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ABSTRACT 

The research presented in this thesis provides the reader with a set of algorithms 

and techniques that enable the user to remotely determine what chipset and device driver 

an 802.11 device is using. The work details both passive and active approaches, and 

quantitatively gauges the effectiveness of various techniques. 

The implications of this are far ranging. On one hand, the techniques can be used 

to implement innovative new features in Wireless Intrusion Detection Systems (WIDS). 

On the other, they can be used to target link layer device driver attacks with much higher 

precision. 
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I. INTRODUCTION 

The adoption of wireless local area networks (WLAN) has exploded in recent 

years due in large part to standardization by the IEEE and certified WiFi interoperability; 

see the compilation Wireless LAN Edition [1].  Vendors ship products that they claim 

conform to the IEEE 802.11 standard and in many ways, they do, as the WiFi industry 

consortium can confirm.  Yet products can also vary widely in their implementations of 

this standard.  An implementation usually comprises a software component (the device 

driver) the hardware (radio chipset), and firmware for that chipset.  The combination of 

the three uniquely identifies the implementation.  Invariably, an implementation exhibits 

some behavior that can be observed or measured and is unique.  This behavior is called 

its 802.11 fingerprint.  Fingerprints enable us to identify 802.11 implementations. 

A. WHY FINGERPRINT 802.11? 
Some 802.11 implementations have vulnerabilities that make devices that use the 

wireless technology vulnerable as well.  Exploits developed for one implementation may 

not work for another so an attacker prefers to identify the implementation first.  Then 

they can choose the appropriate exploit rather than cycling through them and possibly 

drawing attention to themselves by crashing a device with the wrong exploit.   

Fingerprints can also be used in a defensive way.  A system administrator may 

maintain a database of authorized devices approved for use on their WLAN.  Typically 

the devices are identified by their globally-unique 802.11 MAC addresses.  But this is 

insufficient because a MAC address can be easily cloned by an authorized user using an 

unauthorized device.  A better approach is to use an 802.11 fingerprint.  Knowing which 

802.11 implementations are vulnerable, an administrator can monitor their environment 

for wireless activity, observe 802.11 fingerprints and be notified of an authorized user 

who is using a device with a vulnerable 802.11 implementation even if the device clones 

the 802.11 MAC address of an authorized, and presumably secure, implementation.  

There are a variety of monitoring products on the market today, generally called Wireless 

Intrusion Detection Systems (WIDS), where 802.11 fingerprints could be observed. 
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This thesis describes three techniques for identifying a given 802.11 

implementation based on its fingerprint.  Two are active in that they require the 

implementation to participate in a portion of the 802.11 protocol. One active technique 

requires transmission of various control frames, and the other requires a special AP that 

crafts particular frames.  The third technique is passive in that it processes a snapshot of 

802.11 protocol traffic produced by the given implementation over a relatively short 

period of time. 

B. WHAT IS 802.11? 
802.11 is a link-layer protocol standard ratified by the IEEE. The first version of 

the standard was ratified in 1997 and the most recent revision was ratified in 1999 and 

reaffirmed in June 2003 [2]. Alternative data rates and PHY-layer protocols are specified 

in amendments 802.11b-1999 and 802.11a-1999 respectively.  The Wireless LAN Edition 

is a compilation of the standard and its amendments. Many people equate “Wi-Fi” with 

802.11. Wi-Fi is a term created by the Wi-Fi association [3]. It is quite possible for a 

device to be Wi-Fi compliant without fully complying with the 802.11 standard. 

IEEE Std 802.11 is a Media Access Control (MAC) and Physical Layer (PHY) 

standard governing wireless local area networks operating in the ISM band which is 

unlicensed radio spectrum. This required the 802.11 Task Group to deal with problems 

that have no simple analogy in the wired world. 

One of the most obvious problems is the unreliability of a wireless link. The 

standard operates in unlicensed spectrum and therefore competes with cordless phones 

and other wireless networks for the medium.  Different wireless networks using the same 

frequency must co-exist.  The designers had to take into account various means to stop 

independent networks from unfairly impacting the performance of each other. The 802.11 

standard includes features to address this problem. These include positive 

acknowledgement with retransmission, and special medium access control frames called 

Request To Send (RTS) and Clear To Send (CTS). 

Another major problem designers had to address is the vulnerability of a wireless 

link to eavesdroppers.  This prompted the designers to include Wired Equivalent Privacy 

(WEP) as a first attempt at providing link layer privacy, integrity and access control.  One 
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could have argued that privacy is outside the scope of a wireless MAC-PHY standard.  

However, the designers recognized the need to make 802.11 implementations self 

contained so that they could be deployed without disrupting the wired networks they 

were attempting to extend.  Adoption of the technology would be hampered if it required 

other technologies, such as a Virtual Private Network, in order to be deployed.  But WEP 

failed on all three fronts [4]. Fortunately, the 802.11i Task Group had already begun 

augmenting WEP with a new authenticated encryption algorithm in 2001 when Fluhrer et 

al. announced their findings.  Nonetheless, it brought a new sense of urgency within the 

Task Group.  

Unlike wired Ethernet, the 802.11 MAC protocol includes connecting to a 

distribution system via an Access Point (AP). Access points have no idea what clients are 

within range of their signal unless clients tell them.  The 802.11 MAC includes a set of 

rules for discovering and connecting to an AP. In a wired network this is accomplished 

by plugging in a cable.  Typically, physical building security prevents anyone from being 

able to plug in a cable.  With an 802.11 wireless LAN, however, many clients may be 

constantly searching for wireless networks to join.  

In summary, the 802.11 standard is in many ways more complicated than its 

wired-Ethernet counterpart due to issues that arise in a wireless environment. It has to 

deal with many problems that have no wired-side analogy. Ultimately it is this 

complexity that leads implementations to vary, making fingerprinting possible. 

C. FINDING AN 802.11 FINGERPRINT 
An implementation comprises a driver, radio chipset, firmware, and possibly 

some user-space applications.  Ideally, one would be able to identify any component of a 

given implementation and further refine identification of each software component by its 

version.  Whether it is possible to identify these components depends largely upon 

behaviors not governed by the standard and where they are implemented.  As we shall 

see, there is even deviation from the standard within the industry that presents very useful 

opportunities for fingerprinting.  Developing 802.11 fingerprints is largely an exploratory 

exercise in determining how an 802.11 implementation behaves uniquely.   
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The strength of a fingerprint determines whether the components of an 

implementation can be identified individually.  The fingerprints described in this thesis 

afford reliable identification of 802.11 chipsets, drivers, and in some cases, different 

versions of the same driver.  No attempt was made to differentiate firmware versions.   

One of the most unique aspects of 802.11 implementation fingerprinting is that 

many characteristics of the implementation are controlled by hardware. However, there is 

a trend in modern 802.11 chipsets to push more and more functionality into software. 

Popular examples of these chipsets include products from Atheros and Ralink. Though it 

seems unlikely, it is quite possible that drivers for software based radio chipsets (such as 

products from Atheros and RaLink) could be patched, allowing them to mimic the details 

of other implementations. Doing this would allow an attacker to have his driver or chipset 

intentionally misidentified, perhaps to sidestep a fingerprint-aware WIDS.  

Many other devices however have certain aspects that cannot be controlled from 

software. The older Prism2 generation of chipsets is the best example of a chipset that 

operated somewhat independently of the driver. 

D. ACTIVE 802.11 IDENTIFICATION 
Active identification revolves around observing variations in the implementations 

of 802.11 association. As stated, two active techniques were investigated.  One technique 

involved observing an 802.11 implementation’s response to CTS packets attempting to 

use the virtual carrier sense mechanism of 802.11 to reserve the medium.  It did not do as 

well as the second active technique.  The second technique involves modifying packets 

that are exchanged in typical authentication/association response when a client associates 

with an AP.  Once the exchange has taken place the results can be categorized and looked 

up in a table. This technique requires an attempt by the 802.11 implementation being 

fingerprinted to associate with an AP that has been modified to craft special kinds of 

association and authentication reply frames.  The frames elicit different behaviors from 

the 802.11 implementations.  A fingerprint in this case is the behavior of an 802.11 

implementation in response to these special frames. 
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E. PASSIVE 802.11 IDENTIFICATION 
Passive identification is done via an off-line algorithm.  The algorithm takes as 

input a capture of 802.11 frames sent by the 802.11 implementation in question.  It 

compares certain characteristics of this capture to a database computed before hand, and 

returns what is the most likely implementation to generate such a capture. In particular, a 

technique that examines the duration field of 802.11 frames is explored.  

F. ORGANIZATION OF THESIS 
This thesis is organized into the following chapters. Chapter II provides a brief 

overview of the relevant portions of the IEEE 802.11 MAC rules. Chapter III discusses 

the active fingerprinting techniques that were developed, and Chapter IV covers the 

passive technique. Chapter V analyzes the accuracy of the passive technique.  Chapter VI 

contains future work and concluding remarks. Finally three appendices are also included: 

Appendix A lists the results for all matching metrics covered in Chapter IV. Appendix B 

covers implementation details that can be used to validate the techniques and results. 

Appendix C contains detailed information regarding every 802.11 implementation tested. 
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II. OVERVIEW OF THE 802.11 MAC 

This chapter provides the relevant background of the 802.11 MAC needed to 

understand the fingerprinting algorithms covered in Chapter III.  This background is by 

no means a complete description of the 802.11 standard. 

A. 802.11 BASICS 
Standard 802.11-1999 specifies Medium Access Control (MAC) and Physical 

(PHY) layer protocols.  There are two types of MAC protocols described, Point 

Coordination Function (PCF) and Distributed Coordinated Function (DCF).  It is possible 

to alternate between them.  When the PCF is operating, the medium is in a contention-

free period since the point coordinator, an access point, controls all access to the medium.  

