

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

XML TACTICAL CHAT (XTC):
EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL

FOR COMMAND AND CONTROL APPLICATIONS
by

Adrian D. Armold

September 2006

 Thesis Advisor: Don Brutzman
 Co-Advisor: Don McGregor
 Second Reader: Terry Norbraten

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: XML Tactical Chat (XTC): Extensible Messaging
and Presence Protocol for Command and Control Applications
6. AUTHOR Adrian D. Armold

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
COSMOS ACTD, OSD –ATL
3400 Defense Pentagon,
Washington, DC 20301- 3400

Navy Modeling and Simulation Office
1333 Isaac Hull Ave., Stop 5012,
Washington Navy Yard, D.C. 20376-5012

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT
Current chat and instant messaging (IM) solutions within the DoD have created problems with information security

and interoperability. Though Extensible Message and Presence Protocol (XMPP) is the only mandated chat and IM protocol in
the DoD, the majority of the military still operates alternate nonstandard solutions that prevent interoperability and lack
appropriate security assurances.

XMPP is a streaming XML protocol used for multi-user text chat and Instant Messaging (IM). XMPP supports a
large set of administrative and user features, valuable to military chat and IM users. As an open standard, XMPP is also
extensible to allow for development of military-specific chat and IM requirements. XMPP protocol also provides significant
extensibility to allow for greater command and control and other operational capabilities.

This work demonstrates the use of XMPP to route XML-expressed Distributed Interactive Simulation (DIS-XML)
data to conduct distributed modeling and simulation. This work also demonstrates the use of XMPP as a generalized XML
message-routing framework in conjunction with XML-expressed military data models, such as the Joint Consultation
Command and Control Information Exchange Data Model. Also presented in this thesis is an XML document based chat data
logger, designed to support persistent operations using distributed chat architecture.

Experiments conducted with Navy Exercise Trident Warrior 2006 demonstrate the value of such a framework, as
well as the value of XML document-based chat data logging. Results indicate that implementation and extension of XMPP has
significant value for enhancing command and control. These features, along with the benefits of the adoption of open standard
solutions, make XMPP an essential technology for adoption in today’s operational command and control suites.

15. NUMBER OF
PAGES

192

14. SUBJECT TERMS Instant Messaging, Chat, XMPP, XML, DIS-XML, DIS, JC3IEDM, Chat
Logging, Command and Control, XTC, X3D, XMSF

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

XML TACTICAL CHAT (XTC):
EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL

FOR COMMAND AND CONTROL APPLICATIONS

Adrian D. Armold
Captain, United States Marine Corps

B.A., University of Colorado-Boulder, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Adrian D. Armold

Approved by: Don Brutzman

Thesis Advisor

 Donald R. McGregor

Co-Advisor

Terry Norbraten
Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Current chat and instant messaging (IM) solutions within the DoD have created

problems with information security and interoperability. Though Extensible Message and

Presence Protocol (XMPP) is the only mandated chat and IM protocol in the DoD, the

majority of the military still operates alternate nonstandard solutions that prevent

interoperability and lack appropriate security assurances.

XMPP is a streaming XML protocol used for multi-user text chat and Instant

Messaging (IM). XMPP supports a large set of administrative and user features, valuable

to military chat and IM users. As an open standard, XMPP is also extensible to allow for

development of military-specific chat and IM requirements. XMPP protocol also

provides significant extensibility to allow for greater command and control and other

operational capabilities.

This work demonstrates the use of XMPP to route XML-expressed Distributed

Interactive Simulation (DIS-XML) data to conduct distributed modeling and simulation.

This work also demonstrates the use of XMPP as a generalized XML message-routing

framework in conjunction with XML-expressed military data models, such as the Joint

Consultation Command and Control Information Exchange Data Model. Also presented

in this thesis is an XML document based chat data logger, designed to support persistent

operations using distributed chat architecture.

Experiments conducted with Navy Exercise Trident Warrior 2006 demonstrate

the value of such a framework, as well as the value of XML document-based chat data

logging. Results indicate that implementation and extension of XMPP has significant

value for enhancing command and control. These features, along with the benefits of the

adoption of open standard solutions, make XMPP an essential technology for adoption in

today’s operational command and control suites.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. MOTIVATION ..2
C. OBJECTIVES ..3
D. THESIS ORGANIZATION..3

II. BACKGROUND AND RELATED WORK ..5
A. INTRODUCTION..5
B. BACKGROUND ..5

1. Chat and Instant Messaging (IM) ..5
a. Internet Relay Chat (IRC) ..6
b. America OnLine (AOL) Instant Messenger (AIM)6
c. Windows Messenger / Yahoo Messenger7
d. Session Initiation Protocol for Instant Message and

Presence Leveraging Extensions (SIMPLE)7
e. Jabber / XMPP..8

2. Extensible Markup Language (XML)..8
C. RELATED WORK ..10

1. Distributed Interactive Simulation (DIS) ..10
2. Joint Consultation Command and Control Information

Exchange Data Model (JC3IEDM) ..11
3. XML Binary Serialization...12

a. Introduction...12
b. Military Information Interoperability13
c. XMPP Instant Messaging Compression14
d. Efficient XML Interchange (EXI)..14

4. XML Storage/Search ...15
a. Introduction...15
b. Flat File Storage ...15
c. Relational Databases...16
d. Native XML Databases ...16
e. Coalition Secure Management and Operations System

(COSMOS) ..16
f. Conclusion...17

D. SUMMARY ..17

III. MILITARY CHAT ..19
A. INTRODUCTION..19
B. CHAT RESEARCH...19
C. CHAT REQUIREMENTS ..20

1. XTC Technical Report Requirements ...20
2. Requirements Documents ...22
3. Requirements from Usage Patterns ...23

 viii

D. SUMMARY ..26

IV. EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL (XMPP)27
A. INTRODUCTION..27
B. HISTORY ...27
C. SPECIFICATION..27

1. Core ...27
a. Jabber Identifiers (JIDs) ..28
b. XMPP Security..29
c. XMPP Message Passing ...29
d. XML Streams and Stanzas..30

2. Chat/IM...31
3. Jabber Enhancement Proposals (JEPs) ...33

a. Multi-User Chat (MUC)..34
b. Other Jabber Enhancement Proposals with Military

Application ..36
D. SUMMARY ..39

V. XMPP DEPLOYMENT AND IMPLEMENTATION ...41
A. INTRODUCTION..41
B. XMPP DEVELOPMENT..41
C. CLIENT IMPLEMENTATION AND DEPLOYMENT............................43

1. Exodus...43
a. Installation ..43
b. Login..43
c. Navigation and Use...45

2. USJFCOM BuddySpace/Transverse..49
a. Supported Chat Features ..49
b. Supported Military Specific Features53

3. Military Chat Customization ..61
D. XMPP SERVER IMPLEMENTATION AND DEPLOYMENT62

1. Wildfire Server Settings and Features...62
2. User Accounts and Multi-User Chat Rooms66
3. Server Connections ..69
4. Military Considerations...70

E. SMACK XMPP CLIENT LIBRARY ..70
1. Connection and Login ...71
2. Messaging..71
3. Stanza Processing...71
4. Packet Extensions...72
5. Packet Properties ...73
6. Smack Extensions ..73

F. SUMMARY ..74

VI. XML TACTICAL CHAT (XTC) ...77
A. INTRODUCTION..77
B. NPS XTC CHAT CONFIGURATION ..77

 ix

C. DIS-XML ..80
D. XTC CHAT LOGGING..81
E. JC3IEDM-ENHANCED TACTICAL COLLABORATION (JTC)83
F. SUMMARY ..85

VII. APPLICATIONS AND EXPERIMENTAL RESULTS...87
A. INTRODUCTION..87
B. COMCARSTKGRU12 (CCSG12) XML TACTICAL CHAT TEST87
C. DIS-XML / AUV WORKBENCH ..92
D. XTC CHAT LOGGER..96
E. JTC / TRIDENT WARRIOR 2006 ..100

1. Trident Warrior Experiment Series...100
2. JC3IEDM-Enhanced Tactical Collaboration Experiment...........100
3. JTC Operational Threads ...100
4. Mission Vignettes ...101
5. JTC Architecture ...103
6. JTC Statistics Logging...105
7. Results and Observations ..106

F. SUMMARY ..108

VIII. CONCLUSIONS AND RECOMMENDATIONS...109
A. CONCLUSIONS ..109
B. RECOMMENDATIONS FOR FUTURE WORK....................................111

1. Military Implementation ...111
2. Client Development..111
3. JC3IEDM / XMPP Development..112
4. XMPP End-to-End Encryption ..112
5. Efficient XML Interchange (EXI) ..112
6. DIS-XML ..112
7. X3D Graphics ...113
8. Chat Log Search...113
9. Chat Log Comparison and Correlation...113

APPENDIX A. USER GUIDE FOR THE XTC CHAT LOGGER................................115
A. CHATMESSAGELOGGER.JAVA ...115
B. EXIST DATABASE...120
C. XTCLOG.XQL...121

1. xtclog.xql ...121
2. xtclog.css ...124
3. xtclog.js ...126

APPENDIX B. COMCARSTKGRU 12 CHAT TEST RESULTS MESSAGE131

APPENDIX C. TW06 VIGNETTE PLAYBOOK ...137

APPENDIX D. DIS-XML SOURCE CODE ..153
A. XMPPRECEIVER.JAVA ...153
B. XMPPSENDER.JAVA ..157

 x

APPENDIX E. XTC CODEBASE...163

LIST OF REFERENCES..165

INITIAL DISTRIBUTION LIST ...169

 xi

LIST OF FIGURES

Figure 1. Chat interfaces typically display a list of users, a scrolling display of sent
messages and a window for composing text messages......................................5

Figure 2. XML Documents label data and structure the data into a nested tree.9
Figure 3. DIS PDUs can be expressed as XML Messages..11
Figure 4. The recommended tactical requirements for XML-based tactical chat

describe functional chat needs. Taken from (Brutzman et al., 2004).21
Figure 5. The recommended technical requirements address data format and

application design issues for military chat. Taken from (Brutzman et al.,
2004). ...21

Figure 6. The recommended administrative requirements address chat user conduct
and accreditation needs for military chat. Taken from (Brutzman et al.,
2004). ...22

Figure 7. The Deployed Joint Command and Control system has requirements for
incorporated text chat...23

Figure 8. XMPP typically uses client – server architecture. Users authenticate to a
server. Messages are sent from client to server to server to client.30

Figure 9. Starting the Exodus client initiates a login window...44
Figure 10. The Account Details tab of the Exodus login account details window

allow for profile configuration...44
Figure 11. The initial Exodus Client interface is presented once the use has logged

into the XMPP server...45
Figure 12. The Exodus browser interface allows for intuitive navigation to chat

rooms or other users...46
Figure 13. The Exodus browser feature provides intuitive display and navigation of

the XMPP server’s chat rooms. ...46
Figure 14. Exodus client displays presence indicators as seen with the contacts in the

XTC Roster Group...47
Figure 15. The Exodus client displays a two-frame window for one-on-one chat

communications. The upper frame displays the conversation and the lower
frame is for inputting text messages. ...48

Figure 16. The Exodus client displays a two-frame window for multi-user chat
communications. The upper frame displays the conversation and the lower
frame is for inputting text messages. ...48

Figure 17. Transverse uses a Contacts or Buddy List display to support user
awareness of other XMPP users. Classification labeling is for
demonstration purposes only. ..50

Figure 18. Transverse uses an Online User display to support user awareness of other
connected XMPP users. Classification labeling is for demonstration
purposes only. ..51

Figure 19. Transverse supports the display of a Room Query on the connected server.
This figure displays the room list for conference.jabber.com.
Classification labeling is for demonstration purposes only.52

 xii

Figure 20. Transverse supports the logical organization of chat rooms into groups.
Classification labeling is for demonstration purposes only.53

Figure 21. Message Keyword Monitoring is supported by Transverse. Note the ability
to select multiple rooms as well as multiple keywords for alerting.
Classification labeling is for demonstration purposes only.55

Figure 22. Transverse Chat client enables labeling and display of message
classification information. Classification labeling is for demonstration
purposes only. ..56

Figure 23. Transverse’s HyperRoom feature. This window is supporting three
different chat rooms, wfranklin, jpp_dev, and newroom. Note the ability to
select which room/s the user can send a particular message to.
Classification labeling is for demonstration purposes only.57

Figure 24. Transverse enables both one-on-one and chat room logging and retrieval.
Classification labeling is for demonstration purposes only.58

Figure 25. Transverse’s manual language translation tool allows a user to selectively
translate individual messages. Classification labeling is for demonstration
purposes only. ..59

Figure 26. A manually translated chat message displayed in a Transverse Chat Room.
Classification labeling is for demonstration purposes only.60

Figure 27. Transverse Chat room display showing automatic language translation.
The translated message is denoted with **. Classification labeling is for
demonstration purposes only. ..61

Figure 28. The Wildfire Admin Console Server Settings Page displays configured
settings and server status..63

Figure 29. The Wildfire Admin Console Debug Log Viewer provides log access to
the XMPP traffic and facilitates troubleshooting and debugging.64

Figure 30. Wildfire Admin Console: Message Auditing Policy provides the ability to
enable or disable packet logging and auditing. Note the ability to select the
type of packet (stanza) types to audit and log..65

Figure 31. The Wildfire Admin Console: Offline Messages page enables
configuration of off-line message handling. ..66

Figure 32. Through the Wildfire Admin Console: User Summary, administrators can
create, delete, and modify user accounts with this feature.67

Figure 33. The Wildfire Admin Console: Group Chat Rooms page displays the status
of all supported MUCs on the server. ..68

Figure 34. The Wildfire Admin Console: Room Administration page allows for
configuration of MUC rooms. Note the available room options for MUC
room configuration control. ...68

Figure 35. The Wildfire Admin Console: Client Sessions page displays the status of
all connected clients...69

Figure 36. The Wildfire Admin Console: Server Sessions page displays the status of
all active server to server connections. ..70

Figure 37. Establishing an XMPP connection with Smack is done by instantiating an
XMPPConnection class object...71

 xiii

Figure 38. Establishing a Chat session and sending a message with Smack can be
performed with very few lines of code. ...71

Figure 39. The NPS XTC configuration for chat enables XMPP communications
across the campus firewall. ..78

Figure 40. The creation of DIS-XML is achieved through the binding IEEE DIS to
XML through Java Objects..81

Figure 41. The XTC Chat Logging Architecture writes chat conversations to XML
files and consolidates them into a web-browser accessible data base.82

Figure 42. The JTC Chart/Map provides a Graphic User Interface (GUI) for common
situational awareness and maritime operational task creation and
presentation. ...84

Figure 43. The JTC Data Flow Overview describes the flow of information during
JTC Trident Warrior 2006. ..85

Figure 44. The CCSG12 XML Tactical Chat Test of October 2005, demonstrated the
feasibility of XMPP chat over ship borne satellite communications...............88

Figure 45. CCSG12 XTC Test Topology describes the network connections used in
support of the CCSG12 Chat Test exercise. ..89

Figure 46. XMPPSender.java sends DIS-XML <message/> stanzas such as this.
Note the XMPP value element ultimately contains DIS-XML data as its
payload value. ..92

Figure 47. XMPP MUC Room (left) and Xj3D Browser (right) with
XMPPReceiver.java running and waiting for messages with DIS-
XML payload. ..93

Figure 48. XMPP MUC Room (left) and Xj3D Browser (right) with
XMPPSender.java sending XMPP messages,
XMPPReceiver.java processing these messages, and the Xj3D
Browser exhibiting DIS entity movement. ..94

Figure 49. Autonomous Underwater Vehicle Workbench. Note the ability to select
DIS-XML as an execution format and the inclusion of an XMPP chat
console as simulator features. ..95

Figure 50. Screen capture of ChatMessageLogger.java processes. MUC room
messages are captured in a chat room (top right) and written to a well-
formed XML file (lower right). The contents of the file are seen at left.97

Figure 51. The eXist database is WebDAV enabled, permitting the data to be viewed
as a file hierarchy. WebDAV also facilitates the importation of XML
documents into the database. ...98

Figure 52. XTC Chat Logger provides keyword search on stored chat logs.99
Figure 53. Keyword search results are hypertext message bodies that point to their

chat log of origin..99
Figure 54. Two operational threads were evaluated in the JTC Trident Warrior 2006

experiment. Note that COP monitoring was not able to be tested as no C4I
Web Service site was available..101

Figure 55. Strike and Mine and Inshore Warfare mission vignettes from the JTC
Trident Warrior 2006 experiment. ...102

 xiv

Figure 56. Maritime Interdiction Operations and Anti-Submarine mission vignettes
from the JTC Trident Warrior 2006 experiment..102

Figure 57. JTC Trident Warrior 2006 Architecture included users at COMPACFLT,
NPS, and on the USS Bonhomme Richard..104

Figure 58. XTC chat log documents are generated by the
ChatMessageLogger.java application. ...120

 xv

LIST OF TABLES

Table 1. Use cases assembled by XBC for a binary XML encoding.............................13
Table 2. Consolidated Functional Requirements for Chat and IM. (From: Eovito,

2006). ...24
Table 3. Consolidated Information Assurance Requirements for Chat and IM.

(From: (Eovito, 2006). ...25
Table 4. Consolidated Scalability Requirements for Chat and IM. (From: Eovito,

2006). ...25
Table 5. Consolidated Interoperability Requirements for Chat and IM. (From:

Eovito, 2006)..26
Table 6. Features and functions of Multi-User Chat identified by JEP-0045: Multi-

User Chat (Jabber Software Foundation JEP-0045) ..35
Table 7. Multi-User Chat Room types specified by JEP-0045. (From: Jabber

Software Foundation JEP-0045) ..36
Table 8. Status of XMPP Server implementations. (From:

www.jabber.org/software/servers.shtml. Accessed 24 August 2006)42
Table 9. Smack supports a number of XMPP Extensions. ..74
Table 10. XTC research is conducted on two servers with the listed specifications.78
Table 11. XTC traffic is permitted by the NPS firewall permissions.79
Table 12. Chat rooms used in support of the JTC Trident Warrior 2006 experiment. ..105
Table 13. Estimated average size of OPTASK planning object during the JTC

Trident Warrior 2006 experiment was smaller when using JTC messages
than when using Power Point...106

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank Don Brutzman for his guidance and patience in the conduct

of this work. His vision, enthusiasm, and dedication to enhancing our military are

tremendous, and his contributions to the DoD and the warfighter are invaluable.

I owe many thanks to Don McGregor for his support in this endeavor as well. The

research for this thesis could not have been conducted without his technical expertise and

continuing administrative and system hardware support.

Additional thanks go to Terry Norbraten for tireless assistance in the preparations

for Trident Warrior 2006, and for conducting valuable research in my place during my

wedding. His selfless dedication to his and his peer’s work is inspirational.

I would like to acknowledge the efforts of the Captain Burns, Commander Krissa

Baylor, and Lieutenant Commander Randy Conley of the ONR/NRL Detachment 113 for

their contribution to the JTC experiment with Navy Exercise Trident Warrior 2006.

I would like to acknowledge the COSMOS ACTD and the Navy Modeling and

Simulation Office for research funding in support of this thesis.

Final thanks go to my wife Tracey, whose patience, caring, and support helped me

in more ways than can be expressed.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
Chat technology has emerged as a significant ad hoc solution to the problem of

real-time information distribution among today’s deployed military. The real-time

information requirements of military operations today are quite large and chat has been

widely adopted as a technology of choice for conducting command and control activities

in support of military missions. Chat is ubiquitously used to develop plans, coordinate

operations, conduct autonomous vehicle missions, and support collaborative decision

making.

Rapid and uncoordinated adoption of incompatible chat protocols has led to the

disjoint application of chat technology across the services, and there are significant

problems with joint interoperability with respect to chat. The individual services have

separate preferences with regard to chat tools and clients. There exists no overarching

architecture for chat across the Department of Defense (DoD). There are limited official

chat requirement documents at either the service or the joint level, and the emergence of

any official service sponsorship of a chat system is only recent (Eovito, 2006).

The terms Chat, Group Chat, Multi-User Chat (MUC) and Instant Messaging

have varying degrees of overlapping meaning. Instant Messaging is thought of as one-to-

one text communication while Group Chat is many-to-many text communication. “Chat”

is sometimes used to refer to either one of the two communication types. Both

communication methods are typically provided by most Instant Message service

providers, but the majority of use in the military context is of the Multi-User Chat type.

The preeminent chat system solution today is the Extensible Messaging and

Presence Protocol (XMPP). It is Internet Engineering Task Force (IETF) instant

messaging and presence standard. XMPP is an open-standard solution to the myriad

needs and implementations of text-based chat in the military. As stated in the IETF

Request for Comment (RFC) 3920 , XMPP is “…a protocol for streaming Extensible

Markup Language (XML) elements in order to exchange structured information in close

2

to real time between any two network endpoints.” (IETF, Network Working Group,

2004), this protocol provides enormous extensibility in the application of the XMPP

framework beyond simple text-based chat.

This thesis identifies the current uses and requirements of chat in the military, and

describes the XMPP protocol systems as a solution for future chat systems.

This research also exhibits the value of the flexibility and extensibility of the

XMPP framework; presenting exemplar applications in the areas of structured message

passing, message archiving and searching. This is done to demonstrate the greater

potential that an XMPP-based chat solution has over other chat solutions. These

exemplars also expose such extensions as real-value additions that go beyond traditional

unstructured text-based chat.

In sum, the following questions are addressed. Is an XMPP based Chat/IM

solution capable of meeting the requirements of today’s military? What advantages, if

any, does adopting the open XMPP standard based solution hold over alternate solutions?

How can XML streams and XMPP extensions be applied to increase the capabilities

value of Chat/IM communications for Command and Control (C2)?

B. MOTIVATION
The motivation for this thesis lies in identifying XMPP as the well-engineered

synthesis of two distinct technologies, XML and Chat/IM. Chat/IM is already established

as a critical communication technology. Eovito claims that Chat has “…migrated from a

stopgap measure, the proverbial finger in the dike, and become one of the main real-time

C2 systems used by Commanders and operators to execute all phases of their doctrinal

missions” (Eovito, 2006). However, the ad hoc adoption of incompatible chat protocols

across the services, has created a problem space. The lack of systematic requirements

elicitation and documentation has not allowed for informed selection of chat tools.

Further, the disparate solutions currently used lack the interoperability needed in such a

critical C2 communications method.

XML, though relatively new, has matured rapidly and is well established as a

format for structuring and handling data. XML is platform independent, well-supported,

3

and does not require a license (Bos, 2000). It is an underlying technology for the World

Wide Web, and it and web services “enable a paradigm shift in integration and

interoperability” in the context of military C2 (Molitoris, 2003).

XMPP provides a technology that can both meet the emerging requirements for

Chat and IM and leverage the advantages of XML. The motivation for this research lies

in exploring the potential that XMPP technology holds for improving and expanding the

C2 capabilities enabled by chat and IM.

C. OBJECTIVES
This thesis seeks to assess the suitability of XMPP-based Chat to military

systems, and to explore and demonstrate the potential enhancements to C2 that streaming

XML affords the DoD.

An analysis of the XMPP specifications against the military requirements for chat

and IM is presented.

A presentation of existing XMPP implementations is made. Both server and client

applications are exposed and assessed for their suitability for military use.

This thesis presents exemplars of XML-based message passing over XMPP as a

demonstration of the extensible power that the protocol holds. This message passing

capability is examined in the context of military modeling and simulation (M&S) and

military C2.

Finally, this thesis presents an exemplar system of recording, archiving, and

searching on XMPP based Chat conversations. Again, the extensibility of XML and

XMPP is highlighted.

D. THESIS ORGANIZATION

This thesis is comprised of eight chapters:

• Chapter I – Introduction. This chapter provides an overview of the topic
and the motivation and objectives of the research.

• Chapter II – Background and Related Work. This chapter provides
background discussion on XML and Chat/IM., and reviews related work
in the fields of Distributed Interactive Simulation protocol (DIS), Joint
Consultation Command and Control Information Exchange Model
(JC3IEDM), XML Binary Serialization, and search/data mining.

4

• Chapter III – Military Chat. This chapter provides an overview of the
status of Chat/IM in the DoD with respect to requirements.

• Chapter IV – Extensible Messaging and Presence Protocol. This chapter
provides an overview of the XMPP technology for Chat/IM.

• Chapter V – XMPP Deployment and Implementation. This chapter
provides discussion of the XMPP client applications available today, and
discusses technical and administrative issues related to XMPP server
deployment.

• Chapter VI – XML Tactical Chat. This chapter discusses and demonstrates
the application of XML-based messaging to XMPP Chat/IM and the
suitability of XMPP to military networks. Additionally, this chapter
discusses and demonstrates Chat archiving and retrieval.

• Chapter VII – Experimental Results and Applications. This chapter
presents the results of XTC related research and applications.

• Chapter VIII – Conclusions and Recommendations. This chapter
summarizes conclusions and discusses future work.

• Appendices – The appendices provide a list of references, user guides for
applications, a Navy message regard the results of a chat experiment, and
documentation for the Trident Warrior 2006 exercise.

5

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION
XMPP technology and tools comprise a convergence of two previously disparate

technologies, Instant Messaging/Presence and XML. This chapter presents an overview

and background of these two technologies. Overviews on the related work fields of

Distributed Interactive Simulation (DIS), Joint Consultation Command and Control

Information Exchange Model (JC3IEDM), XML binary serialization, and information

retrieval, or search, is presented as well.

B. BACKGROUND

1. Chat and Instant Messaging (IM)
Chat and Instant Messaging (IM) are methods of communication which pass text

messages from one computer user to another in near-real time. IM describes such

communication between exactly two people, while chat describes this communication

between multiple users. Typically, these messages are displayed in a graphic user

interface (GUI) which identifies the sender of a message, the time that the message was

sent, and the text message itself. A scrolling pane of messages is maintained for an

Chat/IM session. Figure 1 displays a typical Chat/IM user interface.

Figure 1. Chat interfaces typically display a list of users, a scrolling display of sent

messages and a window for composing text messages.

6

Chat/Instant Messaging has one of its origins in the talk program feature of the

Unix operating system in the 1970s. Originally, Unix talk program supported text

communications between two users of a single multi-user computer, though later versions

provided communication between multiple users and users on different machines

(Wikipedia.org, 2006c). The advent of Chat/IM as an OS independent application was

first seen with Bitnet Relay Chat, or Relay, in 1985 by Jeff Kell (Kell, 1987). Bitnet was

a computer network used by American universities from 1981 until 1991. Bitnet

dissolved with the widespread adoption of the Internet in the early 1990’s. The first

Chat/IM system to be implemented on the Internet was the Internet Relay Chat (IRC).

a. Internet Relay Chat (IRC)
IRC was released by Jarkko Oikarinen in August, 1988 (Oikarinen, 2005).

In May 1993, IRC was standardized by the informational IETF RFC 1459 (Oikarinen and

Reed, 1993). The standard has been updated and today IRC is standardized by

informational IETF RFCs 2810: IRC Architecture (Kalt, 2000d), 2811: IRC Channel

Management (Kalt, 2000a), 2812: IRC Client Protocol (Kalt, 2000b) , and 2813: IRC

Server Protocol (Kalt, 2000c). IRC is still widely used today, and is one of the most

commonly used Chat/IM systems in the DoD (Eovito, 2006). IRC uses client/server

architecture. Groups of servers comprise an IRC network, and users, through a client

program, connect to a server on the network. Once connected, users may chat with other

connected users privately or enter a “channel” which is a multi-user chat room dedicated

to a particular topic or group. Though there are many very large IRC networks, not all

IRC servers are connected to each other. As a result of various disputes over technical

and administrative decisions about IRC, the original IRC network split into two large

disconnected IRC networks in 1996. Today, hundreds of smaller IRC networks exist

worldwide. There are both proprietary and open-source server and client side applications

in support of Windows, Unix, and other operating systems. IRC suffers from two major

architectural problems. First, all servers in an IRC network must know about all other

servers, and second, IRC does not support user authentication or encryption.

b. America OnLine (AOL) Instant Messenger (AIM)
AIM is one of the older Chat/IM services, originating as a messaging

service for AOL users. In 1996, ICQ IM became a free alternative to AIM, resulting in

7

AOL’s acquisition of ICQ and its company of origin, Mirabilis. In 2002, AOL obtained

patents on ICQ, but has done little to enforce them as many companies, such as Yahoo

and MSN and have produced similar systems (Wikipedia.org, 2006a). AIM operates

using the Open System CommunicAtion in Realtime (OSCAR) protocol. This is a

proprietary protocol whose documentation and sample code has never been released by

AOL. OSCAR is also client/server architecture, and users must connect to an AOL

server. There are multiple implementations of the AIM protocol which have been

reverse-engineered from the AOL supplied products. In June of 2006, AOL converted

their client application to open source and released a development kit for programmers.

AIM currently has approximately 155 million account holders (Sanders, 2006).

c. Windows Messenger / Yahoo Messenger
Microsoft (Windows Live Messenger) and Yahoo (Yahoo Messenger with

Voice) each offer their own IM service, but in October of 2005, announced that the

companies will be modifying their technologies to allow for interoperability (Sanders,

2006). Windows Live Messenger is built on the Mobile Status Notification Protocol

(MSNP) and Yahoo Messenger with Voice is built on Yahoo Messenger Protocol and

YMSG. A beta version of the interoperable software was released on 13 July, 2006.

