

AFRL-IF-RS-TR-2006-258
Final Technical Report
August 2006

REAL-TIME DISTRIBUTED ALGORITHMS FOR
VISUAL AND BATTLEFIELD REASONING

University of Maryland at College Park

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J020

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-258 has been reviewed and is approved for publication

APPROVED: /s/

 RICHARD C. BUTLER, II
Project Engineer

 FOR THE DIRECTOR: /s/

 WARREN H. DEBANY, Jr.
 Technical Advisor, Information Grid Division

Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 99 – Jan 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-99-1-0552

4. TITLE AND SUBTITLE

REAL-TIME DISTRIBUTED ALGORITHMS FOR VISUAL AND
BATTLEFIELD REASONING

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
J020

5e. TASK NUMBER
16

6. AUTHOR(S)

V.S. Subrahmanian, Larry Davis, James Reggia, Victor Basili and John
Aloimonos

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland at College Park
Office of Research Administration and Advancement
2100 Lee Building
College Park, MD 20742-5141

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA
3701 N. Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-258

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-559

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Information is key to the success of the next generation battlefield. There is a critical need to determine, in real-time, what the enemy
is doing, and to interpret that information in the context of past related events. In this project we examined two aspects of this issue:
development of a high-level task definition language for tasking a network of sensors to carry out given objectives, and interpreting
recounted events so that past related scenarios could be automatically identified from a case database.

15. SUBJECT TERMS

Distributed Sensor Networks, Sensor Tasking, High-Level Task Definition Language, Graphical User Interface (GUI), Story
Analysis, Story Interpretation, SensIT Nodes
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Richard Butler
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

77
19b. TELEPONE NUMBER (Include area code)

 i

Abstract

Information is key to the success of the next generation battlefield. Whether a

combat operation is taking place in the ocean, or in the desert, or in an urban terrain, there

is a critical need to determine, in real-time, what the enemy is doing, and to take

appropriate actions based on knowledge of the enemy’s movements. We examined two

aspects of the critical need for battlefield information in this work: sensor tasking and

automated interpretation of narrated events.

Analysts who wish to task a network of sensors to carry out their objectives

should not have to understand the details of sensors in order to specify their tasks. In

section I, we proposed a high level task definition language, which is rich enough to

allow an analyst to (i) specify a region of interest to him, (ii) specify a time frame of

interest, (iii) specify a set of conditions that the analyst wants monitored during the time

frame and in the region above, and (iv) specify one or more actions to be taken in the

event the conditions are satisfied. We developed graphical user interfaces that may be

used to express such task specifications and developed algorithms to scale such systems.

The understanding of recounted events (stories, histories, etc.) so that one can

determine the best course of action is a common and critical part of decision making in

many areas, including anti-terror intelligence assessment and military operational

command. The goal of the second part of this project was to identify aspects of story

representation and analysis that can be readily implemented using existing technology.

As described in Section 2 of this report, we assessed the availability of narratives in

domains such as urban warfare and software engineering as well as the suitability of

software tools for story analysis. A prototype story interpretation system that integrated

rule-based and case-based processing was implemented and evaluated in the context of

urban warfare stories. We conclude that automated story interpretation is feasible in

targeted domains and that general purpose tools for this task can be developed, but a

significant stumbling block to future progress is the limited availability of online story

repositories.

 ii

Table of Contents

Section 1: Tasking a Network of Sensors .. 1
1.1 Summary .. 1
1.2 Introduction.. 1
1.3 Methods, Assumptions and Procedures ... 5

1.3.1 Task Definition ... 5
1.3.2 Declarative Sensor Tasking Language.. 7
1.3.3 Algorithms to implement Task Engine ... 8
1.3.4 Algorithms for Task Merging ... 8
1.3.5 STM System.. 10

1.4 Results and Discussion .. 12
1.4.1 Task definition .. 12
1.4.2 Backend Task Definition Language.. 14
1.4.3 Task Merging.. 15
1.4.4 Task partitioning ... 16
1.4.5 Assigning sensors to tasks .. 21
1.4.6 Low-bandwidth tasking framework.. 22
1.4.7 Task generation (TaskGen) library ... 23
1.4.8 Cougar communications conduit .. 24
1.4.9 Simulation Data Base (SimDB) .. 26
1.4.10 Preliminary SensIT network Gateway (SH4) interface................................... 27
1.4.11 Preliminary SensIT SH4 gateway task and action module set development .. 28
1.4.12 Imager control, manual trigger (SH4) module.. 29
1.4.13 In-Field alternate track generation support extension..................................... 30
1.4.14 In-Field external imager trigger prediction support modifications................. 31
1.4.15 Cache-borne task specification table .. 31
1.4.16 Initial OpenMap based SensIT GUI.. 32
1.4.17 OpenMap GUI applet.. 32
1.4.18 Modified classification code and shape display.. 34
1.4.19 Track history GUI line and color display ... 34
1.4.20 Cache-borne codebook table development ... 35
1.4.21 Finalized in-cache codebook table modification testing................................. 36
1.4.22 OpenMap GUI imager query display modifications....................................... 36

1.5 Conclusions.. 37
1.6 Recommendations.. 38

 iii

Table of Contents

Section 2: Representation and Automated Analysis of Narrated Events.......................... 40
2.1 Introduction.. 40
2.2 Methods.. 43
2.3 Results and Discussion .. 44
2.4 Conclusions.. 51
3.0 References... 52
Appendix A Integrating Knowledge-Based and Case-Based Reasoning 54
Appendix B Software Inspections as Choice Points: Necessary Data to Provide Decision
Support in Software Development.. 63

List of Figures

Figure 1: User’s view of an application-specific “story understanding system”............. 55
Figure 2: Story interpretation systems like that shown in Figure 1 are constructed
automatically from an application-specific source file and a database of past episodes. . 56

List of Tables

Table 1: Running times of the Algorithms (in milliseconds) .. 18
Table 2: Performance of similarity function using different sets of attribute.................. 60

 iv

 Acknowledgements

We thank Sri Kumar at DARPA for his incisive comments throughout this effort.

Dave Shepherd assisted us throughout the process of working with other contractors on

the Sensor Information Technology (SensIT) effort. We worked closely with Gail

Mitchell and Prakash Mangwani at BBN, Tom Hammel and Bernie Yetso of Fantastic

Data - we thank them for their prompt response to our needs. In addition, we worked

with numerous researchers who formed other vital parts of the SensIT team including

Philippe Bonnet and Johannes Gehrke of Cornell, Mark Jones and Jae Park from Virginia

Tech, Joe Reynolds, Steve Beck, and many others from BAE Systems, University of

Tennessee, University of Wisconsin, and Pennsylvania State University.

 1

Section 1: Tasking a Network of Sensors

1.1 Summary

Analysts who wish to task a network of sensors to carry out their objectives

should not have to understand the details of sensors in order to specify their tasks. We

proposed a high level task definition language, which is rich enough to allow an analyst

to (i) specify a region of interest to him, (ii) specify a time frame of interest, (iii) specify a

set of conditions that the analyst wants monitored during the time frame and in the region

above, and (iv) specify one or more actions to be taken in the event the conditions are

satisfied. We developed graphical user interfaces that may be used to express such task

specifications and developed algorithms to scale such systems. We worked jointly with

several members of the Sensor Information Technology (SensIT) team to develop a

system that could be demonstrated on live sensor data, both from 29 Palms and from

BBN’s Waltham test bed.

1.2 Introduction

The DARPA Sensor Information Technology (SensIT) program has proposed the

use of large ad-hoc networks of sensors to collect information about a current or potential

battle zone. As sensors get smaller and smaller, the ability to deploy such large networks

of sensors from the air gets more and more probable.

However, interacting with sensors today is a challenging task. Software support

for tasking and processing information collected from sensors is in its infancy. In order

to interact with sensors, an analyst or an end-user needs detailed information about the

sensor hardware, and often needs detailed information about the sensors’ Application

Program Interface (API for short). There are many reasons why interacting with a

network of sensors in such a way is a bad idea:

1. First and foremost, analysts and mission planners are not software programmers or

computer experts. They are experts in analyzing intelligence and fighting wars.

Expecting them to program software code, even in so called high level programming

 2

languages like Java, is unreasonable - expecting them to program sensors that typically

have much lower level programming languages is truly foolhardy.

2. Second, diverse sensors have very diverse programming interfaces. For example,

temperature and pressure sensors are very different from motion sensors which, in-turn,

are very different from image and video sensors. Even if an analyst or war fighter were

to learn the APIs of one sensory source, this would be far from adequate as different

sensors have varying APIs. Placing such a burden on an analyst/war fighter would leave

him in a position where he could not focus on his primary task - that of successfully

prosecuting a war.

3. Third, even if we had someone learn how to use APIs of all these diverse sensory

devices, we would still be left with the challenge of harnessing all the information

coming back from sensors. The ability to “mix and match” data coming back from

diverse sensors is a major challenge. Expecting even a professional programmer to

program these tasks one by one has the following problems:

• Cost. Programming each tasking request is a costly endeavor.

• Time. Programming each tasking request will inevitably lead to a significant delay

between the time the analyst/war fighter makes the tasking request and the time the

request is programmed in. This delay may be acceptable in applications such as field-

testing a road vehicle (where the gap between the time the tests are conducted to

deployment can run into years), but is totally unacceptable in the military setting

where time is of the essence. Delays lead to potential casualties.

• Lack of flexibility. Hard coded solutions, where each task request is explicitly

programmed, are inflexible. Suppose a task was programmed in C or Java. It is

inevitably the case that task requests get changed over time. For instance, a request to

monitor the road leading to a potential Iranian nuclear facility might need to be

abruptly changed when it is noticed that there is an inordinate amount of helicopter

traffic in the region. Retasking would require reprogramming. However,

reprogramming programs written in modern programming languages is difficult. The

 3

person doing the reprogramming needs to understand all the existing code - a major

challenge. Even if the programmer thinks he has understood it, he may be wrong,

leading to a reprogrammed version of the task that does not quite do what it is

supposed to do. This in turn might have catastrophic results.

4. Fourth, when analysts create tasks, those tasks involve not just accessing the sensor

data, but also correlating that data with non-sensory sources. For example, an analyst

correlating data about movement of enemy forces might want to pipe that data into a

prediction program, which in turn might need to access an intelligence database showing

enemy assets in the region. The high level task that the analyst is interested in is not just

an examination of the low level sensor data - rather, he wants that sensor data analyzed in

a manner that he specifies and he wants the results of that “processed” sensor data to be

the result of his task request.

The above points make it clear that a system that enables analysts to task a

network of sensors needs to satisfy many fundamental criteria.

1. Task definition. First and foremost, the notion of a task must be formally defined.

We all know informally what a task is. However, for a computer system to find ways of

accomplishing war fighters’ tasks, such a formal definition is required.

2. Task definition language. The system needs a formal language in which tasks can be

articulated - such a language must be declarative in the sense that the war fighter merely

needs to specify what the task should accomplish, not how the task should be

accomplished. In short, the analyst might merely say that he wants to monitor levels of

traffic in and around the Al-Natan suspected nuclear facility. He shouldn’t have to tell

the system to turn sensor 1 on, orient it 45 degrees SW, set it to low battery consumption

and do similar things with sensors 2 through 100.

3. Tasking GUI. Even though declarative languages are far more easy to program and

modify than imperative languages like C and C++, they still require a learning curve for

the war fighter - time that is not the best possible use of the war fighter’s unique skills. A

tasking graphical user interface (GUI) which is easy to use and understand is critical. By

 4

interacting with such a GUI, the war fighter or analyst specifies a task in the task

definition language (even though he may not be aware of it).

4. Task Engine. The job of the task engine is to take one or more tasks and arrange for

their execution. This is done by determining which of many possible diverse resources

can be used to perform the task at hand. Given that hundreds of tasks may be executed

concurrently (for the same or for different war fighters), the ability to allocate tasks to

sensors that have the required capabilities in a way that maximally supports all the tasks

is needed.

5. Task Merging. Scaling the task engine requires the ability to study how to merge

tasks together when it is clear that the tasks share a common component. For example, if

we wish to monitor traffic on two roads, we may wish to place a sensor at the intersection

of the two roads rather than place one on each as this reduces the overall amount of

resources (sensors) used. Of course, this must be done judiciously (e.g. by examining the

road network, etc.).

The work we have performed as part of the DARPA SensIT program includes the

following.

1. We have proposed a formal definition of a task.

2. We have proposed a declarative tasking language in which tasks may be expressed.

3. We have developed a graphical user interface through which analysts may express

tasks in the above declarative tasking language.

4. We have developed algorithms to implement the Task Engine.

5. We have developed algorithms for Merging tasks.

6. We have conducted experiments assessing the efficiency of many of these methods.

7. We have developed significant software components that were used during the SensIT

experiments and that were used to build an integrated demonstration (jointly with other

 5

SensIT contractors such as BBN, BAE Systems, Fantastic Data, Penn State University,

Cornell University, Virginia Tech., to name a few).

The rest of this report will provide further details about these individual

contributions as well as the methods we used, assumptions we made, and procedures we

followed.

Note. Our original proposal also included several tasks related to image and video

processing. However, those portions were not funded by this program.

1.3 Methods, Assumptions and Procedures
The following pieces of work were done internally at the University of Maryland.

1. Definition of a task.

2. Description of a declarative tasking language in which tasks may be expressed.

3. Algorithms to implement the Task Engine.

4. Algorithms for Merging tasks.

5. Experiments assessing the efficiency of many of these methods.

In this section, we describe the methods, assumptions and processes we put in

place to develop the scientific underpinnings of these components. The scientific results,

a description of our demonstrations and experiments, and a discussion of the process of

joint experimentation and demonstrations are described later in Section 4.

1.3.1 Task Definition
Though several abstract definitions of the task exist in the AI planning literature,

none of them is adequate for the purposes of tasking a network of sensors, because

tasking networks of sensors is not the same thing as an AI plan.

We approached the problem of task definition as follows:

 6

• First, we came up with a set of sample tasks that an analyst/user may wish to specify

that require sensing capabilities.

• Second, we examined all these sample tasks with a view to determining whether they

shared any commonalities. In other words, is there a common abstraction that

captures all these diverse tasks as special instances of the abstraction?

• Third, we analyzed the abstraction for possible shortcomings and/or limitations.

Our abstraction of a task had four major components.

1. Where should the task be performed? This component specifies a geospatial region

where the task is to be performed.

2. When and how frequently should the task be performed. Some tasks need to start now

and be continuously running forever, while other tasks may have a finite time horizon,

with updates on the task required only every hour.

3. What should the task look for? This component specifies whether the task is looking

for certain vehicle activity patterns somewhere or whether it is looking for acoustic

patterns or something else altogether.

4. What should the task do when it finds what it is looking for. For example, if the task

finds that enemy activity near the Al-Natan nuclear site is dramatically increasing, should

it just notify the analyst? Should it correlate the sensor readings with background

intelligence data, analyze it using a threat module, and send the resulting fused

knowledge to the analyst?