When end stations compete for the medium, including the access point, they use the DCF 

MAC protocol.  This period is called a contention period.  

The standard specifies three different frame types: control, management, and data. 

Control frames are used for medium reservation and acknowledgements, and have a real-

time processing requirement. Medium reservation control frames are not confined to a 

single network; they are intended to be processed by all stations on a given channel even 

though they may belong to different wireless networks, or Basic Service Sets (BSS).  

These frames carry a duration field that is essentially an announcement of a station’s 

intention to use the medium for a period of time.  Stations operating on the same channel 

should observe the announcement regardless of the BSS to which they belong.  Otherwise 

they risk interference with their own transmissions.  In this way, multiple Basic Service 

Sets can coexist on the same channel.  

MAC management in 802.11 includes authentication and association with an 

access point. It also includes provisions for locating networks via probe requests and 

beacon packets.  Management frames handle all of these tasks.  

Finally, data frames are used to transmit data. 
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B. ASSOCIATION AND AUTHENTICATION  
One of the unique things about wireless networks is that there needs to be a 

protocol for connecting to a BSS or IBSS. IEEE Std 802.11-1997/1999 describes a 3-

state protocol that a client must engage in with the AP in a BSS before it is connected to, 

or in 802.11 terminology, associated with the BSS.  

A client initially starts out as un-authenticated and un-associated (state 1). The 

first thing it must do is authenticate to the AP. There are two types of authentication 

possible, open (no authentication) and shared-key. 802.1x based authentication (as 

specified in the 802.11i amendment) does not take place at this phase. Most AP's use 

open authentication; shared-key allows attackers to launch known plaintext attacks. 

Clients authenticate by sending an authentication request frame. The AP either responds 

with authentication successful, or a shared-key challenge. Once a client has authenticated 

it, enters state 2, authenticated and un-associated. 

Once a client is in state 2, it sends an association request frame. At this point, the 

AP replies with an association success. This places the client in state 3, authenticated and 

associated. At this point, the client can send data packets to the AP. If 802.1x 

authentication is to take place, it would happen now. Assuming 802.1x authentication 

doesn't happen, it takes four frames for a client to successfully associate with a BSS.   

Before a client can authenticate and associate with a BSS, it must locate the BSS.  

The 802.11 standard provides two techniques locating IBSS's/BSS's, probe requests and 

beacon packets. Beacons are packets that an AP sends out periodically, informing nearby 

stations of their presence.  Probe Requests are packets that allow clients to ask if there are 

any nearby AP's. These come in two flavors, broadcast and directed. Directed probe 

requests are used to locate a specific network, while broadcast probe requests are used to 

find any networks that happen to be nearby.1 

 

 

                                                 
1 A broadcast probe request is the only 802.11 broadcast MPDU an end station can transmit. 



9

Curiously, the standard specifies client de-authentication whereby an access point 

can place the client in an unauthenticated state without having to authenticate itself to the 

client.  As a result, any station can put another end station into this state as a kind of 

denial-of-service attack.   

C. PHYSICAL AND VIRTUAL CARRIER SENSE  
The 802.11 standard specifies two ways to determine if the medium is busy. The 

first is a physical carrier sense. 802.11 specifies that any PHY must provide a technique 

to sense if the medium is busy. The function in the PHY layer responsible for this is 

called the clear channel assessment (CCA). 

Two clients that belong to the same BSS may not be within radio range of each 

other.  Therefore, neither will be able to detect energy on the medium necessary to do a 

CCA.  Further, it is more efficient in some cases for a client to reserve the medium in 

advance, for instance, for an acknowledgement which can be sent immediately upon 

receipt of a frame.  Both cases are handled using a virtual carrier sense mechanism.  It 

consists of a Network Allocation Vector (NAV) maintained by each client.  The NAV 

can be thought of as a client’s best guess as to how long the medium will be busy.  The 

client’s NAV is updated in response to receiving a frame whose duration field contains a 

value that exceeds the current NAV value. 

The duration field is found in nearly every packet.  It is not included in Power-

Save Poll frames, as the bits are used for the association ID field. Conceptually the 

duration field of a frame is the amount of time the transmitting client wishes to reserve 

the medium for itself to send subsequent frames, including any replies expected of the 

recipient such as acknowledgements.  How this value is computed depends on the exact 

type of frame it is in. The duration field is 16 bits. Therefore the largest value it could 

reserve the media for is 65,535 microseconds. However the standard explicitly says to 

ignore any values greater than 32,767. 
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In a typical scenario where a client is not sending an unfragmented data frame, the 

duration field will be the amount of time it takes for the inter-frame spacing, combined 

with the time required for the receiving station to send an ACK packet; in other words, a 

constant. In management types (such as beacons) or some control types (such as ACKs) 

no more traffic is needed, and the duration field is set to zero. 

In more complicated scenarios involving fragmentation, the duration field will 

include the time required not only for the inter-frame spacing and ACK, but for the rest 

of the fragments.  See RTS and CTS frames in the next section.  Finally an important 

aspect of the PCF is implemented by using the duration field to interoperate with stations 

on the same channel using the DCF. 

D. RTS/CTS CONTROL FRAMES 
The 802.11 MAC control frames include Request To Send (RTS) and Clear To 

Send (CTS).  These frames aim to reduce the number of bytes that need to be 

retransmitted due to interference at an AP from a client out of radio range from the 

sender, the so-called hidden node. 

The hidden node problem refers to the scenario where two wireless clients (nodes) 

are on opposite sides of the AP. Though the AP can hear both of the nodes, the nodes do 

not hear each other's transmissions. This can create a problem when both clients attempt 

to transmit at the same time because they sense the medium is free, resulting in a 

collision at the AP. 

RTS and CTS packets are there to help prevent these types of collisions from 

happening on sufficiently-large packets.  The value of 'sufficiently large' is left up to the 

device driver, and may be configurable by a user.  This value is called the RTS threshold. 

Assuming the client has a frame to send that surpasses the RTS threshold, it will 

first send a RTS frame to the AP. At this point, if the rules of the MAC allow it, the AP 

will respond with a CTS packet directed to the client.  The reason that the AP needs to 

send the CTS packet (instead of the client) is that everyone within range of the AP will 

receive it.  Of course an RTS can collide at the AP due to the hidden node but the cost of 

retransmitting it is much lower than that to retransmit the frame whose size exceeds the 
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RTS threshold.  Thus the RTS/CTS exchange lowers the likelihood of a collision at the 

AP due to a hidden node and further, an RTS costs less to retransmit if there’s a collision.  

RTS and CTS frames also have a duration field.  The duration field of an RTS and 

CTS is long enough to reserve the medium for sending and acknowledging the frame that 

exceeds the RTS threshold.  If this frame has to be fragmented, then the duration is long 

enough to reserve the medium for transmission of every fragment.  



 12
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III. ACTIVE IDENTIFICATION  

Active identification relies on eliciting a fingerprint through executing some part 

of the 802.11 protocol with the implementation being identified. This chapter describes 

two approaches to active identification.  The first is based on eliciting unique responses 

to CTS frames. The second is based on eliciting responses to 802.11 association 

redirection attempts. 

A. RTS/CTS WINDOW HONORING 
As mentioned, one of the features included in the 802.11 standard is the use of 

Request To Send (RTS) and Clear To Send (CTS) packets to mitigate the hidden node 

problem. It is quite possible for 802.11 implementations to fail to implement RTS/CTS 

honoring and still interoperate on a day to day basis. The goal of this test is to determine 

whether or not a particular implementation systematically fails to honor a CTS packet 

reserving the media for another client. One of the biggest difficulties faced with this 

technique was obtaining a high-enough resolution clock from userland. 

Determining whether or not a client transmits inside a CTS window requires the 

ability to measure the time a packet was transmitted relative to others with micro-second 

resolution. Timers with this resolution aren't generally available in userland on many 

operating systems, and even if they are, accurately tying it to the reception of a packet 

would be difficult at best.   

Fortunately many Linux wireless device drivers prepend what has come to be 

known as “prism” headers. This header contains out of band information about a packet 

such as signal strength. It also contains two very useful timestamps, MAC-time and 

HOST-time. These timestamps measure when the packet was received by the card, and 

when it was handed off to the host operating system. They also have microsecond 

resolution. It should be noted that the same technique was used by other researchers 

interested in clients violating the MAC rules to get an unfair share of bandwidth in [5].  
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A tool was developed to facilitate 802.11 identification using CTS packets.  

Conceptually, the tool is straightforward. The user specifies an interface to transmit on, 

another one to listen on, and number of packets to send. The tool will then send out CTS 

packets on the transmit interface and record all the traffic on the other.  In this 

implementation, the duration was set to a constant value of 32767. 

Once the tool has transmitted all the CTS packets, it analyzes the recorded traffic. 

The tool uses the microsecond timer's available in the prism headers to determine if any 

clients have transmitted inside a CTS window not allocated to them. If it finds any it 

writes a record out to a text file which is suitable for importing into a database.  

The tool keeps the analysis logic separate from the packet crafting and reception, 

and can be run on a packet capture (pcap) file as well. Below is an example of the output: 

 
Table 1.   Example output of CTS fingerprinter 

 
Pcap-file ./ch3.pcap
Total Pkts 2154 
Total violations  787 
Num CTS  814 
Num RTS   0 
Total Unparsable   0 
unparsable Ctrl   0 
unparsable Data   0 
anon CTRL violators 3497 

 

The “anon CTRL violators” refers to packets transmitted inside a CTS window 

that could not be pinned down to a specific address. Some control frames in the 802.11 

standard don’t include the address of the sender. In this example, many of the violators 

are actually the tool itself, transmitting a CTS packet inside the window of another. Here 

is an example of a record illustrating a specific violation: 

 

 

 

00:0F:B5:5D:92:6E, CTS_IGNORE,  CTS_WIN_VIOLATION, [ MGMT, 

0, 8, 32767, 28736] 
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This record indicates that a card with address 00:0F:B5:5D:92:6E transmitted a 

management frame (type 0) of subtype 8 (beacon). The final two columns indicate the 

size of the CTS window, and the number of milliseconds into the window when the 

transmission started. 

