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Smooth Function Modeling for On-Line Trajectory 
Reshaping Application 

Ajay Verma*, Kalyan Vadakkeveedu† 
Knowledge Based Systems, Inc. 

Michael W. Oppenheimer‡ and David B. Doman§ 
AFRL/VACA 

Online vehicle trajectory reshaping is desired for a class of autonomous air 
vehicles such as RLVs in order to avoid catastrophic failure when subjected to 
performance restricting damages and failures. An Adaptive Trajectory Reshaping 
and Control1 (ATRC) system is envisioned that responds to altered vehicle conditions 
by continuously retargeting and reshaping the reference RLV trajectory satisfying 
the feasibility constraints. On-line trajectory reshaping to determine a feasible 
reference trajectory is computationally a difficult problem for real time 
applications. ATRC is exploring the principles of vehicle dynamics inversion for on-
line generation of feasible reference trajectory. Two essential components for 
generating reference trajectory for air-vehicles using “inverse dynamics” 
methodology are aerodynamic model of the vehicle that is representative of the 
current state of the vehicle, and a framework for modeling the vehicle trajectory. 
Physics based modeling such as DATCOM allows fast computation of aerodynamic 
coefficients for given flight points and the results can be stored in a tabular form. 
However, for efficient real-time trajectory reshaping application, it is desired to 
represent aerodynamic coefficients in smooth functional form that are governed by 
few parameters. Similarly, trajectories must also be represented by smooth 
functions.  In this paper we present modeling of smooth functions using a set of 
basis functions that are suitable for trajectory reshaping of the air vehicles. A 
desirable feature for function modeling is the easy imposition of boundary as well as 
mid point constraints in the function using small number of parameters without 
limiting the scope of the function. In this paper we present a design of polynomial 
based set of constrained orthonormal basis functions in one and two dimension.  

I. Introduction 
The large potential for space utilization is not being exploited as it is currently inhibited by the huge 

cost of launching operations. The benefit of advance space utilization can be greatly increased by making 
space utilization more affordable The Reusable Launch Vehicle (RLV) programs are targeted towards 
affordable space utilization. However, to maintain the economical viability of RLVs, it is important to 
enhance operations safety and reliability by providing the RLV the capability to respond to various 
uncertainties and emerging emergency situations. Responding to an uncertain environment after a 
damage/failure presents many tough technical problems for this class of vehicle. These problem manifests 
in the following challenges that must be overcome: First, to adequately determine and model the dynamic 
                                                           
* Senior Researcher, 1408 University Dr, College Station, TX-77840, Senior Member AIAA, 
averma@KBSI.com.  
†Researcher, 1408 University Dr, College Station, TX-77840, Member AIAA, 
kvadakkeveedu@KBSI.com.  
‡Electronics Engineer, 2210 Eighth Street, Bldg. 146, Rm. 305, WPAFB, OH 45433-7531, Member AIAA, 
Member AIAA, Michael.Oppenheimer@wpafb.af.mil 
§Senior Aerospace Engineer, 2210 Eighth Street, Bldg. 146, Rm. 305, WPAFB, OH 45433-7531, Associate 
Fellow AIAA, David.Doman@wpafb.af.mil 
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characteristics of the vehicle in the altered state after a damage/failure; second, to estimate the new 
constraints and limitation(s) of the vehicle; third, to adopt and reconfigure the command, control and 
guidance of the vehicle to the modified system dynamics; and fourth, to design and plan a new feasible path 
with respect to the end goal maximization. A high percentage of such damage/failure cases leave the 
vehicle in an uncontrolled and uncertain environment with a highly likely probability of ultimately entering 
a state for catastrophic failure. The high cost of loss resulting from catastrophic failures, has prompted 
researchers in the direction of developing technologies to assist in minimizing such failures.  

 
Damage to a vehicle or a sub-system failure may result in modification of the applicable trajectory 

constraints and/or the dynamical behavior of the system, consequently making the previously designed 
reference trajectory infeasible. An acceptable trajectory for a dynamical system is a solution of a two-point 
boundary value problem for a set of governing differential equation of motion. The real world systems such 
as air vehicles are highly non-linear systems and impose a set of constraints on the trajectory variables as 
well as control variables. In inverse dynamics approach, a trajectory is specified first, which results in 
solving a set of algebraic equations, yet strictly satisfying the non-linear differential equations of a non-flat 
system. 

