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Abstract 

Information is key to the success of the next generation battlefield.  Whether a 

combat operation is taking place in the ocean, or in the desert, or in an urban terrain, there 

is a critical need to determine, in real-time, what the enemy is doing, and to take 

appropriate actions based on knowledge of the enemy’s movements.  We examined two 

aspects of the critical need for battlefield information in this work: sensor tasking and 

automated interpretation of narrated events. 

Analysts who wish to task a network of sensors to carry out their objectives 

should not have to understand the details of sensors in order to specify their tasks.  In 

section I, we proposed a high level task definition language, which is rich enough to 

allow an analyst to (i) specify a region of interest to him, (ii) specify a time frame of 

interest, (iii) specify a set of conditions that the analyst wants monitored during the time 

frame and in the region above, and (iv) specify one or more actions to be taken in the 

event the conditions are satisfied.  We developed graphical user interfaces that may be 

used to express such task specifications and developed algorithms to scale such systems. 

The understanding of recounted events (stories, histories, etc.) so that one can 

determine the best course of action is a common and critical part of decision making in 

many areas, including anti-terror intelligence assessment and military operational 

command. The goal of the second part of this project was to identify aspects of story 

representation and analysis that can be readily implemented using existing technology. 

As described in Section 2 of this report, we assessed the availability of narratives in 

domains such as urban warfare and software engineering as well as the suitability of 

software tools for story analysis. A prototype story interpretation system that integrated 

rule-based and case-based processing was implemented and evaluated in the context of 

urban warfare stories. We conclude that automated story interpretation is feasible in 

targeted domains and that general purpose tools for this task can be developed, but a 

significant stumbling block to future progress is the limited availability of online story 

repositories. 
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Section 1:  Tasking a Network of Sensors 

1.1  Summary 

Analysts who wish to task a network of sensors to carry out their objectives 

should not have to understand the details of sensors in order to specify their tasks.  We 

proposed a high level task definition language, which is rich enough to allow an analyst 

to (i) specify a region of interest to him, (ii) specify a time frame of interest, (iii) specify a 

set of conditions that the analyst wants monitored during the time frame and in the region 

above, and (iv) specify one or more actions to be taken in the event the conditions are 

satisfied.  We developed graphical user interfaces that may be used to express such task 

specifications and developed algorithms to scale such systems.  We worked jointly with 

several members of the Sensor Information Technology (SensIT) team to develop a 

system that could be demonstrated on live sensor data, both from 29 Palms and from 

BBN’s Waltham test bed. 

1.2  Introduction 

The DARPA Sensor Information Technology (SensIT) program has proposed the 

use of large ad-hoc networks of sensors to collect information about a current or potential 

battle zone.  As sensors get smaller and smaller, the ability to deploy such large networks 

of sensors from the air gets more and more probable. 

However, interacting with sensors today is a challenging task.  Software support 

for tasking and processing information collected from sensors is in its infancy.  In order 

to interact with sensors, an analyst or an end-user needs detailed information about the 

sensor hardware, and often needs detailed information about the sensors’ Application 

Program Interface (API for short).  There are many reasons why interacting with a 

network of sensors in such a way is a bad idea:  

1.  First and foremost, analysts and mission planners are not software programmers or 

computer experts.  They are experts in analyzing intelligence and fighting wars.  

Expecting them to program software code, even in so called high level programming 
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languages like Java, is unreasonable - expecting them to program sensors that typically 

have much lower level programming languages is truly foolhardy.  

2.  Second, diverse sensors have very diverse programming interfaces.  For example, 

temperature and pressure sensors are very different from motion sensors which, in-turn, 

are very different from image and video sensors.  Even if an analyst or war fighter were 

to learn the APIs of one sensory source, this would be far from adequate as different 

sensors have varying APIs.  Placing such a burden on an analyst/war fighter would leave 

him in a position where he could not focus on his primary task - that of successfully 

prosecuting a war.  

3.  Third, even if we had someone learn how to use APIs of all these diverse sensory 

devices, we would still be left with the challenge of harnessing all the information 

coming back from sensors.  The ability to “mix and match” data coming back from 

diverse sensors is a major challenge.  Expecting even a professional programmer to 

program these tasks one by one has the following problems:  

• Cost.  Programming each tasking request is a costly endeavor.  

• Time.  Programming each tasking request will inevitably lead to a significant delay 

between the time the analyst/war fighter makes the tasking request and the time the 

request is programmed in.  This delay may be acceptable in applications such as field-

testing a road vehicle (where the gap between the time the tests are conducted to 

deployment can run into years), but is totally unacceptable in the military setting 

where time is of the essence. Delays lead to potential casualties.  

•  Lack of flexibility.  Hard coded solutions, where each task request is explicitly 

programmed, are inflexible.  Suppose a task was programmed in C or Java.  It is 

inevitably the case that task requests get changed over time.  For instance, a request to 

monitor the road leading to a potential Iranian nuclear facility might need to be 

abruptly changed when it is noticed that there is an inordinate amount of helicopter 

traffic in the region. Retasking would require reprogramming.  However, 

reprogramming programs written in modern programming languages is difficult.  The 
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person doing the reprogramming needs to understand all the existing code - a major 

challenge.  Even if the programmer thinks he has understood it, he may be wrong, 

leading to a reprogrammed version of the task that does not quite do what it is 

supposed to do.  This in turn might have catastrophic results.  

4.  Fourth, when analysts create tasks, those tasks involve not just accessing the sensor 

data, but also correlating that data with non-sensory sources.  For example, an analyst 

correlating data about movement of enemy forces might want to pipe that data into a 

prediction program, which in turn might need to access an intelligence database showing 

enemy assets in the region.  The high level task that the analyst is interested in is not just 

an examination of the low level sensor data - rather, he wants that sensor data analyzed in 

a manner that he specifies and he wants the results of that “processed” sensor data to be 

the result of his task request.  

The above points make it clear that a system that enables analysts to task a 

network of sensors needs to satisfy many fundamental criteria.  

1.  Task definition.  First and foremost, the notion of a task must be formally defined.  

We all know informally what a task is.  However, for a computer system to find ways of 

accomplishing war fighters’ tasks, such a formal definition is required.  

2.  Task definition language.  The system needs a formal language in which tasks can be 

articulated - such a language must be declarative in the sense that the war fighter merely 

needs to specify what the task should accomplish, not how the task should be 

accomplished.  In short, the analyst might merely say that he wants to monitor levels of 

traffic in and around the Al-Natan suspected nuclear facility.  He shouldn’t have to tell 

the system to turn sensor 1 on, orient it 45 degrees SW, set it to low battery consumption 

and do similar things with sensors 2 through 100.  

3.  Tasking GUI.  Even though declarative languages are far more easy to program and 

modify than imperative languages like C and C++, they still require a learning curve for 

the war fighter - time that is not the best possible use of the war fighter’s unique skills.  A 

tasking graphical user interface (GUI) which is easy to use and understand is critical.  By 
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interacting with such a GUI, the war fighter or analyst specifies a task in the task 

definition language (even though he may not be aware of it).  

4.  Task Engine.  The job of the task engine is to take one or more tasks and arrange for 

their execution.  This is done by determining which of many possible diverse resources 

can be used to perform the task at hand.  Given that hundreds of tasks may be executed 

concurrently (for the same or for different war fighters), the ability to allocate tasks to 

sensors that have the required capabilities in a way that maximally supports all the tasks 

is needed.  

5.  Task Merging.  Scaling the task engine requires the ability to study how to merge 

tasks together when it is clear that the tasks share a common component.  For example, if 

we wish to monitor traffic on two roads, we may wish to place a sensor at the intersection 

of the two roads rather than place one on each as this reduces the overall amount of 

resources (sensors) used.  Of course, this must be done judiciously (e.g. by examining the 

road network, etc.).  

The work we have performed as part of the DARPA SensIT program includes the 

following.  

1.  We have proposed a formal definition of a task.  

2.  We have proposed a declarative tasking language in which tasks may be expressed.  

3.  We have developed a graphical user interface through which analysts may express 

tasks in the above declarative tasking language.  

4.  We have developed algorithms to implement the Task Engine.  

5.  We have developed algorithms for Merging tasks.  

6.  We have conducted experiments assessing the efficiency of many of these methods.  

7.  We have developed significant software components that were used during the SensIT 

experiments and that were used to build an integrated demonstration (jointly with other 
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SensIT contractors such as BBN, BAE Systems, Fantastic Data, Penn State University, 

Cornell University, Virginia Tech., to name a few).  

The rest of this report will provide further details about these individual 

contributions as well as the methods we used, assumptions we made, and procedures we 

followed. 

Note. Our original proposal also included several tasks related to image and video 

processing. However, those portions were not funded by this program. 

1.3  Methods, Assumptions and Procedures 
The following pieces of work were done internally at the University of Maryland.  

1.  Definition of a task. 

2.  Description of a declarative tasking language in which tasks may be expressed.  

3.  Algorithms to implement the Task Engine.  

4.  Algorithms for Merging tasks.  

5.  Experiments assessing the efficiency of many of these methods.  

In this section, we describe the methods, assumptions and processes we put in 

place to develop the scientific underpinnings of these components.  The scientific results, 

a description of our demonstrations and experiments, and a discussion of the process of 

joint experimentation and demonstrations are described later in Section 4.  

1.3.1  Task Definition 
Though several abstract definitions of the task exist in the AI planning literature, 

none of them is adequate for the purposes of tasking a network of sensors, because 

tasking networks of sensors is not the same thing as an AI plan.  

We approached the problem of task definition as follows:  
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• First, we came up with a set of sample tasks that an analyst/user may wish to specify 

that require sensing capabilities.  

• Second, we examined all these sample tasks with a view to determining whether they 

shared any commonalities.  In other words, is there a common abstraction that 

captures all these diverse tasks as special instances of the abstraction?  

• Third, we analyzed the abstraction for possible shortcomings and/or limitations.  

Our abstraction of a task had four major components.  

1.  Where should the task be performed?  This component specifies a geospatial region 

where the task is to be performed.  

2.  When and how frequently should the task be performed.  Some tasks need to start now 

and be continuously running forever, while other tasks may have a finite time horizon, 

with updates on the task required only every hour.  

3.  What should the task look for?  This component specifies whether the task is looking 

for certain vehicle activity patterns somewhere or whether it is looking for acoustic 

patterns or something else altogether.  

4.  What should the task do when it finds what it is looking for.  For example, if the task 

finds that enemy activity near the Al-Natan nuclear site is dramatically increasing, should 

it just notify the analyst?  Should it correlate the sensor readings with background 

intelligence data, analyze it using a threat module, and send the resulting fused 

knowledge to the analyst?  

We came up with a formal mathematical definition of a task that incorporated the 

above four components and we verified that this mathematical definition can capture the 

example tasks we had started out with. 
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1.3.2  Declarative Sensor Tasking Language 
Clearly, the definition of a language for tasking sensors depends upon our 

definition of a task.  As our notion of a task had four components - what to monitor, when 

to monitor, where to monitor, and what to do when the task monitoring condition is 

satisfied, we needed to make the following choices.  

• Choice of a geospatial region definition:  There are many possible ways of 

specifying geospatial regions.  We assumed that all geospatial regions of interest 

would be rectangles with two horizontal and two vertical sides.  

• Choice of a temporal specification:  Again, there are many possible ways of 

specifying times of interest.  In the types of sensor tasking examples we saw, we 

chose to specify time periods via a triple - a start time (for the monitoring) an end 

time (for the monitoring) and a frequency describing how often the task condition 

should be evaluated.  

• Task condition:  The hardest part of our research was determining how to specify 

conditions to be monitored.  This is because the conditions being monitored could 

span multiple sensory nodes as well as, potentially, third party data sources.  We 

showed how the notion of a code call condition[12] can be used to specify task 

conditions.  

•  What actions to take when task conditions are satisfied:  There are many choices 

in specifying how to react to a task monitoring condition being satisfied.  We 

examined some alternative possibilities and decided that the criterion of having a 

declarative, easy to modify specification was best met with rules of the form “if 〈task 

condition〉 then DO 〈action〉”. The key therefore was defining a syntax for task 

conditions. 
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1.3.3  Algorithms to implement Task Engine 
The job of the task engine is to determine which sensor will execute which task or 

subtask.  In order to execute a task or a subtask, the sensor in question must be at the 

right place at the right time and furthermore, should have the right capabilities.  In 

addition, the load on the sensor should not be so high that it cannot satisfy other tasks it 

has previously been charged to perform.  

Our approach to this problem was as follows.  

• First, we came up with a mechanism to define what tasks each individual sensor can 

perform and how those tasks can be accessed by external programs.  

• Second, we came up with a formal definition of a Task Assignment Problem (TAP 

for short).  This formulation of a TAP assumes the existence of a model of load on the 

network, but it does allow different tasks to take varying amounts of time.  

• Third, we analyzed the complexity of the TAP problem using computational 

complexity theory.  This allows us to assess the complexity of the problem 

independently of any specific algorithm (of course an algorithm is good only if it falls 

within the complexity classification of the problem).  

• Based on the above analysis, we developed alternative algorithms that could be used 

to task a network of sensors.  

• Finally, we developed heuristic algorithms to solve this problem as well.  These 

algorithms may not find an optimal way of assigning sensors to solve a given 

problem, but they are guaranteed to run much more effectively than an algorithm that 

attempts to solve the combinatorial optimization problem involved in solving the 

TAP exactly. 

1.3.4  Algorithms for Task Merging 
A single user or analyst can generate numerous tasks, which in turn can generate 

numerous subtasks.  Given a set of tasks {t1,...,tn} to perform, one way is to 
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sequentially execute the tasks in some order.  Unfortunately, this may not be the most 

efficient way of executing the tasks. For example, we may have two tasks:  

1.  Task t1 counts the number of vehicles going in or out of the suspected Al-Natan 

nuclear plant.  

2.  Task t2 counts the number of Heavy Equipment Transports (HET) going in or out of 

the suspected Al-Natan nuclear plant.  

Clearly, it is possible to merge both these tasks into one task – every time a 

vehicle is detected, increment the vehicle count by 1 and if the vehicle is an HET, then 

increment the HET count by one as well.  

Our work in this topic included the following.  

• First, we studied existing algorithms for merging activities.  People have studied the 

possibility of merging activities in many fields (e.g. designers of disk servers try to 

merge requests to read addresses on disk to reduce the search time on disk;  designers 

of multimedia video servers try to service multiple clients by merging them into one 

stream and so on).  We determined that the algorithms closest in spirit to what we 

wanted to do were on Multiple Query Optimization (MQO) in databases.  