The ultimate goal of this technique was not to return a simple binary value 

indicating whether an individual implementation honors CTS windows. Rather it was to 

analyze violations for patterns. The idea was to explore whether implementations ignore 

CTS packets with durations that exceed some value where that value perhaps varies by 

chipset. Alternatively, certain implementations might transmit at different offsets into a 

CTS window.  However, none of these more advanced techniques was investigated 

because it quickly became clear that almost every implementation tested simply ignored 

CTS packets. It is not clear whether this is a bug in the code, a problem with the 

timestamps, or if the majority of implementations really ignore CTS packets.  

B. ASSOCIATION REDIRECTION 
When a client connects to an Access Point (AP), four frames are typically 

involved (six if shared key authentication is enabled). These consist of an authentication 

request, authentication response, association request, and association response.  

Association redirection is a technique that an AP can employ to actively 

fingerprint a client. When an AP modifies the second address in the association reply (the 

source address) the associating client will behave in uniquely identifiable ways. In a 

successful redirection, the client transmits data to the new BSSID 00:22:22:22:22:22, as 

illustrated under successful redirection in Figure 1.  In this figure, the original BSSID is 

00:11:22:33:44:55 and the redirected (new) BSSID is 00:22:22:22:22:22.  Surprisingly, 

only one 802.11 NIC was successfully redirected.  One might expect a failed redirection 

attempt to exhibit the behavior depicted in Figure 1 under unsuccessful redirection.  

There, the client quietly continues to transmit data to the BSSID used in the association 

request, ignoring the redirection attempt. However, most 802.11 implementations did not 

exhibit this behavior as we shall see. (See Appendix A). 
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Figure 1.   Association Redirection. 

 

Association redirection was motivated by an attempt to get 802.11 stations to be 

dynamically assigned to their own BSS from an AP. It was the puzzling responses 

generated from clients that launched the fingerprinting work of this thesis. The 

motivation for the redirection follows from the 802.11 standard which prescribes the way 

an end station is assigned to a Basic Service Set (BSS).  The state transition diagram on 

page 376 of the 1999 revision of the 802.11 standard specifies the assignment. [2]  Part of 

that diagram is reproduced in Figure 2 (only the relevant portion is shown).   
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Figure 2.   Basic Service Set Assignment 

 

The diagram indicates that the associating station should set its BSSID to the second 

address in the received association response. The second address in all management 

frames is the source address.  The station belongs to the BSS identified by this BSSID.  

C. ASSOCIATION REDIRECTION AS A FINGERPRINTING TOOL 
As mentioned previously, when initially experimenting with association 

redirection, a wide variety of behaviors were observed.  In an effort to get more 

fingerprints the original idea behind association redirection was expanded from one 

experiment into a total of nine.  

The original transition diagram specifies that the AP should mangle the second  

address in the association response, which is the source address. The experiment was 

expanded to modify the 1) source address, 2) BSSID address, and finally 3) both 

addresses. Doing this gives the drivers more opportunity to differentiate themselves. 

When this technique was applied (modifying all possible combinations of addresses in 

Association replies), a total of six unique responses was observed. These responses are 

summarized in the table below. The details of each response are of only minor 

importance; the interesting thing is the number of responses. 
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Table 2.   Unique responses to Association redirection in Association response frames. 
 
IGN_ASSOC_REPLY Client ignores association replies from AP. 

Never enters stage 3  
DUAL_ACK_DATA Client alternates transmission between both BSSIDS,  acks 

data frames. 
DUAL_NACK_DATA Client alternates transmission between both BSSIDS,  

doesn't ack data frames. 
REASSOC_NULL_ALSO Client sends no data except null data frames. Null data 

frames use new BSSID. Client attempts to re-associate with 
old BSSID. 

DEAUTH_FLOOD_NULL Client sends many (approx 10) de-auths, to: redirected 
BSSID, through: Null BSSID. No data packets sent. 
 

DEAUTH_TYPE_1 Client sends multiple deauths  to redirected BSSID through 
original BSSID 

 

Once the results for the first round of experiments were analyzed and found to be 

successful, another attempt to widen the spectrum of behaviors was made. This led to two 

more iterations, both similar to the first.  In one iteration, we modified the address fields 

in only the authentication replies. The unique results generated are shown in Table 3. 

Finally in the last experiment we modified addresses in both authentication and 

association replies. This generated no more unique responses. All of the individual 

implementations results are presented in Appendix A.  

 
Table 3.   Unique responses to Association redirection, limited to authentication replies. 

 
IGN_AUTH_REPLY Client ignores auth replies from AP. Never enters stage 2  

DUAL_BSSID Client alternates transmission between both BSSIDs. Acking of 
data unknown. 

DUAL_T1_DEAUTH DUAL_ACK_DATA but also transmits deauths to redirected 
BSSID through original BSSID 

 

Association Redirection as a fingerprinting technique proves quite capable of 

determining an implementations chipset. Although in this experiment each 

implementation was tested in nine unique situations, in reality an optimized set of tests 

could be computed. This would bring the number of associations required to get a 

fingerprint down significantly. Although recent work [6] has shown it to be relatively 
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easy to get clients to connect to an attacker-controlled AP, this requirement still makes 

Association Redirection less desirable than passive techniques, even in offensive 

scenarios where an attacker doesn't mind transmitting. Using Association Redirection in a 

defensive scenario would be possible, but requires strong cooperation between WIDS 

vendors and the AP vendor. 
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IV. PASSIVE IDENTIFICATION 

Passive identification involves fingerprinting an implementation without 

transmitting any packets in the process. This immediately rules out trying to identify an 

implementation by observing what it does in special situations constructed to explore 

boundary behaviors.  This chapter describes a technique that identifies an 802.11 

implementation using various metrics for matching Duration fields in 802.11 frames.  

A. DURATION ANALYSIS 
As mentioned in Chapter II, the duration field is a 16 bit value which describes 

how long the station that currently has access to the medium intends to keep it, after the 

current transmission. Even though the duration field is 16 bits wide, it only takes on a few 

discrete values. Common values are 0 (for packets that are not acknowledged such as 

management frames broadcast during a Contention Period), and the time it takes for a 

SIFS (Short Interframe Spacing) interval plus an acknowledgment, used in transmitting 

unicast data frames. 

Variables that can affect the duration field include some parameters of the local 

Basic Service Set specified in a beacon’s fixed flags field. These include short slot time, 

short pre-amble, and of course, the data rates supported. The net result of this is that 

ideally a unique fingerprint for a given implementation would be taken across all possible 

variations of these parameters. For this work, four databases were created. The databases 

currently have human-friendly names (the name of the AP used to create them). In the 

future, the number of databases will grow large enough that an algorithmic naming 

scheme (rates-flags for example) will be employed. 

Since the performance of this technique varies with the parameters of the Basic 

Service Set with which it is associated, a brief introduction to the four networks it was 

developed and tested against is given below. 
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Table 4.   Summary of databases created   
 

name rates flags 

Lexie 1.0 - 11.0 Mb/sec (b-only) 0x0021 (short pre-amble) 

mixed--wrt54g 1.0 - 54.0 (mixed) 0x0401, 0x0001 

(disables SST if a b client is in range)

mixed--AirPlus 1.0 - 54.0 (mixed) 0x0421 (SST, short pre-amble) 

G--wrt54g 1.0 - 54.0 (G-only) 0x0421 (SST, short-preamble) 

 

Table 4 represents data about the four WLANs on which all experiments in this 

section were performed. They were chosen to give a good estimate of real world network 

deployments.  Lexie is a b-only Cisco aironet 350.  Mixed--wrt54g is a rev5 Linksys 

wrt54g running in mixed mode. Mixed--Airplus is a D-link DI-524, and G--wrt54g is a 

rev5 Linksys wrt54g in g-only mode.  The models of the Access Points used are 

mentioned to give the reader some sense of market representation. The databases 

generated from each AP are not tied to that specific AP. Clients should respond 

identically in any BSS with the same set of parameters listed above. 

B. WHAT IS IN A PRINT DATABASE? 
The tools and techniques described in this chapter all operate on a surprisingly 

little amount of information, stored in what we call a print database. There is a 

fingerprint for each implementation.  A fingerprint comprises a list of records of the form 

(packet_type, duration-value, count) which reflects for the given packet type, the number 

of times the given duration value appeared. All data and management frames are 

observed while control packets are discarded.  

Two example prints from the same database are given in Tables 5 and 6. Both 

prints were generated from packet captures done while a client associates, obtains an IP 

address from DHCP, and proceeds to load a few web pages. With so little activity, there 

is a remarkable range of behaviors.  These two prints were chosen to illustrate the range 

of behaviors between Atheros and Prism chipsets.  
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Table 5.   Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie 
 

packet-type  (duration  
[duration observed frequency /number packets of  this type]) 

Assoc Request    (314 [2/2])  
  probe request    (0 [75/77])  (314 [2/77])  
  Authentication    (314 [2/2])  
        Data    (162 [167/278])  (0 [111/278])  
  Null Function    (162 [597/597]) 

 
Table 6.   Implementation-Id: 9 (Prism-2.5, smc2532w.sys), database: Lexie 

 
Assoc Request    (258 [13/13])  
  probe request    (0 [50/50])  
  Authentication    (53389 [13/13])  
        Data  (213 [1229/1303])  (0[54/1303])  (223[20/1303])  
  Null Function    (37554 [16/16]) 

 

Two things stand out immediately from these fingerprints. The first is that the second 

implementation (the prism2.5 based implementation) uses duration values that are 

entirely different than those used by the better behaved Atheros card. Secondly, the 

prism2.5 based implementation uses two illegal duration values. The standard says that 

any values greater than 32767 should be ignored.  