We came up with a formal mathematical definition of a task that incorporated the

above four components and we verified that this mathematical definition can capture the

example tasks we had started out with.

 7

1.3.2 Declarative Sensor Tasking Language
Clearly, the definition of a language for tasking sensors depends upon our

definition of a task. As our notion of a task had four components - what to monitor, when

to monitor, where to monitor, and what to do when the task monitoring condition is

satisfied, we needed to make the following choices.

• Choice of a geospatial region definition: There are many possible ways of

specifying geospatial regions. We assumed that all geospatial regions of interest

would be rectangles with two horizontal and two vertical sides.

• Choice of a temporal specification: Again, there are many possible ways of

specifying times of interest. In the types of sensor tasking examples we saw, we

chose to specify time periods via a triple - a start time (for the monitoring) an end

time (for the monitoring) and a frequency describing how often the task condition

should be evaluated.

• Task condition: The hardest part of our research was determining how to specify

conditions to be monitored. This is because the conditions being monitored could

span multiple sensory nodes as well as, potentially, third party data sources. We

showed how the notion of a code call condition[12] can be used to specify task

conditions.

• What actions to take when task conditions are satisfied: There are many choices

in specifying how to react to a task monitoring condition being satisfied. We

examined some alternative possibilities and decided that the criterion of having a

declarative, easy to modify specification was best met with rules of the form “if 〈task

condition〉 then DO 〈action〉”. The key therefore was defining a syntax for task

conditions.

 8

1.3.3 Algorithms to implement Task Engine
The job of the task engine is to determine which sensor will execute which task or

subtask. In order to execute a task or a subtask, the sensor in question must be at the

right place at the right time and furthermore, should have the right capabilities. In

addition, the load on the sensor should not be so high that it cannot satisfy other tasks it

has previously been charged to perform.

Our approach to this problem was as follows.

• First, we came up with a mechanism to define what tasks each individual sensor can

perform and how those tasks can be accessed by external programs.

• Second, we came up with a formal definition of a Task Assignment Problem (TAP

for short). This formulation of a TAP assumes the existence of a model of load on the

network, but it does allow different tasks to take varying amounts of time.

• Third, we analyzed the complexity of the TAP problem using computational

complexity theory. This allows us to assess the complexity of the problem

independently of any specific algorithm (of course an algorithm is good only if it falls

within the complexity classification of the problem).

• Based on the above analysis, we developed alternative algorithms that could be used

to task a network of sensors.

• Finally, we developed heuristic algorithms to solve this problem as well. These

algorithms may not find an optimal way of assigning sensors to solve a given

problem, but they are guaranteed to run much more effectively than an algorithm that

attempts to solve the combinatorial optimization problem involved in solving the

TAP exactly.

1.3.4 Algorithms for Task Merging
A single user or analyst can generate numerous tasks, which in turn can generate

numerous subtasks. Given a set of tasks {t1,...,tn} to perform, one way is to

 9

sequentially execute the tasks in some order. Unfortunately, this may not be the most

efficient way of executing the tasks. For example, we may have two tasks:

1. Task t1 counts the number of vehicles going in or out of the suspected Al-Natan

nuclear plant.

2. Task t2 counts the number of Heavy Equipment Transports (HET) going in or out of

the suspected Al-Natan nuclear plant.

Clearly, it is possible to merge both these tasks into one task – every time a

vehicle is detected, increment the vehicle count by 1 and if the vehicle is an HET, then

increment the HET count by one as well.

Our work in this topic included the following.

• First, we studied existing algorithms for merging activities. People have studied the

possibility of merging activities in many fields (e.g. designers of disk servers try to

merge requests to read addresses on disk to reduce the search time on disk; designers

of multimedia video servers try to service multiple clients by merging them into one

stream and so on). We determined that the algorithms closest in spirit to what we

wanted to do were on Multiple Query Optimization (MQO) in databases.

• Our first step was determining whether algorithms used for multiple query

optimization in databases worked. Unfortunately, we quickly determined that the

optimization algorithms themselves take a prohibitive amount of time to run.

• Our experiments seemed to indicate that algorithms based on the A* algorithm would

work fine as long as only a relatively small number of queries (under twenty, but

preferably near ten) were being merged.

• As a consequence, we were forced to consider alternative strategies. Suppose we had

N task conditions to evaluate and only a maximum of M (where M is much smaller

than N) task conditions could be merged efficiently. We considered the idea of

splitting our M requests into at least ⎡M/N⎤ buckets (there can be more buckets than

 10

this) such that each bucket contains N or fewer task conditions. The idea is that the

conditions inside a bucket are all similar and/or share common computations. By

grouping together similar task conditions in one bucket, we hope to get a big savings

in merging the items inside that bucket. By having multiple buckets, each being

merged, we wanted to derive a significant savings compared to the case where the

task conditions are independently evaluated.

• We first designed algorithms to optimally split the set of N task conditions into such

buckets.

• We then analyzed the complexity of this problem and realized it was Non-

deterministic Polynomial-time hard (NP-hard).

• As a consequence, we later developed heuristic algorithms for this problem.

1.3.5 STM System
One of the key components of our effort was to build a Sensor Task Manager

(STM) implementing the theory developed in the work described in the preceding

sections. The STM is a collection of modules documenting this effort.

The STM modules themselves involve the design and implementation of a wide

variety of state of the art algorithms - these are described in full detail in Section 4, along

with a rationale for why they were needed and who used them. In this section, we merely

list the key modules.

1. Task specification language module.

2. Task Generation library development.

3. Cougar communications development conduit to work with Cornell University’s

(another SensIT contractor) Cougar system.

4. Simulation database. This was used to run experiments.

5. Sensor Network Gateway Development - this was used to talk to the sensor network.

 11

6. SensIT SH4 Gateway Task and Action Module. This was used to communicate with

the underlying SensIT data query processes.

7. Imager control, manual trigger (SH4) module development. This component was used

to interface with Sensoria’s imager nodes.

8. In-Field alternate track generation support extension work. This was used to generate

coerce tracks from target detection data.

9. In-Field external imager trigger prediction support.

10. Cache-borne task specification table development. This was used to specify tasks in

cache.

11. OpenMap SensIT GUI. UMD developed a graphical user interface using tasks which

could be specified by analysts/war fighters. We built this GUI using BBN’s OpenMap

graphical information system (GIS) library.

12. OpenMap GUI applet development. This was developed in order to support use of

our OpenMap based GUI over the web by other SensIT contractors.

13. Modified classification code and shape display. This was used to render target

shapes in the GUI.

14. Track history GUI line and color display. This component showed tracks aggregated

from detections data on the GUI.

15. Cache-borne codebook table development. The codebook database stores the

entity/value representations for the underlying SensIT network (i.e. 105 = “M1-A Tank”,

or 23 = “Passive InfraRed sensor”). This component implemented the network codebook

internally (in-cache), allowing client interface functionality without the previously

required external database/network connections.

16. OpenMap GUI imager query display.

 12

1.4 Results and Discussion

In this section, we describe, in greater detail than we have done thus far, the key

results underlying our approach to querying and tasking sensor networks. Over the

almost four years of funding received under the SensIT program, we addressed and

solved many problems related to the theory and implementation of systems to task sensor

networks. In this section, we present one subsection for each problem encountered.

These range from theoretical problems to practical implementation and/or demonstration

problems. For each such problem, we present the following:

1. Problem statement: First, we present a statement of the problem. This is usually

done in English. Where appropriate, some mathematical notation and/or figures may be

used.

2. Problem solution: We then describe our solution to the problem. Again, this is done

in English rather than in mathematical terms or in hardcore algorithmic terms. Where

appropriate, we discuss the pros and cons of the solution.

3. Collaborators: We describe with whom we collaborated.

4. Users: We list those (in SensIT) who have used the research.

5. Discussion: Where appropriate, we list additional remarks/discussion.

1.4.1 Task definition
Problem Statement: Despite the fact that users have a good idea of what constitutes a

sensory task, we had not previously come across a definition of a sensory task. Our

problem was to define a sensory task appropriately, given the context of the SensIT

program.

Problem Solution: Our solution to this problem involved several steps.

1. First, we had extensive discussions with our team members as well as selected SensIT

participants in order to discern what people in the SensIT community thought a task was.

 13

2. Several example tasks were proposed during the above discussions.

3. Based on these discussions, we defined a task to be a 5-tuple (Map, Rect, Time, Cond,

Act) where:

• Map is the id of some map;

• Rect is a 4-tuple (llx, lly, urx, ury), where (llx, lly) represent the lower left corner of a

rectangle and (urx, ury) represents the upper right hand corner of a rectangle. The

rectangle itself has sides parallel to the x and y axes (i.e. the rectangle cannot be

“crooked.”).

• Time is a triple (st, et, fr) where st is the start time, et is the end time, and fr is a

frequency. Intuitively, this says that the time frame during which the task is “active”

is from st to et, and that the task condition must be checked at least every fr units of

time.

• Cond is a condition that is expressed in some syntax and which allows the user to

express conditions spanning multiple sensors and/or multiple data sources.

• Act is a set of condition/action pairs. Intuitively, if Cond is true, and if the pair (C,A)

is present in Act, then we take action A if some further condition C is true.

Collaborators: The work on this was done by T.J. Rogers and V.S. Subrahmanian.

Users: A version of this work was implemented in the Sensor Task Manager,

components of which were used by

• British Aerospace (BAE)/Nashua

• BBN Technologies (BBN)

• Fantastic Data (FData)

• Penn-State University (PSU)

 14

• University of Tennessee (UTK)

• University of Wisconsin (UWI)

• Virginia Tech (VTech).

In the rest of this report, we will often use the term “Group of 8” to refer to this

set of 7 SensIT contractors plus the University of Maryland.

Discussion: There is one simplifying assumption in the above definition, namely that

users can only specify rectangular regions of interest. However, this is not a big

limitation. If the user wants to specify interest in a single point on a map, he can set

urx = llx and ury = lly. If the user wants to specify a non-rectangular region, he can

usually approximate it via a set of rectangles. In addition, in STM, we have access to

OpenMap which allows zooming in and out. This, combined with the possibility of using

a set of rectangles, prevents the requirement that all regions of interest be rectangular,

from being particularly restrictive.

1.4.2 Backend Task Definition Language

Problem Statement: The notion of a task, as described above, is extremely complex.

Though the Rect and Time components are easy to represent computationally, task

conditions and actions pose a major challenge. How can we write task conditions that

span the data coming from multiple sensory devices and correlate those with data from

non-sensory background sources?

Problem Solution: We considered a number of alternative solutions. First, there has been

a huge amount of work in sensor fusion (such as that of LSU and PSU in the SensIT

program). In general, sensor fusion aims at integrating analog signals from sensors.

However, analysts cannot be expected to write queries involving analog signals. Based

on the types of sensor nodes picked for the SensIT program, we realized that the type of

sensor nodes available to SensIT all had Application Program Interfaces (APIs). APIs are

sets of functions that can be invoked by external programs.

 15

This proved key to the realization that the mechanism of code call conditions[5,12]

can be used to express task conditions across multiple diverse sensory devices. Our STM

uses the concept of a code call condition, scaled back somewhat to allow easy articulation

of task conditions by war fighters and/or analysts (using a GUI) to express task

conditions. In short, rather than using sensor fusion methods directly, we found that

accessing sensor APIs was more convenient for tasking sensor networks.

Collaborators: This work was done by T.J. Rogers and V.S. Subrahmanian at the

University of Maryland.

Users: A version of this work was implemented in the STM program. All Group of 8

members implicitly used this technology (though it was transparent to them).\

1.4.3 Task Merging

Problem Statement: Given a set of tasks that need to be performed by a single sensor, is

there a way to integrate the tasks together so that the load on the sensor is relatively low?

Problem Solution: In view of the fact that code call conditions can be used to express

task conditions, we were able to show that any algorithm for heterogeneous Multiple

Query Optimization (MQO) can be used to merge task conditions. There are several such

algorithms.

We conducted detailed experiments to see which of these techniques we should

use. First, we studied variations of Sellis’ MQO algorithm. It turned out that these

algorithms did not scale very well to tasks even on simple relational databases. As a

consequence, we concluded that using Sellis’ MQO algorithm would not work for

effective task merging.

In addition, we developed methods to bucket sets of tasks based on spatio

temporal nearness. For this, we developed a heterogeneous spatial relational algebra.

Given a region on the ground that the analyst is interested in, this algebra can be used to

determine which sensors are in the region in question, as well as which sensors are near

in a temporal sense.

 16

Collaborators: Marat Fayzullin, V.S. Subrahmanian, and T.J. Rogers.

1.4.4 Task partitioning

Problem Statement: As we saw from the preceding subsection on task merging, standard

MQO algorithms for task merging just don’t work effectively. As a consequence, we

were faced with the problem of how to achieve task merging effectively.

Problem Solution: Our solution to this problem was one of the major contributions of

this research. We noticed that if we have N task conditions to merge, but at most M task

conditions can be merged efficiently (this means that merging pays off because the time

to merge plus the time to evaluate the merged task conditions is less than the time

required to sequentially execute the task conditions), then we can try to create a set of

“buckets” each of size M or less. The idea is that each bucket contains tasks where

merging pays off handsomely, i.e. the savings realized by merging the tasks inside the

bucket are substantial. The problem then was to determine how best to place the tasks

inside the buckets. Our solution to this problem included the following novel

contributions.

1. First and foremost, we developed a formal statement of the task partitioning problem

using operations research methods in conjunction with the concept of code call

conditions.

2. Next, we proved that the task partitioning problem is Non-deterministic Polynomial-

time complete (NP-complete). This proof shows that the well known multiple knapsack

problem can be reduced in polynomial time to the task partitioning problem. NP-

complete problems are widely viewed in computer science as being impossible to solve

efficiently (proving this formally is arguably the single most challenging open problem in

computer science today).

3. This negative result caused us to rethink and re-evaluate our strategy. Should we

really use bucketing methods like this? Or should we try something else?

 17

4. We decided to go ahead and consider solutions to the operations research formulation

of the problem that are suboptimal, but can be computed very fast, as well as solutions

that find an optimal task partitioning, but are slow (because of the NP−completeness of

the problem rather than because of any fundamental problem with the algorithm).

5. We first came up with a variation of the A* search algorithm, called A*-based, to

solve the optimization problem exactly.

6. In addition, we came up with a Branch And Bound, called BAB algorithm, to solve the

problem exactly.

7. After this, we came up with the unique notion of a cluster graph. The basic idea

behind a cluster graph is that given a set of tasks, we create one node for each task in the

set. We draw an edge between two nodes, if merging the two tasks leads to a savings. If

so, we label the edge with the savings.

8. We showed that cluster graphs can be computed very fast, especially if we choose to

estimate the savings.

9. We then developed a number of greedy algorithms to efficiently process cluster

graphs for computing partitions of task sets (i.e. to decide which tasks go into which

bucket). These greedy algorithms were called:

• Greedy-Basic: A basic greedy algorithm manipulating cluster graphs.

• Greedy-WU: Greedy with weight-update, which updated weights after each iteration.

• Greedy-NMA: A greedy algorithm which did not allow tasks to be moved from one

bucket to another.