• Our first step was determining whether algorithms used for multiple query 

optimization in databases worked.  Unfortunately, we quickly determined that the 

optimization algorithms themselves take a prohibitive amount of time to run.  

• Our experiments seemed to indicate that algorithms based on the A* algorithm would 

work fine as long as only a relatively small number of queries (under twenty, but 

preferably near ten) were being merged.  

• As a consequence, we were forced to consider alternative strategies.  Suppose we had 

N task conditions to evaluate and only a maximum of M (where M is much smaller 

than N) task conditions could be merged efficiently.  We considered the idea of 

splitting our M requests into at least ⎡M/N⎤ buckets (there can be more buckets than 
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this) such that each bucket contains N or fewer task conditions.  The idea is that the 

conditions inside a bucket are all similar and/or share common computations.  By 

grouping together similar task conditions in one bucket, we hope to get a big savings 

in merging the items inside that bucket.  By having multiple buckets, each being 

merged, we wanted to derive a significant savings compared to the case where the 

task conditions are independently evaluated.  

• We first designed algorithms to optimally split the set of N task conditions into such 

buckets.  

• We then analyzed the complexity of this problem and realized it was Non-

deterministic Polynomial-time hard (NP-hard).  

• As a consequence, we later developed heuristic algorithms for this problem. 

1.3.5  STM System 
One of the key components of our effort was to build a Sensor Task Manager 

(STM) implementing the theory developed in the work described in the preceding 

sections.  The STM is a collection of modules documenting this effort.  

The STM modules themselves involve the design and implementation of a wide 

variety of state of the art algorithms - these are described in full detail in Section 4, along 

with a rationale for why they were needed and who used them.  In this section, we merely 

list the key modules.  

1.  Task specification language module.  

2.  Task Generation library development.  

3.  Cougar communications development conduit to work with Cornell University’s 

(another SensIT contractor) Cougar system.  

4.  Simulation database.  This was used to run experiments.  

5.  Sensor Network Gateway Development - this was used to talk to the sensor network.  
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6.  SensIT SH4 Gateway Task and Action Module.  This was used to communicate with 

the underlying SensIT data query processes.  

7.  Imager control, manual trigger (SH4) module development.  This component was used 

to interface with Sensoria’s imager nodes.  

8.  In-Field alternate track generation support extension work.  This was used to generate 

coerce tracks from target detection data.  

9.  In-Field external imager trigger prediction support.  

10.  Cache-borne task specification table development.  This was used to specify tasks in 

cache. 

11.  OpenMap SensIT GUI. UMD developed a graphical user interface using tasks which 

could be specified by analysts/war fighters.  We built this GUI using BBN’s OpenMap 

graphical information system (GIS) library.  

12. OpenMap GUI applet development.  This was developed in order to support use of 

our OpenMap based GUI over the web by other SensIT contractors.  

13.  Modified classification code and shape display.  This was used to render target 

shapes in the GUI.  

14.  Track history GUI line and color display.  This component showed tracks aggregated 

from detections data on the GUI.  

15.  Cache-borne codebook table development.  The codebook database stores the 

entity/value representations for the underlying SensIT network (i.e. 105 = “M1-A Tank”, 

or 23 = “Passive InfraRed sensor”).  This component implemented the network codebook 

internally (in-cache), allowing client interface functionality without the previously 

required external database/network connections. 

16.  OpenMap GUI imager query display. 
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1.4  Results and Discussion 

In this section, we describe, in greater detail than we have done thus far, the key 

results underlying our approach to querying and tasking sensor networks.  Over the 

almost four years of funding received under the SensIT program, we addressed and 

solved many problems related to the theory and implementation of systems to task sensor 

networks.  In this section, we present one subsection for each problem encountered.  

These range from theoretical problems to practical implementation and/or demonstration 

problems.  For each such problem, we present the following:  

1.  Problem statement:  First, we present a statement of the problem.  This is usually 

done in English.  Where appropriate, some mathematical notation and/or figures may be 

used.  

2.  Problem solution:  We then describe our solution to the problem.  Again, this is done 

in English rather than in mathematical terms or in hardcore algorithmic terms.  Where 

appropriate, we discuss the pros and cons of the solution.  

3.  Collaborators:  We describe with whom we collaborated.  

4.  Users:  We list those (in SensIT) who have used the research.  

5.  Discussion:  Where appropriate, we list additional remarks/discussion. 

1.4.1  Task definition 
Problem Statement:  Despite the fact that users have a good idea of what constitutes a 

sensory task, we had not previously come across a definition of a sensory task.  Our 

problem was to define a sensory task appropriately, given the context of the SensIT 

program.  

Problem Solution:  Our solution to this problem involved several steps.  

1.  First, we had extensive discussions with our team members as well as selected SensIT 

participants in order to discern what people in the SensIT community thought a task was.  
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2.  Several example tasks were proposed during the above discussions.  

3.  Based on these discussions, we defined a task to be a 5-tuple (Map, Rect, Time, Cond, 

Act) where:  

• Map is the id of some map;  

• Rect is a 4-tuple (llx, lly, urx, ury), where (llx, lly) represent the lower left corner of a 

rectangle and (urx, ury) represents the upper right hand corner of a rectangle.  The 

rectangle itself has sides parallel to the x and y axes (i.e. the rectangle cannot be 

“crooked.”).  

•  Time is a triple (st, et, fr) where st is the start time, et is the end time, and fr is a 

frequency.  Intuitively, this says that the time frame during which the task is “active” 

is from st to et, and that the task condition must be checked at least every fr units of 

time.  

• Cond is a condition that is expressed in some syntax and which allows the user to 

express conditions spanning multiple sensors and/or multiple data sources.  

• Act is a set of condition/action pairs.  Intuitively, if Cond is true, and if the pair (C,A) 

is present in Act, then we take action A if some further condition C is true. 

Collaborators:  The work on this was done by T.J. Rogers and V.S. Subrahmanian.  

Users:  A version of this work was implemented in the Sensor Task Manager, 

components of which were used by  

• British Aerospace (BAE)/Nashua 

• BBN Technologies (BBN)  

• Fantastic Data (FData)  

• Penn-State University (PSU)  
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• University of Tennessee (UTK)  

• University of Wisconsin (UWI)  

• Virginia Tech (VTech).  

In the rest of this report, we will often use the term “Group of 8” to refer to this 

set of 7 SensIT contractors plus the University of Maryland.  

Discussion:  There is one simplifying assumption in the above definition, namely that 

users can only specify rectangular regions of interest.  However, this is not a big 

limitation.  If the user wants to specify interest in a single point on a map, he can set 

urx = llx and ury  = lly.  If the user wants to specify a non-rectangular region, he can 

usually approximate it via a set of rectangles.  In addition, in STM, we have access to 

OpenMap which allows zooming in and out.  This, combined with the possibility of using 

a set of rectangles, prevents the requirement that all regions of interest be rectangular, 

from being particularly restrictive. 

1.4.2  Backend Task Definition Language 

Problem Statement:  The notion of a task, as described above, is extremely complex. 

Though the Rect and Time components are easy to represent computationally, task 

conditions and actions pose a major challenge.  How can we write task conditions that 

span the data coming from multiple sensory devices and correlate those with data from 

non-sensory background sources?  

Problem Solution:  We considered a number of alternative solutions.  First, there has been 

a huge amount of work in sensor fusion (such as that of LSU and PSU in the SensIT 

program).  In general, sensor fusion aims at integrating analog signals from sensors.  

However, analysts cannot be expected to write queries involving analog signals.  Based 

on the types of sensor nodes picked for the SensIT program, we realized that the type of 

sensor nodes available to SensIT all had Application Program Interfaces (APIs).  APIs are 

sets of functions that can be invoked by external programs.  
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This proved key to the realization that the mechanism of code call conditions[5,12] 

can be used to express task conditions across multiple diverse sensory devices.  Our STM 

uses the concept of a code call condition, scaled back somewhat to allow easy articulation 

of task conditions by war fighters and/or analysts (using a GUI) to express task 

conditions.  In short, rather than using sensor fusion methods directly, we found that 

accessing sensor APIs was more convenient for tasking sensor networks.  

Collaborators:  This work was done by T.J. Rogers and V.S. Subrahmanian at the 

University of Maryland.  

Users:  A version of this work was implemented in the STM program.  All Group of 8 

members implicitly used this technology (though it was transparent to them).\ 

1.4.3  Task Merging 

Problem Statement:  Given a set of tasks that need to be performed by a single sensor, is 

there a way to integrate the tasks together so that the load on the sensor is relatively low?  

Problem Solution:  In view of the fact that code call conditions can be used to express 

task conditions, we were able to show that any algorithm for heterogeneous Multiple 

Query Optimization (MQO) can be used to merge task conditions.  There are several such 

algorithms.  

We conducted detailed experiments to see which of these techniques we should 

use. First, we studied variations of Sellis’ MQO algorithm.  It turned out that these 

algorithms did not scale very well to tasks even on simple relational databases.  As a 

consequence, we concluded that using Sellis’ MQO algorithm would not work for 

effective task merging.  

In addition, we developed methods to bucket sets of tasks based on spatio 

temporal nearness.  For this, we developed a heterogeneous spatial relational algebra.  

Given a region on the ground that the analyst is interested in, this algebra can be used to 

determine which sensors are in the region in question, as well as which sensors are near 

in a temporal sense.  
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Collaborators:  Marat Fayzullin, V.S. Subrahmanian, and T.J. Rogers. 

1.4.4  Task partitioning 

Problem Statement:  As we saw from the preceding subsection on task merging, standard 

MQO algorithms for task merging just don’t work effectively.  As a consequence, we 

were faced with the problem of how to achieve task merging effectively.  

Problem Solution:  Our solution to this problem was one of the major contributions of 

this research.  We noticed that if we have N task conditions to merge, but at most M task 

conditions can be merged efficiently (this means that merging pays off because the time 

to merge plus the time to evaluate the merged task conditions is less than the time 

required to sequentially execute the task conditions), then we can try to create a set of 

“buckets” each of size M or less.  The idea is that each bucket contains tasks where 

merging pays off handsomely, i.e. the savings realized by merging the tasks inside the 

bucket are substantial.  The problem then was to determine how best to place the tasks 

inside the buckets.  Our solution to this problem included the following novel 

contributions.  

1.  First and foremost, we developed a formal statement of the task partitioning problem 

using operations research methods in conjunction with the concept of code call 

conditions.  

2.  Next, we proved that the task partitioning problem is Non-deterministic Polynomial-

time complete (NP-complete).  This proof shows that the well known multiple knapsack 

problem can be reduced in polynomial time to the task partitioning problem.  NP-

complete problems are widely viewed in computer science as being impossible to solve 

efficiently (proving this formally is arguably the single most challenging open problem in 

computer science today).  

3.  This negative result caused us to rethink and re-evaluate our strategy.  Should we 

really use bucketing methods like this?  Or should we try something else?  
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4.  We decided to go ahead and consider solutions to the operations research formulation 

of the problem that are suboptimal, but can be computed very fast, as well as solutions 

that find an optimal task partitioning, but are slow (because of the NP−completeness of 

the problem rather than because of any fundamental problem with the algorithm).  

5.  We first came up with a variation of the A* search algorithm, called A*-based, to 

solve the optimization problem exactly.  

6.  In addition, we came up with a Branch And Bound, called BAB algorithm, to solve the 

problem exactly.  

7.  After this, we came up with the unique notion of a cluster graph.  The basic idea 

behind a cluster graph is that given a set of tasks, we create one node for each task in the 

set.  We draw an edge between two nodes, if merging the two tasks leads to a savings.  If 

so, we label the edge with the savings.  

8.  We showed that cluster graphs can be computed very fast, especially if we choose to 

estimate the savings.  

9.  We then developed a number of greedy algorithms to efficiently process cluster 

graphs for computing partitions of task sets (i.e. to decide which tasks go into which 

bucket).  These greedy algorithms were called:  

• Greedy-Basic:  A basic greedy algorithm manipulating cluster graphs.  

• Greedy-WU:  Greedy with weight-update, which updated weights after each iteration.  

• Greedy-NMA:  A greedy algorithm which did not allow tasks to be moved from one 

bucket to another.  

• HillClimb:  A hill climbing algorithm.  

10.  Once we finished this, we decided to run experiments to assess the scalability of 

these approaches.  
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In the first experiment, we compared the running time of our algorithms (Table 1 

lists the results).  It turns out that A*-based ran out of memory, when the number of 

activities exceeded 10, and BAB ran out of memory, when the number of activities  

exceeded 11.  The reason for this is that the OPEN list maintained by A* quickly grows 

overwhelmingly large.  Hence, the tables only show results for 11 activities.  Although 

the A*-based algorithm is faster than BAB, it runs out of memory faster.  Both algorithms 

have much longer running times compared to the heuristic-based algorithms.  This is 

expected, as the problem is NP-hard, and both A*-based and BAB algorithms find 

optimal solutions.  

 

Table 1:  Running times of the Algorithms (in milliseconds). 

No of 
Activities 

A*-
based 

BAB Greedy-
Basic 

Greedy-
NMA 

Greedy-
WU 

Hill 
Climb 

5 17.24 19.84 5.28 5.04 7.92 6.44 

6 53.4 58.26 6.46 6.2 10.72 8.54 

7 142.72 158.44 8.2 7.58 14.84 11.02 

8 479.02 503.5 10.02 9.4 19.26 13.8 

9 1431.7 1657.5 11.94 11.56 25.14 17.16 

10 4189.44 3432.38 15.68 13.8 31.4 20.92 

11  4149.56 18.7 16.14 38.12 24.96 

 

As the heuristic algorithms were very fast, we increased the number of activities 

to be partitioned.  We first fixed the overlap degree and overlap probability constant at 

0.2, and ran two experiments.  In the first experiment, we kept the number of activities 

within a cluster constant at 25, and in the second, the number of activities within a cluster 

was 50.  
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In this experiment, the HillClimb algorithm ran out of memory around 400 

activities and did not scale up very well.  Recall that the HillClimb algorithm uses the 

same expansion function as the A*-based algorithm, but keeps the best sub-partition at 

each node.  When the number of activities in the input set exceeds 350-400 activities, the 

algorithm generates too many children nodes and runs out of memory.  Therefore, we 

only show the scalability results for the greedy algorithms.  This result suggests that the 

cluster graph representation is a very effective heuristic.  