Combined, the two systems form the second largest IM network behind AIM with 120

million users (Sanders, 2006).

d. Session Initiation Protocol for Instant Message and Presence
Leveraging Extensions (SIMPLE)

SIMPLE is an open standard protocol for chat and IM. It is based on the

application of presence and IM mechanisms to the Session Initiation Protocol. SIMPLE is

still undergoing the IETF standardization process. Microsoft and other IM vendors have

elected to support SIMPLE as the IM and presence standard, but Microsoft’s Windows

Live Messenger is not based on the SIMPLE protocol, but rather on the MSNP

mentioned earlier. Microsoft’s Live Communications Server is based on SIMPLE, and

MSNP likely has its basis on SIMPLE as well, but this is not known as MSNP is not

available to the public. The major advantage of SIMPLE is its intended integration with

voice and video sessions, however the protocol remains in the IETF standardization

process and the RFC drafts are complicated and heavyweight (Hildebrand, 2003).

8

e. Jabber / XMPP
In 1998, in an effort to escape the need for multiple IM accounts, Jeremy

Miller created the Jabber protocol. He implemented the first server for IM and presence

using Jabber protocols in 1999, and the first public release of the server was in May of

2000 (Saint-Andre and Meijer, 2005).

The Jabber protocol was accepted by the IETF as a standards track

protocol in 2004 and re-named as the Extensible Messaging and Presence Protocol. One

of the few open standard protocols available for IM, XMPP has approximately 20 widely

known server implementations. Of these, slightly more than half are open source, while

the remaining are proprietary commercial implementations of the standard. Because

XMPP is an open standard, anyone can implement a client or server. There are over 50

client applications written to support XMPP. The majority of these applications are free

and many are open source.

In 2005, the company Google announced its entrance into the IM market.

Their IM tool, Google Talk, uses XMPP to implement the IM portion of its services.

Google’s adoption of XMPP added considerable commercial legitimacy to the XMPP

protocols. Apple Computers’ iChat application is another major commercial

implementation of chat and IM that supports XMPP. It is estimated that the XMPP /

Jabber network supports over 25 million users (Wikipedia.org, 2006b).

XMPP has been a mandated standard with the DoD IT Standards Registry

since November of 2005. XMPP is the only mandated chat and IM standard protocol in

the DoD (Barrett, 2006).

2. Extensible Markup Language (XML)
XML is a meta-language, used to define other data languages. It is a subset of the

Standard Generalized Markup Language (SGML), and like SGML is used to define

mark-up languages. In its December, 1997 press release the World Wide Web

Consortium described XML as such,

XML is primarily intended to meet the requirements of large-scale Web
content providers for industry-specific markup, vendor-neutral data
exchange, media-independent publishing, one-on-one marketing,
workflow management in collaborative authoring environments, and the

9

processing of Web documents by intelligent clients. It is also expected to
find use in certain metadata applications. XML is fully internationalized
for both European and Asian languages, with all conforming processors
required to support the Unicode character set in both its UTF-8 and UTF-
16 encodings. The language is designed for the quickest possible client-
side processing consistent with its primary purpose as an electronic
publishing and data interchange format. (W3C Press Release, 1997)

XML has been adopted as intended. It is used widely in support of web content

publishing, and its adoption as a data interchange format has also been widespread.

XML is similar to another SGML derivative, HTML, in that it uses tags and

nesting to structure data in document form. But XML is not designed to describe any

particular type of data. An XML document is an ordered, labeled tree that can be used to

model a wide variety of data. The labels describe the logical structure of the data, and if

so desired, can describe the nature of the content, but do not necessarily contain semantic

information. Figure 2 is a simple example XML document that demonstrates the labeling

and nesting of data elements.

Figure 2. XML Documents label data and structure the data into a nested tree.

While an XML document itself is simply a container for data, the utility in XML

lies in the multiple technologies that support XML documents. There are XML tools that

allow for the parsing, validating, processing, and transforming the document and its data.

Document Type Definitions and XML Schema are used to define the XML document

<Thesis>
 <Title>XML Tactical Chat (XTC) - The application of Extensible Messaging
and Presence Protocol (XMPP) to Command and Control.</Title>
 <Chapter>
 <Number>I.</Number>
 <Name>Introduction</Name>
 </Chapter>
 <Chapter>
 <Number>II.</Number>
 <Name>Background and Related Work</Name>
 </Chapter>
 <Chapter>
 <Number>III.</Number>
 <Name>Military Chat</Name>
</Chapter>

10

type and to validate an instance of an XML document for correctness. XPath and XQuery

allow for the query and access of XML document contained data, and the rapid insertion

or modification of XML data in a document. Cascading Style Sheets and Extensible

Stylesheet Language (XSL) are used to display or transform XML documents. These and

other XML related technologies form a powerful toolset with which XML documents and

data can be applied to solve many computing and information technology problems.

XML namespaces provide a solution to the problem of personalized XML

vocabularies. XML, being only a syntax for language definition, does not restrict the use

of labels for data. If an XML document intends to rely on multiple document types or

languages, it is possible for a particular label to be overloaded across those languages or

document types. An XML namespace is a uniquely named category, denoted by a

Uniform Resource Identifier (URI), which allows for the disambiguation of overloaded

tags with respect to document processing. All data that is to be processed according to a

particular document type is effectively prefixed with its associated namespace. XML

namespaces add the value of modularity to the XML toolset.

C. RELATED WORK
The related work presented in this section focuses on areas that expand the use of

XMPP beyond chat and instant messaging support. Some of these areas involve making

XMPP more efficient or taking advantage of XMPP’s basis in XML. Others are areas of

research that involve using XMPP as a general purpose XML communication backbone.

1. Distributed Interactive Simulation (DIS)
Distributed Interactive Simulation (DIS) is a set of Institute of Electrical and

Electronics Engineers standard protocols for conducting real-time war-gaming and

simulation across multiple platforms. It is used extensively in the realm of military

simulation. Recently, efforts have been made to create an XML representation of the DIS

data packets. Expressing DIS data as XML avails the virtual interface to be accessed by

XML developers and enables the querying, transforming, storage, and web publishing of

the data as with any other XML data (McGregor, Brutzman, Armold, and Blais, 2006).

Figure 3 provides an example of a DIS-XML message.

11

Figure 3. DIS PDUs can be expressed as XML Messages.

DIS data generally relies on multicasting as its transmission method within a

Local Area Network. The Internet, using the point to point architecture of Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP), has become the dominant

network on the physical infrastructure. Most routers that service the Internet are not

configured to route multicast packets.

DIS-XML conversion is not yet complete, but the arena presents an interesting

avenue in demonstrating the potential of XMPP as a general purpose streaming XML

protocol. Using DIS-XML in lieu of native DIS does reduce CPU performance and is

more consumptive of bandwidth, however, DIS-XML has been demonstrated as usable in

at least two examples: the Autonomous Underwater Workbench and the L-3

demonstration at IITSEC 2005 (McGregor et al., 2006). The primary benefit of DIS-

XML is achieving multicast-style capability through firewalls and across the Internet,

otherwise not possible without the use of bridges. Continuing work in Efficient XML

interchange (EXI) is likely to improve processor and network performance of DIS-XML.

2. Joint Consultation Command and Control Information Exchange
Data Model (JC3IEDM)

The Joint Consultation Command and Control Information Exchange Data Model

is an extension of the Multi-Lateral Interoperability Program’s (MIP) Command and

Control Information Exchange Data Model (C2IEDM). MIP is a multinational

organization whose goal is:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<DIS>
 <EntityStatePdu capabilities="0" entityAppearance="0"
 forceID="0" numberOfArticulationParameters="0">
 <PduHeader pduType="1" protocolFamily="1" timestamp="0"/>
 <EntityID/>
 <Entity/>
 <AlternativeEntity/>
 <EntityLinearVelocity/>
 <EntityLocation x="1.0" y="2.0" z="3.0"/>
 <EntityOrientation/>
 <DeadReckoningParameters
 otherParameters="000000000000000000000000000000">
 <EntityLinearAcceleration/>
 <EntityAngularVelocity/>
 </DeadReckoningParameters>
 <EntityMarking characterSet="0" characters="0000000000000000000000"/>
 </EntityStatePdu>
</DIS>

12

The aim of the MIP is to achieve international interoperability of
Command and Control Information Systems (C2IS) at all levels from
corps to the lowest appropriate level, in order to support multinational,
combined and joint operations and the advancement of digitization in the
international arena, including NATO(Multilateral Interoperability
Programme, 2006).

JC3IEDM is the most current data model of MIP and NATO. It is the common

language by which Command and Control systems, across military services, would

exchange information. Originally, C2IEDM consisted solely of a collection of relational

database schemas. These schemas have since been transformed to XML schemas, and

comprise a rich set of messages and documents that sufficiently cover the military

command and control domain, particularly as applied to land operations. JC3IEDM XML

messages are valuable in that they can be purposed as information exchange objects

themselves or used to populate and update a JC3IEDM database servicing situation

awareness and other command and control requirements. The marriage of JC3IEDM

XML messages and XMPP provides one of the most promising extensions of Chat/IM for

military purposes.

3. XML Binary Serialization

a. Introduction
The concept of binary characterization of XML existed since the XML

standards were created, but the community did not begin any rigorous approach to

standardizing the process until 2003. In September of 2003, the World Wide Web

Consortium (W3C) formed the Workshop on Binary Interchange of XML Information

Item Sets. The three day workshop was formed to collect information about whether a

W3C standard for XML binary characterization was necessary, what work had been done

in the area up to that point, and what use-cases exist for binary XML (Pericas-Geertsen,

2003). The result of this workshop was that the area was important enough to form a

W3C Working Group on the subject. Formed in April of 2004, the XML Binary

Characterization Working Group concluded in March of 2005, having delivered the four

publications it was tasked to produce: Properties, Use Cases, Measurements, and

Characterization. Table 1 lists the 18 use cases published by the working group (Cokus

and Pericas-Geertsen, 2005).

13

W3C XML Binary Use Cases
1. Metadata in Broadcast Systems
2. Floating Point Arrays in the Energy Industry
3. X3D Graphics Model Compression, Serialization, and Transmission
4. Web Services for Small Devices
5. Web Services within the Enterprise
6. Electronic Documents
7. FIXML in the Securities Industry
8. Multimedia XML Documents for Mobile Handsets
9. Intra/Inter Business Communication
10. XMPP Instant Messaging Compression
11. XML Documents in Persistent Store
12. Business and Knowledge Processing
13. XML Content-based Routing and Publish Subscription
14. Web Services Routing
15. Military Information Interoperability
16. SyncML for Data Synchronization
17. Sensor Processing and Communication
18. Supercomputing and Grid Processing

Table 1. Use cases assembled by XBC for a binary XML encoding.

A number of the uses cases identified have potential for military

application and have relevance to this thesis. Use case 15 is itself a description of need

for efficient interoperable data within the military, and use case 10 is the application of

binary characterization to XMPP streams. Each will be examined in greater detail.

b. Military Information Interoperability
The essence of this use case is that while the U.S. military and its allies

have widely adopted XML technologies as a solution for information interoperability,

there exists a rift between those information systems that have the resources to process

and store text-based XML and those that do not. The majority of tactical information

systems, being radio/wireless based, lack the necessary bandwidth and/or local memory

and storage to handle and process raw XML. There is, therefore, great need in the

military for a standard, by which an efficient XML interchange solution may be

implemented across all information systems. Doing so would serve to greatly increase

command and control capability and information interoperability across the entire breadth

of the military networks. The stated desire of the DoD in the Use Cases documentation is:

14

The DoD would like a single binary XML standard that works well for the
diverse range of data, systems and scenarios specified above as opposed to
an incompatible set of binary XML standards optimized for vertical
industries. We would also like a binary XML standard that leverages
schema information when it is available to improve performance, but does
not depend on its existence or accuracy to work. We have sponsored
commercial research and development that demonstrates that what we
want is both possible and practical ... (Cokus and Pericas-Geertsen, 2005).

c. XMPP Instant Messaging Compression
The analysis of this use case found several potential advantages in

applying binary compression to XMPP message streams. First, the addressing

information for each message is contained in well-known XML nodes, thus, a binary

characterization that could be parsed more efficiently than text XML would allow for

faster routing of XMPP messages. Second, compact binary formatted XMPP messages

will use less bandwidth than uncompressed XML XMPP stanzas, improving suitability

for bandwidth constrained networks. Lastly, there are many XMPP messages that are

slight modifications of previous messages, an updated presence message for example,

and a more efficient method of updating these messages would prove beneficial to an

XMPP network. One final item presented in this use-case is that any binary

characterization must be transcodable back to the original text XML format in order to

maintain conformance with the XMPP RFC specifications (Cokus and Pericas-Geertsen,

2005).

d. Efficient XML Interchange (EXI)
Upon completion of the XML Binary Characterization Working Group, a

second working group was chartered; The Efficient XML Interchange Working Group.

Published in November of 2005, the EXI working group charter states that the mission of

the working group is to develop a format for the efficient interchange of the XML

information set based on the findings of the XML Binary Characterization Working

Group. The goals of the working groups according to the charter are:

1. Fulfill the design goals of XML with the following exceptions:

a. The interchange format must be compatible with the XML
Information Set instead of being “compatible with SGML” (XML
goal 3);

15

b. For performance reasons, the format is not required to be “human–
legible and reasonably clear” (XML goal 6);

c. Terseness in efficient interchange is important (XML Goal 10).

2. Address all requirements and use cases from the XML Binary
Characterization Working Group;

3. Maintaining the existing interoperability between XML applications, as
well as XML specifications;

4. Establish sufficient confidence in the proposed format, in particular
establishing confidence that the performance gains are significant, and the
potential for disruption to existing processors is small…(Goldman, Berjon,
and Bournez, 2005)

The charter expires on December 31, 2007. The forthcoming standard for

binary characterization and interchange of XML will be an important aspect of future

XMPP based systems. Implementation of the standard in the DoD will avail the

interoperability of chat/IM, and potentially many other command and control systems to

the edges of the military network.

4. XML Storage/Search

a. Introduction
Since XML’s emergence as a versatile and powerful data storage

container, there has been the need for, and development in, the storage and access of

XML based data. Today, there are three major means of storing, querying and retrieving

XML data: flat file storage, insertion into a relational database, and implementing a

native XML database (Bouret, 1999). The suitability of these methods depends largely on

the type of XML data being stored and accessed. XML documents can be generally

classified as either data-centric or document-centric. Data-centric XML, typically for

machine use, uses XML formatting strictly as a data container, placing no meaning on the

structure of the document itself. Document-centric XML, typically for human use, relies

on the structure of the document itself as well as the data contained in the document.

XHTML web content is an example of document-centric XML(Bouret, 1999).

b. Flat File Storage
Flat file storage is generally suitable only for small scale applications. It

presents some complication in querying as there is no distinction between meta-data and

content data. One solution to this problem is the use of XML query languages such as

16

XPath or XQuery or even XSLT. These languages, particularly XQuery, allow for the

traversal and access to XML data. An alternative solution to this problem is to use an

Information Retrieval (IR) Library such as Lucene, to index XML documents and allow

for search over data content. Lucene and other IR libraries are not specific to XML use,

rather are an abstraction to allow for indexing and search capabilities to be inserted into

any application. Such IR libraries have potential for integration into military command

and control systems by inserting search and retrieval tools into existing applications.

c. Relational Databases
The second method of XML storage and retrieval is the use of relational

databases. These databases generally do not use the structure of XML as the basis for

storage. Some databases store XML documents as Binary Large Objects (BLOBS) or

Character Large Objects (CLOBS) and provide XML aware indexing to data contained in

the document (Bouret, 1999). Others create a mapping from the XML document schema

to the relational schema, a process called shredding. There are some large commercial

database systems that to provide native XML data handling as an extension to their

relational database format.

d. Native XML Databases
The final method of XML storage is the use of a native XML database.

Native XML databases provide a number of advantages over mapping to relations or

indexing stored large objects. These benefits are related to the fact that the data storage

model is based on the same format as the XML document. This can be leveraged to allow

for effective query on document-centric XML that would prove difficult using relational

database storage (Bouret, 1999).

e. Coalition Secure Management and Operations System
(COSMOS)

Coalition Secure Management and Operations System (COSMOS) is an

Advanced Concept Technology Demonstration (ACTD) managed out of the Office of the

Secretary of Defense for Acquisitions, Technology, and Logistics (OSD-ATL). The

objectives of the COSMOS demonstration are listed below (Burns, 2006).

• Enable unambiguous protected sharing of C2 info for more rapid and
decisive ops among coalition partners on a single multinational
information sharing network

17

• Enable protected lateral comms across a collapsed environment

• Adoption of US and coalition data model

• Enable machine-to-machine exchange of C2 info between MIP-compliant
systems and applications

• Reduce number of coalition networks required to support Coalition Task
Force ops within a theater of operations

• Enable coalition members to share information with each other based upon
roles

• Smart agents to further reduce direct human handling

• Enable all coalition partners to engage with, or disengage from, the
coalition without disrupting the information sharing capability of the
network

• Single secure MNIS network for a broad range of coalition partners with
MIP-compliant C2 systems and applications

COSMOS is related to XTC in that the machine-to-machine information

exchange objective of COSMOS is to be achieved using the C2IEDM data model, which

is a subset of the JC3IEDM. XTC research into using XMPP to route XML-expressed

JC3IEDM data with Navy Exercise Trident Warrior 2006, was sponsored by the

COSMOS program. This work is presented in Chapters VI and VII.

f. Conclusion
The XML basis of XMPP systems creates a decision point on how to store

and access the collected chat/IM data. Flat files, relational databases and native XML

databases, along with XQuery and other query languages, all allow for access to XML

stored data. This thesis provides, as an example, the use of a native XML database for

storage and query of chat conversation logs.

D. SUMMARY
This chapter presented some background information to the key technologies of

XMPP, Instant Messaging and XML. Additionally, related topics were presented in the

areas of DIS-XML, JC3IEDM, XML binary compression and XML storage and search.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

III. MILITARY CHAT

A. INTRODUCTION
Chat and IM technology have been widely adopted across the military services.

Up to now, military organizations have largely used IRC or one of the large commercial

IM tools discussed in Chapter II. These tools, however, were not designed for military

use and fail to meet many of the requirements of military information systems. For those

chat and IM tools built on proprietary protocols, it is not expected they will be easily

adapted and enhanced for military use either. Much development in commercial chat and

IM is in the area of user interface and enhancing the user’s experience. Military chat

needs are far more utilitarian, requiring information security and assurance, account

management, access control, and other administrative capabilities. The utility of chat and

IM is significant, but there remains a large problem space in the field of defining and

developing chat and IM tools for military purposes.

B. CHAT RESEARCH
Given the amount of chat and IM use in the military, there is a seemingly small

amount of research into the area. Captain Bryan Eovito, USMC, while a Master’s Degree

student at the Naval Postgraduate School, wrote his thesis on joint chat requirements

drawn from usage patterns. Captain Eovito sought to collect and analyze existing chat

research, finding little published material. The unpublished e-mails, internal reports, and

publications used to comprise his knowledge base did not represent a comprehensive

analysis of military chat use and needs. Eovito did identify three organizations who have

conducted recent research into military chat: the Center for Naval Analyses (CNA), the

Pacific Science and Engineering Group, and the Massachusetts Institute of Technology

(MIT) (Eovito, 2006).

The CNA has conducted research on chat and analyzed operational chat use

across the Navy and through the use of experiments as well. In 2002, this group

conducted a survey of Navy chat status and presented a framework for an enterprise-wide

Navy chat solution. In 2003, follow up recommendations for at sea fleet chat support

were presented. In 2004 and 2005, as part of Exercise Trident Warrior 2004, this group

studied distributed chat architecture in support of military operations.(Eovito, 2006)

20

The Pacific Science and Engineering Group’s research focused on chat use in

support of Operation Enduring Freedom and Operation Iraqi Freedom. This research

surveyed chat users during this period to assess use patterns and requirements. Additional

research by this group is in the area of usability and Human Systems Interface (HSI). The

MIT group’s research also focused on interfaces in support of chat communications

(Eovito, 2006).

Additional chat related research, focused on XMPP based solutions, is discussed

in detail in Chapters VI and VII.

C. CHAT REQUIREMENTS

1. XTC Technical Report Requirements
The XTC Technical Report, released by the MOVES Institute, Naval

Postgraduate School, in Monterey, CA presents recommended requirements for military

chat. It categorizes these requirements into three groups: tactical requirements, technical

requirements, and administrative requirements. Tactical requirements are defined as

when and why chat is being conducted in the military environment. Technical

requirements are defined as issues related to the data formats and application design for

military chat. Administrative requirements are defined as those rules concerning chat

conduct, information assurance policies, and user level implementation of chat (Brutzman

et al., 2004)

Figures 4, 5, and 6 present these recommended tactical, technical, and

administrative requirements.

21

Figure 4. The recommended tactical requirements for XML-based tactical chat
describe functional chat needs. Taken from (Brutzman et al., 2004).

Figure 5. The recommended technical requirements address data format and
application design issues for military chat. Taken from (Brutzman et al.,
2004).

• Support command and control to include ongoing dialog as well as situation
reports, execution checklist milestones, and casualty reports.

• Support operational planning at the micro and macro levels for both upcoming
and real-time event scheduling and coordination

• Support coordination efforts for administrative support, logistics, technical
support, and other day-to-day requirements.

• Log all chats so that valuable information is preserved for search and ready
analysis.

• XML-ize chat to reduce the effort required to extract information

• Use and open source solution that provides information assurance and is
extensible for future requirements.

• Mark up chat using standardized XML

• Process plain prose, message-text format (MTF), BGH Tactical
Markup Language (BGH TML), HTML, and BGH ATTCS reference
model messages.

• Use XSLT templates for arbitrary addition, deletion, and modification
of available messages as required.

• Validate messages against a schema

• Employ BGH elements compatible with the BGH architecture.

• Accept and store MIME types and URLs

• Implement an SMS bridge for cell-phone text messaging

• Incorporate data mining support into application

• Define audio, video, and whiteboarding schema

• Implement an asynchronous system

• Implement a thin client for single Web browser use

• Maintain interoperability among clients and systems

• Maintain firewall-policy compatibility

• Choose open-source code to preclude security loopholes, reduce cost,
and encourage broad development.

22

Figure 6. The recommended administrative requirements address chat user conduct
and accreditation needs for military chat. Taken from (Brutzman et al.,
2004).

2. Requirements Documents
Most DoD requirements documentation for chat and IM are contained within the

requirements for collaboration applications. For example, the Deployable Joint Command

and Control system (DJC2) is a set of horizontally and vertically integrated command and

control applications that combine to create a Collaborative Information Environment to

support Joint Operations (USJFCOM, 2003). The baseline requirements document for

DJC2, describes requirements in many of the same areas as was presented as use pattern

requirements for chat: information assurance and security, scalability, administration and

infrastructure, and information and application sharing are all addressed. Text-chat is

addressed as an embedded function or application within the collaboration system. The

functional requirements for text chat features within DJC2 are listed in Figure 7

(USJFCOM, 2003).

• Define administrator, moderator, author, and participant roles

• Define chat-room permissions

• Limit post content to relevant information

• Provide an interface for scheduling chat

• Designate areas of special interest for chat

• DoD Information Technology Security Certification and Accreditation
Process (DITSCAP) compliant

23

Figure 7. The Deployed Joint Command and Control system has requirements for
incorporated text chat.

3. Requirements from Usage Patterns
In addition to aggregating research on military chat use, Eovito examined the

contents of hundreds of operational and exercise after-action reports and lessons learned

and conducted additional study on tactical level chat use, surveying 58 military chat

users, from various nations. Through this analysis Eovito identified consolidated user

requirements for chat and IM in four areas: functional requirements, information

assurance requirements, scalability requirements, and interoperability requirements.

Table 2 lists the identified requirements in the functional requirement area. Functional

requirements address those features of the chat client interface. Most are features derived

from the chat and instant messaging domain, while others are drawn from military

information handling. The majority of these requirements can be met by commercially or

open-source available solutions, though it is unlikely that a single solution addresses all

30 requirements.

• One-to-One Communication - DJC2 shall provide the capability to
privately text chat between individual workstations.

• One-to-Many Communication - DJC2 shall provide the capability for
an individual participant to conduct text chat sessions with multiple
selected participants.

• Many-to-Many Communication - DJC2 shall provide the capability to
conduct simultaneous text chat sessions between multiple users.

• Save/Archive/Time Stamp/Retrieve - DJC2 shall provide users and
administrators the capability to save, archive, time-stamp and retrieve
text chat sessions.

• Foreign Language Text Translation - DJC2 shall provide the capability
to perform foreign language translation for text and data.

24

Consolidated Functional Requirements
Functional Requirements
(* denotes a core requirement)
1. Participate in Multiple Concurrent Chat Sessions*
2. Display Each Chat Session as Separate Window
3. Persistent Rooms and Transitory Rooms*
4. Room Access Configurable by Users
5. Automatic Reconnect and Rejoin Rooms*
6. Thread Population/Repopulation*
7. Private Chat “Whisper”*
8. One-to-One IM (P2P)
9. Off-line Messaging
10. User Configured System Alerts
11. Suppress System Event Messages
12. Text Copying*
13. Text Entering*
14. Text Display*
15. Text Retention in Workspace*
16. Hyperlinks
17. Foreign Language Text Translation
18. File Transfer
19. Portal Capable
20. Web Client
21. Presence Awareness/Active Directory*
22. Naming Conventions Identify Functional Position*
23. Multiple Naming Conventions
24. Multiple User Types
25. Distribution Group Mgmt System for Users
26. Date/Time Stamp*
27. Chat Logging*
28. User Access to Chat Logs*
30. Interrupt Sessions

Table 2. Consolidated Functional Requirements for Chat and IM. (From: Eovito,

2006).

The Information Assurance requirements are presented in Table 3. These

requirements address the information security and assurance needs for chat use in the

military. Any future technology for military chat and IM must be easily extended and

modified to support these information security requirements. While such extension is

possible with the use of open standards, it is highly unlikely that a proprietary standard,

such as that used by AOL, Yahoo, or Microsoft, would be modified to implement

military specific requirements.

25

Consolidated Information Assurance Requirements
Information Assurance Requirements
1. Login and User Authentication
2. Access Control
3. User Authentication by Active Directory
4. Unique ID for all users worldwide
5. PKI Enabled (DoD Common Access Card)
6. Provide Encryption
7. Network Security Tools
8. Cross Security Domain Functionality
9. Multi-Level Security Operation

Table 3. Consolidated Information Assurance Requirements for Chat and IM. (From:

(Eovito, 2006).

The scalability requirements for military chat and IM are presented in Table 4.

These requirements address the need for chat solutions to retain suitability across both

robust and austere networks, and address concurrent user related issues. Many large chat

and IM systems can easily support the user load required by the military. However, there

are only a few solutions that can support distributed enterprise architecture. To meet all

of the scalability requirements, an extensible chat and IM solution will be required.

Consolidated Scalability Requirements

Scalability Requirements
1. Austere Network Operation
2. Low Overhead Login Process
3. Use Client without Server
4. Distributed Architecture
5. Number of Concurrent Chat Sessions
6. Number of Concurrent Users
7. Specified Quality of Service

Table 4. Consolidated Scalability Requirements for Chat and IM. (From: Eovito,

2006).

Table 5 lists the interoperability requirements for military chat and IM. These,

too, are not addressed by currently implemented solutions and are unlikely to be met by

any single commercially available product. It is important to note that many of the

functional, information assurance, and scalability requirement sets will vary between

services and organizations. The interoperability requirements must be met, even as

disparate feature sets for chat and IM are implemented across the DoD.

26

Consolidated Interoperability Requirements
Interoperability Requirements
1. DoD Standards
2. Open Standard
3. Multi-Platform Clients
4. Interoperate with Existing Collaboration Systems
5. Interoperate With Office Automation Tools

Table 5. Consolidated Interoperability Requirements for Chat and IM. (From: Eovito,

2006).

D. SUMMARY

This chapter discussed the state of research on military chat use and presented a

list of chat and IM requirements derived from this research. At the time of writing, none

of the services has formalized the requirement quantities, feature sets, and performance

measures for chat and IM. It is certain, however, that the needs of the services and

organizational units will vary across the DoD. Future military chat and IM solutions must

be able to flexibly support these variations, while maintaining chat interoperability

between the different implementations. Of the current chat and IM solutions today,

XMPP presents the greatest potential for meeting these extensibility and interoperability

requirements.

27

IV. EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL
(XMPP)

A. INTRODUCTION
This chapter presents the background, specifications, and current implementations

and status of the XMPP protocol.

B. HISTORY
XMPP originated in the concept of XML streams, developed by Jeremy Miller in

1998. Originally coined as “Jabber,” the protocol became formalized by the IETF under

the name Extensible Messaging and Presence Protocol. Though conceived as an open and

interoperable solution to multiple instant messaging systems, XMPP is not specifically an

IM or Chat protocol. Rather, XMPP has a core specification, RFC 3920, that describes

streaming XML in generic terms, along with incorporated security protocols, (Saint-

Andre, 2004a) and a second specification, RFC 3921 that describes the instant messaging

and presence extensions of the core specification (Saint-Andre and Meijer, 2005).

In addition to the two base IETF approved standards mentioned above, there are

three other IETF standards for XMPP: RFC 3922 (Mapping the Extensible Messaging

and Presence Protocol (XMPP) to Common Presence and Instant Messaging (CPIM)),

RFC 3923 (End-to-End Signing and Object Encryption for the Extensible Messaging and

Presence Protocol (XMPP)), and RFC 4622 (Internationalized Resource Identifiers (IRIs)

and Uniform Resource Identifiers (URIs) for the Extensible Messaging and Presence

Protocol (XMPP)). Additionally, there is a set of extension protocols that are managed by

the Jabber Software Foundation (JSF). These extensions are called Jabber Enhancement

Proposals, and undergo a standards-tracking process similar to that of the IETF, but

managed by the JSF. The JEPs are managed through a process that is defined in the first

published JEP, JEP-0001.