Though these two implementations are different enough that they can be easily 

distinguished, most of the other implementations sampled fell somewhere between them. 

To get better resolution, two ratios were introduced: the ratio of packets with a given 

duration relative to the total number of packets sampled, and the ratio of pairs (packet 

type, duration) for a given packet type and duration relative to the total number of packets 

seen of that packet type. 

Though these numbers can fluctuate across different samples for the same 

implementation, they proved to be stable enough to cause an improvement in the 

algorithms that use them. Tables 7 and 8 show this information for the Atheros 

fingerprint above in Table 5. 
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Table 7.   Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie 
 
packet type  (duration [ratio of packets with this duration, for given packet-type])
Assoc Request   (314 [100%])  
  probe request   (  0 [ 97%]) (314 [  3%])  
  Authentication   (314 [100%])  
        Data   (162 [ 60%]) (  0 [ 40%])  
  Null Function   (162 [100%]) 

 
Table 8.   Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie 

 

duration ratio of packets with this duration, regardless of  packet-type 

0 19% 

162 80% 

314 1% 

 
C. THE DURATION MATCHING ALGORITHM 

The matching algorithm expects as input a packet capture (pcap) file gotten by 

sniffing the exchange between an 802.11 NIC and one of the 802.11 Access Points for 

which a print database has been assembled for a collection of 802.11 implementations.  

The input is compared against each print in the database using a particular matching 

metric.  We give five matching metrics.  Each matching metric produces a scalar quantity 

measuring the degree of match between the input and a print.  The algorithm outputs a 

list of 802.11 implementations ordered by decreasing degree of match.   

The metrics are presented in order of increasing complexity.  Values from one 

metric are not intended to be comparable to values from another.  

D. SIMPLECOMPARISON METRIC 
SimpleCompare is the first of three related metrics, the other two being 

MediumCompare and ComplexCompare. SimpleCompare is unique in that it compares 

the input against a print in the database without using any information about other prints 

in the database. That means that if a certain duration value is incredibly unique, such as 

the illegal ones only found in prism2 based implementations, it has no opportunity to take 

this into consideration. 
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All the metrics presented in this section break the fingerprints up into two 

different sets of data points. The first set is a set of pairs of the form (duration value, 

count). The second set is a set of triples of the form (packet type, duration value, count). 

The diagrams below leave the count component of both tuples out for clarity. 

SimpleCompare, as well as the other metrics, has three different flavors. It can be 

computed using just the (duration value, count) pairs, or it can be computed using just the 

(packet type, duration value, count) triples.  Finally the results from both analyses can be 

combined. Combining the results of these metrics is simply a matter of adding the return 

values from both metrics. 

SimpleCompare utilizes two functions that are used throughout this section. They 

are used to compute the duration ratios in tables 7 and 8, and are defined as follows. 

duration_ratio(p,d) =
# of packets with packet_type = p, duration=d

# of total packets with packet_type = p
 

duration_ratio(d) =
# of packets with duration=d
# of total packets observed

 

The SimpleCompare metric is defined below.  The input packet capture is denoted by L.  

R, on the other hand, denotes a print in the capture database for a particular 802.11 

implementation. 
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Figure 3.    SimpleCompare duration-value only analysis  
 

The metric weights common durations that appear in their respective prints at 

roughly the same rate more heavily than ones that do not. However, SimpleCompare does 

not pay attention to duration values that aren't in the intersection, as illustrated in Figure 

1, even though the number of values not in the intersection is clearly a strong indicator of 

how close two prints match.  It also doesn't have any idea of how unique any specific 

duration values are across the entire database. 

sum = 0; 
for every duration-value d ∈(L I R)  

sum += 1.0 - | L.duration_ratio(d) - R.duration_ratio(d) | 
return sum; 
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At first, this lack of a global perspective on the relative likeliness of seeing 

duration values seemed that it would hinder this algorithm significantly. Consider the 

case when a prism2 sample is input that uses all the same illegal duration values as the 

one stored in the database, but at very different rates. SimpleCompare lacks the 

information to realize that the illegal values identify a prism2 implementation, and could 

grade this sample incorrectly. 

At this point, SimpleCompare is also ignoring the packet type in which the 

duration values appear. This can cause two problems. One is that two different 

implementations use the same duration value, but in consistently different packet types 

(probe requests versus association responses for example). The other is that the ratio that 

duration values are used across all packet types fluctuate largely across packet samples, 

but the rate is much more consistent when confined to a particular packet type. Both of 

these problems are addressed by considering the packet types when looking at durations. 

We can reuse SimpleCompare except this time we run it against the (packet type, 

duration) pairs, as illustrated below. 

 
Figure 4.   SimpleCompare (packet type, duration) analysis 
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The algorithm SimpleCompare uses to compare these two sets is the following. 
 

 
 

E. MEDIUMCOMPARE METRIC 
SimpleCompare does not account for highly-unique duration values. 

MediumCompare was created as an alternative to deal more intelligently with such 

duration values.  Intuitively, if two prints both use duration values that are globally 

unique (i.e. illegal values generated by prism2-based implementations) then this should 

count more than matching very common values such as 0. 

Like SimpleCompare, the MediumCompare metric compares an input pcap with 

every print in the database except that for each print in the database, it also considers 

global duration uniqueness by examining the rest of the database.  It computes one of two 

weights, either duration uniqueness, or packet type duration uniqueness, depending on 

the data set as follows. 

When computing duration uniqueness the metric counts the total number of 

unique (implementation, duration value) pairs in the entire database. This does not take 

into account how often an individual duration value appears in packets for a given 

implementation. Rather, it counts how often a duration value is used across all 

implementations.  If two implementations both use duration value 314, but one uses it 1% 

of the time, and the other uses it 80% of the time, both of these implementations will 

contribute the same amount to duration uniqueness.  

duration_uniqueness(d) = # of unique (implementation, duration) tuples
# of unique(implementation, duration = d) tuples

 

Similarly packet type duration uniqueness is computed by counting the total 

number of unique (implementation, packet type duration) values across the entire 

database.  

sum = 0; 
for every pair (packet_type p, duration-value d) ∈(L I R)  
   sum += 1.0 - | L.duration_ratio(p,d) - R.duration_ratio(p,d)| 
return sum; 
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duration_uniqueness(p,d) = # of unique (implementation, packet_type, duration) tuples
# of unique(implementation, packet_type =  p duration = d) tuples

 

Once these two values have been computed MediumCompare is very similar to 

SimpleCompare. 

 

 
Figure 5.   MediumCompare duration-value only analysis 

 

 

sum = 0; 
for every  duration-value d ∈(L I R)  
   sum += duration_uniqueness(d) *  
 [1.0 - |L.duration_ratio(d) - R.duration_ratio(d)|] 
return sum; 
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Figure 6.   MediumCompare (packet_type, duration) analysis 

 
F. COMPLEXCOMPARE METRIC 

Notice that the MediumCompare and SimpleCompare metrics ignore durations 

outside the intersection.  One might think that such information would improve a 

fingerprinting capability, however, we found this is not the case.  To illustrate, a metric 

called ComplexCompare was investigated.  It was designed to take into account all the 

data points that don't fall in the intersection of two prints. ComplexCompare computes 

the metric that MediumCompare does and then visits every data point not in the 

intersection of the prints, computing duration uniqueness, or packet type duration 

uniqueness and then subtracting this value from the metric. The motivation for this 

behavior is that if L contains very unique durations and R doesn’t, then the metric should 

be decreased proportionally by the uniqueness of these values. 

sum = 0; 
for every packet_type p, duration-value d ∈(L I R)  
   sum+= packet_type_duration_uniqueness(p,d) * 
          [1.0-|L.duration _ratio(p,d)- R.duration_ratio(p,d)|] 
return sum; 
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Figure 7.   ComplexCompare duration-value only analysis 

 
 

ret= MediumCompare(L,R); 
for every duration-value d ∉(L I R)  
   sum+=duration_uniqueness(d) 
return ret - sum; 
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Figure 8.   ComplexCompare (packet_type, duration) analysis 
 

G. BAYESCOMPARE METRIC 
BayesCompare was created as an attempt to use a well understood rule to classify 

802.11 implementations. In document classification, the problem is that of given a set W 

of words appearing in a document, classify the document as belonging to one of several 

categories.  One takes the category to be the category C that maximizes P(W | C) P(C).  

The conditional probability P(W | C) comes from a training set of documents known to be 

in category C.  If we take W to be the set of durations occurring in a given packet capture 

that we want to identify by implementation then P(W | C) becomes the probability of W 

occurring in a capture given that the capture comes from 802.11 implementation C. 

Classification in this manner is only as good as the training set (print database).  A 

given training set may not yet know that implementation C can produce duration D.  

ret= MediumCompare(L,R); 
for every packet_type p, duration-value d ∉(L I R)  
   sum+=packet_type_duration_uniqueness(p,d) 
return ret - sum; 
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Hence P(W | C), which is approximated from the training set, is zero when W contains D 

even though W may contain another duration that uniquely identifies C.  Further, 

approximating P(C) is problematic, as it is the probability of seeing a given 802.11 

implementation.  One might approximate it by perhaps chipset market share but this 

would be somewhat inaccurate because it ignores the fact that a device driver is part of an 

802.11 implementation we wish to identify.  Getting an accurate approximation of it is 

difficult so we chose to ignore it.  This of course puts the metric at a slight disadvantage 

compared to the other metrics, as we shall see.  