 
In this paper first we introduce the architecture of an Adaptive Trajectory Reshaping and Control 

(ATRC) system for general class of RLV system, which is based on the principles as described in Ref. 1. 
Next we discuss the general inverse dynamics approach for trajectory reshaping of RLVs and the 
motivation for functional modeling. For real time trajectory determination, there are two types of functions 
that must be modeled. One set of function is needed to describe the vehicle trajectory. The functions for the 
spatial coordinates of the vehicle constitute a vehicle trajectory. These trajectory functions are normally 
independent in one variable. The second set of functions that must be modeled in real time is to 
approximate the modified aerodynamic constraints. The aerodynamic constraints are modeled by defining 
aerodynamic coefficients for the flight envelope of the vehicle. Mostly, these functions are two dimensional 
with Mach and angle of attack being the independent parameters. A general approach to model a function 
is to parameterize the function and then determine the parameters that satisfy any governing constraints to a 
satisfactory level. In section IV, we describe a novel approach to design a set of basis functions with a class 
of constraints built in, that reduces the complexity of the solution and results in better approximations. 

 

II. Adaptive Trajectory Reshaping and Control (ATRC) System 
The ATRC system enhances RLV capability to avoid catastrophic failure when subjected to 

performance restricting damages and failures. The overall goal of ATRC translates into specific 
requirements for design and development of functionalities related to adaptable and reconfigurable 
command, control, and guidance system for the RLVs. and real time solution techniques for an.  

 
Figure 1 shows the general architecture of the envisioned ATRC system for RLVs. Note that the above 

structure is specific to longitudinal motion of the vehicle, however, it can be easily extended to six degree 
of freedom. The main components of the envisioned ATRC system requires: 

1. On-line system identification that includes parameter estimation and parameter projection for 
constraint boundary determination.  The constraint boundaries influence the trajectory reshaping of the 
vehicle. 

2. Real time trajectory determination for reshaping reference trajectory under feasibility constraints.  

3. Adaptive, closed loop control and guidance system for reference trajectory tracking.  
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Figure 1.  Architecture of ATRC 

III. Inverse Dynamics Approach for Trajectory Generation 
The advantage of inverse dynamics approach is that one can avoid integration of differential equations 

altogether. The main difference is that we parameterize the trajectory itself and then uses numerical 
techniques for solving these parameters that minimizes the objective function and other inequality 
constraints. Once a smooth trajectory is specified, the time derivatives are also fixed and hence the 
differential equations become simple algebraic equations.   

A. Reference Trajectory Design  
To determine a trajectory for a non-linear dynamic system, a solution must be found that satisfies the 

set of differential equations governing the dynamics of the system.  Further, the trajectory solution should 
not violate some non-linear constraints, which limits the operation capability of the system.  For an aircraft, 
the constraints arise due to several factors such as the limitations on angle of attack, load factor, 
aerodynamic heating, and actuator saturation.   

 
There are two primary approaches for trajectory generation and these have been classified in the 

literature [8] as the “integral approach” and the “differential approach.” In any approach, where generation 
of a trajectory involves the integration of the equations of motion, this approach is classified as the 
“integral approach.”  In a differential approach, an assumed functional form for trajectory is differentiated 
to obtain algebraic functions for the higher derivatives, which are required to impose constraints on the 
control inputs for the “inverse dynamics” solution. There are various applications where inverse dynamics 
have been used, such as spacecraft trajectories and path planning in robotics [9] and overhead cranes [10].  
Historically, the inverse dynamics approach has been used for “differentially flat” systems.  A system is 
“differentially flat” [see 11, 12] if there exists a set of outputs, known as “flat outputs,” such that there is a 
one-to-one correspondence between the trajectories of flat outputs and the full state and control inputs of 
the system. In our approach, we use an inverse dynamics approach for determining trajectory as this allows 
us to solve algebraic equations instead of integrating ODEs. With the inverse dynamics approach for 
aircraft trajectories, a problem arises due to inherent under-actuation in most of the aircrafts.  For a six-
degree of freedom aircraft, there are normally four controls: thrust, elevator, aileron, and rudder.  Ref. [7] 
defines a novel trajectory generation scheme, which uses pseudo forces for inverse dynamic computation.  
In this paper we concentrate on function modeling approach that to make the inverse dynamic solution 
approach more efficient. 
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B. Inverse Dynamics Approach 
Assume x  be the state vector for a vehicle and ( )τxx =  represent the trajectory of the vehicle. The 

