

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FINGERPRINTING 802.11 DEVICES

by

Jonathan P. Ellch

September 2006

 Thesis Advisor: Dennis Volpano
 Co-Advisor: Chris Eagle

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Fingerprinting 802.11 Devices
6. AUTHOR(S) Jonathan P. Ellch

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The research presented in this thesis provides the reader with a set of algorithms and techniques that enable the user to

remotely determine what chipset and device driver an 802.11 device is using. The work details both passive and active approaches,
and quantitatively gauges the effectiveness of various techniques.

The implications of this are far ranging. On one hand, the techniques can be used to implement innovative new features
in Wireless Intrusion Detection Systems (WIDS). On the other, they can be used to target link layer device driver attacks with
much higher precision.

15. NUMBER OF
PAGES

85

14. SUBJECT TERMS Link Layer Fingerprint, 802.11, WIDS

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

FINGERPRINTING 802.11 DEVICES

Jonathan P. Ellch
Civilian, Federal Cyber Corps
B.S., Purdue University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Jonathan Ellch

Approved by: Dennis Volpano
Thesis Advisor

Chris Eagle
Co-Advisor

 Peter J. Denning, Ph.D.
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The research presented in this thesis provides the reader with a set of algorithms

and techniques that enable the user to remotely determine what chipset and device driver

an 802.11 device is using. The work details both passive and active approaches, and

quantitatively gauges the effectiveness of various techniques.

The implications of this are far ranging. On one hand, the techniques can be used

to implement innovative new features in Wireless Intrusion Detection Systems (WIDS).

On the other, they can be used to target link layer device driver attacks with much higher

precision.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. WHY FINGERPRINT 802.11?...1
B. WHAT IS 802.11? ..2
C. FINDING AN 802.11 FINGERPRINT ..3
D. ACTIVE 802.11 IDENTIFICATION...4
E. PASSIVE 802.11 IDENTIFICATION ...5
F. ORGANIZATION OF THESIS ...5

II. OVERVIEW OF THE 802.11 MAC ..7
A. 802.11 BASICS ...7
B. ASSOCIATION AND AUTHENTICATION ...8
C. PHYSICAL AND VIRTUAL CARRIER SENSE ..9
D. RTS/CTS CONTROL FRAMES..10

III. ACTIVE IDENTIFICATION...13
A. RTS/CTS WINDOW HONORING..13
B. ASSOCIATION REDIRECTION..15
C. ASSOCIATION REDIRECTION AS A FINGERPRINTING TOOL.....17

IV. PASSIVE IDENTIFICATION ...21
A. DURATION ANALYSIS...21
B. WHAT IS IN A PRINT DATABASE?...22
C. THE DURATION MATCHING ALGORITHM..24
D. SIMPLECOMPARISON METRIC...24
E. MEDIUMCOMPARE METRIC..28
F. COMPLEXCOMPARE METRIC...30
G. BAYESCOMPARE METRIC ..32
H. MODIFIED BAYESCOMPARE METRIC ..35

V. RESULTS FOR DURATION-BASED METRICS...39
A. SIMPLECOMPARE..40
B. MEDIUMCOMPARE ...42
C. COMPLEXCOMPARE ..42
D. BAYESCOMPARE..42
E. MODIFIED BAYESCOMPARE..43
F. RESULTS SUMMARY...43

VI. CONCLUSIONS ..45
A. FUTURE WORK - MAC VS PHY FINGERPRINTING..........................45

APPENDIX A. COMPLETE RESULTS..47
A. ASSOCIATION REDIRECTION RESULTS...47
B. DURATION ANALYSIS RESULTS ...51

1. SimpleCompare Results ..51
2. MediumCompare Results..52
3. ComplexCompare Results...53
4. BayesCompare Results ..54

 viii

5. BayesCompare-Modified Results ...54
6. Duration analysis Results Summary ..55

APPENDIX B. IMPLEMENTATION CONSIDERATIONS...57
A. PCAP CREATION FOR DURATION ANALYSIS...................................58

APPENDIX C. TOOL USAGE..59
A. DURATION ANALYSIS...59
B. DURATION-PRINT-GRADER ...60

APPENDIX D. COMPREHENSIVE DEVICE DRIVER INFORMATION63

LIST OF REFERENCES..67

INITIAL DISTRIBUTION LIST ...69

ix

LIST OF FIGURES

Figure 1. Association Redirection. ..16
Figure 2. Basic Service Set Assignment ...17
Figure 3. SimpleCompare duration-value only analysis ...26
Figure 4. SimpleCompare (packet type, duration) analysis ..27
Figure 5. MediumCompare duration-value only analysis ...29
Figure 6. MediumCompare (packet_type, duration) analysis ...30
Figure 7. ComplexCompare duration-value only analysis..31
Figure 8. ComplexCompare (packet_type, duration) analysis ..32
Figure 9. BayesCompare duration value only analysis ...34
Figure 10. BayesCompare (packet_type, duration) analysis...35
Figure 11. BayesCompare-Modified duration value only analysis...................................36
Figure 12. BayesCompare-Modified (packet-type, duration) analysis37

 x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Example output of CTS fingerprinter ..14
Table 2. Unique responses to Association redirection in Association response

frames...18
Table 3. Unique responses to Association redirection, limited to authentication

replies...18
Table 4. Summary of databases created...22
Table 5. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie.........................23
Table 6. Implementation-Id: 9 (Prism-2.5, smc2532w.sys), database: Lexie................23
Table 7. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie.........................24
Table 8. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie.........................24
Table 9. Ordered list generated from a matching metric. ..40
Table 10. SimpleCompare, duration values only...41
Table 11. SimpleCompare, (packet_type, duration) pairs only41
Table 12. SimpleCompare combined...41
Table 13. MediumCompare, (packet_type, duration) pairs only42
Table 14. ComplexCompare, (packet_type, duration) pairs only42
Table 15. Results summary..43
Table 16. Association Redirection results, Association replies only...............................47
Table 17. Association Redirection results, Authentication replies only49
Table 18. Association Redirection results, Authentication and Association replies50
Table 19. Association redirection results key. ...51
Table 20. SimpleCompare, duration values only...51
Table 21. SimpleCompare, (packet_type, duration) pairs only52
Table 22. SimpleCompare combined...52
Table 23. MediumCompare, duration values only...52
Table 24. MediumCompare, (packet_type, duration) pairs only52
Table 25. MediumCompare combined...53
Table 26. ComplexCompare, duration values only..53
Table 27. ComplexCompare, (packet_type, duration) pairs only53
Table 28. ComplexCompare combined. ..53
Table 29. BayesCompare, duration values only ..54
Table 30. BayesCompare, (packet_type, duration) pairs only...54
Table 31. BayesCompare combined. ...54
Table 32. BayesCompare-modified, duration values only...54
Table 33. BayesCompare-modified, (packet_type, duration) pairs only55
Table 34. BayesCompare-modified combined...55
Table 35. Results summary..55
Table 36. Sample output from duration-print-matcher ..60
Table 37. output from: ./duration-print-grader -P ./print-db/lexie/61
Table 38. Exhaustive 802.11 implementation data ..63

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to thank Dr. Volpano for his technical as well as editorial expertise.

Without his help this work would be significantly more difficult on the reader. I would

also like to Joshua Wright and Mike Kershaw for their technical input and contributions

to those of us interested in 802.11.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The adoption of wireless local area networks (WLAN) has exploded in recent

years due in large part to standardization by the IEEE and certified WiFi interoperability;

see the compilation Wireless LAN Edition [1]. Vendors ship products that they claim

conform to the IEEE 802.11 standard and in many ways, they do, as the WiFi industry

consortium can confirm. Yet products can also vary widely in their implementations of

this standard. An implementation usually comprises a software component (the device

driver) the hardware (radio chipset), and firmware for that chipset. The combination of

the three uniquely identifies the implementation. Invariably, an implementation exhibits

some behavior that can be observed or measured and is unique. This behavior is called

its 802.11 fingerprint. Fingerprints enable us to identify 802.11 implementations.

A. WHY FINGERPRINT 802.11?
Some 802.11 implementations have vulnerabilities that make devices that use the

wireless technology vulnerable as well. Exploits developed for one implementation may

not work for another so an attacker prefers to identify the implementation first. Then

they can choose the appropriate exploit rather than cycling through them and possibly

drawing attention to themselves by crashing a device with the wrong exploit.

Fingerprints can also be used in a defensive way. A system administrator may

maintain a database of authorized devices approved for use on their WLAN. Typically

the devices are identified by their globally-unique 802.11 MAC addresses. But this is

insufficient because a MAC address can be easily cloned by an authorized user using an

unauthorized device. A better approach is to use an 802.11 fingerprint. Knowing which

802.11 implementations are vulnerable, an administrator can monitor their environment

for wireless activity, observe 802.11 fingerprints and be notified of an authorized user

who is using a device with a vulnerable 802.11 implementation even if the device clones

the 802.11 MAC address of an authorized, and presumably secure, implementation.

There are a variety of monitoring products on the market today, generally called Wireless

Intrusion Detection Systems (WIDS), where 802.11 fingerprints could be observed.

 2

This thesis describes three techniques for identifying a given 802.11

implementation based on its fingerprint. Two are active in that they require the

implementation to participate in a portion of the 802.11 protocol. One active technique

requires transmission of various control frames, and the other requires a special AP that

crafts particular frames. The third technique is passive in that it processes a snapshot of

802.11 protocol traffic produced by the given implementation over a relatively short

period of time.

B. WHAT IS 802.11?
802.11 is a link-layer protocol standard ratified by the IEEE. The first version of

the standard was ratified in 1997 and the most recent revision was ratified in 1999 and

reaffirmed in June 2003 [2]. Alternative data rates and PHY-layer protocols are specified

in amendments 802.11b-1999 and 802.11a-1999 respectively. The Wireless LAN Edition

is a compilation of the standard and its amendments. Many people equate “Wi-Fi” with

802.11. Wi-Fi is a term created by the Wi-Fi association [3]. It is quite possible for a

device to be Wi-Fi compliant without fully complying with the 802.11 standard.