Let X be an 802.11 implementation for which a fingerprint exists in the print 

database. Let L be the duration fingerprint arising from an input pcap file. We want the 

probability that the input pcap file originated with implementation X given L:  P(X | L).  

Using Bayes rule, P(X | L) = (P(L | X) P(X)) / P(L).  The idea here is to use these 

conditional probabilities to rank the degree of a match between L and each fingerprint in 

the print database.  Therefore, we did not compute P(L) for a given input pcap as it is 

constant across all fingerprints in the database.  Of course probability P(X) is not constant 

across all fingerprints but computing it is problematic, as discussed above.  Therefore, we 

didn’t compute it as part of the conditional probability.  Further, to simplify things, we 

approximated P(L | X) as the product P(d1 | X) · P(d2 | X) ·  … · P(dn | X) where d1, d2,… 

are the distinct durations that appear in L.  This assumes that the individual duration 

values in L occur independently which one can argue isn’t true since the durations occur 

in sequence for certain control frames, for instance, duration values in ACK, RTS and 

CTS frames. But as mentioned previously, control frames are ignored in fingerprints.   

If L denotes the fingerprint arising from an input pcap file and R a fingerprint in 

the print database then we take the preceding product to be ∏ R.duration_ratio(d) where 

d ranges over all durations in L.  And when taking into account packet types in which 

durations occur, it becomes ∏ R.duration_ratio(p, d) where p and d range over all packet 

types and durations respectively where duration d occurs in a packet of type p in L.  
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Figure 9.   BayesCompare duration value only analysis 

 
 

 

 

 

ret = 1.0 
for every  duration-value d ∈L  
   ret *= R.duration_ratio(d) 
return ret; 
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Figure 10.   BayesCompare (packet_type, duration) analysis 

 
H. MODIFIED BAYESCOMPARE METRIC 

Another variant of BayesCompare was investigated.  As pointed out above, 

conditional probability P(L | X) can become zero if L has a duration that has not yet been 

learned to be producible by implementation X, perhaps because the print database hasn’t 

been updated for some time.  So another version was explored where only duration 

values that fall in the intersection of an input fingerprint L and a database fingerprint R 

are included in the calculation of P(L | X).  So the product becomes ∏ R.duration_ratio(d)  

 

ret = 1.0 
for every  packet_type p, duration-value d ∈L  
   ret *= R.duration_ratio(p,d) 
return ret; 
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where d ranges over all durations in L ∩ R, and ∏ R.duration_ratio(p, d) where p and d 

range over all packet types and durations respectively where duration d occurs in a packet 

of type p in L ∩  R. 

 

 

 
Figure 11.   BayesCompare-Modified duration value only analysis 

 

 

ret = 1.0 
for every  duration-value d ∈(L∩R)  
   ret *= R.duration_ratio(p,d) 
return ret; 
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Figure 12.   BayesCompare-Modified (packet-type, duration) analysis 

ret = 1.0 
for every  packet_type p, duration-value d ∈(L∩R)  
   ret *= R.duration_ratio(p,d) 
return ret; 
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V. RESULTS FOR DURATION-BASED METRICS 

This chapter presents performance results for each of the duration-based matching 

metrics described in Chapter V.  To compare the performance of these metrics, a rating 

system was devised as follows.  Each metric was exercised across four print databases 

using three packet capture samples s1, s2 and s3 as input for each 802.11 implementation.  

We define for each 802.11 implementation I, a success probability RI for a matching 

metric M.  It is the probability that M correctly identifies a sample, that is, identifies that 

sample as originating with I when it does indeed originate with I.   

For example, consider the table in Table 9.  This print database has 13 fingerprints 

hence there are 13 entries.  The table was produced by using the MediumCompare metric 

on a particular sample.  The tables tells us that this metric believes the sample originated 

with the Broadcom-MiniPCI (ID 10 in the table) since it has rank zero.  But this is 

incorrect.  The sample originated with the Apple-Airport Extreme (ID 5), which has rank 

“1”.  So we take as SimpleCompare’s probability of succeeding when the sample 

originates with Apple-Airport Extreme to be (13 – rank)/13 or (13 – 1)/13 since the 

correct implementation is given rank “1” by the metric.  

Now since there are three samples, we extend RI for a metric M to be  

RI = [(13 – s1 rank) + (13 – s2 rank) + (13 – s3 rank)] / (3 * 13) (eq. 5.1) 

where si rank is the rank assigned by M to the 802.11 implementation I that actually 

produced sample si.  If the probability that I occurs is PI then the success rate of M is the 

unconditional probability of success given by 

PI1 * RI1 +  PI2 * RI2 + … + PI13 * RI13 

Each term in this sum is the product of the probability of seeing a sample from one of the 

13 implementations and the probability of M succeeding to identify it in that case.  So M 

could have a good overall success rate even though it performs badly when trying to 

identify a sample as belonging to some 802.11 implementation if that implementation 

doesn’t arise often.  However, we shall assume that implementations are equally likely to 

occur.  In that case, the sum above becomes (RI1 +  RI2 + … + RI13) / 13. 
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Table 9.   Ordered list generated from a matching metric. 
 

rank score ID Model chipset driver 

0 79.03 10 Broadcom-
MiniPCI BCM4318 bcmwl5.sys 

1 78.91 5 
Apple-
Airport 
Extreme 

BCM4318 AppleAirport2.kext 

2 73.51 6 Zonet-
ZEW1520 BCM4306 bcmwl5.sys 

3 56.03 7 Intel-
IPW220BG IPW2200BG w29n51.sys 

4 54.74 13 Cisco-
Aironet-350 Prism2 pcx500.sys 

5 53.06 11 Sony-PSP unknown unknown 

6 47.19 8 D-Link-dwl-
g122 RA2570 rt2500usb.sys 

7 39.95 4 
Proxim-
Orinoco 
Silver 

AR5212 ntpr11ag.sys 

8 39.55 3 
Proxim-
Orinoco 
Silver 

AR5211 ntpr11ag.sys 

9 39.47 2 
Proxim-
Orinoco 
Silver 

AR5212 ntpr11ag.sys 

10 38.53 1 Linksys-
WPC55AG AR5212 ar5211.sys 

11 28.55 12 Nintendo-
DS unknown unknown 

12 22.61 9 SMC-
2532W-B Prism2.5 smc2532w.sys 

 
A. SIMPLECOMPARE 

The following tables show how well SimpleCompare did against all four 

databases. The number of samples represents how many pcap files the input fingerprints 

were computed across. 1-sample means that the fingerprint was computed only from the 

first sample for a given implementation, while 3-sample means all three pcap files were 

used to generate the print. 
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Table 10 below shows how well SimpleCompare does when it is only analyzing 

durations not (packet_type, duration) pairs. Table 11 shows how well SimpleCompare 

does when it only analyzed (packet_type, duration) pairs. Table 12 shows the results 

when both techniques are combined. 

 
Table 10.   SimpleCompare, duration values only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9724 0.9546 0.9745 0.9115 
2-samples 0.9783 0.9408 0.9630 0.8854 
1-samples 0.9586 0.9408 0.9583 0.8333 
Average 0.9698 0.9454 0.9653 0.8767 
     
Total Average 0.9393   

 
Table 11.   SimpleCompare, (packet_type, duration) pairs only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9921 0.9606 0.9769 0.9688 
2-samples 0.9901 0.9645 0.9861 0.9479 
1-samples 0.9744 0.9586 0.9745 0.9531 
Average 0.9855 0.9612 0.9792 0.9566 
     
Total Average 0.9706   

 
Table 12.   SimpleCompare combined. 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9901 0.9882 0.9884 0.9531 
2-samples 0.9882 0.9684 0.9861 0.9531 
1-samples 0.9744 0.9625 0.9769 0.9115 
Average 0.9842 0.9730 0.9838 0.9392 
     
Total Average 0.9701   

 

Though combining the two techniques did not improve the overall average, it did 

have one important effect. In the combined table, scores consistently increase with 

sample size, across all databases. This is not the case in either of the two tables preceding 

it. This is a very desirable property, and could arguably be worth the minor price paid in 

overall accuracy. 
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B. MEDIUMCOMPARE 

Although MediumCompare has significantly more information at its disposal than 

SimpleCompare (since MediumCompare gets the entire print database over which to 

compute weights) it only improved its best-case score by .0017 relative to 

SimpleCompare. This seems to indicate that while knowing certain duration values are 

highly unique, the implementations that used them identified them enough already that 

the extra weight given to them wasn't needed in general. 

 
Table 13.   MediumCompare, (packet_type, duration) pairs only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9921 0.9684 0.9907 0.9635 
2-samples 0.9901 0.9625 0.9884 0.9375 
1-samples 0.9882 0.9546 0.9861 0.9427 
Average 0.9901 0.9618 0.9884 0.9479 
     
Total Average 0.9721   

 
C. COMPLEXCOMPARE 

ComplexCompare did not improve upon its predecssors, performing consistently 

worse then Simple or MediumCompare.  In fact, no algorithm tested that attempted to 

take into consideration duration values that don't match ever made an improvement upon 

those that simply ignored them.  

 
Table 14.   ComplexCompare, (packet_type, duration) pairs only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9744 0.9566 0.9722 0.8958 
2-samples 0.9763 0.9507 0.9722 0.9062 
1-samples 0.9803 0.9507 0.9931 0.9323 
Average 0.9770 0.9527 0.9792 0.9114 
     
Total Average 0.9551   

 
D. BAYESCOMPARE 

Considering the significant disadvantage that BayesCompare is at relative to the 

other metrics, it performed quite well. It is quite possible that in practice BayesCompare 

could be the most accurate. This could be accomplished by mapping the probability of 
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seeing particular chipset, device-driver implementation back to the marketshare of the 

chipset. This optimization is not implemented in the current system, and both flavors of 

BayesCompare do worse than the other metrics presented. 