• HillClimb: A hill climbing algorithm.

10. Once we finished this, we decided to run experiments to assess the scalability of

these approaches.

 18

In the first experiment, we compared the running time of our algorithms (Table 1

lists the results). It turns out that A*-based ran out of memory, when the number of

activities exceeded 10, and BAB ran out of memory, when the number of activities

exceeded 11. The reason for this is that the OPEN list maintained by A* quickly grows

overwhelmingly large. Hence, the tables only show results for 11 activities. Although

the A*-based algorithm is faster than BAB, it runs out of memory faster. Both algorithms

have much longer running times compared to the heuristic-based algorithms. This is

expected, as the problem is NP-hard, and both A*-based and BAB algorithms find

optimal solutions.

Table 1: Running times of the Algorithms (in milliseconds).

No of
Activities

A*-
based

BAB Greedy-
Basic

Greedy-
NMA

Greedy-
WU

Hill
Climb

5 17.24 19.84 5.28 5.04 7.92 6.44

6 53.4 58.26 6.46 6.2 10.72 8.54

7 142.72 158.44 8.2 7.58 14.84 11.02

8 479.02 503.5 10.02 9.4 19.26 13.8

9 1431.7 1657.5 11.94 11.56 25.14 17.16

10 4189.44 3432.38 15.68 13.8 31.4 20.92

11 4149.56 18.7 16.14 38.12 24.96

As the heuristic algorithms were very fast, we increased the number of activities

to be partitioned. We first fixed the overlap degree and overlap probability constant at

0.2, and ran two experiments. In the first experiment, we kept the number of activities

within a cluster constant at 25, and in the second, the number of activities within a cluster

was 50.

 19

In this experiment, the HillClimb algorithm ran out of memory around 400

activities and did not scale up very well. Recall that the HillClimb algorithm uses the

same expansion function as the A*-based algorithm, but keeps the best sub-partition at

each node. When the number of activities in the input set exceeds 350-400 activities, the

algorithm generates too many children nodes and runs out of memory. Therefore, we

only show the scalability results for the greedy algorithms. This result suggests that the

cluster graph representation is a very effective heuristic.

When the number of activities within a cluster is 25, the running times of the

algorithms are very close, and they handle 1000 activities in about 140 secs. On the other

hand, when the number of activities within a cluster is increased to 50, the execution time

of the Greedy-WU algorithm is much larger than that of the other two greedy algorithms.

This is expected because the Greedy-WU recomputes edge weights after each iteration.

Moreover, all algorithms run much slower in the second experiment.

As the greedy algorithms may compute suboptimal solutions, we want to see how

much “worse” the solutions produced by these algorithms were compared to the optimal

solution. We used the following metric to compare the quality of plans produced by the

algorithms. When we have a set A of activities, and a partition P of A, the cost reduction

percentage realized by P is given by:

(1)

The rationale behind using percentage savings instead of absolute numbers is the

fact that we have simulated the cost estimation function.

We first wanted to see how our savings were affected by changes in the amount of

overlap between activities.

In general, the solutions produced by the Greedy-Basic algorithm are about

0.8−13% worse than the optimal solutions. The solutions produced by the Greedy-NMA

 20

algorithm are 0.8–20% worse, and the ones produced by the Greedy-WU algorithm are

0.06−9.4% worse than the optimal solutions. The quality of the solutions produced by

the HillClimb algorithm is not as good as the greedy solutions, and they are about

2.4−23% worse than the optimal solutions. As we increase the overlap degree in the

input activity set, the difference between the savings generated by the heuristic

algorithms and the ones computed by the optimal algorithms also increases.

Although we could not get the optimal solution after 11 activities, we still ran the

greedy algorithms up to 1000 activities to see the quality of partitions they produced. We

observed that the performance of the greedy algorithms does not degrade, and stays about

the same as we increase the number of activities in the input sets. The Greedy-NMA

algorithm produces the worst results as it explores the smallest number of alternatives

when generating partitions. The quality of the partitions produced by the Greedy-Basic

and the Greedy-WU algorithms are comparable. When the number of activities within a

cluster is smaller, and hence there are fewer edges in the cluster graph, the Greedy-Basic

algorithm does better than the Greedy-WU. However, when the number of activities

within a cluster increases, the Greedy-WU algorithm catches up with the Greedy-Basic

algorithm.

These results show that although the Greedy-WU algorithm updates weights after

each iteration, and hence uses more accurate cost saving estimates, it still uses a greedy

strategy, and is not able to capture the maximal savings. Recall that the Greedy-WU

algorithm does not move activities around once it inserts them into components. The

Greedy-Basic algorithm on the other hand, tries to adapt its savings estimates as the

computation of the output partition proceeds by moving activities across components. It

turns out that this heuristic is more effective in capturing the real savings than in updating

weights. Hence, Greedy-Basic produces higher quality partitions. Moreover, its running

time is better than Greedy-WU. As a result, we believe that Greedy-Basic is the best

choice among the three.

Both A*-based and BAB are unable to perform at all, when there are more than

10-20 concurrent activities. On larger sets of activities, they both quickly run out of

 21

memory — in contrast, the greedy algorithms scale up very effectively when many

activities occur. Furthermore, the HillClimb algorithm also does not scale up very well,

and produces worse quality results than the greedy algorithms. Therefore, the

Greedy−Basic algorithm is also the best algorithm among the heuristic based algorithms.

Collaborators: Fatma Ozcan, V.S. Subrahmanian

1.4.5 Assigning sensors to tasks
Problem Statement: There are many cases where a multiplicity of sensing devices can

perform the same task. For instance, we could have multiple sensors, each of which can

track vehicles moving in a given region - these could be motion sensors or image sensors

or vibration sensors. Given a set of sensors, each of which is capable of performing a set

of low level or high level tasks, how should tasks or subtasks be allocated to them so that

the performance of the sensor network as a whole is optimized?

Problem Solution: We considered a number of alternative solutions. However, based on

the solution to the task merging problem, we decided to proceed as follows.

1. First and foremost, we provided a formal, mathematical definition of the problem,

which used a mix of operations research/optimization style terminology, as well as

terminology involving sensor capabilities.

2. We introduced the notion of a service table, describing which agents provide what

services. In addition, this table provides information on related parameters, such as

average computation time for the answer, average latency, average size of answers

returned, etc. These parameters provide valuable statistics in determining how to assign

tasks to sensors.

3. Next, we showed that the problem of optimally assigning sensors to handle a given set

of tasks in NP-complete. Most computer scientists believe that NP-complete problems

cannot be exactly solved efficiently. As a consequence, we were forced to consider

methods that rapidly provided suboptimal solutions as compared to methods that took

exponential amounts of time to provide an exact solution.

 22

4. Next, we proposed an architecture which uses a “generic” cost function — this is very

general and hence, we may plug in different cost models for individual costing of

network operations, sensor node computations, etc., and use the cost function to merge

them.

5. In addition, we provided algorithms that: given a desired task condition C to be

solved, will produce a way of assigning sensors to the atomic subtasks of C, as well as a

way of ordering the atomic subtasks of C so as to optimize some performance criterion.

Collaborators: Fatma Ozcan, Leana Golubchik, and V.S. Subrahmanian.

1.4.6 Low-bandwidth tasking framework

Problem Statement: In addition to the logic oriented declarative tasking framework, we

also proposed an alternative task specification language syntax for prompting/extracting

data from a distributed, low-power wireless, sensor node network. Considering the target

platform, efficiency (read low-bandwidth) was to be a major consideration in the final

encoded solution.

Problem Solution: Drawing on experience from ongoing work on agent technology

research platform (Interactive Maryland Platform for Agents Collaborating Together –

IMPACT), the UMD team quickly cast the basic query syntax as a set of task, action, and

constraint references, which are wrapped by a simplified token-based hierarchical

structure syntax (XML, but without all the embedded descriptive tags). While the “task”

entry (one per specification) equates to a specific data generating program function (such

as detect or track), the accompanying set of (0 or more) “action” references map to

specific program procedures which, in-turn, do something useful with the task generated

data. The (optional) constraint entries typically apply as run-time data filters (pushed

down as deep as possible), while evaluating the data generating task functions.

Collaborators: UMD only – This in-house effort was authored by V.S. Subrahmanian

and T.J. Rogers.

 23

Users: All SensIT teams (i.e. Group of 8) who used UMD’s final Graphical User

Interface (GUI) as part of a system demonstration ultimately used this underlying

language and syntax. The list includes British Aerospace (BAE)/Nashua, BBN

Technologies (BBN), Fantastic Data (FData), Penn-State University (PSU), UMD,

University of Tennessee (UTK), University ofWisconsin (UWI), and Virginia Tech

(VTech).

Discussion: To promote the maximal dynamic system configuration, UMD proposed to

the SensIT quorum that network introspection calls should be included as part of the

SensIT platform Application Programming Interface (API). The availability of such

functions would minimize the quantity of hard-coded (so-called “magic”) values

embedded in the various software layers and thus readily support network reconfiguration

(without requiring recompilation). Using such functions, the client interface would query

the network regarding its capabilities and present that to the user (rather than making

assumptions based on hard-coded values). UMD also proposed that the various target

and sensor references should be encoded in the task specification results by suitable

numeric values; the actual textual references could then be readily retrieved by standard

SQL queries to a networked database engine.

1.4.7 Task generation (TaskGen) library

Problem Statement: At this point in the SensIT program, our query and task

language/syntax was destined for use by Virginia Tech (the client GUI developer) as part

of a communications layer for extracting data from the SensIT network interface (slated

for development by Cornell). At the time, our existing query language/syntax

documentation was descriptive only; additionally, no example code was available from

which developers could learn or extend.

Problem Solution: We endowed our query system with a set of Java classes which

provided a fairly simple but complete API; given the target region coordinates (client

thread input parameters), the API spawns a pop-up dialog through which users can

specify the SensIT network query parameters (and invoke the process execution) with

minimal key-board dependency (important for palm-top GUI’s). This solution included

 24

two “base-class” definitions which encoded generic API’s for building both

communications conduit and action library components; this provided a mechanism by

which the system could be easily extended to support communications with new (or

alternate) hardware/software platforms and define additional “actions” for processing the

task generated data. Of note, our solution included several default class extensions which

rendered some sample synthetic results for basic testing with upper software layers

(which could be developed by third parties).

Collaborators: UMD and Virginia Tech developed the interface as a piece of

“middleware” for GUI applications; modifications, updates and corrections were applied

according to feedback provided by Virginia Tech’s Mark Jones, Jae Park, and their crew

of graduate students.

Users: UMD and Virginia Tech (initially). Later the entire Group of 8.

Discussion: During the numerous SensIT gatherings (teleconferences, PI meetings and

such), we continued to promote the need for introspective API’s at the network

communications layer to minimize the possibility of hard-coded configuration values;

these API calls would provide information regarding available task and action definitions,

as well as any value to text code mappings (i.e. 105 = “M1A Tank”, or 23 = “Passive

InfraRed sensor”) imposed by the underlying software layers. At this point, we also

began suggesting that all software layer architects provide some sort of simulation data

for basic testing with higher software layers; the availability of simulation data at every

layer would greatly simplify debugging segments of the SensIT platform while the whole

is unavailable. At this point in the development process, there was generally an overall

lack of data (real or simulated) for testing the various layers (either independently or in

functional groups).

1.4.8 Cougar communications conduit
Problem Statement: The Virginia Tech team needed help using the (newly defined)

UMD and Cornell API’s for linking their GUI to the underlying SensIT network platform

(a collection of Microsoft WindowsCE served sensor nodes). One of Cornell University’s

 25

major components was to develop an external API for communicating with the

underlying SensIT network hardware processes (then based on the WindowsCE platform

– a “PocketPC” platform precursor). Cornell had developed WindowsCE embedded

“Query proxy” processes and was developing connectivity for this with its home-grown

“Cougar” distributed database system. The researchers at Virginia Tech were busy with

their GUI development, and generally required help with the Cougar required JDBC API.

In short, the Virginia Tech team needed some pointers for dealing with the Cougar

communications layer.

Problem Solution: We installed a local copy of Cornell’s Cougar database server (for

initial testing without the SensIT node network) and encoded the necessary Cougar API

calls as a plug-in communications conduit in our task generation library. Of note, since

network introspective calls were not generally supported by the Cougar API, we chose

(for this conduit) to read them from locally maintained database files via standard API

calls (i.e. local codebook values defined in MS−Access tables and accessed via

JDBC/ODBC data queries).

Collaborators: Cornell University (Phillippe Bonnet), Virginia Tech, UMD.

Users: UMD and Virginia Tech.

Discussion: The Cougar interface provided support for a few simple queries and returned

simple canned data. Of note, the WinCE query proxy code (necessary to test actual

connectivity with the underlying SensIT node network) was generally unavailable until

after our initial field test integration (SITEX01).

While both Cornell and UMD attended the field integration exercise (SITEX),

their time-slots did not overlap; the Cornell team had already departed the exercise prior

to UMD’s arrival. Hence, the Cornell query proxies were unfortunately not part of the

default node software load and thus were unavailable for UMD’s testing. As a

consequence, the Virginia Tech, UMD, Cornell University SensIT node connectivity was

not testable during SITEX01.

 26

1.4.9 Simulation Data Base (SimDB)

Problem Statement: Following SITEX01, UMD found itself still without any reasonable

data to test its interfaces and query control integration with Virginia Tech’s GUI. While

Cornell’s query proxy code had recently become available, the working node network

was not (UMD had two nodes which was far below the minimum number necessary to

form a reasonable sensor network).

Problem Solution: UMD adapted SITEX01 ground-truth data into the “SimDB” conduit

interface; this provided a limited capability to “play-back” recorded target positions as if

it were rendered from a SensIT node network query. During field experiment runs, BBN

routinely collected ground-truth data via a GPS equipped laptop. UMD obtained these

ground-truth files and populated a database from several (about six) of the more

interesting test run files. UMD then built a conduit interface (SimDB), which instantiates

target SensIT network queries as persistent SQL queries over the ground-truth data. In

short, “live” tracks are simulated by stepping through the recorded ground-truth data.

Collaborators: UMD and BBN.

Users: UMD and Virginia Tech. This work allowed us to fine-tune the GUI/TaskGen

integration and experiment with numerous display capabilities and modes.

Discussion: This work also provided perhaps the first integrated proof-of-concept demo

capabilities for the Virginia Tech GUI.

During the next SensIT PI meeting, the quorum generally agreed that the current

WinCE platform performance was abysmal. Sensoria, the hardware provider, agreed to

research and field an alternate platform (later identified as a Hitachi SH4 Linux variant).

While most of the PI groups agreed to move readily to the new platform, Cornell declined

to commit to a query proxy SH4 port for the next field integration exercise. Discussed

options included building an interim ”gateway” server on one of the SensIT nodes and

using Fantastic Data’s web database (the distributed data cache) as a means of moving

queries and data around the network. Of note, the Virginia Tech GUI was demonstrated

to several key individuals (Dr. Sri Kumar and assorted BBN researchers) during the PI

 27

meeting. While the network communications channel was now in question, the demo

(over ground-truth data) proved the existing Virginia Tech GUI as a viable

end−user/soldier interface.