When the number of activities within a cluster is 25, the running times of the 

algorithms are very close, and they handle 1000 activities in about 140 secs.  On the other 

hand, when the number of activities within a cluster is increased to 50, the execution time 

of the Greedy-WU algorithm is much larger than that of the other two greedy algorithms. 

This is expected because the Greedy-WU recomputes edge weights after each iteration. 

Moreover, all algorithms run much slower in the second experiment.  

As the greedy algorithms may compute suboptimal solutions, we want to see how 

much “worse” the solutions produced by these algorithms were compared to the optimal 

solution.  We used the following metric to compare the quality of plans produced by the 

algorithms. When we have a set A of activities, and a partition P of A, the cost reduction 

percentage realized by P is given by: 

(1) 

The rationale behind using percentage savings instead of absolute numbers is the 

fact that we have simulated the cost estimation function. 

We first wanted to see how our savings were affected by changes in the amount of 

overlap between activities.  

In general, the solutions produced by the Greedy-Basic algorithm are about 

0.8−13% worse than the optimal solutions.  The solutions produced by the Greedy-NMA 
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algorithm are 0.8–20% worse, and the ones produced by the Greedy-WU algorithm are 

0.06−9.4% worse than the optimal solutions.  The quality of the solutions produced by 

the HillClimb algorithm is not as good as the greedy solutions, and they are about 

2.4−23% worse than the optimal solutions.  As we increase the overlap degree in the 

input activity set, the difference between the savings generated by the heuristic 

algorithms and the ones computed by the optimal algorithms also increases.  

Although we could not get the optimal solution after 11 activities, we still ran the 

greedy algorithms up to 1000 activities to see the quality of partitions they produced.  We 

observed that the performance of the greedy algorithms does not degrade, and stays about 

the same as we increase the number of activities in the input sets.  The Greedy-NMA 

algorithm produces the worst results as it explores the smallest number of alternatives 

when generating partitions.  The quality of the partitions produced by the Greedy-Basic 

and the Greedy-WU algorithms are comparable.  When the number of activities within a 

cluster is smaller, and hence there are fewer edges in the cluster graph, the Greedy-Basic 

algorithm does better than the Greedy-WU.  However, when the number of activities 

within a cluster increases, the Greedy-WU algorithm catches up with the Greedy-Basic 

algorithm.  

These results show that although the Greedy-WU algorithm updates weights after 

each iteration, and hence uses more accurate cost saving estimates, it still uses a greedy 

strategy, and is not able to capture the maximal savings.  Recall that the Greedy-WU 

algorithm does not move activities around once it inserts them into components.  The 

Greedy-Basic algorithm on the other hand, tries to adapt its savings estimates as the 

computation of the output partition proceeds by moving activities across components.  It 

turns out that this heuristic is more effective in capturing the real savings than in updating 

weights.  Hence, Greedy-Basic produces higher quality partitions.  Moreover, its running 

time is better than Greedy-WU.  As a result, we believe that Greedy-Basic is the best 

choice among the three.  

Both A*-based and BAB are unable to perform at all, when there are more than 

10-20 concurrent activities.  On larger sets of activities, they both quickly run out of 
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memory — in contrast, the greedy algorithms scale up very effectively when many 

activities occur.  Furthermore, the HillClimb algorithm also does not scale up very well, 

and produces worse quality results than the greedy algorithms.  Therefore, the 

Greedy−Basic algorithm is also the best algorithm among the heuristic based algorithms.  

Collaborators: Fatma Ozcan, V.S. Subrahmanian 

1.4.5  Assigning sensors to tasks 
Problem Statement:  There are many cases where a multiplicity of sensing devices can 

perform the same task.  For instance, we could have multiple sensors, each of which can 

track vehicles moving in a given region - these could be motion sensors or image sensors 

or vibration sensors.  Given a set of sensors, each of which is capable of performing a set 

of low level or high level tasks, how should tasks or subtasks be allocated to them so that 

the performance of the sensor network as a whole is optimized?  

Problem Solution:  We considered a number of alternative solutions.  However, based on 

the solution to the task merging problem, we decided to proceed as follows.  

1.  First and foremost, we provided a formal, mathematical definition of the problem, 

which used a mix of operations research/optimization style terminology, as well as 

terminology involving sensor capabilities.  

2.  We introduced the notion of a service table, describing which agents provide what 

services.  In addition, this table provides information on related parameters, such as 

average computation time for the answer, average latency, average size of answers 

returned, etc.  These parameters provide valuable statistics in determining how to assign 

tasks to sensors.  

3.  Next, we showed that the problem of optimally assigning sensors to handle a given set 

of tasks in NP-complete.  Most computer scientists believe that NP-complete problems 

cannot be exactly solved efficiently.  As a consequence, we were forced to consider 

methods that rapidly provided suboptimal solutions as compared to methods that took 

exponential amounts of time to provide an exact solution.  
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4.  Next, we proposed an architecture which uses a “generic” cost function — this is very 

general and hence, we may plug in different cost models for individual costing of 

network operations, sensor node computations, etc., and use the cost function to merge 

them. 

5.  In addition, we provided algorithms that:  given a desired task condition C to be 

solved, will produce a way of assigning sensors to the atomic subtasks of C, as well as a 

way of ordering the atomic subtasks of C so as to optimize some performance criterion.  

Collaborators: Fatma Ozcan, Leana Golubchik, and V.S. Subrahmanian. 

1.4.6  Low-bandwidth tasking framework 

Problem Statement:  In addition to the logic oriented declarative tasking framework, we 

also proposed an alternative task specification language syntax for prompting/extracting 

data from a distributed, low-power wireless, sensor node network.  Considering the target 

platform, efficiency (read low-bandwidth) was to be a major consideration in the final 

encoded solution.  

Problem Solution:  Drawing on experience from ongoing work on agent technology 

research platform (Interactive Maryland Platform for Agents Collaborating Together – 

IMPACT), the UMD team quickly cast the basic query syntax as a set of task, action, and 

constraint references, which are wrapped by a simplified token-based hierarchical 

structure syntax (XML, but without all the embedded descriptive tags).  While the “task” 

entry (one per specification) equates to a specific data generating program function (such 

as detect or track), the accompanying set of (0 or more) “action” references map to 

specific program procedures which, in-turn, do something useful with the task generated 

data.  The (optional) constraint entries typically apply as run-time data filters (pushed 

down as deep as possible), while evaluating the data generating task functions.  

Collaborators:  UMD only – This in-house effort was authored by V.S. Subrahmanian 

and T.J. Rogers.  
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Users:  All SensIT teams (i.e. Group of 8) who used UMD’s final Graphical User 

Interface (GUI) as part of a system demonstration ultimately used this underlying 

language and syntax.  The list includes British Aerospace (BAE)/Nashua, BBN 

Technologies (BBN), Fantastic Data (FData), Penn-State University (PSU), UMD, 

University of Tennessee (UTK), University ofWisconsin (UWI), and Virginia Tech 

(VTech).  

Discussion:  To promote the maximal dynamic system configuration, UMD proposed to 

the SensIT quorum that network introspection calls should be included as part of the 

SensIT platform Application Programming Interface (API).  The availability of such 

functions would minimize the quantity of hard-coded (so-called “magic”) values 

embedded in the various software layers and thus readily support network reconfiguration 

(without requiring recompilation).  Using such functions, the client interface would query 

the network regarding its capabilities and present that to the user (rather than making 

assumptions based on hard-coded values).  UMD also proposed that the various target 

and sensor references should be encoded in the task specification results by suitable 

numeric values; the actual textual references could then be readily retrieved by standard 

SQL queries to a networked database engine. 

1.4.7  Task generation (TaskGen) library 

Problem Statement:  At this point in the SensIT program, our query and task 

language/syntax was destined for use by Virginia Tech (the client GUI developer) as part 

of a communications layer for extracting data from the SensIT network interface (slated 

for development by Cornell).  At the time, our existing query language/syntax 

documentation was descriptive only; additionally, no example code was available from 

which developers could learn or extend.  

Problem Solution:  We endowed our query system with a set of Java classes which 

provided a fairly simple but complete API;  given the target region coordinates (client 

thread input parameters), the API spawns a pop-up dialog through which users can 

specify the SensIT network query parameters (and invoke the process execution) with 

minimal key-board dependency (important for palm-top GUI’s).  This solution included 
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two “base-class” definitions which encoded generic API’s for building both 

communications conduit and action library components;  this provided a mechanism by 

which the system could be easily extended to support communications with new (or 

alternate) hardware/software platforms and define additional “actions” for processing the 

task generated data.  Of note, our solution included several default class extensions which 

rendered some sample synthetic results for basic testing with upper software layers 

(which could be developed by third parties).  

Collaborators:  UMD and Virginia Tech developed the interface as a piece of 

“middleware” for GUI applications; modifications, updates and corrections were applied 

according to feedback provided by Virginia Tech’s Mark Jones, Jae Park, and their crew 

of graduate students.  

Users:  UMD and Virginia Tech (initially). Later the entire Group of 8.  

Discussion: During the numerous SensIT gatherings (teleconferences, PI meetings and 

such), we continued to promote the need for introspective API’s at the network 

communications layer to minimize the possibility of hard-coded configuration values; 

these API calls would provide information regarding available task and action definitions, 

as well as any value to text code mappings (i.e. 105 = “M1A Tank”, or 23 = “Passive 

InfraRed sensor”) imposed by the underlying software layers.  At this point, we also 

began suggesting that all software layer architects provide some sort of simulation data 

for basic testing with higher software layers; the availability of simulation data at every 

layer would greatly simplify debugging segments of the SensIT platform while the whole 

is unavailable.  At this point in the development process, there was generally an overall 

lack of data (real or simulated) for testing the various layers (either independently or in 

functional groups). 

1.4.8  Cougar communications conduit 
Problem Statement:  The Virginia Tech team needed help using the (newly defined) 

UMD and Cornell API’s for linking their GUI to the underlying SensIT network platform 

(a collection of Microsoft WindowsCE served sensor nodes).  One of Cornell University’s 
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major components was to develop an external API for communicating with the 

underlying SensIT network hardware processes (then based on the WindowsCE platform 

– a “PocketPC” platform precursor).  Cornell had developed WindowsCE embedded 

“Query proxy” processes and was developing connectivity for this with its home-grown 

“Cougar” distributed database system.  The researchers at Virginia Tech were busy with 

their GUI development, and generally required help with the Cougar required JDBC API. 

In short, the Virginia Tech team needed some pointers for dealing with the Cougar 

communications layer.  

Problem Solution:  We installed a local copy of Cornell’s Cougar database server (for 

initial testing without the SensIT node network) and encoded the necessary Cougar API 

calls as a plug-in communications conduit in our task generation library.  Of note, since 

network introspective calls were not generally supported by the Cougar API, we chose 

(for this conduit) to read them from locally maintained database files via standard API 

calls (i.e. local codebook values defined in MS−Access tables and accessed via 

JDBC/ODBC data queries).  

Collaborators:  Cornell University (Phillippe Bonnet), Virginia Tech, UMD.  

Users:  UMD and Virginia Tech.  

Discussion:  The Cougar interface provided support for a few simple queries and returned 

simple canned data. Of note, the WinCE query proxy code (necessary to test actual 

connectivity with the underlying SensIT node network) was generally unavailable until 

after our initial field test integration (SITEX01).  

While both Cornell and UMD attended the field integration exercise (SITEX), 

their time-slots did not overlap; the Cornell team had already departed the exercise prior 

to UMD’s arrival.  Hence, the Cornell query proxies were unfortunately not part of the 

default node software load and thus were unavailable for UMD’s testing.  As a 

consequence, the Virginia Tech, UMD, Cornell University SensIT node connectivity was 

not testable during SITEX01. 
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1.4.9  Simulation Data Base (SimDB) 

Problem Statement:  Following SITEX01, UMD found itself still without any reasonable 

data to test its interfaces and query control integration with Virginia Tech’s GUI.  While 

Cornell’s query proxy code had recently become available, the working node network 

was not (UMD had two nodes which was far below the minimum number necessary to 

form a reasonable sensor network).  

Problem Solution:  UMD adapted SITEX01 ground-truth data into the “SimDB” conduit 

interface; this provided a limited capability to “play-back” recorded target positions as if 

it were rendered from a SensIT node network query.  During field experiment runs, BBN 

routinely collected ground-truth data via a GPS equipped laptop.  UMD obtained these 

ground-truth files and populated a database from several (about six) of the more 

interesting test run files.  UMD then built a conduit interface (SimDB), which instantiates 

target SensIT network queries as persistent SQL queries over the ground-truth data.  In 

short, “live” tracks are simulated by stepping through the recorded ground-truth data.  

Collaborators:  UMD and BBN.  

Users:  UMD and Virginia Tech.  This work allowed us to fine-tune the GUI/TaskGen 

integration and experiment with numerous display capabilities and modes.  

Discussion:  This work also provided perhaps the first integrated proof-of-concept demo 

capabilities for the Virginia Tech GUI.  

During the next SensIT PI meeting, the quorum generally agreed that the current 

WinCE platform performance was abysmal. Sensoria, the hardware provider, agreed to 

research and field an alternate platform (later identified as a Hitachi SH4 Linux variant). 

While most of the PI groups agreed to move readily to the new platform, Cornell declined 

to commit to a query proxy SH4 port for the next field integration exercise.  Discussed 

options included building an interim ”gateway” server on one of the SensIT nodes and 

using Fantastic Data’s web database (the distributed data cache) as a means of moving 

queries and data around the network.  Of note, the Virginia Tech GUI was demonstrated 

to several key individuals (Dr. Sri Kumar and assorted BBN researchers) during the PI 
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meeting.  While the network communications channel was now in question, the demo 

(over ground-truth data) proved the existing Virginia Tech GUI as a viable 

end−user/soldier interface. 

1.4.10  Preliminary SensIT network Gateway (SH4) interface 

Problem Statement:  Following the PI meeting, UMD accepted the task of exploring the 

feasibility of implementing an interim SensIT network gateway for use in the next field 

integration exercise.  

Problem Solution: UMD built a Linux PC workstation, loaded the available SH4 cross-

compilation tools, and then began to develop the gateway server.  As this “component” 

actually spans two separate network realms (remote Java client vs. embedded SensIT 

node process), the solution must be viewed as two separate development issues.  

