabeled region (provided it shares the intersection point of the “1-vs-2” and
“2-vs-3” lines shown); observations to the left of this line will be decided “� ,”
and those to the right of this line will be decided “� .”

Fig. 12. Example ideal observer decision rules for the case  �  > 0

(implying 1=b < 0 and 1=� > 0) and 1=� > 0. In (a), 1=� < 1=�
and the “1-vs-3” line can lie anywhere in the unlabeled region; observations to
the left of this line will be decided “� ,” and those to the right of this line will be
decided “� .” In (b), 1=� � 1=� , and the “1-vs-3” line can lie anywhere
between the “1-vs-2” and “2-vs-3” lines (provided it shares their intersection
point); note that observations in this region will be decided “� ” regardless of
the position of this line.

One can also show

(42)

and

(43)

If , then (42) immediately reduces to
(by (40), we are considering a special case in

which ). This is illustrated in Fig. 13 for the slightly
different situations and . If, on the
other hand, , then (42) and (43) together imply two
possible situations, depending on whether or

. These possibilities are illustrated in Fig. 14.

Fig. 13. Example ideal observer decision rules for the case  �  < 0

(implying 1=b > 0 and 1=� < 0) and 1=b � 0. In (a), m < m ,
and the “2-vs-3” line can lie anywhere between the two dashed lines shown
(the region between the vertical dashed and dotted lines is excluded because
b > 0, and therefore 1=b � 0); observations in the unlabeled region above
this line will be decided “� ,” and those below this line will be decided “� .”
In (b), m � m , and the “2-vs-3” line can lie anywhere in the unlabeled
region (provided it shares the intersection point of the “1-vs-2” and “1-vs-3”
lines shown); observations above this line will be decided “� ,” and those below
this line will be decided “� .”

Fig. 14. Example ideal observer decision rules for the case  �  < 0

(implying 1=b > 0 and 1=� < 0) and 1=b > 0. In (a), 1=b < 1=b ,
and the “2-vs-3” line can lie anywhere in the unlabeled region; observations
above this line will be decided “� ,” and those below this line will be decided
“� ”. In (b), 1=b � 1=b , and the “2-vs-3” line can lie anywhere between
the “1-vs-2” and “1-vs-3” lines (provided it shares their intersection point); note
that observations in this region will be decided “� ” regardless of the position
of this line.

Finally, we consider the case (ie,
, or ), in which both and are infi-

nite. We now have

(44)

and

(45)

Together, (44) and (45) can be considered either a special
case of the inequalities (38) and (39), if we take
and ; or of the inequalities (42) and (43), if we
take and . This situation, for the
slightly different cases and , is illustrated
in Fig. 15.

Notice that every figure in this appendix has one or more
corresponding figures in Section III (depending on the possible
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Fig. 15. Example ideal observer decision rules for the case  �  = 0

(implying 1=b = �1 and 1=� = �1). In (a), 1=b � 0, and the
“2-vs-3” line can lie anywhere between the two dashed lines shown (the region
between the vertical dashed and dotted lines is excluded because 1=b � 0);
observations in the unlabeled region to above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), 1=b > 0, and the “2-vs-3”
line can lie anywhere in the unlabeled region; observations above this line will
be decided “� ,” and those below this line will be decided “� .”

values of the undetermined decision boundary parameter being
illustrated in that figure). Specifically

That is, none of the conditions derived in this appendix
are inconsistent with those derived in Section III or Ap-
pendix A. More importantly, note the symmetry between the
corresponding equations and figures in Sections III and this
appendix, if one “swaps” the labels of classes and , and
additionally replaces with , with , and

with ( if , 2 if , and 3 if ;
similarly for ).
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Abstract1

We analyze recently proposed decision rules for three-class classification from the2

point of view of ideal observer decision theory. We consider three-class decision3

rules proposed by Scurfield, by Chan et al., and by Mossman. Scurfield’s decision4

rule is shown to be a special case of the three-class ideal observer decision rule in5

three different situations. Chan et al. start with an ideal observer model and specify6

its decision-consequence utility structure in a way that causes two of the decision7

lines used by the ideal observer to overlap and the third line to become undefined.8

Finally, we show that, for a particular and obvious choice of ideal-observer-related9

decision variables, the Mossman decision rule cannot be a special case of the ideal10

observer decision rule. Despite the considerable difficulties presented by the three-11

class classification task, the three-class ideal observer provides a useful framework12

for analyzing a variety of three-class decision strategies.13

Key words: ROC analysis, three-class classification, ideal observer decision rules14

1 Introduction15

We are attempting to develop a fully automated mass lesion classification16

scheme for computer-aided diagnosis (CAD) in mammography. This scheme17

will combine two schemes developed at the University of Chicago: one for18

automatically detecting mass lesions in mammograms (Bick, Giger, Schmidt,19
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Nishikawa, Wolverton, and Doi, 1995; Yin, Giger, Doi, Metz, Vyborny, and20

Schmidt, 1991; Yin, Giger, Vyborny, Doi, and Schmidt, 1993; Yin, Giger, Doi,21

Vyborny, and Schmidt, 1994; Kupinski, 2000), and one for classifying known22

lesions as malignant or benign (Huo, Giger, Vyborny, Wolverton, Schmidt, and23

Doi, 1998; Huo, Giger, and Metz, 1999; Huo, Giger, Vyborny, Wolverton, and24

Metz, 2000; Huo, Giger, and Vyborny, 2001; Huo, Giger, Vyborny, and Metz,25

2002). Combining these two types of CAD scheme is inherently difficult, be-26

cause the output of the detection scheme will necessarily include false-positive27

(FP) computer detections in addition to the malignant and benign lesions to28

be classified. These FP computer detections correspond to objects which were29

by design not included in the training sample of the classification scheme,30

because they are not members of the data population (benign and malignant31

mass breast lesions) for which the classification scheme was created. It is clear32

then that the detection scheme’s output cannot be used unmodified as the33

input to the classification scheme.34

Our approach has been to treat this problem explicitly as a three-class classifi-35

cation task. That is, the outputs of the detection scheme should be classified as36

malignant lesions, benign lesions, and non-lesions (FP computer detections),37

and the classifier to be estimated is the ideal observer decision rule for this38

task. Such an approach presents considerable difficulties of its own. On the39

one hand, decision rules, in particular ideal observer decision rules, increase40

rapidly in complexity with the number of classes involved. On the other hand,41

a fully general performance evaluation method, such as a three-class extension42

of receiver operating characteristic (ROC) analysis, has yet to be developed.43

It should be mentioned that the simple model we have just described corre-44

sponds in the two-class classification task to ROC analysis performed “per45

detection;” that is, each “case” being classified corresponds to a small region46

of interest (ROI) in the image containing a single computer detection. Other47

formulations, such as ROC analysis “per image,” ROC analysis “per patient”48

(for a set of images, such as the four mammographic views obtained in a49

typical screening setting), or free-response ROC (FROC) (Bunch, Hamilton,50

Sanderson, and Simmons, 1978; Chakraborty, 1989, 2002) analysis, are also51

possible, but their extension to tasks with three or more classes is beyond the52

scope of the present work.53

The explicit form of the decision rule used by the ideal observer in a three-54

class classification task has been known for some time (Van Trees, 1968). For55

the reasons just stated, however, a practical and general method for estimat-56

ing and evaluating observer performance has proven elusive. In particular,57

Scurfield (1996) defined the two-class information-based performance metric58

D1:2 ≡ log 2 − AUC log AUC − (1 − AUC) log(1 − AUC) (where AUC is the59

area under the two-class ROC curve), and extended it to the three-class case60

for two different decision rules (Scurfield, 1996, 1998). Srinivasan (1999) inves-61

tigated the optimality of discrete, multi-class ROC operating points, but not62
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continuous ROC hypersurfaces, under a cost function equivalent to the Bayes63

risk. Mossman (1999) evaluated the performance of a three-class classifier with64

a surface formed from the three correct classification probabilities. Hand and65

Till (2001) proposed the average of the areas under all N(N − 1)/2 between-66

class ROC curves as a performance metric in an N -class classification task.67

Obuchowski, Applegate, Goske, Arheart, Myers, and Morrison (2001) elicited68

readers’ estimates of the set of probabilities of each observation belonging to69

N classes, and then used conventional (two-class) ROC analysis to evaluate70

each of the N(N − 1)/2 differences of these estimates for its ability to distin-71

guish between the relevant pair of classes. Ferri, Hernández-Orallo, and Salido72

(2003) proposed a variety of algorithms for calculating the hypervolume un-73

der the convex hull obtained from a set of discrete ROC operating points; a74

modified version of the Hand and Till metric averaging the N areas under the75

ROC surfaces that measure the observer’s ability to distinguish a given class76

from the remaining N − 1; and a graphical “cobweb” representation of the77

observer’s misclassification probabilities. Lachiche and Flach (2003) proposed78

iterative algorithms for finding the optimal among a discrete set of multi-class79

ROC operating points based on either percent correct or Bayes risk. Nakas80

and Yiannoutsos (2004) considered an observer using a decision rule similar81

to that of Scurfield (1996), and evaluated its performance statistically by ex-82

tending methods proposed by Dreiseitl, Ohno-Machado, and Binder (2000).83

Patel and Markey (2005) applied a variety of proposed evaluation metrics,84

including the Hand and Till metric, the modified Hand and Till metric of85

Ferri, the “cobweb” graphical measure of Ferri, and the Mossman ROC sur-86

face, to radiologist assessment data of mammographic images from patients87

who subsequently underwent biopsy.88

The works cited above demonstrate the difficulty in developing a fully general89

performance metric for classification tasks with more than two classes. Lacking90

such a performance metric in turn makes the development of observer deci-91

sion rules for such tasks difficult, because they can at present be evaluated92

and compared only from a theoretical rather than an empirical perspective.93

Nevertheless, observer decision rule models for three-class classification tasks94

have been proposed relatively recently by several groups of researchers. In95

some cases, these models are motivated more by considerations of tractability96

than of complete generality. This is of course understandable given the inher-97

ent difficulties of three-class classification; however, we thought it might be98

of interest to analyze a number of recently proposed three-class decision rule99

models within an ideal observer decision rule framework.100

In the next section, we review the three-class ideal observer decision rule. In101

the following three sections, we review recently proposed three-class decision102

rule models: one by Scurfield (1998), one by Chan, Sahiner, Hadjiiski, Petrick,103

and Zhou (2003), and one by Mossman (1999). In each case, the given decision104

rule is analyzed in terms of the ideal observer decision rule; where necessary105
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or expedient, assumptions are made about the observer’s decision variables in106

order to facilitate this analysis. We emphasize that we do not attempt a review107

of the experimental methods or detailed analysis of proposed performance108

evaluation metrics in the works discussed; we are here interested only in the109

form of the decision rule which serves as the starting point for each work, and110

superficially in the proposed evaluation metrics inasmuch as they are related to111

those decision rules. (Because of the lack of a fully general performance metric,112

or figure of merit, for the three-class classification task, in particular apparent113

inconsistencies which are obtained from a straightforward generalization of114

the area under the ROC curve (Edwards, Metz, and Nishikawa, 2005), we115

do not attempt any validation or quantitative comparison of the proposed116

performance metrics.) The results of our analyses are briefly summarized in117

Sec. 6.118

2 The Three-Class Ideal Observer119

It can be shown (Van Trees, 1968; Edwards, Metz, and Kupinski, 2004b)120

that an N -class ideal observer makes decisions regarding statistically variable121

observations ~x by partitioning a likelihood ratio decision variable space, where122

the boundaries of the partitions are given by hyperplanes:123

124

decide d = πi iff125

N−1∑

k=1

(Ui|k − Uj|k)P (t = πk)LRk ≥ (Uj|N − Ui|N)P (t = πN) {j < i} (1)126

and127

N−1∑

k=1

(Ui|k − Uj|k)P (t = πk)LRk > (Uj|N − Ui|N)P (t = πN) {j > i}. (2)128

Here Ui|j is the utility of deciding an observation is from class πi given that129

it is actually from class πj , and the N − 1 likelihood ratios are defined as130

LRk ≡
p~x(~x|t = πk)

p~x(~x|t = πN )
(3)131

for k < N . We also define the actual class (the “truth”) to which an obser-132

vation belongs as t, and the class to which it is assigned (the “decision”) as133

d, where t and d can take on any of the values π1, . . . , πi, . . . , πN , the labels134

of the various classes. (We use boldface type to denote statistically variable135

quantities.) For simplicity, we will usually write πk to denote the event t = πk,136

as in the a priori probability P (πk).137
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The partitioning of the decision variable space is determined by the parameters138