governing equations of motion for an air vehicle can be represented in the following form 

 ( )( )[ ] ( )( ) ( )( ) ( )( )uxvCxxvCxvC
u
xxvCx 321

1
++=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
= , (1) 

where ( )xv  are the independent parameters defined in terms of the subset of vehicle states, and 
( )( )xvCi  are the non-linear coefficient functions in independent parameters. 

For example, the pitch dynamics of a vehicle for longitudinal dynamics can be written as  
 ( ) ( ) ( ) eMCqMCMCqI

eq mmm δααα
δ

,,, ++= 0 .  (2) 

The inverse dynamic solution for Eq. ( 1) can be written as  
 ( )( ) ( )( ) ( )( )( )xxvCxvCxxvCu 21

1
3 +−= −  (3) 

For a real time solution, in presence of uncertainty due to damage to the vehicle requires modeling of 
the trajectory ( )τxx =  and estimated models of the coefficient functions ( )( )xvCi . In the following section 
we will address one dimensional trajectory modeling and two-dimensional coefficient functional 
representation in parametric form. 

IV. One-Dimensional Function Modeling with Constraints using Basis Functions 
Often we need to estimate or model non-linear functions that must satisfy some constraints. For 

example, the inverse dynamic solution approach requires parameterization of multiple system outputs 
variables or the trajectory variables with some constraints imposed on it. Note that the feasible trajectory  
must also satisfy the governing differential equations. The trajectory parameters are determined using an 
optimization process that minimizes the error between trajectory variables and the solution of the governing 
equations.  Note that if some of the trajectory constraints, such as the boundary constraints are forced in the 
trajectory parameterization itself, it helps in reducing the complexity of the optimization problem. Verma et 
al [4,7] presented the following approach to represent trajectory that is useful to impose boundary and 
inpoint constraints. To prescribe a smooth trajectory functional for a specific trajectory coordinate, the 
position coordinate is represented by a twice differentiable, smooth function so that velocity and 
acceleration can be uniquely defined.  The path for an individual position coordinate is defined as a 
function of normalized time / ft Tτ = , where fT  is the total time for the maneuver. An individual 
coordinate trajectory is structured to have two parts, a base trajectory and a perturbation of the base 
trajectory. If ( )τP  is the ith coordinate, it is chosen to be of the form  

 ( ) ( ) ( ) ( )∑
=

+=
l

j
jjPPP

1
10 τϕατττ  (4) 

Here ( )τ0P  is the base trajectory function, which is chosen such that it satisfies any boundary or mid 
point constraints for the the trajectory. One example approach ( )τ0P  could be chosen as a minimum degree 
polynomial spline that satisfies the desired constraint conditions. The base trajectory by itself may not be a 
true solution of the governing equations and hence an infeasible trajectory. To make the trajectory feasible, 
we add a second term on the right hand side of the trajectory equation. The perturbation term must be 
designed to ensure that the overall trajectory function ( )τP  is the solution of the governing equations. 
Perturbation term is defined using a set of ortho-normal basis functions ( )τϕ j  that are modified by the 

term ( )τ1P . The term ( )τ1P  is a weight polynomial constraining the perturbation term to contribute zero 
value for the already satisfied desired constraints by base trajectory ( )τ0P . For example ( )τ1P  can be 
chosen as 
 ( ) ( ) ( )qp baP −−= τττ1 , (5) 
where p  and  q  are integers, usually less or equal to 3. The integers p  and  q  depend upon the highest 
order condition match required at times a=τ  and b=τ  respectively. For example, when boundary 
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conditions at 0=τ  and 1=τ  up to acceleration level must be imposed on the trajectory function, ( )τ1P can 

be chosen as ( )33 1−ττ . The drawback of this approach is that the after basis functions jϕ  are modified by 

( )τ1P , it looses the orthoganality, which makes it computationally harder to determine the coefficients  for 
the trajectory solution. In the next section we present an approach to design orthogonal polynomial basis 
functions with inherent  desired constraints. 