To solve the lower level issue, we developed a Linux SH4 based TCP/IP 

command server, which ultimately manipulates low-level function pointers to provide 

answers for client rendered one-time and persistent queries.  This interface supports 

SensIT network introspection so that client interfaces can discover the underlying 

network capabilities (and present that representation in the GUI).  This interface also 

implements a generic API for the various task functions and action procedures necessary 

to support the desired user queries (this makes the implementation readily extendible).  

To solve the client issue, we built a conduit interface (Gateway), which 

instantiates target SensIT network queries as gateway TCP/IP commands and converts the 

resulting data stream back into TaskGen result objects.  

Collaborators:  UMD only.  

Users:  UMD initially, but eventually included Group of 8.  

Discussion:  While this proof-of-concept piece solved the initial client to/from SensIT 

network communications void, it remained unconnected with the actual low-level data 

query processes.  These lower level connections required more experimentation with the 

evolving Sensoria WinsNG and Fantastic Data APIs (see next section). 
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1.4.11  Preliminary SensIT SH4 gateway task and action module set 
development 

Problem Statement:  The current gateway interface lacked connectivity with the actual 

underlying SensIT network data query processes. Moreover, the SensIT quorum had yet 

to agree to a base set of supported user queries or shared (cache) data format schemas.  

Problem Solution:  UMD implemented a base set of gateway task code extensions, which 

mapped user queries to the underlying, distributed, Fantastic Data cache processes.  This 

base set of tasks included the user queries “Ping” (non-persistent/retrieves current node 

status reports), “Detect” (persistent/retrieves current and updated target detection 

reports), and “Track” (persistent/retrieves current and updated target tracking reports).  

Collaborators:  UMD and Fantastic Data.  

Users:  UMD and Virginia Tech (initially), and Group of 8 later.  

Discussion:  The Gateway conduit ↔ SH4 gateway ↔ data cache layers effectively 

replace the functionality previously provided by Cornell’s Cougar database ↔ Query 

Proxy processes.  

In addition, at this point the inter-module development process remained hindered 

by a general lack of play-back test data.  Moreover, most PI groups lacked sufficient node 

inventory to establish a working SensIT network.  As such, basic inter-process debugging 

remained difficult at best.  

The BBN Pre-SITEX02 integration meeting also highlighted, perhaps, a support 

oversight encountered by several PI groups.  Future remote collaborative efforts should 

either clearly announce a lack of developer support or provide such an interim service.  

For in-house development and testing, UMD and several other PI groups had installed the 

necessary Linux development environment on stand-alone PC’s.  Here, we happily 

implemented, tested, and cross-compiled the necessary source code for SH4 node 

execution.  As expected, once all was well, we committed the various software packages, 

via Internet connection, to BBN’s CVS repository.  Upon preparing for the 
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Pre−Integration meeting, many of us assumed we’d just take our Windows laptops to the 

meeting, plug into BBN’s development network, setup a work environment, and continue 

coding where we left off. Alas, this was not to be.  BBN’s Wind-Tunnel Linux setup was 

not equipped sufficiently to support such a bevy of needy programmers. Moreover, the 

primary available network connections were NOT connected to the Internet and as such, 

lacked access to the BBN repository server.  As for UMD, we overcame this problem by 

building a temporary work environment on Fantastic Data’s Linux laptop from backup 

files, which we had fortunately brought on a zip disk. 

1.4.12  Imager control, manual trigger (SH4) module 

Problem Statement:  During the Pre-SITEX02 integration meeting, Sensoria revealed the 

first imager node (a node with a software controlled digital camera).  BBN was anxious 

to get someone to adapt an interface to it and encouraged UMD to give it a try.  

Problem Solution:  Just prior to SITEX02, we experimented with an imager node and 

developed both a client GUI control panel (allowing remote modification of the imager 

configuration) and a gateway task module to manually trigger the imager and return the 

information regarding the rendered image(s).  

Collaborators:  UMD and Sensoria.  

Users:  UMD and Virginia Tech.  

Discussion:  At first glance, the Imager API appears rather simple; triggering the imager, 

in-fact, is simple.  Obtaining a list of the rendered images, however, turned out to be non-

trivial. On closer inspection, we discovered that the imager node actually implements two 

computers.  One unit controls the camera and the other is similar to the standard WinsNG 

node (commands and data get shared between the two units via internal Ethernet 

protocols).  Unfortunately, the embedded computers in our test imager node(s) do not 

time synchronize at boot-up.  This confounds the image name lookup following a trigger 

event as, a) image transfer is not immediate, b) the trigger command does not prompt the 

client process when the image transfer is complete, and c) time stamped image file names 
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cannot be guessed, since the camera clock, from which the time stamp applies, is not 

synchronized with the base WinsNG client process clock.  

Of note, the current file name discovery code, written by one of BBN’s field reps 

(Jimmy) during SITEX02, works by reading the local timestamp at trigger time, waiting a 

given period (for expected file transfer), and then trying to find the image files whose 

time stamp closely matches that of the recorded trigger time.  While this method works a 

majority of the time, it remains somewhat intermittent; this is to say that the imager 

trigger task fails to report the generated image name about 20% of the time. 

On the very last day of SITEX-02, we managed to see live end-to-end 

connectivity using the Virginia Tech GUI.  Detection and tracking result updates were 

painting to the screen and we finally managed to process a system predicted imager 

trigger which, in-turn, captured the dimly illuminated target vehicle passing before the 

imager node.  Unfortunately, a majority of the SITEX02 participants had already 

departed. These final events were only witnessed by those monitoring the network from 

the base-camp. 

1.4.13  In-Field alternate track generation support extension 

Problem Statement:  Part-way thru SITEX02, BBN requested a gateway compatible 

mechanism, which would allow them to both export SensIT network target detection 

records and import externally rendered target track update records.  

Problem Solution:  UMD implemented a two-fold solution. First, we 

implemented/adapted a gateway export action module, which wrote detection query 

results to an externally accessible (outside the SensIT node network) data file.  Next, we 

implemented/adapted a gateway import task module, which would read BBN’s MatLab 

generated track result records (from the externally accessible data file) and insert the 

track updates into FData’s distributed data cache.  With these two components running 

(simultaneously but from separate gateway processes), we once again had complete data 

flow channel from the Signal processing layer, all the way up to the client GUIs. 

Collaborators:  UMD and BBN.  
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Users:  Virginia Tech, UMD, Fantastic Data, BBN.  

Discussion:  This component allowed us to continue testing the numerous software layers 

in PSU’s absence. 

1.4.14  In-Field external imager trigger prediction support modifications 

Problem Statement:  Happy with the recent external tracker adaptation success, BBN 

desired similar gateway modifications for responding to an externally driven image 

trigger prediction process.  

Problem Solution:  UMD implemented/adapted a gateway import task module. Initially 

similar to the Track Import task rendered (see section 4.13), this module controlled an 

SH4 process, which would monitor the time and trigger the imager according to the 

predicted target proximity time stamp.  

Collaborators:  UMD and BBN.  

Users:  UMD and BBN. 

1.4.15  Cache-borne task specification table 

Problem Statement:  Following the Santa Fe PI meeting, the SensIT quorum decided to 

drop the Virginia Tech GUI from the base software configuration (also called SenSoft).  

This decision quickly caused some internal SensIT group fragmentation and lead 

Fantastic data to experiment with an enhanced signal processing control mechanism;  

Cornell, in-turn, voiced interest in cache access to our query specification entries.  UMD  

proposed injecting its gateway query specification data into the distributed data cache for 

easy 3rd party access.  

Problem Solution:  UMD modified the gateway server module to create (if necessary) 

and maintain a set of cache-borne query specification tables, derived from the gateway 

client requests.  

Collaborators:  UMD only.  
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Users:  UMD, Fantastic Data initially, Group of 8 eventually. 

1.4.16  Initial OpenMap based SensIT GUI 

Problem Statement:  BBN was interested in the feasibility of using an OpenMap based 

GIS interface to interact with UMD’s gateway interface libraries in an effort, perhaps, to 

reuse much of what had already been developed and tested.  The UMD team, suddenly 

faced without a map-based GUI (as the SensIT quorum had previously decided not to use 

the Virginia Tech GUI) for displaying, making sense of, and debugging the often 

numerically intensive query results, was also curious regarding OpenMap adaptability as 

a Virginia Tech GUI replacement.  

Problem Solution:  UMD developed an initial OpenMap data layer interface, which 

served as a proof-of-concept piece for interacting both with the BBN’s OpenMap and 

UMD’s task generation (TaskGen) interface.  Shortly thereafter, we implemented our 

initial stand-alone, multi-layer, OpenMap GUI through which the user could define, 

execute, and observe the results of SensIT network target detection and track results.  

Collaborators:  UMD, BBN, Virginia Tech. 

Users:  UMD initially, Group of 8 eventually.  

Discussion:  Shortly after fielding the initial OpenMap interface, we revisited Virginia 

Tech’s GUI and noted many of its useful display features. Many of these were later 

mimicked in our OpenMap GUI. 

1.4.17  OpenMap GUI applet 

Problem Statement:  Several SensIT groups voiced interest in experimenting with our 

OpenMap based GUI shortly after our initial release.  Unfortunately, at that time, it was 

very much still a work-in-progress and we did not favor the notion of supporting client 

configuration and update issues on such an “Alpha” package;  delivering this utility as a 

web embedded applet, however, would serve to reduce the maintenance headaches, 

demonstrate client portability, and global access possibilities.  
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Problem Solution:  The UMD team quickly repackaged the OpenMap GUI as a Java 

applet, learned the separate Netscape/Explore HTML applet embed syntax, and 

experimented with the system property settings, which are necessary for an applet to 

function as a stand-alone application. 

Collaborators:  UMD only. 

Users:  The Group of 8 team. 

Discussion:  Prior to Sun’s Java 2, version 1.4, release, such an applet was generally 

impractical due to standard Java “Sand-box” issues.  Java 2, v1.4, however, provides 

such system property override capability.  Of note, additional ease-of-use could be 

provided were this code served via Java’s “WebStart” library.  Here, users would not 

need to pre-set the system properties.  Rather, they could simply invoke the package via 

URL reference (without a browser), and the WebStart interfaces would prompt the user 

for permission to run and then down-load and execute the necessary resources (without a 

browser).  

In late August, 2002, UMD, Fanastic Data, and BBN collaborated to demonstrate 

one of the first widely distributed uses of BBN’s Waltham SensIT node test bed.  For this 

demonstration, BBN manned the node network, and provided target personnel and 

vehicles. Meanwhile, Fantastic Data controlled the data cache and signal processing 

layers from their San Francisco office. Finally, sitting in Dave Shepherd’s Virginia 

office, UMD defined and controlled SensIT network queries via the live Web-launched 

OpenMap GUI. Fantastic data’s collaborative track generator worked well and the GUI 

accurately painted numerous scheduled BBN target groups, and detected and tracked 

several unscheduled ”targets of opportunity” as they moved through the sensor node 

field.  

Roughly two weeks later, BAE/Nashua demonstrated their collaborative track 

generation utilities (for the same DARPA audience, i.e., Dr. Sri Kumar and Dave 

Shepherd) using the same widely distributed Waltham test-bed, data-cache controls, and 

the UMD OpenMap GUI scenario. BAE/Nashua reported that the tests were well 
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received. Of note, shortly after this, BBN soon began to regard the UMD OpenMap GUI 

as the defacto standard SensIT network GUI. 

1.4.18  Modified classification code and shape display 

Problem Statement:  Shortly after our successful demo for Dr. Kumar, Fantastic Data had 

successfully integrated some of Univ. of Tennessee’s target classification code.  The 

current GUI target shape display was now antiquated. Rather than displaying the target as 

a moving box, the GUI users desired to vary the target shape according to the 

classification type.  

Problem Solution:  UMD looked closely at and attempted to mimic the target 

classification shapes as were previously rendered by the Virginia Tech GUI.  Our 

solution implemented several display shapes to indicate target type categories as follows:  

Small and Large Wheeled Vehicle, Small and Large Tracked Vehicle, Motorcycle, and 

human. UMD also appended the newly defined target type classification codes in its 

codebook database. 

Collaborators:  UMD, Fantastic Data, Univ. of Tennessee and Virginia Tech.  

Users:  Group of  8.  

Discussion:  Following several remote test-bed (Waltham) demo success stories, SensIT 

groups from the University of Wisconsin and Penn State University began voicing 

interest in the OpenMap GUI usage. We advised them concerning the setup requirements 

and soon were fielding questions and comments from these two new user groups as well. 

1.4.19  Track history GUI line and color display 

Problem Statement:  Requested GUI embellishments included an optional target track 

history display and an alternating track display color mode for easy visual separation of 

targets on a cluttered interest area display.  

Problem Solution:  Answering the history request, UMD provided an optional trailing 

line display, which indicates a target’s previous positions (ordered over time). UMD also 
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implemented a rather simple target color display mechanism. Rather than plot all targets 

in the same color, the new method iterates through a set of roughly eight colors.  

Collaborators:  UMD, BAE/Nashua, Univ. of Wisconsin, BBN.  

Users:  Group of  8. 

1.4.20  Cache-borne codebook table development 

Problem Statement:  Just prior to the final SensIT “CapStone” demo, BBN requested a 

TaskGen library modification that would allow reading codebook values directly from the 

SensIT network data cache. The goal was to eliminate the need for external codebook 

database references that were common with the Web launched GUI.  

Problem Solution:  To support this, UMD first modified the gateway to define and 

populate codebook values (if necessary) during gateway initialization. Next, we modified 

the TaskGen initialization routines to support this alternate codebook value resource path.  

Collaborators:  UMD and BBN.  

Users:  Group of  8. 

Discussion:  While these modifications were in-fact on-line for the CapStone demo, it 

had not been entirely tested. To avoid demo-day disasters, we chose to operate the 

OpenMap GUI with codebook values served from a local database (one of the original 

default configurations).  

During the November 2002 SensIT CapStone demo, the UMD OpenMap GUI was 

used successfully by BBN, Fantastic Data, Univ. of Tennessee, BAE/Nashua, PSU, and 

Wisconsin. All demo displays worked reasonably well (content varied slightly according 

to underlying selected generation methods). 
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1.4.21  Finalized in-cache codebook table modification testing 

Problem Statement:  Following the CapStone demonstration, both BBN and researchers 

at Rome labs requested modifications to finalize the final cache-served codebook centric 

GUI.  

Problem Solution:  A closer look at the TaskGen initialization methods resolved this 

issue. Additional configuration file options made this feature an easily selectable 

operation mode.  

Collaborators:  UMD, BBN, Rome labs.  