C. SPECIFICATION

1. Core
The XMPP core specification is the IETF approved RFC 3920, titled “Extensible

Messaging and Presence Protocol (XMPP): Core.” The abstract of the publication states

that:

28

This memo defines the core features of the Extensible Messaging and
Presence Protocol (XMPP), a protocol for streaming Extensible Markup
Language (XML) elements in order to exchange structured information
in close to real time between any two network endpoints. While XMPP
provides a generalized, extensible framework for exchanging XML data,
it is used mainly for the purpose of building instant messaging and
presence applications that meet the requirements of RFC 2779. (Saint-
Andre, 2004a)

Interestingly, the last sentence places emphasis on the instant messaging

application of XMPP. It is the position of this thesis that equal value lies, in fact, in its

provision of a “generalized, extensible framework for exchanging XML data…” (Saint-

Andre, 2004a).

a. Jabber Identifiers (JIDs)
All network entities that can communicate using XMPP must have a

unique identifying address. These identifiers are called Jabber Identifiers or JID. A valid

JID contains a set of ordered elements formed of a domain identifier, node identifier, and

resource identifier. Like e-mail addresses, the JID uses the following format:

node@domain/resource. Because of the inclusion of the domain portion of the JID, JIDs

are generally considered to be unique within a given worldwide network, such as the

Internet.

XMPP addressing is well suited for integration into military organizations.

The naming structure of the JID can easily be mapped to existing e-mail accounts, such

that XMPP address lookup services could be implemented along side the Global Address

Lists provided by e-mail exchange servers. Many XMPP server implementations provide

user authentication with Windows Active Directory and Lightweight Directory Access

Protocol for example. Additionally, an XMPP server network, distributed according to

command and control structure would allow the JID inclusion of domain and resource

identifiers to become descriptive in their operational context, as well as their network-

centric one. This would facilitate storage and retrieval of XMPP messaging based on

units, organizations, and individuals without having to add additional meta-data to each

message.

29

b. XMPP Security
XMPP has security requirements written into its core specification. All

client sessions require user authentication. Self-account creation is permissible, but can

be disabled to allow for strict control of user accounts. Client to server sessions are

supported by both Transport Layer Security (TLS) for stream protection between nodes.

Simple Authentication and Security Layer (SASL) is used to provide secure

authentication of the user. XMPP uses three ports to support all communication: ports

5222/5223 for client to server sessions and port 5269 for server-to-server session. These

ports are registered with the Internet Assigned Numbers Authority and provide ready

administrative control of XMPP traffic through firewalls. Finally, XMPP has specified

handling procedures for BASE64 data, providing additional protections against

information leaks and buffer overflow attacks (Saint-Andre, 2004a).

c. XMPP Message Passing
While not required to, XMPP implementations typically use client-server

architecture. XMPP users are required to authenticate to an XMPP server in order to send

messages. Much like SMPT, XMPP Messages are not sent directly between clients,

rather they are sent from the sender’s client to the server, passed to a server that supports

the receiver’s client, and then delivered to the receiver’s client. Servers maintain

awareness of each other through Domain Name System, and as mentioned above, the

server hostname is part of a user’s JID. Figure 8 diagrams how XMPP passes message

traffic from one client to another.

30

Figure 8. XMPP typically uses client – server architecture. Users authenticate to a

server. Messages are sent from client to server to server to client.

d. XML Streams and Stanzas
RFC 3920 defines an XML stream as a container for the exchange of

XML elements between any two entities over a network. The opening of a stream is

denoted by the <stream> tag along with any appropriate attribute and namespace

declarations. Until closed by a </stream> tag, the initiating entity can send any number of

XML elements to the recipient. Some of these elements are used to negotiate the session

initiation and security procedures, and other elements are XML stanzas that are discrete

semantic units of structured XML data (Saint-Andre, 2004a).

Stanzas are direct child elements of the XML stream. The core

specification defines three stanzas in an XMPP XML stream: <iq/>, <presence/>, and

<message/>. These three elements serve unique purposes. <iq/> elements are Info/Query

elements. They operate using a request-response mechanism that enables an entity to

make a request of, and receive a response from, another entity. The <presence/> element

can be seen as a basic broadcast or “publish-subscribe” mechanism, by which multiple

entities receive information about an entity to which they have subscribed. The

<message/> stanza contains information that is pushed from one entity to another, similar

to the communications that occur in email systems (Saint-Andre, 2004a).

31

2. Chat/IM
RFC 3920 describes the core specification for XMPP; however, the impetus for

creating the standard was the desire for an open standard for instant messaging. As such,

a second standard was drafted and approved by the IETF, RFC 3921. RFC 3921 is titled

“Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and

Presence.” It describes the extensions to and application of the XMPP core standard to

instant messaging and presence (Saint-Andre, 2004b).

The IETF has defined the requirements that an instant messaging and presence

system must be able to meet. These are defined by the following use cases: (Saint-Andre,

2004b)

• Exchange messages with other users

• Exchange presence information with other users

• Manage subscriptions to and from other users

• Manage items in a contact list (in XMPP this is called a “roster”)

• Block communications to or from specific other users

RFC 3921 details how these use cases are met within the XMPP construct and in

compliance with the Core standard. RFC 3921 describes the mandatory and

recommended syntax of the <iq/>, <presence/>, and <message/> stanzas. The standard

also establishes rules for exchanging messages of each stanza type. Additionally, the RFC

describes stanza handling by XMPP servers, roster management, and internationalization

and security concerns.

Each of the three XML stanzas has specified child element content that supports

the instant messaging function. It is recommended that <message/> stanzas contain a type

attribute that describes the nature of the message stanza. If used, the type attribute must

be one of the five listed below: (Saint-Andre, 2004b)

• chat - a one-to-one text message in the context of a conversation

• error – describes an error resulting from a previous message sent

• groupchat - a one-to-many conversation text message in the context of a
group conversation

32

• headline - a message generated by an automated service that delivers or
broadcasts content

• normal – a single message sent outside the context of one-to-one or many-
to-many conversation

A message stanza may contain any properly namespace qualified child elements,

but there are three specified child elements that may be used without namespace

qualification. These are the <subject/>, <body/>, and <thread/> elements. The first two

are to contain human readable XML and serve the purpose to describe the topic of the

message and the textual content of the message respectively. <thread/> elements are non-

human readable XML that is used to specify an identifier that can be used to track a

conversation or instant messaging session. (Saint-Andre, 2004b)

Presence stanzas also may contain a type attribute of one of the following types:

(Saint-Andre, 2004b)

• unavailable - Signals that the entity is no longer available for
communication.

• subscribe - The sender wishes to subscribe to the recipient's presence.

• subscribed - The sender has allowed the recipient to receive their presence.

• unsubscribe - The sender is unsubscribing from another entity's presence.

• unsubscribed - The subscription request has been denied or a previously-
granted subscription has been cancelled.

• probe - A request for an entity's current presence; SHOULD be generated
only by a server on behalf of a user.

• error - An error has occurred regarding processing or delivery of a
previously-sent presence stanza.

Presence stanzas, too, may contain any properly namespaced child elements, and

also have optional child elements that do not require namespacing. These are the

<show/>, <status/>, and <priority/> elements. <show/> specifies the availability

status of the entity or resource in non-human readable XML, <status/> is a natural

language description of the availability status (i.e. out to lunch), and <priority/> is a

numeric priority level indicator for server handling purposes.

<iq/> stanzas also have specified extensions in the instant messaging and presence

application of XMPP, but unlike the message and presence stanzas, these extensions are

implemented with extended namespaces. The two extensions applied allow for roster

33

management and for communication blocking. These are not described in detail here.

Interested readers should refer to IETF RFC 3921 for further information.

3. Jabber Enhancement Proposals (JEPs)
Jabber Enhancement Proposals are extensions of the XMPP standard, managed by

the Jabber Software Foundation. There are five types of JEPs: Historical, Informational,

Procedural, Standards Track, and Humorous.

Historical JEPs describe a practice widely in use by the XMPP and Jabber

community, but are not official protocols or practices. The practice described by

Historical JEPs may become standardized or may be superseded by a different

standardized specification of the practice.

Informational JEPs typically describe best practices and protocol usage but again

are not official standards nor are they in the standards track process.

Procedural JEPs are descriptions of the organizational procedures of the Jabber

Software Foundation.

Standards Track JEPs may be considered standardized extensions of the XMPP

protocol. This is not to say that they are IETF standards, as they are not. However,

Standards Track JEPs are managed by the JSF through an open process and provide a

platform for XMPP development to expand and mature. Standards Track JEPs have two

types, Final JEPs and Draft JEPs. Final JEPs have been approved as final standards by

the JSF and are no longer subject to modification. They are considered stable for

implementation and deployment. Draft JEPs are also considered safe for deployment;

however, they are still under consideration by the Jabber Council and are subject to

modification prior to achieving Final JEP status.

In addition to the draft and final JEPs, there is a set of Experimental JEPs that are

managed as the related practice or protocol is developed further. There are some

common IM application functions, such as Multi-User Chat that are in the JEP domain

when implemented over XMPP. Additionally, there are a number of JEPs that have great

potential for application in the military Command and Control context.

34

a. Multi-User Chat (MUC)
IRC is the group chat protocol most widely used in the U.S. Navy. JEP-

0045: Multi-User Chat describes the standard implementation of group chat over XMPP.

XMPP MUC is basically implemented according to these rules: (Saint-Andre, 2005)

• Each room is identified as <room@service> (e.g.,
<jdev@conference.jabber.org>), where “room” is the name of the room
and “service” is the hostname at which the multi-user chat service is
running.

• Each occupant in a room is identified as <room@service/nick>, where
“nick” is the room nickname of the occupant as specified on entering the
room or subsequently changed during the occupant's visit.

• A user enters a room (i.e., becomes an occupant) by sending presence to
<room@service/nick>.

• Messages sent within multi-user chat rooms are of a special type
“groupchat” and are addressed to the room itself (room@service), then
reflected to all occupants.

• An occupant can change his or her room nickname and availability status
within the room by sending presence information to
<room@service/newnick>.

• An occupant exits a room by sending presence of type “unavailable” to its
current <room@service/nick>.

The MUC JEP addresses a large set of administrative chat room

management functions. Table 6 lists the functions and features to be implemented by

XMPP MUC.

35

Features and Functions of XMPP Multi-User Chat

1. Native conversation logging (no in-room bot required)

2. Enabling users to request membership in a room

3. Enabling occupants to view an occupant's full JID in a non-anonymous room

4. Enabling moderators to view an occupant's full JID in a semi-anonymous room

5. Allowing only moderators to change the room subject

6. Enabling moderators to kick participants and visitors from the room

7. Enabling moderators to grant and revoke voice (i.e., the privilege to speak) in a
moderated room, and to manage the voice list

8. Enabling admins to grant and revoke moderator privileges, and to manage the moderator
list

9. Enabling admins to ban users from the room, and to manage the ban list

10. Enabling admins to grant and revoke membership privileges, and to manage the member
list for a members-only room

11. Enabling owners to limit the number of occupants

12. Enabling owners to specify other owners

13. Enabling owners to grant and revoke administrative privileges, and to manage the admin
list

14. Enabling owners to destroy the room

Table 6. Features and functions of Multi-User Chat identified by JEP-0045: Multi-

User Chat (Jabber Software Foundation JEP-0045)

In addition to these basic features regarding Multi-User Chat rooms, the

JEP also identifies various room types. These features are particularly applicable to

military adaptation for the purposes of information security. The concerns

identified by Captain Bryan Eovito in his research of military chat requirements

regarding un-moderated access to chat rooms by military personnel can be addressed by

the features listed in Table 7.

36

Multi-User Chat Room Types specified by JEP-0045.

1. public or hidden

2. persistent or temporary

3. password-protected or unsecured

4. members-only or open

5. moderated or unmoderated

6. non-anonymous or semi-anonymous

Table 7. Multi-User Chat Room types specified by JEP-0045. (From: Jabber

Software Foundation JEP-0045)

The functions and features provided by JEP-0045 provide a rich set of

tools for configuration management of MUC rooms that address many of the information

management requirements held by the military. These tools allow for DoD enterprise

architecture solutions for Chat/IM that can be built based on the requirements of existing

command and control structure and that addresses information security concerns.

b. Other Jabber Enhancement Proposals with Military Application
There are a large number of JEPs, covering a wide area of functional

extensions to XMPP. A large number of these, some in Draft or Final form, others in

Experimental status, offer great applicability to military use cases and afford opportunity

to expand the capabilities of Chat/IM in support of Command and Control.

(1) JEP-0060: Publish-Subscribe. Publish-Subscribe (pub-sub) is a

content dissemination model in which a publisher releases content and either the content

or a notification of it is sent out to a group of subscribers. Some of the existing needs for

publish-subscribe are news feeds and content syndication, extended presence, workflow

systems, network management systems, profile management, event notification.

Additionally, there are a number of military functions that would be well served by

disseminating information is this manner, to include issuance of orders, intelligence

dissemination, and even position/location data (Millard, Saint-Andre, and Meijer, 2005).

37

(2) JEP-0080: User Geolocation. As mentioned in the section about

Publish-Subscribe, user geolocation is a use case for pub-sub. JEP-0080 defines a format

for capturing data about an entity's geographical location. The JEP states that:

(Hildebrand and Saint-Andre, 2004)

This JEP defines a format for capturing data about an entity's geographical
location (geoloc). The namespace defined herein is intended to provide a
semi-structured format for describing a geographical location that may
change fairly frequently, where the geoloc information is provided as
Global Positioning System (GPS) coordinates. Potential uses for this
approach include:

• Publishing geoloc information to a set of subscribers.

• Querying another entity for its geoloc.

• Sending geoloc information to another entity.

• Attaching geoloc information to presence.

Although this JEP defines the GPS data in terms of latitude and

longitude, it would be easy to create an XML schema that describes User Geolocation

messages using the Military Grid Reference System. Though this area requires significant

further research, the use of the publish-subscribe model for position-location information

handling in the military holds significant potential.

(3) JEP-0124: HTTP Binding. This JEP is of particular interest to

the XML Tactical Chat concept. Because so much of the military’s vital operational

activity is supported by austere wireless networks, the persistent TCP connections on

which Core specified XMPP is bound are not viable. This JEP provides a standard

mechanism for network nodes whose connectivity is intermittent or whose node devices

are limited in capability. If a Chat/IM architecture is to be applied to all levels of the

command and control structure, the solution must gracefully transition across bandwidth

constrained austere networks and separate robust infrastructure. This JEP provides a

standard for doing so with XMPP (Paterson, Saint-Andre, and Smith, 2006).

(4) JEP-0138: Stream Compression. As discussed in Chapter II,

one of the detractors of XML is its lack of space efficiency as a data container. Because

any chat and IM solution that will extend across all operational levels must operate on

low bandwidth networks, the need for reduced resource consumption of XML streams is

38

paramount. This JEP discusses two compression standards, ZLIB and LZW, that are an

alternative to the compression provided by the Transport Layer Security (TLS) specified

by the XMPP Core standard. The emergence of a standard for XML binary serialization

from the W3C EXI Working Group will provide a potentially superior alternative to

XML text stream compression for XMPP (Paterson et al., 2006).

(5) JEP-0116: Encrypted Sessions. Information Assurance and

Security are fundamental requirements in any military communications systems. Though

XMPP is designed to establish secure sessions between servers, XMPP was not designed

with end-to-end object encryption in mind. End to end encryption of XMPP traffic

eliminates any vulnerabilities resulting from server access to the message traffic, by

encypting all payload until it is delivered to the receiving client. RFC 3923: End-to-End

Signing and Object Encryption for the Extensible Messaging and Presence Protocol

(XMPP) and this JEP aim to create standards for this function. Clearly, for any

programmatic adoption of XMPP to take place in the DoD, methods for securing XMPP

communications must be available. JEP-0116 is in experimental stage, but indicates that

the need for end-to-end encryption is valid and will see future address (Paterson et al.,

2006).

(6) JEP-0009: Jabber-RPC. Remote Procedure Calls (RPC) are key

methods in combining functionality of multiple programs or databases. They are used

extensively to create interoperability across platforms and languages. This JEP defines a

standard method for implementing XML-RPC across an XMPP network. With the

number of stand-alone military information and command and control systems in

operation, this JEP standardizes a common method of integration and interoperability of

these systems into an XMPP communications network.

(7) JEP-0072: SOAP over XMPP. Simple Object Access Protocol,

is an XML definition that describes a method for exchanging messages across platforms

and languages. In this capacity it is similar to XML-RPC, and in many ways, XML-RPC

and SOAP are competing technologies over the same function. This JEP defines how

SOAP may be implemented over XMPP. This JEP and JEP-0009 allow for flexibility in

developing application bridging solutions over XMPP. Of additional note is the fact that

39

XMPP supports both synchronous and asynchronous communications, making it a more

comprehensive XML-RPC/SOAP delivery protocol than the typically used HTTP and

SMTP.

(8) JEP-0171: Language Translation. This JEP describes a method

for sending and receiving text chat messages with translated text. It also provides a

method for a client to ask a server or service to translate a text chat message. This

functionality has clear uses when operating in a multinational/coalition environment.

D. SUMMARY
With acceptance as an IETF standard and a rich set of open-standard managed

enhancements, XMPP is well positioned to expand and mature as a communications

technology. XMPP has been widely implemented as a Chat/IM application, particularly

as an enterprise solution for businesses and other organizations. Additionally, XML-

streams as a generalized communication layer has allowed for a variety of presence-

enabled applications Already, XMPP has been implemented in support of foreign

exchange banking, content syndication, network management, fleet vehicle tracking,

web-services integration, and distributed whiteboarding (Saint-Andre and Meijer, 2005).

It is foreseeable that the uses for XMPP will expand and integrate.

By meeting the needs of military chat and instant messaging and allowing for

extension into other areas of command and control, XMPP holds great potential for

integration into the command and control systems of the military.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

V. XMPP DEPLOYMENT AND IMPLEMENTATION

A. INTRODUCTION
Because of its open-standards nature, XMPP has a large number of

implementations in multiple codebases and using a variety of licenses. As described in

Chapter II, there are several implementations of XMPP servers and many client

applications for XMPP exist. This chapter looks into the state of XMPP development and

examines a few of these implementations to demonstrate how an XMPP-based chat

system may be employed as a command and control application.

B. XMPP DEVELOPMENT
The Jabber Software Foundation’s website, www.jabber.org, maintains a table

that describes the development status of XMPP client and server projects. Table 8

describes the status of XMPP server development at the time of writing. As indicated by

the table XMPP server implementations are available that are quite rich in features.

42

Server Feature Score License Platforms

OpenIM 48% BSD AIX, HP-UX, Linux, MacOS X, Solaris, Windows

jabberd 2.x 76% GPL AIX, *BSD, HP-UX, Linux, MacOS X, Solaris,

Windows

ejabberd 91% GPL AIX, *BSD, HP-UX, Linux, MacOS X, Solaris,

Windows

psyced 59% GPL AIX, *BSD, HP-UX, Linux, MacOS X, Solaris,

Windows

xmppd.py 21% GPL Linux

jabberd 1.x 45% GPL AIX, *BSD, HP-UX, Linux, MacOS X, Solaris,

Windows

Wildfire 98% GPL or

Proprietary

AIX, HP-UX, Linux, MacOS X, Solaris, Windows

Merak 76% Proprietary Linux, Windows

SoapBox

Server

78% Proprietary Windows

Antepo OPN 88% Proprietary AIX, HP-UX, Linux, Solaris, Windows

Jabber XCP 97% Proprietary Linux, Solaris, Windows

Sun Java

System

Instant

Messaging

67% Proprietary HP-UX, Linux, Solaris, Windows

TIMP.NET 76% Proprietary Windows

Table 8. Status of XMPP Server implementations. (From:

www.jabber.org/software/servers.shtml. Accessed 24 August 2006)

The XMPP server implementation used to support this research was the Wildfire

server from Jive Software. Previously named Jive Server, Wildfire is an open-source

XMPP server implementation written in Java. Wildfire was attractive for conducting this

research for a number of reasons: the portability of Java™-written applications, the

server’s outstanding web-based administration tool, and, its rich set of features.

43

There are several dozen client applications written to support Chat/IM over

XMPP. Clients have been written in most common programming languages, and there are

available clients for nearly all computing platforms, including hand-held devices (Saint-

Andre and Meijer, 2005). This research primarily used three client applications: Exodus,

Spark, and the evolving JFCOM BuddySpace/Transverse, a project of Joint Forces

Command aimed at building an XMPP client application with military-specific features

built in.

There are also a number of programming-library implementations of XMPP.

Application Programming Interfaces (API) for XMPP have been written in Java, Python,

C, C++, .Net, Perl, Ruby, and Erlang. This research involved the use of the Smack open-

source Java API for XMPP.

C. CLIENT IMPLEMENTATION AND DEPLOYMENT

1. Exodus
Exodus is an open-source XMPP chat client designed to run on Microsoft

Windows. Its use in the conduct of this research is the result of personal preference of the

author with respect to features and interface. Its presentation is for the purpose of

demonstrating generic Chat/IM use with XMPP.

a. Installation
The Exodus client is available for download at:

http://www.jabberstudio.org/projects/exodus/releases. Installation is wizard driven and

easy to complete.

b. Login

Once installed, starting the Exodus Client opens a login window as seen in

Figure 9. This is typical as all XMPP users must connect to a server.

44

Figure 9. Starting the Exodus client initiates a login window.

Clicking the “Details” button permits configuration of login information

as seen in Figure 10. This presents a window that allows user input for the JID, password,

resource, and priority settings. Additional tabs allow for user setting of port number for

the connection, identification of a proxy server, or to configure HTTP polling for a

particular session. Exodus allows the creation of multiple account profiles, providing

login support for multiple users and multiple accounts. This is a useful feature in military

environments where multiple users regularly access computers.

Figure 10. The Account Details tab of the Exodus login account details window allow

for profile configuration.

45

c. Navigation and Use
Once logged in, the Exodus interface presents an interface that displays

any stored offline messages as seen in Figure 11. The “Exodus” menu item allows for the

sending of instant messages, starting a one-on-one chat or joining a chat room.

Figure 11. The initial Exodus Client interface is presented once the use has logged into

the XMPP server.

In addition to the menu items, Exodus offers a browser feature that affords

interface mechanics similar to a windows web browser. Figures 12 and 13 depict this

feature.

46

Figure 12. The Exodus browser interface allows for intuitive navigation to chat rooms

or other users.

Figure 13. The Exodus browser feature provides intuitive display and navigation of the

XMPP server’s chat rooms.

All chat clients offer some form of contact list and roster group

maintenance. These allow for presence awareness of some group of people that a user

would frequently interact with. Roster groups allow for organization of the contact list

47

and message broadcast to a specified audience. In the simplest form, presence awareness

will indicate who is online and logged into the XMPP network, but more advanced

indicators of chatting activity (such as “do not disturb”) are available in most clients.

Basic presence awareness is an important aspect of military chat and IM, but many of the

advanced presence indicators might be categorized as convenience features rather than

needs. Nevertheless, presence features may be applied in a meaningful way, such as

indicating watchstander activity or monitoring-software health. Figure 14 displays some

basic presence indicators of Exodus. Figures 15 and 16 display Exodus’ interface for one-

on-one chat and a chat room.

Figure 14. Exodus client displays presence indicators as seen with the contacts in the

XTC Roster Group.

48

Figure 15. The Exodus client displays a two-frame window for one-on-one chat

communications. The upper frame displays the conversation and the lower
frame is for inputting text messages.

Figure 16. The Exodus client displays a two-frame window for multi-user chat

communications. The upper frame displays the conversation and the lower
frame is for inputting text messages.

49

Exodus is an easy to use, well-featured XMPP client. It affords multiple

user login settings and provides a number of user friendly methods for discovering users

and public chat rooms. However, there are many military specific communications needs

with respect to messages traffic that, if applied to the Chat/IM domain, would greatly

enhance Chat/IM value in the military context.

2. USJFCOM BuddySpace/Transverse
While commercially available Chat and Instant Messaging has proven itself to be

a valuable method of communication for the military, a customized chat client for

military purposes has great potential value. Much of the information passed in military

messages requires security labeling, priority labeling, specific time-stamping, and other

associated information items. As such, a customized XMPP Chat/IM client, named

Transverse, has been built by the United States Joint Forces Command (JFCOM) as part

of a larger collaboration system called the Cross Domain Collaborative Information

Environment (CDCIE) Collaboration Tool.

a. Supported Chat Features
The JFCOM Transverse chat client originally was an extension of the

BuddySpace open-source client. The project later re-built the tool using Jive Software’s

Smack open Java API for XMPP clients, though much of the look and feel of Transverse

still comes from its Buddyspace roots. There are many of features in Transverse that

support military application of chat communications. Some of these features are

implementations of a basic chat client interface found to be useful in the military

environment. These are listed below: (Fletcher, Lirrette, and Bishop, 2006)

• Buddy Lists

• Online users tab

• A MUC (group chat) room that contains all users using the client that are
connected to a given server.

• Places tab

• A building->floor->room representation of rooms

• HyperRooms- A specialized room that contains other rooms. Allows users
to monitor and participate in multiple chat rooms within a single window.

• Automated discovery of a server’s available chat rooms

50

• Ability dock/undock windows

• User interface is themeable and supports language localization

Figures 17 and 18 display the contact or buddy list and the online users

interface of Transverse.

Figure 17. Transverse uses a Contacts or Buddy List display to support user awareness

of other XMPP users. Classification labeling is for demonstration purposes
only.

51

Figure 18. Transverse uses an Online User display to support user awareness of other

connected XMPP users. Classification labeling is for demonstration
purposes only.

Transverse, like most XMPP clients, allows the viewing of supported chat

rooms on the connected server, as displayed in Figure 19. With Transverse, however, it is

also possible to arrange these chat rooms into logical hierarchical groupings. This allows

the chat rooms to be arranged by the same organizational structure as the functions the

rooms are supporting, a useful feature in the military environment. This is seen in Figure

20.

52

Figure 19. Transverse supports the display of a Room Query on the connected server.

This figure displays the room list for conference.jabber.com. Classification
labeling is for demonstration purposes only.

53

Figure 20. Transverse supports the logical organization of chat rooms into groups.

Classification labeling is for demonstration purposes only.

b. Supported Military Specific Features
In addition to modified implementations of basic chat client features,

Transverse has other features that are specifically aimed at supporting military chat

communications in a multi-national environment. These are listed below: (Fletcher et al.,

2006)

• Concurrent keyword monitoring of multiple chat rooms

• Classification labeling of chat messages. The labeling of chat messages
when used with an associated Collaboration Gateway will let users
participate in cross classification domain group text chat sessions.

54

• HyperRoom Implementation allow for the consolidation of multiple chat
room monitoring in a single GUI window

• Enhanced Chat Message Window that displays username, time stamp,
classification, original/pivot/destination languages, digital signature and
encryption notification, and room name (if in HyperRoom mode) in boxed
display

• Language Translation using CyberTrans II

• Supports automatic translation of inbound and outbound messages
without user intervention

• Supports manual translation of inbound and outbound messages

• Supports language pivoting - using one language to translate
between two other languages for which a direct translation does
not exist.

• Full logging of all chat sessions on client. Most XMPP servers also have
the ability to log chat sessions

• Object (message) level digital signing using W3 XML Digital Signature
Specifications

Figure 21 is a display of Transverse’s message keyword monitoring

capability. This feature allows a user to select one or more chat rooms to monitor and list

of one or more keywords to listen for. If one of the keywords appears in a monitored

room, the user is alerted. Many military users are required to multi-task functions on their

computers. This feature allows the user to focus on other tasks, while maintaining

alertness to the chat rooms with respect to any topics of interest.

55

Figure 21. Message Keyword Monitoring is supported by Transverse. Note the ability
to select multiple rooms as well as multiple keywords for alerting.
Classification labeling is for demonstration purposes only.

Military messages, whether passed over a computer network or across

radio systems, are typically categorized with respect to classification. It is a goal of the

DoD to move toward collapsing the existing separate networks for classified,

multinational, and unclassified information systems. Any communications system that

would integrate into such network must have the ability to label such categorizations. The

Transverse client provides this ability as depicted in Figure 22.

56

Figure 22. Transverse Chat client enables labeling and display of message

classification information. Classification labeling is for demonstration
purposes only.

Transverse also has a feature called HyperRooms. HyperRooms allow a

user to monitor, send messages to, and receive messages from multiple chat rooms while

working from a single GUI window. This feature, like the message monitoring feature,

allows for more efficient use of the computer interface for Chat. There are many cases in

the military where HyperRooms would be useful. A unit’s Fire Support Coordinator

(FSC), for example, is required to coordinate and de-conflict the conduct of fire

originating from multiple platforms (mortars, artillery, aviation). These platforms may

employ chat room communications, and the FSC may desire awareness of the chat

activity in each of these rooms. The HyperRoom feature allows for the consolidation of

57

chat windows into a single frame, without losing any awareness or contextual

information. Furthermore, it frees up monitor space for other tasks. Figure 23 displays

Transverse’s HyperRoom feature.

Figure 23. Transverse’s HyperRoom feature. This window is supporting three different

chat rooms, wfranklin, jpp_dev, and newroom. Note the ability to select
which room/s the user can send a particular message to. Classification
labeling is for demonstration purposes only.

The ability log, store, and retrieve communication information is a key

requirement to all military Information Technology (IT) systems. The standard for

implementing server-side chat logging is still in the experimental status as a Jabber

58

Enhancement Proposal. Client side message logging is an important feature for any

military chat client. Transverse enables client side message logging and retrieval as

depicted in Figure 24.

Figure 24. Transverse enables both one-on-one and chat room logging and retrieval.

Classification labeling is for demonstration purposes only.