V. Constraint Orthogonal Polynomial Basis Functions 
The choice of basis functions ultimately influences the complexity of the modeling of a desired function 

or behavior. It is well known that a sub set of a complete set of basis functions can approximate any given 
function to a desired accuracy by choosing a sufficient number of basis functions elements in the sub set. 
However, if a function to be approximated must meet certain constraints, it presents various problems. 
First, a finite set of basis function may not ensure the constraints satisfaction on the function to be 
approximated. Second, a large number of basis functions may be required for the satisfactory constraint 
approximation. Now, if we can create a set of basis functions, where all the basis functions satisfy the given 
constraints, any linear combination of those functions will also satisfy the given constraints. With this 
motivation we developed an approach to design a constraint orthogonal polynomial basis functions. To 
explain our approach, we first present a way for generating one-dimensional unconstraint orthogonal 
polynomial based basis functions.   

A. One Dimensional Basis Functions 
 
Let ( )xiΦ  represent the 1-D ith function of the orthonormal polynomial basis functions given as: 

 ,,,)(
,

10
0

==Φ ∑
=

ixax
ik

k
ki  (6) 

Notice that the ith basis function has i+1 polynomial coefficients to be determined. We impose the 
constraints on the functions to determine the coefficients to ensure orthogonality and normalization. 
Defining the inner product of two functional as 

 ( ) ( ) ( ) ( )dxxxxx kiki ∫ ΦΦ=ΦΦ
1

0

, . (7) 

The norm and the orthogonality conditions can be obtained as: 

 ( )( ) 1
1

0

2 =Φ∫ dxxi ,     Normalizing condition. (8) 

 ( ) ( ) 1100
1

0

−==ΦΦ∫ ikdxxx ki ,,,, , Orthogonality condition. (9) 

The orthogonality condition gives i constraints while an additional constraint from normalization ensures 
that all the coefficients can be obtained.  
For automatically generating the basis set we used the following recursive approach. Assuming that we 
already know 10 −=Φ ikk ,, . Define an arbitrary polynomial ( )xfi  of degree i. For k = 0 to i – 1 we 
modify ( )xfi  as 

 ( ) ( ) ( ) ( ) ( )xxfxxfxf k
k

k
kk

iii
ΦΦ−=+1  (10) 

The ith basis function )( xiΦ  is now given as 
 
 ( ) ( )xfx i

ii =Φ  (11) 
For constrained orthogonal polynomial function, Eq. ( 6) is modified as follows. 

 ( ) ( ) ,,,
,

10
0

==Φ ∑
=

ixaxx
ik

k
ki ψ , (12) 
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where, ( )xψ  imposes a desired constraint on the basis function. Figure 2 and Figure 3 show some 
examples of a class of orthogonal basis functions that incorporate the given constraints. The example 
presents normalized orthogonal basis functions in the range 0 to 1. In 
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(a)                                                                                  (b) 

Figure 2. Constraint Polynomial Basis Functions.  (a) Basis Function are Constraint to be Zero at x = 
0.5. (b) Both, Function and its Derivative are Constrained to be Zeros at x = 0.5 

Figure 2(a), the value of the function is constraint to be zero mid way, i.e. ( ) 050 == .xxf  Figure 2(b) adds 
an additional constraint on the slope of the curve or the first derivative of the function given as 

( ) 050 == .xdxxdf . Note that the first set of constraint results in anti-symmetric orthogonal basis functions 
as can be seen in Figure 2(a), while the second set of constraint results in symmetric orthogonal basis 
functions as shown in Figure 2(b). In Figure 3, the application of the constraint has been shifted to the 
quarter point, i.e. 250.=x . In this case, the basic nature of orthogonal basis functions remains the same, 
albeit with a loss of symmetry. Figure 2 and Figure 3 demonstrate the ability to generate a range of readily 
available sets of constraint orthogonal polynomial basis functions.  
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(a)                                                                                  (b) 