γijk ≡ (Ui|k − Uj|k)P (πk), (4)139

with i, j, and k varying from 1 to N , and j 6= i. Note that these parameters140

are not independent, however, because141

γijk = γkjk − γkik. (5)142

We can impose the reasonable condition that the utility for correctly clas-143

sifying an observation from a given class should be greater than any utility144

for incorrectly classifying an observation from the same class, i. e., Ui|i >145

Uj|i {i 6= j}. This gives, for j 6= i,146

γiji > 0, (6)147

leaving N(N − 1) parameters (the rest are derivable from (5)).148

Finally, note that the hyperplanes represented by (1) and (2) are unchanged if149

we multiply all of these relations by a single scalar, such as 1/(
∑

i6=j γiji). This150

leaves us with N2 − N − 1 degrees of freedom, as expected, and effectively151

imposes the condition152

∑

i6=j

γiji = 1. (7)153

The behavior of a three-class ideal observer is completely determined by the154

three decision boundary lines155

156

γ121LR1 − γ212LR2 = γ313 − γ323 (8)157

γ131LR1 + (γ232 − γ212)LR2 = γ313 (9)158

(γ131 − γ121)LR1 + γ232LR2 = γ323, (10)159

which we call, respectively, the “1-vs.-2” line, the “1-vs.-3” line, and the “2-160

vs.-3” line. Note that if any two of these lines intersect, the third line must161

also share this intersection point. We also emphasize the simple interpretation,162

from (4), of each of the γiji parameters appearing in these decision boundary163

line equations as the difference in utilities between a “correct” and one partic-164

ular “incorrect” decision (scaled by the a priori probability of the true class in165

question); and of each difference in the γiji parameters as a difference in util-166

ities between two possible “incorrect” decisions (again scaled by the a priori167

probability of the true class in question).168
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LR1

LR2

“π1”

“π2”

“π3”

Fig. 1. Example three-class ideal observer decision rule, given the values of the
decision parameters γ121 = γ212 = 3/14 and γ131 = γ313 = γ232 = γ323 = 1/7. Note
that γiji ≡ (Ui|i − Uj|i)P (t = πi).

An example ideal observer decision rule for particular values of the utilities169

Ui|j, and hence of the parameters γiji, is shown in Fig. 1. Here we have chosen170

γ121 = γ212 = 3/14 and γ131 = γ313 = γ232 = γ323 = 1/7, yielding the decision171

boundary lines172

173

3

14
LR1 −

3

14
LR2 =0 {“1-vs.-2”} (11)174

1

7
LR1 −

1

14
LR2 =

1

7
{“1-vs.-3”} (12)175

−
1

14
LR1 +

1

7
LR2 =

1

7
{“2-vs.-3”}. (13)176

These simplify to the equations LR2 = LR1, LR2 = 2LR1 − 2, and LR2 =177

LR1/2 + 1, respectively.178

3 The Scurfield Decision Rule179

Scurfield investigated a decision rule applied to two-dimensional statistically180

variable data (~y ≡ (y
1
,y

2
)) drawn from three classes (Scurfield, 1998). The181

application domain was human observer performance modeling for acoustical182

psychophysics experiments. (In prior work, Scurfield investigated a decision183

rule for three-class classification of univariate data (Scurfield, 1996). We will184

not review that prior work here, because at present we are interested in relat-185

ing given observer models to the general three-class ideal observer model for186

6



y1

y2

γ1

γ2
“π1”

“π2”

“π3”

Fig. 2. Decision rule investigated by Scurfield, for the decision parameters γ1 and
γ2.

multivariate observational data, which — except in degenerate cases — will187

yield two-dimensional decision variable data by (3).) In Scurfield’s work, no188

assumptions are made about the decision variables y
1

and y
2
; in particular,189

these decision variables are not assumed to be related in any way to an ideal190

observer model. This is entirely appropriate given the nature of the problem191

domain Scurfield investigated — i. e., human observer performance modeling.192

It can readily be shown, however, that if one chooses to make such assump-193

tions, special cases of the Scurfield model are in fact special cases of an ideal194

observer decision rule.195

The Scurfield decision rule is dependent on two decision parameters, which we196

will call γ1 and γ2. The decision rule can be written as197

198

decide d = π1 iff y1 − y2 ≥ γ1 − γ2 and y1 ≥ γ1; (14)199

decide d = π2 iff y1 − y2 < γ1 − γ2 and y2 ≥ γ2; (15)200

decide d = π3 iff y1 < γ1 and y2 < γ2. (16)201

This decision rule is illustrated in Fig. 2.202

From these relations, one can define the decision boundary lines203

204

y1 − y2 = γ1 − γ2 {“1-vs.-2”} (17)205

y1 = γ1 {“1-vs.-3”} (18)206

y2 = γ2 {“2-vs.-3”}. (19)207

If we choose y
1
≡ LR1(~x) and y

2
≡ LR2(~x) for some set of observational208

data ~x, we have209
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LR1

LR2

γ1

γ2 “π1”

“π2”

“π3”

Fig. 3. A special case of the ideal observer decision rule with
γ121 = γ212 = γ131 = γ232 = 1/(γ1 + γ2 + 4), γ313 = γ1/(γ1 + γ2 + 4), and
γ323 = γ2/(γ1 + γ2 + 4). The parameters γ1 and γ2 are positive but otherwise
arbitrary; this decision rule is a special case of the Scurfield decision rule with
y1 ≡ LR1(~x) and y2 ≡ LR2(~x).

210

1

γ0

LR1 −
1

γ0

LR2 =
γ1 − γ2

γ0

{“1-vs.-2”} (20)211

1

γ0

LR1 =
γ1

γ0

{“1-vs.-3”} (21)212

1

γ0

LR2 =
γ2

γ0

{“2-vs.-3”}, (22)213

where γ0 ≡ γ1+γ2+4 (to impose consistency with (7)). Note the similarity in214

form between these equations and (8)–(10). If we require γ1 and γ2 to be posi-215

tive, the correspondence is exact, and this special case of (8)–(10) is illustrated216

in Fig. 3. (In fact, the intersection of the ideal observer decision boundary lines217

can lie in any quadrant. However, given a set of decision boundary lines with218

slopes as depicted in Fig. 2, the occurrence of the intersection point in any219

quadrant other than the first would result in an ideal observer operating point220

for which no observations were assigned to class π3. This “degenerate” case221

will not be considered here.) As an aside, it is of some interest to note that222

if γ1 = γ2 = 1, the decision boundary line equations reduce to LR1 = LR2,223

yielding p(~x|π1) = p(~x|π2); LR1 = 1, yielding p(~x|π1) = p(~x|π3); and LR2 = 1,224

yielding p(~x|π2) = p(~x|π3). That is, the decision boundary lines correspond,225

in the observational data space, to the loci of intersection of the observational226

data probability density functions. (This is illustrated in Figs. 2B and 2C of227

Scurfield (1998).)228
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A second correspondence between Scurfield’s decision rule and the ideal ob-229

server decision rule can be obtained by taking y
1
≡ log(LR1(~x)) and y

2
≡230

log(LR2(~x)), with γ1 and γ2 now unrestricted. Substituting this definition in231

(17)–(19), we obtain232

233

log(LR1)− log(LR2) = γ1 − γ2 {“1-vs.-2”} (23)234

log(LR1) = γ1 {“1-vs.-3”} (24)235

log(LR2) = γ2 {“2-vs.-3”}. (25)236

Taking exponentials on each side of these equations then gives237

238

LR1

LR2

= eγ1−γ2 {“1-vs.-2”} (26)239

LR1 = eγ1 {“1-vs.-3”} (27)240

LR2 = eγ2 {“2-vs.-3”}; (28)241

we can then rearrange terms and divide the equations by a constant factor242

to obtain243

244

e−γ1

γ0

LR1 −
e−γ2

γ0

LR2 = 0 {“1-vs.-2”} (29)245

e−γ1

γ0

LR1 =
1

γ0

{“1-vs.-3”} (30)246

e−γ2

γ0

LR2 =
1

γ0

{“2-vs.-3”}, (31)247

where γ0 ≡ 2(e−γ1 + e−γ2 + 1). By inspection, this is again a special case248

of (8)–(10), which is illustrated in Fig. 4. (This special case is currently the249

subject of independent analysis by He, Metz, Tsui, Links, and Frey (2006).)250

As an aside, we note that if γ1 = γ2 = 0, the resulting decision boundary lines251

again correspond, in the observational data space, to the loci of intersection252

of the observational data probability density functions, as was pointed out in253

the text following (20)–(22).254

Finally, if we take y
1
≡ P (π1|~x) and y

2
≡ P (π2|~x), and require 0 < γ1 < 1255

and 0 < γ2 < 1, we obtain256

257

P (π1|~x)− P (π2|~x) = γ1 − γ2 {“1-vs.-2”} (32)258

P (π1|~x) = γ1 {“1-vs.-3”} (33)259

P (π2|~x) = γ2 {“2-vs.-3”}, (34)260

as illustrated in Fig. 5.261
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LR1

LR2

eγ1

eγ2 “π1”

“π2”

“π3”

Fig. 4. A special case of the ideal observer decision rule with γ121 = γ131 = e−γ1/γ0,
γ212 = γ232 = e−γ1/γ0, γ313 = γ323 = 1/γ0, and γ0 ≡ 2(e−γ1 + e−γ2 + 1). The
parameters γ1 and γ2 are arbitrary; this decision rule is a special case of the Scurfield
decision rule with y1 ≡ log(LR1(~x)) and y2 ≡ log(LR2(~x)).

P (π1|~x)

P (π2|~x)

γ1

γ2

“π1”

“π2”

“π3”

Fig. 5. A special case of the Scurfield decision rule with y1 ≡ P (π1|~x) and
y2 ≡ P (π2|~x).

Note that (3) can be written as262

263

LRi =
P (πi|~x)p(~x)/P (πi)

p(~x|π3)
{i : 1 ≤ i ≤ 2}264

P (πi|~x) =
LRiP (πi)

p(~x)/p(~x|π3)
265

P (πi|~x) =
LRi[P (πi)/P (π3)]

1 + LR1[P (π1)/P (π3)] + LR2[P (π2)/P (π3)]
. (35)266

This allows us to rewrite (32)–(34) as267
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1− (γ1 − γ2)

γ0

P (π1)

P (π3)
LR1 −

1 + (γ1 − γ2)

γ0

P (π2)

P (π3)
LR2 =

γ1 − γ2

γ0

(36)268

1− γ1

γ0

P (π1)

P (π3)
LR1 −

γ1

γ0

P (π2)

P (π3)
LR2 =

γ1

γ0

(37)269

−
γ2

γ0

P (π1)

P (π3)
LR1 +

1− γ2

γ0

P (π2)

P (π3)
LR2 =

γ2

γ0

, (38)270

respectively, where γ0 ≡ (2−2γ1+γ2)P (π1)/P (π3)+(2+γ1−2γ2)P (π2)/P (π3)+271

γ1 +γ2. This is again a special case of (8)–(10), as the quantities 1− (γ1−γ2),272

1+(γ1−γ2), 1−γ1, and 1−γ2 are all positive given 0 < γ1 < 1 and 0 < γ2 < 1.273

Scurfield (1998) points out that the observer which maximizes PC , the “percent274

correct” or probability of a correct response, is a special case of the ideal275

observer (i. e., a single operating point achievable by the ideal observer for276

the given task). This observer follows the Scurfield decision rule model with277

y
1
≡ log(LR1(~x)) and y

2
≡ log(LR2(~x)), and decision parameters given by278

eγ1 = P (π3)/P (π1) and eγ2 = P (π3)/P (π2). It is interesting to note that the279

Scurfield decision rule model can in fact be used to describe ideal observer280

performance for an even wider class of operating points, as shown in this281

section.282

To evaluate the performance of an observer using the decision rule in (17)–283

(19), Scurfield plots a set of six surfaces in three-dimensional ROC spaces,284

giving P (d = π2|t = α(π2)) as a function of P (d = π1|t = α(π1)) and285

P (d = π3|t = α(π3)). Here α is one of the six possible permutations of286

three symbols. Scurfield gives a probabilistic interpretation for this evalu-287

ation methodology: the volume under each surface is the probability of a288

particular outcome in a three-alternative forced choice experiment, and thus289

the six volumes must sum to one. This constraint means that at most five290

of the surfaces are independent. However, given the number of conditional291

probabilities P (d = πi|t = πj) involved, one can show that only four such292

surfaces are required to completely specify the tradeoffs among the observer’s293

conditional classification probabilities. Without loss of generality, we consider294

plotting each of P (d = π2|t = π1), P (d = π2|t = π3), P (d = π3|t = π1), and295

P (d = π3|t = π2) as functions of P (d = π1|t = π2) and P (d = π1|t = π3).296

(As with Scurfield’s plots, these are well defined because Scurfield’s decision297

rule has two degrees of freedom, namely the parameters γ1 and γ2.)298

Now consider one of Scurfield’s plots, for example that which gives P (d =299

π2|t = π2) as a function of P (d = π1|t = π1) and P (d = π3|t = π3). Because300

these are conditional probabilities, we have301

302

P (d = π1|t = π1) = 1− P (d = π2|t = π1)− P (d = π3|t = π1) (39)303

P (d = π2|t = π2) = 1− P (d = π1|t = π2)− P (d = π3|t = π2) (40)304

11



P (d = π3|t = π3) = 1− P (d = π1|t = π3)− P (d = π2|t = π3). (41)305

Each of the conditional probabilities on the right hand side of these equations306

can be written as functions of P (d = π1|t = π2) and P (d = π1|t = π3) in our307

formulation; thus the surface given in this plot is determined parametrically by308

the set of four surfaces we have given. Similar remarks hold for the other five309

surfaces used by Scurfield. In general, for an N -class classification task using a310