One of the biggest barriers to multinational coalition operations is that of

language. Many of the United States’ allies are not native English speakers. Command

and Control, along with all other warfighting functions, are adversely affected by

language barriers. Computer supported language translation tools aim to provide a

solution to this problem. Transverse interfaces with a language translation tool, and

permits both the manual and automatic translation of chat messages. Figures 25 and 26

depict manual language translation with the Transverse tool, and Figure 27 displays a

capture of the automatic language translation.

59

Figure 25. Transverse’s manual language translation tool allows a user to selectively

translate individual messages. Classification labeling is for demonstration
purposes only.

60

Figure 26. A manually translated chat message displayed in a Transverse Chat Room.

Classification labeling is for demonstration purposes only.

61

Figure 27. Transverse Chat room display showing automatic language translation. The

translated message is denoted with **. Classification labeling is for
demonstration purposes only.

3. Military Chat Customization
The use of customized chat clients will likely continue in the DoD. JFCOM’s

Transverse is an excellent example of such a tool, enabling many features that military

users will find useful and efficient, as well as integrating an interface for adding military

message label to chat and IM communications. Transverse stands as a strong example of

the inherent potential in adopting XMPP standards as the basis for a chat communications

network. Future military-purposed chat tools should be developed to support

organizational needs in the areas of:

• Enhanced Language Translation

• Whiteboarding

• Audio and Application Casting (one-way sharing) support

• Integration into Command and Control suites.

62

D. XMPP SERVER IMPLEMENTATION AND DEPLOYMENT
As noted earlier, Wildfire Server has a web-based administration tool that makes

configuration, maintenance, troubleshooting and management of the XMPP server and

users quite easy. This section presents some of the important and useful features of the

Wildfire Server.

1. Wildfire Server Settings and Features
The Wildfire Server Admin Console allows configuration of the server settings.

This is useful for system troubleshooting and maintenance of the server. Figure 28

displays the server settings page of the server manager. Other functions with respect to

server settings administration are system properties settings, plug-in support, file transfer

settings, compression settings, private data storage configuration, resource conflict

handling, and registration and login settings. It is also possible to enable or disable

anonymous login, password changing, and in-band account registration, which allows a

new user to create an account from the client side.

63

Figure 28. The Wildfire Admin Console Server Settings Page displays configured

settings and server status.

One of the more useful admin console features is the Log Viewer. Through the

console an administrator is able view error, warning and, information logs. Additionally,

there is a debug log viewer that can be enable or disabled through the console. The debug

logs display the XML traffic handled by the server and are useful for troubleshooting

XMPP connections and traffic, as seen in Figure 29.

64

Figure 29. The Wildfire Admin Console Debug Log Viewer provides log access to the

XMPP traffic and facilitates troubleshooting and debugging.

Another useful tool, both for troubleshooting and for storage and retrieval of

XMPP information, is the Message Auditing capability of Wildfire. Figure 30 depicts the

console window which permits setting the message audit policy for the server. If message

auditing is selected, the admin user can select the type of stanzas to collect, as well as

configure file settings for the logged XML files.

65

Figure 30. Wildfire Admin Console: Message Auditing Policy provides the ability to

enable or disable packet logging and auditing. Note the ability to select the
type of packet (stanza) types to audit and log.

Wildfire has an off-line message policy configuration tool that allows for great

flexibility in the handling of messages sent to users who are not connected to the XMPP

network. With this console feature, it is possible to configure the XMPP server to store

these messages until the user connects to the server, then deliver the messages. This is a

necessary feature when seeking to implement XMPP in an unstable network environment

as is seen in wireless tactical networks. The off-line message feature also allows for

notification to the sender of recipient unavailability if off-line storage is disabled. A

recommended additional feature that would be useful in the military context is to enable

off-line message storage and delivery, but also implement sender notification of the

initial unavailability of the receiver and subsequent delivery of the message. This can

ensure delivery of the message and maximize the sender’s knowledge of recipient

awareness. Figure 31 is the admin console’s display for off-line message handling.

66

Figure 31. The Wildfire Admin Console: Offline Messages page enables configuration

of off-line message handling.

2. User Accounts and Multi-User Chat Rooms
User account management is also enabled by the Wildfire Admin Console. From

the console, an administrator can create, delete, set passwords for, and modify the

properties of user accounts. User groups can be established and configured from the

console as well. Figure 32 displays the console’s user account management display.

67

Figure 32. Through the Wildfire Admin Console: User Summary, administrators can

create, delete, and modify user accounts with this feature.

The Wildfire Console allows for the configuration and management of the Multi-

User Chat rooms on the Wildfire server. This is shown in Figures 33 and 34. This feature

allows administrators to control room access, set room history display settings, create

room administrators, and configure settings for logging chat room conversations and

kicking idle users in the chat rooms. The Wildfire console allows for the creation and

configuration of MUC rooms with regard to persistence, rules for nickname use,

password protection, and other features.

68

Figure 33. The Wildfire Admin Console: Group Chat Rooms page displays the status

of all supported MUCs on the server.

Figure 34. The Wildfire Admin Console: Room Administration page allows for

configuration of MUC rooms. Note the available room options for MUC
room configuration control.

69

3. Server Connections
Finally, the Wildfire Console provides administrator visibility on the XMPP

connections that the server is supporting. Figures 35 and 36 depict session display for

client sessions and server sessions respectively.

Figure 35. The Wildfire Admin Console: Client Sessions page displays the status of all

connected clients.

70

Figure 36. The Wildfire Admin Console: Server Sessions page displays the status of all

active server to server connections.

4. Military Considerations
This research found the open-source Wildfire XMPP server to be a stable

platform with many desirable features for configuration management. The web-based

administration console was an extremely useful feature in the conduct of the XTC

research. Many military organizations may not have the information management

personnel to implement an open-source XMPP server, but there are several well-

supported commercial XMPP server products that offer the same feature set as the

Wildfire server. Important to these implementations is the ability to easily administer

server settings. Proper military application of Chat and IM will require active

management of user accounts and MUC rooms. A tool, such as the Wildfire Admin

Console, will prove quite valuable for the administration of the military chat network.

E. SMACK XMPP CLIENT LIBRARY
The final tool used in the course of this research was the Smack Open-Source

Java API for XMPP clients. Though capable of implementing full XMPP clients, this

research used Smack to allow other Java processes to connect to an XMPP network to

71

perform some function. The author found Smack to be concise, easy to understand,

simple to apply, well-documented, and complete enough to meet the research needs of

the project. Some of the library’s mechanisms are discussed further.

1. Connection and Login
Smack provides a simple method for connecting to an XMPP server. Figure 37

displays some examples for establishing an XMPP connection with Smack (Jive

Software, 2006). Once instantiated, the XMPPConnection object has a method that

enables logging onto the server.

Figure 37. Establishing an XMPP connection with Smack is done by instantiating an

XMPPConnection class object.

2. Messaging
The Smack API allows programmers to send and receiver XMPP messages.

Figure 38 describes how to connect to an XMPP server and send a message with only a

few lines of Java code. Alternatively, it is possible to build XMPP messages that contain

specialized content, or to create MUC messages by instantiating a GroupChat class object

(Jive Software, 2006).

Figure 38. Establishing a Chat session and sending a message with Smack can be

performed with very few lines of code.

3. Stanza Processing
Smack groups the XMPP stanzas as a Packet class. The library has extensive

capability for packet handling, enabling an application to listen for, filter, and process

// Create a connection to the jabber.org server.
XMPPConnection conn1 = new XMPPConnection("jabber.org");

// Create a connection to the jabber.org server on a specific port.
XMPPConnection conn2 = new XMPPConnection("jabber.org", 5222);

// Create an SSL connection to jabber.org.
XMPPConnection connection = new SSLXMPPConnection("jabber.org");

// Assume we've created an XMPPConnection name "connection".
Chat newChat = connection.createChat("jsmith@jivesoftware.com");
newChat.sendMessage("Howdy!");

72

incoming traffic as required. There are two constructs that provide this ability:

org.jivesoftware.smack.PacketListener (PacketListener), an interface that will listen for

incoming packets and process them in some fashion, enables event style programming,

and org.jivesoftware.smack.PacketCollector, a class that lets you wait for a specific

packet to arrive (Jive Software, 2006). This research used the PacketListener interface

extensively.

Smack also contains a number of packet filters that provide more precise packet

handling procedures. The default set of filters the library provides is listed below: (Jive

Software, 2006)

• PacketTypeFilter -- filters for packets that are a particular Class type.

• PacketIDFilter -- filters for packets with a particular packet ID.

• ThreadFilter -- filters for message packets with a particular thread ID.

• ToContainsFilter -- filters for packets that are sent to a particular
address.

• FromContainsFilter -- filters for packets that are sent to a particular
address.

• PacketExtensionFilter -- filters for packets that have a particular
packet extension.

• AndFilter -- implements the logical AND operation over two filters.

• OrFilter -- implements the logical OR operation over two filters.

• NotFilter -- implements the logical NOT operation on a filter.

4. Packet Extensions
Smack’s packet extensions provide the mechanism for customized XML parsing

of namespaced content inside the XMPP stanzas. This feature implements the

extensibility feature of XMPP by enabling the network to be used as a generic XML

router rather than just a Chat/IM path. The research presented in Chapter VII does not

utilize packet extensions, but, in retrospect, should have been. Instead, machine-purposed

XML was either attached as a packet property in the form of a Java string variable, or

passed as the body of a MUC chat message. Properly implemented extensions of XMPP

using Smack should register an extension provider and handle its XML payload

independently of any Chat/IM parsing methods (Jive Software, 2006).

73

5. Packet Properties
In addition to providing for custom XML content handling, Smack also allow for

the attachment of arbitrary properties to packets. These properties are either Java

primitives or serializable Java objects. Some of the research presented in Chapter VII

uses packet properties to attach XML data, as a Java String class object, to message

packets. This proved to be an effective method because all nodes in the experiment were

running Java. This methodology is not particularly scaleable and is not recommended for

future implementations. Smack’s use of packet properties is not standardized and will not

easily interface with other XMPP clients, but does provide a simple mechanism for

attaching arbitrary data to XMPP packets in controlled environments (Jive Software,

2006).

6. Smack Extensions
The Smack library packages the XMPP Core and IM/Presence functionality

separately from the functions captured by the Jabber Enhancement Proposals. Table 9

lists the current extensions supported by Smack (Jive Software, 2006).

74

Name JEP # Description

Private Data JEP-49 Manages private data.

XHTML Messages JEP-71 Allows send and receiving formatted messages using

XHTML.

Message Events JEP-22 Requests and responds to message events.

Data Forms JEP-4 Allows to gather data using Forms.

Multi User Chat JEP-45 Allows configuration of, participation in, and

administration of individual text-based conference rooms.

Roster Item

Exchange

JEP-93 Allows roster data to be shared between users.

Time Exchange JEP-90 Allows local time information to be shared between

users.

Group Chat

Invitations

N/A Send invitations to other users to join a group chat room.

Service Discovery JEP-30 Allows to discover services in XMPP entities.

File Transfer JEP-96 Transfer files between two users over XMPP.

Table 9. Smack supports a number of XMPP Extensions.

F. SUMMARY

Since its inception in 1999 and its standardization in 2004, XMPP has matured as

a technology. The standard has been widely adopted as a Chat/IM solution both

commercially and in the open-source development community. In this chapter, a set of

tools was exposed to demonstrate the some of the capabilities of available XMPP clients,

servers, and development libraries. In their current state, XMPP implementations are

capable of meeting the majority of military Chat/IM requirements. The open standard

platform avails the possibility of building military specific tools, such as Transverse,

75

without fear of losing interoperability or functionality. As XMPP sees further adoption, it

is expected that the standardized feature set will expand, providing capabilities that

extend well beyond conventional chat and IM.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

VI. XML TACTICAL CHAT (XTC)

A. INTRODUCTION
XML Tactical Chat (XTC) is a research concept to explore the potential

application of XMPP technology in the military. XTC has an infrastructure supported by

the Modeling, Virtual Environments, and Simulation (MOVES) Institute at the Naval

Postgraduate School (NPS). XTC research includes both internal experimentation and

integrating research with other military organizations and operational exercises. This

chapter discusses the architecture and major research areas of the XTC project.

B. NPS XTC CHAT CONFIGURATION
Though much XMPP use is conducted over open access servers to support

individual chat and IM, implementation in the military will require a more restricted and

structured XMPP network design. XTC is supported by a small XMPP architecture of

two servers. As can be seen in Figure 39, one of these servers is physically located on the

NPS campus and inside the school’s firewall, while the other is physically located outside

the campus, supported by a firewall of its own. This configuration allows for testing of

permission requirements between organizational firewalls as might be required for

military deployment.

78

XTC InfrastructureXTC Infrastructure
XMPP ServersXMPP Servers

Cross firewall communicationCross firewall communication

User1@xchat.MovesInstitute.org
User2@surfaris.cs.nps.navy.mil

S2SS2S

xchat.MovesInstitute.org surfaris.cs.nps.navy.mil

NPS

Figure 39. The NPS XTC configuration for chat enables XMPP communications across

the campus firewall.

The on-campus server has the registered domain name of

surfaris.cs.nps.navy.mil. The off-campus server is registered as

xchat.movesinstitute.org. Table 10 lists the server specifications for these

machines.

Server Name Hardware Operating System

surfaris.cs.nps.navy.mil Dual 750 MHz Pentium 3 CPU

1 GB Internal Memory

Fedora Core 3 Linux

xchat.movesinstitute.org Single 1GHz Pentium 3 CPU

512 MB Internal Memory

CentOS Linux

Table 10. XTC research is conducted on two servers with the listed specifications.

79

The XTC architecture has allowed for experimentation of XMPP chat across a

number of network configurations. Provided the appropriate firewall permissions are in

place, XMPP chat communications have been validated across and between the NPS

LAN, wireless LAN, and through Cisco VPN portals.

Table 11 lists the NPS firewall permission configuration rules supporting XTC.

Firewall permissions are set to allow any XMPP client user within the campus domain to

access the specific IP addresses of XMPP servers outside the domain. Similarly, server to

client traffic is permitted from specified XMPP server IP addresses outside the domain to

any address within the NPS network. Server to server traffic is more tightly constrained,

as traffic on port 5269 is permitted from specified XMPP server IP addresses inside the

domain to specified XMPP server IP addresses outside the domain.

The XTC architecture has integrated with several other military XMPP networks

in support of exercises and experiments. It is often necessary to temporarily establish

both client-server and server-server connections between the two networks to assist in

troubleshooting such efforts. In deployed environments, usually only server-server

connections are required.

Port Numbers / Traffic Direction of Traffic Permissions:

5222/5223 / Server-Client Inbound Granted from IP to Network

5222/5223 / Client-Server Outbound Granted from Network to IP

5269 / Server-Server Inbound Granted from IP to IP

5269 / Server-Server Outbound Granted from IP to IP

Table 11. XTC traffic is permitted by the NPS firewall permissions.

The XMPP server software supporting the XTC project has varied. XTC has used,

or attempted to use, the OpenIM Server, jabberd, Jive Server, and Wildfire. Installation of

the OpenIM server was not successful. XTC was supported for a period of several

months with the jabberd server. During this time, the server required frequent

maintenance and re-booting. Installation and maintenance of the Jive Server (later

80

renamed Wildfire) resulted in greater stability and ease of use. At the time of writing, the

surfaris.cs.nps.navy.mil XMPP server is Jive Software’s open-source Wildfire version

2.5.0 and the xchat.movesinstitute.org XMPP server is Wildfire version 3.0.1.

NPS has recently restructured internal campus networking to establish the nps.edu

domain in addition to the nps.navy.mil domain. Campus users on nps.edu have access

rights equivalent to other navy.mil hosts through the application of routing

configurations, internal firewall policies and reverse DNS lookup. Future work for NPS

XTC includes examination of how to best extend the NPS XMPP server to server

configuration employed in this thesis across the .mil extranet, .mil/.edu intranets, and the

.edu extranet.

C. DIS-XML
As discussed in Chapter II, Distributed Interactive Simulation is an Institute of

Electrical and Electronic Engineers (IEEE) binary standard protocol for conducting

simulation across multiple platforms. One of the research areas of XTC is the conversion

of binary DIS to an XML equivalent and the use of XMPP to transport DIS-XML across

and between networks. Exposing DIS as XML would be advantageous by availing the

XML data processing toolset to DIS data; storage, query, transformation, web services,

and other XML processing capabilities become possible.

IEEE binary DIS data is passed on a wire in the form of discrete units called

Protocol Data Units (PDUs). Traditionally, DIS has been implemented by creating a

programming language object binding to the binary DIS PDU. Rather than attempt to

create a direct binding between IEEE DIS and XML, this research seeks to use IEEE DIS

binding to Java classes as an intermediate step for conversion to XML. An XML schema

for IEEE DIS PDUs and a Java/XML binding protocol are added to complete the

conversion. Figure 40 diagrams this process.

81

JAXB

IEEE DIS
Binary Format
Representation

Java/C++
Language
Classes

XML Document
Representation

XML Schema
For DIS

JAXB

IEEE DIS
Binary Format
Representation

Java/C++
Language
Classes

XML Document
Representation

XML Schema
For DIS

IEEE DIS
Binary Format
Representation

Java/C++
Language
Classes

XML Document
Representation

XML Schema
For DIS

Figure 40. The creation of DIS-XML is achieved through the binding IEEE DIS to

XML through Java Objects.

The XML Schema for IEEE DIS PDUs is not a standard schema, but it is hoped

that other groups will collaborate, contribute, and ultimately agree upon a standard for

this information set conversion. Similarly, there are not standardized methods for

language binding of IEEE DIS. Nevertheless, availing DIS in XML format will increase

the potential uses for the data.

Once represented as XML, DIS data is a candidate for transport over XMPP. This

possibility is attractive because IEEE DIS multicast traffic is typically disallowed over

routed and switched networks. Passing DIS-XML over XMPP is one way to provide

distributed DIS simulation across the Internet.

D. XTC CHAT LOGGING
Logging, or archiving, of chat messages is a desirable feature for many

individuals and organizations. The military, in particular, has great need for data

collection of message traffic. Any military implementation of XMPP chat systems will

require message logging.

Many XMPP server implementations provide a configurable message logging

feature, as seen with Wildfire in Chapter V. Additionally, as seen with the Transverse

82

client, there are XMPP chat clients that permit local logging of chat conversations. It

would be desirable, however, to enable the storage and retrieval of chat message data on

an enterprise level. This area of XTC research seeks to design and demonstrate an

example of such a feature.

XTC Chat Logging uses client applications, written with the Smack API, to listen

for XMPP message stanzas and writes their content to an XML file. These log files are

then periodically collected into a single Native XML database, eXist, and exposed

through a web-application, written in XQuery, for query/search. Figure 41 diagrams this

process.

XTC ChatXTC Chat LoggingLogging

XMPP
Server

1

XMPP
Server

2

XMPP
Server

3
Logger Logger Logger

Log File Dir
Room1server1log.xml
Room2server1log.xml
Room3server1log.xml

Log File Dir
Room1server2log.xml
Room2server2log.xml
Room3server2log.xml

Log File Dir
Room1server3log.xml
Room2server3log.xml
Room3server3log.xml

WEBDAV

eXist
NXML db

XMPP Chat Cloud

WWW/NIPR/SIPR/CENTRIX

XQuery Servlet

Figure 41. The XTC Chat Logging Architecture writes chat conversations to XML files

and consolidates them into a web-browser accessible data base.

There are many potential implementations of an enterprise storage and retrieval

service for chat data. The XTC Chat Logging model presents one possible solution with

design emphasis on a few decision points: retention of data as XML throughout the

system, periodic collection of files into an enterprise database rather than direct collection

of chat messages, and exposure of chat data for query/search through a web application.

The desire for retention of XML format is to eliminate the problems associated with data-

83

format conversions. The desire for periodic consolidation of data files is motivated by the

potential for frequent disconnection and reconnection of the database from the supported

XMPP servers due to disruptions in the tactical military networks. Finally, the use of a

web-application facilitates access to the chat data by eliminating the need for additional

tools or knowledge of query languages.

E. JC3IEDM-ENHANCED TACTICAL COLLABORATION (JTC)
Led by Naval Undersea Warfare Center in Newport, Rhode Island, JC3IEDM-

Enhanced Tactical Collaboration (JTC) is a command and control experiment conducted

as part of Trident Warrior 2006. JTC effort included construction of the JTC Chart/Map

application, which provides interactive charts, maps, and forms, and Chat/IM to aid users

in performing planning, tasking, reporting, and information querying tasks. JTC uses

XML exposed JC3IEDM business objects that describe a set of military operations.

These objects are used to create interactive planning tools that, along with chat

discussion, seek to enable more efficient collaborative task planning than working with

slide presentations and e-mail. Figure 42 provides an example of the user interface of the

JTC Chart/Map application (Chaum, 2006a).

84

Figure 42. The JTC Chart/Map provides a Graphic User Interface (GUI) for common

situational awareness and maritime operational task creation and
presentation.

As indicated in Figure 43, the JTC architecture uses a relational data store to

maintain the JC3IEDM tasking objects and uses an API to convert these tasks into XML

messages to be passed over the XMPP network. At the receiving end, these objects are

passed to the Chart/Map application and processed, rendering a graphic overlay or

updating some associated data. These tasks can be created or modified through either

individual or collaborative effort and subsequent published to the JC3IEDM data store

(Chaum, 2006a).

85

Operational Node Connection Description
(OV-2) JTC Data Flow Overview

JTC Server

JTC Client

Track I/F

JC3IEDM DS API

GCCS-M
CWS

JTC Server

XMPP ServerXMPP Server XMPP Client:
JTC

Chart/Map

MySQL

Ports
5222/
5223

Ports
5222/
5223

Port 80

Ports
5222/
5223

Port
5269

Port
3306

TOMCAT

Port 80

XMPP Client:
BuddySpace

Browser:
Server Mgmt

Ports
9091

Figure 43. The JTC Data Flow Overview describes the flow of information during JTC

Trident Warrior 2006.

JTC is an example of how XMPP can be employed to route not only human-to-

human chat traffic, but also machine-to-machine purposed XML data, on a single

network. JTC uses the XMPP network for both purposes, demonstrating the value of

XMPP as a general purpose XML routing network.

JTC was tested as part of the Navy’s annual Trident Warrior 2006 (TW06)

Exercise. Application functionality test preparations and exercise conduct are described

further in Chapter VII.

F. SUMMARY
This chapter discussed the XML Tactical Chat project and presented some of the

research focus areas. XTC research includes: using the XTC architecture to participate in

the testing of XMPP chat over military tactical network systems, employing XMPP for

the routing and delivery of DIS-XML data in support of military modeling and

simulation, design, implementation, and testing of an XMPP chat logging system to

86

support military organizations, and participation in the JC3IEDM-Enhanced Tactical

Collaboration experiment as part of Exercise Trident Warrior 2006. Chapter VII presents

the results of this research.

87

VII. APPLICATIONS AND EXPERIMENTAL RESULTS

A. INTRODUCTION
This chapter discusses the results of XTC research experiments and provide a

presentation of XTC related applications. NPS participated in two large military

experiments through XTC, the CCSG12 XML Tactical Chat Test and JTC / Trident

Warrior 2006. XTC related applications presented in this chapter include: the

Autonomous Underwater Workbench (AUVW), a simulator for underwater robots that

has been extended to operate with DIS-XML, and the XTC Chat Logger, a chat logging

system that was applied and extended in support of the JTC / Trident Warrior 2006

exercise.

B. COMCARSTKGRU12 (CCSG12) XML TACTICAL CHAT TEST
In October 2005, Commander Carrier Strike Group 12, through Communications

Officer, Commander Danelle Barrett USN, coordinated a combined fleet, joint, and

coalition test of XMPP chat communications. Motivated by the lack of interoperable

Chat/IM communications in the military community and the security inadequacies of

many deployed chat systems, CCSG12 secured test participation from a large number of

organizations. The below listed units participated and/or assisted in the test (Barrett,

2006).

• U.S. Joint Forces Command (USJFCOM) – Norfolk, Virginia

• U.S. Pacific Command (USPACOM), Commander, Pacific Fleet (CPF),
Pearl Harbor, Hawaii

• Defense Information Systems Agency (DISA)

• NATO Supreme Allied Command Transformation

• U.S. Air Force Command and Control, Intelligence, Surveillance and
Reconnaissance Center (AFC21SRC) – Langley, Virginia

• Naval Postgraduate School (NPS) – Monterey, California and a remote
user in Arlington, Virginia

• Space and Naval Warfare Systems Command (SPAWAR) – San Diego,
California

88

Figure 44 depicts an overall schematic of the test.

Figure 44. The CCSG12 XML Tactical Chat Test of October 2005, demonstrated the

feasibility of XMPP chat over ship borne satellite communications.

Generally, this test sought to evaluate the suitability of XMPP chat

communications for military use and to assess the degree of interoperability of a set of

XMPP tools. The following were identified as test objectives:(Barrett, 2006)

• Connect and federate the Jabber Jive and Jabber XCP 4.2.5 servers at NPS
and USJFCOM respectively, and ensure presence of users and persistence
between users on both servers.

• Load and test different XMPP compliant chat clients at several joint and
coalition commands, including units at sea. The mix of clients needed to
include thick (client/server) and Web-based clients. Interoperability out of
the box among the various clients had to be verified.

• Hold a chat session with all participants for approximately two hours.
Monitor bandwidth for afloat connections and other locations where data
could be collected. Analyze bandwidth data to determine functionality of
clients in a bandwidth disadvantaged environment, specifically on both
large and small ships at sea.

• Collect subjective data from users about the functionality and performance
of the different XMPP client types to determine acceptable and
unacceptable user experiences.

In order to assess the degree to which these objectives were met, the following

performance metrics for success were identified:(Barrett, 2006)

89

• Shipboard bandwidth utilization does not increase significantly (more than
five percent).

• A minimum of two XMPP compliant chat tools successfully interoperate.

• Chat clients afloat are able to easily connect and function with server
ashore.

• Chat tool is available 100 percent of the time during the test period
assuming a stable satellite link.

• Chat tool is user friendly and intuitive for operators (assessed using a
survey).

• Two standards-compliant chat servers are connected with presence of
users established.

Figure 45 diagrams the test topology.

Figure 45. CCSG12 XTC Test Topology describes the network connections used in

support of the CCSG12 Chat Test exercise.

The test required each of the participants joining a chat room be hosted on the

xmpp.je.jfcom.mil server. Most users joined this room while connected to the

90

same server, though NPS participants logged into their local server and joined the test

room through the server-to-server link. Once the participants were gathered, scripted text-

traffic narratives were passed into the room, throughput data was collected on the ships,

and the users evaluated XMPP client performance during the test. A voice line was also

provided via satellite downlink to USS ENTERPRISE allowing additional exercise

coordination ensuring all chat-channel tests proceeded smoothly. The test period was

approximately 90 minutes.

The findings from the test are listed below: (Barrett, 2006)

• The user experience on the ships with the XMPP client was as good or
better than that with the currently deployed chat tools.

• The bandwidth consumption of the test was supportable by the ship borne
communications systems and is comparable to that of other chat/IM
systems.

• Estimated user bandwidth requirements were 0.11 KBps for passive users
and 0.13 KBps for active chat users.

• XMPP thick-client applications were both more reliable and more
bandwidth efficient than the HTTP polling web-based clients.

• Persistent room history is an important feature for shipborne chat, as it
allowed disconnected users to recapture conversation context upon
reentering the chat room.

• Federation of XMPP servers was effective in demonstrating the
distributed, federated chat architecture that will need to be implemented in
the military.

The performance of the web-based XMPP chat client was a disappointment of the

test, however, it should be noted that this client employed the HTTP polling method of

server access over port 80. The JEP supporting HTTP polling (JEP-0025) has been

deprecated and replaced with JEP-0124: HTTP Binding. Given the performance

requirements listed in JEP-0124, it is likely that a well-designed implementation of this

standard will be more responsive and reliable than the web client employed in this test

(Smith, Saint-Andre, and Paterson, 2005).

Encouraged by the test findings, CCSG12 presented the following

recommendations: (Barrett, 2006)

91

• Commander, Naval Network Warfare Command (NETWARCOM)
consider a policy making XMPP the approved open standards chat
protocol for the fleet and shore Navy, and approve XMPP port use through
the fleet firewalls and proxy servers.

• Navy FORCEnet and SYSCOM engineers develop a consolidated plan to
implement a distributed, federated, XMPP compliant chat solution for the
fleet and eliminate non-XMPP chat programs. Each ship should have its
own XMPP chat server so it can continue operations internally during
periods when disconnected from the satellite link. Replication and
synchronization of chat server data should be carefully engineered.

• Navy FORCEnet and SYSCOM engineers should leverage work done by
LAPS and USFJCOM to apply compression algorithms to XML chat,
which will improve bandwidth efficiencies afloat. Current research and
testing achieves XML chat compression by a ratio of 3:1 without
noticeably increasing latency of the chat session.

• NETWARCOM work with the SYSCOMs to collectively consider using
Transverse, the open standard, open source freeware developed by
USJFCOM based on the Jabber Instant Messaging model as the software
for afloat forces.

• Navy representatives to the DISA Global Information Grid (GIG) Net-
Centric Enterprise Services (LACES) Working Group support only XML
compliant, bandwidth friendly solutions for the follow-on to DOTS.

• Continue to test XMPP and other open standards compliant collaborative
tools in a joint, coalition and interagency environment. The continued
development of joint capabilities around open standards should drive
Navy solutions particularly when the Navy doesn't have an existing
capability.

• Consider XMPP chat and all collaborative tools as enterprise services.
Ensure the Navy Marine Corps Intranet (NMCI) adopts XMPP as its
instant messaging and text chat solution and that an improved XMPP
client be installed on all NMCI workstations. This is particularly important
for embarkable staffs moving between the NMCI and afloat network
enclaves.