IEEE Std 802.11 is a Media Access Control (MAC) and Physical Layer (PHY)

standard governing wireless local area networks operating in the ISM band which is

unlicensed radio spectrum. This required the 802.11 Task Group to deal with problems

that have no simple analogy in the wired world.

One of the most obvious problems is the unreliability of a wireless link. The

standard operates in unlicensed spectrum and therefore competes with cordless phones

and other wireless networks for the medium. Different wireless networks using the same

frequency must co-exist. The designers had to take into account various means to stop

independent networks from unfairly impacting the performance of each other. The 802.11

standard includes features to address this problem. These include positive

acknowledgement with retransmission, and special medium access control frames called

Request To Send (RTS) and Clear To Send (CTS).

Another major problem designers had to address is the vulnerability of a wireless

link to eavesdroppers. This prompted the designers to include Wired Equivalent Privacy

(WEP) as a first attempt at providing link layer privacy, integrity and access control. One

3

could have argued that privacy is outside the scope of a wireless MAC-PHY standard.

However, the designers recognized the need to make 802.11 implementations self

contained so that they could be deployed without disrupting the wired networks they

were attempting to extend. Adoption of the technology would be hampered if it required

other technologies, such as a Virtual Private Network, in order to be deployed. But WEP

failed on all three fronts [4]. Fortunately, the 802.11i Task Group had already begun

augmenting WEP with a new authenticated encryption algorithm in 2001 when Fluhrer et

al. announced their findings. Nonetheless, it brought a new sense of urgency within the

Task Group.

Unlike wired Ethernet, the 802.11 MAC protocol includes connecting to a

distribution system via an Access Point (AP). Access points have no idea what clients are

within range of their signal unless clients tell them. The 802.11 MAC includes a set of

rules for discovering and connecting to an AP. In a wired network this is accomplished

by plugging in a cable. Typically, physical building security prevents anyone from being

able to plug in a cable. With an 802.11 wireless LAN, however, many clients may be

constantly searching for wireless networks to join.

In summary, the 802.11 standard is in many ways more complicated than its

wired-Ethernet counterpart due to issues that arise in a wireless environment. It has to

deal with many problems that have no wired-side analogy. Ultimately it is this

complexity that leads implementations to vary, making fingerprinting possible.

C. FINDING AN 802.11 FINGERPRINT
An implementation comprises a driver, radio chipset, firmware, and possibly

some user-space applications. Ideally, one would be able to identify any component of a

given implementation and further refine identification of each software component by its

version. Whether it is possible to identify these components depends largely upon

behaviors not governed by the standard and where they are implemented. As we shall

see, there is even deviation from the standard within the industry that presents very useful

opportunities for fingerprinting. Developing 802.11 fingerprints is largely an exploratory

exercise in determining how an 802.11 implementation behaves uniquely.

 4

The strength of a fingerprint determines whether the components of an

implementation can be identified individually. The fingerprints described in this thesis

afford reliable identification of 802.11 chipsets, drivers, and in some cases, different

versions of the same driver. No attempt was made to differentiate firmware versions.

One of the most unique aspects of 802.11 implementation fingerprinting is that

many characteristics of the implementation are controlled by hardware. However, there is

a trend in modern 802.11 chipsets to push more and more functionality into software.

Popular examples of these chipsets include products from Atheros and Ralink. Though it

seems unlikely, it is quite possible that drivers for software based radio chipsets (such as

products from Atheros and RaLink) could be patched, allowing them to mimic the details

of other implementations. Doing this would allow an attacker to have his driver or chipset

intentionally misidentified, perhaps to sidestep a fingerprint-aware WIDS.

Many other devices however have certain aspects that cannot be controlled from

software. The older Prism2 generation of chipsets is the best example of a chipset that

operated somewhat independently of the driver.

D. ACTIVE 802.11 IDENTIFICATION
Active identification revolves around observing variations in the implementations

of 802.11 association. As stated, two active techniques were investigated. One technique

involved observing an 802.11 implementation’s response to CTS packets attempting to

use the virtual carrier sense mechanism of 802.11 to reserve the medium. It did not do as

well as the second active technique. The second technique involves modifying packets

that are exchanged in typical authentication/association response when a client associates

with an AP. Once the exchange has taken place the results can be categorized and looked

up in a table. This technique requires an attempt by the 802.11 implementation being

fingerprinted to associate with an AP that has been modified to craft special kinds of

association and authentication reply frames. The frames elicit different behaviors from

the 802.11 implementations. A fingerprint in this case is the behavior of an 802.11

implementation in response to these special frames.

5

E. PASSIVE 802.11 IDENTIFICATION
Passive identification is done via an off-line algorithm. The algorithm takes as

input a capture of 802.11 frames sent by the 802.11 implementation in question. It

compares certain characteristics of this capture to a database computed before hand, and

returns what is the most likely implementation to generate such a capture. In particular, a

technique that examines the duration field of 802.11 frames is explored.

F. ORGANIZATION OF THESIS
This thesis is organized into the following chapters. Chapter II provides a brief

overview of the relevant portions of the IEEE 802.11 MAC rules. Chapter III discusses

the active fingerprinting techniques that were developed, and Chapter IV covers the

passive technique. Chapter V analyzes the accuracy of the passive technique. Chapter VI

contains future work and concluding remarks. Finally three appendices are also included:

Appendix A lists the results for all matching metrics covered in Chapter IV. Appendix B

covers implementation details that can be used to validate the techniques and results.

Appendix C contains detailed information regarding every 802.11 implementation tested.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. OVERVIEW OF THE 802.11 MAC

This chapter provides the relevant background of the 802.11 MAC needed to

understand the fingerprinting algorithms covered in Chapter III. This background is by

no means a complete description of the 802.11 standard.

A. 802.11 BASICS
Standard 802.11-1999 specifies Medium Access Control (MAC) and Physical

(PHY) layer protocols. There are two types of MAC protocols described, Point

Coordination Function (PCF) and Distributed Coordinated Function (DCF). It is possible

to alternate between them. When the PCF is operating, the medium is in a contention-

free period since the point coordinator, an access point, controls all access to the medium.

When end stations compete for the medium, including the access point, they use the DCF

MAC protocol. This period is called a contention period.

The standard specifies three different frame types: control, management, and data.

Control frames are used for medium reservation and acknowledgements, and have a real-

time processing requirement. Medium reservation control frames are not confined to a

single network; they are intended to be processed by all stations on a given channel even

though they may belong to different wireless networks, or Basic Service Sets (BSS).

These frames carry a duration field that is essentially an announcement of a station’s

intention to use the medium for a period of time. Stations operating on the same channel

should observe the announcement regardless of the BSS to which they belong. Otherwise

they risk interference with their own transmissions. In this way, multiple Basic Service

Sets can coexist on the same channel.

MAC management in 802.11 includes authentication and association with an

access point. It also includes provisions for locating networks via probe requests and

beacon packets. Management frames handle all of these tasks.

Finally, data frames are used to transmit data.

 8

B. ASSOCIATION AND AUTHENTICATION
One of the unique things about wireless networks is that there needs to be a

protocol for connecting to a BSS or IBSS. IEEE Std 802.11-1997/1999 describes a 3-

state protocol that a client must engage in with the AP in a BSS before it is connected to,

or in 802.11 terminology, associated with the BSS.

A client initially starts out as un-authenticated and un-associated (state 1). The

first thing it must do is authenticate to the AP. There are two types of authentication

possible, open (no authentication) and shared-key. 802.1x based authentication (as

specified in the 802.11i amendment) does not take place at this phase. Most AP's use

open authentication; shared-key allows attackers to launch known plaintext attacks.

Clients authenticate by sending an authentication request frame. The AP either responds

with authentication successful, or a shared-key challenge. Once a client has authenticated

it, enters state 2, authenticated and un-associated.

Once a client is in state 2, it sends an association request frame. At this point, the

AP replies with an association success. This places the client in state 3, authenticated and

associated. At this point, the client can send data packets to the AP. If 802.1x

authentication is to take place, it would happen now. Assuming 802.1x authentication

doesn't happen, it takes four frames for a client to successfully associate with a BSS.

Before a client can authenticate and associate with a BSS, it must locate the BSS.

The 802.11 standard provides two techniques locating IBSS's/BSS's, probe requests and

beacon packets. Beacons are packets that an AP sends out periodically, informing nearby

stations of their presence. Probe Requests are packets that allow clients to ask if there are

any nearby AP's. These come in two flavors, broadcast and directed. Directed probe

requests are used to locate a specific network, while broadcast probe requests are used to

find any networks that happen to be nearby.1

1 A broadcast probe request is the only 802.11 broadcast MPDU an end station can transmit.

9

Curiously, the standard specifies client de-authentication whereby an access point

can place the client in an unauthenticated state without having to authenticate itself to the

client. As a result, any station can put another end station into this state as a kind of

denial-of-service attack.

C. PHYSICAL AND VIRTUAL CARRIER SENSE
The 802.11 standard specifies two ways to determine if the medium is busy. The

first is a physical carrier sense. 802.11 specifies that any PHY must provide a technique

to sense if the medium is busy. The function in the PHY layer responsible for this is

called the clear channel assessment (CCA).

Two clients that belong to the same BSS may not be within radio range of each

other. Therefore, neither will be able to detect energy on the medium necessary to do a

CCA. Further, it is more efficient in some cases for a client to reserve the medium in

advance, for instance, for an acknowledgement which can be sent immediately upon

receipt of a frame. Both cases are handled using a virtual carrier sense mechanism. It

consists of a Network Allocation Vector (NAV) maintained by each client. The NAV

can be thought of as a client’s best guess as to how long the medium will be busy. The

client’s NAV is updated in response to receiving a frame whose duration field contains a

value that exceeds the current NAV value.