1.4.10 Preliminary SensIT network Gateway (SH4) interface

Problem Statement: Following the PI meeting, UMD accepted the task of exploring the

feasibility of implementing an interim SensIT network gateway for use in the next field

integration exercise.

Problem Solution: UMD built a Linux PC workstation, loaded the available SH4 cross-

compilation tools, and then began to develop the gateway server. As this “component”

actually spans two separate network realms (remote Java client vs. embedded SensIT

node process), the solution must be viewed as two separate development issues.

To solve the lower level issue, we developed a Linux SH4 based TCP/IP

command server, which ultimately manipulates low-level function pointers to provide

answers for client rendered one-time and persistent queries. This interface supports

SensIT network introspection so that client interfaces can discover the underlying

network capabilities (and present that representation in the GUI). This interface also

implements a generic API for the various task functions and action procedures necessary

to support the desired user queries (this makes the implementation readily extendible).

To solve the client issue, we built a conduit interface (Gateway), which

instantiates target SensIT network queries as gateway TCP/IP commands and converts the

resulting data stream back into TaskGen result objects.

Collaborators: UMD only.

Users: UMD initially, but eventually included Group of 8.

Discussion: While this proof-of-concept piece solved the initial client to/from SensIT

network communications void, it remained unconnected with the actual low-level data

query processes. These lower level connections required more experimentation with the

evolving Sensoria WinsNG and Fantastic Data APIs (see next section).

 28

1.4.11 Preliminary SensIT SH4 gateway task and action module set
development

Problem Statement: The current gateway interface lacked connectivity with the actual

underlying SensIT network data query processes. Moreover, the SensIT quorum had yet

to agree to a base set of supported user queries or shared (cache) data format schemas.

Problem Solution: UMD implemented a base set of gateway task code extensions, which

mapped user queries to the underlying, distributed, Fantastic Data cache processes. This

base set of tasks included the user queries “Ping” (non-persistent/retrieves current node

status reports), “Detect” (persistent/retrieves current and updated target detection

reports), and “Track” (persistent/retrieves current and updated target tracking reports).

Collaborators: UMD and Fantastic Data.

Users: UMD and Virginia Tech (initially), and Group of 8 later.

Discussion: The Gateway conduit ↔ SH4 gateway ↔ data cache layers effectively

replace the functionality previously provided by Cornell’s Cougar database ↔ Query

Proxy processes.

In addition, at this point the inter-module development process remained hindered

by a general lack of play-back test data. Moreover, most PI groups lacked sufficient node

inventory to establish a working SensIT network. As such, basic inter-process debugging

remained difficult at best.

The BBN Pre-SITEX02 integration meeting also highlighted, perhaps, a support

oversight encountered by several PI groups. Future remote collaborative efforts should

either clearly announce a lack of developer support or provide such an interim service.

For in-house development and testing, UMD and several other PI groups had installed the

necessary Linux development environment on stand-alone PC’s. Here, we happily

implemented, tested, and cross-compiled the necessary source code for SH4 node

execution. As expected, once all was well, we committed the various software packages,

via Internet connection, to BBN’s CVS repository. Upon preparing for the

 29

Pre−Integration meeting, many of us assumed we’d just take our Windows laptops to the

meeting, plug into BBN’s development network, setup a work environment, and continue

coding where we left off. Alas, this was not to be. BBN’s Wind-Tunnel Linux setup was

not equipped sufficiently to support such a bevy of needy programmers. Moreover, the

primary available network connections were NOT connected to the Internet and as such,

lacked access to the BBN repository server. As for UMD, we overcame this problem by

building a temporary work environment on Fantastic Data’s Linux laptop from backup

files, which we had fortunately brought on a zip disk.

1.4.12 Imager control, manual trigger (SH4) module

Problem Statement: During the Pre-SITEX02 integration meeting, Sensoria revealed the

first imager node (a node with a software controlled digital camera). BBN was anxious

to get someone to adapt an interface to it and encouraged UMD to give it a try.

Problem Solution: Just prior to SITEX02, we experimented with an imager node and

developed both a client GUI control panel (allowing remote modification of the imager

configuration) and a gateway task module to manually trigger the imager and return the

information regarding the rendered image(s).

Collaborators: UMD and Sensoria.

Users: UMD and Virginia Tech.

Discussion: At first glance, the Imager API appears rather simple; triggering the imager,

in-fact, is simple. Obtaining a list of the rendered images, however, turned out to be non-

trivial. On closer inspection, we discovered that the imager node actually implements two

computers. One unit controls the camera and the other is similar to the standard WinsNG

node (commands and data get shared between the two units via internal Ethernet

protocols). Unfortunately, the embedded computers in our test imager node(s) do not

time synchronize at boot-up. This confounds the image name lookup following a trigger

event as, a) image transfer is not immediate, b) the trigger command does not prompt the

client process when the image transfer is complete, and c) time stamped image file names

 30

cannot be guessed, since the camera clock, from which the time stamp applies, is not

synchronized with the base WinsNG client process clock.

Of note, the current file name discovery code, written by one of BBN’s field reps

(Jimmy) during SITEX02, works by reading the local timestamp at trigger time, waiting a

given period (for expected file transfer), and then trying to find the image files whose

time stamp closely matches that of the recorded trigger time. While this method works a

majority of the time, it remains somewhat intermittent; this is to say that the imager

trigger task fails to report the generated image name about 20% of the time.

On the very last day of SITEX-02, we managed to see live end-to-end

connectivity using the Virginia Tech GUI. Detection and tracking result updates were

painting to the screen and we finally managed to process a system predicted imager

trigger which, in-turn, captured the dimly illuminated target vehicle passing before the

imager node. Unfortunately, a majority of the SITEX02 participants had already

departed. These final events were only witnessed by those monitoring the network from

the base-camp.

1.4.13 In-Field alternate track generation support extension

Problem Statement: Part-way thru SITEX02, BBN requested a gateway compatible

mechanism, which would allow them to both export SensIT network target detection

records and import externally rendered target track update records.

Problem Solution: UMD implemented a two-fold solution. First, we

implemented/adapted a gateway export action module, which wrote detection query

results to an externally accessible (outside the SensIT node network) data file. Next, we

implemented/adapted a gateway import task module, which would read BBN’s MatLab

generated track result records (from the externally accessible data file) and insert the

track updates into FData’s distributed data cache. With these two components running

(simultaneously but from separate gateway processes), we once again had complete data

flow channel from the Signal processing layer, all the way up to the client GUIs.

Collaborators: UMD and BBN.

 31

Users: Virginia Tech, UMD, Fantastic Data, BBN.

Discussion: This component allowed us to continue testing the numerous software layers

in PSU’s absence.

1.4.14 In-Field external imager trigger prediction support modifications

Problem Statement: Happy with the recent external tracker adaptation success, BBN

desired similar gateway modifications for responding to an externally driven image

trigger prediction process.

Problem Solution: UMD implemented/adapted a gateway import task module. Initially

similar to the Track Import task rendered (see section 4.13), this module controlled an

SH4 process, which would monitor the time and trigger the imager according to the

predicted target proximity time stamp.

Collaborators: UMD and BBN.

Users: UMD and BBN.

1.4.15 Cache-borne task specification table

Problem Statement: Following the Santa Fe PI meeting, the SensIT quorum decided to

drop the Virginia Tech GUI from the base software configuration (also called SenSoft).

This decision quickly caused some internal SensIT group fragmentation and lead

Fantastic data to experiment with an enhanced signal processing control mechanism;

Cornell, in-turn, voiced interest in cache access to our query specification entries. UMD

proposed injecting its gateway query specification data into the distributed data cache for

easy 3rd party access.

Problem Solution: UMD modified the gateway server module to create (if necessary)

and maintain a set of cache-borne query specification tables, derived from the gateway

client requests.

Collaborators: UMD only.

 32

Users: UMD, Fantastic Data initially, Group of 8 eventually.

1.4.16 Initial OpenMap based SensIT GUI

Problem Statement: BBN was interested in the feasibility of using an OpenMap based

GIS interface to interact with UMD’s gateway interface libraries in an effort, perhaps, to

reuse much of what had already been developed and tested. The UMD team, suddenly

faced without a map-based GUI (as the SensIT quorum had previously decided not to use

the Virginia Tech GUI) for displaying, making sense of, and debugging the often

numerically intensive query results, was also curious regarding OpenMap adaptability as

a Virginia Tech GUI replacement.

Problem Solution: UMD developed an initial OpenMap data layer interface, which

served as a proof-of-concept piece for interacting both with the BBN’s OpenMap and

UMD’s task generation (TaskGen) interface. Shortly thereafter, we implemented our

initial stand-alone, multi-layer, OpenMap GUI through which the user could define,

execute, and observe the results of SensIT network target detection and track results.

Collaborators: UMD, BBN, Virginia Tech.

Users: UMD initially, Group of 8 eventually.

Discussion: Shortly after fielding the initial OpenMap interface, we revisited Virginia

Tech’s GUI and noted many of its useful display features. Many of these were later

mimicked in our OpenMap GUI.

1.4.17 OpenMap GUI applet

Problem Statement: Several SensIT groups voiced interest in experimenting with our

OpenMap based GUI shortly after our initial release. Unfortunately, at that time, it was

very much still a work-in-progress and we did not favor the notion of supporting client

configuration and update issues on such an “Alpha” package; delivering this utility as a

web embedded applet, however, would serve to reduce the maintenance headaches,

demonstrate client portability, and global access possibilities.

 33

Problem Solution: The UMD team quickly repackaged the OpenMap GUI as a Java

applet, learned the separate Netscape/Explore HTML applet embed syntax, and

experimented with the system property settings, which are necessary for an applet to

function as a stand-alone application.

Collaborators: UMD only.

Users: The Group of 8 team.

Discussion: Prior to Sun’s Java 2, version 1.4, release, such an applet was generally

impractical due to standard Java “Sand-box” issues. Java 2, v1.4, however, provides

such system property override capability. Of note, additional ease-of-use could be

provided were this code served via Java’s “WebStart” library. Here, users would not

need to pre-set the system properties. Rather, they could simply invoke the package via

URL reference (without a browser), and the WebStart interfaces would prompt the user

for permission to run and then down-load and execute the necessary resources (without a

browser).

In late August, 2002, UMD, Fanastic Data, and BBN collaborated to demonstrate

one of the first widely distributed uses of BBN’s Waltham SensIT node test bed. For this

demonstration, BBN manned the node network, and provided target personnel and

vehicles. Meanwhile, Fantastic Data controlled the data cache and signal processing

layers from their San Francisco office. Finally, sitting in Dave Shepherd’s Virginia

office, UMD defined and controlled SensIT network queries via the live Web-launched

OpenMap GUI. Fantastic data’s collaborative track generator worked well and the GUI

accurately painted numerous scheduled BBN target groups, and detected and tracked

several unscheduled ”targets of opportunity” as they moved through the sensor node

field.

Roughly two weeks later, BAE/Nashua demonstrated their collaborative track

generation utilities (for the same DARPA audience, i.e., Dr. Sri Kumar and Dave

Shepherd) using the same widely distributed Waltham test-bed, data-cache controls, and

the UMD OpenMap GUI scenario. BAE/Nashua reported that the tests were well

 34

received. Of note, shortly after this, BBN soon began to regard the UMD OpenMap GUI

as the defacto standard SensIT network GUI.

1.4.18 Modified classification code and shape display

Problem Statement: Shortly after our successful demo for Dr. Kumar, Fantastic Data had

successfully integrated some of Univ. of Tennessee’s target classification code. The

current GUI target shape display was now antiquated. Rather than displaying the target as

a moving box, the GUI users desired to vary the target shape according to the

classification type.

Problem Solution: UMD looked closely at and attempted to mimic the target

classification shapes as were previously rendered by the Virginia Tech GUI. Our

solution implemented several display shapes to indicate target type categories as follows:

Small and Large Wheeled Vehicle, Small and Large Tracked Vehicle, Motorcycle, and

human. UMD also appended the newly defined target type classification codes in its

codebook database.

Collaborators: UMD, Fantastic Data, Univ. of Tennessee and Virginia Tech.

Users: Group of 8.

Discussion: Following several remote test-bed (Waltham) demo success stories, SensIT

groups from the University of Wisconsin and Penn State University began voicing

interest in the OpenMap GUI usage. We advised them concerning the setup requirements

and soon were fielding questions and comments from these two new user groups as well.

1.4.19 Track history GUI line and color display

Problem Statement: Requested GUI embellishments included an optional target track

history display and an alternating track display color mode for easy visual separation of

targets on a cluttered interest area display.

Problem Solution: Answering the history request, UMD provided an optional trailing

line display, which indicates a target’s previous positions (ordered over time). UMD also

 35

implemented a rather simple target color display mechanism. Rather than plot all targets

in the same color, the new method iterates through a set of roughly eight colors.

Collaborators: UMD, BAE/Nashua, Univ. of Wisconsin, BBN.

Users: Group of 8.

1.4.20 Cache-borne codebook table development

Problem Statement: Just prior to the final SensIT “CapStone” demo, BBN requested a

TaskGen library modification that would allow reading codebook values directly from the

SensIT network data cache. The goal was to eliminate the need for external codebook

database references that were common with the Web launched GUI.

Problem Solution: To support this, UMD first modified the gateway to define and

populate codebook values (if necessary) during gateway initialization. Next, we modified

the TaskGen initialization routines to support this alternate codebook value resource path.

Collaborators: UMD and BBN.

Users: Group of 8.

Discussion: While these modifications were in-fact on-line for the CapStone demo, it

had not been entirely tested. To avoid demo-day disasters, we chose to operate the

OpenMap GUI with codebook values served from a local database (one of the original

default configurations).

During the November 2002 SensIT CapStone demo, the UMD OpenMap GUI was

used successfully by BBN, Fantastic Data, Univ. of Tennessee, BAE/Nashua, PSU, and

Wisconsin. All demo displays worked reasonably well (content varied slightly according

to underlying selected generation methods).

 36

1.4.21 Finalized in-cache codebook table modification testing

Problem Statement: Following the CapStone demonstration, both BBN and researchers

at Rome labs requested modifications to finalize the final cache-served codebook centric

GUI.

Problem Solution: A closer look at the TaskGen initialization methods resolved this

issue. Additional configuration file options made this feature an easily selectable

operation mode.

Collaborators: UMD, BBN, Rome labs.

Users: UMD, BBN, Rome labs.

Discussion: Shortly after the final codebook modifications, BBN requested that UMD

edit the Task Generation / Gateway Server section of the pending SenSoft application

manual. UMD returned a heavily edited version, which corrected some of the usage

misconceptions and provided greater detail regarding the component interoperability.

1.4.22 OpenMap GUI imager query display modifications

Problem Statement: Automated imager usage ultimately proved problematic due to

constantly recurring data propagation latency issues. The trigger tasking remains

functional, but the existing implementation did not include the utilities necessary to

retrieve and display the rendered images.