• As the Navy continues to put into place key components of the FORCEnet
architecture, adherence to open standards collaborative tools, such as those
tested during this exercise, will ensure maximum interoperability in future
warfighting, peacekeeping and humanitarian relief operations.

Appendix B is a copy of the post-exercise message released by

COMCARSTRGRU 12, describing exercise details and recommendations.

92

C. DIS-XML / AUV WORKBENCH
XTC research with DIS-XML sought to achieve two things: to demonstrate the

routing of DIS-XML over an XMPP network to the effect of distributing simulations

across networks, and to import DIS-XML format into the AUV Workbench.

To achieve the first objective, two Java applications, utilizing the

org.web3d.xmsf.dis, org.web3d.xmsf.disutil,

org.jivesoftware.smack, and org.jivesoftware.smackx libraries, were

written. The first, XMPPSender.java, establishes a connection to an XMPP server,

logs in, and joins a chat-room. It then enters a loop that instantiates Java DIS PDU

objects, marshals them to XML, attaches the DIS-XML as a Java String property value to

a Smack supported XMPP message, and, finally, sends these XMPP messages into the

chat room.

Figure 46 is a sample message sent by XMPPSender object, logged into the

XMPP server as “snerd0.”

<message id="qoU4g<message id="qoU4g--67"67" to="to="adarmold@surfaris.cs.nps.navy.miladarmold@surfaris.cs.nps.navy.mil/Exodus" type="/Exodus" type="groupchatgroupchat"" from="disxml@conference.surfaris.cs.nps.navy.mil/from="disxml@conference.surfaris.cs.nps.navy.mil/snerd0snerd0">">

<body><body>A DISXML message from the sender.A DISXML message from the sender.</body></body>
<properties <properties xmlnsxmlns="http://="http://www.jivesoftware.com/xmlns/xmpp/propertieswww.jivesoftware.com/xmlns/xmpp/properties">">

<property><property>
<name><name>disXMLdisXML</name></name>
<value type="string"><?xml version="1.0" encoding="UTF<value type="string"><?xml version="1.0" encoding="UTF--8" 8"

standalone="yes"?>standalone="yes"?>
<DIS><DIS>
<<EntityStatePduEntityStatePdu capabilities="0" capabilities="0" entityAppearanceentityAppearance="0" ="0" forceIDforceID="0" ="0"

numberOfArticulationParametersnumberOfArticulationParameters="0">="0">
<<PduHeaderPduHeader length="144" length="144" pduTypepduType="1" ="1" protocolFamilyprotocolFamily="1" timestamp="0"/>="1" timestamp="0"/>
<<EntityIDEntityID application="1" entity="2" site="0"/>application="1" entity="2" site="0"/>
<Entity/><Entity/>
<<AlternativeEntityAlternativeEntity/>/>
<<EntityLinearVelocityEntityLinearVelocity/>/>
<<EntityLocationEntityLocation x="62.0"/>x="62.0"/>
<<EntityOrientationEntityOrientation/>/>
<<DeadReckoningParametersDeadReckoningParameters otherParametersotherParameters="000000000000000000000000000000">="000000000000000000000000000000">
<<EntityLinearAccelerationEntityLinearAcceleration/>/>
<<EntityAngularVelocityEntityAngularVelocity/>/>
</</DeadReckoningParametersDeadReckoningParameters>>
<<EntityMarkingEntityMarking characterSetcharacterSet="0" characters="0000000000000000000000"/>="0" characters="0000000000000000000000"/>
</</EntityStatePduEntityStatePdu>>
</DIS></DIS>

</value></value>
</property></property>

</properties></properties>
</message></message>

Figure 46. XMPPSender.java sends DIS-XML <message/> stanzas such as this.

Note the XMPP value element ultimately contains DIS-XML data as its
payload value.

93

The second application, XMPPReceiver.java, also logs into the XMPP server

and joins the same chat room. Once in the room, the application listens for message

traffic that is labeled as containing DIS-XML data as a property, creates a Java string and

assigns the value of the DIS-XML data, and un-marshals the XML into a Java DIS PDU

object. This object is then marshaled into native IEEE DIS form as a byte stream and sent

out as a multi-cast packet(s) onto a local DIS network. A DIS-compatible viewer is then

used to visualize the behavior of the simulation object.

Figure 47 captures the chat room and viewer behavior prior with only the

receiving bot (snerd1) and the author in the chat room. Figure 48 captures the same

behaviors after the sending software bot (snerd0) enters the chat room and is sending its

messages with DIS-XML payload.

Figure 47. XMPP MUC Room (left) and Xj3D Browser (right) with

XMPPReceiver.java running and waiting for messages with DIS-XML
payload.

94

Figure 48. XMPP MUC Room (left) and Xj3D Browser (right) with

XMPPSender.java sending XMPP messages, XMPPReceiver.java
processing these messages, and the Xj3D Browser exhibiting DIS entity
movement.

Once it was demonstrated that the XTC XMPP network might be purposed to

route DIS-XML using these messages to drive DIS simulation, it was desirable to import

this function into a suitable simulation tool. The AUV Workbench is a tool that allows for

the simulation of autonomous underwater vehicle (AUV) activity. AUV’s are expensive

to build and problems experienced with them during testing and missions are difficult and

expensive to recover from. The AUV Workbench provides a platform with which to test,

with high environmental fidelity, vehicle models, mission sequences, and other use cases,

without the risk of damaging or losing the vehicles themselves. The AUV workbench

already included native DIS support.

The AUV Workbench was extended to provide DIS-XML and chat-enabled

transport. This feature provides the ability to perform simulations between multiple

network nodes, even when there is no multicast support between these nodes. To further

support such distributed simulation activity, an XMPP chat console was also added to the

AUV Workbench. This feature provides login access into a chat server, entry into a chat

95

room, and the basic GUI interface features to send and receive chat messages within the

AUV Workbench window. These features are displayed in Figure 49. With the addition

of these features and an XMPP network, distributed AUV simulations have been

conducted through firewalls and across the internet. This is an exciting advancement in

the area of modeling and simulation, and an example of the extensible power of XMPP.

Figure 49. Autonomous Underwater Vehicle Workbench. Note the ability to select

DIS-XML as an execution format and the inclusion of an XMPP chat
console as simulator features.

Future work in this area includes the integration of XML Namespace support

(W3C 1997) to properly distinguish the integration of separate XML targets for XMPP

and DIS-XML.

96

D. XTC CHAT LOGGER
As discussed in Chapter VI, the XTC Chat Logger is an example solution for

enterprise wide chat message logging, storage, and retrieval. The XTC Chat Logger

consists of three components: ChatMessageLogger.java, a XMPP client Java

application, eXist, a Native XML Database, and xtclog.xql, a web application

written in XQuery.

ChatMessageLogger.java uses the org.jivesoftware.smack and

org.jivesoftware.smackx libraries for XMPP support. The application acts as a

XMPP client, The use of a client logger, however, does prevent the logging of instant

messages and private-chat rooms. Though plug-in support for Smack does not exist on

the Wildfire servers, a server plug-in for logging support could be created, allowing for

comprehensive logging of data. Connection, login, and MUC room joining settings are

established with an accompanying properties file, named xmpp.properties. This file

contains a list of all MUC rooms that should not be logged. Once logged into the server,

the application joins all hosted MUC rooms with the exception of those on the

“doNotLog” property list. The application then listens for all <message/> stanzas that are

sent to the MUC rooms, captures the <body/> elements and other data, and writes them

into a well-formed XML file. The application also checks all messages for a

“jabber:x:delay” namespaced <x/> element. This extension element is the recommended

practice for time-stamping message delay. ChatMessageLogger.java adds

“jabber:x:delay” time-stamp data to all messages not previously stamped.

Figure 50 captures the processes of ChatMessageLogger.java.

97

Figure 50. Screen capture of ChatMessageLogger.java processes. MUC room

messages are captured in a chat room (top right) and written to a well-
formed XML file (lower right). The contents of the file are seen at left.

At the time of writing, these files are manually imported in an eXist Native XML

database. This is performed via a simple Web-based Distributed Authoring and

Versioning (WebDAV) enabled operation. eXists’s use of WebDAV allow for a viewable

abstraction of the database as a file directory as seen in Figure 51.

98

Figure 51. The eXist database is WebDAV enabled, permitting the data to be viewed as

a file hierarchy. WebDAV also facilitates the importation of XML
documents into the database.

The last component of the XTC Chat Logger is the web application, providing

text search on the chat logs. This application, xtclog.xql, was written in XQuery and

deployed as a web-app within the eXist database, itself deployed as a web-app in a

Tomcat web server. Figures 52 and 53 capture the function of xtclog.xql; a keyword is

entered as input, all chat messages whose <body/> contains the keyword are returned.

These results are returned as hypertext, pointing to the full chat log they were drawn

from.

99

Figure 52. XTC Chat Logger provides keyword search on stored chat logs.

Figure 53. Keyword search results are hypertext message bodies that point to their chat

log of origin.

100

The XTC Chat Logger is a demonstration of the value of using XML formatted

chat data. It is a simply designed, easily implemented tool that required only moderate

programming expertise and a small amount of code to produce. Interested readers can

refer to Appendix A for guide for installing and running the XTC Chat Logger. Future

work includes exposing this application as a web-accessible servlet running on a chat-

connected host.

E. JTC / TRIDENT WARRIOR 2006

1. Trident Warrior Experiment Series
Trident Warrior is a series of at-sea exercises designed to explore command and

control capabilities, along with associated Tactics, Techniques, and Procedures (TTPs), to

optimize naval warfighting operations. Trident Warrior 2006 sought to focus on these

capabilities with respect to operating in the joint and coalition operational environment

(Woods, 2005).

2. JC3IEDM-Enhanced Tactical Collaboration Experiment
As part of Trident Warrior 2006 and sponsored by the Office of the Secretary of

Defense, Acquisitions, Technology, and Logistics (OSD-ATL), the Naval Undersea

Warfare Center (NUWC), and the Naval Postgraduate School conducted an experiment

called JC3IEDM-Enhanced Tactical Collaboration (JTC). JTC sought to create and test

an operational planning system that could more rapidly and efficiently support mission

planning, tasking, and querying than existing e-mail and slide presentation

methodologies. JTC is comprised of a planning tool application that uses interactive

maps, charts, and forms to support collaborative planning sessions and present JC3IEDM

based Common Operating Picture (COP) awareness and chat messaging to support

collaborative planning discussion. As discussed in Chapter VI, the JC3IEDM COP

messages are XML formatted. Both the human chat messages and the machine-purposed

JC3IEDM messages are routed over an XMPP network.

3. JTC Operational Threads
The JTC experiment sought to explore the efficacy of using structured data,

available for interactive collaboration and passed in real-time for executing operational

planning tasks. Some tasks required the use of deliberate planning data elements while

others required collaborative planning data elements. The operational tasking threads that

101

were tested are depicted in Figure 54. Although the necessary functionality was

implemented, the inclusion of live track data from a GCCS-M C4I Web Service feed was

not able to be tested due to the lack of an available service site (Chaum, 2006b).

Operational Threads

COP
Monitoring

Collaborative
Planning

Deliberate
Individual
Planning /
Approval

JTC Chart /Map Query/Subscribe for Tracks

JC3IEDM
Store

JC3IEDM
Store

CWS ServiceCWS Service

Query for Existing Tasking

JTC Chart /Map JTC Chart /Map

Establish Need to Collaborate
Chat Chat

Establish Planning Session

Create / Modify Task

JC3IEDM StoreJC3IEDM Store
Publish

JC3IEDM
Store

JC3IEDM
Store

JTC Chart /Map

Query for Existing Tasking

Post/Approve New Tasking

Figure 54. Two operational threads were evaluated in the JTC Trident Warrior 2006

experiment. Note that COP monitoring was not able to be tested as no C4I
Web Service site was available.

4. Mission Vignettes
The planning tasks tested were maritime operational missions for Strike, Mine

and Inshore Warfare, Maritime Interdiction Operations, and Anti-submarine Warfare.

With JTC, the operational and tactical concepts and semantics of these missions were

expressed through JC3IEDM XML message templates. Figures 55 and 56 display

examples of the JTC mission vignettes executed during the experiment (Chaum, 2006b).

102

Strike (Strike)Strike (Strike)

Mine and Inshore Warfare (MIW)Mine and Inshore Warfare (MIW)

Figure 55. Strike and Mine and Inshore Warfare mission vignettes from the JTC

Trident Warrior 2006 experiment.

NMaritime Interdiction Operations (MIO)Maritime Interdiction Operations (MIO)

Anti-submarine Warfare (ASW)Anti-submarine Warfare (ASW)

Figure 56. Maritime Interdiction Operations and Anti-Submarine mission vignettes

from the JTC Trident Warrior 2006 experiment.

103

The vignettes were used to create an operational scenario in which a user would

be required to perform a planning task. Typically, a vignette would be comprised of a

scenario description, a list of initial tasks or planning information required to perform the

tasks, and a list planning tasks and objects to be completed and created. Users were then

given specification on which tools should be used to create the planning objects. While

users completed the vignettes, data was collected on the time required to complete the

tasks and on the size of the planning objects created to complete the tasks. Appendix C

describes the JTC vignettes in greater detail.

5. JTC Architecture
JTC tested user/actor performance in completing mission planning tasks using the

JTC tools against performing those same tasks using Power Point presentations and

email. The experiment for Trident Warrior 2006 involved individuals working in four

locations, NUWC, in Newport, Rhode Island, NPS, in Monterey, California, Commander

Pacific Fleet, in Pearl Harbor, Hawaii, and the USS Bonhomme Richard (LHD-6)

underway. The architecture for the JTC experiment for Trident Warrior 2006 is depicted

in Figure 57 (Chaum, 2006b).

104

JTC TW06 Architecture

NUWC:NUWC:

NPS:NPS:

NUWC
JTC

Server

NUWC
JTC

Server

JC3IEDM
Store

JC3IEDM
Store

COMPACFLT:COMPACFLT:

GCCS-M 4.x
Host Hardware
GCCS-M 4.x

Host Hardware

JTC ClientsJTC Clients

Web Service
& XMPP
over SIPRNET

GCCS-M 4.x
w/ C4I Web Service

GCCS-M 4.x
w/ C4I Web Service

JTC
Clients
JTC

Clients

JTC
Clients
JTC

Clients CWS
Client
CWS
Client

USS Bonhomme
Richard (LHD-6):
USS Bonhomme
Richard (LHD-6):

JTC ClientsJTC Clients

JTC ClientsJTC Clients

NUWC:NUWC:

NPS:NPS:
NPS
Email
Server

NPS
Email
Server

NUWC
Email
Server

NUWC
Email
Server

USS Bonhomme
Richard (LHD-6):
USS Bonhomme
Richard (LHD-6):

Email
over SIPRNET

PPT
Email
Word

PPT
Email
Word

PPT
Email
Word

PPT
Email
Word

PPT
Email
Word

PPT
Email
Word

LHD
Email
Server

LHD
Email
Server

JTC

PPT

JTC
Clients
JTC

Clients

Chat
Loggers

& Archive

Chat
Loggers

& Archive

Figure 57. JTC Trident Warrior 2006 Architecture included users at COMPACFLT,

NPS, and on the USS Bonhomme Richard.

The XMPP network hosted four functional chat rooms for the experiment. Two of

these were for human actor use to discuss and coordinate planning tasks, one supported

the machine-to-machine purposed JC3IEDM XML message data, and one served as an

experiment control room. Table 12 describes the chat room support for JTC Trident

Warrior 2006.

105

JID Description Purpose

current-ops@conference.jtc.asw.navy.smil.mil JTC Current

Operations

Room

Supports chat

discussion and

coordination with

regard to current

operations.

future-ops@conference.jtc.asw.navy.smil.mil JTC Future

Operations

Room

Supports chat

discussion and

coordination with

regard to future

operations.

jtc-de@conference.jtc.asw.navy.smil.mil JTC Data

Element

Room

Supports machine-to-

machine purposed

JC3IEDM message

traffic for JTC

Chart/Map

observer@conference.jtc.asw.navy.smil.mil JTC

Observer

Room

Supports JTC

experiment

coordination and

supports command

input for the

experiment statistics

collection application.

Table 12. Chat rooms used in support of the JTC Trident Warrior 2006 experiment.

6. JTC Statistics Logging
In addition to measuring the time required to perform the planning tasks with the

two architectures, a logging tool was used to measure the bandwidth consumption of JTC

traffic. A derivative of the Chat Message Logging program,

ChatStatsLogger.java is an XMPP client that measures and reports on message

traffic in specified chat rooms. It accepts text commands, in a specific room, that dictate

the commencement and termination of statistics gathering and reporting on gathered

statistics. This application records for a given session: start time, session length in

106

seconds, number of chat messages the room received, number of deliberate and

collaborative data element messages the room received, number of chat bytes the room

received, and the number of deliberate and collaborative data element bytes the room

received. On command, the client displays the gathered statistics for the current or most

recent session in the JTC Observer room. These reports as well as all other chat room

traffic generated in the rooms listed in Table 12 were logged and archived using the

ChatMessageLogger.java application.

7. Results and Observations
Preliminary analysis of measured data and emphatic feedback from several days

of exercise effort revealed that time requirements for JTC OPTASK efforts were superior

by a factor of five or greater. Reducing standalone and collaborative planning tasks, from

5-10 minutes to two minute or less, exemplifies a significant improvement in tactical

effectiveness.

The preliminary measure of bandwidth performance for the JTC experiment is

presented in Table 13 (Chaum, 2006b). Initial results indicate that the JTC system not

only allowed the users to more rapidly execute their planning tasks than when using e-

mail and Power Point, but that the use of the JC3IEDM XML messages was also

considerably more efficient with regard to bandwidth required to complete the task.

JTC OPTASK ~ 14,000 bytes

PPT OPTASK ~ 80,000 bytes

Table 13. Estimated average size of OPTASK planning object during the JTC Trident

Warrior 2006 experiment was smaller when using JTC messages than when
using Power Point.

Based on the initial results and the feedback of the JTC users, NUWC presented a

number of observations were made regarding the JTC experiment. These are listed

below: (Chaum, 2006b)

• Observation: JTC experimentation provided evidence that significant
improvements in the area of speed-of-command can be achieved through a
novel real-time interactive sharing of structured data/information. JTC

107

enhanced immediacy, clarity and uniformity of person-to-person
collaborative communications.

• Observation: JTC used JC3IEDM, an open system-independent
international C2 information exchange standard, to represent a variety of
maritime operations. JC3IEDM proved useful for enhancing person-to-
person as well as person-to-machine communications. JC3IEDM is
designed for automated machine-to-machine information exchanges. JTC
achieves enhanced real-time collaborative planning using a combination of
formal data sharing and chat.

• Observation: JTC provided a capability for agile, rapid and efficient
maritime planning. JC3IEDM-based OPTASK messages were created for
a variety of representative scenarios and found to be very suitable for
maritime operations.

• Observation: JTC capabilities (chart, chat, database, GCCS-M interface,
data loggers) were successfully hosted as clients in an XMPP
environment. The JTC operations required little bandwidth.

In addition to identifying these observations, some insight into the experiment

design itself was made. The manner in which the statistics were gathered created some

difficulties in post-exercise analysis. Statistics were collected on entire sessions, without

distinguishing the statistics between the multiple OPTASKS created in a given session.

Further implementations of the statistics collection module will require modifying the

application code to provide for OPTASK-specific statistics tracking. Another potential

addition to JTC would be to add a native XML database that would serve as a repository

for both the chat messages and the JC3IEDM OPTASK messages. Unlike the XTC Chat

Logger system, the messages would be written directly into the database rather than

collected into an XML file. This addition would provide near-real time query access to

OPTASK status via the web.

The JC3IEDM OPTASK messages were sent as message body content into the

jtc-de chat room. Content placed inside the <body/> element of XMPP <message/>

stanzas is intended to be human read. A future improvement to JTC will be to move the

OPTASK message content to a namespace qualified packet extension, along with

registering a server handler for this namespace. This can decouple the machine purposed

traffic from any messaging intended for human use, and is more in keeping with the

XMPP standard.

108

The JTC Trident Warrior 2006 (TW06) experiment proved successful in its

objective in demonstrating that using interactive planning objects to support operational

mission planning allows for more rapid and efficient execution of those tasks. More

importantly, however, JTC was built on an open architecture of XMPP and JC3IEDM.

JTC showed that the JC3IEDM was capable of supporting maritime operational and

tactical planning concepts and semantics to the extent required for the mission vignettes.

Because the JC3IEDM describes a vastly larger set of military operational concepts ,

these successful result provide strong evidence of the extensibility of the JTC concept.

The use of XMPP in such a context demonstrates the value of the protocol as a generic

XML routing network.

F. SUMMARY
The XTC research project has worked on a number of experiments and

applications. This chapter discussed the CCSG12 XML Tactical Chat Test, DIS-XML

and the AUV Workbench, XTC Chat Logging, and JTC Trident Warrior 2006. The

experiments were largely successful in demonstrating: the suitability of XMPP systems

on bandwidth constrained Naval tactical networking systems, the extensibility of XMPP

for supporting XML message routing for modeling and simulation, an enterprise solution

to chat message logging, storage, and retrieval, and the extension of an XML expressed

data model and XMPP to build a command and control tool that enhances operational

performance. These experiments and applications all serve as examples of the

functionality and extensibility of XMPP based chat systems in support of command and

control.

109

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
This thesis presents XMPP as a viable and recommended solution for DoD chat

and instant messaging requirements. It does so by describing the needs and requirements

of military chat, examining the XMPP protocol and enhancements, and by presenting

some current XMPP chat implementations. Furthermore, experimentation and application

development is presented as both validation of the suitability of XMPP and as example of

the extensible power of the protocol and XML messaging.

The chat and IM requirements of the military are only recently becoming defined.

However, it is clear that existing chat and IM solutions in the DoD do not meet many

basic information-system requirements with regard to security and information

management. Furthermore, currently adopted solutions have resulted in interoperability

problems for the DoD in the chat and IM domain. XMPP-based chat/IM solutions are

well suited to meet the current needs of the military and provide an open-standard basis

for overcoming interoperability problems.

XMPP presents an effective solution for military chat and instant messaging

needs, as well as a framework for routing XML data that can be purposed for Command

and Control enhancement. The XMPP protocol standard defines a core specification that

defines this generic streaming XML framework. The XMPP Instant Messaging and

Presence specification and collection of Jabber Enhancement Proposals comprise a rich

set of standards for the development of solutions to military chat, IM, and other

Command and Control applications.

The myriad of existing server and client applications serve as examples of the

maturity of the XMPP technology. There are both commercial and open-source solutions

for chat and IM available with many features supporting users and administrators. More

interesting however are examples of XMPP clients that are purpose built for the military,

providing not only basic features that are useful for military users, but also special

enhancements that support military specific chat messaging. The ability to build such

110

specific capability on an open standard framework is vital to meeting the needs of the

various military users, without risking the compromise of interoperability between

services or organizational units.

The XML Tactical Chat project studies the application of XMPP based chat/IM in

military environments and researches extending XMPP chat to support other command

and control functions. Areas of focus include: using XMPP to route DIS-XML messages

in support of distributed modeling and simulation, development of an enterprise solution

for chat message logging, archiving, querying, and retrieval, and using XMPP to route

XML messages drawn from the JC3IEDM to facilitate distributed collaborative

operational mission planning. The successful results of these research efforts demonstrate

the value that XMPP holds as a technology that can be extended to meet a wide variety of

information technology requirements for the military.

The CCSG12 test was significant in that it demonstrated that XMPP chat

communications are supported by bandwidth constrained ship borne communications

systems meeting or exceeding the needs of existing Navy chat-users. This is a vital

experimental result, because for military adoption of XMPP technology to take place, the

deployed tools must be able to operate across the full range of tactical military networks

(both robust and austere). This test demonstrated that XMPP chat systems are capable of

supporting the immediate chat and IM needs of current users from an interface

perspective. Finally, this test demonstrated the use of a distributed and federated XMPP

server architecture that is well suited for military adoption.

The XTC research with DIS-XML served to demonstrate an example of using

XMPP to route XML payload for purposes other than chat and IM. However, the

successful importation of this routing mechanism into a modeling and simulation tool, the

AUV Workbench, also has provided the means to conduct distributed and collaborative

simulations across the internet without the use of multi-cast traffic.

The XTC Chat Logger presents an example of a simply designed and easily

implemented solution for enterprise chat message logging, storage, and

querying/retrieval. It serves as an exemplar for the benefits of working with XML chat

data. The native XML database and XQuery web-application for search provide access to

111

chat data without the need for special packages for interfacing the database. The use of

XMPP client applications demonstrates the flexibility and utility of the available open

source XMPP based code sets.

The JC3IEDM-Enhanced Tactical Collaboration experiment within Trident

Warrior 2006 demonstrated both the value of an XML expressed data model for military

command and control and the value of an XMPP based network for routing and delivery

of the XML messages. This experiment specifically exhibits the potential application of

XMPP technologies to the Command and Control realm of the DoD.

The need for a comprehensive solution to military chat and instant messaging is

profound. This thesis demonstrates that XMPP is a technology that can meet the

requirements of the military for Chat and IM while providing interoperability and

extensibility solutions that are not afforded by competing solutions. The broad inclusion

of XMPP into DoD Command and Control and replacement of inferior, stovepiped, and

incompatible protocols will provide a force multiplier now and into the future.

B. RECOMMENDATIONS FOR FUTURE WORK

1. Military Implementation
While the results of testing XMPP chat on naval tactical networks are promising,

further testing with XMPP on austere networks is required. Further research and testing

using XMPP in very low bandwidth and intermittent connection environments is

necessary. Though creating and coordinating opportunities to test new technologies on

operational systems is challenging, these efforts are vital to ensuring that future solutions

to Command and Control needs are as comprehensive and scalable as possible.

2. Client Development
The JFCOM Transverse project is an excellent model for military development of

XMPP client applications. There are military service and organizational requirements that

can be met or enhanced with custom client development, and proper implementation of

these features would allow for retention of interoperability and future functionality.

Additionally, research and development of XMPP chat-client support for handheld and

other portable devices are likely to become a requirement as well.

112

3. JC3IEDM / XMPP Development
The JTC concept is a significant demonstration of the potential capability of

XMPP and XML messages. JTC exposed a very small subset of the JC3IEDM data

model, and further expansion of this data model and the use of XMPP will lead to

significant enhancement of C2 capabilities. JC3IEDM adoption as a data foundation for

C2 systems is becoming more prevalent. XMPP is a natural fit into any C2 system that

relies of XML messaging. Further development of JTC and other C2 systems that merge

JC3IEDM and XMPP is required.

4. XMPP End-to-End Encryption
XMPP has inherent security specifications in its core standard. However, end to

end encryption of XMPP payload provides both greater security and additional

functionality. Much of the research associated with chat and IM is in relation to joint or

coalition environments. Additionally, there is a general need for object encryption and

signature with military application of XMPP solutions. End-to-end XML encryption and

signature of XMPP message payload will enhance information assurance and security

and may provide the basis for multi-level secure chat communications in support of joint

and coalition operations.

5. Efficient XML Interchange (EXI)
Though the W3C Working Group for Efficient XML Interchange doesn’t adjourn

until the end of 2007, this is a current critical area of future research for military

application of XMPP. In order for XMPP chat to become a viable solution at all levels of

the military, it is likely that a bandwidth and memory efficient implementation will be

required. There is needed research into applying XML binary serialization techniques to

XMPP streams. XMPP serialization effects on bandwidth efficiency, XMPP routing

performance, and message parsing and handling performance are all measures that

require future study. Any implementation efforts into applying binary serialization will

require namespace awareness as an integral feature.

6. DIS-XML
The IEEE Distributed Interactive Simulation (DIS) specification describes a

binary format for Protocol Data Unit (PDU) packets. The DIS-XML approach had been

shown to be a worthy alternative encoding that enables the many benefits of XML to be

113

applied to an important legacy data format. Specification work is now appropriate to

rigorously document DIS-XML, thus aligning the IEEE DIS standard with the XML

family of standards and the XMPP standard. Some further work is needed to ensure

consistent binding of DIS-XML PDUs as XMPP message payloads using proper XML

namespace labeling of elements (McGregor et al., 2006).

7. X3D Graphics
The X3D graphics specification (Web3D, 2006) already supports native binary

encoding and multicast transport of IEEE DIS PDUs. This support enables active

multiplayer participation in shared X3D worlds (Brutzman, 2003). However, such

support is ordinarily restricted to local-area networks (LANs) since multicast is usually

forbidden to cross firewalls. Adding the DIS-XML encoding and XMPP transport to the

X3D graphics specification can enable creation of large-scale virtual environments

(LSVEs) across the Internet.

8. Chat Log Search
Search is a powerful capability. More work on XQuery usage in conjunction with

XMPP is definitely worthwhile. Comparing XQuery capabilities with the Lucene search

engine (Gospodnetic, Hatcher, 2005) is also of value to fully document the potential

capabilities of chat search.

9. Chat Log Comparison and Correlation
IN the military domain, communications are often subject to delays or dropouts.

Chat servers can overcome many failure modes by keeping recent history available and

resynchronizing remote server or clients upon reconnection. However, if this recovery

mode is not possible, significant differences in common tactical picture can result. It is

worthwhile to examine how maintaining independent chat loggers at remote sites can be

used to compare, correlate, and merge chat traffic across a widely distributed set of users.

This capability will improve network troubleshooting and (more importantly) allow

determination of “what participants received which information when.”

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

APPENDIX A. USER GUIDE FOR THE XTC CHAT LOGGER

The XTC Chat Logger has three functional components, the

ChatMessageLogger.java, an eXist native XML database, and xtclog.xql.