The duration field is found in nearly every packet. It is not included in Power-

Save Poll frames, as the bits are used for the association ID field. Conceptually the

duration field of a frame is the amount of time the transmitting client wishes to reserve

the medium for itself to send subsequent frames, including any replies expected of the

recipient such as acknowledgements. How this value is computed depends on the exact

type of frame it is in. The duration field is 16 bits. Therefore the largest value it could

reserve the media for is 65,535 microseconds. However the standard explicitly says to

ignore any values greater than 32,767.

 10

In a typical scenario where a client is not sending an unfragmented data frame, the

duration field will be the amount of time it takes for the inter-frame spacing, combined

with the time required for the receiving station to send an ACK packet; in other words, a

constant. In management types (such as beacons) or some control types (such as ACKs)

no more traffic is needed, and the duration field is set to zero.

In more complicated scenarios involving fragmentation, the duration field will

include the time required not only for the inter-frame spacing and ACK, but for the rest

of the fragments. See RTS and CTS frames in the next section. Finally an important

aspect of the PCF is implemented by using the duration field to interoperate with stations

on the same channel using the DCF.

D. RTS/CTS CONTROL FRAMES
The 802.11 MAC control frames include Request To Send (RTS) and Clear To

Send (CTS). These frames aim to reduce the number of bytes that need to be

retransmitted due to interference at an AP from a client out of radio range from the

sender, the so-called hidden node.

The hidden node problem refers to the scenario where two wireless clients (nodes)

are on opposite sides of the AP. Though the AP can hear both of the nodes, the nodes do

not hear each other's transmissions. This can create a problem when both clients attempt

to transmit at the same time because they sense the medium is free, resulting in a

collision at the AP.

RTS and CTS packets are there to help prevent these types of collisions from

happening on sufficiently-large packets. The value of 'sufficiently large' is left up to the

device driver, and may be configurable by a user. This value is called the RTS threshold.

Assuming the client has a frame to send that surpasses the RTS threshold, it will

first send a RTS frame to the AP. At this point, if the rules of the MAC allow it, the AP

will respond with a CTS packet directed to the client. The reason that the AP needs to

send the CTS packet (instead of the client) is that everyone within range of the AP will

receive it. Of course an RTS can collide at the AP due to the hidden node but the cost of

retransmitting it is much lower than that to retransmit the frame whose size exceeds the

11

RTS threshold. Thus the RTS/CTS exchange lowers the likelihood of a collision at the

AP due to a hidden node and further, an RTS costs less to retransmit if there’s a collision.

RTS and CTS frames also have a duration field. The duration field of an RTS and

CTS is long enough to reserve the medium for sending and acknowledging the frame that

exceeds the RTS threshold. If this frame has to be fragmented, then the duration is long

enough to reserve the medium for transmission of every fragment.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. ACTIVE IDENTIFICATION

Active identification relies on eliciting a fingerprint through executing some part

of the 802.11 protocol with the implementation being identified. This chapter describes

two approaches to active identification. The first is based on eliciting unique responses

to CTS frames. The second is based on eliciting responses to 802.11 association

redirection attempts.

A. RTS/CTS WINDOW HONORING
As mentioned, one of the features included in the 802.11 standard is the use of

Request To Send (RTS) and Clear To Send (CTS) packets to mitigate the hidden node

problem. It is quite possible for 802.11 implementations to fail to implement RTS/CTS

honoring and still interoperate on a day to day basis. The goal of this test is to determine

whether or not a particular implementation systematically fails to honor a CTS packet

reserving the media for another client. One of the biggest difficulties faced with this

technique was obtaining a high-enough resolution clock from userland.

Determining whether or not a client transmits inside a CTS window requires the

ability to measure the time a packet was transmitted relative to others with micro-second

resolution. Timers with this resolution aren't generally available in userland on many

operating systems, and even if they are, accurately tying it to the reception of a packet

would be difficult at best.

Fortunately many Linux wireless device drivers prepend what has come to be

known as “prism” headers. This header contains out of band information about a packet

such as signal strength. It also contains two very useful timestamps, MAC-time and

HOST-time. These timestamps measure when the packet was received by the card, and

when it was handed off to the host operating system. They also have microsecond

resolution. It should be noted that the same technique was used by other researchers

interested in clients violating the MAC rules to get an unfair share of bandwidth in [5].

 14

A tool was developed to facilitate 802.11 identification using CTS packets.

Conceptually, the tool is straightforward. The user specifies an interface to transmit on,

another one to listen on, and number of packets to send. The tool will then send out CTS

packets on the transmit interface and record all the traffic on the other. In this

implementation, the duration was set to a constant value of 32767.

Once the tool has transmitted all the CTS packets, it analyzes the recorded traffic.

The tool uses the microsecond timer's available in the prism headers to determine if any

clients have transmitted inside a CTS window not allocated to them. If it finds any it

writes a record out to a text file which is suitable for importing into a database.

The tool keeps the analysis logic separate from the packet crafting and reception,

and can be run on a packet capture (pcap) file as well. Below is an example of the output:

Table 1. Example output of CTS fingerprinter

Pcap-file ./ch3.pcap
Total Pkts 2154
Total violations 787
Num CTS 814
Num RTS 0
Total Unparsable 0
unparsable Ctrl 0
unparsable Data 0
anon CTRL violators 3497

The “anon CTRL violators” refers to packets transmitted inside a CTS window

that could not be pinned down to a specific address. Some control frames in the 802.11

standard don’t include the address of the sender. In this example, many of the violators

are actually the tool itself, transmitting a CTS packet inside the window of another. Here

is an example of a record illustrating a specific violation:

00:0F:B5:5D:92:6E, CTS_IGNORE, CTS_WIN_VIOLATION, [MGMT,

0, 8, 32767, 28736]

15

This record indicates that a card with address 00:0F:B5:5D:92:6E transmitted a

management frame (type 0) of subtype 8 (beacon). The final two columns indicate the

size of the CTS window, and the number of milliseconds into the window when the

transmission started.

The ultimate goal of this technique was not to return a simple binary value

indicating whether an individual implementation honors CTS windows. Rather it was to

analyze violations for patterns. The idea was to explore whether implementations ignore

CTS packets with durations that exceed some value where that value perhaps varies by

chipset. Alternatively, certain implementations might transmit at different offsets into a

CTS window. However, none of these more advanced techniques was investigated

because it quickly became clear that almost every implementation tested simply ignored

CTS packets. It is not clear whether this is a bug in the code, a problem with the

timestamps, or if the majority of implementations really ignore CTS packets.

B. ASSOCIATION REDIRECTION
When a client connects to an Access Point (AP), four frames are typically

involved (six if shared key authentication is enabled). These consist of an authentication

request, authentication response, association request, and association response.

Association redirection is a technique that an AP can employ to actively

fingerprint a client. When an AP modifies the second address in the association reply (the

source address) the associating client will behave in uniquely identifiable ways. In a

successful redirection, the client transmits data to the new BSSID 00:22:22:22:22:22, as

illustrated under successful redirection in Figure 1. In this figure, the original BSSID is

00:11:22:33:44:55 and the redirected (new) BSSID is 00:22:22:22:22:22. Surprisingly,

only one 802.11 NIC was successfully redirected. One might expect a failed redirection

attempt to exhibit the behavior depicted in Figure 1 under unsuccessful redirection.

There, the client quietly continues to transmit data to the BSSID used in the association

request, ignoring the redirection attempt. However, most 802.11 implementations did not

exhibit this behavior as we shall see. (See Appendix A).

 16

Figure 1. Association Redirection.

Association redirection was motivated by an attempt to get 802.11 stations to be

dynamically assigned to their own BSS from an AP. It was the puzzling responses

generated from clients that launched the fingerprinting work of this thesis. The

motivation for the redirection follows from the 802.11 standard which prescribes the way

an end station is assigned to a Basic Service Set (BSS). The state transition diagram on

page 376 of the 1999 revision of the 802.11 standard specifies the assignment. [2] Part of

that diagram is reproduced in Figure 2 (only the relevant portion is shown).

17

Figure 2. Basic Service Set Assignment

The diagram indicates that the associating station should set its BSSID to the second

address in the received association response. The second address in all management

frames is the source address. The station belongs to the BSS identified by this BSSID.

C. ASSOCIATION REDIRECTION AS A FINGERPRINTING TOOL
As mentioned previously, when initially experimenting with association

redirection, a wide variety of behaviors were observed. In an effort to get more

fingerprints the original idea behind association redirection was expanded from one

experiment into a total of nine.

The original transition diagram specifies that the AP should mangle the second

address in the association response, which is the source address. The experiment was

expanded to modify the 1) source address, 2) BSSID address, and finally 3) both

addresses. Doing this gives the drivers more opportunity to differentiate themselves.

When this technique was applied (modifying all possible combinations of addresses in

Association replies), a total of six unique responses was observed. These responses are

summarized in the table below. The details of each response are of only minor

importance; the interesting thing is the number of responses.

 18

Table 2. Unique responses to Association redirection in Association response frames.

IGN_ASSOC_REPLY Client ignores association replies from AP.

Never enters stage 3
DUAL_ACK_DATA Client alternates transmission between both BSSIDS, acks

data frames.
DUAL_NACK_DATA Client alternates transmission between both BSSIDS,

doesn't ack data frames.
REASSOC_NULL_ALSO Client sends no data except null data frames. Null data

frames use new BSSID. Client attempts to re-associate with
old BSSID.

DEAUTH_FLOOD_NULL Client sends many (approx 10) de-auths, to: redirected
BSSID, through: Null BSSID. No data packets sent.

DEAUTH_TYPE_1 Client sends multiple deauths to redirected BSSID through
original BSSID

Once the results for the first round of experiments were analyzed and found to be

successful, another attempt to widen the spectrum of behaviors was made. This led to two

more iterations, both similar to the first. In one iteration, we modified the address fields

in only the authentication replies. The unique results generated are shown in Table 3.

Finally in the last experiment we modified addresses in both authentication and

association replies. This generated no more unique responses. All of the individual

implementations results are presented in Appendix A.

Table 3. Unique responses to Association redirection, limited to authentication replies.

IGN_AUTH_REPLY Client ignores auth replies from AP. Never enters stage 2

DUAL_BSSID Client alternates transmission between both BSSIDs. Acking of
data unknown.