Scurfield-type decision rule with N − 1 degrees of freedom (the generalization311

to N classes of (17)–(19)), one can show that a set of (N − 1)2 hypersurfaces312

with N − 1 degrees of freedom in N -dimensional ROC spaces is necessary to313

fully characterize the observer’s performance, although the interpretation of314

those hypersurfaces is not necessarily as straightforward or elegant as that315

provided for the N !− 1 hypersurfaces used by Scurfield.316

4 The Chan Decision Rule317

Chan et al. are investigating three-class classifiers for computer-aided diag-318

nosis (Chan et al., 2003). Their work is motivated by reasoning similar in319

principle to that which we independently arrived at when we began to con-320

sider this problem. In particular, they consider a clinical situation in which321

observations must be classified as malignant, benign, or normal. The goal of322

their work is not just the psychophysical measurement of the performance of323

an existing (e. g., human) observer, but the optimization of the performance324

of a system (containing components with parameters subject to experimen-325

tal control, e. g. an artificial neural network) to aid a radiologist or clinician.326

Thus they are free, at least in theory, to start explicitly from an ideal observer327

model in constructing their decision rule.328

In order to reduce the complexity of the ideal observer decision rule to man-329

ageable proportions, Chan et al. impose restrictions on the utilities used by330

their observer. In their formulation, the class we are labeling π1 is the be-331

nign class; π2, the normal class; and the malignant class is π3. They further332

assume that the possible values of any utility Ui|j are restricted to the inter-333

val [0, 1]. They then set U1|1 = U2|2 = U3|3 = 1 (i. e., correctly identifying334

any case has maximal utility). Furthermore, they require U2|1 = U1|2 = 1335

and U1|3 = U2|3 = 0 (i. e., misidentifying a benign case as normal, or vice336

versa, has no significant cost reducing the utility of such a decision from the337

maximum, but misclassifying an actually malignant case as benign or normal338

has the minimum possible utility). Finally, U3|1 and U3|2 are assumed to have339

arbitrary values on the open interval (0, 1) (i. e., misclassifying an actually340

non-malignant case as malignant will have some cost reducing the utility of341

such a decision from the maximum, but such a misclassification is in some342

sense “better” than missing an actual malignancy). It is important to note343
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that these assumptions are arguably relevant to a reasonable model of a clin-344

ical situation, and are thus of interest beyond their superficial advantage in345

reducing the degrees of freedom involved in the observer’s decision rule. We346

will, however, only consider the latter issue in the remainder of this section.347

Substituting the values of the utilities given above into (4), we obtain decision348

boundary lines of the form349

350

0 LR1 + 0 LR2 = 0 {“1-vs.-2”} (42)351

(1− U3|1)P (π1)

γ0

LR1 +
(1− U3|2)P (π2)

γ0

LR2 =
P (π3)

γ0

{“1-vs.-3”} (43)352

(1− U3|1)P (π1)

γ0

LR1 +
(1− U3|2)P (π2)

γ0

LR2 =
P (π3)

γ0

{“2-vs.-3”} (44)353

where γ0 ≡ 1+P (π3)−U3|1P (π1)−U3|2P (π2). Note that, as Chan et al. point354

out, the “1-vs.-2” line is in fact undefined for this choice of utilities, while the355

“1-vs.-3” and “2-vs.-3” lines are identical. This is a general consequence of356

(8)–(10); if any two of these equations yield identical lines, the third line must357

be undefined. (Note that, strictly speaking, the utility structure employed358

by Chan et al. is excluded from our formulation by the requirement stated359

in (6). However, this issue — i. e., whether the ideal observer’s performance360

should be considered to include such limiting cases — is largely a definitional,361

rather than a fundamental, issue, because (6) could just as readily have been362

formulated as a non-negativity constraint, rather than a strict inequality as363

we have chosen.)364

The decision rule considered by Chan et al. is illustrated in Fig. 6. It can be365

argued that, in a sense, the output of this classifier belongs to only two classes,366

malignant and non-malignant; in particular, because (42) is undefined, this367

observer will never unequivocally decide d = π1 (benign) or d = π2 (normal).368

In fact, if U3|1 = U3|2, the observer’s performance is identical with that of a369

two-class ideal observer which distinguishes between the malignant and non-370

malignant (benign plus normal) classes. However, in the more general case in371

which U3|1 6= U3|2, the observer considered by Chan et al. is able to achieve372

ROC operating points not accessible by the two-class ideal observer. (That373

is, the three-class ideal observer can achieve points below the two-class ideal374

observer’s ROC curve in a two-class ROC space, or, equivalently, points off375

the curve representing the two-class ideal observer’s performance plotted in a376

three-class ROC space.) Intuitively, their observer makes decisions based on377

the three distribution functions of the observational data, even though the378

observer’s output consists of only two possible responses.379

Chan et al. evaluate the performance of their observer by plotting P (d =380

π3|t = π3) as a function of P (d = π3|t = π1) and P (d = π3|t = π2). Note that381

this single two-dimensional surface is sufficient to completely characterize the382
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LR1

LR2

γ1

γ2

“π3”

Fig. 6. The decision rule investigated by Chan et al., which is a spe-
cial case of the ideal observer decision rule with γ121 = γ212 = 0,
γ131 = (1− U3|1)P (π1)/γ0, γ232 = (1− U3|2)P (π2)/γ0, and γ313 = γ323 = P (π3)/γ0;
here γ0 ≡ 1 + P (π3) − U3|1P (π1) − U3|2P (π2). Observations in the unlabeled re-
gion are decided “not π3”, i. e., either “π1” or “π2”. The intercepts γ1 and γ2 are
P (π3)/[(1 − U3|1)P (π1)] and P (π3)/[(1 − U3|2)P (π2)], respectively.

tradeoffs among the conditional classification probabilities of their observer.383

This is because, as just stated, the observer’s output consists of only two384

possible responses, and thus we have only six classification probabilities P (d =385

πi|t = πj) rather than the nine expected in a three-class classification task.386

These six conditional probabilities are still constrained by three equations,387

however:388

389

P (d = π̃3|t = π1) + P (d = π3|t = π1) = 1 (45)390

P (d = π̃3|t = π2) + P (d = π3|t = π2) = 1 (46)391

P (d = π̃3|t = π3) + P (d = π3|t = π3) = 1, (47)392

where the expression d = π̃3 indicates that the observer decides that the393

observation does not belong to class π3. These constraint equations allow us394

to eliminate three of the six conditional probabilities, leaving a single ROC395

surface with two degrees of freedom in a three-dimensional ROC space.396
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5 The Mossman Decision Rule397

Mossman investigates (Mossman, 1999) a decision rule applied to a set of three398

decision variables y
1
, y

2
, and y

3
, subject to the constraint399

y
1
+ y

2
+ y

3
= 1, (48)400

as well as 0 ≤ yi ≤ 1 {1 ≤ i ≤ 3}. This is consistent with the constraint401

on the a posteriori class probabilities, P (π1|~x) + P (π2|~x) + P (π3|~x) = 1;402

these quantities are known to be directly related to the likelihood ratio ideal403

observer decision variables (Kupinski, Edwards, Giger, and Metz, 2001; Ed-404

wards, Lan, Metz, Giger, and Nishikawa, 2004a). Mossman does not explicitly405

require, however, that the decision variables in (48) be the a posteriori class406

probabilities (e. g., they may be noisy estimates of these quantities).407

The decision rule considered by Mossman, which depends on two decision408

parameters γ1 and γ2, is409

410

decide d = π1 iff y2 − y1 ≤ γ2 and y3 ≤ γ1; (49)411

decide d = π2 iff y2 − y1 > γ2 and y3 ≤ γ1; (50)412

decide d = π3 iff y3 > γ1. (51)413

where 0 ≤ γ1 ≤ 1 and −1 ≤ γ2 ≤ 1. From these relations, and given the414

relation y3 = 1− y1− y2 from (48), one can define the decision boundary lines415

416

y1 − y2 =−γ2 {“1-vs.-2”} (52)417

y1 + y2 =1− γ1 {“1-vs.-3”} (53)418

y1 + y2 =1− γ1 {“2-vs.-3”}. (54)419

This decision rule is illustrated in Fig. 7. Note that, similar to the Chan et al.420

decision rule, the “1-vs.-3” and “2-vs.-3” decision boundary lines are identical.421

We now consider a special case of the Mossman decision rule in which y
1

=422

P (π1|~x), y
2

= P (π2|~x), and y
3

= P (π3|~x) for some observational data vector423

~x. As in Sec. 3, we make the substitution in (35); this allows us to rewrite424

(52)–(54) as425

426

(1 + γ2)
P (π1)

P (π3)
LR1 − (1− γ2)

P (π2)

P (π3)
LR2 =−γ2 {“1-vs.-2”} (55)427

γ1

P (π1)

P (π3)
LR1 + γ1

P (π2)

P (π3)
LR2 = 1− γ1 {“1-vs.-3”} (56)428
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y1

y2

1− γ1

γ2

“π1”

“π2”

“π3”

Fig. 7. Decision rule investigated by Mossman, for the decision parameters γ1 and
γ2, shown in the a posteriori class probability space.

LR1

LR2

γ1
1−γ1

P (π1)
P (π3)

γ1
1−γ1

P (π2)
P (π3)

γ2
1−γ2

P (π2)
P (π3)

“π1”

“π2”

“π3”

Fig. 8. Decision rule investigated by Mossman, for the decision parameters γ1 and
γ2, shown in likelihood ratio space.

γ1

P (π1)

P (π3)
LR1 + γ1

P (π2)

P (π3)
LR2 = 1− γ1 {“2-vs.-3”}, (57)429

This version of the decision rule is illustrated in Fig. 8.430

Although the Mossman decision rule for this choice of decision variables ap-431

pears similar in form to the ideal observer decision rule, recall from Sec. 4432

that if two of the decision boundary line equations are identical, the third433
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must yield a line identical to the first two or be undefined. Another way to see434

this is to note that the coefficients of (10) are differences of the corresponding435

coefficients of (8) and (9). If the coefficients of (9) and (10) are identical, it436

must be the case that the coefficients of (8) are all zero. For the Mossman deci-437

sion rule, this would require 1+γ2 = 0, 1−γ2 = 0, and γ2 = 0 simultaneously,438

which is clearly impossible.439

It follows that, for this particular choice of decision variables (related in a440

straightforward way to the ideal observer’s decision variables), the decision441

rule considered by Mossman cannot represent possible ideal observer perfor-442

mance for any choice of the utilities Ui|j in (1) and (2). (One can construct443

probability density functions such that the Mossman observer’s behavior for444

a particular choice of decision criteria (γ1 and γ2 in (49)–(51)) corresponds445

to ideal observer behavior at a particular operating point. However, we do446

not at present have any reason to believe that this result can be generalized447

to arbitrary probability density functions or to arbitrary choices of decision448

criteria for a given choice of probability density functions.)449

Mossman proposed that the ROC surface obtained by plotting P (d = π3|t =450

π3) as a function of P (d = π1|t = π1) and P (d = π2|t = π2) be used to451

evaluate the performance of the observer. Although this surface is clearly well-452

defined (the Mossman decision rule has two degrees of freedom, namely the453

parameters γ1 and γ2), it follows from the discussion at the end of Sec. 3 that454

four such surfaces in three-dimensional ROC spaces are needed to completely455

characterize the tradeoffs among the observer’s conditional classification prob-456

abilities.457

6 Discussion and Conclusions458

We examined three decision rules proposed recently for three-class classifi-459

cation tasks by different researchers. The basis for our evaluation was ideal460

observer decision theory, primarily because our own interest in the three-class461

classification task is its possible application to CAD. A major goal in the462

development of a computerized scheme for CAD is the optimization of the463

performance of that scheme, in order to provide the maximum benefit to clin-464

icians and thus to their patients. It should thus be kept clearly in mind that465