Figure 3. Constraint Polynomial Basis Functions.  (a) Basis Function are Constraint to be Zero at x = 
0.25. (b) Both, Function and its Derivative are Constrained to be Zeros at x = 0.25 

B. Ortho-Normal Polynomials Basis Functions in Two-Dimensions 



 
American Institute of Aeronautics and Astronautics 

 

7

In this section we demonstrate an approach to produce a set of polynomial orthonormal basis functions 
in two dimensions, represented by x and y  with maximum degree of MN ,  respectively. First we 
introduce the vector space of two-dimensional polynomials and then the algorithm to generate orthonormal 
basis vectors. 

1. Matrix Representation of 2-D Polynomials 
 
Let MN ,P  be a set of polynomials where ( ) MNyxP ,, P∈ is a polynomial in x and y of degree N and M 

respectively. Let the coefficients be ija . 

( ) 00
00

1
1

0
0

1
1 yxayxayxayxayxayxP MN

MN
M

M
MN

MN
MN

NM ++++++= −
−

−
−, , 

or 
 ∑ ∑= =

−− ⋅⋅= N
i

M
j

jMiN
ji yxayxP 1 1 ,),( . (13) 

Let us represent the polynomial coefficients in matrix form as, 
 

 

110002100

1012111

021

++−−

−−−−−−

−−

⎥
⎥
⎥
⎥
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⎦
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⎢
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⎢
⎢

⎣

⎡

=
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MMNMNNM

MMNMNNM

aaaa

aaaa
aaaa

A

,,

. (14) 

 
Then the polynomial ( )yxP ,  can be represented in matrix form as,  

 ( ) AYXyxP T=, , (15) 
where, 
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−

⎥
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1

1
+

−

⎥
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⎥

⎦

⎤
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⎢

⎣

⎡

=

M

M

M

y

y

Y . (16) 

  
 

2. Representation of a 2-D Polynomial Inner Product Vector Space 
 
Let MN ,P  be a set of polynomials in x and y of degrees up to N and M respectively. The polynomial set 

MN ,P  defines a polynomial vector space over R (set of real numbers) with  
 
 { }

MjNi
ji

jiji yx
≤≤≤≤

==Θ
00 ,,, |θθ  (17) 

 
as the basis vectors that satisfy the basic properties of associativity, commutativity, existence of identity 
and inverse, and properties of scalar multiplication. In order to define orthogonality, we must define an 
inner product space. An inner product space is a vector space with an additional structure of inner product. 
We define the inner product on the 2-D polynomial vector space as,  
 

 ∫ ∫ ⊗=
1

0

1

0

dydxyxQyxPyxQyxP ),(),(),(),,( ,      MNyxQyxP ,),(),,( P∈ . (18) 

 
The polynomial function multiplication ⊗ , inside the double integrals can be implemented in MATLAB 
using 2D convolution of the corresponding coefficient matrices (see function conv2). 
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Our goal is to construct an orthonormal basis for the polynomial vector space MN ,P . As a first step we 
compute an orthonormal basis set of vectors using the Gram-Schmidt procedure. Then we compute the 
coefficients of a polynomial function ( )yxP ,  in the new transformed space with orthonormal basis. 
 

3. The Gram-Schmidt Procedure 
 

If V is a set of L linearly independent vectors, then the Gram Schmidt procedure can be used to find set 
W of L orthonormal vectors that span the same vector space as V. In the case of the 2D polynomial vector 
space, we have a set of (N+1)x(M+1) linearly independent vectors { }ji ,θ=Θ  that span the space of NxM 
degree polynomials. We can apply Gram-Schmidt procedure to this vector space to compute the set of 
(N+1)x(M+1) orthonormal vectors { }ijφ=Φ . 

ij

ij
ij

ϕ

ϕ
φ = ,   

where, 

0021

01
02

00
0202

02

00
0101

01

00 1

,,, ,,,

,,,

,

,

φφφϕ

φφϕ

φϕ

ϕ

ij
ij

ij
ij

ijij
ij yxyxyxyx

yxyxyx

yxyx

−−−−=

−−=

−=

=

−−

 

and, ijijij ϕϕϕ ,= . 