DUAL_T1_DEAUTH DUAL_ACK_DATA but also transmits deauths to redirected
BSSID through original BSSID

Association Redirection as a fingerprinting technique proves quite capable of

determining an implementations chipset. Although in this experiment each

implementation was tested in nine unique situations, in reality an optimized set of tests

could be computed. This would bring the number of associations required to get a

fingerprint down significantly. Although recent work [6] has shown it to be relatively

19

easy to get clients to connect to an attacker-controlled AP, this requirement still makes

Association Redirection less desirable than passive techniques, even in offensive

scenarios where an attacker doesn't mind transmitting. Using Association Redirection in a

defensive scenario would be possible, but requires strong cooperation between WIDS

vendors and the AP vendor.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. PASSIVE IDENTIFICATION

Passive identification involves fingerprinting an implementation without

transmitting any packets in the process. This immediately rules out trying to identify an

implementation by observing what it does in special situations constructed to explore

boundary behaviors. This chapter describes a technique that identifies an 802.11

implementation using various metrics for matching Duration fields in 802.11 frames.

A. DURATION ANALYSIS
As mentioned in Chapter II, the duration field is a 16 bit value which describes

how long the station that currently has access to the medium intends to keep it, after the

current transmission. Even though the duration field is 16 bits wide, it only takes on a few

discrete values. Common values are 0 (for packets that are not acknowledged such as

management frames broadcast during a Contention Period), and the time it takes for a

SIFS (Short Interframe Spacing) interval plus an acknowledgment, used in transmitting

unicast data frames.

Variables that can affect the duration field include some parameters of the local

Basic Service Set specified in a beacon’s fixed flags field. These include short slot time,

short pre-amble, and of course, the data rates supported. The net result of this is that

ideally a unique fingerprint for a given implementation would be taken across all possible

variations of these parameters. For this work, four databases were created. The databases

currently have human-friendly names (the name of the AP used to create them). In the

future, the number of databases will grow large enough that an algorithmic naming

scheme (rates-flags for example) will be employed.

Since the performance of this technique varies with the parameters of the Basic

Service Set with which it is associated, a brief introduction to the four networks it was

developed and tested against is given below.

 22

Table 4. Summary of databases created

name rates flags

Lexie 1.0 - 11.0 Mb/sec (b-only) 0x0021 (short pre-amble)

mixed--wrt54g 1.0 - 54.0 (mixed) 0x0401, 0x0001

(disables SST if a b client is in range)

mixed--AirPlus 1.0 - 54.0 (mixed) 0x0421 (SST, short pre-amble)

G--wrt54g 1.0 - 54.0 (G-only) 0x0421 (SST, short-preamble)

Table 4 represents data about the four WLANs on which all experiments in this

section were performed. They were chosen to give a good estimate of real world network

deployments. Lexie is a b-only Cisco aironet 350. Mixed--wrt54g is a rev5 Linksys

wrt54g running in mixed mode. Mixed--Airplus is a D-link DI-524, and G--wrt54g is a

rev5 Linksys wrt54g in g-only mode. The models of the Access Points used are

mentioned to give the reader some sense of market representation. The databases

generated from each AP are not tied to that specific AP. Clients should respond

identically in any BSS with the same set of parameters listed above.

B. WHAT IS IN A PRINT DATABASE?
The tools and techniques described in this chapter all operate on a surprisingly

little amount of information, stored in what we call a print database. There is a

fingerprint for each implementation. A fingerprint comprises a list of records of the form

(packet_type, duration-value, count) which reflects for the given packet type, the number

of times the given duration value appeared. All data and management frames are

observed while control packets are discarded.

Two example prints from the same database are given in Tables 5 and 6. Both

prints were generated from packet captures done while a client associates, obtains an IP

address from DHCP, and proceeds to load a few web pages. With so little activity, there

is a remarkable range of behaviors. These two prints were chosen to illustrate the range

of behaviors between Atheros and Prism chipsets.

23

Table 5. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

packet-type (duration
[duration observed frequency /number packets of this type])

Assoc Request (314 [2/2])
 probe request (0 [75/77]) (314 [2/77])
 Authentication (314 [2/2])
 Data (162 [167/278]) (0 [111/278])
 Null Function (162 [597/597])

Table 6. Implementation-Id: 9 (Prism-2.5, smc2532w.sys), database: Lexie

Assoc Request (258 [13/13])
 probe request (0 [50/50])
 Authentication (53389 [13/13])
 Data (213 [1229/1303]) (0[54/1303]) (223[20/1303])
 Null Function (37554 [16/16])

Two things stand out immediately from these fingerprints. The first is that the second

implementation (the prism2.5 based implementation) uses duration values that are

entirely different than those used by the better behaved Atheros card. Secondly, the

prism2.5 based implementation uses two illegal duration values. The standard says that

any values greater than 32767 should be ignored.

Though these two implementations are different enough that they can be easily

distinguished, most of the other implementations sampled fell somewhere between them.

To get better resolution, two ratios were introduced: the ratio of packets with a given

duration relative to the total number of packets sampled, and the ratio of pairs (packet

type, duration) for a given packet type and duration relative to the total number of packets

seen of that packet type.

Though these numbers can fluctuate across different samples for the same

implementation, they proved to be stable enough to cause an improvement in the

algorithms that use them. Tables 7 and 8 show this information for the Atheros

fingerprint above in Table 5.

 24

Table 7. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

packet type (duration [ratio of packets with this duration, for given packet-type])
Assoc Request (314 [100%])
 probe request (0 [97%]) (314 [3%])
 Authentication (314 [100%])
 Data (162 [60%]) (0 [40%])
 Null Function (162 [100%])

Table 8. Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

duration ratio of packets with this duration, regardless of packet-type

0 19%

162 80%

314 1%

C. THE DURATION MATCHING ALGORITHM

The matching algorithm expects as input a packet capture (pcap) file gotten by

sniffing the exchange between an 802.11 NIC and one of the 802.11 Access Points for

which a print database has been assembled for a collection of 802.11 implementations.

The input is compared against each print in the database using a particular matching

metric. We give five matching metrics. Each matching metric produces a scalar quantity

measuring the degree of match between the input and a print. The algorithm outputs a

list of 802.11 implementations ordered by decreasing degree of match.

The metrics are presented in order of increasing complexity. Values from one

metric are not intended to be comparable to values from another.

D. SIMPLECOMPARISON METRIC
SimpleCompare is the first of three related metrics, the other two being

MediumCompare and ComplexCompare. SimpleCompare is unique in that it compares

the input against a print in the database without using any information about other prints

in the database. That means that if a certain duration value is incredibly unique, such as

the illegal ones only found in prism2 based implementations, it has no opportunity to take

this into consideration.

25

All the metrics presented in this section break the fingerprints up into two

different sets of data points. The first set is a set of pairs of the form (duration value,

count). The second set is a set of triples of the form (packet type, duration value, count).

The diagrams below leave the count component of both tuples out for clarity.

SimpleCompare, as well as the other metrics, has three different flavors. It can be

computed using just the (duration value, count) pairs, or it can be computed using just the

(packet type, duration value, count) triples. Finally the results from both analyses can be

combined. Combining the results of these metrics is simply a matter of adding the return

values from both metrics.

SimpleCompare utilizes two functions that are used throughout this section. They

are used to compute the duration ratios in tables 7 and 8, and are defined as follows.

duration_ratio(p,d) =
of packets with packet_type = p, duration=d

of total packets with packet_type = p

duration_ratio(d) =
of packets with duration=d
of total packets observed

The SimpleCompare metric is defined below. The input packet capture is denoted by L.

R, on the other hand, denotes a print in the capture database for a particular 802.11

implementation.

 26

Figure 3. SimpleCompare duration-value only analysis

The metric weights common durations that appear in their respective prints at

roughly the same rate more heavily than ones that do not. However, SimpleCompare does

not pay attention to duration values that aren't in the intersection, as illustrated in Figure

1, even though the number of values not in the intersection is clearly a strong indicator of

how close two prints match. It also doesn't have any idea of how unique any specific

duration values are across the entire database.

sum = 0;
for every duration-value d ∈(L I R)

sum += 1.0 - | L.duration_ratio(d) - R.duration_ratio(d) |
return sum;

27

At first, this lack of a global perspective on the relative likeliness of seeing

duration values seemed that it would hinder this algorithm significantly. Consider the

case when a prism2 sample is input that uses all the same illegal duration values as the

one stored in the database, but at very different rates. SimpleCompare lacks the

information to realize that the illegal values identify a prism2 implementation, and could

grade this sample incorrectly.

At this point, SimpleCompare is also ignoring the packet type in which the

duration values appear. This can cause two problems. One is that two different

implementations use the same duration value, but in consistently different packet types

(probe requests versus association responses for example). The other is that the ratio that

duration values are used across all packet types fluctuate largely across packet samples,

but the rate is much more consistent when confined to a particular packet type. Both of

these problems are addressed by considering the packet types when looking at durations.

We can reuse SimpleCompare except this time we run it against the (packet type,

duration) pairs, as illustrated below.

Figure 4. SimpleCompare (packet type, duration) analysis

 28

The algorithm SimpleCompare uses to compare these two sets is the following.

E. MEDIUMCOMPARE METRIC
SimpleCompare does not account for highly-unique duration values.

MediumCompare was created as an alternative to deal more intelligently with such

duration values. Intuitively, if two prints both use duration values that are globally

unique (i.e. illegal values generated by prism2-based implementations) then this should

count more than matching very common values such as 0.

Like SimpleCompare, the MediumCompare metric compares an input pcap with

every print in the database except that for each print in the database, it also considers

global duration uniqueness by examining the rest of the database. It computes one of two

weights, either duration uniqueness, or packet type duration uniqueness, depending on

the data set as follows.