A. CHATMESSAGELOGGER.JAVA

The ChatMessageLogger.java relies on a Java properties file,

xmpp.properties to configure connection, authentication, room registration, and

XML document writing settings for the client application. This properties file must either

reside in the working directory of ChatMessageLogger.java or be appropriately

referenced in an IDE package.

The file listed below was used to connect to the NPS

surfaris.cs.nps.navy.mil server. It is configured to connect the client

application to this server under the username of “Chat_Logger” with a password of

“logger” and to register with the chat rooms supported by the MUC service

conference.surfaris.cs.nps.navy.mil. It further configures the client to

write all XML chat logs to the /logs subdirectory of the working directory, and to not log

four chat rooms: auvw, auvwtest, load, disxml, and jtc-de. The indicated directory for

writing the chat logs must exist prior to running the application, or an I/O Exception

terminates the application.

Configuration properties for XMPP Chat Logger. This provides the information to

connect to an XMPP server and MUC rooms. Obviously, since this includes

passwords, it should be handled with due care.

@author Adrian D. Armold

The XMPP server to authenticate to

xmppAuthenticationServer = surfaris.cs.nps.navy.mil

Username used by the Chat Logger

xmppUserName = Chat_Logger

#The password we use to log in

xmppPassword = logger

#The MUC room service

116

multiUserChatService = conference.surfaris.cs.nps.navy.mil

#The directory in which the log files should be saved

savedLogsRootDirectory = \logs

#The list of MUC rooms that should not be logged by the logger. Separate by comma.

doNotLog = auvw,auvwtest,load,disxml,jtc-de

These properties are accessed by ChatMessageLogger.java via a

Properties object, and assigned to object variables as indicated in the code presented

below.

370 try {

371 Properties applicationProps = new Properties();

372 FileInputStream appStream = new FileInputStream(configDir + "/xmpp.properties");

373 applicationProps.load(appStream);

374 appStream.close();

375

376 xmppAuthenticationServer =

377 applicationProps.getProperty("xmppAuthenticationServer");

378 xmppUserName = applicationProps.getProperty("xmppUserName");

379 xmppPassword = applicationProps.getProperty("xmppPassword");

380 multiUserChatService = applicationProps.getProperty("multiUserChatService");

381 savedLogsRootDirectory = applicationProps.getProperty("savedLogsRootDirectory");

382 noLoggingRooms = applicationProps.getProperty("doNotLog");

383 } catch(IOException ioe) {

384 System.err.println("IOException: " + ioe.getMessage());

385 }

 Once variable assignment is complete, the client application logs onto the XMPP

server and registers with the support MUC rooms, less the rooms on the “doNotLog” list.

The code below performs the server login.

158 /**

159 * Establishes a connection to the XMPP server and joins the specified chat room.

160 */

161 public void login() {

162 try {

163 // Authenticate to our local XMPP server

164 connection = new XMPPConnection(xmppAuthenticationServer);

165 connection.login(xmppUserName, xmppPassword);

166 } catch(Exception e) {

167 System.out.println(e + " Login failed");

117

168 }

169 }

 The below listed code performs the MUC registration.

171 public void registerMUCRooms() {

172 String mucJid = mucRoom + "@" + multiUserChatService;

173 /*Create a discussion history and set it to receive no history

174 this prevents the re-writing of messages if bounced from the

175 server.

176 */

177 DiscussionHistory dh = new DiscussionHistory();

178 dh.setMaxChars(0);

179

180 // Java 5.0 generics convention

181 ArrayList<String> doLogRooms = new ArrayList<String>();

182 String [] doNotLogRooms = noLoggingRooms.split(",");

183 for (int i = 0; i < doNotLogRooms.length;i++){

184 doNotLogRooms[i] += "@";

185 doNotLogRooms[i] += multiUserChatService;

186 }

187 try {

188 /* Establish a connection to all MUC rooms

189 unless on the doNotLog list from the

190 properties file.

191 */

192 muc = new MultiUserChat(connection, mucJid);

193 Collection roomNames = muc.getHostedRooms(connection,multiUserChatService);

194 Iterator itr = roomNames.iterator();

195 HostedRoom hr;

196 String roomJid;

197

198 while (itr.hasNext()){

199

200 hr = (HostedRoom)itr.next();

201 roomJid = hr.getJid();

202

203 boolean addRoom = true;

204

205 for (int i = 0;i < doNotLogRooms.length;i++){

206 if (doNotLogRooms[i].equals(roomJid)){

207 addRoom = false;

208 break;

209 }// end if

210 }// end for

211 if (addRoom){

212 doLogRooms.add(new String(roomJid.toString()));

213 muc = new MultiUserChat(connection,roomJid);

118

214 muc.join(xmppUserName,"",dh,2000);

215 }// end if

216 }// end while

217 }

218 catch(Exception e) {

219 System.out.println(e + " MUC Room registration failed");

220 }

 Once the application is logged in and registered, it is configured to listen for

message packets sent to the registered room.

222 // Set up a packet filter to listen for only the things we want

223 AndFilter filter = new AndFilter();

224 OrFilter roomFilter = new OrFilter();

225 PacketFilter messageFilter = new PacketTypeFilter(Message.class);

226 filter.addFilter(messageFilter);

227

228 for (int i=0; i < doLogRooms.size(); i++){

229 FromContainsFilter fromFilter = new FromContainsFilter

230 ((String)doLogRooms.get(i));

231 roomFilter.addFilter(fromFilter);

232 }

233

234 filter.addFilter(roomFilter);

 Messages that pass the filter are then processed. The message is captured as

XML, time stamped if required, and appended to an XML file. The XML files contain all

messages for one MUC room for 24 hours. The message handling code is presented

below.

237 // Next, create a packet listener. We use an anonymous inner class for brevity.

238 PacketListener myListener = new PacketListener() {

239

240 DelayInformation xDelay = null;

241 public void processPacket(Packet ppacket) {

242 Message currentMessage = (Message) ppacket;

243

244 // To gracefully exit the Message Logger from all Chat rooms

245 if (currentMessage.getBody().equals("*KickMessageLogger")) {

246 System.exit(0);

247 }

248 /* checks if message has delay timestamp info, if not

249 it adds the extension and stamps it with the current time*/

250 if (ppacket.getExtension("x","jabber:x:delay") == null){

251 xDelay = new DelayInformation(new Date());

252 String from = ppacket.getFrom();

253 xDelay.setFrom(from);

119

254 ppacket.addExtension(xDelay);

255 }// end if

256

257 String xmlLogString = ppacket.toXML();

258 xmlLogString += "</Log>";

259 int index = xmlLogString.lastIndexOf("stamp=\"");

260 String timeStamp = xmlLogString.substring(index + 7, index + 15);

261

262 index = xmlLogString.indexOf("from=\"");

263 int index2 = xmlLogString.indexOf("\"",index + 6);

264

265 String roomJid = xmlLogString.substring(index + 6, index2);

266

267 if (roomJid.contains("/")){

268 index = roomJid.indexOf("/");

269 roomJid = roomJid.substring(0,index);

270 }

271 String filename = savedLogsRootDirectory + File.separator + roomJid;

272 filename += "." + timeStamp;

273 filename += ".xml";

274

275 if ((new File(filename)).exists()) {

276 appendMessage(filename,xmlLogString);

277 } else {

278 createLogFile(filename);

279 appendMessage(filename,xmlLogString);

280 }//end else

281 } // end process packet

282 };// end PacketListener anonymous class

283

284 connection.addPacketListener(myListener,filter);

 The chat log files are well-formed XML documents such as the one presented in

Figure 58.

120

Figure 58. XTC chat log documents are generated by the
ChatMessageLogger.java application.

B. EXIST DATABASE

 Once the XML chat log files are created, they need to be imported into the eXist

database. eXist is an open source native XML database. For XTC, eXist was installed as

a webapp within a Tomcat web server. Following the basic installation instructions

described at http://exist.sourceforge.net/deployment.html will accomplish this. eXist’s

installer deploys the database as a web-app inside a Jetty web server container, so, if a

web-server is not previously installed on the machine, this is the easiest and

recommended installation method.

<?xml version="1.0" encoding="UTF-8"?>
<Log doc="savage@conference.surfaris.cs.nps.navy.mil.20060807.xml">
 <message id="jcl_21" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>Here is a test message for the MOVES Open House
Presentation</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:55:32"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_22" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>Here is another message</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:55:46"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_23" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>MOVES Open House Aug 9 2006</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:56:02"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_24" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>another MOVES message</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:56:10"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_25" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>this is yet another MOVES message</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:56:22"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_26" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>test message</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:56:51"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>
 <message id="jcl_27" to="chat_logger@surfaris.cs.nps.navy.mil/Smack"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold" type="groupchat">
 <body>The Last message for the MOVES Open House Presentation</body>
 <x xmlns="jabber:x:delay" stamp="20060807T19:57:13"
from="savage@conference.surfaris.cs.nps.navy.mil/adarmold"/>
 </message>

</Log>

121

 Once the database is deployed, there are several options for accessing the

database and importing documents into it, including a Java admin client, LDAP, XQuery

access control, and WebDav. WebDAV is the recommended method for importing the

chat logs into the database. Enabling eXist with WebDAV is described at:

http://exist.sourceforge.net/webdav.html. Once WebDAV enabled, chat logs can be

manually added to the database via drag and drop operations, or the importation of the

logs can be automated.

C. XTCLOG.XQL
 The last component of the XTC Chat Logger is the XQuery program,

xtclog.xql. This program performs the web-based presentation, input reception,

database query, and response presentation. It serves the same combined purposes of an

HTML web page and a JDBC included Java servlet, and does so without the need for

translation between HTML, Java, and SQL. xtclog.xql is supported by a javascript

file and a cascading style sheet file. xtclog.xql.

1. xtclog.xql
xtclog.xql is an XQuery program that creates the web browser presentation,

database query, and results presentation. The source code is listed below.

xquery version "1.0";

declare namespace xtc="http://movesinstitute.org/brutzman/xtc";
declare namespace delay = "jabber:x:delay";
declare namespace event = "jabber:x:event";

declare function xtc:display-page() as element() {
 util:declare-option("exist:serialize", "media-type=text/html method=xhtml"),

 <html>
 <head>
 <title>XTC Chat Log</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <link type="text/css" href="styles/xtclog.css" rel="stylesheet"/>
 <script language="Javascript" type="text/javascript"
src="scripts/prototype.js"/>
 <script language="Javascript" type="text/javascript"
src="scripts/behaviour.js"/>
 <script language="Javascript" type="text/javascript" src="scripts/xtclog.js"/>
 </head>
 <body>
 <div id="header">
 <h1>XTC Chat Log Database</h1>
 </div>
 <div id="content">
 <div id="query-panel">
 <input type="text" id="query"/>
 <button type="button" id="send-query">Search
Keyword</button>

122

 </div>
 <div id="query-result">
 Close
 <h3>Query Results</h3>
 <div id="query-output"/>
 </div>
 <div id="errors"></div>
 <div id="output">
 <h3>Log Request Result</h3>
 <div id="current">
 <input readonly="readonly" size = "100" type="text"
id="logid"/>
 </div>
 <div id="log-output"/>
 </div>
 </div>
 </body>
 </html>
};

declare function xtc:format-number($num as xs:integer) as xs:string {
 if ($num lt 10) then
 concat("0", $num)
 else
 xs:string($num)
};
function xtc:format-time($time as xs:dateTime) as xs:string {
 concat(
 xtc:format-number(hours-from-dateTime($time)), ':',
 xtc:format-number(minutes-from-dateTime($time)), ':',
 xtc:format-number(seconds-from-dateTime($time))
)
};
function xtc:format-date($time as xs:dateTime) as xs:string{

 concat(
 xtc:format-number(year-from-dateTime($time)),'-',
 xtc:format-number(month-from-dateTime($time)),'-',
 xtc:format-number(day-from-dateTime($time))
)
};function xtc:display-event($event as element()) as element() {
if ($event instance of element(message)) then

 let $dateString := xs:string($event/delay:x/data(@stamp))
 let $dateStringFormatted := string-
join((substring($dateString,1,4),substring($dateString, 5,2),substring
($dateString,7)),"-")
 let $messageDate := xs:dateTime($dateStringFormatted)

 return

 <tr>

 <td class="time"><span
class="date">{substring($dateStringFormatted,1,10)} |
 <span
class="time">{substring($dateStringFormatted,12)}</td>
 <td class="nick">{xs:string(substring-after($event/@from,"/"))}</td>
 <td class="message">
 {
 let $cb := util:function("xtc:highlight", 3)
 return
 text:highlight-matches($event/body/text(), $cb, ())
 }
 </td>
 </tr>
 else
 ()
};
function xtc:display-date($date as xs:date, $doc as xs:string?) as element()* {
 util:declare-option("exist:serialize", "media-type=text/xml omit-xml-declaration=no"),

123

 let $log :=
 if ($doc) then
 //Log[data(@doc) = $doc]
 else
 //Log/message/body[@stamp = $date]
 return
 <table>
 {
 for $event in $log/*
 return
 xtc:display-event($event)
 }
 </table>
};

declare function xtc:display-logdoc($doc as xs:string?) as element()* {
 util:declare-option("exist:serialize", "media-type=text/xml omit-xml-declaration=no"),
 let $log := //Log[data(@doc) = $doc]
 return
 <table>
 {
 for $event in $log/*
 return
 xtc:display-event($event)
 }
 </table>
};

declare function xtc:highlight($term as xs:string, $node as text(), $args as item()+) as
element() {
 {$term}
};

declare function xtc:query($query as xs:string) as element() {
 util:declare-option("exist:serialize", "media-type=text/xml omit-xml-declaration=no"),
 let $cb := util:function('xtc:highlight', 3)
 let $hits := //message[body &= (concat('"',$query,'"'))]
 return
 <table>
 {
 for $event in $hits
 let $dateString := xs:string($event/delay:x/data(@stamp))
 let $dateStringFormatted := string-
join((substring($dateString,1,4),substring($dateString, 5,2),substring
($dateString,7)),"-")
 let $messageDate := xs:dateTime($dateStringFormatted)
 let $logname := $event/../data(@doc)
 return
 <tr>
 <td class="time"><span
class="date">{substring($dateStringFormatted,1,10)} |
 <span
class="time">{substring($dateStringFormatted,12)}</td>
 <td class="nick">{xs:string(substring-after($event/@from,"/"))}</td>
 <td class="message">

 {text:kwic-display($event/body/text(), 80, $cb, ())}

 </td>
 <td class="room">{substring-before($event/../data(@doc),".2006")}</td>
 </tr>
 }
 </table>
};

let $date := request:request-parameter("date", ())
let $query := request:request-parameter("query", ())
let $logdoc := request:request-parameter("logdoc",())
let $log := util:log("DEBUG", $query)
return

124

 if ($logdoc) then
 xtc:display-logdoc($logdoc)
 else if ($date) then
 xtc:display-date($date, $query)
 else if ($query) then
 xtc:query($query)
 else

 xtc:display-page()

2. xtclog.css
xtclog.css is the accompanying cascading style sheet for xtclog.xql. The code for

xtclog.css is listed below.

body {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 overflow-y: scroll;
}
* {
 margin: 0;
 padding: 0;
}
#header {
 padding: 10px 0 5px 10px;
 border-bottom: 1px solid blue;
 font-size: 75%;
}
#header h1 {
 font-weight: normal;
 font-size: 150%;
}

#header #menu {
 margin: 0.3em 0 0 0;
 padding: 0;
 float: right;
}

#menu li {
 list-style: none;
 float: left;
 margin: 0;
 white-space: nowrap;
 padding: 0px 20px 0px 20px;
}

#menu li a {
 color: #666666;
}

#content {
 margin: 5px 100px 0 10px;
 font-size: 75%;
}

#query-result {
 margin-top: 5px;
 background-color: #FEFFAF;
 height: 160px;
}

#query-result h3 {
 font-weight: normal;
 font-size: 100%;

125

}

#query-close {
 float: right;
}

#query-output {
 background-color: white;
 margin: 5px 3px;
 height: 136px;
 overflow: auto;
}

#query-output td {
 font-size: 70%;
}

#query-output .date {
 color: #cc0099;
}

#query-output .time {
 color: #440099;
}

#query-output .room {
 color: #00ddaa;
}

.hi {
 background-color: yellow;
}

#errors {
 height: 1.5em;
 margin-bottom: 3px;
 color: #AF0024;
}

h2 {
 font-size: 100%;
}

#output {
 background-color: #FC6;
 margin-top: 5px;
 padding: 0 3px 3px 5px;
 border: 1px solid #FFD100;
}

#log-output .time {
 color: #440099;
}

#log-output .time {
 padding-right: 650 px;
}

#log-output .date {
 color: #cc0099;
}

#log-output {
 margin-top: 10px;
 background-color: white;
 overflow: auto;
}

td {
 vertical-align: top;

126

 font-size: 80%;
 padding-bottom: 5px;
}

.time {
 padding-right: 10px;
}

.nick {
 padding-right: 25px;
}

.message {
 padding-right: 50px;
}

.action {
 font-style: italic;
}

#navbar {
 width: auto;
 border: 0;
 font-size: 75%;
 margin-bottom: 10px;
}

#current {
 width: 500 px;
 text-align: center;
 font-weight: bold;
 font-size: 100%;
 overflow: auto;
}

#logid {

 border: 0;
 background-color: transparent;
 color: black;
 font-weight: bold;
 text-align: center;
 padding-right: 8px;
}

3. xtclog.js
xtclog.js is an accompanying javascript file for xtclog.xql. The code for xtclog.js

is listed below.
// Call init() after the document was loaded
window.onload = init;
window.onresize = resize;

// Register event handlers for various elements on the page.
// The behaviour library allows to register handlers via CSS
// selectors. This way, we can keep the HTML Javascript-clean.
var behaviourRules = {
 '#next' : function (element) {
 element.onclick = browseNext;
 },
 '#previous' : function (element) {
 element.onclick = browsePrevious;
 },
 '#send-query' : function (element) {
 element.onclick = query;

127

 },
 '#query-close' : function (element) {
 element.onclick = function () {
 Element.hide('query-result');
 resize();
 }
 },
 '#current-date' : function (element) {
 element.onchange = function () {
 displayLog(this.value);
 }
 },
 '#refresh' : function (element) {
 element.onchange = function() {
 var option = this.options[this.selectedIndex].value;
 if (timer) clearInterval(timer);
 if (option != 'off') {
 refreshPeriod = option * 60 * 1000;
 timer = setInterval('autoRefresh()', refreshPeriod);
 }
 }
 }
};
Behaviour.register(behaviourRules);

var colors = [
 '#9900cc',
 '#cc0099',
 '#cc9900',
 '#0099cc',
 '#00cc99',
 '#6666ff',
 '#339966',
 '#993366',
 '#669933',
 '#0033cc',
 '#ff99ff',
 '#9900cc',
 '#ffdd00'
]

var nickNames = new Object();
var lastColor = 0;

var currentDate;
var timer = null;

// refresh display every 60 seconds by default
var refreshPeriod = 60 * 1000;

/** onLoad handler to initialize display */
function init() {
 Element.hide('query-result');
 Element.hide('output')
 /*Calendar.setup(
 {
 inputField : 'current-date',
 ifFormat : '%Y-%m-%d',
 button : 'set-date',
 onUpdate : function (calendar) {
 currentDate = calendar.date;
 }
 }
);*/
 resize();

 Behaviour.apply(); // we need to call behaviour again after this handler
 //displayLog(new Date());
}

/** Resize the query result output div. We want this to have a fixed height,

128

 * so it neatly fits into the browser window.
 */
function resize() {
 var output = $('log-output');
 output.style.height = (document.body.clientHeight - output.offsetTop - 20) + "px";
}

/*function displayLog(date, query) {
 function formatDayMonth(value) {
 if (value < 10)
 return '0' + value;
 else
 return value;
 }

 if (timer)
 clearInterval(timer);

 var dateStr;
 if (typeof date == 'string')
 dateStr = date;
 else
 dateStr = date.getFullYear() + '-' + formatDayMonth(date.getMonth() + 1) +
 '-' + formatDayMonth(date.getDate());
 var params = 'date=' + dateStr;
 if (query)
 params += '&query=' + query;

 var ajax = new Ajax.Request("xtclog.xql", {
 method: 'post', parameters: params,
 onComplete: displayResponse,
 onFailure: requestFailed
 });
 $('errors').innerHTML = 'Retrieving log ...';
 $('current-date').value = dateStr;
 currentDate = date;

 timer = setInterval('autoRefresh()', refreshPeriod);
}*/

function displayLogDoc(logname) {

 if (logname)
 params = '&logdoc=' + logname;

 var ajax = new Ajax.Request("xtclog.xql", {
 method: 'post', parameters: params,
 onComplete: displayResponse,
 onFailure: requestFailed
 });
 $('errors').innerHTML = 'Retrieving log ...';
 $('logid').value = logname;
 //timer = setInterval('autoRefresh()', refreshPeriod);
}

function displayResponse(request) {
 $('errors').innerHTML = '';
 var output = $('log-output');
 output.innerHTML = request.responseText;
 colorify(output);
 var spans = output.getElementsByTagName('span');
 if (spans.length > 0)
 spans[0].scrollIntoView();
 else {
 var rows = output.getElementsByTagName('tr');
 rows[rows.length - 1].scrollIntoView();
 }

 Element.show('output');
}

129

function autoRefresh() {
 $('errors').innerHTML = 'Refreshing ...';
 displayLog(currentDate);
}

function requestFailed(request) {
 $('log-output').innertHTML =
 "The request to the server failed.";
}

function browseNext() {
 var newMillis = currentDate.getTime() + (1000 * 60 * 60 * 24);
 displayLog(new Date(newMillis));
}

function browsePrevious() {
 var newMillis = currentDate.getTime() - (1000 * 60 * 60 * 24);
 displayLog(new Date(newMillis));
}

function query() {
 var qu = $F('query');
 if (!qu || qu.length == 0) {
 alert('Please enter a string to search for!');
 return;
 }

 var params = 'query=' + escape(qu);
 var ajax = new Ajax.Request("xtclog.xql", {
 method: 'post', parameters: params,
 onComplete: queryResponse,
 onFailure: requestFailed
 });
 $('errors').innerHTML = 'Query sent ...';
 Element.show('query-result');
 resize();
}

function queryResponse(request) {
 $('query-output').innerHTML = request.responseText;
 colorify($('query-output'));
 $('errors').innerHTML = '';
}

function showQueryResult(dateStr, query) {
 displayLog(dateStr, query);
}

function showLogResult(log) {
 displayLogDoc(log);
}

function browseToDate(calendar) {
 alert(calendar.date.toString());
}

function colorify(element) {
 var rows = element.getElementsByTagName('tr');
 for (var i = 0; i < rows.length; i++) {
 var columns = rows[i].getElementsByTagName('td');
 if (columns.length == 4 | columns.length == 3) {
 var nick = getElementValue(columns[1]);
 var color = pickColor(nick);
 columns[1].style.color = color;
 }
 }
}
function pickColor(nick) {
 var last = nickNames[nick];
 if (last)
 return last;

130

 if (lastColor > colors.length)
 last = 'black';
 else
 last = colors[lastColor++];
 nickNames[nick] = last;
 return last;
}
function getElementValue(node) {
 var val = '';
 var child = node.firstChild;
 while (child) {
 val += child.nodeValue;
 child = child.nextSibling;
 }
 return val;
}

 xtclog.xql is deployed as a web-application, as eXist resides as a web-app in the

Tomcat container. Run the search application through a web browser.

http://localhost:8080/exist/xtc/xtclog.xql is the deployed URL used to support this

research, but this will be dependent on the installation configuration of the database and

XQuery application.

131

APPENDIX B. COMCARSTKGRU 12 CHAT TEST RESULTS
MESSAGE

Following the chat test in October of 2005, the Commander Carrier Strike Group

12, released the, below listed, message. The message details the exercise purpose, design,

and results. Recommendations for further testing and adoption of XMPP chat systems are

provided as well.

ROUTINE

R 262139Z OCT 05

FM COMCARSTRKGRU TWELVE

TO CDR USJFCOM NORFOLK VA//J6/J9//
USPACOM HONOLULU HI//J6//
HQ SACT//CIS//
AFC2ISRC LANGLEY AFB VA//A6//
DISA WASHINGTON DC//J6//
COMSECONDFLT
COMNAVNETWARCOM NORFOLK VA//N6/N3/N8//

INFO DON CIO WASHINGTON DC
CNO WASHINGTON DC//N71/N6T//
CG MARCORSYSCOM QUANTICO VA
COMFLTFORCOM NORFOLK VA
COMPACFLT PEARL HARBOR HI
COMSPAWARSYSCOM SAN DIEGO CA
COMNAVSEASYSCOM WASHINGTON DC
COMNAVAIRSYSCOM PATUXENT RIVER MD
COMNAVSURFOR SAN DIEGO CA
COMNAVAIRLANT NORFOLK VA
COMNAVSURFLANT NORFOLK VA
COMNAVAIRFOR SAN DIEGO CA
COMTHIRDFLT
COMFIFTHFLT
COMSIXTHFLT
COMSEVENTHFLT
COMPHIBGRU ONE
COMPHIBGRU TWO
COMCARSTRKGRU TWO
COMCARSTRKGRU THREE
COMCARSTRKGRU FIVE
COMCARSTRKGRU SIX
COMCARSTRKGRU SEVEN
COMCARSTRKGRU EIGHT
COMCARSTRKGRU TEN
COMCARSTRKGRU ELEVEN
COMCARSTRKGRU TWELVE

132

COMEXSTRIKGRU ONE
COMEXSTRIKGRU THREE
COMEXSTRIKGRU FIVE
COMDESRON TWO
NVPGSCOL MONTERY CA
FLENUMMETOCCEN MONTEREY CA
COMDESRON TWO
USS ENTERPRISE
USS ANZIO

UNCLAS //N02325//

MSGID/GENADMIN/COMCARSTRKGRU TWELVE/-/OCT//

SUBJ/RESULTS OF COMCARSTRKGRU TWELVE COMBINED FLEET, JOINT, COALITION
/TEST OF OPEN STANDARDS CHAT//

REF/A/RMG/COMCARSTRKGRU TWELVE/172210ZOCT2005/NOTAL//

REF/B/RMG/COMCARSTRKGRU TWELVE/171200ZOCT2005/NOTAL//

REF/C/RMG/COMCARSTRKGRU TWELVE/171201ZOCT2005/NOTAL//

REF/D/DOC/COMCARSTRKGRU TWELVE/08JUN2005/NOTAL//

REF/E/DOC/COMCARSTRKGRU TWELVE/19OCT2005/NOTAL//

NARR/REF A IS COMCARSTRKGRU TWELVE, COMCARSTKGRU TEN, COMCARSTRKGRU
EIGHT, COMEXSTRIKGRU ONE CONSOLIDATED MSG DOCUMENTING FLEET
REQUIREMENT FOR OPEN STANDARDS ARCHITECTURE. REF B IS COMCARSTRKGRU
TWELVE, COMCARSTKGRU TEN, COMCARSTRKGRU EIGHT, COMEXSTRIKGRU ONE MSG
DOCUMENTING FLEET REQUIREMENT FOR ENTERPRISE SERVICES. REF C IS
COMCARSTRKGRU TWELVE, COMCARSTKGRU TEN, COMCARSTRKGRU EIGHT,
COMEXSTRIKGRU ONE MSG DETAILING SPECIFIC ENTEPRISE SERVICES TO
SUPPORT AFLOAT COMMAND AND CONTROL. REF D IS THE WHITE PAPER
PROPOSING A JOINT/ALLIED COALITION TEST OF OPEN STANDARD EXTENSIBLE
MESSAGING PRESENCE PROTOCOL CHAT ON NIPRNET, WHICH INCLUDED TEST
OBJECTIVES AND METRICS FOR SUCCESS. REF E IS THE XML TACTICAL CHAT
TEST PLAN.//
POC/BARRETT/CDR/COMCARSTRKGRU TWELVE/NORVA/TEL:(757) 444-2600
/EMAIL:DANELLE.BARRETT(AT).NAVY.MIL//
GENTEXT/REMARKS/1. AS COMSECONDFLT'S EXECUTIVE AGENT FOR C4I,
COMCARSTRKGRU TWELVE INITIATED AND CONDUCTED A SUCCESSFUL TEST OF
OPEN STANDARDS COMPLIANT CHAT TOOLS ON 19 OCT 05 ON NIPRNET
INVOLVING USJFCOM, USPACOM/COMPACFLT, DISA, AIR FORCE, NATO, SPAWAR,
NAVAL POSTGRADUATE SCHOOL (NPS) AND COMCARSTRKGRU TWELVE AFLOAT
UNITS (UNDERWAY ABOARD USS ENTERPRISE AND USS ANZIO). THE PURPOSE OF
THIS MESSAGE IS TO DOCUMENT THE TEST RESULTS AND TO MAKE
RECOMMENDATIONS ABOUT FLEET OPEN STANDARDS TACTICAL CHAT.
2. BACKGROUND:
A. EXTENSIBLE MESSAGING PRESENCE PROTOCOL (XMPP) IS AN OPEN
STANDARDS PROTOCOL FOR CHAT, WHERE THE DATA ARE IN EXTENSIBLE MARKUP
LANGUAGE (XML) FORMAT. GOVERNMENT AND INDUSTRY SUPPORT OF A STANDARD
IS KEY TO CONTINUED DEVELOPMENT AND GROWTH. ON 20 OCT 05, THE
COLLABORATION TECHNICAL WORKING GROUP OF THE DEFENSE INFORMATION
TECHNOLOGY STANDARDS REGISTRY (DISR) VOTED TO MAKE XMPP A MANDATORY