Users:  UMD, BBN, Rome labs.  

Discussion:  Shortly after the final codebook modifications, BBN requested that UMD 

edit the Task Generation / Gateway Server section of the pending SenSoft application 

manual. UMD returned a heavily edited version, which corrected some of the usage 

misconceptions and provided greater detail regarding the component interoperability. 

1.4.22  OpenMap GUI imager query display modifications 

Problem Statement:  Automated imager usage ultimately proved problematic due to 

constantly recurring data propagation latency issues.  The trigger tasking remains 

functional, but the existing implementation did not include the utilities necessary to 

retrieve and display the rendered images.  

Problem Solution:  As part of a final system “tweak”, UMD adapted some of the image 

retrieval code from the original Virginia Tech GUI, and provided a display and control 

mechanism for the OpenMap GUI. 

Collaborators:  UMD and Virginia Tech. 

Users:  UMD. 
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1.5  Conclusions 
The last few years has seen a great increase in sensing, communications, and 

computational capabilities.  The goal of the SensIT program has been to harness these 

major advances into a single architecture, which brings together diverse technological 

advances in these three disparate fields so as to effectively support the war fighter.  The 

University of Maryland team focused on the task of developing techniques to task the 

sensor network.  

Our first major contribution was to develop a formal model of a task (which is 

appropriate for sensors), together with a formal tasking language.  This tasking language 

allows users to specify (i) the geospatial area where a task is to be performed, (ii) a 

temporal component specifying when and how frequently the task should be performed, 

(iii) a component that describes the conditions to be looked for, based on the sensor 

readings, but possibly correlated with other data sources as well, and (iv) what actions to 

take when those conditions are met.  

Our second major contribution was a mechanism to process tasks effectively, so 

that the resources of the system can be intelligently utilized, thus supporting the 

scalability of the system as a whole.  For this purpose, we developed methods to merge 

multiple tasks together, taking advantage of any overlaps amongst those tasks.  We built a 

suite of algorithms for this problem called task partitioning algorithms, and we conducted 

detailed experiments on the effectiveness of these algorithms.  Our experimental results 

show that Greedy-Basic is the best task partitioning algorithm to use.  

Our third major contribution was an algorithm to take a given task and determine 

which of a given set of sensors should process that task.  We showed that the problem of 

optimally allocating tasks to sensors is NP-complete. To address this problem, we were 

able to come up with heuristic algorithms.  

Our fourth major contribution was the design and implementation of a 

comprehensive Sensor Task Manager (STM) program and GUI that allows individuals to 
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specify the tasks they are interested in having performed. The STM program handles 

execution of the tasks. 

Our fifth major contribution was the development of numerous system 

components, often in conjunction with other SensIT contractors, so that the entire SensIT 

architecture (which involved components from multiple contractors) could function 

smoothly. Specific contributions include the OpenMap SenseIT graphical user interface, 

the gateway task and action module, imager computations, and cache based 

computations. 

1.6  Recommendations 
The current SensIT effort demonstrates clearly and unambiguously that we now 

have the ability to seamlessly integrate sensing technology, communications technology, 

and recent advances in computing technology for use in large scale integrated battlefield 

operations.  

However, for future battlefield operations to be successful, there is a key need for 

scalable intelligent reasoning. Specifically, SensIT currently lacks:  

1.  Predictive reasoning.  It is possible to do better than taking actions after vehicles 

have been detected at various locations. Based on past detections of vehicles, a system 

should be able to predict where these vehicles will be at various points in the future.  

2.  Spatial reasoning.   Placement of sensors and the dynamic movement of (mobile) 

sensors can be done either by ad-hoc mechanisms, as it is today, or by more principled 

methods that dynamically evaluate a set of needs and decide where to place the sensors 

so that those needs can be best met.  

3.  Spatio-temporal reasoning.  This extends the previous item.  When it is known 

where and when certain needs are likely to occur, more informed decisions about where 

to place sensors could be made.  The ability to do this statically and the ability to 

dynamically move sensors around with a changing battlefield situation is critical.  
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4.  Diagnostic reasoning.  When certain events are noted on the battlefield (e.g. the 

sensors say one thing, but the effects seen on the ground do not match what the sensors 

are saying), then we need to be able to ask “why” questions. Why are we off? Why are 

the sensors telling us that there are no significant vehicle detections in region r, but forces 

are still being ambushed? The need for this kind of diagnostic reasoning is critical.  

5.  Logical reasoning.  In addition to the above, we need standard logical reasoning - this 

tells us, for example, that if a large convoy of passenger vehicles are spotted along a 

highway, traveling unimpeded, then there is a high chance that influential members of a 

foreign government are fleeing. 

These are just a few types of reasoning that need to be performed in order to 

better interpret and act on data obtained by tasking sensors. We believe this is critical for 

sensor technology to be maximally successful in war fighting efforts. 
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Section 2: Representation and Automated Analysis of 
Narrated Events 

 

2.1  Introduction 

The understanding of recounted events (stories, histories, etc.) so that one can 

determine the best course of action is a common and critical part of decision making in 

many fields, including anti-terror intelligence assessment, military operational command, 

software engineering [1,2], and diagnostic problem-solving [10]. In these and many other 

areas, executive-level decisions must be made in real time by a person in the context of a 

"story" describing past/ongoing events. Decision making is hampered by the limited 

knowledge that is quickly available to the decision maker in a timely manner. One 

hypothesis of the proposed work is that an appropriate “story” can provide the decision 

maker with a “big picture” containing the needed information. Here and in the following, 

we use the term story to mean not just the description of a sequence of events that is 

unfolding over time and space (the “plot”), but also the associated relationships among 

the actors/objects in the story, specifications about which aspects of an object are fixed 

and which are mutable, functions describing the nature of the mutation in various 

contexts, factors such as motive, beliefs, etc. It is this complicated network of 

relationships that makes the problem hard. 

A possible way to enhance human understanding and decision making is to 

provide automated interpretation of unfolding events through a computer system that can 

represent, interpret ("understand"), and communicate alternative response strategies 

based on a knowledge base of past related experiences.  Such a system could be 

extremely valuable in suggesting additional information to obtain, predicting potential 

future events, and outlining alternative courses of action for consideration. Existing 

technology in artificial intelligence (AI), software engineering, and human-computer 

interactions is inadequate to implement a “story understanding” system that could 

function effectively as outlined above.   
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However, we believe that current technology has reached the point where research 

on some key issues could make automated "story interpretation" feasible. The overall 

goal of this project was to identify which aspects of story representation and analysis can 

be implemented using existing technology, and which represent critical research issues.  

The study also assessed the comparative advantages (or disadvantages) of using a story 

format for analysis and outcome exploration (this format has already been shown to be 

exceptionally useful for training). Key research questions focused on the potential of 

various technologies to: represent evolving sequences of events and associated conditions 

(contextual variables) in a machine-interpretable format along with course-of-action 

(COA) options; rapidly retrieve past related situations and relevant general knowledge; 

apply inference methods to encompass the interpretation of stories, to identify missing 

but needed information, to generate potential actions, and to justify its recommendations 

upon demand. 

The specific aims that guided the work that we undertook were: 

1.  Assess the availability of source stories in multiple domains. Determine the 

representation and analysis aspects that are common to these diverse stories so that the 

software and methods produced will ultimately be reasonably general.  Specific 

application domains that were considered include home-security intelligence, tactical 

military command, software engineering, and diagnostic problem-solving.   

2.  Evaluate technologies for formally representing the events and associated 

conditions/relationships forming a story. This involved considering past work on scripts, 

functional representation languages, AI methods for temporal and spatial information 

representation, and related work, assessing their adequacy for the selected application(s) 

and identifying needed enhancements. At a minimum the representation needs to capture 

the actors/agents involved, actions occurring, the temporal relations between events, and 

relevant decision points in stories, plus it must enable the representation of generic plots/ 

scripts that can be related to specific cases. 

3.  Assess the feasibility of implementing a story representation system based on the 

methods developed in (2).  We prototyped a system to encode a few stories in the 
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selected application domains, and specified an interface allowing the rapid entry of a new 

story.  The interface involved direct encoding of the background knowledge and 

terminology in a class of applications in a formal representation that underwent parsing 

and error detection.  The indexing of new story information to the knowledge base and/or 

case base of related past stories was also studied. 

4.  Represent relevant cause-effect knowledge within the sequential event formalism 

developed as above, as well as generic course-of-action options and, to the extent 

possible, relevant spatial information, building a prototype knowledge base. 

5.  Explore basic inference abilities that are needed to generate useful output from the 

evolving prototype system.  This included abductive reasoning methods based on cause-

effect inferences [11] that generate interpretations of events. We also assess the ability of 

deductive inference methods to generate and possibly rank options for actions to take, 

and examined the integration of knowledge-based reasoning with retrieval of informative 

past cases. 

6.  Evaluate the functioning of the prototype story analysis system outlined above on one 

or more demonstration examples of limited scope to illustrate the viability of the methods 

developed. This is intended to be a demonstration system, not a robust application 

release. 

In summary, our purpose was to identify key long-term research issues in 

knowledge representation, software engineering, common sense reasoning, generation of 

“what if” scenarios, adaptability and learning, qualitative physics, etc. that need to be 

addressed. We wanted to assess the ability of existing software technology to make sense 

out of large volumes of data, and to determine what open research issues need to be 

addressed to develop useful systems for automated analysis of narrated events and 

decision support in the context of complex ongoing situations.  Ultimately, one wants to 

develop tools for analyzing the meaning of a situation—where might the current situation 

lead and what should we do to accomplish our goals?  It should do this in the same way 

that “episodic memory” is thought to function, presenting the most reasonable 

alternatives to the user so that only a very few need to be examined.  Research (Gary 



 43

Kline) has shown that few people use the type of cost-benefit analysis that is taught in 

management school when making decisions.  Instead, they rely on their past experience, 

and stories about others’ past experiences, to bring a course of action (COA) to mind 

immediately.  They then assess the viability of this solution in the current context.  

2.2  Methods 

This research takes a story to be a sequence of episodes that are related to a goal, 

intention, moral or lesson.  The story organizes multiple events and information into 

“storylines” that integrate the past, present and future with reference to goals or intent.  

The story provides a way of capturing experience and using this experience to predict and 

plan for the future.   

Therefore, we believe an approach using stories can help identify the best COA 

based on a repository of all past experiences (expressed as episodes and episodes chained 

together to form stories, along with “compiled” knowledge relevant to a problem).  This 

approach should be able to target information collection based on previous and expected 

episodes/threads. For prior episodes, the information collected can help confirm or deny 

what is believed to have happened. For future episodes, information collection can focus 

on that information needed to improve or estimate about whether the episode will 

actually occur and what its consequences are likely to be.  This will decrease the time 

needed to respond to crisis events, such as a potential terrorist threat.  An episode 

repository provides a corporate knowledge base of past experience to educate new 

decision makers. We thus did online and library searches for relevant sources of readily 

available past stories/cases in areas such as software engineering and urban warfare, plus 

reviewed available software packages. 

One unusual aspect of this research is that, among other things, we tried to 

develop models of activity “from scratch” – without the existence of an a priori model. 

While it may be impossible to develop detailed physical (or “quasi-physical” based on 

qualitative physics) models that explain cause and effect factors within an event (or 

episode), we hoped to be able to develop models that predict the expected successor to a 
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given episode based only on a “story library” containing historical storylines (threads of 

episodes) and an ontology describing the terminology used in the domain of interest. 

2.3  Results and Discussion 

Initially, during the first year of this project, we identified and evaluated the 

suitability of a number of existing software tools: 1) For the development and analysis of 

semantic networks -- most notably the Semantic Network Processing System (SNePS) 

from NYU, Syracuse -- for representing the detailed structure of activities within an 

episode; 2) For the development of ontologies describing a specific domain (e.g., Urban 

Warfare) – most notably Cyc, and; 3) For identifying similar (and dissimilar) episodes so 

we could build up a story based on the predecessor and successor episodes (and 

outcomes) of historical events (a repository of episodes) – most notably Case Based 

Reasoning tools from the University of Edinburgh.  

The basic premises arising from this evaluation are that we can: 

• Characterize the current episode in a way that allows it to be compared with 

analogous episodes (stored in a library). 

• Identify analogous episodes that are most similar to the current episode with 

respect to factors important to the specific analysis being conducted (questions 

being asked). 

• Determine similarities and differences among the episodes. 

• Use these findings to both improve our picture of the current situation and to 

improve decision making with respect to future courses of action. 

With respect to the first objective (evaluating existing software tools and 

experimentally producing representations to determine their capabilities and ease of use), 

we discovered that the use of any one required the development and maintenance of an 

elaborate model (or linked models) – e.g., of terrain, typography, equipment capabilities, 

logistics. Also, SNePS and Cyc had considerable overlap – while SNePS is built around 
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Semantic Nets and Cyc is built around rules, they can represent the same features – 

indeed, Cyc uses graph analysis algorithms to do much of its reasoning. 

We soon realized that (contrary to research claims) there were no practical tools 

to transform the text describing an episode into a useful semantic net. We shifted our 

approach to prepare for (using manual analyses) using Cyc to build an ontology of terms 

unique to a domain and for recognizing declarative sentences that might serve as rules to 

relate these domain specific terms. We conducted these experiments initially using simple 

fictional stories and subsequently using Urban Warfare episodes. As part of this effort, 

we defined those components of an episode that we needed to capture. These are: 

An EPISODE provides the basic element of the story’s narrative or plot. It 

describes some (usually 1) action. It should: 

• Define the spatial and temporal boundaries of the action. As episodes are 

composed into stories, these boundaries provide one check on whether the 

links “make sense” – teleportation and time jumps may occur in fiction, but 

generally not in the type of stories we’re analyzing (e.g., software 

development projects or urban resistance movements) ; 

• •  Have start (pre-) and stop (post-) conditions. The start conditions specify the 

conditions necessary to start the action; the stop condition defines the end of 

the action. The stop condition (and the start condition for the next episode(s)) 

will usually be a decision (e.g., attack the enemy), an action (e.g., a car runs 

into a tree), or the lack of an expected decision or action (e.g., a meeting ends 

with no decision or consensus). It may also have a goal, in which case its 

(immediate) success is determined by the distance between the goal and actual 

end condition. Note that the success of a story as a whole thread of episodes 

can only be judged at the end of the thread. 