When computing duration uniqueness the metric counts the total number of

unique (implementation, duration value) pairs in the entire database. This does not take

into account how often an individual duration value appears in packets for a given

implementation. Rather, it counts how often a duration value is used across all

implementations. If two implementations both use duration value 314, but one uses it 1%

of the time, and the other uses it 80% of the time, both of these implementations will

contribute the same amount to duration uniqueness.

duration_uniqueness(d) = # of unique (implementation, duration) tuples
of unique(implementation, duration = d) tuples

Similarly packet type duration uniqueness is computed by counting the total

number of unique (implementation, packet type duration) values across the entire

database.

sum = 0;
for every pair (packet_type p, duration-value d) ∈(L I R)
 sum += 1.0 - | L.duration_ratio(p,d) - R.duration_ratio(p,d)|
return sum;

29

duration_uniqueness(p,d) = # of unique (implementation, packet_type, duration) tuples
of unique(implementation, packet_type = p duration = d) tuples

Once these two values have been computed MediumCompare is very similar to

SimpleCompare.

Figure 5. MediumCompare duration-value only analysis

sum = 0;
for every duration-value d ∈(L I R)
 sum += duration_uniqueness(d) *
 [1.0 - |L.duration_ratio(d) - R.duration_ratio(d)|]
return sum;

 30

Figure 6. MediumCompare (packet_type, duration) analysis

F. COMPLEXCOMPARE METRIC

Notice that the MediumCompare and SimpleCompare metrics ignore durations

outside the intersection. One might think that such information would improve a

fingerprinting capability, however, we found this is not the case. To illustrate, a metric

called ComplexCompare was investigated. It was designed to take into account all the

data points that don't fall in the intersection of two prints. ComplexCompare computes

the metric that MediumCompare does and then visits every data point not in the

intersection of the prints, computing duration uniqueness, or packet type duration

uniqueness and then subtracting this value from the metric. The motivation for this

behavior is that if L contains very unique durations and R doesn’t, then the metric should

be decreased proportionally by the uniqueness of these values.

sum = 0;
for every packet_type p, duration-value d ∈(L I R)
 sum+= packet_type_duration_uniqueness(p,d) *
 [1.0-|L.duration _ratio(p,d)- R.duration_ratio(p,d)|]
return sum;

31

Figure 7. ComplexCompare duration-value only analysis

ret= MediumCompare(L,R);
for every duration-value d ∉(L I R)
 sum+=duration_uniqueness(d)
return ret - sum;

 32

Figure 8. ComplexCompare (packet_type, duration) analysis

G. BAYESCOMPARE METRIC
BayesCompare was created as an attempt to use a well understood rule to classify

802.11 implementations. In document classification, the problem is that of given a set W

of words appearing in a document, classify the document as belonging to one of several

categories. One takes the category to be the category C that maximizes P(W | C) P(C).

The conditional probability P(W | C) comes from a training set of documents known to be

in category C. If we take W to be the set of durations occurring in a given packet capture

that we want to identify by implementation then P(W | C) becomes the probability of W

occurring in a capture given that the capture comes from 802.11 implementation C.

Classification in this manner is only as good as the training set (print database). A

given training set may not yet know that implementation C can produce duration D.

ret= MediumCompare(L,R);
for every packet_type p, duration-value d ∉(L I R)
 sum+=packet_type_duration_uniqueness(p,d)
return ret - sum;

33

Hence P(W | C), which is approximated from the training set, is zero when W contains D

even though W may contain another duration that uniquely identifies C. Further,

approximating P(C) is problematic, as it is the probability of seeing a given 802.11

implementation. One might approximate it by perhaps chipset market share but this

would be somewhat inaccurate because it ignores the fact that a device driver is part of an

802.11 implementation we wish to identify. Getting an accurate approximation of it is

difficult so we chose to ignore it. This of course puts the metric at a slight disadvantage

compared to the other metrics, as we shall see.

Let X be an 802.11 implementation for which a fingerprint exists in the print

database. Let L be the duration fingerprint arising from an input pcap file. We want the

probability that the input pcap file originated with implementation X given L: P(X | L).

Using Bayes rule, P(X | L) = (P(L | X) P(X)) / P(L). The idea here is to use these

conditional probabilities to rank the degree of a match between L and each fingerprint in

the print database. Therefore, we did not compute P(L) for a given input pcap as it is

constant across all fingerprints in the database. Of course probability P(X) is not constant

across all fingerprints but computing it is problematic, as discussed above. Therefore, we

didn’t compute it as part of the conditional probability. Further, to simplify things, we

approximated P(L | X) as the product P(d1 | X) · P(d2 | X) · … · P(dn | X) where d1, d2,…

are the distinct durations that appear in L. This assumes that the individual duration

values in L occur independently which one can argue isn’t true since the durations occur

in sequence for certain control frames, for instance, duration values in ACK, RTS and

CTS frames. But as mentioned previously, control frames are ignored in fingerprints.

If L denotes the fingerprint arising from an input pcap file and R a fingerprint in

the print database then we take the preceding product to be ∏ R.duration_ratio(d) where

d ranges over all durations in L. And when taking into account packet types in which

durations occur, it becomes ∏ R.duration_ratio(p, d) where p and d range over all packet

types and durations respectively where duration d occurs in a packet of type p in L.

 34

Figure 9. BayesCompare duration value only analysis

ret = 1.0
for every duration-value d ∈L
 ret *= R.duration_ratio(d)
return ret;

35

Figure 10. BayesCompare (packet_type, duration) analysis

H. MODIFIED BAYESCOMPARE METRIC

Another variant of BayesCompare was investigated. As pointed out above,

conditional probability P(L | X) can become zero if L has a duration that has not yet been

learned to be producible by implementation X, perhaps because the print database hasn’t

been updated for some time. So another version was explored where only duration

values that fall in the intersection of an input fingerprint L and a database fingerprint R

are included in the calculation of P(L | X). So the product becomes ∏ R.duration_ratio(d)

ret = 1.0
for every packet_type p, duration-value d ∈L
 ret *= R.duration_ratio(p,d)
return ret;

 36

where d ranges over all durations in L ∩ R, and ∏ R.duration_ratio(p, d) where p and d

range over all packet types and durations respectively where duration d occurs in a packet

of type p in L ∩ R.

Figure 11. BayesCompare-Modified duration value only analysis

ret = 1.0
for every duration-value d ∈(L∩R)
 ret *= R.duration_ratio(p,d)
return ret;

37

Figure 12. BayesCompare-Modified (packet-type, duration) analysis

ret = 1.0
for every packet_type p, duration-value d ∈(L∩R)
 ret *= R.duration_ratio(p,d)
return ret;

 38

THIS PAGE INTENTIONALLY LEFT BLANK

39

V. RESULTS FOR DURATION-BASED METRICS

This chapter presents performance results for each of the duration-based matching

metrics described in Chapter V. To compare the performance of these metrics, a rating

system was devised as follows. Each metric was exercised across four print databases

using three packet capture samples s1, s2 and s3 as input for each 802.11 implementation.

We define for each 802.11 implementation I, a success probability RI for a matching

metric M. It is the probability that M correctly identifies a sample, that is, identifies that

sample as originating with I when it does indeed originate with I.

For example, consider the table in Table 9. This print database has 13 fingerprints

hence there are 13 entries. The table was produced by using the MediumCompare metric

on a particular sample. The tables tells us that this metric believes the sample originated

with the Broadcom-MiniPCI (ID 10 in the table) since it has rank zero. But this is

incorrect. The sample originated with the Apple-Airport Extreme (ID 5), which has rank

“1”. So we take as SimpleCompare’s probability of succeeding when the sample

originates with Apple-Airport Extreme to be (13 – rank)/13 or (13 – 1)/13 since the

correct implementation is given rank “1” by the metric.

Now since there are three samples, we extend RI for a metric M to be

RI = [(13 – s1 rank) + (13 – s2 rank) + (13 – s3 rank)] / (3 * 13) (eq. 5.1)

where si rank is the rank assigned by M to the 802.11 implementation I that actually

produced sample si. If the probability that I occurs is PI then the success rate of M is the

unconditional probability of success given by

PI1 * RI1 + PI2 * RI2 + … + PI13 * RI13

Each term in this sum is the product of the probability of seeing a sample from one of the

13 implementations and the probability of M succeeding to identify it in that case. So M

could have a good overall success rate even though it performs badly when trying to

identify a sample as belonging to some 802.11 implementation if that implementation

doesn’t arise often. However, we shall assume that implementations are equally likely to

occur. In that case, the sum above becomes (RI1 + RI2 + … + RI13) / 13.

 40

Table 9. Ordered list generated from a matching metric.

rank score ID Model chipset driver

0 79.03 10 Broadcom-
MiniPCI BCM4318 bcmwl5.sys

1 78.91 5
Apple-
Airport
Extreme

BCM4318 AppleAirport2.kext

2 73.51 6 Zonet-
ZEW1520 BCM4306 bcmwl5.sys

3 56.03 7 Intel-
IPW220BG IPW2200BG w29n51.sys

4 54.74 13 Cisco-
Aironet-350 Prism2 pcx500.sys

5 53.06 11 Sony-PSP unknown unknown

6 47.19 8 D-Link-dwl-
g122 RA2570 rt2500usb.sys

7 39.95 4
Proxim-
Orinoco
Silver

AR5212 ntpr11ag.sys

8 39.55 3
Proxim-
Orinoco
Silver

AR5211 ntpr11ag.sys

9 39.47 2
Proxim-
Orinoco
Silver

AR5212 ntpr11ag.sys

10 38.53 1 Linksys-
WPC55AG AR5212 ar5211.sys

11 28.55 12 Nintendo-
DS unknown unknown

12 22.61 9 SMC-
2532W-B Prism2.5 smc2532w.sys

A. SIMPLECOMPARE

The following tables show how well SimpleCompare did against all four

databases. The number of samples represents how many pcap files the input fingerprints

were computed across. 1-sample means that the fingerprint was computed only from the

first sample for a given implementation, while 3-sample means all three pcap files were

used to generate the print.

41

Table 10 below shows how well SimpleCompare does when it is only analyzing

durations not (packet_type, duration) pairs. Table 11 shows how well SimpleCompare

does when it only analyzed (packet_type, duration) pairs. Table 12 shows the results

when both techniques are combined.