133

STANDARD. THIS MAKES XMPP THE ONLY APPROVED INSTANT MESSAGING
STANDARD APPROVED BY THE DISR. IN FY05 DISA FUNDED SPAWAR SYSTEMS
CENTER SAN DIEGO TO CONDUCT A BANDWIDTH ANALYSIS OF XMPP OVER
TACTICAL COMMUNICATIONS. POC FOR THIS STUDY IS PERRY POWELL
(POWELLP(AT)NAVY.MIL) ADDITIONALLY, THE INTERNET ENGINEERING TASK
FORCE (IETF) FORMALIZED THE CORE XML STREAMING PROTOCOLS AS AN
APPROVED INSTANT MESSAGING AND PRESENCE TECHNOLOGY UNDER THE NAME
XMPP. MAJOR COMMERCIAL SUPPORTERS/USERS OF XMPP CHAT INCLUDE: HP,
JABBER, INC., ORACLE, SUN MICROSYSTEMS, AT&T, EDS, SONY, ANTEPO,
APPLE, HITACHI, JIVE, DESKNOW, RHOMBUS, MERAK, TIPIC, CONVERSANT AND
IN AUGUST 2005 GOOGLE ANNOUNCED THAT ITS INSTANT MESSAGING
CAPABILITY WOULD BE XMPP
COMPLIANT. THERE ARE COMMERCIAL AND OPEN SOURCE CLIENT/SERVER
IMPLEMENTATIONS RUNNING ON SOLARIS, WINDOWS, LINUX, HP-UX, MACOS X,
PALMOS, WINDOWS CE, SYMBIAN, AND ANY PLATFORM CAPABLE OF RUNNING
JAVA STANDARD (J2EE) OF MICRO (J2ME) EDITIONS.
B. THE FLEET REQUIRES AN OPEN STANDARDS BASED, SECURE, BANDWIDTH
FRIENDLY TACTICAL CHAT TOOL (REFS (A)-(C) GERMANE) THAT PROVIDES
MAXIMUM EFFICIENCY, SECURITY, AND INTEROPERABILITY WITH OTHER
GOVERNMENT AGENCIES AND JOINT/ALLIED/COALITION PARTNERS. THE TOOL
MUST BE SCALEABLE AND SUPPORT A FEDERATED SERVER ARCHITECTURE WITH
PRESENCE OF USERS AND THEIR STATUS IN THE ENTERPRISE COLLABORATIVE
SPACE, PROVIDE PERSISTENT AND TEMPORARY AWARENESS, AND BE ABLE TO
SYNCHRONOUSLY TEXT MESSAGES OR SEND AN ASYNCHRONOUS MESSAGE WITH
ATTACHMENTS. IT MUST ALSO BE ABLE TO OPERATE IN A DISCONNECTED MODE
ON A CLOSED NETWORK (I.E., AFLOAT UNIT WITHOUT SATELLITE
CONNECTIVITY).
C. CURRENT FLEET TACTICAL CHAT SITUATION. AFLOAT NAVAL UNITS
PRIMARILY USE MIRC ON WINDOWS WORKSTATIONS, MS CHAT ON IT21 SHIPS,
AND ZIRCON CHAT ON GLOBAL COMMAND AND CONTROL SYSTEM- MARITIME
(GCCS-M) AS TACTICAL CHAT TOOLS WITHIN THE FLEET BOUNDARY 1 FIREWALL
ON SIPRNET. CHAT IS NOT USED ON NIPRNET. SAMETIME MEETING/CHAT IS IN
LIMITED USE ON SIPRNET AND CENTRIXS WITHIN THE FLEET AND WITH
OTHER EXTERNAL UNITS. SOME UNITS ALSO USE MULTI-LEVEL SECURE CHAT, A
GOVERMENT DEVELOPED SOFTWARE BASED ON THE DABBLE PROTOCOL (NON-OPEN
STANDARD CODE). THE TOOL PRIMARILY USED FOR DAY-TO-DAY TACTICAL
CHAT IS IRC CHAT. IRC HAS INHERENT SECURITY VULNERABILITIES AND
LITTLE ACTIVE COMMERCIAL DEVELOPMENT. THE DEFENSE COLLABOARTIVE TOOL
SUITE (DCTS) IS AN INTEGRATED SET OF OFF THE SHELF APPLICATIONS FOR
COLLABOARTION. WHILE DCTS TOOLS CONFORM TO OPEN STANDARDS FOR VIDEO
AND TEXT CHAT, THE APPLICATIONS CHOSEN BY DCTS GENERALLY DO NOT
IMPLEMENT STRONG SECURITY MECHANISMS INCLUDING COMMUNICATIONS.
ADDITIONALLY, DCTS IS NOT BANDWIDTH FRIENDLY SO IS NOT USED BY NAVAL
UNITS AFLOAT. SOME NAVAL FLAG SHIPS ALSO USE INFO WORKSPACE (IWS)
WHICH REQUIRES A LARGE AMOUNT OF BANDWIDTH, USES AN EXPENSIVE
NON-OPEN STANDARDS CLIENT, AND FEDERATION OF IWS SERVERS IS
DIFFICULT IN A BANDWIDTH DISADVANTAGED ENVIRONMENT.
D. USE OF AN XML BASED CHAT SOLUTION WILL ALLOW NAVY TO LEVERAGE
XML DATA GUARDS (SUCH AS THE USJFCOM XML DATA GUARD CURRENTLY IN
TESTING WITH THE NATIONAL SECURITY AGENCY) FOR CROSS DOMAIN CHAT.
THIS WILL ENABLE MULTI-USE OF A SINGLE GUARD TOOL FOR XML RELATIONAL
DATABASES, XML CHAT AND XHTML WEB DATA WILL IMPROVE INTEROPERABILITY
WITH OTHER OPEN STANDARDS PRODUCTS AND WILL ELIMINATE THE NEED FOR
PROPRIETARY CROSS DOMAIN TOOLS CURRENTLY IN PLACE.
3. TEST OBJECTIVES AS IDENTIFIED IN REFS (D) AND (E) WERE TO:
A. CONNECT JIVE MESSENGER AND JABBER XCP 4.2.3 SERVERS AT NAVAL

134

POSTGRADUATE SCHOOL AND JFCOM RESPECTIVELY. ENSURE PRESENCE OF USERS
AND PERSISTENCE BETWEEN USERS ON BOTH SERVERS.
B. LOAD AND TEST DIFFERENT XMPP COMPLIANT CHAT CLIENTS AT SEVERAL
JOINT AND COALITION COMMANDS, INCLUDING NAVY UNITS AT SEA. THESE
MUST INCLUDE BOTH THICK AND WEB BASED CLIENTS. INTEROPERABILITY
AMONG THE DIFFERENT CLIENTS MUST BE VERIFIED.
C. HOLD CHAT SESSION WITH ALL PARTICIPANTS. MONITOR BANDWIDTH
UTILIZATION OF AFLOAT CONNECTIONS AND OTHER LOCATIONS WHERE
DATA COULD BE COLLECTED. ANALYZE BANDWIDTH DATA TO DETERMINE
FUNCTIONALITY OF CLIENTS IN A BANDWIDTH DISADVANTAGED ENVIRONMENT
(SHIPS AT SEA).
D. COLLECT SUBJECTIVE DATA FROM USERS ON THE FUNCTIONALITY AND
PERFORMANCE OF THE DIFFERENT XMPP COMPLIANT CLIENTS.
4. TEST ARCHITECTURE:
A. SERVERS.
(1) JFCOM SERVER: RUNNING ON A DELL 2650, DUAL 3.0GHZ CPUS,
FOUR GIG OF MEMORY. SOFTWARE INCLUDED RED HAT ENTERPRISE LINUX AS
3.0 AND JABBER XCP 4.2.5 OPERATING IN THE UNCLASSIFIED DEFENSE
RESEARCH AND ENGINEERING NETWORK (DREN), SPEED 0C-48.
(2) NAVAL POSTGRADUATE SCHOOL: RUNNING ON AN INTEL DUAL PROCESSOR
P3 750 MHZ WITH ONE GB OF MEMORY AND 40 GB OF DISK SPACE. SOFTWARE
OF OPERATING SYSTEM WAS FEDORA CORE 3 LINUX. THE XMPP SERVER WAS
JIVE MESSENGER 2.3.0 AND THE CONNECTION OF THE SERVER TO THE NETWORK
WAS VIA THE DREN. SERVER LOAD WAS MINIMAL DURING THE TEST.
(3) THE SERVERS WERE CONNECTED USING XMPP'S STANDARD SERVER TO
SERVER ENCRYPTED COMMUNICATIONS ON TCP PORT 5269.
B. CLIENTS. CLIENTS AT THE NAVAL POSTGRADUATE SCHOOL CONNECTED TO
THE SERVER IN MONTEREY. ALL OTHER CLIENTS CONNECTED TO THE JFCOM
SERVER.
USJFCOM: BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS
USPACOM/COMPACFLT: BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS
NATO: BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS AND JABBER
SSL WEB CLIENT IN NON-POLLING MODE.
AIR FORCE: JABBER WEB CLIENT IN POLLING MODE OVER PORTS 80 AND
443, JABBER WEB SSL CLIENT IN NON-POLLING MODE OVER PORTS 5222 OR
5223 AND BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS
NAVAL POSTGRADUATE SCHOOL: EXODOUS THICK CLIENT VERSION 0.9.1 ON
WINDOWS XP, AND VIA ICHAT 3.0.1 ON MAC OS 10.4.
SPAWAR: JABBER MESSENGER 3.0.2.2 THICK CLIENT, JABBER SSL WEB CLIENT
AND JABBER WEB SSL CLIENT.
USS ENTERPRISE: BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS
USS ANZIO: BUDDYSPACE VERSION 2.5.1 PRO WITH J9 ENHANCEMENTS
5. LESSONS LEARNED:
A. BANDWIDTH ANALYSIS: OVER A ONE AND A HALF HOUR TEST PERIOD,
SERVER BANDWIDTH MONITORING CAPTURED 10 MB OF CLIENT-SERVER DATA
COMMUNICATIONS FOR CHAT AND INSTANT MESSAGING. TEST PARTICIPANTS
RECEIVED UP TO 600 KB OF TCP MESSAGE COMMUNICATIONS FROM THE
SERVER. THE MOST ACTIVE USERS SENT UP TO 100 KB OF TCP MESSAGE
COMMUNICATIONS TO THE SERVER. THE DATA AMOUNT VARIED WITH THE
TIME USERS ENTERED AND THE AMOUNT OF ONE-TO-ONE MESSAGES. FROM
THESE DATA, IT IS ESTIMATED THAT PASSIVE USERS AVERAGED 0.11
KB PER SECOND AND ACTIVE USERS AVERAGED 0.13 KB PER SECOND.
B. PERFORMANCE AND HUMAN MACHINE INTERFACE (HMI):
FOUR USERS UNDERWAY WERE INVOLVED WITH THE TEST (TWO ON ANZIO AND
TWO ON ENTERPRISE). IT WAS IMPORTANT TO TEST ON A LARGE DECK SHIP
WHICH HAS MORE BANDWIDTH AND REDUNDANT SATELLITE LINKS AND ON A

135

SMALLER, MORE BANDWIDTH DISADVANTAGED SHIP. OTHER NETWORK USER
ACTIVITY WAS NOT RESTRICTED AND BANDWIDTH WAS NOT INCREASED OR
MODIFIED TO MAINTAIN CONSISTENCY WITH REAL-WORLD OPERATIONS. ON
ENTERPRISE WITH HUNDREDS OF PERSONNEL ON LINE AND WITH ONLY 786 KBPS
BANDWIDTH ON NIPRNET, THE CHAT (BUDDYSPACE THICK CLIENT) USED
PERFORMED AS GOOD OR BETTER THAN EXISTING CLIENTS, BASED ON FEEDBACK
FROM THOSE TESTING. THE SAME WAS TRUE ON USS ANZIO WHERE THE
BANDWIDTH ON NIPRNET WAS 256 KBPS (WITH LESS ACTIVE USERS). IN THE
AFTER TEST SURVEY, ALL AFLOAT USERS RATED IT A FIVE ON A SCALE OF
ONE TO FIVE WITH ONE BEING THE LOWEST. OVER A ONE AND A HALF HOUR
TEST PERIOD, USERS MAINTAINED THEIR CONNECTION THE ENTIRE TIME ON
USS ANZIO AND DROPPED CONNECTION FOUR TIMES ON ENTERPRISE. (THIS
COULD ALSO HAVE BEEN ATTRIBUTED TO AN INTERNAL NIPRNET LAN CASUALTY
ON ENTERPRISE THAT HAD DEGRADED LARGE PORTIONS OF THE NETWORK). AS
THE CHAT ENTRIES IN BUDDYSPACE WERE TIME STAMPED AND PERSISTENT,
RE-ENTERING THE CHAT ROOM POSED NO LOSS OF SITUATIONAL AWARENESS. IT
WAS INITIALLY PLANNED TO TEST THE WEB-BASED JAVA CLIENT ON USS
ENTERPRISE AS WELL BUT PRE-TESTING PIERSIDE CONCLUDED THAT THE SLOW
RESPONSE OF THE WEB CLIENT MADE IT INEFFECTIVE. THIS WAS THE CASE
EVEN WITH THE OTHER SHORE BASED UNITS USING THE WEB CLIENT. AIR
FORCE REPORTED EXTREMELY POOR PERFORMANCE OF THE WEB CLIENT AND
RECOMMENDED THAT IT MUST MATURE AND IMPROVE BEFORE BEING USED
OPERATIONALY. BASED ON RESULTS OBSERVED WITH BOTH OPTIONS, A THICK
CLIENT CHAT SOLUTION REMAINS THE BEST ALTERNTIVE FOR AFLOAT UNITS,
PARTICULARLY THOSE WITH LIMITED BANDWIDTH.
C. FEDERATION OF SERVERS: AS NAVY WILL OPERATE ANY CHAT ARCHITECTURE
IN A FEDERATED MANNER, IT WAS IMPORTANT TO DEMONSTRATE PRESENCE OF
USERS AND THEIR STATUS DURING THE ENTIRE DEMONSTRATON. TWO SERVERS
WERE FEDERATED TOGETHER VIA A SERVER TO SERVER CONNECTION.
D. SECURITY: THE AUTHENTICATION, TIME STAMP, AND PERSISTENT SESSION
FEATURES IN THE BUDDYSPACE CLIENT WERE USEFUL FROM AN INFORMATION
ASSURANCE PERSPECTIVE.
E. PLANNING FOR THE DEMONSTRATION BEGAN IN JUNE 2005, AS DID
SUBMISSION OF PAPERWORK NECESSARY TO LOAD THE CHAT CLIENT SOFTWARE
AFLOAT. THE LABYRINTH OF REQUIREMENTS, DIFFERENT ORGANIZATIONS, AND
APPROVALS TO LOAD AFLOAT WERE STAGGERING AND CONSUMED HUNDREDS OF
MAN-HOURS. THESE PROCESSES (SHIPMAIN, PPL, IATO/FLEET FIREWALL
APPROVAL ETC.) DO NOT INCLUDE MECHANISMS TO SUPPORT NON-PERMANENT
INSTALLATIONS FOR FLEET INITIATED BETA TESTING OR TECHNOLOGY
DEMONSTRATIONS. FINAL APPROVAL VIA THE SHIPMAIN PROCESS TO LOAD THE
CLIENT SHIPBOARD WAS NOT RECEIVED UNTIL THE DAY OF TESTING AND TWO
WEEKS BEFORE THE TEST DATE IT WAS DISCOVERED THAT FUNCTIONAL AREA
MANAGER APPROVAL SHOULD HAVE BEEN OBTAINED BUT WAS WAIVED.
COMCARSTRKGRU TWELVE WILL BE SENDING A SEPARATE MESSAGE TO DISCUSS
THESE ISSUES IN MORE DETAIL.
6. RECOMMENDATIONS:
A. NETWARCOM CONSIDER A POLICY MAKING XMPP THE APPROVED OPEN
STANDARD CHAT PROTOCOL FOR THE FLEET AND SHORE NAVY ON NIPRNET AND
SIPRNET. AUTHORIZE THE PERMANENT CHANGE IN FIREWALL AND PROXY
POLICIES TO ALLOW THE USE OF XMPP.
B. FORCENET ARCHITECTS DEVELOP AND SYSCOMS (SPAWAR, NAVSEA, NAVAIR)
IMPLEMENT A FEDERATED, XMPP COMPLIANT CHAT SOLUTION FOR THE FLEET
AND ELIMINATE NON-XMPP COMPLIANT CHAT PROGRAMS. EACH SHIP SHOULD
HAVE ITS OWN XMPP COMPLIANT CHAT SERVER TO BE ABLE TO CONTINE TO
OPERATE INTERNALLY DURING PERIODS WHEN DISCONNECTED FROM THE
SATELLITE LINK. REPLICATION AND SYNCHRONIZATION OF SERVER DATA

136

SHOULD BE CAREFULLY ENGINEERED.
C. NETWARCOM WORK WITH SYSCOMS (SPAWAR, NAVSEA AND NAVAIR) TO
COLLECTIVELY CONSIDER USING BUDDYSPACE (OPEN STANDARD, OPEN SOURCES
GOVERNMENT OFF THE SHELF SOFTWARE DEVELOPED BY JFCOM BASED ON THE
JABBER IM MODEL) AS THE SOFTWARE IS FREE AND COULD BE A COST SAVING
OVER EXISTING CHAT SOFTWARE IN THE FLEET WITH LICENSING FEES.
D. NETWARCOM LEVERAGE WORK DONE BY NAVAL POSTGRADUATE SCHOOL (DR.
DON BRUTZMAN) AND USJFCOM TO APPLY COMPRESSION ALGORITHMS TO XML
CHAT, WHICH WILL IMPROVE BANDWIDTH EFFICIENCIES AFLOAT. CURRENT
RESEARCH AND TESTING ACHIEVES COMPRESSION OF XML CHAT BY A RATIO OF
3:1, WITHOUT INCREASING LATENCY OF THE CHAT SESSION.
E. NAVY REPRESENTATIVES TO THE DISA NETWORK CENTRIC ENTERPRISE
SERVICES WORKING GROUP SUPPORT XMPP COMPLIANT, BANDWIDTH FRIENDLY
SOLUTIONS FOR THE FOLLOW ON TO DCTS.
F. CONTINUE TO TEST XMPP, AND OTHER OPEN STANDARDS COMPLIANT
COLLABORATIVE TOOLS, IN A JOINT/COALITION AND INTERAGENCY
ENVIRONMENT. RECENT EVENTS SUCH AS THE TSUNAMI RELIEF AND HURRICANES
KATRINA AND RITA DEMONSTRATED THE REQUIREMENT FOR THIS TYPE OF
COLLABORATION VIA UNCLASSIFIED CHANNELS. DO NOT RECOMMEND REQUIRING
PUBLIC KEY INFRASTRUCTURE (PKI) CERTIFICATION FOR CLIENTS TO CONNECT
AS ALLIED, COALITION, INTERAGENCY, AND NON-GOVERNMENTAL
ORGANIZATIONS WOULD BE EXCLUDED FROM COLLABORATION.
G. IAW REFS B AND C, CONSIDER XMPP CHAT AND ALL COLLABORATIVE
TOOLS AS ENTERPRISE SERVICES. ENSURE NAVY MARINE CORPS INTRANET
(NMCI) ADOPTS XMPP AS ITS INSTANT MESSAGING AND TEXT CHAT
SOLUTION AND THAT AN IMPROVED XMPP CLIENT BE INSTALLED ON ALL
NMCI WORKSTATIONS. THIS IS PARTICULARLY IMPORTANT FOR EMBARKABLE
STAFFS.
H. STREAMLINE PROCESSES TO SUPPORT TEMPORARY INSTALLATIONS AFLOAT
FOR CONTROLLED FLEET INITIATED EXPERIMENTATION.
7. COMCARSTRKGRU TWELVE STANDS READY TO ASSIST IN ANY WORKING
GROUPS TO FURTHER THIS EFFORT AND FUTURE TECHNOLOGY
DEMONSTRATIONS/TESTING OF OPEN STANDARDS CHAT SOLUTIONS AFLOAT.//

BT
NNNN

137

APPENDIX C. TW06 VIGNETTE PLAYBOOK

The JTC exercise with Trident Warrior 2006 was conducted by eight people over

a four day period. During the test period, user/actors were given a series of vignettes, in

which they were required to perform a set of planning functions with a specified set of

tools. This appendix includes the vignette descriptions provided to the users during the

experiment.

TAB 1

Maritime Interdiction using PowerPoint and email

Players:

BHR – DDG1 and SH-60B-1

NPS – DDG2 and SH-60B-2

NUWC – DDG3 and SH-60B-3

Initial Situation:

Reports of ships carrying material that could be used to make WMD have come in causing three DDGs to be deployed off

the coast of country X. Further intelligence shows that there are two more shipments of the suspected cargo scheduled to leave the

Port Angeles aboard two merchants named “Sneaky Catch” and “Wool Took.” The Port Angeles is a fairly busy port, at 48.2N

123.9W with merchant vessels of all types coming in and out via two traffic lanes. The three DDGs are to conduct Maritime

Interdiction Operations in the area outside the Port Angeles, identify the two ships and confiscate the questionable cargo. US ships

shall not encroach within 12 miles of the coastline. NUWC is OTC.

PowerPoint/email:

 Initial requirements:

 PowerPoint slide with chart and shipping lanes created

 Tracks of merchants injected into JTC.

All: share slides to show areas of responsibility and use chat for radio comms between DDGs. Tracks will be displayed on

JTC. JTC will only be used to display track information.

138

TAB 2

Maritime Interdiction using JTC and chat

Players:

 BHR – DDG1

NPS – DDG2

NUWC – DDG3

Initial Situation:

Reports of ships carrying material that could be used to make WMD have come in causing three DDGs to be deployed off

the coast of country X. Further intelligence shows that there are two more shipments of the suspected cargo scheduled to leave the

Port Angeles aboard two merchants named “Sneaky Catch” and “Wool Took.” The Port Angeles is a fairly busy port, at 48.2N

123.9W with merchant vessels of all types coming in and out via two traffic lanes. The three DDGs are to conduct Maritime

Interdiction Operations in the area outside the Port Angeles, identify the two ships and confiscate the questionable cargo. US ships

shall not encroach within 12 miles of the coastline. NUWC is OTC.

JTC:

Initial requirements:

2-3 Opareas to act as merchant shipping lanes

Many tracks for different merchants, two of which are the specific targets.

3 DDGs

Items expected to be generated:

Optasks for areas to be patrolled or searched

Optasks for ships to conduct maritime interdiction

Deliberate Planning:

All: Retrieve OPPLANS “North Shipping Lane” and “South Shipping Lane” from JC3IEDM

All: Each node develop a plan to patrol the given area for the cargo of interest. Begin each OPTASK name with the

originating node (Ex: “NUWC MIO zone 1”)

 BHR 0000-0800, NPS 0800-1600, NUWC 1600-2400.

NOTE: assigned times are to reduce number of current OPTASKs and clutter on the display and plans generated are

completely independent.

Observer at each node type *Report in the observer channel when your node completes planning. Save OPPLAN to

JC3IEDM when all nodes have completed planning.

All: Discuss which plan will be used to complete the objective.

Monitoring/Collaborative Planning:

Ships use JTC and chat to assign units to investigate the various merchants coming in and out of port by creating a small

task area around the track.

<Scenario ends when both suspect merchants have been found.>

139

TAB 3

Antisubmarine Warfare using PowerPoint and email

Players:

BHR – DDG1 and ASWC

NPS – DDG2 and SH-60B

NUWC - SSN

Initial Situation:

Intelligence reports indicate that a country X SS may be returning to the Port Angeles from a training exercise to the west

and may have hostile intent towards any US forces off its coast. To help with the search for the SS, a 688i class SSN has entered the

area and is the best sensor to detect and track the SS. The goal is to establish a track of the SS and determine its intentions prior to

engaging. No ship has authorization to fire upon the SS until its intentions have been determined to be hostile.

The ASWC is aboard DDG1 and is the OTC of the area. The DDGs each have the capability to fly SH-60Bs for the

purpose of ASW (up to a 150nm range with 1 hour on station). The SSN will remain at periscope depth unless it becomes necessary

to go deep to track the SS.

PowerPoint/email:

Initial requirements:

 PowerPoint slide with chart and shipping lanes created

Tracks will be displayed on JTC. JTC will only be used to display track information.

Deliberate Planning:

All: Each node independently set up search areas for the three DDGs, their SH-60Bs and the SSN. Then, email your slide

to the other two nodes.

Observer at each node type *Report in the observer channel when your node completes planning.

The SSN search area is also its assigned water space and will need to be formally changed in the event that the SSN needs

to be relocated to track the SS.

Once complete, discuss the results and establish the ordered plan.

<Inject track of SS>

DDG/SH-60B: detects enemy SS and begins to track. Shortly after gaining the SS, all the SH-60Bs will need to return to

their ships due to fuel.

Monitoring/Cooperative Planning:

ASWC: Task the SSN with tracking the SS, collaborate with SSN to reassign water, if needed. Establish an area that if the

SS enters, the SSN should check in for further guidance. The area is defined by 46.6N 125.8W

46.6N 127.7W

47.8W 127.7W

47.8N 125.8W

The purpose of this area is to indicate that the SS is showing hostile intent towards the group and needs to be sunk.

140

SSN: acknowledges the task.

When the SS enters the area:

SSN: check in with ASWC and request authorization to fire upon the SS.

ASWC/DDGs: evaluate need to clear the area of the SS to give SSN a clear shot. Authorize the SSN to shoot.

*Report

SSN: acknowledge order.

5 min. later:

SSN: reports that the SS is sunk. (Ignore track now)

ASWC: route all assets to new operating areas.

*Report

141

TAB 4

Antisubmarine Warfare using JTC and chat

Players:

BHR – DDG1 and ASWC

NPS – DDG2 and SH-60B

NUWC - SSN

Initial Situation:

Intelligence reports indicate that a country X SS may be returning to the Port Angeles from a training exercise to the west

and may have hostile intent towards any US forces off its coast. To help with the search for the SS, a 688i class SSN has entered the

area and is the best sensor to detect and track the SS. The goal is to establish a track of the SS and determine its intentions prior to

engaging. No ship has authorization to fire upon the SS until its intentions have been determined to be hostile.

The ASWC is aboard DDG1 and is the OTC of the area. The DDGs each have the capability to fly SH-60Bs for the

purpose of ASW (up to a 150nm range with 1 hour on station). The SSN will remain at periscope depth unless it becomes necessary

to go deep to track the SS.

JTC:

Objects/things needed:

Initial requirements

3 DDG

3 SH-60B

1 SSN

1 SS

Track inject of SS

Items expected to be generated:

Operating/Search Areas for DDGs, SH-60Bs, SSN

Area to indicate aggression

New Operating areas for SSN

Deliberate Planning:

All: Each node independently set up search areas for the three DDGs, their SH-60Bs and the SSN Begin each OPTASK

name with the originating node (Ex: “NUWC MIO zone 1”)

 BHR 0000-0800, NPS 0800-1600, NUWC 1600-2400.

NOTE: assigned times are to reduce number of current OPTASKs and clutter on the display and plans generated are

completely independent.

Observer at each node type *Report in the observer channel when your node completes planning. Save OPPLAN to

JC3IEDM when all nodes have completed planning.

142

The SSN search area is also its assigned water space and will need to be formally changed in the event that the SSN needs

to be relocated to track the SS.

Once complete, discuss the results and establish the ordered plan.

<Inject track of SS>

DDG/SH-60B: detects enemy SS and begins to track. Shortly after gaining the SS, all the SH-60Bs will need to return to

their ships due to fuel.

Monitoring/Cooperative Planning:

ASWC: Task the SSN with tracking the SS, collaborate with SSN to reassign water, if needed. Establish an area that if the

SS enters, the SSN should check in for further guidance. The area is defined by 46.6N 125.8W

46.6N 127.7W

47.8W 127.7W

47.8N 125.8W

The purpose of this area is to indicate that the SS is showing hostile intent towards the group and needs to be sunk.

SSN: acknowledges the task.

When the SS enters the area:

SSN: check in with ASWC and request authorization to fire upon the SS.

ASWC/DDGs: evaluate need to clear the area of the SS to give SSN a clear shot. Authorize the SSN to shoot.

*Report

SSN: acknowledge order.

5 min. later:

SSN: reports that the SS is sunk. (Ignore track now)

ASWC: route all assets to new operating areas.

*Report

143

TAB 5

Strike Warfare using PowerPoint and email

Players:

BHR – SSN

NPS – LAC and DDG1

NUWC - TSC and DDG2

Initial Situation:

Tensions are growing with country X. Country X has vowed defend its sovereignty with strikes against the US naval ships

off of its coast.

Coastal surveillance and Special Forces units have identified several key targets for tomahawk strikes. The TSC is aboard

DDG1, the LAC is aboard DDG2. DDG2 is OTC and the SSN shall remain at periscope depth for the duration of the strike.

NOTE: There is a Unified Force assembled on land with objectives to advance on key locations. However, not all units

have established communications.

PowerPoint/email:

Initial requirements:

 PowerPoint slide with chart and shipping lanes created

 List of friendly forces and neutral sites not to be flown over.

TSC: mark the slide with assigned areas of water for the strike. Send an email with assets (two DDGs and one SSN) and

their assigned targets using the INDIGO msg template.

 Target FPPWP

Target 1 47.4N 122.6W 48.4N 122.9W

Target 2 47.3N 122.4W 47.8N 123.6W

Target 3 47.7N 122.2W 48.3N 124.5W

Target 4 47.0N 122.9W 45.8N 123.9W

Target 5 47.5N 117.7W 48.9N 122.7W

Target 6 45.6N 122.5W 45.0N 124.0W

LAC: mark the slide with safety concerns/no fly areas, etc.