the ideal observer framework may not be as relevant, for example, to work466

which is motivated by purely psychophysical considerations (Scurfield, 1996,467

1998; Mossman, 1999) — i. e., where the goal is to estimate of the properties468

of an existing observer.469

That being said, the three-class classification task is difficult enough that it is470

perhaps worth making any attempt to analyze, from a single point of view, the471
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work of the relatively few researchers investigating this problem, even in cases472

where that point of view is not necessarily relevant to the underlying motiva-473

tions for that work. We feel the insights we have gained from the analysis of474

various decision rules presented here should provide at least some justification475

for that claim.476

In particular, Scurfield points out (Scurfield, 1998) that his proposed decision477

rule is in fact an ideal observer decision rule for a single ideal observer operat-478

ing point, namely the observer which maximizes the probability of any correct479

response (or “percent correct” or PC). We were able to show that, under var-480

ious assumptions, a larger set of such correspondences between the Scurfield481

observer and the ideal observer exists.482

Chan et al. are working on the application of three-class classification to CAD,483

and thus explicitly take the ideal observer as the starting point in the devel-484

opment of their decision rule (Chan et al., 2003). Although this rendered our485

analysis of that decision rule in terms of ideal observer decision theory largely486

trivial, their decision rule merits attention as an example of a situation in487

which the ideal observer is indeed making use of information from the three488

classes of observations (i. e., its behavior is demonstrably different from that489

of a two-class ideal observer), while only producing two different responses for490

those observations. In two-class classification, the only corresponding exam-491

ples are trivial: either the observer always calls observations positive (achieving492

an operating point of (FPF = 1, TPF = 1), where FPF is the false-positive493

fraction and TPF the true-positive fraction) or always calls them negative494

(FPF = 0, TPF = 0).495

Finally, we showed that, given a particular and obvious choice of ideal-observer-496

related decision variables, the decision rule proposed by Mossman (Mossman,497

1999) does not correspond to ideal observer behavior for any possible values of498

the observer’s utilities. However, we note that the structure of the Mossman499

decision rule — a simple sequence of thresholds on single decision variables —500

may indeed serve as a reasonable model for human observer performance in501

certain situations, e. g., differential diagnosis. That such a decision rule fails502

to be an ideal observer decision rule may be considered surprising, given the503

properties the Mossman decision rule shares with that of Chan et al. — in504

particular, the identity of two out of the three decision boundary lines. The505

reasons why one decision rule can be said to correspond to ideal observer be-506

havior, while a rule similar in structure does not when used with a particular507

and obvious choice of decision variables, are connected to fundamental con-508

straints on the ideal observer’s behavior; given the inherent complexities of the509

three-class classification task, it is easy for such subtleties to be overwhelmed510

by other details. A close comparison of two possible three-class classification511

decision rules can thus provide an immediate and intuitive understanding of512

such properties, even though a complete and fully general solution to the513
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three-class classification problem remains elusive.514
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Optimization of an ROC hypersurface constructed only from

an observer’s within-class sensitivities

Darrin C. Edwards∗ and Charles E. Metz

Department of Radiology, The University of Chicago, Chicago, IL 60637

ABSTRACT

We have shown in previous work that an ideal observer in a classification task with N classes achieves the optimal
receiver operating characteristic (ROC) hypersurface in a Neyman-Pearson sense. That is, the hypersurface
obtained by taking one of the ideal observer’s misclassification probabilities as a function of the other N2−N−1
misclassification probabilities is never above the corresponding hypersurface obtained by any other observer.
Due to the inherent complexity of evaluating observer performance in an N -class classification task with N > 2,
some researchers have suggested a generally incomplete but more tractable evaluation in terms of a hypersurface
plotting only the N “sensitivities” (the probabilities of correctly classifying observations in the various classes).
An N -class observer generally has up to N2−N−1 degrees of freedom, so a given sensitivity will still vary when
the other N − 1 are held fixed; a well-defined hypersurface can be constructed by considering only the maximum
possible value of one sensitivity for each achievable value of the other N − 1. We show that optimal performance
in terms of this generally incomplete performance descriptor, in a Neyman-Pearson sense, is still achieved by
the N -class ideal observer. That is, the hypersurface obtained by taking the maximal value of one of the ideal
observer’s correct classification probabilities as a function of the other N − 1 is never below the corresponding
hypersurface obtained by any other observer.

Keywords: ROC analysis, three-class classification, ideal observer decision rules

1. INTRODUCTION

We are attempting to extend the well-known observer performance evaluation methodology of receiver operating
characteristic (ROC) analysis1, 2 to classification tasks with three classes. This could conceivably be of benefit,
for example, in a medical decision-making task in which a region of a patient image must be characterized as
containing a malignant lesion, a benign lesion, or only normal tissue.3

Unfortunately, a fully general but tractable extension of ROC analysis has yet to be developed. It is known
that the performance of an observer in a classification task with N classes (N ≥ 2) can be completely described
by a set of N2 − N conditional error probabilities,4, 5 and that the performance of the ideal observer (that
which minimizes Bayes risk4) is completely characterized by an ROC hypersurface in which these conditional
error probabilities depend on a set of N2 −N − 1 decision criteria.5 Although analytic expressions for the ideal
observer’s conditional error probabilities given reasonable models for the underlying observational date have
been worked out in the two-class case,6 this has not yet been accomplished in a fully general manner for tasks
with three or more classes. Furthermore, we have shown that an obvious generalization of the area under the
ROC curve (AUC) does not in fact yield a useful performance metric in tasks with three or more classes.7 More
recently, we showed that complicated constraining relationships exist among the decision criteria themselves for
the ideal observer.8 These constraining relationships appear to imply that it is highly unlikely that analytical
expressions for the conditional error probabilities in terms of the decision criteria can be developed which are as
simple to interpret as those for the two-class task.6

Despite the difficulties just described, the potential benefits to be gained from a practical performance eval-
uation methodology for classification tasks with three classes have motivated a number of research groups to
propose such methods. These practical methods reduce the number of degrees of freedom required to describe
the observer’s performance, either by implicitly leaving the remaining degrees of freedom out of the analysis, or

∗Correspondence: E-mail: d-edwards@uchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



by explicitly imposing restrictions on the form of the observer’s decision rule or on the set of decision criteria
used by the observer.

Scurfield evaluated an observer which used a specified decision rule with only two degrees of freedom (as
opposed to the five decision criteria used by the general three-class ideal observer) by plotting a set of six
(two-dimensional) surfaces in three-dimensional ROC spaces.9 Mossman proposed plotting the surface formed
only from the set of three “sensitivities” (conditional probabilities of correctly classifying observations) for an
observer with two degrees of freedom, and applied this method to an observer with a specified decision rule.10

Chan et al. began with an ideal observer model, and reduced the number of decision criteria from five to two by
imposing explicit assumptions on the observer’s decision utilities; the observer’s performance was then plotted
as a surface in a three-dimensional ROC space, the axes of which are the probabilities of deciding an observation
to be malignant conditional on each of the three actual class memberships.11 He et al. investigated an ideal
observer model in which the decision rule is restricted to a form similar to that proposed by Scurfield; the nature
of the restrictions is such that performance evaluation in terms of only the three sensitivities provides a complete
description of this observer’s performance.12

A common theme among these remarkably diverse methods is the idea of an “ROC surface,” i.e., a surface
with two degrees of freedom in a three-dimensional ROC space. An appealing feature of such a construct is
its visualizability: it can be plotted as readily as any elevation map, for example, in stark contrast to the fully
general three-class classification task involving a hypersurface with five degrees of freedom in a six-dimensional
ROC space as mentioned above. While it is true that not all of the proposed methods described in the preceding
paragraph involve a “sensitivity” ROC surface, the general division of an N -class observer’s conditional decision
probabilities into a set of N sensitivities and a set of N2 − N misclassification rates5 makes this particular
construct a natural candidate for further analysis.

On the other hand, it can be argued that measurement of performance in terms of only N conditional
classification rates must be an incomplete description of observer performance in a classification task with
more than two classes, which requires N2 − N such classification rates as stated above. Acknowledging this
incompleteness, we would like to ask whether there is any sense in which such an incomplete performance metric
is at least well-defined. In particular, is there any observer decision rule, dependent on only N − 1 (rather
than N2 − N − 1) decision criteria, for which the observer’s sensitivity ROC hypersurface is always above the
corresponding hypersurface obtained for any other observer? If so, what form does this decision rule take?

In the next section, we show that the three-class observer which optimizes performance only in terms of the
sensitivity surface is in fact the three-class ideal observer, with its decision utilities constrained in a particular
way (reducing its degrees of freedom from five to two as necessary). Additionally, the form of the constraints
on the ideal observer’s behavior are identical to those considered by He et al..12 In Sec. 3, we extend this result
to the general case of an N -class observer, showing that the observer which attains the optimal sensitivity
hypersurface is a restricted form of the N -class ideal observer, and in particular a straightforward generalization
of the three-class observer considered by He et al.12 to N classes. Our conclusions are stated in Sec. 4.

2. THREE-CLASS OBSERVERS

We have shown5 that the N -class ideal observer — that observer which minimizes Bayes risk — also achieves
optimal performance in an ROC sense, by virtue of satisfying the Neyman-Pearson criterion. This was the same
argument used by Van Trees4 to show that the two-class ideal observer achieves the optimal ROC curve for
a given two-class classification task. This technique of satisfying the Neyman-Pearson criterion, essentially an
application of an integral form of the method of Lagrange multipliers,13 is straightforward (conceptually, if not
notationally) and flexible, and we apply it in this section to answer the question of what observer optimizes
performance in terms of only the three observer sensitivities.

We denote by Pij the conditional probability of a given observer deciding an observation is drawn from the
ith class, conditional on it actually being drawn from the jth class. Thus, the three sensitivities are P11, P22,
and P33. Decisions are assumed to be made based on statistically variable observational data; in particular,

Pij ≡

∫

Zi

p(~x|πj) dm~x, (1)



where Zi is the region for which observations ~x (of dimension m) are decided to belong to the class labeled πi

(1 ≤ i ≤ 3).

Without loss of generality, we seek to maximize P33 subject to the constraints P11 = α11 and P22 = α22

where 0 ≤ α11 ≤ 1 and 0 ≤ α22 ≤ 1. We define the function

F ≡ P33 + λ11(P11 − α11), +λ22(P22 − α22) (2)

where λ11 and λ22 are the so-called Lagrange multipliers. Note that if we can find a decision rule (a partitioning
of the domain of ~x into Z1, Z2, and Z3) that maximizes F for arbitrary values of λ11 and λ22, then this will
be equivalent to maximizing P33 at the point at which the constrain equations are satisfied (i.e., at the point
P11 = α11, P22 = α22).

We first rewrite F by applying rules for conditional probabilities:

F = −λ11α11 − λ22α22 + (1 − P13 − P23) + λ11(1− P21 − P31) + λ22(1 − P12 − P32)

= 1 + λ11(1− α11) + λ22(1 − α22)− {λ22P12 + P13 + λ11P21 + P23 + λ11P31 + λ22P32}

= 1 + λ11(1− α11) + λ22(1 − α22)−

{∫

Z1

λ22p(~x|π2) + p(~x|π3) dm~x

+

∫

Z2

λ11p(~x|π1) + p(~x|π3) dm~x +

∫

Z3

λ11p(~x|π1) + λ22p(~x|π2) dm~x

}
. (3)

For a given set of values of the parameters λ11 and λ22, F is maximized when the quantity in braces is minimized.
This quantity, in turn, can be minimized by assigning a given ~x to the region Zi such that the ith integrand
(from among the integrals in braces in Eq. 3) is minimized. (Situations in which two or more of the integrands
yield the same minimal value for a given ~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff λ22p(~x|π2) < λ11p(~x|π1) and p(~x|π3) < λ11p(~x|π1) (4)

decide π2 iff λ11p(~x|π1) ≤ λ22p(~x|π2) and p(~x|π3) < λ22p(~x|π2) (5)

decide π3 iff λ11p(~x|π1) ≤ p(~x|π3) and λ22p(~x|π2) ≤ p(~x|π3). (6)

We can divide these relations by p(~x|π3) to obtain

decide π1 iff λ11LR1 − λ22LR2 > 0 and λ11LR1 > 1 (7)

decide π2 iff λ11LR1 − λ22LR2 ≤ 0 and λ22LR2 > 1 (8)

decide π3 iff λ11LR1 ≤ 1 and λ22LR2 ≤ 1, (9)

where LRi ≡ p(~x|πi)/p(~x|π3) are the likelihood ratio decision variables used by the ideal observer.4, 5 The decision
boundary lines which partition the (LR1, LR2) decision plane into the regions Z1, Z2, and Z3 are thus

λ11LR1 − λ22LR2 = 0 (10)

λ11LR1 = 1 (11)

λ22LR2 = 1. (12)

Note that Eq. 12 is just the difference between Eqs. 10 and 11. If we require λ11 and λ22 to be positive, the
decision rule is an ideal observer decision rule.5 Since neither the decision variables nor the form of the decision
rule depend on the particular choices of α11 and α22, we can conclude that the three-class sensitivity ROC
surface, obtained by allowing λ11 and λ22 to take on all possible positive values, is optimal for the observer
defined in Eqs. 10–12, in the sense that no other observer can achieve a higher sensitivity surface (i.e., a surface
with a greater value of P33 at a given value of (P11, P22)). The optimal observer for this performance metric is
seen to be the three-class ideal observer, with its decision criteria constrained so that the line separating classes
π1 and π3 is vertical, the line separating classes π2 and π3 is horizontal, and the line separating classes π1 and
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Figure 1. The decision rule which is found to be optimal in the sense of maximizing the ROC surface composed of only
the observer sensitivities. The decision variables are the likelihood ratios used by the general three-class ideal observer,
and the number of decision criteria is reduced from five (for the general three-class ideal observer) to two.