Problem Solution: As part of a final system “tweak”, UMD adapted some of the image

retrieval code from the original Virginia Tech GUI, and provided a display and control

mechanism for the OpenMap GUI.

Collaborators: UMD and Virginia Tech.

Users: UMD.

 37

1.5 Conclusions
The last few years has seen a great increase in sensing, communications, and

computational capabilities. The goal of the SensIT program has been to harness these

major advances into a single architecture, which brings together diverse technological

advances in these three disparate fields so as to effectively support the war fighter. The

University of Maryland team focused on the task of developing techniques to task the

sensor network.

Our first major contribution was to develop a formal model of a task (which is

appropriate for sensors), together with a formal tasking language. This tasking language

allows users to specify (i) the geospatial area where a task is to be performed, (ii) a

temporal component specifying when and how frequently the task should be performed,

(iii) a component that describes the conditions to be looked for, based on the sensor

readings, but possibly correlated with other data sources as well, and (iv) what actions to

take when those conditions are met.

Our second major contribution was a mechanism to process tasks effectively, so

that the resources of the system can be intelligently utilized, thus supporting the

scalability of the system as a whole. For this purpose, we developed methods to merge

multiple tasks together, taking advantage of any overlaps amongst those tasks. We built a

suite of algorithms for this problem called task partitioning algorithms, and we conducted

detailed experiments on the effectiveness of these algorithms. Our experimental results

show that Greedy-Basic is the best task partitioning algorithm to use.

Our third major contribution was an algorithm to take a given task and determine

which of a given set of sensors should process that task. We showed that the problem of

optimally allocating tasks to sensors is NP-complete. To address this problem, we were

able to come up with heuristic algorithms.

Our fourth major contribution was the design and implementation of a

comprehensive Sensor Task Manager (STM) program and GUI that allows individuals to

 38

specify the tasks they are interested in having performed. The STM program handles

execution of the tasks.

Our fifth major contribution was the development of numerous system

components, often in conjunction with other SensIT contractors, so that the entire SensIT

architecture (which involved components from multiple contractors) could function

smoothly. Specific contributions include the OpenMap SenseIT graphical user interface,

the gateway task and action module, imager computations, and cache based

computations.

1.6 Recommendations
The current SensIT effort demonstrates clearly and unambiguously that we now

have the ability to seamlessly integrate sensing technology, communications technology,

and recent advances in computing technology for use in large scale integrated battlefield

operations.

However, for future battlefield operations to be successful, there is a key need for

scalable intelligent reasoning. Specifically, SensIT currently lacks:

1. Predictive reasoning. It is possible to do better than taking actions after vehicles

have been detected at various locations. Based on past detections of vehicles, a system

should be able to predict where these vehicles will be at various points in the future.

2. Spatial reasoning. Placement of sensors and the dynamic movement of (mobile)

sensors can be done either by ad-hoc mechanisms, as it is today, or by more principled

methods that dynamically evaluate a set of needs and decide where to place the sensors

so that those needs can be best met.

3. Spatio-temporal reasoning. This extends the previous item. When it is known

where and when certain needs are likely to occur, more informed decisions about where

to place sensors could be made. The ability to do this statically and the ability to

dynamically move sensors around with a changing battlefield situation is critical.

 39

4. Diagnostic reasoning. When certain events are noted on the battlefield (e.g. the

sensors say one thing, but the effects seen on the ground do not match what the sensors

are saying), then we need to be able to ask “why” questions. Why are we off? Why are

the sensors telling us that there are no significant vehicle detections in region r, but forces

are still being ambushed? The need for this kind of diagnostic reasoning is critical.

5. Logical reasoning. In addition to the above, we need standard logical reasoning - this

tells us, for example, that if a large convoy of passenger vehicles are spotted along a

highway, traveling unimpeded, then there is a high chance that influential members of a

foreign government are fleeing.

These are just a few types of reasoning that need to be performed in order to

better interpret and act on data obtained by tasking sensors. We believe this is critical for

sensor technology to be maximally successful in war fighting efforts.

 40

Section 2: Representation and Automated Analysis of
Narrated Events

2.1 Introduction

The understanding of recounted events (stories, histories, etc.) so that one can

determine the best course of action is a common and critical part of decision making in

many fields, including anti-terror intelligence assessment, military operational command,

software engineering [1,2], and diagnostic problem-solving [10]. In these and many other

areas, executive-level decisions must be made in real time by a person in the context of a

"story" describing past/ongoing events. Decision making is hampered by the limited

knowledge that is quickly available to the decision maker in a timely manner. One

hypothesis of the proposed work is that an appropriate “story” can provide the decision

maker with a “big picture” containing the needed information. Here and in the following,

we use the term story to mean not just the description of a sequence of events that is

unfolding over time and space (the “plot”), but also the associated relationships among

the actors/objects in the story, specifications about which aspects of an object are fixed

and which are mutable, functions describing the nature of the mutation in various

contexts, factors such as motive, beliefs, etc. It is this complicated network of

relationships that makes the problem hard.

A possible way to enhance human understanding and decision making is to

provide automated interpretation of unfolding events through a computer system that can

represent, interpret ("understand"), and communicate alternative response strategies

based on a knowledge base of past related experiences. Such a system could be

extremely valuable in suggesting additional information to obtain, predicting potential

future events, and outlining alternative courses of action for consideration. Existing

technology in artificial intelligence (AI), software engineering, and human-computer

interactions is inadequate to implement a “story understanding” system that could

function effectively as outlined above.

 41

However, we believe that current technology has reached the point where research

on some key issues could make automated "story interpretation" feasible. The overall

goal of this project was to identify which aspects of story representation and analysis can

be implemented using existing technology, and which represent critical research issues.

The study also assessed the comparative advantages (or disadvantages) of using a story

format for analysis and outcome exploration (this format has already been shown to be

exceptionally useful for training). Key research questions focused on the potential of

various technologies to: represent evolving sequences of events and associated conditions

(contextual variables) in a machine-interpretable format along with course-of-action

(COA) options; rapidly retrieve past related situations and relevant general knowledge;

apply inference methods to encompass the interpretation of stories, to identify missing

but needed information, to generate potential actions, and to justify its recommendations

upon demand.

The specific aims that guided the work that we undertook were:

1. Assess the availability of source stories in multiple domains. Determine the

representation and analysis aspects that are common to these diverse stories so that the

software and methods produced will ultimately be reasonably general. Specific

application domains that were considered include home-security intelligence, tactical

military command, software engineering, and diagnostic problem-solving.

2. Evaluate technologies for formally representing the events and associated

conditions/relationships forming a story. This involved considering past work on scripts,

functional representation languages, AI methods for temporal and spatial information

representation, and related work, assessing their adequacy for the selected application(s)

and identifying needed enhancements. At a minimum the representation needs to capture

the actors/agents involved, actions occurring, the temporal relations between events, and

relevant decision points in stories, plus it must enable the representation of generic plots/

scripts that can be related to specific cases.

3. Assess the feasibility of implementing a story representation system based on the

methods developed in (2). We prototyped a system to encode a few stories in the

 42

selected application domains, and specified an interface allowing the rapid entry of a new

story. The interface involved direct encoding of the background knowledge and

terminology in a class of applications in a formal representation that underwent parsing

and error detection. The indexing of new story information to the knowledge base and/or

case base of related past stories was also studied.

4. Represent relevant cause-effect knowledge within the sequential event formalism

developed as above, as well as generic course-of-action options and, to the extent

possible, relevant spatial information, building a prototype knowledge base.

5. Explore basic inference abilities that are needed to generate useful output from the

evolving prototype system. This included abductive reasoning methods based on cause-

effect inferences [11] that generate interpretations of events. We also assess the ability of

deductive inference methods to generate and possibly rank options for actions to take,

and examined the integration of knowledge-based reasoning with retrieval of informative

past cases.

6. Evaluate the functioning of the prototype story analysis system outlined above on one

or more demonstration examples of limited scope to illustrate the viability of the methods

developed. This is intended to be a demonstration system, not a robust application

release.

In summary, our purpose was to identify key long-term research issues in

knowledge representation, software engineering, common sense reasoning, generation of

“what if” scenarios, adaptability and learning, qualitative physics, etc. that need to be

addressed. We wanted to assess the ability of existing software technology to make sense

out of large volumes of data, and to determine what open research issues need to be

addressed to develop useful systems for automated analysis of narrated events and

decision support in the context of complex ongoing situations. Ultimately, one wants to

develop tools for analyzing the meaning of a situation—where might the current situation

lead and what should we do to accomplish our goals? It should do this in the same way

that “episodic memory” is thought to function, presenting the most reasonable

alternatives to the user so that only a very few need to be examined. Research (Gary

 43

Kline) has shown that few people use the type of cost-benefit analysis that is taught in

management school when making decisions. Instead, they rely on their past experience,

and stories about others’ past experiences, to bring a course of action (COA) to mind

immediately. They then assess the viability of this solution in the current context.

2.2 Methods

This research takes a story to be a sequence of episodes that are related to a goal,

intention, moral or lesson. The story organizes multiple events and information into

“storylines” that integrate the past, present and future with reference to goals or intent.

The story provides a way of capturing experience and using this experience to predict and

plan for the future.

Therefore, we believe an approach using stories can help identify the best COA

based on a repository of all past experiences (expressed as episodes and episodes chained

together to form stories, along with “compiled” knowledge relevant to a problem). This

approach should be able to target information collection based on previous and expected

episodes/threads. For prior episodes, the information collected can help confirm or deny

what is believed to have happened. For future episodes, information collection can focus

on that information needed to improve or estimate about whether the episode will

actually occur and what its consequences are likely to be. This will decrease the time

needed to respond to crisis events, such as a potential terrorist threat. An episode

repository provides a corporate knowledge base of past experience to educate new

decision makers. We thus did online and library searches for relevant sources of readily

available past stories/cases in areas such as software engineering and urban warfare, plus

reviewed available software packages.

One unusual aspect of this research is that, among other things, we tried to

develop models of activity “from scratch” – without the existence of an a priori model.

While it may be impossible to develop detailed physical (or “quasi-physical” based on

qualitative physics) models that explain cause and effect factors within an event (or

episode), we hoped to be able to develop models that predict the expected successor to a

 44

given episode based only on a “story library” containing historical storylines (threads of

episodes) and an ontology describing the terminology used in the domain of interest.

2.3 Results and Discussion

Initially, during the first year of this project, we identified and evaluated the

suitability of a number of existing software tools: 1) For the development and analysis of

semantic networks -- most notably the Semantic Network Processing System (SNePS)

from NYU, Syracuse -- for representing the detailed structure of activities within an

episode; 2) For the development of ontologies describing a specific domain (e.g., Urban

Warfare) – most notably Cyc, and; 3) For identifying similar (and dissimilar) episodes so

we could build up a story based on the predecessor and successor episodes (and

outcomes) of historical events (a repository of episodes) – most notably Case Based

Reasoning tools from the University of Edinburgh.

The basic premises arising from this evaluation are that we can:

• Characterize the current episode in a way that allows it to be compared with

analogous episodes (stored in a library).

• Identify analogous episodes that are most similar to the current episode with

respect to factors important to the specific analysis being conducted (questions

being asked).

• Determine similarities and differences among the episodes.

• Use these findings to both improve our picture of the current situation and to

improve decision making with respect to future courses of action.

With respect to the first objective (evaluating existing software tools and

experimentally producing representations to determine their capabilities and ease of use),

we discovered that the use of any one required the development and maintenance of an

elaborate model (or linked models) – e.g., of terrain, typography, equipment capabilities,

logistics. Also, SNePS and Cyc had considerable overlap – while SNePS is built around

 45

Semantic Nets and Cyc is built around rules, they can represent the same features –

indeed, Cyc uses graph analysis algorithms to do much of its reasoning.

We soon realized that (contrary to research claims) there were no practical tools

to transform the text describing an episode into a useful semantic net. We shifted our

approach to prepare for (using manual analyses) using Cyc to build an ontology of terms

unique to a domain and for recognizing declarative sentences that might serve as rules to

relate these domain specific terms. We conducted these experiments initially using simple

fictional stories and subsequently using Urban Warfare episodes. As part of this effort,

we defined those components of an episode that we needed to capture. These are:

An EPISODE provides the basic element of the story’s narrative or plot. It

describes some (usually 1) action. It should:

• Define the spatial and temporal boundaries of the action. As episodes are

composed into stories, these boundaries provide one check on whether the

links “make sense” – teleportation and time jumps may occur in fiction, but

generally not in the type of stories we’re analyzing (e.g., software

development projects or urban resistance movements) ;

• • Have start (pre-) and stop (post-) conditions. The start conditions specify the

conditions necessary to start the action; the stop condition defines the end of

the action. The stop condition (and the start condition for the next episode(s))

will usually be a decision (e.g., attack the enemy), an action (e.g., a car runs

into a tree), or the lack of an expected decision or action (e.g., a meeting ends

with no decision or consensus). It may also have a goal, in which case its

(immediate) success is determined by the distance between the goal and actual

end condition. Note that the success of a story as a whole thread of episodes

can only be judged at the end of the thread.

• Have predecessor and successor episodes (except for the first and last

episodes which have only pre- and post-conditions). The end condition of the

 46

preceding episode must match (to some degree) the start condition of the

current episode – providing one check on the links making sense.

• • Contain (conceptual or physical) objects that act/interact to perform the

action being accomplished by the episode. This structure might be described,

for example, by some type of semantic network structure.

• • Specify structures of objects that are invariant within the episode (e.g., lines

of authority among objects) as well as other invariant properties that are not

associated with or determined by specific objects (e.g., in most circumstances,

the weather)

An OBJECT is an element that is contained in and linked to other objects in an

episode. Since it is working, possibly with other objects, to accomplish an action, it has

behavior associated with it, although it may only fill time or space in a specific episode. It

is characterized by:

• • “Invariants” that remain fixed across all the episodes it participates in (e.g.,

name, sex, size (for inanimate objects);

• • “Characteristics” that are invariant within an episode but can change,

according to specified rules, at episode boundaries. Elements that may change

within an episode but that are observed only at episode boundaries are

characteristics.

• • “Variables” which can change, and whose change is observed, within an

episode.

• • “Behavior”, both autonomic and through interaction with other objects.

A BELIEF is a strongly held position or idea attached to an object. For non-

intelligent objects, these are the same as the rules by which they operate (their behavior).

For intelligent objects, these are beliefs that are often elicited as rationale for a decision.

Thus, in Fred Moody’s I Sing the Body Electric, the story of a Microsoft software

 47

development project, the value of being first rather than best is continually emphasized

by management.

HISTORY is the rationale underlying a belief. “In our experience, this has (or has

not) worked in the past.”

There are several critical research issues involved in this approach. The

overarching question is whether it is possible to build an “implicit” model of activities in

a domain based (almost entirely) of plausible (and often historical) sequences of episodes

in that domain. The fact that episode type A precedes episode type B models a potential

relationship between A and B. Understanding the circumstances under which this

relationship does or does not hold can provide an understanding of factors critical to the

relationship. Changes in the existence (or strength, as measured by the probability of

occurrence) of the relationship may indicate changes in the context (or more global

situation) that need to be factored into decision making. The ability of a system to learn

with experience will also be examined.