Table 10. SimpleCompare, duration values only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9724 0.9546 0.9745 0.9115
2-samples 0.9783 0.9408 0.9630 0.8854
1-samples 0.9586 0.9408 0.9583 0.8333
Average 0.9698 0.9454 0.9653 0.8767

Total Average 0.9393

Table 11. SimpleCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9921 0.9606 0.9769 0.9688
2-samples 0.9901 0.9645 0.9861 0.9479
1-samples 0.9744 0.9586 0.9745 0.9531
Average 0.9855 0.9612 0.9792 0.9566

Total Average 0.9706

Table 12. SimpleCompare combined.

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9901 0.9882 0.9884 0.9531
2-samples 0.9882 0.9684 0.9861 0.9531
1-samples 0.9744 0.9625 0.9769 0.9115
Average 0.9842 0.9730 0.9838 0.9392

Total Average 0.9701

Though combining the two techniques did not improve the overall average, it did

have one important effect. In the combined table, scores consistently increase with

sample size, across all databases. This is not the case in either of the two tables preceding

it. This is a very desirable property, and could arguably be worth the minor price paid in

overall accuracy.

 42

B. MEDIUMCOMPARE

Although MediumCompare has significantly more information at its disposal than

SimpleCompare (since MediumCompare gets the entire print database over which to

compute weights) it only improved its best-case score by .0017 relative to

SimpleCompare. This seems to indicate that while knowing certain duration values are

highly unique, the implementations that used them identified them enough already that

the extra weight given to them wasn't needed in general.

Table 13. MediumCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9921 0.9684 0.9907 0.9635
2-samples 0.9901 0.9625 0.9884 0.9375
1-samples 0.9882 0.9546 0.9861 0.9427
Average 0.9901 0.9618 0.9884 0.9479

Total Average 0.9721

C. COMPLEXCOMPARE

ComplexCompare did not improve upon its predecssors, performing consistently

worse then Simple or MediumCompare. In fact, no algorithm tested that attempted to

take into consideration duration values that don't match ever made an improvement upon

those that simply ignored them.

Table 14. ComplexCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9744 0.9566 0.9722 0.8958
2-samples 0.9763 0.9507 0.9722 0.9062
1-samples 0.9803 0.9507 0.9931 0.9323
Average 0.9770 0.9527 0.9792 0.9114

Total Average 0.9551

D. BAYESCOMPARE

Considering the significant disadvantage that BayesCompare is at relative to the

other metrics, it performed quite well. It is quite possible that in practice BayesCompare

could be the most accurate. This could be accomplished by mapping the probability of

43

seeing particular chipset, device-driver implementation back to the marketshare of the

chipset. This optimization is not implemented in the current system, and both flavors of

BayesCompare do worse than the other metrics presented.

E. MODIFIED BAYESCOMPARE
The ModifiedBayesCompare did consistently worse than BayesCompare. This

seems to indicate that contrary to our original suspicion, having the conditional

probabilities go to zero when an unknown duration value is encountered is a good idea.

F. RESULTS SUMMARY

A table representing a summary of the algorithms performance is below. It is

interesting to note that while MediumCompare out-performed SimpleCompare, it only

did so by a small margin. This seems to indicate that SimpleCompare has little trouble

identifying the implementations that use globally unique duration values, even though

SimpleCompare is unaware of the uniqueness.

Table 15. Results summary

Matching Metric dur packet-type, dur combined
SimpleCompare 0.9393 0.9706 0.9701
MediumCompare 0.9381 0.9721 0.9621
ComplexCompare 0.9370 0.9551 0.9500
BayesCompare 0.8456 0.9190 0.9209
BayesCompare-modified 0.2866 0.9243 0.7502

 44

THIS PAGE INTENTIONALLY LEFT BLANK

45

VI. CONCLUSIONS

Two categories of identification were investigated: active and passive. In the

active category, association redirection proved more promising as a way to identify

802.11 implementations than CTS window honoring. On the passive side, we described

five metrics for matching a given packet capture with a training set of packets called a

print database. The matching is done on duration fields in frames. The simplest of the

metrics rivals the more complex ones in accuracy.

An entirely different type of metric, dubbed FuzzyCompare, was also developed.

Fuzzy Compare works by comparing every (packet_type, duration) tuple in a print (L) to

every other tuple in the other print, R. For each comparison it modifies the score based on

a set of coefficients and the global uniqueness of the current duration value.

The interesting aspect about this algorithm is that the coefficients were actually

brute-forced by another program to (a modification to duration-print-grader) to find the

best possible combination of coefficients. This lead it to produce impressive results, but it

couldn't be shown that the coefficients generated would generalize well to data sets with

unknown inputs.

FuzzyCompare extended the notion of a fingerprint to include whether or not

certain implementations make use of the various flag bits inside the 802.11 header. This

really simplified down to tracking which implementations utilize power savings, as the

rest of the flags were always unused. Tracking a few more bits seemed to give

FuzzyCompare a significant advantage over the other algorithms which strictly analyzed

the duration field. Such a hybrid technique will probably yield better real world results.

A. FUTURE WORK - MAC VS PHY FINGERPRINTING
The 802.11 standard is responsible not only for specifying the media access

controls of wireless networks, but also the physical (PHY) layer as well. This thesis

focuses on analyzing the MAC portion of the standard, but one could imagine a tool that

analyzes aspects of the PHY for unique signatures.

Such a device would need the ability to analyze the frequency that 802.11

operates in (2.4GHz, 5GHz or the rarely-implemented IR band). Since the goal of the

 46

device is to be able to analyze what typical consumer level cards are doing, it would

likely need components capable of measuring physical characteristics of the medium with

higher levels of precision than that available on commercially-available 802.11 cards.

Likely candidates for such a device include measuring the type of preamble used in

802.11 frames and the thresholds used by cards to detect that the medium is busy.

This thesis has demonstrated that it is possible to remotely determine which

802.11 implementation generated traffic by analyzing a small sample taken during the

association phase. Chipset level resolution was achieved by both duration analysis and

association redirection. Device driver (and even device driver version) resolution was

achieved in many cases when using duration analysis.

47

APPENDIX A. COMPLETE RESULTS

A. ASSOCIATION REDIRECTION RESULTS
The following 3 tables encode all of the results generated from the association

redirection experiments laid out in Chapter III. Each table represents an experiment. For

example, the first entry in the first table denotes that the 802.11 implementation with ID-

number 1 ignored an association reply packet that had its source address mangled. The

same entry in the second table indicates the driver came close to redirecting when the

source address in the authentication reply was mangled (not the association reply).

A quick glance at the tables below reveals there is a strong tendency for cards

with the same chipset to display similar characteristics. For example, every card with a

Broadcom chipset (5, 6, and 10) behave identically across all three tables even though

one is using Apple's airport extreme driver, and the two others are on Windows.

There is one example where this technique reaches down to distinguish different

devices using the same chipset but a different driver. Implementation #1 has an identical

chipset as implementation #2. However #2 displays different behavior because it is using

a slightly different driver (provided by Atheros, not Linksys).

Table 16. Association Redirection results, Association replies only

Id-
num driver-id SRC BSS SRC,BSS

1 ar5211.sys IGN_ASSOC_REPLY IGN_ASSOC_REPLY IGN_ASSOC_REPLY

2 ntpr11ag.sys IGN_ASSOC_REPLY DUAL_ACK_DATA IGN_ASSOC_REPLY

3 (ntpr11ag.sys) IGN_ASSOC_REPLY DUAL_ACK_DATA IGN_ASSOC_REPLY

 48

Id-
num driver-id SRC BSS SRC,BSS

4 (ntpr11ag.sys) IGN_ASSOC_REPLY DUAL_ACK_DATA IGN_ASSOC_REPLY

5 AppleAirport2bcm4318 DEAUTH_FLOOD_
NULL IGN_ASSOC_REPLY DEAUTH_FLOOD_

NULL

6 BCMWL5.sys DEAUTH_FLOOD_
NULL IGN_ASSOC_REPLY DEAUTH_FLOOD

_NULL

7 w29n51.sys DUAL_NACK_DATA DUAL_NACK_DATA DUAL_NACK_DAT
A

8 rt2500usb.sys IGN_ASSOC_REPLY DUAL_ACK_DATA IGN_ASSOC_REPLY

9 smc2532w.sys DEAUTH_TYPE_1 REASSOC_NULL_
ALSO

REASSOC_NULL_
ALSO

10 bcmwl5.sys DEAUTH_FLOOD_
NULL

IGN_ASSOC_REPLY

DEAUTH_FLOOD
_NULL

49

Table 17. Association Redirection results, Authentication replies only

id-
num driver-id SRC BSS SRC,BSS

1 ar5211.sys DUAL_BSSID IGN_AUTH_REPLY IGN_AUTH_REPLY

2 ntpr11ag.sys IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

3 (ntpr11ag.sys) IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

4 (ntpr11ag.sys) IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

5 AppleAirport2-
bcm4318 IGN_AUTH_REPLY DUAL_T1_DEAUTH IGN_AUTH_REPLY

6 BCMWL5.sys IGN_AUTH_REPLY DUAL_T1_DEAUTH IGN_AUTH_REPLY

7 w29n51.sys DUAL_NACK_DATA DUAL_NACK_DATA DUAL_NACK_DATA

8 rt2500usb.sys IGN_AUTH_REPLY DUAL_ACK_DATA IGN_AUTH_REPLY

9 smc2532w.sys DEAUTH_TYPE_1 DUAL_T1_DEAUTH DUAL_T1_DEAUTH

10 bcmwl5.sys IGN_AUTH_REPLY DUAL_T1_DEAUTH IGN_AUTH_REPLY

 50

Table 18. Association Redirection results, Authentication and Association replies

id-
num driver-id SRC BSS SRC,BSS

1 ar5211.sys IGN_ASSOC_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

2 ntpr11ag.sys IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

3 (ntpr11ag.sys) IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

4 (ntpr11ag.sys) IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY

5 AppleAirport2-
bcm4318 IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY

6 BCMWL5.sys IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY

7 w29n51.sys DUAL_NACK_DATA DUAL_NACK_DATA DUAL_NACK_DATA

8 rt2500usb.sys IGN_AUTH_REPLY DUAL_ACK_DATA IGN_AUTH_REPLY

9 smc2532w.sys DEAUTH_TYPE_1 REASSOC_NULL_ALSO REASSOC_NULL_ALSO

10 bcmwl5.sys IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY

51

Table 19. Association redirection results key.