• Have predecessor and successor episodes (except for the first and last 

episodes which have only pre- and post-conditions). The end condition of the 
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preceding episode must match (to some degree) the start condition of the 

current episode – providing one check on the links making sense. 

• •  Contain (conceptual or physical) objects that act/interact to perform the 

action being accomplished by the episode. This structure might be described, 

for example, by some type of semantic network structure. 

• •  Specify structures of objects that are invariant within the episode (e.g., lines 

of authority among objects) as well as other invariant properties that are not 

associated with or determined by specific objects (e.g., in most circumstances, 

the weather) 

An OBJECT is an element that is contained in and linked to other objects in an 

episode. Since it is working, possibly with other objects, to accomplish an action, it has 

behavior associated with it, although it may only fill time or space in a specific episode. It 

is characterized by: 

• •  “Invariants” that remain fixed across all the episodes it participates in (e.g., 

name, sex, size (for inanimate objects); 

• •  “Characteristics” that are invariant within an episode but can change, 

according to specified rules, at episode boundaries. Elements that may change 

within an episode but that are observed only at episode boundaries are 

characteristics. 

• •  “Variables” which can change, and whose change is observed, within an 

episode. 

• •  “Behavior”, both autonomic and through interaction with other objects. 

A BELIEF is a strongly held position or idea attached to an object. For non-

intelligent objects, these are the same as the rules by which they operate (their behavior). 

For intelligent objects, these are beliefs that are often elicited as rationale for a decision. 

Thus, in Fred Moody’s I Sing the Body Electric, the story of a Microsoft software 
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development project, the value of being first rather than best is continually emphasized 

by management. 

HISTORY is the rationale underlying a belief. “In our experience, this has (or has 

not) worked in the past.” 

There are several critical research issues involved in this approach. The 

overarching question is whether it is possible to build an “implicit” model of activities in 

a domain based (almost entirely) of plausible (and often historical) sequences of episodes 

in that domain. The fact that episode type A precedes episode type B models a potential 

relationship between A and B. Understanding the circumstances under which this 

relationship does or does not hold can provide an understanding of factors critical to the 

relationship. Changes in the existence (or strength, as measured by the probability of 

occurrence) of the relationship may indicate changes in the context (or more global 

situation) that need to be factored into decision making. The ability of a system to learn 

with experience will also be examined. 

We also came to appreciate more the central role that explanation generation 

plays in story understanding. Because of this, we determined that the overall objectives of 

this project could best be met by approaching the development of a story interpretation 

system by working at two levels in parallel: one level continues to focus on evaluating 

existing software as originally planned, while a second level extends our planned 

investigation to assess the use of explanation-based  (abductive) inference. 

Our work on abductive inference did not adopt specific software packages nor 

large scale pre-existing knowledge/ontology sources such as Cyc. Instead, we 

investigated whether knowledge represented in a natural descriptive fashion could be 

used to automatically generate plausible explanations for unexpected events. Our 

hypothesis was that contemporary technology for cause-effect reasoning has matured to 

the point that it can provide an effective and efficient inference method in automated 

reasoning systems based on descriptive knowledge.  More specifically, we believe that 

advances over the last several years in the use of abductive inference methods and 
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probabilistic reasoning with Bayesian networks make the automated processing of 

descriptive knowledge both a viable and timely approach to explore.  

Our initial work related to explanation generation and abductive reasoning 

included the following.  First, we completed most of the implementation for a knowledge 

acquisition tool based on encoding of descriptive knowledge. The output of the 

knowledge acquisition system is an application-specific automated reasoning system for 

end users that includes a knowledge base, an inference mechanism that can process 

causal and other types of information in the knowledge base in useful ways, and an 

automatically-generated user interface. As an initial problem on which to evaluate this 

system, we used the problem of interpreting and responding to the unexpected discovery 

of chemical contaminants in the Chesapeake Bay. A prototype system for abductive 

reasoning using descriptive knowledge about chemical contaminants was implemented 

and was found to be capable of interpreting the meaning and some basic implications of 

relevant multi-sentence text. 

During the second year of this project, we extended the above work by 

understanding four tasks. These were: 1. find urban warfare stories/episodes; 2. use these 

episodes to build an ontology (using Cyc) suitable for identifying similar (or different) 

episodes; 3. experiment with ways of measuring the “distance” between terms; 4. 

implement a demonstration program combining natural language processing, rule-based 

deduction, and indexed case retrieval in the urban warfare domain; and 5. in collaboration 

with the Fraunhoffer Institute for Experimental Software Engineering Research, find 

descriptions of “episodes” in software development projects, as documented in Software 

Inspections, that were suitable to serve as stories with outcome predictions.  

On the first task, we collected information resources for different urban warfare 

battles.  We have extracted data for multiple episodes spanning several distinct battles 

and have developed and refined a knowledge base for describing urban warfare episodes. 

Work on the second task produced several insights. First, the terms themselves 

(e.g., the fact that one side used Kalashnikov assault rifles that was reported in the source 

documentation) are less important than the ontological implications that can be drawn 
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from them (e.g., that they were using weapons commonly found in weapons bazaars, that 

they were using weapons that do not require a sophisticated infrastructure for 

maintenance). Note that these inferences are based on “common sense” knowledge about 

the terms in the general domain of urban warfare, not on data from any specific 

episode/story. Second, while Cyc provides the ability to create separate “micro theories” 

to resolve potentially conflicting uses of a term or concept, these created problems in 

assessing term similarity, since two terms could be linked through several micro theories, 

creating drastically different similarity measures. Based on the above, we experimented 

with using OWL-DL instead of CYC to hold the ontology in addition to expanding the 

number of terms employed as described in the first task. We also conducted some initial 

experiments in the context of our third task on distance measures, and are currently 

analyzing the data. 

On the third task, we studied case based reasoning as a means to evaluate the 

similarity of episodes based on term (or inferred term) similarities. A naïve approach 

would be to apply a distance measure from a term in Episode A to all terms in Episode B 

and compute a distance based, for example, on the average of all these distances or of all 

non-zero distances, since we are likely to be dealing with an extremely sparse similarity 

matrix. An investigation of available technologies uncovered tools such as AIAI Case-

Based Reasoning Shell developed at the University of Edinburgh that identifies the sets 

of characteristics, each expressed as a vector, that, used together, best differentiate among 

cases (events or episodes) in this work.  

On the fourth task, we implemented a prototype decision system that integrates 

knowledge based reasoning and case retrieval in support of story interpretation. 

Currently, the knowledge base has thirty-five basic attributes that may be extracted from 

a story.  The knowledge base contains deductive rules which, when applied, give us 

values for an additional six attributes.  Abductive reasoning rules enable us to make up to 

10 different assessments about a story.  The knowledge base provides suggested courses 

of action for addressing each one of these assessments. Examples of inferred attributes of 

story episodes include: enemy technological level and motivation, and quality of 

intelligence information.  
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Appendix A, Integrating Knowledge-Based and Case-Based Reasoning, provides 

a more detailed description of the urban warfare cases, the prototype knowledge base, the 

reasoning methods, and case retrieval in the urban warfare story interpretation system. 

As a fifth task, we investigated the applicability of the "stories" concept to 

decision-making in software engineering. The goal of providing decision-support in this 

area is especially appealing due to the large array of practices, methods, procedures, etc., 

that exist for software development, all of which are claimed to be beneficial, and which 

can significantly impact the success (in terms of budget and schedule) of a development 

project. Large-scale studies, such as those conducted by the Standish Group, consistently 

show that achieving such project successes is a problematic undertaking. To undertake 

this study we chose as a test bed the practice of "software inspections," one of the most 

mature and well-studied practices available. Our investigation identified a lack of suitable 

data for describing the episodes needed to build such decision-support models. Ideally, 

we would have the results from a series of inspections of a single product, with the results 

of each inspection describing the outcome of a preceding episode (e.g., requirements 

specification, architecture development).  Data in the area of inspections, however, 

tended to fall into two large categories: 

1.  Organizational-level data, which describe aggregate results across many 

applications of inspection and many projects, by way of claiming high-level benefits. For 

example, a paper might discuss how inspections were applied on all projects in the 

organization and resulted in measurably lower rates of defects in the systems produced. 

The problem with this type of data is that there is no way to make a linkage between an 

individual inspection application and a specific outcome; it provides only a general 

statement of overall effect. 

2.  Snapshot data, which describes the results from a specific inspection in a 

specific context. For example, a paper might describe a specific software module that was 

inspected, the amount of time required, and the number of defects removed as a result. 

The problem with this type of data is that there is no way to make a linkage from those 

inspection results downstream to future experiences with that module. For example, there 
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is no way of telling if in the future the inspected module was less error-prone, required 

less testing, etc. 

Types of data that might usefully be captured longitudinally include, for example, 

percent of previous errors corrected, number of errors representing misunderstanding of 

specifications, project size (measured as number of discrete functional requirements, 

design modules, lines of code, etc.), and effort spent on defect correction versus system 

construction. Such data may be used to improve the software development process 

through comparison with historical episodes in an organization’s library. 

Appendix B, Software Inspections as Choice Points, provides a more detailed 

summary of our assessment of existing software inspection data, and of how story 

interpretation could contribute to decision support for software development projects. 

2.4  Conclusions 

1.  The existing general purpose software tools that we evaluated for story 

interpretation appear to offer only very limited utility. 

2.  A significant barrier to development of story interpretation in the application 

areas that we considered is the limited availability of online story repositories. 

3.  Evaluation of a prototype story interpretation system developed as part of this 

work suggests that general purpose tools are feasible for automated story interpretation 

when based upon combined knowledge-based and case-based processing. 
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Abstract: There has been substantial recent interest in integrating knowledge 

based reasoning (KBR) and case-based reasoning (CBR) within a single system due to 
the potential synergisms that could result. Here we describe our recent work investigating 
the feasibility of a combined KBR-CBR application-independent system for interpreting 
multi-episode stories/narratives, illustrating it with an application in the domain of 
interpreting urban warfare stories. A genetic algorithm is used to derive weights for 
selection of the most relevant past cases.  In this setting, we examine the relative value of 
using input features of a problem for case selection versus using features inferred via 
KBR, versus both. We find that using both types of features is best (compared to human 
selection), but that input features are most helpful and inferred features are of marginal 
value. This finding is surprising to us, but it supports the idea that KBR and CBR provide 
complimentary rather than redundant information, and hence that their combination in a 
single system is likely to be useful. 

 
 
INTRODUCTION 

 
In many application fields, expert-level problem solving naturally involves 

reasoning from a combination of both general knowledge and individual past cases. Well-
known examples of this occur in legal reasoning, medical diagnosis and management, 
military tactical planning, software engineering, and related areas. From the viewpoint of 
those developing AI systems intended as decision aids, the need for reasoning from both 
general knowledge and individual cases has led to substantial recent efforts to find ways 
to integrate these two approaches within a single framework (reviewed in Marling et al, 
2002), and this continues to be an active research area today. 

 
In this context, we are investigating the feasibility of creating an application-

independent approach to interpreting multi-episode “stories” that combines a variety of AI 
reasoning methods (rule-based reasoning/deduction, cause-effect reasoning/abduction, 
Bayesian inference, constraint-satisfaction problem solving, etc.) with the retrieval of past 
related cases. Our goal is to implement a system that, given an application-specific 
knowledge base plus a database of past cases represented in terms of the same features, is 
able to generate inferences about new situations by concurrently using both knowledge-
based reasoning and examination of past cases. This is an ambitious goal that involves 
addressing a number of challenging issues related to understanding narration [Herman, 
2003]. A central idea in this is that specific human-readable knowledge descriptions, 
written in a simple but formal knowledge representation format, contain sufficient 
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information about an application area’s ontology and terminology to enable a natural 
language “story interpretation system” to be generated automatically. 

In this paper, we focus on one aspect of such a general system, the issue of 
whether the inferences made by a knowledge-based reasoning process can help guide the 
identification of the most relevant past cases during problem solving. Effective retrieval of 
related cases is widely recognized to be very important to successful applications of case-
based systems [Pal & Shiu, 2004] and it is one way in which synergistic integration can 
occur. More specifically, we focus here on the issue of the relative value of input features 
of a problem versus inferred features in guiding the retrieval of the most relevant past 
cases. By input feature, we mean an evident/observable aspect of a specific problem that 
serves as input to a decision aid (e.g., for a medical diagnosis system, a patient’s age or a 
symptom), while inferred feature refers to an inference made by the system (e.g., 
diagnosis, recommended treatment, or prognosis). While our approach is intended to be 
general in nature, for concreteness and because our most recent attention has focused on 
this topic, in the following we present our work in the context of a specific application, the 
understanding of multi-episode stories involving urban warfare. There are many sources 
of such stories available in natural language format (e.g., [Antal & Gericke, 2003; Grau, 
1996; Keegan, 1994]), and it is unlikely that any person can memorize the large volume of 
information and lessons they contain. Thus, if relevant episodes could be quickly 
identified by an automated system, they would provide a rich source of potentially useful 
information for military commanders who must make real-time tactical decisions. 

 
 
METHODS 
 

Our work on effective case retrieval is being done within the context of a broader 
study, as follows. An application-specific story interpretation system built within our 
framework works as illustrated in Figure 1. A user supplies a narrated description of an 
episode, a set of events that have occurred in the application domain. A natural language 
(NL) parser translates the episode into a set of input features, and from these the inference 
method(s), such as rule-based deduction, derive various conclusions (inferred features) 
using domain specific knowledge. These conclusions, plus the most relevant known past 
related cases (or episodes), are retrieved. 

 
 
                 NL 
               parser                             inference                           retrieval 
 
 
 
 in                                                                                out                                   out 
 
 

Figure 1: User’s view of an application-specific “story understanding 
system”. 

An application system like that described above (Figure 1) is built by a domain-
independent constructor as illustrated in Figure 2.  The constructor takes two inputs, an 
application-specific source file (“knowledge base”), written in a simple knowledge 
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representation language, and a database of past multi-episode stories. The constructor uses 
this information to generate the NL parser, inference mechanisms, and case retrieval 
software needed in the application-specific story interpretation system (Figure 1), and 
encodes the cases in terms of the source file’s attributes for later retrieval. At present, the 
constructor is implemented, but more work is needed on the urban warfare source file in 
order for our keyword parser to be able to parse all of the cases.  As a result, the encoding 
of some cases for the experiments described below has been done manually.  

 
 
 
                                                     constructor 
 
 
 
 

Figure 2: Story interpretation systems like that shown in Figure 1 are 
constructed automatically from an application-specific source file and a database of 

past episodes. 
 