We also came to appreciate more the central role that explanation generation

plays in story understanding. Because of this, we determined that the overall objectives of

this project could best be met by approaching the development of a story interpretation

system by working at two levels in parallel: one level continues to focus on evaluating

existing software as originally planned, while a second level extends our planned

investigation to assess the use of explanation-based (abductive) inference.

Our work on abductive inference did not adopt specific software packages nor

large scale pre-existing knowledge/ontology sources such as Cyc. Instead, we

investigated whether knowledge represented in a natural descriptive fashion could be

used to automatically generate plausible explanations for unexpected events. Our

hypothesis was that contemporary technology for cause-effect reasoning has matured to

the point that it can provide an effective and efficient inference method in automated

reasoning systems based on descriptive knowledge. More specifically, we believe that

advances over the last several years in the use of abductive inference methods and

 48

probabilistic reasoning with Bayesian networks make the automated processing of

descriptive knowledge both a viable and timely approach to explore.

Our initial work related to explanation generation and abductive reasoning

included the following. First, we completed most of the implementation for a knowledge

acquisition tool based on encoding of descriptive knowledge. The output of the

knowledge acquisition system is an application-specific automated reasoning system for

end users that includes a knowledge base, an inference mechanism that can process

causal and other types of information in the knowledge base in useful ways, and an

automatically-generated user interface. As an initial problem on which to evaluate this

system, we used the problem of interpreting and responding to the unexpected discovery

of chemical contaminants in the Chesapeake Bay. A prototype system for abductive

reasoning using descriptive knowledge about chemical contaminants was implemented

and was found to be capable of interpreting the meaning and some basic implications of

relevant multi-sentence text.

During the second year of this project, we extended the above work by

understanding four tasks. These were: 1. find urban warfare stories/episodes; 2. use these

episodes to build an ontology (using Cyc) suitable for identifying similar (or different)

episodes; 3. experiment with ways of measuring the “distance” between terms; 4.

implement a demonstration program combining natural language processing, rule-based

deduction, and indexed case retrieval in the urban warfare domain; and 5. in collaboration

with the Fraunhoffer Institute for Experimental Software Engineering Research, find

descriptions of “episodes” in software development projects, as documented in Software

Inspections, that were suitable to serve as stories with outcome predictions.

On the first task, we collected information resources for different urban warfare

battles. We have extracted data for multiple episodes spanning several distinct battles

and have developed and refined a knowledge base for describing urban warfare episodes.

Work on the second task produced several insights. First, the terms themselves

(e.g., the fact that one side used Kalashnikov assault rifles that was reported in the source

documentation) are less important than the ontological implications that can be drawn

 49

from them (e.g., that they were using weapons commonly found in weapons bazaars, that

they were using weapons that do not require a sophisticated infrastructure for

maintenance). Note that these inferences are based on “common sense” knowledge about

the terms in the general domain of urban warfare, not on data from any specific

episode/story. Second, while Cyc provides the ability to create separate “micro theories”

to resolve potentially conflicting uses of a term or concept, these created problems in

assessing term similarity, since two terms could be linked through several micro theories,

creating drastically different similarity measures. Based on the above, we experimented

with using OWL-DL instead of CYC to hold the ontology in addition to expanding the

number of terms employed as described in the first task. We also conducted some initial

experiments in the context of our third task on distance measures, and are currently

analyzing the data.

On the third task, we studied case based reasoning as a means to evaluate the

similarity of episodes based on term (or inferred term) similarities. A naïve approach

would be to apply a distance measure from a term in Episode A to all terms in Episode B

and compute a distance based, for example, on the average of all these distances or of all

non-zero distances, since we are likely to be dealing with an extremely sparse similarity

matrix. An investigation of available technologies uncovered tools such as AIAI Case-

Based Reasoning Shell developed at the University of Edinburgh that identifies the sets

of characteristics, each expressed as a vector, that, used together, best differentiate among

cases (events or episodes) in this work.

On the fourth task, we implemented a prototype decision system that integrates

knowledge based reasoning and case retrieval in support of story interpretation.

Currently, the knowledge base has thirty-five basic attributes that may be extracted from

a story. The knowledge base contains deductive rules which, when applied, give us

values for an additional six attributes. Abductive reasoning rules enable us to make up to

10 different assessments about a story. The knowledge base provides suggested courses

of action for addressing each one of these assessments. Examples of inferred attributes of

story episodes include: enemy technological level and motivation, and quality of

intelligence information.

 50

Appendix A, Integrating Knowledge-Based and Case-Based Reasoning, provides

a more detailed description of the urban warfare cases, the prototype knowledge base, the

reasoning methods, and case retrieval in the urban warfare story interpretation system.

As a fifth task, we investigated the applicability of the "stories" concept to

decision-making in software engineering. The goal of providing decision-support in this

area is especially appealing due to the large array of practices, methods, procedures, etc.,

that exist for software development, all of which are claimed to be beneficial, and which

can significantly impact the success (in terms of budget and schedule) of a development

project. Large-scale studies, such as those conducted by the Standish Group, consistently

show that achieving such project successes is a problematic undertaking. To undertake

this study we chose as a test bed the practice of "software inspections," one of the most

mature and well-studied practices available. Our investigation identified a lack of suitable

data for describing the episodes needed to build such decision-support models. Ideally,

we would have the results from a series of inspections of a single product, with the results

of each inspection describing the outcome of a preceding episode (e.g., requirements

specification, architecture development). Data in the area of inspections, however,

tended to fall into two large categories:

1. Organizational-level data, which describe aggregate results across many

applications of inspection and many projects, by way of claiming high-level benefits. For

example, a paper might discuss how inspections were applied on all projects in the

organization and resulted in measurably lower rates of defects in the systems produced.

The problem with this type of data is that there is no way to make a linkage between an

individual inspection application and a specific outcome; it provides only a general

statement of overall effect.

2. Snapshot data, which describes the results from a specific inspection in a

specific context. For example, a paper might describe a specific software module that was

inspected, the amount of time required, and the number of defects removed as a result.

The problem with this type of data is that there is no way to make a linkage from those

inspection results downstream to future experiences with that module. For example, there

 51

is no way of telling if in the future the inspected module was less error-prone, required

less testing, etc.

Types of data that might usefully be captured longitudinally include, for example,

percent of previous errors corrected, number of errors representing misunderstanding of

specifications, project size (measured as number of discrete functional requirements,

design modules, lines of code, etc.), and effort spent on defect correction versus system

construction. Such data may be used to improve the software development process

through comparison with historical episodes in an organization’s library.

Appendix B, Software Inspections as Choice Points, provides a more detailed

summary of our assessment of existing software inspection data, and of how story

interpretation could contribute to decision support for software development projects.

2.4 Conclusions

1. The existing general purpose software tools that we evaluated for story

interpretation appear to offer only very limited utility.

2. A significant barrier to development of story interpretation in the application

areas that we considered is the limited availability of online story repositories.

3. Evaluation of a prototype story interpretation system developed as part of this

work suggests that general purpose tools are feasible for automated story interpretation

when based upon combined knowledge-based and case-based processing.

 52

3.0 References

[1] Basili V, Caldiera G and Rombach H. The Experience Factory, Encyclopedia

of Software Engineering, Second Edition, Vol. 1, John Wiley and Sons, 2002, 511-518.

[2] Basili V, Lindvall M, and Shull F. A Light-Weight Process for Capturing and

Evolving Defect Reduction Experience, In Proc. 8th IEEE Intl Conf. Engineering of

Complex Computer Syst, IEEE, 2002, 129-132.

[3] J. Dix, S. Kraus, V. S. Subrahmanian. Agents dealing with time and

uncertainty, Proc. AAMAS 2002: 912-919.

[4] J. Dix, F. Ozcan and V.S. Subrahmanian. Optimizing heavily loaded agents,

draft manuscript.

[5] T. Eiter, V.S. Subrahmanian and G. Pick. (1998) Heterogeneous Active

Agents, I: Semantics, Artificial Intelligence Journal, Vol. 108, Nr. 1-2, pps 179–255.

[6] J. Gehrke, F. Ozcan and V.S. Subrahmanian. (2002) Tasking Networks of

Sensors, draft manuscript.

[7] T. Hammel, T.J. Rogers, B. Yetso. Fusing Live Sensor Data into Situational

Multimedia Views, Proc. 2003 Intl. Workshop on Multimedia Information Systems,

Ischia, Italy, May 2003.

[8] F. Ozcan and V.S. Subrahmanian. Partitioning Activities for Agents, Proc.

2001 Intl. Joint Conference on Artificial Intelligence, Seattle, WA, Aug. 2001, pages

1218-1228.

[9] Fatma Ozcan, V. S. Subrahmanian, Leana Golubchik. Optimal Agent

Selection. KI/GAI 2001: 2-17. Invited talk.

[10]Peng Y and Reggia J: Abductive Inference Methods for Diagnostic Problem-

Solving, Springer-Verlag, 1990.

 53

[11] Reggia J: Abduction, Encyclopedia of Artificial Intelligence, S Shapiro

(Editor in Chief), Wiley-Interscience, 1992, 2-3.

[12] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan. R. Ross.

Heterogeneous Agent Systems, MIT Press.

 54

Appendix A
Integrating Knowledge-Based and Case-Based Reasoning

Timur Chabuk1, Mark Seifter3, John Salasin1,4 and James Reggia1,2

Computer Science Dept.1 & Inst. Advanced Computer Studies2, University of

Maryland
Electrical Engineering and Computer Science Dept.3, MIT

Information Processing Technology Office4, DARPA

Abstract: There has been substantial recent interest in integrating knowledge

based reasoning (KBR) and case-based reasoning (CBR) within a single system due to
the potential synergisms that could result. Here we describe our recent work investigating
the feasibility of a combined KBR-CBR application-independent system for interpreting
multi-episode stories/narratives, illustrating it with an application in the domain of
interpreting urban warfare stories. A genetic algorithm is used to derive weights for
selection of the most relevant past cases. In this setting, we examine the relative value of
using input features of a problem for case selection versus using features inferred via
KBR, versus both. We find that using both types of features is best (compared to human
selection), but that input features are most helpful and inferred features are of marginal
value. This finding is surprising to us, but it supports the idea that KBR and CBR provide
complimentary rather than redundant information, and hence that their combination in a
single system is likely to be useful.

INTRODUCTION

In many application fields, expert-level problem solving naturally involves

reasoning from a combination of both general knowledge and individual past cases. Well-
known examples of this occur in legal reasoning, medical diagnosis and management,
military tactical planning, software engineering, and related areas. From the viewpoint of
those developing AI systems intended as decision aids, the need for reasoning from both
general knowledge and individual cases has led to substantial recent efforts to find ways
to integrate these two approaches within a single framework (reviewed in Marling et al,
2002), and this continues to be an active research area today.

In this context, we are investigating the feasibility of creating an application-

independent approach to interpreting multi-episode “stories” that combines a variety of AI
reasoning methods (rule-based reasoning/deduction, cause-effect reasoning/abduction,
Bayesian inference, constraint-satisfaction problem solving, etc.) with the retrieval of past
related cases. Our goal is to implement a system that, given an application-specific
knowledge base plus a database of past cases represented in terms of the same features, is
able to generate inferences about new situations by concurrently using both knowledge-
based reasoning and examination of past cases. This is an ambitious goal that involves
addressing a number of challenging issues related to understanding narration [Herman,
2003]. A central idea in this is that specific human-readable knowledge descriptions,
written in a simple but formal knowledge representation format, contain sufficient

 55

information about an application area’s ontology and terminology to enable a natural
language “story interpretation system” to be generated automatically.

In this paper, we focus on one aspect of such a general system, the issue of
whether the inferences made by a knowledge-based reasoning process can help guide the
identification of the most relevant past cases during problem solving. Effective retrieval of
related cases is widely recognized to be very important to successful applications of case-
based systems [Pal & Shiu, 2004] and it is one way in which synergistic integration can
occur. More specifically, we focus here on the issue of the relative value of input features
of a problem versus inferred features in guiding the retrieval of the most relevant past
cases. By input feature, we mean an evident/observable aspect of a specific problem that
serves as input to a decision aid (e.g., for a medical diagnosis system, a patient’s age or a
symptom), while inferred feature refers to an inference made by the system (e.g.,
diagnosis, recommended treatment, or prognosis). While our approach is intended to be
general in nature, for concreteness and because our most recent attention has focused on
this topic, in the following we present our work in the context of a specific application, the
understanding of multi-episode stories involving urban warfare. There are many sources
of such stories available in natural language format (e.g., [Antal & Gericke, 2003; Grau,
1996; Keegan, 1994]), and it is unlikely that any person can memorize the large volume of
information and lessons they contain. Thus, if relevant episodes could be quickly
identified by an automated system, they would provide a rich source of potentially useful
information for military commanders who must make real-time tactical decisions.

METHODS

Our work on effective case retrieval is being done within the context of a broader
study, as follows. An application-specific story interpretation system built within our
framework works as illustrated in Figure 1. A user supplies a narrated description of an
episode, a set of events that have occurred in the application domain. A natural language
(NL) parser translates the episode into a set of input features, and from these the inference
method(s), such as rule-based deduction, derive various conclusions (inferred features)
using domain specific knowledge. These conclusions, plus the most relevant known past
related cases (or episodes), are retrieved.

 NL
 parser inference retrieval

 in out out

Figure 1: User’s view of an application-specific “story understanding
system”.

An application system like that described above (Figure 1) is built by a domain-
independent constructor as illustrated in Figure 2. The constructor takes two inputs, an
application-specific source file (“knowledge base”), written in a simple knowledge

Episode

Des
cription

Formal

En
coding

Formal

En
coding

Most

R
elevant

 56

representation language, and a database of past multi-episode stories. The constructor uses
this information to generate the NL parser, inference mechanisms, and case retrieval
software needed in the application-specific story interpretation system (Figure 1), and
encodes the cases in terms of the source file’s attributes for later retrieval. At present, the
constructor is implemented, but more work is needed on the urban warfare source file in
order for our keyword parser to be able to parse all of the cases. As a result, the encoding
of some cases for the experiments described below has been done manually.

 constructor

Figure 2: Story interpretation systems like that shown in Figure 1 are
constructed automatically from an application-specific source file and a database of

past episodes.