 
Once we have the transformation from Θ  to Φ , we can transform any given vector (polynomial in this 
case) to the new orthonormal basis and compute the new set of coefficients, by taking the projection of the 
given vector (polynomial) onto each of the new basis vectors. 
The polynomial vector ( )yxP , can be represented in a new basis with coefficients { }ji ,α , where 

( ) ><== ijijij yxPyxPprojection φφα ),,(),,( . 

C. Constrained Orthonormal Basis Set for 2-D Functions 
Many times we would like to represent a class of functions in terms of basis functions that must satisfy 
certain constraints. For an efficient representation, we would like to construct a set of basis functions 
satisfying the given constraints in addition to the orthonormality condition. In this report we restrict our 
discussion to three types of constraints; constraints on the function value, its first derivative or both. In the 
following we describe the generation of 2-D constrained basis functions. 
 

(i) Constraint only on the value of the function at a given point. I.e., ( ) 0=yxC , . To introduce 
the constraints, first we modify the polynomial basis set Θ  by multiplying each basis function 

( )yxji ,,θ by ( )yxC ,  to form a new constrained basis set CΘ  given as 
( ) ( ){ }yxCyxjiC ,,, ⊗=Θ θ . 

Note that the basis set CΘ  is not yet orthonormal. The constrained orthonormal basis set CΦ  is 
constructed using the Grahm- Schmidt procedure as discussed in the previous section. See Figure 
4 for an example of the orthonormal basis functions generated. 
 

(ii) Constraint on the value and derivative along a curve 000 =),( yxC . I.e. 000 =),( yxC and 
000 =′ ),( yxC . C′  is the derivative in the direction orthogonal to the curve 000 =),( yxC  in the 

x-y plane. To introduce the constraints, we first define ( ) ( ) ( )yxCyxCyxC ,,, ⊗=2 . Next we 
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modify the polynomial basis set Θ  by multiplying each basis function ),(, yxjiθ by 2),( yxC  to 
form a new constrained basis set CΘ  given as 

( ) ( ){ }2yxCyxjiC ,,, ⊗=Θ θ . 
The constrained orthonormal basis set CΦ  is constructed using the Grahm- Schmidt procedure as 
discussed in the previous section. See Figure 5 for an example of the orthonormal functions 
generated. 

(iii) Constraint only on the derivative of the function. We then modify the given polynomial Θ  as, 
( ){ } ( ){ }{ } ( )20000 yxCyxyxC ,,, ,, ⊗−Θ∪=Θ θθ . 

Figure 6 gives an example of orthonormal functions generated with constraints only on the derivatives. 
 

 
Figure 4. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the value of the function is zero. 
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Figure 5. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the value and derivatives of the function are zero. 

 
Figure 6. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the derivative of the function is zero. 
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VI. Aerodynamic Coefficient Function Estimation 
An important goal of the ATRC system is the adaptive reshaping of the RLV trajectory in the presence 

of altered dynamic characteristics of the vehicle when unexpected damage occurs in the various operating 
scenarios. Any damage to a vehicle that has an impact on the external shape of the vehicle, or that creates 
an impediment in normal functioning of the control surfaces, results in alteration of the vehicle’s 
aerodynamic characteristics. Figure 9 and Figure 10 show few examples of the Pitch moment coefficient 
variation in the presence of various damage scenarios. Since the aerodynamic behavior of the vehicle is 
captured in aerodynamic coefficients that are used for the design of vehicle control and trajectory planning, 
it becomes mission critical to adapt reference trajectory for the altered vehicle dynamics. Hence we need an 
approach to build a smooth on-line aerodynamic model. Physics based modeling such as DATCOM allows 
fast computation of aerodynamic coefficients for given flight points and the results can be stored in a 
tabular form. However, for efficient real-time trajectory reshaping application, it is desired to represent 
aerodynamic coefficients in smooth functional form that are governed by few parameters. In this section, 
we present a piecewise continuous and smooth function model in two dimensions. 