For example, for the urban warfare domain, the current source file encodes a set of 
input and inferred attributes, along with their possible values, plus knowledge in the form 
of production rules and simple descriptions. The attributes form a hierarchy that is 
implicitly defined by the encoded knowledge.  Attributes are defined as being single or 
multiple-valued. There are forty-three input attributes and thirteen inferred attributes in 
the existing urban warfare source file.  Most knowledge is in the form of production rules, 
but for two of the inferred attributes simple pattern matching and scoring is used. In some 
cases, the inferred features (attribute value assignments) represent abstractions of the input 
features.  Here is an example of an input attribute named “arms” in the source file: 

 
 arms [mlt]: 
     small arms [synonyms: pistols, hand guns, rifles, guns], 
    light machine guns [synonyms: submachine guns, automatic rifles], 
     anti-tank weapons [synonyms: rocket propelled grenades, RPG], … 
 
This declaration conveys that “arms” is an attribute/property of a story that, for a 

specific problem, can simultaneously take on multiple (“mlt”) possible values such as 
“small arms” and “light machine guns”. Ontological information is implicitly present in 
the synonym declarations, so the NL parser (Figure 1) can recognize that the presence of 
“RPG’s”, for example, means that (arms = anti-tank weapons) is an appropriate 
interpretation. An inferred attribute, such as 

 
 assessments [mlt]: 

                    enemy likely has outside support, 
               civilians at great risk, … 
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is defined in a similar fashion, but has its value determined by the inference 
mechanism rather than the NL parser, e.g., via rule-based deduction. Rules are defined in 
terms of attribute values. For example, 

 
IF (enemy organization  = militia) AND (enemy technological level = high), 
 THEN (assessments = enemy likely has outside support) 
 
is a rule in the current knowledge base. This rule indicates that, if an irregular 

military group (“militia”) has high tech weapons, the system should make the inference 
that the group probably has outside support. 

 
In the current implementation of our system, an abductive keyword natural 

language parser (Figure 1, on the left) is used to extract the values of the input attributes 
from stories written in natural language text.  As the constructor processes an application-
specific source file, each word encountered is indexed to the attribute/value it helps to 
name.  The resultant NL parser processes a subsequent story word by word, and as each 
word is processed, it evokes the set of all possible senses (assertions about the value of 
known attributes) of that word.  Words can be very ambiguous.  For the urban warfare 
domain, the system evokes five different senses for the word "fire", such as the 
phenomena of friendly fire or the tactic of setting buildings on fire. The presence of a 
word in a story is explained in a context-sensitive fashion by making an assertion about 
an attribute's value.  Disambiguation of the word’s meaning is done using a parsimonious 
covering process, a type of abductive reasoning [Josephson, 1994; Reggia, 1992] that 
results in a set of assertions representing the interpretation of the story.  For example, the 
presence of the word "fire" may be explained by the assertion (our tactics = set fire to 
building) or several other assertions. 

 
For the urban warfare scenario used in our experiment below, a case-base was 

established containing 30 episodes from ten different stories.  The stories spanned the time 
period from just before World War II through the mid 1990’s, and were taken primarily 
from Russia’s Chechen Wars [Oliker, 2001], the Wikipedia online encyclopedia [Anon, 
2003], and City Fights [Antal, 2003].   

 
An assembled system like that for the urban warfare scenario identifies the past 

most relevant episodes by measuring the similarity of every episode in the case-base using 
a linearly weighted distance metric. This similarity function takes two episodes and 
outputs a numeric score indicating their degree of similarity in terms of their attribute 
values. The contribution of an attribute to this similarity score depends on whether the 
attribute is single or multiple valued, and whether it is nominal or ordinal. Multiple valued 
attributes are treated as being a collection of single valued attributes, where each value can 
be either present or absent.  In the similarity function, a positive real-valued weight 
between 0 and 10 is associated with each single-valued attribute, and with each possible 
value of multiple-valued attribute.  The similarity of two episodes on each attribute are 
multiplied by their respective weights, and then summed to produce the final overall 
similarity score. Since the optimal weights for case retrieval are not known a priori by our 
application-independent system (Figure 2) for a specific application, our approach is to 
include with each episode in the case database the identity of the other single most similar 
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case that is present. This best match identity is specified by a person at the time of case-
base creation and represents the “gold standard” for the evaluation described below.  

 
As others have done [Dubitzky, 2001], we used a genetic algorithm (GA) to 

automatically evolve the set of weights to be used by the similarity measure in the 
resultant application-specific system. In the urban warfare example used here, the GA 
population was 600 haploid chromosomes, each a vector of real-valued weights to be used 
by the similarity measure.  Tournament selection of reproducing parents (with elitism) 
was used, with probability of double-point crossover 0.35 and of mutation 0.60. If selected 
for mutation, each real number in the chromosome had a 10% chance of being replaced 
with a random number between 0.0 and 10.0. The fitness of a chromosome’s set of 
weights was based on how well they correctly identified the a priori human-identified 
most similar other case in the case base for each and every existing case. The genetic 
algorithm was run for 300 generations and the most fit set of weights in the final 
population was used in the application-specific similarity measure. 

 
While the inferred features are intended in and of themselves to be useful to a 

human operator of the system (leftmost “out” arrow in Figure 1), we consider here 
whether or not they are also useful when trying to automatically assess similarity of 
episodes for case-retrieval.  To address this issue, we evaluated the ability of the story 
interpretation system to identify the best match in the case base for input episodes when 
using all attributes, input attributes only, and inferred attributes only. This allowed us to 
examine one aspect of the impact of integrating knowledge-based reasoning with case 
retrieval. A standard leave-one-out strategy was used to evaluate how well our methods 
for evolving attribute weights with specific data generalize. The episodes from one story 
were removed from the training data and an optimal set of weights evolved using the rest 
of the episodes in the case-base as training data.  That set of weights was used to find the 
most similar episodes to the episodes that had been removed, and for each of the removed 
episodes we recorded how highly the system ranked its actual most similar episode 
(according to the “gold standard”).  Attribute weights for the similarity measure were 
independently evolved using all of the attributes, only the input attributes, and only the 
output attributes.  These three experiments were repeated 10 times each, each time 
excluding the episodes from a different story from the training-data.  We also performed 
the three experiments while leaving out no story episodes in order to establish a baseline 
of optimal performance. 

 
 
RESULTS 

 
  The set of weights obtained by the GA for the urban warfare case base 

similarity function indicated that some attributes are much more important for assessing 
similarity than others. The 235 weights found were fairly evenly distributed over the full 
0.0 – 10.0 range of possible weight values.  Some of the most highly weighted features in 
this specific application, each having a weight above 9.8, were (our tactics = blitzing 
attack), (enemy abstract tactics = sewer battle), (arms = missiles), and (results = failed to 
expel invading force). Some of the lowest weighted features, each having a weight below 
0.04, were (our tactics = aerial bombardment), (assessments = possible hasty attack), and 
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(civilian actions = civilians serve as guides). Input features had an average weight of 4.43, 
while inferred attributes had an average weight of 4.17.  

 
Our domain-independent approach to story interpretation appears, in limited 

testing to date, to work reasonably well. For example, the following excerpt from a made-
up urban warfare story that is not in the case base, 

 
We were a conventional army controlling a city in the middle of a war zone.  The 

enemy militia was trying to take the city, and we had to defend it.  We had virtually no re-
supply lines and were poorly supplied.  We had some small arms, some heavy machine 
guns, and some IEDs.  In anticipation of the enemy advance we set up some fortified 
positions with heavy machine guns from which we could strafe the streets with fire.  The 
public was not entirely supportive of the battle, so we wanted to try very hard to avoid 
civilian casualties.    In the morning, three enemy tank columns entered the narrow streets 
of the city.  We had to expel this invading force.  From the rooftops, we began dropping 
grenades on to the enemy tanks.  We detonated explosives that we had planted in 
buildings, exploding the buildings on to the approaching forces.  The enemy attack 
choppers were ineffective in the battle as we kept them at bay with our SAMs…. 

 

is readily processed by the interpretation system.  The abductive keyword parser 
processes this text and extracts the correct values for all of the input attributes, such as 
(arms = stingers), (arms = homemade explosives), (public opinion = public skeptical), and 
(tolerance for civilian casualties = low). Inferred attribute values include (inferred quality 
of intelligence = adequate), (quality of combined arms usage = poor), (assessments = 
enemy likely has outside support), and (suggested course of action = cut off enemy’s 
outside support). 

 

  The similarity measure using the best set of weights derived by the GA 
identifies two episodes from a 1948 battle in the mandate of Palestine as being the most 
similar to the example episode above.  Examining these two retrieved past cases, their 
similarity to the episode given above is readily apparent.  In both cases an invading force 
of tanks is repelled by attacking them from above with explosives and by exploding 
buildings onto the tanks as they pass by.  Examination of these stories by a human 
operator has the potential of leading to a number of new and useful inferences.  For 
instance, in the second episode from the Palestine story, the enemy learns to deploy 
infantry support along with tanks, and this could be a useful point for a military 
commander.  While our system currently does not have the ability to make inferences 
from retrieved cases, methods used in past case-based reasoning systems could be 
effective in this regard. 

 

 To assess in more general terms the effectiveness of the GA in deriving 
appropriate weights for application-specific case retrieval, we generated these weights 
using just the input features, just the inferred features, and both (10 trials with each), using 
the 30 cases in the urban warfare case base.  The results of the similarity function’s 
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performance are given in Table 2. When the GA evolved weights using all of the stories in 
the case base, and then the rank assigned to the a priori human-specified best matching 
case was determined for each case in the case base using the similarity function, the mean 
rank was 1.37 if all features were used, 1.43 if just input features were used, and 2.87 if 
just inferred/output features were used. While using all features thus did marginally best, 
the contribution of the inferred features was almost negligible. 

 
 
Table 2:  Performance of similarity function using different sets of attribute. 

 ALL STORIES LEAVE ONE OUT 

ATTRIBUTES USED IN TRAINING ALL INPUT OUTPUT ALL INPUT OUTPUT

AVG. RANK GIVEN TO MOST SIMILAR 1.37 1.43 2.87 3.33 3.37 6.20 

STANDARD DEVIATION OF RANK 0.72 0.73 2.26 2.51 2.76 6.58 
 
To test the ability of this approach to generalize to new cases, we repeated the 

above study, but now using a leave-one-out strategy. In this situation, the mean rank was 
3.33 if all features were used, 3.37 if just input features were used, and 6.20 if just 
inferred/output features were used. Though not as accurate as when all episodes are used, 
it suggests that one could use a strategy of retrieving three or four cases in general.  The 
difference in performance between when all features were used and when just input 
features were used is not statistically significant.  However, the difference between using 
just output features and either all features or just input features is statistically significant, 
at a higher than 95% confidence level. 

 
 
DISCUSSION 

 
In this project, we explored integrating reasoning from both general knowledge 

and from individual cases within a single framework.  To this end, we investigated the 
feasibility of creating an application-independent approach to interpreting multi-episode 
“stories” that combine knowledge based reasoning methods with the retrieval of past most 
similar cases.  In this paper we focused on whether the inferences made by a knowledge-
based reasoning process can contribute to identifying the most relevant past cases during 
problem solving.  Specifically, we explored the value of input features of a problem 
versus the value of inferred features in the retrieval of most relevant past cases.  

 
For the urban warfare domain, we found that the input features of an episode are 

more important than the inferred features when attempting to assess the similarity of 
episodes.  Our similarity measure performed significantly better when using only input 
attributes to assess similarity than when using only inferred attributes. This suggests that 
there is some information or relationships among the input attributes that our current 
knowledge, mostly in the form of production rules, simply does not capture.  If this is 
correct, it supports the hypothesis that integrating knowledge based and case based 
reasoning is synergistic, because it suggests that the information in specific cases may be 
different from that inferred using general principles in an application domain. This was 
illustrated by the specific example case/story above where general rules deduced, for 
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example, that the enemy force probably had outside support and that a reasonable course 
of action would be to try to disrupt this support, while both retrieved cases included the 
sensible point that infantry should accompany tank incursions in an urban setting to help 
prevent attacks from above. In a limited sense, this can be viewed as a kind of “ensemble 
reasoning”. Of course, it is entirely possible that a different set of inferred attributes might 
be more informative. The inferred attributes that we used were based on an a priori 
conception of useful inference without consideration of their utility for case retrieval. Our 
results are also limited to the specific domain of urban warfare, and it is unclear whether 
they will generalize to other areas like medical or legal reasoning. 

 
The GA-derived weights used in the similarity function did not generalize 

extremely well.  As expected, the ability to identify the a priori human-selected most 
similar case declined when a leave-one-out strategy was used to evaluate case retrievals.  
However, the results were still quite reasonable if one is willing to allow a system to 
retrieve a few apparently best cases rather than just the single best case. Using both input 
and output features to assess similarity of cases continued to result in the highest 
performance, but with inferred features being of negligible value.   

 
An important direction for future work is the integration of additional reasoning 

methods with case-based reasoning.  Some central questions are whether alternative 
reasoning methods or different inferred attributes can help improve case retrieval, how the 
results described here will generalize to domains other than urban warfare, and whether 
knowledge-driven inferences can contribute to more powerful case-based reasoning in 
general through better case adaptation/modification and storage.  A more objective way to 
evaluate the performance of these tasks is also desirable.  In particular, cost effective 
methods are needed for replacing the “gold standard” with more objective and precise 
ways of measuring relevance between cases.  One possible approach would be the 
development of a simulated environment where agents could use case-based reasoning to 
solve problems.  In such a system, the true relevance of past stories to a current problem 
could be determined by measuring the performance of the agent in addressing a new 
problem when recalling different past cases. 
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Appendix B 
Software Inspections as Choice Points: 

Necessary Data to Provide Decision Support in Software Development 
 
 Forrest Shull 

Fraunhofer Center – Maryland 
fshull@fc-md.umd.edu 

 
 Of the many ways of modeling software development, perhaps one of the 

most interesting is as a series of choices. There are certainly a large number of different 
decisions to be made, in order to achieve the goal of delivering agreed-upon functionality 
on-time and within budget: Before the project begins there are questions about which 
lifecycle model to use, how to staff the project, etc. During the project, decisions are 
more focused on whether the project is on track and how best to expend scarce resources 
to achieve the desired goals: For example, if the quality of products being produced is 
less than optimal, the project may choose to put more effort into quality assurance, 
detecting defects that can then be corrected before the project goes any further. 
Conversely, if quality is under control, the project can allocate those resources to 
construction activities, perhaps giving the team the chance to implement functionality 
that was otherwise considered optional for the current release. The primary difficulty is in 
accurately assessing whether the quality of the system is on-target or not. 