For example, for the urban warfare domain, the current source file encodes a set of
input and inferred attributes, along with their possible values, plus knowledge in the form
of production rules and simple descriptions. The attributes form a hierarchy that is
implicitly defined by the encoded knowledge. Attributes are defined as being single or
multiple-valued. There are forty-three input attributes and thirteen inferred attributes in
the existing urban warfare source file. Most knowledge is in the form of production rules,
but for two of the inferred attributes simple pattern matching and scoring is used. In some
cases, the inferred features (attribute value assignments) represent abstractions of the input
features. Here is an example of an input attribute named “arms” in the source file:

 arms [mlt]:
 small arms [synonyms: pistols, hand guns, rifles, guns],
 light machine guns [synonyms: submachine guns, automatic rifles],
 anti-tank weapons [synonyms: rocket propelled grenades, RPG], …

This declaration conveys that “arms” is an attribute/property of a story that, for a

specific problem, can simultaneously take on multiple (“mlt”) possible values such as
“small arms” and “light machine guns”. Ontological information is implicitly present in
the synonym declarations, so the NL parser (Figure 1) can recognize that the presence of
“RPG’s”, for example, means that (arms = anti-tank weapons) is an appropriate
interpretation. An inferred attribute, such as

 assessments [mlt]:

 enemy likely has outside support,
 civilians at great risk, …

App
lication

Past

 Application-
Specific

 57

is defined in a similar fashion, but has its value determined by the inference
mechanism rather than the NL parser, e.g., via rule-based deduction. Rules are defined in
terms of attribute values. For example,

IF (enemy organization = militia) AND (enemy technological level = high),
 THEN (assessments = enemy likely has outside support)

is a rule in the current knowledge base. This rule indicates that, if an irregular

military group (“militia”) has high tech weapons, the system should make the inference
that the group probably has outside support.

In the current implementation of our system, an abductive keyword natural

language parser (Figure 1, on the left) is used to extract the values of the input attributes
from stories written in natural language text. As the constructor processes an application-
specific source file, each word encountered is indexed to the attribute/value it helps to
name. The resultant NL parser processes a subsequent story word by word, and as each
word is processed, it evokes the set of all possible senses (assertions about the value of
known attributes) of that word. Words can be very ambiguous. For the urban warfare
domain, the system evokes five different senses for the word "fire", such as the
phenomena of friendly fire or the tactic of setting buildings on fire. The presence of a
word in a story is explained in a context-sensitive fashion by making an assertion about
an attribute's value. Disambiguation of the word’s meaning is done using a parsimonious
covering process, a type of abductive reasoning [Josephson, 1994; Reggia, 1992] that
results in a set of assertions representing the interpretation of the story. For example, the
presence of the word "fire" may be explained by the assertion (our tactics = set fire to
building) or several other assertions.

For the urban warfare scenario used in our experiment below, a case-base was

established containing 30 episodes from ten different stories. The stories spanned the time
period from just before World War II through the mid 1990’s, and were taken primarily
from Russia’s Chechen Wars [Oliker, 2001], the Wikipedia online encyclopedia [Anon,
2003], and City Fights [Antal, 2003].

An assembled system like that for the urban warfare scenario identifies the past

most relevant episodes by measuring the similarity of every episode in the case-base using
a linearly weighted distance metric. This similarity function takes two episodes and
outputs a numeric score indicating their degree of similarity in terms of their attribute
values. The contribution of an attribute to this similarity score depends on whether the
attribute is single or multiple valued, and whether it is nominal or ordinal. Multiple valued
attributes are treated as being a collection of single valued attributes, where each value can
be either present or absent. In the similarity function, a positive real-valued weight
between 0 and 10 is associated with each single-valued attribute, and with each possible
value of multiple-valued attribute. The similarity of two episodes on each attribute are
multiplied by their respective weights, and then summed to produce the final overall
similarity score. Since the optimal weights for case retrieval are not known a priori by our
application-independent system (Figure 2) for a specific application, our approach is to
include with each episode in the case database the identity of the other single most similar

 58

case that is present. This best match identity is specified by a person at the time of case-
base creation and represents the “gold standard” for the evaluation described below.

As others have done [Dubitzky, 2001], we used a genetic algorithm (GA) to

automatically evolve the set of weights to be used by the similarity measure in the
resultant application-specific system. In the urban warfare example used here, the GA
population was 600 haploid chromosomes, each a vector of real-valued weights to be used
by the similarity measure. Tournament selection of reproducing parents (with elitism)
was used, with probability of double-point crossover 0.35 and of mutation 0.60. If selected
for mutation, each real number in the chromosome had a 10% chance of being replaced
with a random number between 0.0 and 10.0. The fitness of a chromosome’s set of
weights was based on how well they correctly identified the a priori human-identified
most similar other case in the case base for each and every existing case. The genetic
algorithm was run for 300 generations and the most fit set of weights in the final
population was used in the application-specific similarity measure.

While the inferred features are intended in and of themselves to be useful to a

human operator of the system (leftmost “out” arrow in Figure 1), we consider here
whether or not they are also useful when trying to automatically assess similarity of
episodes for case-retrieval. To address this issue, we evaluated the ability of the story
interpretation system to identify the best match in the case base for input episodes when
using all attributes, input attributes only, and inferred attributes only. This allowed us to
examine one aspect of the impact of integrating knowledge-based reasoning with case
retrieval. A standard leave-one-out strategy was used to evaluate how well our methods
for evolving attribute weights with specific data generalize. The episodes from one story
were removed from the training data and an optimal set of weights evolved using the rest
of the episodes in the case-base as training data. That set of weights was used to find the
most similar episodes to the episodes that had been removed, and for each of the removed
episodes we recorded how highly the system ranked its actual most similar episode
(according to the “gold standard”). Attribute weights for the similarity measure were
independently evolved using all of the attributes, only the input attributes, and only the
output attributes. These three experiments were repeated 10 times each, each time
excluding the episodes from a different story from the training-data. We also performed
the three experiments while leaving out no story episodes in order to establish a baseline
of optimal performance.

RESULTS

 The set of weights obtained by the GA for the urban warfare case base

similarity function indicated that some attributes are much more important for assessing
similarity than others. The 235 weights found were fairly evenly distributed over the full
0.0 – 10.0 range of possible weight values. Some of the most highly weighted features in
this specific application, each having a weight above 9.8, were (our tactics = blitzing
attack), (enemy abstract tactics = sewer battle), (arms = missiles), and (results = failed to
expel invading force). Some of the lowest weighted features, each having a weight below
0.04, were (our tactics = aerial bombardment), (assessments = possible hasty attack), and

 59

(civilian actions = civilians serve as guides). Input features had an average weight of 4.43,
while inferred attributes had an average weight of 4.17.

Our domain-independent approach to story interpretation appears, in limited

testing to date, to work reasonably well. For example, the following excerpt from a made-
up urban warfare story that is not in the case base,

We were a conventional army controlling a city in the middle of a war zone. The

enemy militia was trying to take the city, and we had to defend it. We had virtually no re-
supply lines and were poorly supplied. We had some small arms, some heavy machine
guns, and some IEDs. In anticipation of the enemy advance we set up some fortified
positions with heavy machine guns from which we could strafe the streets with fire. The
public was not entirely supportive of the battle, so we wanted to try very hard to avoid
civilian casualties. In the morning, three enemy tank columns entered the narrow streets
of the city. We had to expel this invading force. From the rooftops, we began dropping
grenades on to the enemy tanks. We detonated explosives that we had planted in
buildings, exploding the buildings on to the approaching forces. The enemy attack
choppers were ineffective in the battle as we kept them at bay with our SAMs….

is readily processed by the interpretation system. The abductive keyword parser
processes this text and extracts the correct values for all of the input attributes, such as
(arms = stingers), (arms = homemade explosives), (public opinion = public skeptical), and
(tolerance for civilian casualties = low). Inferred attribute values include (inferred quality
of intelligence = adequate), (quality of combined arms usage = poor), (assessments =
enemy likely has outside support), and (suggested course of action = cut off enemy’s
outside support).

 The similarity measure using the best set of weights derived by the GA
identifies two episodes from a 1948 battle in the mandate of Palestine as being the most
similar to the example episode above. Examining these two retrieved past cases, their
similarity to the episode given above is readily apparent. In both cases an invading force
of tanks is repelled by attacking them from above with explosives and by exploding
buildings onto the tanks as they pass by. Examination of these stories by a human
operator has the potential of leading to a number of new and useful inferences. For
instance, in the second episode from the Palestine story, the enemy learns to deploy
infantry support along with tanks, and this could be a useful point for a military
commander. While our system currently does not have the ability to make inferences
from retrieved cases, methods used in past case-based reasoning systems could be
effective in this regard.

 To assess in more general terms the effectiveness of the GA in deriving
appropriate weights for application-specific case retrieval, we generated these weights
using just the input features, just the inferred features, and both (10 trials with each), using
the 30 cases in the urban warfare case base. The results of the similarity function’s

 60

performance are given in Table 2. When the GA evolved weights using all of the stories in
the case base, and then the rank assigned to the a priori human-specified best matching
case was determined for each case in the case base using the similarity function, the mean
rank was 1.37 if all features were used, 1.43 if just input features were used, and 2.87 if
just inferred/output features were used. While using all features thus did marginally best,
the contribution of the inferred features was almost negligible.

Table 2: Performance of similarity function using different sets of attribute.

 ALL STORIES LEAVE ONE OUT

ATTRIBUTES USED IN TRAINING ALL INPUT OUTPUT ALL INPUT OUTPUT

AVG. RANK GIVEN TO MOST SIMILAR 1.37 1.43 2.87 3.33 3.37 6.20

STANDARD DEVIATION OF RANK 0.72 0.73 2.26 2.51 2.76 6.58

To test the ability of this approach to generalize to new cases, we repeated the

above study, but now using a leave-one-out strategy. In this situation, the mean rank was
3.33 if all features were used, 3.37 if just input features were used, and 6.20 if just
inferred/output features were used. Though not as accurate as when all episodes are used,
it suggests that one could use a strategy of retrieving three or four cases in general. The
difference in performance between when all features were used and when just input
features were used is not statistically significant. However, the difference between using
just output features and either all features or just input features is statistically significant,
at a higher than 95% confidence level.

DISCUSSION

In this project, we explored integrating reasoning from both general knowledge

and from individual cases within a single framework. To this end, we investigated the
feasibility of creating an application-independent approach to interpreting multi-episode
“stories” that combine knowledge based reasoning methods with the retrieval of past most
similar cases. In this paper we focused on whether the inferences made by a knowledge-
based reasoning process can contribute to identifying the most relevant past cases during
problem solving. Specifically, we explored the value of input features of a problem
versus the value of inferred features in the retrieval of most relevant past cases.

For the urban warfare domain, we found that the input features of an episode are

more important than the inferred features when attempting to assess the similarity of
episodes. Our similarity measure performed significantly better when using only input
attributes to assess similarity than when using only inferred attributes. This suggests that
there is some information or relationships among the input attributes that our current
knowledge, mostly in the form of production rules, simply does not capture. If this is
correct, it supports the hypothesis that integrating knowledge based and case based
reasoning is synergistic, because it suggests that the information in specific cases may be
different from that inferred using general principles in an application domain. This was
illustrated by the specific example case/story above where general rules deduced, for

 61

example, that the enemy force probably had outside support and that a reasonable course
of action would be to try to disrupt this support, while both retrieved cases included the
sensible point that infantry should accompany tank incursions in an urban setting to help
prevent attacks from above. In a limited sense, this can be viewed as a kind of “ensemble
reasoning”. Of course, it is entirely possible that a different set of inferred attributes might
be more informative. The inferred attributes that we used were based on an a priori
conception of useful inference without consideration of their utility for case retrieval. Our
results are also limited to the specific domain of urban warfare, and it is unclear whether
they will generalize to other areas like medical or legal reasoning.

The GA-derived weights used in the similarity function did not generalize

extremely well. As expected, the ability to identify the a priori human-selected most
similar case declined when a leave-one-out strategy was used to evaluate case retrievals.
However, the results were still quite reasonable if one is willing to allow a system to
retrieve a few apparently best cases rather than just the single best case. Using both input
and output features to assess similarity of cases continued to result in the highest
performance, but with inferred features being of negligible value.

An important direction for future work is the integration of additional reasoning

methods with case-based reasoning. Some central questions are whether alternative
reasoning methods or different inferred attributes can help improve case retrieval, how the
results described here will generalize to domains other than urban warfare, and whether
knowledge-driven inferences can contribute to more powerful case-based reasoning in
general through better case adaptation/modification and storage. A more objective way to
evaluate the performance of these tasks is also desirable. In particular, cost effective
methods are needed for replacing the “gold standard” with more objective and precise
ways of measuring relevance between cases. One possible approach would be the
development of a simulated environment where agents could use case-based reasoning to
solve problems. In such a system, the true relevance of past stories to a current problem
could be determined by measuring the performance of the agent in addressing a new
problem when recalling different past cases.

 62

REFERENCES

[1] Antal J & Gericke B. City Fights, Ballantine, 2003.

[2] Anon. http://www.wikipedia.org/wiki/Battle_of_Mogadishu,Wikipedia (25

Jan 2006).

[3] Dubitzky W & Azuaje F. A genetic algorithm and growing cell structure

approach to
 learning case retrieval structures, in Soft Computing in Cased Based Reasoning,

S.
 Pal et al, eds), Springer-Verlag, 2001, 115-146

[4] Grau L. The Bear Went Over the Mountain, National Defense University

Press, 1996.

[5] Herman D (ed.) Narrative Theory and Cognitive Sciences, CSLI, 2003.

[6] Josephson J & Josephson S (eds.) Abductive Inference, Cambridge Univ.

Press, 1994

[7] Keegan J. A History of Warfare, Vintage, 1994.

[8] Marling C, Sqalli M, Rissland E, Munoz-Avila H, & Aha D. Case-Based

Reasoning
 Integrations, AI Magazine, 23, 2002, 69-86.

[9] Oliker, Olga. Russia’s Chechen Wars 1994-2000, RAND, 2001.

[10] Pal S & Shiu S. Foundations of Soft Case-Based Reasoning, Wiley-

Interscience, 2004.

[11] Reggia, J. Abduction, Encyclopedia of AI, John Wiley, 1992, 2-3.

 63

Appendix B
Software Inspections as Choice Points:

Necessary Data to Provide Decision Support in Software Development

 Forrest Shull

Fraunhofer Center – Maryland
fshull@fc-md.umd.edu

 Of the many ways of modeling software development, perhaps one of the

most interesting is as a series of choices. There are certainly a large number of different
decisions to be made, in order to achieve the goal of delivering agreed-upon functionality
on-time and within budget: Before the project begins there are questions about which
lifecycle model to use, how to staff the project, etc. During the project, decisions are
more focused on whether the project is on track and how best to expend scarce resources
to achieve the desired goals: For example, if the quality of products being produced is
less than optimal, the project may choose to put more effort into quality assurance,
detecting defects that can then be corrected before the project goes any further.
Conversely, if quality is under control, the project can allocate those resources to
construction activities, perhaps giving the team the chance to implement functionality
that was otherwise considered optional for the current release. The primary difficulty is in
accurately assessing whether the quality of the system is on-target or not.

 As a mechanism for facilitating decisions about whether to allocate

resources into or away from quality assurance techniques, software inspections can
provide information that is more accurate than that gained from other means. Some
authors [Gilb99] have suggested that the information gained during an inspection about
the current state of the system under development is as valuable as the actual defects
detected and corrected. Inspections also have the advantage that they can be applied
during any phase and to any type of work product or support artifact.