A. Physic Based Modeling for Aerodynamic Modeling 
Given the geometry of the vehicle, very good estimations of the aerodynamic coefficients can be 

generated based on Physics based modeling in a very small time. For example, if damage on the vehicle is 
characterized adequately, the DATCOM technology allows specification of the altered geometry of the 
vehicle to compute the corresponding aerodynamic coefficients at desired points of the flight envelope. In 
our approach, we generate a large number of data points for the aerodynamic coefficients and then fit a 
piecewise continuous and smooth function to create a functional model for vehicle aerodynamics. The 
functional form is later used for trajectory reshaping. 

B. Finite Element Function Approximation 
 
We formulate the aerodynamic coefficient function with a set of parameters. First we show our 

approach for piecewise continuous and smooth one-dimensional function, which is later extended to two-
dimensions. We used a finite element modeling approach so that the approximation function would capture 
local variations in an efficient manner. Ref. 20,21 demonstrates the use of finite element piecewise 
approximation for mapping geopotential. Ref. 4,7 applied the technique for aerodynamic coefficients 
representation. First, the argument space of the function is divided to form a grid with one control point at 
every grid point. At each control point we use a local polynomial function that is determined using a 
weighted, least square method from a given set of nominal data generated from DATCOM.  

 
4. One-Dimensional Finite Element Approximation 
The scope of each local polynomial centered at the control point lies in between the adjacent grid points 

(see Figure 7). Notice the overlapping of local polynomials, which helps in obtaining a smooth function 
over the entire range. Once local approximations are determined, a smooth global approximation is 
obtained as a weighted combination of the local approximations. The smoothness of the approximation 
function implies that the function, as well as its first derivative, is continuous. Notice that grids are not 
restricted to be equidistant. To capture nonlinearity effectively, more control points should be placed near 
high non-linearity. Figure 7 uses a second order polynomial function for local approximations.  

 
Once local approximations are attained, a smooth global approximation is obtained as a weighted 
combination of the local approximations. A highlight of this Finite Element approximation is that it 
preserves the local function value and its first derivative at its control point. This is achieved by a smooth 
weighting function that gracefully goes from unity to zero, from one control point to another, without 
contributing to a first derivative at both control points. The weighting function for the two overlapping 
local approximation curves is given as  

( ) ( )qqqW 211 2
1 +−=)( ,  )()( qWqW 12 1−= , 

where q  is the normalized coordinate with the origin at the first control point. Note that the weighting 
function ensures that 101 =)(W , 002 =)(W  at the first control point and similarly, 011 =)(W , 112 =)(W  
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at the second control point. If )( qf1 and )( qf2  are two local approximations, the weighted global 
approximation )( qF  between two control points is given as  

)()()()()( qfqWqfqWqF 2211 += . 
 
 Figure 8 shows the final approximated function that is made of the weighted combinations of the local 
function approximations. 
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Figure 7:  Local Approximations Centered at 

Control Points 
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Figure 8:  Smooth Functional Approximation 

using Weighted Local Approximations 
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Figure 9. Moment Coefficient with AOA for 

Nominal and Various Failure Cases 
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Figure 10. Moment Coefficient with Mach for 

Nominal and Various Failure Cases 

 
5. Multi-Dimensional Finite Element Approximation 

In this section we extend the formulation for FEM modeling for multi dimensional functions. Let F  be 
given as 

 1 2( , , , )nF F q q q= , (19) 
and we have to determine an estimate 1 2

ˆ ( , , , )nF q q q  from a finite element model. As in one-

dimensional case, we assume that the domain of F  is covered with finite number of equidistant nodes. 
Each preliminary local approximation 

1 2, , , ni i iF  is valid in the 2 2 2× × ×  hypercube centered at a node 

represented by n  indices given as ( )1 2, , , ni i i . Each index is numbered in increasing order for the 

nodes lying in its dimension. Consider a hyper cube formed by 2n  nodes, each node representing a corner 
of the hyper cube.The final approximation 