π2 passes through the origin with slope λ11/λ22 (and thus intersects the other two lines as required). Note that
the number of free decision criteria has been reduced from five (for the general three-class ideal observer) to two
(as expected for a surface in a three-dimensional ROC space).

This decision rule is shown in Fig. 1. It is interesting to note that this observer is identical to the special case
of the ideal observer evaluated by He et al.,12 which we have shown14, 15 to be a special case of the decision rule
proposed by Scurfield.9

3. N -CLASS OBSERVERS

The results of the preceding section can be generalized to tasks with N classes for any N > 2. We now have
a set of N2 conditional classification probabilities Pij , with N sensitivities Pii. Equation 1 remains unchanged,
except that there are of course now N regions Zi into which the domain of ~x is partitioned (i.e., classes into
which the observations are classified), and the observations are drawn from N distributions of the form p(~x|πj).

Without loss of generality, we seek to maximize PNN subject to the constraints Pii = αii for 1 ≤ i ≤ N − 1,
where 0 ≤ αii ≤ 1. We define the function

F ≡ PNN +

N−1∑

i=1

λii(Pii − αii), (13)

where the λii are the Lagrange multipliers. Note that if we can find a decision rule (a partitioning of the
domain of ~x into Zi {1 ≤ i ≤ N}) that maximizes F for arbitrary values of the λii, then this will be equivalent
to maximizing PNN at the point at which the constrain equations are satisfied (i.e., at the point Pii = αii

{1 ≤ i ≤ N − 1}).

As in the preceding section, we rewrite F by applying rules for conditional probabilities to obtain:

F = −

N−1∑

i=1

λiiαii +

(
1−

N−1∑

i=1

PiN

)
+

N−1∑

i=1

λii



1−

N∑

j=1

j 6=i

Pji







= 1 +

N−1∑

i=1

λii(1 − αii)−









N−1∑

i=1




N∑

j=1

j 6=i

λjjPij



+ PiN



+

[
N−1∑

i=1

λiiPNi

]



= 1 +

N∑

i=2

λii(1− αii)

−






N−1∑

i=1

∫

Zi




N∑

j=1

j 6=i

λjjp(~x|πj)



+ p(~x|πN ) dm~x +

∫

ZN

N−1∑

i=1

λiip(~x|πi) dm~x





. (14)

For a given set of values of the parameters λii {1 ≤ i ≤ N − 1}, F is maximized when the quantity in braces
is minimized. This quantity, in turn, can be minimized by assigning choosing the regions Zi such that a given
~x to the region Zi such that the ith integrand (from among the integrals in braces in Eq. 14) is minimized.
(Situations in which two or more of the integrands yield the same minimal value for a given ~x can be decided in
an arbitrary but consistent fashion.)

That is,

decide πi{i < N} iff λjjp(~x|πj) < λiip(~x|πi) {i < j < N}

and p(~x|πN ) < λiip(~x|πi)

and λjjp(~x|πj) ≤ λiip(~x|πi) {j < i < N} (15)

decide πN iff λjjp(~x|πj) ≤ p(~x|πN ) {j < N}. (16)

We can divide these relations by p(~x|πN ) to obtain

decide πi{i < N} iff λiiLRi − λjjLRj > 0 {i < j < N}

andλiiLRi > 1

andλjjLRj − λiiLRi ≤ 0 {j < i < N} (17)

decide πN iff λjjLRj ≤ 1 {j < N}, (18)

where LRi ≡ p(~x|πi)/p(~x|πN ) are the likelihood ratio decision variables used by the ideal observer.4,5 The

decision boundary hyperplanes which partition the ~LR ≡ (LR1, . . . , LRN−1) decision space into the regions Zi

are thus

λiiLRi − λjjLRj = 0 {i < j < N} (19)

λiiLRi = 1 {i < N}. (20)

Note that any of these equations, for example that defining part of the boundary between classes πj and πk , can
be expressed as the difference of two other such equations (in this example, those defining boundaries between
classes πi and πj , and between classes pii and πk). If we require the λii to be positive, the resulting decision rule
is an ideal observer decision rule.5 Since neither the decision variables nor the form of the decision rule depend
on the particular choices of αii, we can conclude that the N -class sensitivity ROC hypersurface, obtained by
allowing the λii to take on all possible positive values, is optimal for the observer defined in Eqs. 19 and 20, in
the sense that no other observer can achieve a higher sensitivity hypersurface (i.e., one with a greater value of
PNN at a given value of (P11, . . . , P(N−1)(N−1))). The optimal observer for this performance metric is seen to
be the N -class ideal observer, with its decision criteria constrained so that the boundary separating classes πi

and πN is a hyperplane defined by LRi = 1/λii, while the boundary separating classes πi and πj is a hyperplane
defined by λiiLRi = λjjLRj .

Although an intuitive geometric understanding of this decision rule is more elusive than in the three-class
case, it is at least evident that the boundaries intersect as expected; that is, the boundary separating classes
πi and πj intersects the boundary separating classes πi and πk, and also intersects the boundary separating



classes πj and πk. Note also that the number of free decision criteria has been reduced from N2 − N − 1 (for
the general N -class ideal observer) to N − 1 (as expected for a hypersurface in an N -dimensional ROC space).
More importantly, comparison of Eqs. 19 and 20 with Eqs. 10–12 reveals this N -class observer to be an obvious
extension from three to N classes of the observer described in the preceding section.

4. CONCLUSIONS

A fully general performance evaluation methodology for the three-class classification task has yet to be developed,
a frustrating state of affairs given the great success and wide application of ROC analysis to two-class classification
tasks. A primary reason for the difficulty in developing a fully general extension of ROC analysis to the three-
class classification task is the rapid increase in the number of performance measurement variables and decision
criteria necessary to characterize observer (in particular, ideal observer) performance. Specifically, the number
of sensitivities or misclassification rates needed increases from two to six (and to N2 −N in the general case),
while the number of decision criteria increases from a single decision variable threshold to a set of five mutually
constrained8 criteria (and to N2 −N − 1 in the general case). In short, the complexity of the problem increases
not linearly with the number of classes, but quadratically.

The motivation for the numerous proposed methods, outlined in Sec. 1, for evaluating the performance of
a three-class classifier in terms of two-dimensional surfaces in three-dimensional ROC spaces (rather than the
five-dimensional hypersurfaces in six-dimensional ROC spaces required by the theory) is thus quite clear. We
currently lack a theoretical framework with which to judge the appropriateness of any of the proposed methods
to any particular classification task. However, even if one chooses to adopt a performance evaluation metric
known to provide an incomplete description of observer performance, it is still reasonable to ask what observer,
if any, will achieve optimal performance with respect to that metric.

We have addressed that question in regard to measurement of an observer’s performance in terms of only
its sensitivities (the probabilities of correctly classifying the three, or in general N , classes of observations).
Theoretically, this is clearly an incomplete measure of performance (another set of three, or in general N2− 2N ,
misclassification rates are necessary). Conceding this point, we consider it a nontrivial observation, derived in
the preceding sections, that the observer which optimizes this limited performance metric is not one unrelated
to the general ideal observer, nor an arcane special case of the ideal observer, but a special case of the ideal
observer which is in a subjective sense quite simple, and which has been independently evaluated from very
different perspectives by other researchers.9,12 We find these results at once reassuring and encouraging, and
hope that research into this thorny problem will continue to bear unexpected fruit.
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Abstract

We have shown previously that anN -class ideal observer achieves the optimal receiver operat-

ing characteristic (ROC) hypersurface in a Neyman-Pearsonsense. Due to the inherent complexity

of evaluating observer performance even in a three-class classification task, some researchers have

suggested a generally incomplete but more tractable evaluation in terms of a surface plotting only the

three “sensitivities.” More generally, one can evaluate observer performance with a single sensitivity or

misclassification probability as a function of two linear combinations of sensitivities or misclassification

probabilities. We consider four such formulations including the “sensitivity” surface. In each case we

show that the optimal observer with respect to the given evaluation method is a special case of the ideal

observer, with certain constraints placed on the ideal observer’s decision utilities. Furthermore, we show

that if these utility constraints are imposed on a general expression for expected utility, this quantity is

found to depend only on those sensitivities and misclassification probabilities used to construct the ROC

surface in question. That is, for the observer which maximizes performance with respect to the given

restricted ROC surface, that ROC surface provides a complete description of the observer’s performance

in an expected-utility sense.
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Optimization of restricted ROC surfaces in

three-class classification tasks

I. INTRODUCTION

We are attempting to extend the well-known observer performance evaluation methodology of

receiver operating characteristic (ROC) analysis [1], [2]to classification tasks with three classes.

This could conceivably be of benefit, for example, in a medical decision-making task in which

a region of a patient image must be characterized as containing a malignant lesion, a benign

lesion, or only normal tissue [3].

Unfortunately, a fully general extension of ROC analysis has yet to be developed. It is known

that the performance of an observer in a classification task with N classes (N ≥ 2) can be

completely described by a set ofN2 − N conditional error probabilities [4], [5], and that

the performance of the ideal observer (that which minimizesBayes risk [4]) is completely

characterized by an ROC hypersurface in which these conditional error probabilities depend on

a set ofN2 −N − 1 decision criteria [5]. Although analytic expressions for the ideal observer’s

conditional error probabilities given reasonable models for the underlying observational date

have been worked out in the two-class case [6], this has not yet been accomplished in a

fully general manner for tasks with three or more classes. Furthermore, we have shown that

an obvious generalization of the area under the ROC curve (AUC) does not in fact yield a

useful performance metric in tasks with three or more classes [7]. More recently, we showed

that complicated constraining relationships exist among the decision criteria themselves for the

ideal observer [8]. These constraining relationships appear to imply that it is highly unlikely that

analytical expressions for the conditional error probabilities in terms of the decision criteria can

be developed which are as simple to interpret as those for thetwo-class task [6].

Despite the difficulties just described, the potential benefits to be gained from a practical

performance evaluation methodology for classification tasks with three classes have motivated a

number of research groups to propose such methods. These practical methods reduce the number

of degrees of freedom required to describe the observer’s performance, either by implicitly leav-

ing the remaining degrees of freedom out of the analysis, or by explicitly imposing restrictions
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on the form of the observer’s decision rule or on the set of decision criteria used by the observer.

Scurfield evaluated an observer which used a specified decision rule with only two degrees

of freedom (in general a three-class observer can have up to five degrees of freedom) by

plotting a set of six (two-dimensional) surfaces in three-dimensional ROC spaces [9]. Mossman

proposed plotting the surface formed only from the set of three “sensitivities” (conditional

probabilities of correctly classifying observations) foran observer with two degrees of freedom,

and applied this method to an observer with a specified decision rule [10]. Chanet al. began

with an ideal observer model, and reduced the number of decision criteria from five to two by

imposing explicit assumptions on the observer’s decision utilities; a description of the observer’s

performance (which they also showed to be complete) was thenplotted as a surface in a three-

dimensional ROC space, the axes of which are the probabilities of deciding an observation

to be malignant conditional on each of the three actual classmemberships [11]. Heet al.

investigated a special case of the ideal observer model which is also a special case of the

decision rule proposed by Scurfield; they showed that due to the assumptions of their model,

performance evaluation in terms of only the three sensitivities provides a complete description

of this observer’s performance [12].

A common theme among these remarkably diverse methods is theidea of an “ROC surface,”

i. e., a surface with two degrees of freedom in a three-dimensional ROC space. An appealing

feature of such a construct is its visualizability: it can beplotted as readily as any elevation

map, for example, in stark contrast to the fully general three-class classification task involving a

hypersurface with five degrees of freedom in a six-dimensional ROC space as mentioned above.