 Currently, decision-making based on inspection results is necessarily

rather subjective, based on the decision-maker’s expertise and past experiences. We have
been exploring whether a more objective, empirically-based basis could be provided, in
which decisions based on inspection data could be based on reasoning about what
occurred on previous projects, to make informed decisions about what is likely true about
the current project.

Software Inspections

 Software inspections are technical reviews whose objective is to increase

the quality and reduce the cost of software development by detecting and correcting
errors during the process. A formal process is used to provide rigor in this task, and
checklists or other work aides (such as scenarios) are typically used to keep inspectors
focused on important aspects of the document under inspection. Since inspections depend
on human analysis and reasoning, they can be applied to just about any document created

 64

during the software lifecycle. Ideally, they would be applied as early as possible to
remove errors before they amplify into larger and more costly problems downstream.

 Software inspections take as input a work product (or portion of a work

product) to be inspected, and require personnel with sufficient expertise and time to work
as inspectors.

 As output, software inspections yield a list of defects to be corrected by

the author. They also produce supplementary metrics, usually consisting of type
information associated with each defect, the number of participants who were involved,
and the total effort required to perform the inspection.

 Using the inspection outputs to support decisions involves two types of

judgment calls. The first is, how effectively the inspection was conducted – that is, how
likely it is that the list of defects found during the inspection represent the majority of the
defects actually extant in the document. The second judgment call involves reasoning
about what those defects actually mean for the system.

Assessing Inspection Effectiveness

 Many empirical studies have documented the effectiveness of inspections

for finding defects in a cost-effective way across the organization, e.g. [Fagan86,
Russell91]. A useful rule of thumb, based on data from across many organizations, is that
a given inspection will find between 60% and 80% of the defects currently in the
document [Shull02].

 Although there is still investigation into some of the finer points (such as
the type of inspection training that produces the best results [Land05]), the broad
brushstrokes of what makes an effective inspection are well understood. Some example
guidelines include:
• Inspectors should have sufficient technical expertise to analyze the work product

under review;
• The team of inspectors should be neither too small (which results in insufficient

debate and refinement of the list of issues to be fixed), nor too large (which results in
unmanageable discussion and might dissuade some participants from making a
contribution);

• A formal process should be followed to avoid “cutting corners,” e.g. generating issues
during the inspection that are never fixed;

• Inspectors should have sufficient time to devote to preparation;
• Management should not be part of the inspection, as this can shift the focus from

improving the work product to saving face;
• One inspector should be tasked with recording issues generated by the inspection

team, so that fixes can be verified;
• A trained moderator should facilitate the discussions and ensure that participants

prepare properly for their roles.
 Assessing the actual practice of an inspection against such guidelines is an

important component of knowing whether the results represent an accurate assessment of

 65

the quality of the work product inspected. If important guidelines were not followed (for
example, if inspectors without appropriate knowledge were used or they were not given
enough time for preparation) it is possible that the defects found by the inspection greatly
under-count the number of defects existing in the work product.

 Although the above issues have not been analyzed separately for their
contribution to inspection success, there have been no data from any environment which
indicate that different guidelines apply in different types of organizations or for different
application domains.

 An important issue that is not considered here is whether the inspection
results include a large number of false positives – that is, issues that were reported by the
inspection team but that do not really represent problems in the system – in addition to
useful information about existing defects. Since inspections are a team-driven activity, in
that they rely on a team of inspectors with different expertise to reach consensus that an
issue is really a defect before it is reported, it is also assumed that a well-performed
inspection will minimize the number of false positives, and one that deviates from the
guidelines will similarly produce untrustable results by over-estimating the number of
quality problems in the system.

Reasoning about the Current State of System Quality
Having done an inspection and found out something about the number of defects

in a specific work product, what kind of choices could then be made based on those
results? Regarding the specific work product that was inspected, the team lead can choose
one of the following options:
1. If the number of defects was within acceptable bounds: Fix the defects found and

continue without further QA on this product.
2. If the number of defects was high enough to cause concern: Fix the defects found and

then do additional QA on this product.
3. If the number of defects was excessively high: Throw out much of the development

work that was done and re-develop from scratch. (Although extreme, this is based on
the hypothesis that very defect-prone components tend to be defect-prone throughout
their lifespan – it is difficult to patch up components that had unacceptably low
quality to begin with.)

Furthermore, if the defect density is found to be unacceptably high and this
product is considered to be fairly representative of the quality of the larger system, the
inspection output might also convince us that:
4. The percentage of effort allocated to quality assurance on the system as a whole

should be increased.
 To support this type of decision-making, we investigated the use of

“stories.” A story in this context is a way of representing knowledge about a situation as a
series of discrete episodes describing events that happened in chronological order.
Episodes are separated by choice points. In other words, a story may contain episode x
which describes the situation at some moment at time, when a choice is made; this leads
to episode x+1, at which point a new choice is made, and so on. In theory, if I have a new
situation which is roughly analogous to a series of episodes in an existing story, ending
with episode y, then I have some confidence for believing that making the same choices

 66

is likely to recreate results in my current situation analogous to those recorded in episodes
starting with y+1.

 Using this scheme to support software development decisions, we treat
software development as a sequence of episodes, where performing an inspection is the
latest episode in the sequence. The inspection episode has to be characterized according
to the defects that were detected, along with the size of the work product inspected. From
these measures we could understand the defect density of the inspected portion of the
system, which tells us something about the quality of system at this moment in time.
With this information, we could examine any known stories about inspection applications
to look for similar situations, and reason about the types of actions that would be
appropriate for systems with this level of quality at this point in the software development
lifecycle.

 To accurately make this comparison, however, the types of defects
detected by the inspection also have to be characterized. As an extreme example for why
this is necessary, suppose that a code module A is inspected and based on the defects
detected it appears that the defect density is one defect per 1K lines of code. Let us
assume that there exists a story about inspections applied to code module B, from a
similar system, where B has a similar size and complexity to A and resulted in a similar
measure of defect density. Will later experiences on B provide any indication about what
could be expected in later development of A? The answer may be yes but only if
information about the types of defects detected is also comparable. If the defects in B
were mainly clerical or otherwise easily fixed, while defects in A concern important
system functionality that was incorrectly specified in the earliest phases of the project, the
downstream experiences on both projects may be quite dissimilar indeed.

 This necessity of comparing defect types from one project to another
forms the major stumbling-block to this work. Although software inspection may well be
the software development practice for which the most data exist, no standard
classification system for defects is used across a large number of the available datasets.

Data Sources Examined on this Project
From various projects, FC-MD has access to a wide variety of inspection data

from numerous contexts. Searching for data that would support the planned analyses, we
investigated:

• NASA software development bug/change trackers:

Many NASA projects use tracking systems to store and analyze the known issues
on a given project during the course of development. Each record in the database
corresponds to a single issue that must be changed or repaired in the given system. Thus,
the database taken as a whole contains a record of all unplanned changes that arose over
the lifetime of the system development. For a large project, there will likely be hundreds
of such records.

 Although the exact information recorded for a defect/change record varies
from system to system, at a bare minimum projects generally record: A description of the
issue to be addressed, the date the issue was discovered and tracked, how the issue was
found, the severity associated with the issue, how the issue was fixed, and the date the
implemented fix was reviewed and approved.

 67

 Such change tracking databases seemed to be a rich source of analysis for
the planned analysis. Although the databases will contain information about quality
issues found by mechanisms other than inspections, the inspection results themselves are
entered into the bug tracker so that they could be followed and closed by project
personnel. However, these databases suffered from two major problems for our work:
First, quality issues were generally recorded starting only with the implementation phase
of the project. Although requirements and design issues could still be found and recorded
at this point, the database was missing any record of the majority of quality issues that
were discovered during those activities. Secondly, the databases in general were missing
any meaningful categorization of the defects. Not only was no single classification
scheme used to organize the issues being tracked, but the information stored concerning
what the issue was and how it was fixed were at a very detailed level that was meaningful
only to project personnel. Therefore, it was not possible to provide any comparison
between new projects and old projects on the basis of the recorded issues.

• Inspection experiments:

Personnel from the Fraunhofer Center – Maryland and University of Maryland
have, in combination and separately, run a number of experiments comparing the
effectiveness and efficiency of varying inspection approaches for detecting defects, in all
phases of software development. The repository of experimental results contains another
rich source of inspection data. Because each experiment applied inspection to a work
product with a known number of defects, it is possible to measure accurately what
percentage of the issues extant in the document were found by each application of
inspection. Because data is recorded on each subject’s background, it is also possible to
judge whether effectiveness varies according to attributes of the person applying it, for
example, his or her amount of previous experience in inspection teams or with software
development in general. Furthermore, because the experiments were designed to be
comparable with other published work, a common taxonomy of defects was used across
the studies.

 The weakness of this dataset for our purposes here is that the inspections
are applied in an academic environment – that is, the work products under inspection
were not actually being used in a real development project. For this reason it is
impossible to follow the products forward in time to understand the effect that the
correction of the known defects had on the overall quality of the system: Whether the
defects detected would have saved significant development effort or the defects missed
had the potential to greatly increase the amount of rework effort needed later in the
project. Thus the usefulness of this dataset for the desired decision-support was minimal;
it could be concluded from this data that appropriately-conducted inspection would detect
a majority of the extant defects but not how this contributed to the overall budget and
quality of the project.

• Inspection databases from large government and commercial organizations:

Organizations that invest in inspection programs often maintain a cross-project
database of inspection results. Such a database typically contains one record for each
inspection, recording information such as the project and module on which the inspection
was applied, the size of the work product inspected, the number of participants involved

 68

and the total amount of effort spent on the inspection, and the number of defects detected
and fixed as a result of the inspection. Such databases are used by the organization for
baselining and monitoring inspection results to spot problems. For example, when a team
has just conducted an inspection the output can be compared to baselines recorded for
similar projects to understand whether this process has required much more effort than
has traditionally been the case, or whether team leads are trying to inspect too much
material in too little time. By making certain assumptions about the amount of rework
saved for different types of detected defects, it is also possible to use the data to analyze
the expected return to the organization for the effort expended on the inspections
[Kelly92, Madachy95].

 Again, such databases are useful for showing the contribution of
inspections in general and demonstrate their usefulness as a quality assurance technique.
However, they also do not provide information about the same module over time so that
the quality of a module after an inspection and rework could be assessed. While
theoretically they could contain information on multiple inspections of the same module,
in practice this did not occur in the datasets to which we had access. Thus, it was not
possible to judge the contribution of any inspection to downstream quality aspects of the
same part of the system.

• Software Engineering Laboratory data:

The Software Engineering Laboratory (SEL) at NASA’s Goddard Space Flight
Center had a long history of data collection in the area of software development, which
contributed to recognized success in the area of software process improvement [Basili95,
Basili02]. While the database is no longer maintained, archives exist of the data and
numerous publications have been written summarizing various subsets of its contents.

 During investigation of the database it was clear that forms for inspection
data collection existed1 and had been used by developers. However, in interviews with
SEL data analysts it was discovered that the inspection data collected was from projects
using the Cleanroom methodology, a distinct software development methodology based
on formal models and correctness verification that is not in widespread use. Efforts to
reconstruct the database contents were thus discontinued, since the predictive power of
this data for more traditional software development environments was judged to be very
slight.

Recommendations for Necessary Data
As this was a small, exploratory study, it was perhaps not surprising that the data

archives already available did not happen to match the needs of the new, proposed
analysis. However, the resources summarized above constitute a large body of data for
any practice in software engineering, compiled by researchers at UMd and FC-MD over
years of work. It is not likely that there are great reserves of other data sets available on
inspections, or that more data would exist for other software development practices.

 The above list suggests that longitudinal data from industrial or
government development projects is needed for the planned analysis – although
inspection results in an academic environment can be measured and categorized most
accurately, it is difficult to get information about decisions being made on the basis of

1 See http://sel.gsfc.nasa.gov/website/exp-factory/datacol-process/sample-forms/IDCF_np.html

 69

those results based on experience. If data is to be gathered for the planned analysis, it
would need to be instrumented as part of an ongoing, “live” development project.

 Since the purpose of the planned decision support is to reason about
software quality – and whether if, judging by early indicators such as inspection results, it
appears to be at a sufficient level that would enable end-product goals to be met – we
would need some more objective indicator of quality in the particular portion of the work
product being inspected. Test data is the most likely choice for this, as this is the final
quality assurance check before the software is released. Although test does not catch all
of the remaining defects, it is usually considered to catch a majority of those defects and
project managers will often place extra resources into test if early test results show more
defects remaining than was expected. The final quality of a given portion of a software
system could be approximated by the number of defects found during test, the amount of
rework effort that has to be done to fix defects found during test, and the amount of time
that portion of the software system spends in test. High values for any of those three
indicators could be taken as evidence that the quality of that portion of the system was
inadequate and that better decisions could have been made about allocating early QA
activities.

 Thus to actually conduct the planned analysis would require negotiating
with a development project to collect data on both in-process inspection results from
various phases (which would include defects that would presumably have to be
categorized by the research team) along with test data and test effort. Unfortunately, as
this data collection would span the entire life of the project, it would be a substantial
undertaking. However, no existing dataset with all of the required information is known.

 70

References

[Basili95] Basili V., M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R.

Pajerski, SEL's software process-improvement program, IEEE Software
12, 6 (1995) 83-87.

[Basili02] Basili V., F. McGarry, R. Pajerski, M. Zelkowitz, Lessons learned from 25

years of process improvement: The rise and fall of the NASA Software
Engineering Laboratory, IEEE Computer Society and ACM International
Conf. on Soft. Eng., Orlando FL, May 2002.

[Fagan86] Fagan, M. Advances in Software Inspections. IEEE Transactions on

Software Engineering, vol. SE-12, no. 7, July 1986.

[Gilb99] Gilb, T. “Software Inspections are not for quality, but for engineering

economics.” Unpublished draft article.
http://www.gilb.com/Download/IEEESWAr.pdf

[Kelly92] Kelly, J., Sherif, J., Hops, J. An Analysis of Defect Densities Found

During Software Inspections. Journal of Systems and Software, 1992; 17:
111-117.

[Land05] Land, L., Tan, B., and Bin, L. Investigating Training Effects on Software

Reviews: A Controlled Experiment. Proceedings of ISESE05, Noosa
Heads, Australia, November 2005.

[Madachy95] Madachy, R. Measuring Inspections at Litton, Software Quality

Assurance, Ridgetop Publishing, Silvertown, OR, Vol. 3, No. 3, 1996 and
Proceedings of the Sixth International Conference on Applications of
Software Measurement, Orlando, FL, Software Quality Engineering,
October 1995

[Russell91] Russell, G. Experience with Inspection in Ultralarge-Scale Developments.

IEEE Software, 8(1): 25-31. 1991.

[Shull02] Shull F., Basili V. R., Boehm B., Brown A. W., Costa P., Lindvall M.,

Port D., Rus I., Tesoriero R., and Zelkowitz M. V., "What We Have
Learned About Fighting Defects", In Proceedings of 8th International
Software Metrics Symposium, Ottawa, Canada, IEEE, June 2002, pp. 249-
258.