E. MODIFIED BAYESCOMPARE 
The ModifiedBayesCompare did consistently worse than BayesCompare. This 

seems to indicate that contrary to our original suspicion, having the conditional 

probabilities go to zero when an unknown duration value is encountered is a good idea.  

F. RESULTS SUMMARY 

A table representing a summary of the algorithms performance is below. It is 

interesting to note that while MediumCompare out-performed SimpleCompare, it only 

did so by a small margin. This seems to indicate that SimpleCompare has little trouble 

identifying the implementations that use globally unique duration values, even though 

SimpleCompare is unaware of the uniqueness.  

 
Table 15.   Results summary 

 
Matching Metric dur packet-type, dur combined 
SimpleCompare 0.9393 0.9706 0.9701 
MediumCompare 0.9381 0.9721 0.9621 
ComplexCompare 0.9370 0.9551 0.9500 
BayesCompare 0.8456 0.9190 0.9209 
BayesCompare-modified 0.2866 0.9243 0.7502 
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VI. CONCLUSIONS 

Two categories of identification were investigated: active and passive. In the 

active category, association redirection proved more promising as a way to identify 

802.11 implementations than CTS window honoring.  On the passive side, we described 

five metrics for matching a given packet capture with a training set of packets called a 

print database.  The matching is done on duration fields in frames.  The simplest of the 

metrics rivals the more complex ones in accuracy.   

An entirely different type of metric, dubbed FuzzyCompare, was also developed. 

Fuzzy Compare works by comparing every (packet_type, duration) tuple in a print (L) to 

every other tuple in the other print, R. For each comparison it modifies the score based on 

a set of coefficients and the global uniqueness of the current duration value. 

The interesting aspect about this algorithm is that the coefficients were actually 

brute-forced by another program to (a modification to duration-print-grader) to find the 

best possible combination of coefficients. This lead it to produce impressive results, but it 

couldn't be shown that the coefficients generated would generalize well to data sets with 

unknown inputs.  

FuzzyCompare extended the notion of a fingerprint to include whether or not 

certain implementations make use of the various flag bits inside the 802.11 header. This 

really simplified down to tracking which implementations utilize power savings, as the 

rest of the flags were always unused. Tracking a few more bits seemed to give 

FuzzyCompare a significant advantage over the other algorithms which strictly analyzed 

the duration field. Such a hybrid technique will probably yield better real world results. 

A. FUTURE WORK - MAC VS PHY FINGERPRINTING  
The 802.11 standard is responsible not only for specifying the media access 

controls of wireless networks, but also the physical (PHY) layer as well. This thesis 

focuses on analyzing the MAC portion of the standard, but one could imagine a tool that 

analyzes aspects of the PHY for unique signatures. 

Such a device would need the ability to analyze the frequency that 802.11 

operates in (2.4GHz, 5GHz or the rarely-implemented IR band). Since the goal of the 
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device is to be able to analyze what typical consumer level cards are doing, it would 

likely need components capable of measuring physical characteristics of the medium with 

higher levels of precision than that available on commercially-available 802.11 cards. 

Likely candidates for such a device include measuring the type of preamble used in 

802.11 frames and the thresholds used by cards to detect that the medium is busy. 

This thesis has demonstrated that it is possible to remotely determine which 

802.11 implementation generated traffic by analyzing a small sample taken during the 

association phase. Chipset level resolution was achieved by both duration analysis and 

association redirection. Device driver (and even device driver version) resolution was 

achieved in many cases when using duration analysis. 
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APPENDIX A.  COMPLETE RESULTS 

A. ASSOCIATION REDIRECTION RESULTS 
The following 3 tables encode all of the results generated from the association 

redirection experiments laid out in Chapter III. Each table represents an experiment. For 

example, the first entry in the first table denotes that the 802.11 implementation with ID-

number 1 ignored an association reply packet that had its source address mangled.  The 

same entry in the second table indicates the driver came close to redirecting when the 

source address in the authentication reply was mangled (not the association reply). 

A quick glance at the tables below reveals there is a strong tendency for cards 

with the same chipset to display similar characteristics. For example, every card with a 

Broadcom chipset (5, 6, and 10) behave identically across all three tables even though 

one is using Apple's airport extreme driver, and the two others are on Windows. 

There is one example where this technique reaches down to distinguish different 

devices using the same chipset but a different driver. Implementation #1 has an identical 

chipset as implementation #2. However #2 displays different behavior because it is using 

a slightly different driver (provided by Atheros, not Linksys). 

 
Table 16.    Association Redirection results, Association replies only 

 

Id-
num driver-id  SRC BSS SRC,BSS 

1  ar5211.sys  IGN_ASSOC_REPLY  IGN_ASSOC_REPLY  IGN_ASSOC_REPLY 

2  ntpr11ag.sys  IGN_ASSOC_REPLY  DUAL_ACK_DATA  IGN_ASSOC_REPLY 

3  (ntpr11ag.sys)  IGN_ASSOC_REPLY DUAL_ACK_DATA  IGN_ASSOC_REPLY 
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Id-
num driver-id  SRC BSS SRC,BSS 

4  (ntpr11ag.sys)  IGN_ASSOC_REPLY  DUAL_ACK_DATA  IGN_ASSOC_REPLY 

5  AppleAirport2bcm4318 DEAUTH_FLOOD_ 
NULL  IGN_ASSOC_REPLY  DEAUTH_FLOOD_ 

NULL  

6  BCMWL5.sys  DEAUTH_FLOOD_ 
NULL  IGN_ASSOC_REPLY  DEAUTH_FLOOD 

_NULL  

7  w29n51.sys  DUAL_NACK_DATA DUAL_NACK_DATA DUAL_NACK_DAT
A  

8  rt2500usb.sys  IGN_ASSOC_REPLY  DUAL_ACK_DATA  IGN_ASSOC_REPLY 

9  smc2532w.sys  DEAUTH_TYPE_1  REASSOC_NULL_ 
ALSO  

REASSOC_NULL_ 
ALSO  

10  bcmwl5.sys  DEAUTH_FLOOD_ 
NULL  

IGN_ASSOC_REPLY 
 

DEAUTH_FLOOD 
_NULL  
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Table 17.   Association Redirection results, Authentication replies only 

 

id-
num driver-id  SRC BSS SRC,BSS 

1  ar5211.sys  DUAL_BSSID  IGN_AUTH_REPLY  IGN_AUTH_REPLY  

2  ntpr11ag.sys  IGN_AUTH_REPLY  IGN_AUTH_REPLY  IGN_AUTH_REPLY  

3  (ntpr11ag.sys)  IGN_AUTH_REPLY  IGN_AUTH_REPLY  IGN_AUTH_REPLY  

4  (ntpr11ag.sys)  IGN_AUTH_REPLY  IGN_AUTH_REPLY  IGN_AUTH_REPLY  

5  AppleAirport2-
bcm4318  IGN_AUTH_REPLY  DUAL_T1_DEAUTH  IGN_AUTH_REPLY  

6  BCMWL5.sys  IGN_AUTH_REPLY  DUAL_T1_DEAUTH  IGN_AUTH_REPLY  

7  w29n51.sys  DUAL_NACK_DATA  DUAL_NACK_DATA  DUAL_NACK_DATA  

8  rt2500usb.sys  IGN_AUTH_REPLY  DUAL_ACK_DATA  IGN_AUTH_REPLY  

9  smc2532w.sys  DEAUTH_TYPE_1  DUAL_T1_DEAUTH  DUAL_T1_DEAUTH  

10  bcmwl5.sys  IGN_AUTH_REPLY  DUAL_T1_DEAUTH  IGN_AUTH_REPLY  
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Table 18.   Association Redirection results, Authentication and Association replies 

 

id-
num driver-id  SRC BSS SRC,BSS 

1  ar5211.sys  IGN_ASSOC_REPLY IGN_AUTH_REPLY  IGN_AUTH_REPLY  

2  ntpr11ag.sys  IGN_AUTH_REPLY IGN_AUTH_REPLY  IGN_AUTH_REPLY  

3  (ntpr11ag.sys)  IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY  

4  (ntpr11ag.sys)  IGN_AUTH_REPLY IGN_AUTH_REPLY IGN_AUTH_REPLY  

5  AppleAirport2-
bcm4318  IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY  

6  BCMWL5.sys  IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY  

7  w29n51.sys  DUAL_NACK_DATA DUAL_NACK_DATA DUAL_NACK_DATA  

8  rt2500usb.sys  IGN_AUTH_REPLY DUAL_ACK_DATA IGN_AUTH_REPLY  

9  smc2532w.sys  DEAUTH_TYPE_1 REASSOC_NULL_ALSO REASSOC_NULL_ALSO 

10  bcmwl5.sys  IGN_AUTH_REPLY IGN_ASSOC_REPLY IGN_AUTH_REPLY  
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Table 19.   Association redirection results key. 
 

Behavior Description 

IGN_AUTH_REPLY Client ignores auth replies from AP. Never enters 
stage 2  

IGN_ASSOC_REPLY Client ignores assoc replies from AP. Never 
enters stage 3  

REASSOC_NULL_ALSO Client sends no data except null data frames. Null 
data frames use new BSSID. Client attempts to 
reassociate with old BSSID. 

DUAL_BSSID Client  alternates transmission between both 
BSSIDs. Acking of data unknown. 