On the other hand, it can be argued that measurement of three-class classification performance

in terms of only three conditional classification rates willyield an incomplete description of

observer performance. (A complete description should require six such conditional classification

rates as stated above.) Acknowledging this possible incompleteness, we would like to ask whether

there is any sense in which such a restricted performance evaluation method is at least well-

defined. In particular, suppose we elect to measure performance in terms of an ROC surface given

by a single sensitivity or conditional error rate as a function of two different linear combinations

of other sensitivities or conditional error rates). We thenask, is there any observer decision rule,

dependent on only two (rather than five) decision criteria, for which the specified ROC surface

is never below (when the surface’s dependent variable is a sensitivity) or never above (when the
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surface’s dependent variable is a conditional error rate) the corresponding surface obtained for

any other observer? If so, what form does this decision rule take?

In the remainder of this work, four different observer decision strategies proposed recently in

the literature are analyzed with regard to the questions just posed. Each strategy considered is

a special case of the three-class ideal observer, which classifies observations by maximizing the

expected utility of its decisions. For each special case considered here, the expected utility is

constrained to depend on only three (rather than six) conditional classification rates. We show,

in each case, that the observer which maximizes performance, in a Neyman-Pearson sense [4],

[5], is in fact the proposed special case of the ideal observer.

In Sec. II, we consider the decision rule proposed by Chanet al. [11]; in Sec. III, that proposed

by He et al. [12], which is itself a special case (in which the decision variables used are the

logarithms of the likelihood ratios of the data being classified) of the decision rule proposed

by Scurfield [9]; and, in Secs. IV and V, two other special cases of the Scurfield decision rule,

in which the decision variables are, respectively, the likelihood ratios and thea posteriori class

membership probabilities of the data being classified. Finally, we summarize these results and

present some brief conclusions in Sec. VI.

II. THE CHAN ET AL . OBSERVER

The expected utility of the decisions made by an observer in an N-class classification task

can be expressed as [5]

E{U} =
N∑

i=1

N∑

j=1

Ui|jP (d = πi, t = πj)

=
N∑

i=1

N∑

j=1

Ui|jP (d = πi|t = πj)P (t = πj), (1)

where the labelsπ1 throughπN identify the classes to which observations belong; the number

Ui|j is defined as the utility of deciding an observation belongs to classπi given that it is

actually drawn from classπj ; and the random variablest and d indicate the true class to

which a randomly drawn observation belongs and the observer’s decision for classifying that

observation, respectively. For notational simplicity, wewill write the conditional classification

rateP (d = πi|t = πj) asPij , and thea priori class membership probabilityP (t = πi) asP (πi).
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For a three-class classification task, the expected utilitycan be written explicitly as

E{U} = [U1|1P11 + U2|1P21 + U3|1P31]P (π1)

+ [U1|2P12 + U2|2P22 + U3|2P32]P (π2)

+ [U1|3P13 + U2|3P23 + U3|3P33]P (π3). (2)

Note that the nine conditional classification ratesPij appearing in this expression are not

independent; for example, given the definition of conditional probability, it must be the case

that P11 + P21 + P31 = 1. Thus within any pair of square brackets, one of the three conditional

classification rates can be eliminated, leaving an expression which depends in general on six

conditional classification rates.

Chan et al. consider a classification task in which classπ1 represents “benign,” classπ2

“normal,” and classπ3 “malignant” observations (e. g., for structures evident in a medical

image) [11]. They simplify the expression in (2) by restricting all values of utility to lie between

0 and 1; by setting the “correct decision” utilitiesU1|1, U2|2, and U3|3 to be 1; the “missed

malignancy” utilitiesU1|3 andU2|3 to be 0; and the utilities for incorrect decisions not involving

malignanciesU1|2 andU2|1 to be 1. The remaining “false-positive” utilitiesU3|1 andU3|2 are free

to vary in the range[0, 1].

With these assumptions, the expression for expected utility is reduced to

E{UChan} = [P11 + P21 + U3|1P31]P (π1)

+ [P12 + P22 + U3|2P32]P (π2)

+ P33P (π3). (3)

This can in turn be simplified further using the definition of conditional probability to yield

E{UChan} = [1− P31 + U3|1P31]P (π1)

+ [1− P32 + U3|2P32]P (π2)

+ P33P (π3); (4)

as Chanet al. point out [11], this expression depends on three rather thansix conditional

classification rates, namelyP3|1, P3|2, and P3|3. These three rates are used to construct the

ROC space in which they analyze the performance of their observer. That observer in turn is the
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special case of the ideal observer obtained by imposing the above constraints on the decision

utilities Ui|j.

The three-class ideal observer makes decisions by partitioning a likelihood ratio decision

variable plane into three regions with three intersecting lines [4], [5]. The likelihood ratios can

be taken to beLR1 ≡ p(~x|π1)/p(~x|π3) andLR2 ≡ p(~x|π2)/p(~x|π3), ratios of the conditional

probability density functions of the observational data~x taken as functions of that random

observational data. (We use boldface type to denote statistically variable quantities.) In the

notation we advocate [8], the equations for the three decision boundary lines are

γ121LR1 − γ212LR2 = γ313 − γ323 (5)

γ131LR1 + (γ232 − γ212)LR2 = γ313 (6)

(γ131 − γ121)LR1 + γ232LR2 = γ323, (7)

which we call, respectively, the “1-vs.-2” line, the “1-vs.-3” line, and the “2-vs.-3” line. Here

γiji ≡ (Ui|i − Uj|i)P (πi). Although we have found it useful to assume these quantitiesto be

strictly positive, this is not a fundamental requirement, and Chanet al. indeed allow some of

them (e. g., γ121) to be zero (consistent with the constraints they place on the Ui|j as described

above). They obtain the resulting ideal observer decision lines

0LR1 − 0LR2 = 0 {“1-vs.-2”} (8)

(1− U3|1)P (π1)LR1 + (1− U3|2)P (π2)LR2 = P (π3) {“1-vs.-3”} (9)

(1− U3|1)P (π1)LR1 + (1− U3|2)P (π2)LR2 = P (π3) {“2-vs.-3”}, (10)

which actually correspond to a single line (as the first is undefined and the remaining two are

degenerate). This decision strategy is illustrated in Fig.1.

In summary, Chanet al. begin with an ideal observer model, impose particular constraints

on the decision utilities in that model, and then determine,based on those constraints, both the

resulting form of the special case of the ideal observer and the conditional classification rates

appropriate to measuring its performance. We now wish to pose a question from a different

point of view: suppose one chooses to measure arbitrary (i. e., not necessarily ideal) observer

performance only in terms of the conditional classificationratesP33, P31, andP32, ignoring the

other rates. For any observer, we can construct an ROC surface with P33 as a function ofP31
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LR1

LR2

(1− U3|1)P (π1)

(1− U3|1)P (π1)

“π3”

Fig. 1. The decision strategy investigated by Chanet al., which is a special case of the ideal observer decision strategy.

Observations in the unlabeled region are decided “notπ3,” i. e., either “π1” or “ π2”.

andP32. (For an observer with more than two degrees of freedom in itsdecision strategy, one

can simply define the surface to be the maximum value ofP33 achievable at any given(P31, P32)

pair.) What observer, if any, will achieve optimal performance with respect to this surface?

A convenient method for defining “optimal performance” hereis in terms of the Neyman-

Pearson criterion [4], [5]; the technique of satisfying theNeyman-Pearson criterion is essentially

an application of an integral form of the method of Lagrange multipliers [13]. We seek to

maximizeP33 at a particular point(P31 = α31, P32 = α32) in the domain of the given ROC

space. Another way of stating this is to considerP33, P31, andP32 as functionals of the observer’s

decision rule; we seek to maximizeP33 subject to the constraintsP31 = α31 andP32 = α32. To

find this maximum, we define a function

FChan≡ P33 + λ31(P31 − α31) + λ32(P32 − α32), (11)

whereλ31 andλ32 are free parameters (the so-called Lagrange multipliers).Note that maximizing

FChanat the particular point(P31 = α31, P32 = α32) is equivalent to maximizingP33 at that point;

if the maxima for arbitrary points(P31, P32) are achieved by a single decision rule independent

of α31 andα32, the resulting surface will be the desired optimal surface.

As stated in the material leading up to (5)–(7), the decisions here are assumed to be made
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based on statistically variable observational data. Explicitly,

Pij ≡
∫

Zi

p(~x|πj) dm~x, (12)

whereZi is the region for which observations~x (of dimensionm) are decided to belong to the

class labeledπi (1 ≤ i ≤ 3). The expression forFChan can then be simplified as follows:

FChan = 1− P13 − P23 + λ31P31 − λ31α31 + λ32P32 − λ32α32

= 1− λ31α31 − λ32α32 − {P13 + P23 − λ31P31 − λ32P32}

= 1− λ31α31 − λ32α32 −
{∫

Z1

p(~x|π3) dm~x +
∫

Z2

p(~x|π3) dm~x

+
∫

Z3

−λ31p(~x|π1)− λ32p(~x|π2) dm~x
}

. (13)

FChan is maximized when the quantity in braces is minimized. This quantity, in turn, can be

minimized by assigning a given~x to the regionZi such that theith integrand (from among the

integrals in braces in (13)) is minimized. (Situations in which two or more of the integrands

yield the same minimal value for a given~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff p(~x|π3) < p(~x|π3) and p(~x|π3) < −λ31p(~x|π1)− λ32p(~x|π2) (14)

decide π2 iff p(~x|π3) ≤ p(~x|π3) and p(~x|π3) < −λ31p(~x|π1)− λ32p(~x|π2) (15)

decide π3 iff −λ31p(~x|π1)− λ32p(~x|π2) ≤ p(~x|π3)

and − λ31p(~x|π1)− λ32p(~x|π2) ≤ p(~x|π3). (16)

We can divide these relations byp(~x|π3) to obtain

decide π1 iff 0LR1 − 0LR2 > 0 and − λ31LR1 − λ32LR2 > 1 (17)

decide π2 iff 0LR1 − 0LR2 ≤ 0 and − λ31LR1 − λ32LR2 > 1 (18)

decide π3 iff −λ31LR1 − λ32LR2 ≤ 1 and − λ31LR1 − λ32LR2 ≤ 1. (19)

(We assume without loss of generality thatp(~x|π3) > 0, because the task reduces to a two-

class problem for values of~x such thatp(~x|π3) = 0.) The boundary lines which partition the
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(LR1,LR2) decision variable plane into the regionsZ1, Z2, andZ3 are thus

0LR1 − 0LR2 = 0 {“1-vs.-2”} (20)

−λ31LR1 − λ32LR2 = 1 {“1-vs.-3”} (21)

−λ31LR1 − λ32LR2 = 1 {“2-vs.-3”}. (22)

If we requireλ31 and λ32 to be nonpositive, and then define the quantitiesU3|1 and U3|2 such

that−λ31 = (1− U3|1)P (π1)/P (π3) and−λ32 = (1− U3|2)P (π2)/P (π3), the resulting decision

strategy is found to be identical to that stated in (8)–(10).The special case of the ideal observer

proposed by Chanet al., whose performance depends only on the conditional classification rates

P33, P31, andP32 by (4), is indeed the observer which obtains optimal performance with respect

to this set of conditional classification rates.

III. T HE HE ET AL. OBSERVER

He et al. also begin with an ideal observer model and thus with the expression for expected

utility given in (2); the classification task of interest to them is to distinguish two types of

abnormal cardiac ejection from normal cardiac behavior in nuclear medicine studies [12]. They

simplify this expression by requiring that the two possibleincorrect classifications of observations

actually from a given class be equal. That is,U2|1 = U3|1, U1|2 = U3|2, and U1|3 = U2|3. The

expression for expected utility is thereby reduced to

E{UHe} = [U1|1P11 + U2|1(P21 + P31)]P (π1)

+ [U2|2P22 + U1|2(P12 + P32)]P (π2)

+ [U3|3P33 + U1|3(P13 + P23)]P (π3). (23)

This can in turn be simplified further using the definition of conditional probability to yield

E{UHe} = [U2|1 + (U1|1 − U2|1)P11]P (π1)

+ [U1|2 + (U2|2 − U1|2)P22]P (π2)

+ [U1|3 + (U3|3 − U1|3)P33]P (π3); (24)

as Heet al. point out [12], this expression depends on only the three “sensitivities” P11, P22, and

P33, rather than six conditional classification rates. The three sensitivities are used to construct the

May 30, 2006 DRAFT



9

LR1

LR2

γ313

γ121

γ313

γ212 “π1”

“π2”

“π3”

Fig. 2. The decision strategy investigated by Heet al., which is a special case of the ideal observer decision strategy, and

which can also be shown to be a special case of the Scurfield observer with decision variables equal to the logarithms of the

likelihood ratios of the observational data.