Behavior Description

IGN_AUTH_REPLY Client ignores auth replies from AP. Never enters
stage 2

IGN_ASSOC_REPLY Client ignores assoc replies from AP. Never
enters stage 3

REASSOC_NULL_ALSO Client sends no data except null data frames. Null
data frames use new BSSID. Client attempts to
reassociate with old BSSID.

DUAL_BSSID Client alternates transmission between both
BSSIDs. Acking of data unknown.

DUAL_ACK_DAT A DUAL_BSSID, but acks data frames

DUAL_NACK_DATA DUAL_BSSID, but doesn't- ack data frames

DEAUTH_TYPE_1 Client sends multiple deauths to redirected
BSSID through original BSSID

DEAUTH_FLOOD_NULL Client sends many (approx 10) de-auths, to:
redirected BSSID, through: Null BSSID. No data
packets sent.

DUAL_T1_DEAUTH DUAL_ACK_DATA, but also transmits type1
deauths.

B. DURATION ANALYSIS RESULTS

These tables show the results from every experiment conducted using the

matching metrics outlined in Chapter IV. The values in the tables are the success rate of a

matching metric across an entire database.

1. SimpleCompare Results

Table 20. SimpleCompare, duration values only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9724 0.9546 0.9745 0.9115
2-samples 0.9783 0.9408 0.9630 0.8854
1-samples 0.9586 0.9408 0.9583 0.8333
Average 0.9698 0.9454 0.9653 0.8767

Total Average 0.9393

 52

Table 21. SimpleCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9921 0.9606 0.9769 0.9688
2-samples 0.9901 0.9645 0.9861 0.9479
1-samples 0.9744 0.9586 0.9745 0.9531
Average 0.9855 0.9612 0.9792 0.9566

Total Average 0.9706

Table 22. SimpleCompare combined.

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9901 0.9882 0.9884 0.9531
2-samples 0.9882 0.9684 0.9861 0.9531
1-samples 0.9744 0.9625 0.9769 0.9115
Average 0.9842 0.9730 0.9838 0.9392

Total Average 0.9701

2. MediumCompare Results

Table 23. MediumCompare, duration values only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9724 0.9606 0.9745 0.9062
2-samples 0.9783 0.9369 0.9630 0.8802
1-samples 0.9606 0.9408 0.9560 0.8281
Average 0.9704 0.9461 0.9645 0.8715

Total Average 0.9381

Table 24. MediumCompare, (packet_type, duration) pairs only

 MediumCompare: (packet-type, dur)
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9921 0.9684 0.9907 0.9635
2-samples 0.9901 0.9625 0.9884 0.9375
1-samples 0.9882 0.9546 0.9861 0.9427
Average 0.9901 0.9618 0.9884 0.9479

Total Average 0.9721

53

Table 25. MediumCompare combined.

 MediumCompare: combined
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9862 0.9842 0.9884 0.9375
2-samples 0.9862 0.9645 0.9792 0.9323
1-samples 0.9842 0.9527 0.9745 0.8750
Average 0.9855 0.9671 0.9807 0.9149

Total Average 0.9621

3. ComplexCompare Results

Table 26. ComplexCompare, duration values only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9684 0.9448 0.9606 0.8906
2-samples 0.9704 0.9290 0.9560 0.8802
1-samples 0.9665 0.9349 0.9722 0.8698
Average 0.9684 0.9362 0.9629 0.8802

Total Average 0.9370

Table 27. ComplexCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9744 0.9566 0.9722 0.8958
2-samples 0.9763 0.9507 0.9722 0.9062
1-samples 0.9803 0.9507 0.9931 0.9323
Average 0.9770 0.9527 0.9792 0.9114

Total Average 0.9551

Table 28. ComplexCompare combined.

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9744 0.9606 0.9745 0.8854
2-samples 0.9744 0.9448 0.9745 0.8906
1-samples 0.9763 0.9448 0.9884 0.9115
Average 0.9750 0.9501 0.9791 0.8958

Total Average 0.9500

 54

4. BayesCompare Results

Table 29. BayesCompare, duration values only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9211 0.8698 0.9028 0.7396
2-samples 0.9191 0.8659 0.9051 0.7292
1-samples 0.9034 0.8639 0.8241 0.7031
Average 0.9145 0.8665 0.8773 0.7240

Total Average 0.8456

Table 30. BayesCompare, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9566 0.9329 0.9745 0.9375
2-samples 0.9566 0.9132 0.9745 0.8698
1-samples 0.9310 0.8935 0.8750 0.8125
Average 0.9481 0.9132 0.9413 0.8733

Total Average 0.9190

Table 31. BayesCompare combined.

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9329 0.9290 0.9745 0.9375
2-samples 0.9310 0.9211 0.9745 0.9219
1-samples 0.9152 0.9172 0.8727 0.8229
Average 0.9264 0.9224 0.9406 0.8941

Total Average 0.9209

5. BayesCompare-Modified Results

Table 32. BayesCompare-modified, duration values only

 lexie mixed--wrt54g mixec--AirPlus G--wrt54g
3-samples 0.3136 0.2643 0.2569 0.3229
2-samples 0.2959 0.2446 0.2593 0.3125
1-samples 0.2919 0.2485 0.2639 0.3646
Average 0.3005 0.2525 0.2600 0.3333

Total Average 0.2866

55

Table 33. BayesCompare-modified, (packet_type, duration) pairs only

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.9546 0.9191 0.9699 0.9219
2-samples 0.9487 0.9093 0.9699 0.8906
1-samples 0.9290 0.8817 0.9421 0.8542
Average 0.9441 0.9034 0.9606 0.8889

Total Average 0.9243

Table 34. BayesCompare-modified combined.

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g
3-samples 0.7692 0.7416 0.8009 0.8281
2-samples 0.7318 0.7318 0.7870 0.7917
1-samples 0.6746 0.6982 0.7083 0.7396
Average 0.7252 0.7239 0.7654 0.7865

Total Average 0.7502

6. Duration analysis Results Summary

Table 35. Results summary

 dur packet-type, dur combined
SimpleCompare 0.9393 0.9706 0.9701
MediumCompare 0.9381 0.9721 0.9621
ComplexCompare 0.9370 0.9551 0.9500
BayesCompare 0.8456 0.9190 0.9209
BayesCompare-modified 0.2866 0.9243 0.7502

 56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX B. IMPLEMENTATION CONSIDERATIONS

All of the techniques except association redirection were implemented on a Linux

machine in userland. Early on in the project it was clear that an easy to use 802.11 packet

crafting and parsing library would have to be created. A survey of currently available

solutions including libnet, libdnet, and scapy was made, but all were found to be lacking.

The biggest reason is that most of these tools are centered around crafting packets, not

parsing them. Something that could be used to quickly develop new tests was created.

The result was libairware, a C++ library specifically designed to easily craft and parse

802.11 packets.

The ability to craft and parse packets would not be very useful without a reliable

way to inject them. Fortunately many Linux wireless drivers can be coaxed to bypass the

802.11 state machine and inject packets into the air. In fact, there are so many different

device driver patches floating around that it can be hard to keep track of them.

Joshua Wright and Mike Kershaw were interested in the ability to easily inject

packets from userland on Linux as well. They were also interested in being able to write

device-driver agnostic code to do it. The result of their work is a cross driver generic

802.11 packet injection library called LORCON (Loss of Radio Connectivity).

All of the code that was written for this project makes extensive use of LORCON

to inject packets. Though code that can use LORCON to inject packets can be re-targeted

at runtime to use a different driver, the experiments done in this paper used a D-Link

DWL-g-122 card with the 2006021620 CVS release of the rt2570 driver to inject packets.

The specified version of rt2570 does actually allow for the reception of packets in

monitor mode when it is not injecting, however it was decided that doing so may interfere

with the delicate timestamps required. Therefore a second card was used whenever

injection and reception were required simultaneously. This second card was a Linksys

WPC55ag using CVS version 20051025 of madwifi-old. This card contains an AR5212

chipset. The madwifi driver also had the relevant LORCON injection patches applied,

 58

though they should make no difference. Practically speaking, the choice of which

driver/chipset to use for monitoring packets should be unimportant as long as it supports

prism headers with microsecond resolution timers.

A. PCAP CREATION FOR DURATION ANALYSIS
Pcaps created for this project were intentionally not generated by any sort of

highly automated process. Captures were created of all cards being powered on and

searching for a network before joining. After joining they loaded between 4 and 20

webpages. In one database (G--wrt54g) the capture was run explicitly until 5000 packets

had been received (representing the high end of data sampled). The results generated

were not significantly better than those databases where the packet captures were stopped

in an ad-hoc manner using less data.

The implications of these considerations are that the prints currently created are

not strictly representative of clients that are already associated to a network. These prints

best represent the behavior of clients around a small window of time centered on them

associating to a network. Though this period of time is not very packet-intensive, a lot of

important information is gleaned from the duration values contained in the management

frames that are exchanged. When implementing this technique in the wild the best thing

to do is probably only examine packets exchanged within a window around client

association. Merely sampling packets once association has happened will not yield as

diverse results.