1 2, , , ni i iF  is valid in the unit hypercube whose “lower left 
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corner” is ( )1 2, , , ni i i . We shift the origin of the coordinates to the node ( )1 2, , , ni i i  that has the 
lowest indices in each dimension. The local coordinates are normalized as 

 

,

, 1 ,

j

j j

j j i
j

j i j i

q q
q

q q+

−
=

−
. (20) 

Let us define a function W  as a function of the normalized coordinate jq  as 

 
2( ) (1 ) (1 2 )j j jW q q q= − + . (21) 

Now the weight function for an arbitrary corner node ( )1 2 1, , , 1, 1, ,k k ni i i i i++ +  of the hyper cube 
can be written as 

 1 2 1, , , 1, 1, , 1 2 1( ) ( ) (1 ) (1 ) ( )
k k ni i i i i k k nw W q W q W q W q W q

++ + += − − ,  

 for   0 1, 1jq j n≤ ≤ = . (22) 
The weight function defined by Eq. ( 22)has the following properties:  

• weight is unity at its own node and, it is zero at any other node or edge formed by other 
nodes. 

•  summation of all the weights corresponding to the corner nodes of the hyper cube at any 
point inside the hyper cube is equal to one. 

The estimated function F̂  can be defined in terms of normalized coordinates centered at node 
( )1 2, , , ni i i   as 

 
1 2 1 2

2

1 2 , , , , , , , ,
1

ˆ ( , , , )
n

n nn i i i j i i i j
j

F q q q w F
=

=∑
. (23) 

6.  An Example of Finite Element Function Approximation for Functions of Two Variables. 
Let Z be the matrix of values of a function sampled at the grid points of a 2-d space defined by x and y. We 
are interested in representing the function Z in closed form, using 2-d polynomial approximation. The 
closed form representation can be used to evaluate the function Z at arbitrary x and y points. We 
approximate the function Z using a number of 2-d polynomial function elements of a smaller area of 
support. The number of function elements to be used and the degrees of the polynomials in x and y are 
inputs to the algorithm. We specify this by the x and y coordinates of the control points as separate vectors. 
Note that the control points lie exactly on the grid points. At these data points, the approximated value of 
the function Z equals the value of the local function centered at that control point. The chosen 
approximation is locally optimal in the least squared error criteria (i.e., within the area of support of each 
function element). 
To formulate finite element function approximation satisfying certain constraints, we proceed as follows. 
The orthonormal basis set of functions are computed that satisfy the constraints and then searched for local 
functions that are optimal in the vector space spanned by the constrained orthonormal basis functions, 
based on least square optimality criteria. More details on the finite element function approximation can be 
found in [7].  
 
Concentrating on the finite element function approximation method for 2-d functions, we initially 
proceeded by calculating the weights in the x and y directions separately. The actual weight function at 
each point in the grid is the product of the x and y weights at that location. The x and y weight functions 
satisfy the criteria that at the current control point location, it has a value of one and gradually decreases to 
zero as it moves away. The products of the 1-d weight functions also satisfy the same criteria in the 2-d x-y 
plane. The intended consequence of this property is that the approximated function value will be equal to 
the value of the local function at the control point. Figure 11 shows an example of a weight function in the 
2-d plane that is the product of the two 1-d weight functions. 
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Figure 11. Weight function centered at a control point. The value is one at the location of the 

control point and gradually decreases and reaches zero at the neighboring control points. 

 
Figure 12 shows the results of finite element approximation for a surface of 31x31 points with 5x5 = 25 
control points and local polynomials of degree 3 in x and y. 

 
Figure 12. Finite element function approximation. (a) Given function (b) Approximated Function (c) 

Error between the given and approximated functions.  Twenty-five control points were used and 
each local function is a polynomial of degree 3 in x and 3 in y. 
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VII. Conclusion 
In this paper we address the function modeling techniques to facilitate an efficient on-line inverse 

dynamics methodology for trajectory reshaping of the RLVs . On-line trajectory reshaping to determine a 
feasible reference trajectory is computationally a difficult problem for real time applications.  
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