ROC space (equivalent to that proposed by Mossman [10]) in which they analyze the performance

of their observer. That observer in turn is the special case of the ideal observer obtained by

imposing the above constraints on the decision utilitiesUi|j.

Applying the stated constrains on the utilities to the idealobserver decision boundary lines

given in (5)–(7) yields

γ121LR1 − γ212LR2 = 0 (25)

γ121LR1 = γ313 (26)

γ212LR2 = γ313. (27)

This decision strategy is illustrated in Fig. 2. We have recently shown [14] that this decision

strategy is a special case of that proposed by Scurfield [9] when the decision variables used by

the Scurfield observer are the logarithms of the likelihood ratios of the observational data.

We now consider evaluating the performance of an arbitrary observer in the ROC space

constructed only from the observer’s sensitivities (i. e., P11, P22, and P33). Without loss of

generality, we can define such an observer’s ROC surface asP33 considered as a function of

P11 andP22; to find the optimal observer with respect to this restrictedperformance evaluation
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method, we apply the Neyman-Pearson criterion to maximizeP33 subject to the constraints

(P11 = α11, P22 = α22). We define the function

FHe ≡ P33 + λ11(P11 − α11) + λ22(P22 − α22), (28)

whereλ11 andλ22 are again the Lagrange multipliers.

Using (12), this can be simplified to yield

FHe = 1− P13 − P23 + λ11(1− P21 − P31)− λ11α11 + λ22(1− P12 − P32)− λ22α22

= 1− λ11α11 − λ22α22 − {P13 + P23 + λ11(P21 + P31) + λ22(P12 + P32)}

= 1− λ11α11 − λ22α22 −
{∫

Z1

λ22p(~x|π2) + p(~x|π3) dm~x

+
∫

Z2

λ11p(~x|π1) + p(~x|π3) dm~x +
∫

Z3

λ11p(~x|π1) + λ22p(~x|π2) dm~x
}

. (29)

FHe is maximized when the quantity in braces is minimized. This quantity, in turn, can be

minimized by assigning a given~x to the regionZi such that theith integrand (from among the

integrals in braces in (29)) is minimized. (Situations in which two or more of the integrands

yield the same minimal value for a given~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff λ22p(~x|π2) < λ11p(~x|π1) and p(~x|π3) < λ11p(~x|π1) (30)

decide π2 iff λ11p(~x|π1) ≤ λ22p(~x|π2) and p(~x|π3) < λ22p(~x|π2) (31)

decide π2 iff λ11p(~x|π1) ≤ p(~x|π3) and λ22p(~x|π2) ≤ p(~x|π3). (32)

We can divide these relations byp(~x|π3) to obtain

decide π1 iff λ11LR1 − λ22LR2 > 0 and λ11LR1 > 1 (33)

decide π2 iff λ11LR1 − λ22LR2 ≤ 0 and λ22LR2 > 1 (34)

decide π3 iff λ11LR1 ≤ 1 and λ22LR2 ≤ 1. (35)

The boundary lines which partition the(LR1,LR2) decision variable plane into the regionsZ1,

Z2, andZ3 are thus

λ11LR1 − λ22LR2 = 0 {“1-vs.-2”} (36)

λ11LR1 = 1 {“1-vs.-3”} (37)

λ22LR2 = 1 {“2-vs.-3”}. (38)
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If we requireλ11 and λ22 to be positive, and define the quantitiesγ121 ≡ λ11γ313 and γ212 ≡

λ22γ313 for some arbitrary positiveγ313, then the resulting decision strategy is found to be

identical to that stated in (25)–(27). The special case of the ideal observer proposed by He

et al., whose performance depends only on the conditional classification ratesP11, P22, andP33

by (24), is indeed the observer which obtains optimal performance with respect to this set of

conditional classification rates.

IV. THE SCURFIELD OBSERVER (L IKELIHOOD RATIO)

In the preceding two sections, we considered decision strategies that have been proposed by

other researchers as special cases of the three-class idealobserver decision strategy. That is,

particular constraints were explicitly imposed in the workcited on the decision utilities used

by the ideal observer. The remaining two decision strategies we consider in the present work

are special cases of a decision strategy proposed by Scurfield [9] which was not claimed to be

generally related to the ideal observer; specifically, Scurfield specified the decision boundary

lines used by the observer, but made no assumptions concerning the observer’s two decision

variables.

We showed recently [14] that if particular forms of the observer’s decision variables related to

the likelihood ratios of the observational data are chosen,then the resulting decision strategies

can be shown to be special cases of the ideal observer decision strategy. One such special case

is the observer analyzed by Heet al. [12], discussed in Sec. III, in which the decision variables

used by the Scurfield observer are the logarithms of the likelihood ratios. Two other such special

cases are the Scurfield observer with the likelihood ratios themselves as decision variables, which

we consider in this section; and that with thea posteriori class membership probabilities used

as decision variables, considered in Sec. V. A minor difference from the preceding two sections

is that we must determine the the implicit constraints on theideal observer’s utilities from the

known form of the decision rule, rather than the other way around.

The general Scurfield observer makes decisions by partitioning a decision variable plane

(y
1
,y

2
) into three regionsvia the decision boundary lines

y1 − y2 = γ1 − γ2 (39)

y1 = γ1 (40)
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LR1

LR2

γ313

γ121

γ323

γ121 “π1”

“π2”

“π3”

Fig. 3. A special case of the decision strategy investigatedby Scurfield, in which the decision variables used are the likelihood

ratios (LR1,LR2) of the observational data.

y2 = γ2, (41)

where γ1 and γ2 are parameters upon which the observer’s performance depends (roughly

equivalent to the decision criterion of a two-class classifier). When the decision variables are

themselves the likelihood ratios(LR1,LR2), this becomes in our notation

LR1 − LR2 =
γ313 − γ323

γ121

(42)

LR1 =
γ313

γ121

(43)

LR2 =
γ323

γ121

. (44)

(Compare (39)–(41) with (5)–(7), and note that in order for the “1-vs.-2” line to have unit slope,

it must be the case thatγ121 = γ212.) This decision strategy is illustrated in Fig. 3.

The relationsγ121 = γ131 and γ212 = γ232 evident from the above equations immediately

give the constraints on the decision utilitiesU2|1 = U3|1 and U1|2 = U3|2. Furthermore, the

relation γ121 = γ212 gives (U1|1 − U2|1)P (π1) = (U2|2 − U1|2)P (π2). (Recall from Sec. II that

γiji ≡ (Ui|i − Uj|i)P (πi).) This allows us to simplify the expression for expected utility in (2)
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to yield

E{UScurfield:LR} = [U1|1P11 + U2|1(P21 + P31)]P (π1)

+ [U2|2P22 + U1|2(P12 + P32)]P (π2)

+ [U1|3P13 + U2|3P23 + U3|3P33]P (π3). (45)

This can in turn be simplified further using the definition of conditional probability to yield

E{UScurfield:LR} = [U1|1P11 + U2|1(1− P11)]P (π1)

+ [U2|2P22 + U1|2(1− P22)]P (π2)

+ [U1|3P13 + U2|3P23 + U3|3(1− P13 − P23)]P (π3)

= [U2|1 + (U1|1 − U2|1)P11]P (π1)

+ [U1|2 + (U2|2 − U1|2)P22]P (π2)

+ [U3|3 + (U1|3 − U3|3)P13 + (U2|3 − U3|3)P23]

= U2|1P (π1) + U1|2P (π2) + U3|3P (π3)

+ (P11 + P22)(U1|1 − U2|1)P (π1)

+ [P13(U1|3 − U3|3) + P23(U2|3 − U3|3)]P (π3). (46)

This expression for the observer’s expected utility depends on only three terms related to

conditional classification rates:P13 and P23, which may be regarded as the misclassification

rates for observations actually drawn from classπ3; andP11 + P22, which may be regarded as

the “total sensitivity” for observations actually drawn from classesπ1 and π2 (ignoring thea

priori rates for such observations).

We now consider evaluating the performance of an arbitrary observer in an ROC-like space

constructed from the quantitiesP11 + P22, P13, andP23. We will define the ROC-like surface

used to evaluate observer performance as the first quantity considered as a function of the two

misclassification rates. To find the optimal observer with respect to this restricted performance

evaluation method, we apply the Neyman-Pearson criterion to maximizeP11 + P22 subject to

the constraints(P13 = α13, P23 = α23). We define the function

FScurfield:LR≡ P11 + P22 + λ13(P13 − α13) + λ23(P23 − α23), (47)
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whereλ13 andλ23 are the Lagrange multipliers.

Using (12), this can be simplified to yield

FScurfield:LR = 1− P21 − P31 + 1− P12 − P32 + λ13P13 − λ13α13 + λ23P23 − λ23α23

= 2− λ13α13 − λ23α23 − {P21 + P31 + P12 + P32 − λ13P13 − λ23P23}

= 2− λ13α13 − λ23α23 −
{∫

Z1

p(~x|π2)− λ13p(~x|π3) dm~x

+
∫

Z2

p(~x|π1)− λ23p(~x|π3) dm~x +
∫

Z3

p(~x|π1) + p(~x|π2) dm~x
}

. (48)

FScurfield:LR is maximized when the quantity in braces is minimized. This quantity, in turn, can

be minimized by assigning a given~x to the regionZi such that theith integrand (from among

the integrals in braces in (48)) is minimized. (Situations in which two or more of the integrands

yield the same minimal value for a given~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff p(~x|π2)− λ13p(~x|π3) < p(~x|π1)− λ23p(~x|π3)

and − λ13p(~x|π3) < p(~x|π1) (49)

decide π2 iff p(~x|π1)− λ23p(~x|π3) ≤ p(~x|π2)− λ13p(~x|π3)

and − λ23p(~x|π3) < p(~x|π2) (50)

decide π3 iff p(~x|π1) ≤ −λ13p(~x|π3) and p(~x|π2) ≤ −λ23p(~x|π3). (51)

We can divide these relations byp(~x|π3) to obtain

decide π1 iff LR1 − LR2 > −λ13 + λ23 and LR1 > −λ13 (52)

decide π2 iff LR1 − LR2 ≤ −λ13 + λ23 and LR2 > −λ23 (53)

decide π3 iff LR1 ≤ −λ13 and LR2 ≤ λ23. (54)

The boundary lines which partition the(LR1,LR2) decision variable plane into the regionsZ1,

Z2, andZ3 are thus

LR1 − LR2 = −λ13 + λ23 {“1-vs.-2”} (55)

LR1 = −λ13 {“1-vs.-3”} (56)

LR2 = −λ23 {“2-vs.-3”}. (57)
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If we requireλ13 andλ23 to be negative, and define the quantitiesγ313 ≡ −λ13γ121 andγ323 ≡

−λ23γ121 for some arbitrary positiveγ121, then the resulting decision strategy is found to be

identical to that stated in (42)–(44). This special case of the observer proposed by Scurfield,

which we have shown to be a special case of the ideal observer [14], has a performance that

depends only on the quantitiesP11 + P22, P13, and P23 by (46). This is indeed the observer

which obtains optimal performance with respect to this set of quantities related to the conditional

classification rates.

V. THE SCURFIELD OBSERVER (A POSTERIORICLASS PROBABILITY )

Equations (39)–(41) in Sec. IV give the equations for the decision boundary lines of the general

Scurfield observer. If we now use two of thea posteriori class membership probabilities, such

asP (π1|~x) andP (π2|~x), as the decision variables, the equations become

P (π1|~x)− P (π2|~x) = γ1 − γ2 (58)

P (π1|~x) = γ1 (59)

P (π2|~x) = γ2, (60)

with 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1. (Note thatP (π3|~x) = 1 − P (π1|~x) − P (π2|~x), meaning

this third probability is not needed as an independent decision variable; the particular choice

of which two probabilities to use is of course arbitrary.) This decision strategy, which we have

shown recently to be a special case of the ideal observer decision strategy [14], is illustrated in

Fig. 4.

We can reexpress the above equations in terms of likelihood ratios by exploiting the relation

P (πi|~x) =
p(~x|πi)P (πi)

p(~x)

=
LRi[P (πi)/P (π3)]

1 + LR1[P (π1)/P (π3)] + LR2[P (π2)/P (π3)]
, (61)

where the second equation is obtained by dividing the numerator and denominator byp(~x|π3)P (π3).
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P (π1|~x)

P (π2|~x)

γ1

γ2

“π1”

“π2”

“π3”

Fig. 4. A special case of the decision strategy investigatedby Scurfield, in which the decision variables used are thea posteriori

class membership probabilitiesP (π1|~x) andP (π2|~x) of the observational data.