DUAL_ACK_DAT A DUAL_BSSID, but acks data frames 

DUAL_NACK_DATA DUAL_BSSID, but doesn't- ack data frames 

DEAUTH_TYPE_1 Client sends multiple deauths  to redirected 
BSSID through original BSSID 

DEAUTH_FLOOD_NULL Client sends many (approx 10) de-auths, to: 
redirected BSSID, through: Null BSSID. No data 
packets sent. 

DUAL_T1_DEAUTH  DUAL_ACK_DATA, but also transmits type1 
deauths. 

 
B. DURATION ANALYSIS RESULTS 

These tables show the results from every experiment conducted using the 

matching metrics outlined in Chapter IV. The values in the tables are the success rate of a 

matching metric across an entire database.  

1. SimpleCompare Results 

Table 20.   SimpleCompare, duration values only 
 

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9724 0.9546 0.9745 0.9115 
2-samples 0.9783 0.9408 0.9630 0.8854 
1-samples 0.9586 0.9408 0.9583 0.8333 
Average 0.9698 0.9454 0.9653 0.8767 
     
Total Average 0.9393   
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Table 21.   SimpleCompare, (packet_type, duration) pairs only 
 

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9921 0.9606 0.9769 0.9688 
2-samples 0.9901 0.9645 0.9861 0.9479 
1-samples 0.9744 0.9586 0.9745 0.9531 
Average 0.9855 0.9612 0.9792 0.9566 
     
Total Average 0.9706   

 
Table 22.   SimpleCompare combined. 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9901 0.9882 0.9884 0.9531 
2-samples 0.9882 0.9684 0.9861 0.9531 
1-samples 0.9744 0.9625 0.9769 0.9115 
Average 0.9842 0.9730 0.9838 0.9392 
     
Total Average 0.9701   

 
2. MediumCompare Results 

 
Table 23.   MediumCompare, duration values only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9724 0.9606 0.9745 0.9062 
2-samples 0.9783 0.9369 0.9630 0.8802 
1-samples 0.9606 0.9408 0.9560 0.8281 
Average 0.9704 0.9461 0.9645 0.8715 
     
Total Average 0.9381   

 
Table 24.   MediumCompare, (packet_type, duration) pairs only 

 
 MediumCompare: (packet-type, dur)  
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9921 0.9684 0.9907 0.9635 
2-samples 0.9901 0.9625 0.9884 0.9375 
1-samples 0.9882 0.9546 0.9861 0.9427 
Average 0.9901 0.9618 0.9884 0.9479 
     
Total Average 0.9721   
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Table 25.   MediumCompare combined. 
 

 MediumCompare: combined  
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9862 0.9842 0.9884 0.9375 
2-samples 0.9862 0.9645 0.9792 0.9323 
1-samples 0.9842 0.9527 0.9745 0.8750 
Average 0.9855 0.9671 0.9807 0.9149 
     
Total Average 0.9621   

 
3. ComplexCompare Results 

 
Table 26.   ComplexCompare, duration values only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9684 0.9448 0.9606 0.8906 
2-samples 0.9704 0.9290 0.9560 0.8802 
1-samples 0.9665 0.9349 0.9722 0.8698 
Average 0.9684 0.9362 0.9629 0.8802 
     
Total Average 0.9370   

 
Table 27.   ComplexCompare, (packet_type, duration) pairs only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9744 0.9566 0.9722 0.8958 
2-samples 0.9763 0.9507 0.9722 0.9062 
1-samples 0.9803 0.9507 0.9931 0.9323 
Average 0.9770 0.9527 0.9792 0.9114 
     
Total Average 0.9551   

 
Table 28.   ComplexCompare combined. 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9744 0.9606 0.9745 0.8854 
2-samples 0.9744 0.9448 0.9745 0.8906 
1-samples 0.9763 0.9448 0.9884 0.9115 
Average 0.9750 0.9501 0.9791 0.8958 
     
Total Average 0.9500   

 



 54

 
4. BayesCompare Results 

 
Table 29.   BayesCompare, duration values only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9211 0.8698 0.9028 0.7396 
2-samples 0.9191 0.8659 0.9051 0.7292 
1-samples 0.9034 0.8639 0.8241 0.7031 
Average 0.9145 0.8665 0.8773 0.7240 
     
Total Average 0.8456   

 
Table 30.   BayesCompare, (packet_type, duration) pairs only 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9566 0.9329 0.9745 0.9375 
2-samples 0.9566 0.9132 0.9745 0.8698 
1-samples 0.9310 0.8935 0.8750 0.8125 
Average 0.9481 0.9132 0.9413 0.8733 
     
Total Average 0.9190   

 
Table 31.   BayesCompare combined. 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9329 0.9290 0.9745 0.9375 
2-samples 0.9310 0.9211 0.9745 0.9219 
1-samples 0.9152 0.9172 0.8727 0.8229 
Average 0.9264 0.9224 0.9406 0.8941 
     
Total Average 0.9209   

 
5. BayesCompare-Modified Results 

Table 32.   BayesCompare-modified, duration values only 
 

 lexie mixed--wrt54g mixec--AirPlus G--wrt54g 
3-samples 0.3136 0.2643 0.2569 0.3229 
2-samples 0.2959 0.2446 0.2593 0.3125 
1-samples 0.2919 0.2485 0.2639 0.3646 
Average 0.3005 0.2525 0.2600 0.3333 
     
Total Average 0.2866   
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Table 33.   BayesCompare-modified, (packet_type, duration) pairs only 
 

 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.9546 0.9191 0.9699 0.9219 
2-samples 0.9487 0.9093 0.9699 0.8906 
1-samples 0.9290 0.8817 0.9421 0.8542 
Average 0.9441 0.9034 0.9606 0.8889 
     
Total Average 0.9243   

 
Table 34.   BayesCompare-modified combined. 

 
 lexie mixed--wrt54g mixed--AirPlus G--wrt54g 
3-samples 0.7692 0.7416 0.8009 0.8281 
2-samples 0.7318 0.7318 0.7870 0.7917 
1-samples 0.6746 0.6982 0.7083 0.7396 
Average 0.7252 0.7239 0.7654 0.7865 
     
Total Average 0.7502   

 
6. Duration analysis Results Summary 

Table 35.   Results summary 
 
 dur packet-type, dur combined 
SimpleCompare 0.9393 0.9706 0.9701 
MediumCompare 0.9381 0.9721 0.9621 
ComplexCompare 0.9370 0.9551 0.9500 
BayesCompare 0.8456 0.9190 0.9209 
BayesCompare-modified 0.2866 0.9243 0.7502 
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APPENDIX B.  IMPLEMENTATION CONSIDERATIONS 

All of the techniques except association redirection were implemented on a Linux 

machine in userland. Early on in the project it was clear that an easy to use 802.11 packet 

crafting and parsing library would have to be created. A survey of currently available 

solutions including libnet, libdnet, and scapy was made, but all were found to be lacking. 

The biggest reason is that most of these tools are centered around crafting packets, not 

parsing them. Something that could be used to quickly develop new tests was created. 

The result was libairware, a C++ library specifically designed to easily craft and parse 

802.11 packets.  

The ability to craft and parse packets would not be very useful without a reliable 

way to inject them. Fortunately many Linux wireless drivers can be coaxed to bypass the 

802.11 state machine and inject packets into the air. In fact, there are so many different 

device driver patches floating around that it can be hard to keep track of them.  

Joshua Wright and Mike Kershaw were interested in the ability to easily inject 

packets from userland on Linux as well. They were also interested in being able to write 

device-driver agnostic code to do it. The result of their work is a cross driver generic 

802.11 packet injection library called LORCON (Loss of Radio Connectivity).  

All of the code that was written for this project makes extensive use of LORCON 

to inject packets. Though code that can use LORCON to inject packets can be re-targeted 

at runtime to use a different driver, the experiments done in this paper used a D-Link 

DWL-g-122 card with the 2006021620 CVS release of the rt2570 driver to inject packets.   

The specified version of rt2570 does actually allow for the reception of packets in 

monitor mode when it is not injecting, however it was decided that doing so may interfere 

with the delicate timestamps required. Therefore a second card was used whenever 

injection and reception were required simultaneously. This second card was a Linksys 

WPC55ag using CVS version 20051025 of madwifi-old. This card contains an AR5212 

chipset. The madwifi driver also had the relevant LORCON injection patches applied,  
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though they should make no difference. Practically speaking, the choice of which 

driver/chipset to use for monitoring packets should be unimportant as long as it supports 

prism headers with microsecond resolution timers. 

A. PCAP CREATION FOR DURATION ANALYSIS 
Pcaps created for this project were intentionally not generated by any sort of 

highly automated process. Captures were created of all cards being powered on and 

searching for a network before joining. After joining they loaded between 4 and 20 

webpages. In one database (G--wrt54g) the capture was run explicitly until 5000 packets 

had been received (representing the high end of data sampled). The results generated 

were not significantly better than those databases where the packet captures were stopped 

in an ad-hoc manner using less data.  