 
 As a mechanism for facilitating decisions about whether to allocate 

resources into or away from quality assurance techniques, software inspections can 
provide information that is more accurate than that gained from other means. Some 
authors [Gilb99] have suggested that the information gained during an inspection about 
the current state of the system under development is as valuable as the actual defects 
detected and corrected. Inspections also have the advantage that they can be applied 
during any phase and to any type of work product or support artifact.  

 
 Currently, decision-making based on inspection results is necessarily 

rather subjective, based on the decision-maker’s expertise and past experiences. We have 
been exploring whether a more objective, empirically-based basis could be provided, in 
which decisions based on inspection data could be based on reasoning about what 
occurred on previous projects, to make informed decisions about what is likely true about 
the current project. 

 
Software Inspections 
 
 Software inspections are technical reviews whose objective is to increase 

the quality and reduce the cost of software development by detecting and correcting 
errors during the process. A formal process is used to provide rigor in this task, and 
checklists or other work aides (such as scenarios) are typically used to keep inspectors 
focused on important aspects of the document under inspection. Since inspections depend 
on human analysis and reasoning, they can be applied to just about any document created 
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during the software lifecycle. Ideally, they would be applied as early as possible to 
remove errors before they amplify into larger and more costly problems downstream. 

 
 Software inspections take as input a work product (or portion of a work 

product) to be inspected, and require personnel with sufficient expertise and time to work 
as inspectors. 

 
 As output, software inspections yield a list of defects to be corrected by 

the author. They also produce supplementary metrics, usually consisting of type 
information associated with each defect, the number of participants who were involved, 
and the total effort required to perform the inspection. 

 
 Using the inspection outputs to support decisions involves two types of 

judgment calls. The first is, how effectively the inspection was conducted – that is, how 
likely it is that the list of defects found during the inspection represent the majority of the 
defects actually extant in the document. The second judgment call involves reasoning 
about what those defects actually mean for the system. 

 
Assessing Inspection Effectiveness 
 
 Many empirical studies have documented the effectiveness of inspections 

for finding defects in a cost-effective way across the organization, e.g. [Fagan86, 
Russell91]. A useful rule of thumb, based on data from across many organizations, is that 
a given inspection will find between 60% and 80% of the defects currently in the 
document [Shull02].  

 Although there is still investigation into some of the finer points (such as 
the type of inspection training that produces the best results [Land05]), the broad 
brushstrokes of what makes an effective inspection are well understood. Some example 
guidelines include:  
• Inspectors should have sufficient technical expertise to analyze the work product 

under review; 
• The team of inspectors should be neither too small (which results in insufficient 

debate and refinement of the list of issues to be fixed), nor too large (which results in 
unmanageable discussion and might dissuade some participants from making a 
contribution); 

• A formal process should be followed to avoid “cutting corners,” e.g. generating issues 
during the inspection that are never fixed; 

• Inspectors should have sufficient time to devote to preparation; 
• Management should not be part of the inspection, as this can shift the focus from 

improving the work product to saving face; 
• One inspector should be tasked with recording issues generated by the inspection 

team, so that fixes can be verified; 
• A trained moderator should facilitate the discussions and ensure that participants 

prepare properly for their roles. 
 Assessing the actual practice of an inspection against such guidelines is an 

important component of knowing whether the results represent an accurate assessment of 
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the quality of the work product inspected. If important guidelines were not followed (for 
example, if inspectors without appropriate knowledge were used or they were not given 
enough time for preparation) it is possible that the defects found by the inspection greatly 
under-count the number of defects existing in the work product. 

 Although the above issues have not been analyzed separately for their 
contribution to inspection success, there have been no data from any environment which 
indicate that different guidelines apply in different types of organizations or for different 
application domains. 

 An important issue that is not considered here is whether the inspection 
results include a large number of false positives – that is, issues that were reported by the 
inspection team but that do not really represent problems in the system – in addition to 
useful information about existing defects. Since inspections are a team-driven activity, in 
that they rely on a team of inspectors with different expertise to reach consensus that an 
issue is really a defect before it is reported, it is also assumed that a well-performed 
inspection will minimize the number of false positives, and one that deviates from the 
guidelines will similarly produce untrustable results by over-estimating the number of 
quality problems in the system. 

 
Reasoning about the Current State of System Quality 
Having done an inspection and found out something about the number of defects 

in a specific work product, what kind of choices could then be made based on those 
results? Regarding the specific work product that was inspected, the team lead can choose 
one of the following options: 
1. If the number of defects was within acceptable bounds: Fix the defects found and 

continue without further QA on this product. 
2. If the number of defects was high enough to cause concern: Fix the defects found and 

then do additional QA on this product. 
3. If the number of defects was excessively high: Throw out much of the development 

work that was done and re-develop from scratch. (Although extreme, this is based on 
the hypothesis that very defect-prone components tend to be defect-prone throughout 
their lifespan – it is difficult to patch up components that had unacceptably low 
quality to begin with.) 

Furthermore, if the defect density is found to be unacceptably high and this 
product is considered to be fairly representative of the quality of the larger system, the 
inspection output might also convince us that: 
4. The percentage of effort allocated to quality assurance on the system as a whole 

should be increased. 
 To support this type of decision-making, we investigated the use of 

“stories.” A story in this context is a way of representing knowledge about a situation as a 
series of discrete episodes describing events that happened in chronological order. 
Episodes are separated by choice points. In other words, a story may contain episode x 
which describes the situation at some moment at time, when a choice is made; this leads 
to episode x+1, at which point a new choice is made, and so on. In theory, if I have a new 
situation which is roughly analogous to a series of episodes in an existing story, ending 
with episode y, then I have some confidence for believing that making the same choices 
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is likely to recreate results in my current situation analogous to those recorded in episodes 
starting with y+1. 

 Using this scheme to support software development decisions, we treat 
software development as a sequence of episodes, where performing an inspection is the 
latest episode in the sequence. The inspection episode has to be characterized according 
to the defects that were detected, along with the size of the work product inspected. From 
these measures we could understand the defect density of the inspected portion of the 
system, which tells us something about the quality of system at this moment in time. 
With this information, we could examine any known stories about inspection applications 
to look for similar situations, and reason about the types of actions that would be 
appropriate for systems with this level of quality at this point in the software development 
lifecycle. 

 To accurately make this comparison, however, the types of defects 
detected by the inspection also have to be characterized. As an extreme example for why 
this is necessary, suppose that a code module A is inspected and based on the defects 
detected it appears that the defect density is one defect per 1K lines of code. Let us 
assume that there exists a story about inspections applied to code module B, from a 
similar system, where B has a similar size and complexity to A and resulted in a similar 
measure of defect density. Will later experiences on B provide any indication about what 
could be expected in later development of A? The answer may be yes but only if 
information about the types of defects detected is also comparable. If the defects in B 
were mainly clerical or otherwise easily fixed, while defects in A concern important 
system functionality that was incorrectly specified in the earliest phases of the project, the 
downstream experiences on both projects may be quite dissimilar indeed. 

 This necessity of comparing defect types from one project to another 
forms the major stumbling-block to this work. Although software inspection may well be 
the software development practice for which the most data exist, no standard 
classification system for defects is used across a large number of the available datasets. 

 
Data Sources Examined on this Project 
From various projects, FC-MD has access to a wide variety of inspection data 

from numerous contexts. Searching for data that would support the planned analyses, we 
investigated: 

 
• NASA software development bug/change trackers:  

Many NASA projects use tracking systems to store and analyze the known issues 
on a given project during the course of development. Each record in the database 
corresponds to a single issue that must be changed or repaired in the given system. Thus, 
the database taken as a whole contains a record of all unplanned changes that arose over 
the lifetime of the system development. For a large project, there will likely be hundreds 
of such records. 

 Although the exact information recorded for a defect/change record varies 
from system to system, at a bare minimum projects generally record: A description of the 
issue to be addressed, the date the issue was discovered and tracked, how the issue was 
found, the severity associated with the issue, how the issue was fixed, and the date the 
implemented fix was reviewed and approved. 
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 Such change tracking databases seemed to be a rich source of analysis for 
the planned analysis. Although the databases will contain information about quality 
issues found by mechanisms other than inspections, the inspection results themselves are 
entered into the bug tracker so that they could be followed and closed by project 
personnel. However, these databases suffered from two major problems for our work: 
First, quality issues were generally recorded starting only with the implementation phase 
of the project. Although requirements and design issues could still be found and recorded 
at this point, the database was missing any record of the majority of quality issues that 
were discovered during those activities. Secondly, the databases in general were missing 
any meaningful categorization of the defects. Not only was no single classification 
scheme used to organize the issues being tracked, but the information stored concerning 
what the issue was and how it was fixed were at a very detailed level that was meaningful 
only to project personnel. Therefore, it was not possible to provide any comparison 
between new projects and old projects on the basis of the recorded issues.  

 
• Inspection experiments:  

Personnel from the Fraunhofer Center – Maryland and University of Maryland 
have, in combination and separately, run a number of experiments comparing the 
effectiveness and efficiency of varying inspection approaches for detecting defects, in all 
phases of software development. The repository of experimental results contains another 
rich source of inspection data. Because each experiment applied inspection to a work 
product with a known number of defects, it is possible to measure accurately what 
percentage of the issues extant in the document were found by each application of 
inspection. Because data is recorded on each subject’s background, it is also possible to 
judge whether effectiveness varies according to attributes of the person applying it, for 
example, his or her amount of previous experience in inspection teams or with software 
development in general. Furthermore, because the experiments were designed to be 
comparable with other published work, a common taxonomy of defects was used across 
the studies. 

 The weakness of this dataset for our purposes here is that the inspections 
are applied in an academic environment – that is, the work products under inspection 
were not actually being used in a real development project. For this reason it is 
impossible to follow the products forward in time to understand the effect that the 
correction of the known defects had on the overall quality of the system: Whether the 
defects detected would have saved significant development effort or the defects missed 
had the potential to greatly increase the amount of rework effort needed later in the 
project. Thus the usefulness of this dataset for the desired decision-support was minimal; 
it could be concluded from this data that appropriately-conducted inspection would detect 
a majority of the extant defects but not how this contributed to the overall budget and 
quality of the project. 

 
• Inspection databases from large government and commercial organizations:  

Organizations that invest in inspection programs often maintain a cross-project 
database of inspection results. Such a database typically contains one record for each 
inspection, recording information such as the project and module on which the inspection 
was applied, the size of the work product inspected, the number of participants involved 
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and the total amount of effort spent on the inspection, and the number of defects detected 
and fixed as a result of the inspection. Such databases are used by the organization for 
baselining and monitoring inspection results to spot problems. For example, when a team 
has just conducted an inspection the output can be compared to baselines recorded for 
similar projects to understand whether this process has required much more effort than 
has traditionally been the case, or whether team leads are trying to inspect too much 
material in too little time. By making certain assumptions about the amount of rework 
saved for different types of detected defects, it is also possible to use the data to analyze 
the expected return to the organization for the effort expended on the inspections 
[Kelly92, Madachy95].  

 Again, such databases are useful for showing the contribution of 
inspections in general and demonstrate their usefulness as a quality assurance technique. 
However, they also do not provide information about the same module over time so that 
the quality of a module after an inspection and rework could be assessed. While 
theoretically they could contain information on multiple inspections of the same module, 
in practice this did not occur in the datasets to which we had access. Thus, it was not 
possible to judge the contribution of any inspection to downstream quality aspects of the 
same part of the system. 

 
• Software Engineering Laboratory data:  

The Software Engineering Laboratory (SEL) at NASA’s Goddard Space Flight 
Center had a long history of data collection in the area of software development, which 
contributed to recognized success in the area of software process improvement [Basili95, 
Basili02]. While the database is no longer maintained, archives exist of the data and 
numerous publications have been written summarizing various subsets of its contents. 

 During investigation of the database it was clear that forms for inspection 
data collection existed1 and had been used by developers. However, in interviews with 
SEL data analysts it was discovered that the inspection data collected was from projects 
using the Cleanroom methodology, a distinct software development methodology based 
on formal models and correctness verification that is not in widespread use. Efforts to 
reconstruct the database contents were thus discontinued, since the predictive power of 
this data for more traditional software development environments was judged to be very 
slight. 

 
Recommendations for Necessary Data 
As this was a small, exploratory study, it was perhaps not surprising that the data 

archives already available did not happen to match the needs of the new, proposed 
analysis. However, the resources summarized above constitute a large body of data for 
any practice in software engineering, compiled by researchers at UMd and FC-MD over 
years of work. It is not likely that there are great reserves of other data sets available on 
inspections, or that more data would exist for other software development practices. 

 The above list suggests that longitudinal data from industrial or 
government development projects is needed for the planned analysis – although 
inspection results in an academic environment can be measured and categorized most 
accurately, it is difficult to get information about decisions being made on the basis of 

                                                 
1 See http://sel.gsfc.nasa.gov/website/exp-factory/datacol-process/sample-forms/IDCF_np.html 
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those results based on experience. If data is to be gathered for the planned analysis, it 
would need to be instrumented as part of an ongoing, “live” development project. 

 Since the purpose of the planned decision support is to reason about 
software quality – and whether if, judging by early indicators such as inspection results, it 
appears to be at a sufficient level that would enable end-product goals to be met – we 
would need some more objective indicator of quality in the particular portion of the work 
product being inspected. Test data is the most likely choice for this, as this is the final 
quality assurance check before the software is released. Although test does not catch all 
of the remaining defects, it is usually considered to catch a majority of those defects and 
project managers will often place extra resources into test if early test results show more 
defects remaining than was expected. The final quality of a given portion of a software 
system could be approximated by the number of defects found during test, the amount of 
rework effort that has to be done to fix defects found during test, and the amount of time 
that portion of the software system spends in test. High values for any of those three 
indicators could be taken as evidence that the quality of that portion of the system was 
inadequate and that better decisions could have been made about allocating early QA 
activities. 

 Thus to actually conduct the planned analysis would require negotiating 
with a development project to collect data on both in-process inspection results from 
various phases (which would include defects that would presumably have to be 
categorized by the research team) along with test data and test effort. Unfortunately, as 
this data collection would span the entire life of the project, it would be a substantial 
undertaking. However, no existing dataset with all of the required information is known. 
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