The equations for the decision boundary lines become

LR1

P (π1)

P (π3)
− LR2

P (π2)

P (π3)
= (γ1 − γ2)

(

1 + LR1

P (π1)

P (π3)
+ LR2

P (π2)

P (π3)

)

(62)

LR1

P (π1)

P (π3)
= γ1

(

1 + LR1

P (π1)

P (π3)
+ LR2

P (π2)

P (π3)

)

(63)

LR2

P (π2)

P (π3)
= γ2

(

1 + LR1

P (π1)

P (π3)
+ LR2

P (π2)

P (π3)

)

, (64)

which can in turn be simplified to yield

[1− (γ1 − γ2)]P (π1)LR1 − [1 + (γ1 − γ2)]P (π2)LR2 = (γ1 − γ2)P (π3) (65)

(1− γ1)P (π1)LR1 − γ1P (π2)LR2 = γ1P (π3) (66)

−γ2P (π1)LR1 + (1− γ2)P (π2)LR2 = γ2P (π3). (67)

Although the above equations for the decision boundary lines are notably more complicated

than those of the previous three sections, we can still relate the parametersγ1 and γ2 to the

decision rule parameters of (5)–(7) to obtain constraints on the utilities Ui|j. For example,
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comparison of (66) with (6) gives

γ232 − γ212 = −γ1P (π2)

U1|2 − U3|2 = −γ1, (68)

γ313 = γ1P (π3)

U3|3 − U1|3 = γ1. (69)

This immediately gives the constraint

−(U1|2 − U3|2) = U3|3 − U1|3. (70)

Similarly, comparison of (67) and (7) gives

γ131 − γ121 = −γ2P (π1)

U2|1 − U3|1 = −γ2, (71)

γ323 = γ2P (π3)

U3|3 − U2|3 = γ2, (72)

yielding the constraint

−(U2|1 − U3|1) = U3|3 − U2|3. (73)

Finally, we add the first two coefficient of (65) and then compare with (5) to obtain

[1− (γ1 − γ2)]− [1 + (γ1 − γ2)] = −2(γ1 − γ2)

(U1|1 − U2|1)− (U2|2 − U1|2) = −2(U2|3 − U1|3). (74)

(On the right hand side of the above equation, we have made useof (69) and (72).) Note that

the remaining terms in (65)–(67) involvingγ1 or γ2 are simply differences of terms already

considered, and would thus yield no further constraints on the utilities.

We can now impose constraints (70), (73), and (74) on the general expression (2) for expected
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utility to obtain the expected utility for this observer:

E{UScurfield:AP} = [U1|1P11 + U2|1(1− P11 − P31) + U3|1P31]P (π1)

+ [U1|2(1− P22 − P32) + U2|2P22 + U3|2P32]P (π2)

+ [U1|3P13 + U2|3P23 + U3|3(1− P13 − P23)]P (π3)

= [(U1|1 − U2|1)P11 − (U2|1 − U3|1)P31 + U2|1]P (π1)

+ [(U2|2 − U1|2)P22 − (U1|2 − U3|2)P32 + U1|2]P (π2)

+ [−(U3|3 − U1|3)P13 − (U3|3 − U2|3)P23 + U3|3]P (π3)

= {(U1|1 − U2|1)P11 + (U3|3 − U2|3)P31 + U2|1}P (π1)

+ {[(U1|1 − U2|1) + 2(U2|3 − U1|3)]P22(U3|3 − U1|3)P32 + U1|2}P (π2)

+ {−(U3|3 − U1|3)P13 − (U3|3 − U2|3)P23 + U3|3]P (π3)

= U2|1P (π1) + U1|2P (π2) + U3|3P (π3)

+ (U1|1 − U2|1)[P (π1)P11 + P (π2)P22]

+ (U3|3 − U1|3)[P (π2)P32 + 2P (π2)P22 − P (π3)P13]

+ (U3|3 − U2|3)[P (π1)P31 − 2P (π2)P22 − P (π3)P23]. (75)

As was the case for the decision strategies of the preceding three sections, the expected utility of

this observer (and thus its performance, as it too is a special case of the ideal observer) depends

on only three quantities related to conditional classification rates (but not the observer’s decision

utilities), namely the quantities in square brackets in (75).

The first quantity, being a weighted sum of “sensitivities” with positive weights, is immediately

seen to be quite suitable for the dependent variable of an ROCsurface — a higher value of

this quantity is clearly preferable to a lower one. (Indeed,P (π1)P11 +P (π2)P22 has an intuitive

interpretation as the probability of a randomly drawn observation being both (i) from either

classπ1 or π2 and also (ii) correctly classified as such. Compare the corresponding quantity

P11 + P22 from Sec. IV, which is technically not even a probability.) The second two quantities

in square brackets in (75) discourage any such straightforward interpretation, but this is perhaps

to be expected: the pleasantly symmetric form of the Scurfield decision rule of (39)–(41) in

this case holds in the(P (π1|~x), P (π2|~x)) decision variable plane; due to the complexity of the
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transformation in (61), this symmetry will be lost in the likelihood ratio decision variable plane,

and the expression for expected utility will be correspondingly opaque.

In any case, we now consider evaluating the performance of anarbitrary observer in an

ROC-like space constructed from the quantitiesP (π1)P11 +P (π2)P22, P (π2)P32 +2P (π2)P22−

P (π3)P13, andP (π1)P31− 2P (π2)P22−P (π3)P23. We will define the ROC-like surface used to

evaluate observer performance as the first quantity considered as a function of the second two.

To find the optimal observer with respect to this restricted performance evaluation method, we

apply the Neyman-Pearson criterion to maximizeP (π1)P11 +P (π2)P22 subject to the constraints

P (π2)P32 + 2P (π2)P22 − P (π3)P13 = α1, P (π1)P31 − 2P (π2)P22 − P (π3)P23 = α2). We define

the function

FScurfield:AP ≡ P (π1)P11 + P (π2)P22

+λ1[P (π2)P32 + 2P (π2)P22 − P (π3)P13 − α1]

+λ2[P (π1)P31 − 2P (π2)P22 − P (π3)P23 − α2], (76)

whereλ1 andλ2 are the Lagrange multipliers.

Using (12), this can be simplified to yield

FScurfield:AP = −λ1α1 − λ2α2 + P (π1)
∫

Z1

p(~x|π1) dm~x + P (π2)
∫

Z2

p(~x|π2) dm~x

+λ1

[
P (π2)

∫

Z3

p(~x|π2) dm~x + 2P (π2)
∫

Z2

p(~x|π2) dm~x

−P (π3)
∫

Z1

p(~x|π3) dm~x
]

+λ2

[
P (π1)

∫

Z3

p(~x|π1) dm~x− 2P (π2)
∫

Z2

p(~x|π2) dm~x

−P (π3)
∫

Z2

p(~x|π3) dm~x
]
. (77)

Collecting terms with given domains of integration yields

FScurfield:AP = −λ1α1 − λ2α2

+
∫

Z1

P (π1)p(~x|π1)− λ1P (π3)p(~x|π3) dm~x

+
∫

Z2

P (π2)p(~x|π2) + 2(λ1 − λ2)P (π2)p(~x|π2)− λ2P (π3)p(~x|π3) dm~x

+
∫

Z3

λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) dm~x. (78)
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FScurfield:APcan be minimized by assigning a given~x to the regionZi such that the integrand

overZi in (78) is minimized. (Situations in which two or more of the integrands yield the same

minimal value for a given~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff P (π1)p(~x|π1)− λ1P (π3)p(~x|π3)

> P (π2)p(~x|π2) + 2(λ1 − λ2)P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

and P (π1)p(~x|π1)− λ1P (π3)p(~x|π3)

> λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) (79)

decide π2 iff P (π2)p(~x|π2) + 2(λ1 − λ2)P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

≥ P (π1)p(~x|π1)− λ1P (π3)p(~x|π3)

and P (π2)p(~x|π2) + 2(λ1 − λ2)P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

> λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) (80)

decide π3 iff λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) ≥ P (π1)p(~x|π1)− λ1P (π3)p(~x|π3)

and λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1)

≥ P (π2)p(~x|π2) + 2(λ1 − λ2)P (π2)p(~x|π2)− λ2P (π3)p(~x|π3). (81)

At this point, we could divide the above equations byp(~x|π3 to obtain decision rules in terms of

the likelihood ratios, as in the preceding sections. However, it is in this case more convenient to

work with the a posteriori class membership probabilities directly; moreover, because we have

established that (58)–(60) represent the boundary lines ofan ideal observer decision rule, we

are justified in doing so. Thus, given thatP (πi)p(~x|πi) = P (πi|~x)p(~x), we divide (79)–(81) by

p(~x) to obtain

decide π1 iff P (π1|~x)− λ1P (π3|~x)

> P (π2|~x) + 2(λ1 − λ2)P (π2|~x)− λ2P (π3|~x)

and P (π1|~x)− λ1P (π3|~x)

> λ1P (π2|~x) + λ2P (π1|~x) (82)

decide π2 iff P (π2|~x) + 2(λ1 − λ2)P (π2|~x)− λ2P (π3|~x)

May 30, 2006 DRAFT



21

≥ P (π1|~x)− λ1P (π3|~x)

and P (π2|~x) + 2(λ1 − λ2)P (π2|~x)− λ2P (π3|~x)

> λ1P (π2|~x) + λ2P (π1|~x) (83)

decide π3 iff λ1P (π2|~x) + λ2P (π1|~x) ≥ P (π1|~x)− λ1P (π3|~x)

and λ1P (π2|~x) + λ2P (π1|~x)

≥ P (π2|~x) + 2(λ1 − λ2)P (π2|~x)− λ2P (π3|~x). (84)

As noted at the beginning of this section,P (π3|~x) = 1−P (π1|~x)−P (π2|~x). After rearranging

terms, the boundary lines which partition the(P (π1|~x), P (π1|~x)) decision variable plane into

the regionsZ1, Z2, andZ3 are found to be

(1 + λ1 − λ2)P (π1|~x)− (1 + λ1 − λ2)P (π2|~x) = λ1 − λ2 {“1-vs.-2”} (85)

(1 + λ1 − λ2)P (π1|~x) = λ1 {“1-vs.-3”} (86)

(1 + λ1 − λ2)P (π2|~x) = λ2 {“2-vs.-3”}. (87)

If we define the quantitiesγ1 ≡ λ1/(1 + λ1 − λ2) and γ2 ≡ λ2/(1 + λ1 − λ2), and further

require0 < λ1 and 0 < λ2 < min{1, (λ1 + 1)/2} (so that0 < γ1 < 1 and 0 < γ2 < 1), then

the resulting decision strategy is found to be identical to that stated in (58)–(60). This special

case of the observer proposed by Scurfield, which we have shown to be a special case of the

ideal observer [14], has a performance that depends only on the quantitiesP (π1)P11+P (π2)P22,

P (π2)P32+2P (π2)P22−P (π3)P13, andP (π1)P31−2P (π2)P22−P (π3)P23 by (75). The observer

described above is indeed that which obtains optimal performance with respect to this set of

quantities related to the conditional classification rates.

VI. CONCLUSIONS

Given the rapidly increase in complexity of the utility constraints and performance evaluation

criteria as one proceeds from Secs. II to V, it is quite possible for the main point of the above

analyses to become obscured. That main point is that, for each of a variety of constrained

special cases of the three-class ideal observer, the performance of that observer is completely

describable, in an expected-utility sense, by only two decision criteria and three quantities related
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to conditional classification rates. This represents a considerable simplification from the general

model, which is known to involve five decision criteria and six conditional classification rates.

It should be immediately acknowledged that such simplified models may ultimately prove to

be of limited practical importance. Given an observer knownto closely approximate the behavior

of the ideal observer, or indeed given a human observer, it isdifficult to conceive of a pragmatic

way to externally constrain the observer’s decision utilities to match a particular model such as

the ones described above. On the other hand, an algorithmic observer (such as an implementation

of a computerized scheme for computer-aided diagnosis) might readily allow such constraints

on its decisionrules to be implemented; however, the assumption that the probability density

functions of the decisionvariables generated by the scheme do indeed follow those required

by the ideal observer model would generally be unverifiable,given the limited amount of data

typically available for training and testing such a scheme.

Despite these limitations, it remains an acknowledged factthat a fully general extension of

ROC analysis to classification tasks with three or more classes has yet to be developed. Although

the investigation of constrained and therefore tractable observer models should not be considered

an end unto itself, a thorough understanding of such models is almost certain to prove necessary

for the development of more general observer models. We believe that demonstrating particular

constrained ideal observer models to be complete as well as tractable will be a crucial step

toward this understanding.
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