59

APPENDIX C. TOOL USAGE

A. DURATION ANALYSIS
While implementing the algorithms outlined in the Chapter IV, three important

tools were created, duration-print-generator, duration-print-matcher, and duration-print-

grader. The results of this technique are explained in terms of these tools.

duration-print-generator simply takes in an input pcap and a MAC address,

computes all the values outlined in the previous chapters, and writes them out to disk (a

.prnt file)

duration-print-matcher takes an input pcap, MAC address to fingerprint, and a set

of previously computed prints (the print database). It then computes the print for the input

pcap and finds the closest match. The following table shows the output of an example

duration-print-matcher run. In this case duration-print-matcher is attempting to determine

what implementation best maps to the card with the MAC address 00:0a:95:f3:2f:ab in

the 5-1-lexie.pcap, against all of the saved prints in the print-db/lexie directory. The

filename 5-1-lexie indicates that this pcap is the first sample from implementation-id 5.

duration-print-matcher mis-identifies this pcap, as the correct implementation is not at the

top of the list.

 60

./duration-print-matcher -a 00:0A:95:F3:2F:AB -p ./print-db/lexie/pcaps/5-1-lexie.pcap -

P ./print-db/lexie/

Table 36. Sample output from duration-print-matcher

rank score ID Model chipset

driver

0 79.03 10 Broadcom-
MiniPCI BCM4318 bcmwl5.sys

1 78.91 5
Apple-
Airport
Extreme

BCM4318 AppleAirport2.kext

2 73.51 6 Zonet-
ZEW1520 BCM4306 bcmwl5.sys

3 56.03 7 Intel-
IPW220BG IPW2200BG w29n51.sys

4 54.74 13 Cisco-
Aironet-350 Prism2 pcx500.sys

5 53.06 11 Sony-PSP unknown unknown

6 47.19 8 D-Link-dwl-
g122 RA2570 rt2500usb.sys

7 39.95 4
Proxim-
Orinoco
Silver

AR5212 ntpr11ag.sys

8 39.55 3
Proxim-
Orinoco
Silver

AR5211 ntpr11ag.sys

9 39.47 2
Proxim-
Orinoco
Silver

AR5212 ntpr11ag.sys

10 38.53 1 Linksys-
WPC55AG AR5212 ar5211.sys

11 28.55 12 Nintendo-
DS unknown unknown

12 22.61 9 SMC-
2532W-B Prism2.5 smc2532w.sys

B. DURATION-PRINT-GRADER

duration-print-grader performs the same analysis as duration-print-matcher,

however it does it on a much larger scale. Every implementation included in a database

had 3 different captures taken of it associating to a network. duration-print-grader takes

all these pcaps, attempts to match them to the database of prints on disk, and keeps track

61

of the amount of error in terms of distance down the sorted list the correct print for that

pcap is found. A table representing the output of duration-print-grader is below.

Table 37. output from: ./duration-print-grader -P ./print-db/lexie/

(MediumCompare-Combined against: lexie)

ID s1 s2 s3 Chipset, driver success rate
1 0 0 0 Atheros AR5212

ar5211.sys
39/39 (1.000)

2 0 0 1 Atheros AR5212
ntpr11ag.sys

38/ 39 (0.974)

3 0 0 2 Atheros AR5211
ntpr11ag.sys

37/ 39 (0.949)

4 2 0 0 Atheros AR5212
ntpr11ag.sys

37/ 39 (0.949)

5 1 1 0 Broadcom BCM4318
AppleAirport2.kext

37/ 39 (0.949)

6 0 0 0 Broadcom BCM4306
bcmwl5.sys

39/ 39 (1.000)

7 0 0 0 Intel IPW2200BG
w29n51.sys

39/ 39 (1.000)

8 0 0 0 RaLink RA2570
rt2500usb.sys

39/ 39 (1.000)

9 0 0 0 Intersil Prism2.5
smc2532w.sys

39/ 39 (1.000)

10 0 0 0 Broadcom BCM4318
bcmwl5.sys

39/ 39 (1.000)

11 0 0 0 unknown unknown
unknown

39/ 39 (1.000)

12 0 0 0 unknown unknown
unknown

39/ 39 (1.000)

13 0 0 0 Intersil Prism2 pcx500.sys 39/ 39 (1.000)

--num errors across DB: 7

success rate across DB: 12.820513 / 13 = 0.9862

Samples s1,s2,s3 refer to the three sample pcaps for a given implementation. The

first sample in the row for ID 5 corresponds to the previous example from duration-print-

matcher. This has value of 1 because the correct print was 1 deep in the list for sample 1.

 62

The column on the right is the success rate of the specified algorithm for a single

implementation. It is computed using eq. 5.1, which can be expressed as

accuracy =
(num_implementations_in_db) * (num_samples) − misplacement_distance

(num_implementations_in_db)* (num_samples)

where misplacement distance is the sum of the ranks for the three samples For instance,

for the airport extreme (implementation ID #5) we get the following accuracy:

(13* 3) − 2
13* 3

=
37
39

= 0.949

Chapter V covers the details, but by taking the weighted average of these

individual success rates where the rate is the likelihood of seeing an implementation, we

can compute a success rate across the entire database. When using duration-print-grader

the likelihood of seeing an implementation is constant, and the individual success rates

are all weighted equally. In the example above, the success rate across the database turns

out to be 12.805555 / 13 = 0.9850.

63

APPENDIX D. COMPREHENSIVE DEVICE DRIVER
INFORMATION

The following table details all of the 802.11 implementations tested in this study.

Every implementation excluding the Apple Airport Extreme was test on Windows XP

SP2. The Airport card was tested on OSX 10.4

Table 38. Exhaustive 802.11 implementation data

ID image MAC, model,

chipset
files details

1

00:12:17:79:1C:B0

Linksys
WPC55AG v1.2

Atheros AR5212

ar5211.sys

Driver Date: 7/12/2004
Provider: Atheros
Communications
Inc/Linksys*.
File version 3.3.0.1561
Copyright 2001-2004
Atheros Communications,
Inc.
Signed: Microsoft Windows
Hardware Compatibility

2

00:20:A6:4C:D9:4A

Proxim Orinoco
Silver 8481-WD
Atheros AR5212

ntpr11ag.sys

Driver Date: 8/5/2004
Provider: Atheros
Communications Inc.
File version 3.1.2.219
Copyright 2001-2004
Atheros Communications,
Inc.
Signed: Microsoft Windows
Hardware Compatibility

3

00:20:A6:4B:DD:85

Proxim Orinoco
Silver 8461-05
Atheros AR5211

same as above

4

00:20:A6:51:EC:09

Proxim Orinoco
Silver 8471-WD
Atheros AR5212

same as above

 64

ID image MAC, model,
chipset

files details

5

00:0A:95:F3:2F:AB

Apple AirPort
Extreme
Broadcom BCM4318

AppleAirport
2-bcm4318

Version: 404.2

6

00:14:a5:06:8F:E6

Zonet ZEW1520
Broadcom
BCM-4306

BCMWL5.sys

Driver Date: 1/23/2004
Provider: Broadcom.
File version 3.50.21.10
Copyright 1998-2003
Broadcom Corporation.
Signed: Microsoft Windows
Hardware Compatibility

7

00:0E:35:E9:C9:5B

Intel PRO/Wireless
2200BG

w29n51.sys
W29NCPA.dll
W29MLRes.dl

Driver Date: 9/12/2005
Provider: intel
File Version: 9003-9 Driver
Copyright: Intel 2004
Signed: Microsoft Windows
Hardware Compatibility

8

00:13:46:E3:B4:2C

D-Link dwl-g122
Ralink RA2570

rt2500usb.sys

Driver Date: 4/1/2004
Provider: D-Link/Ralink
Driver Version: 1.0.0.0
Signed: Microsoft Windows
Hardware Compatibility

9

00:04:E2:80:2C:21

SMC 2532W-B
Prism 2.5

smc2532w.sys

Driver Date: 10/20/2003
Provider: SMC
Driver Version: 3.1.3.0
Copyright: 2003 SMC
Networks, Inc.
Signed: No.

10

00:14:A4:2A:9E:58

Broadcom 802.11g
miniPCI
BCM4318

bcmwl5.sys

Driver Date: 12/22/2004
Provider: Broadcom
Driver Version: 3.100.46.0
Copyright: 1998-2004,
Broadcom Corporation.
Signed: Microsoft Windows
Hardware Compatibility

11

00:14:A4:7f:84:67
Sony PSP

unknown PSP firmware version 2.50

12

00:09:BF:9D:59:C9
Nintendo DS

unknown NA

65

ID image MAC, model,
chipset

files details

13

00:0D:29:02:44:B8

Cisco aironet-350

pcx500.sys

Driver Provider: Microsoft
Driver Date: 7/1/2001
Driver Version: 7.29.0.0
Digital Signer: Microsoft
Windows Publisher

14

00:0E:35:E9:C9:5B

Intel PRO/Wireless
2200BG

w29n51.sys

Netw2c32.dll

Netw2r32.dll

Driver Date: 6/26/2006
Provider: intel
File Version: 9.0.4.17
Copyright: Intel 2004
Signed: Microsoft Windows
Hardware Compatibility

 66

THIS PAGE INTENTIONALLY LEFT BLANK

67

LIST OF REFERENCES

1. IEEE Wireless LAN Edition. A Compilation Based on IEEE Std 802.11-
1999 (R2003) and its Amendments, IEEE Press, 2003.

2. IEEE std. 802.11, Standards for Local and Metropolitan Area Networks.
1999

3. WiFi Alliance (Wireless Fidelity), http://www.wi-fi.org, last accessed
September 2006.

4. Fluhrer, S., Mantin, I., and Wagner, D.. Weakness in the Key Schedule Algorithm
of rc4. In Proc. 4th Annual Workshop on Selected Areas of Cryptography, 2001.

5. Raya, M., Hubaux, J.-P., and Aad, I., “Domino: A System to Detect Greedy
Behavior in IEEE 802.11 Hotspots,” in Proceedings of the Second International
Conference on Mobile Systems, Applications and Services (MobiSys2004),
Boston, Massachusetts, June 2004.

6. Dai Zovi, Dino, and Macaulay, Shane. “Attacking Automatic Wireless Network
Selection,” 2005.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Eagle
Naval Postgraduate School
Monterey, California

4. Dennis Volpano
Naval Postgraduate School
Monterey, California

5. Jon P. Ellch
Civilian, Naval Postgraduate School
Monterey, California