The implications of these considerations are that the prints currently created are 

not strictly representative of clients that are already associated to a network. These prints 

best represent the behavior of clients around a small window of time centered on them 

associating to a network. Though this period of time is not very packet-intensive, a lot of 

important information is gleaned from the duration values contained in the management 

frames that are exchanged. When implementing this technique in the wild the best thing 

to do is probably only examine packets exchanged within a window around client 

association. Merely sampling packets once association has happened will not yield as 

diverse results. 
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APPENDIX C.  TOOL USAGE 

A. DURATION ANALYSIS 
While implementing the algorithms outlined in the Chapter IV, three important 

tools were created, duration-print-generator, duration-print-matcher, and duration-print-

grader. The results of this technique are explained in terms of these tools. 

duration-print-generator simply takes in an input pcap and a MAC address, 

computes all the values outlined in the previous chapters, and writes them out to disk (a 

.prnt file) 

duration-print-matcher takes an  input pcap, MAC address to fingerprint, and a set 

of previously computed prints (the print database). It then computes the print for the input 

pcap and finds the closest match. The following table shows the output of an example 

duration-print-matcher run. In this case duration-print-matcher is attempting to determine 

what implementation best maps to the card with the MAC address 00:0a:95:f3:2f:ab in 

the  5-1-lexie.pcap, against all of the saved prints in the print-db/lexie directory. The 

filename  5-1-lexie indicates that this pcap is the first sample from implementation-id 5. 

duration-print-matcher mis-identifies this pcap, as the correct implementation is not at the 

top of the list. 
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./duration-print-matcher -a 00:0A:95:F3:2F:AB -p ./print-db/lexie/pcaps/5-1-lexie.pcap -

P ./print-db/lexie/ 

Table 36.   Sample output from duration-print-matcher 
 

rank score ID Model chipset 
 

driver 
 

0 79.03 10 Broadcom-
MiniPCI BCM4318 bcmwl5.sys 

1 78.91 5 
Apple-
Airport 
Extreme 

BCM4318 AppleAirport2.kext 

2 73.51 6 Zonet-
ZEW1520 BCM4306 bcmwl5.sys 

3 56.03 7 Intel-
IPW220BG IPW2200BG w29n51.sys 

4 54.74 13 Cisco-
Aironet-350 Prism2 pcx500.sys 

5 53.06 11 Sony-PSP unknown unknown 

6 47.19 8 D-Link-dwl-
g122 RA2570 rt2500usb.sys 

7 39.95 4 
Proxim-
Orinoco 
Silver 

AR5212 ntpr11ag.sys 

8 39.55 3 
Proxim-
Orinoco 
Silver 

AR5211 ntpr11ag.sys 

9 39.47 2 
Proxim-
Orinoco 
Silver 

AR5212 ntpr11ag.sys 

10 38.53 1 Linksys-
WPC55AG AR5212 ar5211.sys 

11 28.55 12 Nintendo-
DS unknown unknown 

12 22.61 9 SMC-
2532W-B Prism2.5 smc2532w.sys 

 
B. DURATION-PRINT-GRADER 

duration-print-grader performs the same analysis as duration-print-matcher, 

however it does it on a much larger scale. Every implementation included in a database 

had 3 different captures taken of it associating to a network.  duration-print-grader takes 

all these pcaps, attempts to match them to the database of prints on disk, and keeps track 
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of the amount of error in terms of distance down the sorted list the correct print for that 

pcap is found.  A table representing the output of duration-print-grader is below. 

 
Table 37.   output from: ./duration-print-grader -P ./print-db/lexie/ 

 
(MediumCompare-Combined against: lexie) 

ID s1 s2 s3 Chipset, driver success rate 
1 0 0 0     Atheros    AR5212      

ar5211.sys 
39/39 (1.000) 
 

2 0 0 1     Atheros    AR5212      
ntpr11ag.sys 

38/ 39 (0.974) 
 

3 0 0 2     Atheros    AR5211      
ntpr11ag.sys 

37/ 39 (0.949) 
 

4 2 0 0     Atheros    AR5212      
ntpr11ag.sys 

37/ 39 (0.949) 
 

5 1 1 0     Broadcom    BCM4318      
AppleAirport2.kext 

37/ 39 (0.949) 
 

6 0 0 0     Broadcom    BCM4306      
bcmwl5.sys 

39/ 39 (1.000) 

7 0 0 0     Intel  IPW2200BG      
w29n51.sys 

39/ 39 (1.000) 

8 0 0 0     RaLink    RA2570      
rt2500usb.sys 

39/ 39 (1.000) 

9 0 0 0     Intersil   Prism2.5      
smc2532w.sys 

39/ 39 (1.000) 

10 0 0 0     Broadcom    BCM4318      
bcmwl5.sys 

39/ 39 (1.000) 

11 0 0 0    unknown    unknown      
unknown 

39/ 39 (1.000) 

12 0 0 0     unknown    unknown      
unknown 

39/ 39 (1.000) 

13 0 0 0     Intersil    Prism2      pcx500.sys 39/ 39 (1.000) 

--num errors across DB: 7 

success rate across DB: 12.820513 / 13 = 0.9862 

 

Samples s1,s2,s3 refer to the three sample pcaps for a given implementation. The 

first sample in the row for ID 5 corresponds to the previous example from duration-print-

matcher. This has value of 1 because the correct print was 1 deep in the list for sample 1.  
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The column on the right is the success rate of the specified algorithm for a single 

implementation.  It is computed using eq. 5.1, which can be expressed as   

accuracy =
(num_implementations_in_db) * (num_samples) − misplacement_distance

(num_implementations_in_db)* (num_samples)
 

where misplacement distance is the sum of the ranks for the three samples For instance, 

for the airport extreme (implementation ID #5) we get the following accuracy: 

(13* 3) − 2
13* 3

=
37
39

= 0.949  

Chapter V covers the details, but by taking the weighted average of these 

individual success rates where the rate is the likelihood of seeing an implementation, we 

can compute a success rate across the entire database. When using duration-print-grader 

the likelihood of seeing an implementation is constant, and the individual success rates 

are all weighted equally. In the example above, the success rate across the database turns 

out to be 12.805555 / 13 = 0.9850. 
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APPENDIX D.  COMPREHENSIVE DEVICE DRIVER 
INFORMATION 

The following table details all of the 802.11 implementations tested in this study.  

Every implementation excluding the Apple Airport Extreme was test on Windows XP 

SP2. The Airport card was tested on OSX 10.4 

 
Table 38.   Exhaustive 802.11 implementation data 

 
ID image MAC, model, 

chipset 
files details 

1  
 

00:12:17:79:1C:B0  
 
Linksys  
WPC55AG v1.2  
 
Atheros AR5212  

ar5211.sys  
  

Driver Date: 7/12/2004  
Provider: Atheros 
Communications 
Inc/Linksys*.  
File version 3.3.0.1561  
Copyright 2001-2004 
Atheros Communications, 
Inc.  
Signed: Microsoft Windows 
Hardware Compatibility  

2  

 

00:20:A6:4C:D9:4A  
 
Proxim Orinoco 
Silver 8481-WD  
Atheros AR5212  

ntpr11ag.sys  
 

Driver Date: 8/5/2004  
Provider: Atheros 
Communications Inc.  
File version 3.1.2.219  
Copyright 2001-2004 
Atheros Communications, 
Inc.  
Signed: Microsoft Windows 
Hardware Compatibility  

3  

 

00:20:A6:4B:DD:85  
 
Proxim Orinoco 
Silver 8461-05  
Atheros AR5211  

same as above  

4  

 

00:20:A6:51:EC:09 
 
Proxim Orinoco 
Silver 8471-WD  
Atheros AR5212  

same as above   
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ID image MAC, model, 
chipset 

files details 

5  

 

00:0A:95:F3:2F:AB  
 
Apple AirPort 
Extreme 
Broadcom BCM4318 

AppleAirport
2-bcm4318  
 
 

Version: 404.2  

6  

 

00:14:a5:06:8F:E6  
 
Zonet ZEW1520  
Broadcom 
BCM-4306  

BCMWL5.sys 
 

Driver Date: 1/23/2004  
Provider: Broadcom.  
File version 3.50.21.10  
Copyright 1998-2003 
Broadcom Corporation.  
Signed: Microsoft Windows 
Hardware Compatibility  

7  

 

00:0E:35:E9:C9:5B  
 
Intel PRO/Wireless 
2200BG 

w29n51.sys  
W29NCPA.dll 
W29MLRes.dl 
 

Driver Date: 9/12/2005  
Provider: intel  
File Version: 9003-9 Driver 
Copyright: Intel 2004  
Signed: Microsoft Windows 
Hardware Compatibility  

8  

 

00:13:46:E3:B4:2C  
 
D-Link dwl-g122 
Ralink RA2570 

rt2500usb.sys 
 

Driver Date: 4/1/2004  
Provider: D-Link/Ralink  
Driver Version: 1.0.0.0  
Signed: Microsoft Windows 
Hardware Compatibility  

9  

 

00:04:E2:80:2C:21  
 
SMC 2532W-B  
Prism 2.5 

smc2532w.sys 
 

Driver Date: 10/20/2003  
Provider: SMC  
Driver Version: 3.1.3.0  
Copyright: 2003 SMC 
Networks, Inc.  
Signed: No.  

10  

 

00:14:A4:2A:9E:58  
 
Broadcom 802.11g 
miniPCI  
BCM4318 

bcmwl5.sys  
 

Driver Date: 12/22/2004  
Provider: Broadcom  
Driver Version: 3.100.46.0 
Copyright: 1998-2004, 
Broadcom Corporation.  
Signed: Microsoft Windows 
Hardware Compatibility  

11  

 
 

00:14:A4:7f:84:67  
Sony PSP 

unknown  PSP firmware version 2.50 

12  
 

00:09:BF:9D:59:C9 
Nintendo DS  

unknown NA  
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ID image MAC, model, 
chipset 

files details 

13  
 

00:0D:29:02:44:B8  
 
Cisco aironet-350 

pcx500.sys  
  

Driver Provider: Microsoft  
Driver Date: 7/1/2001  
Driver Version: 7.29.0.0  
Digital Signer: Microsoft 
Windows Publisher  
  

14  

 

00:0E:35:E9:C9:5B  
 
Intel PRO/Wireless 
2200BG 

w29n51.sys  
  
Netw2c32.dll  
 
 
Netw2r32.dll  
 

Driver Date: 6/26/2006  
Provider: intel  
File Version: 9.0.4.17 
Copyright: Intel 2004  
Signed: Microsoft Windows 
Hardware Compatibility  
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