DDG1/DDG2/SSN: send slide overlays via email to the LAC including routes to FPPWP for evaluation.

DDG1, DDG2, and SSN: create intended strike plans for assigned targets.

LAC: evaluate the intended strike plans for safety, give go-ahead, if applicable.

TSC: give hot call.

<DDG2 has a problem with launching one of its assigned missions>

144

Monitoring/Collaborative Planning:

TSC: reassign the mission to one of the other units.

<Note time>

<Another blue unit checks in and shows up on chart as a friendly track in the area of some of the strikes>

ALL: Discuss possible courses of action for having the friendly unit in the area.

<Note time>

145

TAB 6

Strike Warfare using JTC and chat

Players:

BHR – SSN

NPS – LAC and DDG1

NUWC - TSC and DDG2

Initial Situation:

Tensions are growing with country X. Country X has vowed defend its sovereignty with strikes against the US naval ships

off of its coast.

Coastal surveillance and Special Forces units have identified several key targets for tomahawk strikes. The TSC is aboard

DDG1, the LAC is aboard DDG2. DDG2 is OTC and the SSN shall remain at periscope depth for the duration of the strike.

NOTE: There is a Unified Force assembled on land with objectives to advance on key locations. However, not all units

have established communications.

JTC:

Objects/things needed:

Initial requirements

 List of friendly forces and neutral sites not to be flown over.

1 LHD

1 LPD

1 LSD

3 DDGs

Items expected to be generated:

Optask for the spot of water for each ship to be in during the strike

Optasks for no-fly and separation zones based on the water assignments

Optasks for different units to strike different targets.

Points for target and 1st preplanned waypoint for each target/mission

Tracks for each mission

Deliberate Planning:

TSC: assign areas of water for the strikes. Publish targets and assign to assets (two DDGs and one SSN).

146

 Target FPPWP

Target 1 47.4N 122.6W 48.4N 122.9W

Target 2 47.3N 122.4W 47.8N 123.6W

Target 3 47.7N 122.2W 48.3N 124.5W

Target 4 47.0N 122.9W 45.8N 123.9W

Target 5 47.5N 117.7W 48.9N 122.7W

Target 6 45.6N 122.5W 45.0N 124.0W

LAC: Using the assigned water space, publish the safety picture IAW the included LAC intentions message.

*Report

DDG1, DDG2, and SSN: create intended strike plans for assigned targets.

*Report

LAC: evaluate the intended strike plans for safety, give go-ahead, if applicable.

TSC: give hot call.

<DDG2 has a problem with launching one of its assigned missions>

Monitoring/Collaborative Planning:

TSC: reassign the mission to one of the other units.

<Another blue unit checks in and shows up on chart as a friendly track in the area of some of the strikes>

ALL: Discuss possible courses of action for having the friendly unit in the area.

*Report

147

TAB 7

Amphibious Warfare/Minefield Avoidance using PowerPoint and email

Players:

BHR - MWC/DDG1

NPS - DDG2

NUWC - SSN

Initial situation:

The ESG, consisting of 3 DDGs, 1 LHD, 1 LPD, 1 LSD and 1 SSN, is now to conduct amphibious warfare, landing near

port Y in order to support the Unified Force that is already assembled in the area.

The landing area is defined by: 47.00N 123.71W

 47.00N 123.89W

 46.90N 123.87W

 46.90N 123.70W

However, one of the DDGs spotted what could have been mine-laying activity near the intended landing point. There are

no other feasible places to land the force in the area though, so the possible minefield needs to be found and plotted in order to make a

safe landing.

The suspected mined area roughly covers the area defined by:

 46.65N 124.50W

 46.65N 124.10W

 47.10N 124.20W

 47.10N 124.50W

An SSN is deployed with a UUV on board that could investigate the suspected mined region. The goal is to chart any

found mines and plan a q-route for surface ships to go through in order to support amphibious operations.

The UUV’s mission includes two rendezvous points, one relatively close to the mission area (point A at 46.70N 124.60W)

and one that is well clear of the area (point B at 46.2N 124.9W). The idea being that in optimal conditions, the submarine will be able

to relay any discovered mines back to the fleet faster by using point A.

Submarine will remain at periscope depth outside of visual range of sortie area and rendezvous points until time to recover

UUV.

PowerPoint/email:

Initial requirements:

 PowerPoint slide for Loitering Area

 PowerPoint slide for Harbor Approach

Deliberate Planning:

All: Create water space plan for all ships in the area to loiter before the amphibious strike

148

Observer at each node type *Report in the observer channel when your node completes planning. Save OPPLAN to

JC3IEDM when all nodes have completed planning.

MWC tells the submarine where to put the UUV mission using Harbor Chart.

SSN acknowledges data.

*Report

SSN then transmits the data to UUV.

UUV (observer at NUWC) acknowledges data input.

UUV is deployed

SSN reports UUV deployed.

Monitoring/Adaptive Planning:

5 min After the UUV is deployed, a surface ship in the area notices that a large merchant is loitering in the vicinity of

rendezvous point A. (Monitor hands this information to DDG2)

DDG2 relays the information to the submarine via radio (chat).

<Inject solution on merchant onto chart/map of having zero speed, close to point A>

SSN orders UUV to rendezvous at point B via ACOMMS.

UUV (observer at NUWC) acknowledges change

*Report

Rendezvous 3 min later.

After the rendezvous, the data is uploaded to the SSN.

SSN relays the mine data to the fleet via slide, acknowledging the ability for total accuracy is not possible with the given

PowerPoint Slide.

Mined Area1: 46.73N 124.10W Mined Area2: 46.89N 124.18W

 46.77N 124.80W 47.00N 124.26W

 46.89N 124.13W 47.02N 124.18W

 46.90N 124.06W 46.91N 124.13W

Mined Area3: 46.84N 124.23W Mined Area4: 46.77N 124.22W

 46.89N 124.25W 46.79N 124.27W

 46.87N 124.17W 46.83N 124.19W

Mined Area5: 46.92N 124.23W

 46.93N 124.31W

 46.98N 124.28W

149

*Report

Collaborative Planning:

DDG1 and DDG2: collaboratively plan a route through the minefield.

Scenario ends when a workable solution has been reached to get the amphibious force to the landing area.

*Report

150

TAB 8

Amphibious Warfare/Minefield Avoidance using JTC and chat

Players:

BHR - MWC/DDG1

NPS - DDG2

NUWC - SSN

Initial situation:

The ESG, consisting of 3 DDGs, 1 LHD, 1 LPD, 1 LSD and 1 SSN, is now to conduct amphibious warfare, landing near

port Y in order to support the Unified Force that is already assembled in the area.

The landing area is defined by: 47.00N 123.71W

 47.00N 123.89W

 46.90N 123.87W

 46.90N 123.70W

However, one of the DDGs spotted what could have been mine-laying activity near the intended landing point. There are

no other feasible places to land the force in the area though, so the possible minefield needs to be found and plotted in order to make a

safe landing.

The suspected mined area roughly covers the area defined by:

 46.65N 124.50W

 46.65N 124.10W

 47.10N 124.20W

 47.10N 124.50W

An SSN is deployed with a UUV on board that could investigate the suspected mined region. The goal is to chart any

found mines and plan a q-route for surface ships to go through in order to support amphibious operations.

The UUV’s mission includes two rendezvous points, one relatively close to the mission area (point A at 46.70N 124.60W)

and one that is well clear of the area (point B at 46.2N 124.9W). The idea being that in optimal conditions, the submarine will be able

to relay any discovered mines back to the fleet faster by using point A.

Submarine will remain at periscope depth outside of visual range of sortie area and rendezvous points until time to recover

UUV.

JTC:

Objects/things needed:

Initial requirements

1 SSN

2 DDG (MWC and another) for collaborative planning of Q-route

2 Rendezvous points

Track for merchant to be loitering in the area of the first rendezvous point

151

Items expected to be generated:

Mine laying region

Operating area for UUV

New operating area for SSN

Ability to lay out a q-route (operating area)

Deliberate Planning:

All: Create water space plan for all ships in the area to loiter before the amphibious strike. Begin each OPTASK name with

the originating node (Ex: “NUWC MIO zone 1”)

 BHR 0000-0800, NPS 0800-1600, NUWC 1600-2400.

NOTE: assigned times are to reduce number of current OPTASKs and clutter on the display and plans generated are

completely independent.

Observer at each node type *Report in the observer channel when your node completes planning. Save OPPLAN to

JC3IEDM when all nodes have completed planning.

MWC tells the submarine where to put the UUV mission using chart/map.

SSN acknowledges data.

*Report

SSN then transmits the data to UUV.

UUV (observer at NUWC) acknowledges data input.

UUV is deployed

SSN reports UUV deployed.

Monitoring/Adaptive Planning:

5 min After the UUV is deployed, a surface ship in the area notices that a large merchant is loitering in the vicinity of

rendezvous point A. (Monitor hands this information to DDG2)

DDG2 relays the information to the submarine via JTC.

<Inject solution on merchant onto chart/map of having zero speed, close to point A>

SSN orders UUV to rendezvous at point B via ACOMMS.

UUV (observer at NUWC) acknowledges change

*Report

Rendezvous 3 min later.

After the rendezvous, the data is uploaded to the SSN.

SSN relays the mine data to the fleet via JTC both with chat and a data exchange. This information shows up on the

Chart/Map as mined areas. SSN will create multiple OPTASKs illustrate the minefield.

Mined Area1: 46.73N 124.10W Mined Area2: 46.89N 124.18W

 46.77N 124.80W 47.00N 124.26W

152

 46.89N 124.13W 47.02N 124.18W

 46.90N 124.06W 46.91N 124.13W

Mined Area3: 46.84N 124.23W Mined Area4: 46.77N 124.22W

 46.89N 124.25W 46.79N 124.27W

 46.87N 124.17W 46.83N 124.19W

Mined Area5: 46.92N 124.23W

 46.93N 124.31W

 46.98N 124.28W

*Report

Collaborative Planning:

DDG1 and DDG2: collaboratively plan a route through the minefield.

Scenario ends when a workable solution has been reached to get the amphibious force to the landing area.

*Report

153

APPENDIX D. DIS-XML SOURCE CODE

A. XMPPRECEIVER.JAVA
The xmppReceiver.java code is listed below.

 1 import java.io.*;

 2 import java.net.*;

 3 import java.util.*;

 4

 5 import org.jivesoftware.smack.*;

 6 import org.jivesoftware.smack.packet.*;

 7 import org.jivesoftware.smack.filter.*;

 8 import org.jivesoftware.smackx.muc.*;

 9

 10 import org.web3d.xmsf.disutil.*;

 11 import org.web3d.xmsf.dis.*;

 12

 13

 14 /*

 15 * XmppReceiver.java

 16 *

 17 * Created on December 7, 2005, 3:57 PM

 18 *

 19 *

 20 */

 21

 22 /**

 23 *

 24 * @author Adrian Armold

 25 */

 26

 27

 28 public class XmppReceiver extends Object implements Runnable {

 29

 30 /** Default server to authenticate to */

 31 public static final String DEFAULT_SERVER = "surfaris.cs.nps.navy.mil";

 32

 33 /** Default chat server */

 34 public static final String DEFAULT_MUC_SERVER =

"conference.surfaris.cs.nps.navy.mil";

 35

 36 /** Default room for testing */

 37 public static final String DEFAULT_ROOM = "disxml";

 38

 39 public static final String IADDRESS = "239.1.2.3";

 40 private InetAddress multicastAddress = null;

154

 41

 42 public static final int PORT = 62040;

 43

 44 public MulticastSocket socket = null;

 45

 46 /** User name to authenticate with */

 47 String username;

 48

 49 /** Password we use to authenticate to the server */

 50 String password;

 51

 52 /** The server we authenticate to */

 53 String authServer;

 54

 55 /** The muc server we join */

 56 String mucServer;

 57

 58 /** The muc room on the muc server we joing */

 59 String mucRoom;

 60

 61 /** Connection to the XMPP server */

 62 XMPPConnection connection;

 63

 64 /** Multiuser chat room */

 65 MultiUserChat disxml;

 66

 67

 68

 69 /** Creates a new instance of XmppReceiver */

 70 public XmppReceiver (String pUsername,

 71 String pPassword,

 72 String pAuthServer,

 73 String pMucServer,

 74 String pMucRoom)

 75 {

 76 username = pUsername;

 77 password = pPassword;

 78 authServer = pAuthServer;

 79 mucServer = pMucServer;

 80 mucRoom = pMucRoom;

 81 }

 82

 83 /**

 84 * Establishes a connection to the XMPP server and joins the specified chat room.

 85 */

 86 public void login()

 87 {

 88 _

155

 89 _ String mucJid = mucRoom + "@" + mucServer;

 90 _ try

 91 {

 92 // Authenticate to our local XMPP server

 93 connection = new XMPPConnection(authServer);

 94 connection.login(username, password);

 95

 96 // Establish a connection to the MUC room

 97

 98 disxml = new MultiUserChat(connection, mucJid);

 99 disxml.join(username);

100

101 multicastAddress = InetAddress.getByName(IADDRESS);

102 socket = new MulticastSocket(PORT);

103 socket.joinGroup(multicastAddress);

104 }

105 catch(Exception e)

106 {

107 System.out.println(e);

108 }

109

110 // set up a packet filter to listen for only the things we want

111 PacketFilter filter = new AndFilter(new PacketTypeFilter(Message.class),

112 new FromContainsFilter(mucJid));

113

114 // Next, create a packet listener. We use an anonymous inner class for brevity.

115 PacketListener myListener = new PacketListener() {

116

117 public void processPacket(Packet ppacket)

118 {

119 if (ppacket.getProperty("disXML") == null)

120 {

121 return;

122 }

123

124 String xmlPdu;

125 xmlPdu = (String) ppacket.getProperty("disXML");

126

127 DisUnmarshaller unmarshaller = new DisUnmarshaller();

128 byte[] xmlToJavaBuffer = xmlPdu.getBytes();

129

130 ByteArrayInputStream bais = new ByteArrayInputStream(xmlToJavaBuffer);

131 List pduList = new ArrayList();

132 try

133 {

134 pduList = unmarshaller.unmarshallFromXML(bais);

135 }

136 catch(Exception e)

156

137 {

138 System.out.println(e);

139 }

140

141 /* This needs stream connection information to drop the binary DIS on the wire.

142 * Taken from WriterExample.java authored by Don McGregor */

143

144 Iterator pduIterator = pduList.iterator();

145 while (pduIterator.hasNext())

146 {

147

148 EntityStatePdu pdu = (EntityStatePdu)pduIterator.next();

149

150 try

151 {

152 DisMarshaller disMarshaller; // Puts Java objects into binary DIS format

153 DatagramPacket packet; // The UDP/Multicast packet we will send

154 byte javaToDisBuffer[]; // Holds binary format DIS packet

155

156 disMarshaller = new DisMarshaller();

157

158 // disMarshaller puts the espdu into the correct binary format

159 javaToDisBuffer = disMarshaller.marshallPduToSend((EntityStatePdu)pdu);

160

161 // And create a UDP packet to the default destination

162 packet = new DatagramPacket(javaToDisBuffer, javaToDisBuffer.length,

multicastAddress, PORT);

163

164 // And finally send it.

165 socket.send(packet);

166 }

167 catch(Exception e) // Catch-all exception

168 {

169 System.out.println(e);

170 }

171 } // End while loop

172

173 try

174 {

175 Message message = disxml.createMessage();

176 message.setBody("A DISXML message has been received and processed.");

177 disxml.sendMessage(message);

178 } catch(Exception e)

179 {

180 System.out.println(e);

181 }

182

183

157

184 } // end process packet

185

186 };// end PacketListener anonymous class

187 connection.addPacketListener(myListener,filter);

188

189 }

190

191

192 public void run()

193 {

194 while (true) {

195 try {

196 Thread.sleep(100);

197 } catch (InterruptedException ie) {

198 }

199

200

201 }

202 }

203

204

205 /**

206 * @param args the command line arguments

207 */

208 public static void main(String[] args) {

209 XmppReceiver receiver = new XmppReceiver("snerd1", "xmpp",

210 DEFAULT_SERVER,

211 DEFAULT_MUC_SERVER,

212 DEFAULT_ROOM);

213 receiver.login();

214 receiver.run();

215 }

216

217 }

B. XMPPSENDER.JAVA
The xmppSender.java code is listed below.

 2 import java.io.*;

 3 import java.util.*;

 4

 5 import org.jivesoftware.smack.*;

 6 import org.jivesoftware.smack.packet.*;

 7 import org.jivesoftware.smack.filter.*;

 8 import org.jivesoftware.smackx.muc.*;

 9

 10 import org.web3d.xmsf.disutil.*;

158

 11 import org.web3d.xmsf.dis.*;

 12

 13 /**

 14 * A Runnable (threadable) objet that sends traffic to an XMPP multi-user chat

 15 * room, and receives traffic as well. Note that there are two techniques for

 16 * sending messages, one with a property attachment and one in a "standard" way

 17 * that will show up in most XMPP client chat rooms.

 18 *

 19 * @author DMcG

 20 */

 21 public class XMPPSender extends Object implements Runnable

 22 {

 23 /** Default server to authenticate to */

 24 public static final String DEFAULT_SERVER = "surfaris.cs.nps.navy.mil";

 25

 26 /** Default chat server */

 27 public static final String DEFAULT_MUC_SERVER =

"conference.surfaris.cs.nps.navy.mil";

 28

 29 /** Default room for testing */

 30 public static final String DEFAULT_ROOM = "disxml";

 31

 32 /** User name to authenticate with */

 33 String sender;

 34

 35 /** Password we use to authenticate to the server */

 36 String password;

 37

 38 /** The server we authenticate to */

 39 String authServer;

 40

 41 /** The muc server we join */

 42 String mucServer;

 43

 44 /** The muc room on the muc server we joing */

 45 String mucRoom;

 46

 47 /** Connection to the XMPP server */

 48 XMPPConnection connection;

 49

 50 /** Multiuser chat room */

 51 MultiUserChat disxml;

 52

 53 /** Frequency of messages */

 54 long frequency;

 55

 56 /**

 57 * Constructor

159

 58 */

 59 public XMPPSender(String pUsername,

 60 String pPassword,

 61 String pAuthServer,

 62 String pMucServer,

 63 String pMucRoom,

 64 long pFrequency)

 65 {

 66 sender = pUsername;

 67 password = pPassword;

 68 authServer = pAuthServer;

 69 mucServer = pMucServer;

 70 mucRoom = pMucRoom;

 71 frequency = pFrequency;

 72 }

 73

 74 /**

 75 * Establishes a connection to the XMPP server and joins the specified chat room.

 76 */

 77 public void login()

 78 {

 79 try

 80 {

 81 // Authenticate to our local XMPP server

 82 connection = new XMPPConnection(authServer);

 83 connection.login(sender, password);

 84

 85 // Establish a connection to the MUC room

 86 String mucJid = mucRoom + "@" + mucServer;

 87 disxml = new MultiUserChat(connection, mucJid);

 88 disxml.join(sender);

 89

 90 }

 91 catch(Exception e)

 92 {

 93 System.out.println(e);

 94 }

 95 }

 96

 97 public void run()

 98 {

 99

100 try

101 {

102

103 System.out.println("Beginning to send messages");

104

105 PduFactory pduFactory = new PduFactory();

160

106 EntityStatePduType espdu;

107

108 // Create an ESPDU to send

109 espdu = pduFactory.getEntityStatePdu();

110

111 // Set the entity ID, the unique identifer of an entity in the world.

112 EntityIDType id = espdu.getEntityID(); // Globally unique identifier

for the entity

113 id.setSite(0);

114 id.setApplication(1);

115 id.setEntity(2);

116

117 // "default" length of an entity state PDU with no articulation

parameters--144 bytes

118 espdu.getPduHeader().setLength(144);

119

120 while(true)

121 {

122 for(int idx = 0; idx < 100; idx++)

123 {

124 // Modify the position of DIS packet here...

125 Vector3Double location = espdu.getEntityLocation();

126

127 // update location

128 location.setX((double)idx);

129

130

131 // Marshall out the packet to XML

132 DisMarshaller marshaller = new DisMarshaller();

133 ByteArrayOutputStream baos = new ByteArrayOutputStream();

134

135 ArrayList pduList = new ArrayList();

136 pduList.add(espdu);

137 marshaller.marshallPdus(pduList, baos);

138 String xmlPduString = baos.toString();

139

140 // Create an XMPP message and attach the DIS-XML xml to it

141 Message message = disxml.createMessage();

142 message.setProperty("disXML", xmlPduString);

143 message.setBody("A DISXML message from the sender.");

144

145

146 // The properties method--send the message

147 disxml.sendMessage(message);

148

149 // Sleep for a random amount of time, then send another.

150 double ran = Math.random();

151 long sleepTime = (long)(ran * frequency);

161

152 Thread.sleep(sleepTime);

153

154 }

155 }

156

157 // connection.close();

158 }

159

160 catch(Exception e)

161 {

162 System.out.println(e);

163 }

164 }

165

166 /**

167 * entry point

168 */

169 public static void main(String args[])

170 {

171

172 XMPPSender sender = new XMPPSender("snerd0", "xmpp",

173 DEFAULT_SERVER,

174 DEFAULT_MUC_SERVER,

175 DEFAULT_ROOM,

176 1000);

177 sender.login();

178 sender.run();

179

180 }

181 }

173 try

174 {

175 Message message = disxml.createMessage();

176 message.setBody("A DISXML message has been received and processed.");

177 disxml.sendMessage(message);

178 } catch(Exception e)

179 {

180 System.out.println(e);

181 }

162

THIS PAGE INTENTIONALLY LEFT BLANK

163

APPENDIX E. XTC CODEBASE

The XTC code base is located at the NPS sourceforge site under XMSF.

It can be downloaded at: http://xmsf.cvs.sourceforge.net/xmsf

164

THIS PAGE INTENTIONALLY LEFT BLANK

165

LIST OF REFERENCES

Barrett, D. 2006, Carrier Strike Group Twelve Sponsors Fleet/Joint/Coalition Testing of
Open Standards Chat Tool. [Electronic version]. CHIPS - the Department of the Navy
Information Technology Magazine, (January-March 2006). Retrieved 01 September
2006.

Bos, B. (2000). XML in 10 points. Retrieved 18 July 2006 from
http://www.w3.org/XML/1999/XML-in-10-points.

Bouret, R. (1999). XML and Databases. Retrieved 16 August 2006 from
http://www.rpbourret.com/xml/XMLAndDatabases.htm#query.

Brutzman, D., McGregor, D., DeVos, D. A., Lee, C. S., Amsden, S., and Blais, C., et al.
(2004). XML-Based Tactical Chat (XTC): Requirements, Capabilities and Preliminary
Progress (Technical Report No. NPS-MV-2004-001). Monterey, California: Naval
Postgraduate School.

Brutzman, D. (2003). Web-Based 3D Graphics Rendering of Dynamic Deformation
Structures in Large-Scale Distributed Simulations. (Technical Report No. NPS-MV-
2003-01). Monterey, California: Naval Postgraduate School.

Burns, T. (2006). Coalition Secure Management and Operations System (COSMOS)
ACTD. Defense Information Systems Agency. Retrieved 20 September 2006 from
http://www.les.disa.mil/c/extranet/home?e_l_id=32..

Chaum, E. (2006a). JC3IEDM-Enhanced Tactical Collaboration (JTC). Unpublished
manuscript. Retrieved 07 September 2006.

Chaum, E. (2006b). JC3IEDM-Enhanced Tactical Collaboration (JTC) Quick-Look
Report. Unpublished manuscript. Retrieved 07 September 2006.

Cokus, M., and Pericas-Geertsen, S. (2005). XML Binary Characterization Use Cases
W3C Working Group Note. 31 March 2005 W3C. Retrieved 16 August 2006.

Eovito, B. A. (2006). An Assessment of Joint Chat Requirements from Current Usage
Patterns. (Master's Thesis, Naval Postgraduate School).

Fletcher, B., Lirrette, K., and Bishop, M. (2006). Cross Domain Collaborative
Information Environment (CDCIE) Collaboration Tool Overview. Unpublished
manuscript. Retrieved 26 August 2006.

Goldman, O., Berjon, R., and Bournez, C. (2005). Charter of the Efficient XML
Interchange Working Group. W3C. Retrieved 16 August 2006.

166

Gospodnetic, O., Hatcher, E. (2005). Lucene in Action. Manning Publications Company,
Greenwich, Connecticut.

Hildebrand, J. (2003). Nine IM Accounts and Counting. [Electronic version]. Queue, 1(8),
44-50.

Hildebrand, J., and Saint-Andre, P. (2004). JEP-0080: User Geolocation. Jabber
Software Foundation. Retrieved 23 August 2006.

IETF, Network Working Group. (2004). Extensible Messaging and Presence Protocol
(XMPP):Core. Retrieved 18 July 2006 from
http://www.ietf.org/rfc/rfc3920.txt?number=3920.

Jive Software. (2006). Smack Documentation. Retrieved 29 August 2006, 2006 from
http://www.jivesoftware.org/builds/smack/docs/latest/documentation/index.html.

Kalt, C. (2000a). Internet Relay Chat: Channel Management (RFC 2811). [Electronic
version]. IETF, RFC 2811. Retrieved 18 September 2006.

Kalt, C. (2000b). Internet Relay Chat: Client Protocol (RFC 2812). [Electronic version].
IETF RF, 2812. Retrieved 18 September 2006.

Kalt, C. (2000c). Internet Relay Chat: Server Protocol (RFC 2813). [Electronic version].
IETF RFC 2813. Retrieved 18 September 2006.

Kalt, C. (2000d). RFC 2810 Internet Relay Chat. [Electronic version]. Architecture,
Retrieved 18 September 2006.

Kell, J. (1987). Relay: Past, Present, and Future. Paper presented at the Spring NETCON
1987, New Orleans. Retrieved 20 July 2006 from
http://web.inter.nl.net/users/fred/relay/relhis.html.

McGregor, D., Brutzman, D., Armold, A., and Blais, C. (2006). DIS-XML: Moving DIS
to Open Data Exchange Standards. SISO, 2006 Spring Simulation Interoperability
Workshop, Huntsville, Alabama.

Millard, P., Saint-Andre, P., and Meijer, R. (2005). JEP-0060: Publish-Subscribe. Jabber
Software Foundation. Retrieved 23 August 2006.

Molitoris, J.J. (2003). Use of COTS XML and Web Technology for Current and Future
C2 Systems. Paper presented at Military Communications Conference, 2003, Boston,
Massachusetts.

Multilateral Interoperability Programme. (2006). Multilateral Interoperability
Programme: Background and History. Retrieved 28 July 2006 from http://www.mip-
site.org/020_Public_History.htm.

167

Oikarinen, J. (2005). IRC History. Retrieved 20 July 2006 from
http://www.irc.org/history_docs/jarkko.html.

Oikarinen, J., and Reed, D. (1993). Internet Relay Chat (IRC) Protocol. [Electronic
version]. IETF RFC 1459. Retrieved 18 September 2006.

Paterson, I., Saint-Andre, P., and Smith, D. (2006). JEP-0116: Encrypted Sessions.
Jabber Software Foundation. Retrieved 23 August 2006.

Pericas-Geertsen, S. (2003). Binary Interchange of XML Infosets. Paper presented at the
XML Conference and Exposition 2003 - Proceedings, Philadelphia, PA. Retrieved 16
August 2006.

Saint-Andre, P. (2005). JEP-0045: Multi-User Chat. Jabber Software Foundation.
Retrieved 21 August 2006.

Saint-Andre, P. (2004a). Extensible Messaging and Presence Protocol (XMPP): Core.
Retrieved 21 August 2006.

Saint-Andre, P. (2004b). RFC 3921: Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence. IETF RFC 3921. Retrieved 21 August 2006.

Saint-Andre, P., and Meijer, R. (2005). Streaming XML with Jabber/XMPP. Internet
Computing, IEEE, 9(5), 82-89.

Sanders, T. (2006). Yahoo and MSN Marry IM Services. Retrieved 20 July 2006 from
http://www.vnunet.com/vnunet/news/2143773/yahoo-msn-marry-messengers.

Smith, D., Saint-Andre, P., and Paterson, I. (2005). JEP-0124: HTTP Binding. Jabber
Software Foundation. Retrieved 1 September 2006.

USJFCOM. (2003). Deployable Joint Command and Control System (DJC2 Baseline
Requirements Document (BRD) Version 1.0 . Suffolk, VA: USJFCOM.

W3C Press Release (1997), W3C Issues XML1.0 as a Proposed Recommendation. W3C.
Retrieved 20 July 2006.

Wikipedia.org. (2006a). AOL Instant Messenger. Retrieved 20 July 2006 from
http://en.wikipedia.org/wiki/AOL_Instant_Messenger.

Wikipedia.org. (2006b). Instant Messaging. Retrieved 11 September 2006 from
http://en.wikipedia.org/wiki/Instant_messaging.

Wikipedia.org. (2006c). Talk (Unix). Retrieved 11 September 2006 from
http://en.wikipedia.org/wiki/Unix_talk.

168

Woods, R. (2005). Trident Warrior Experiment Series. San Diego, CA: SPAWAR.
Retrieved 18 September 2006, from
www.enterprise.spawar.navy.mil/getfile.cfm?contentId=400&type=C.

Web3d.org. (2006). X3D and Related Specifications. Retrieved 20 September 2006 from
http://www.web3d.org/x3d/specifications/#x3d-spec.

169

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Dr. Don Brutzman
 Naval Postgraduate School
 Monterey, California

5. Don McGregor

Naval Postgraduate School
Monterey, California

6. Terry Norbraten

Naval Postgraduate School
Monterey, California

7. Dr. Peter Denning
 Naval Postgraduate School

Monterey, California

8. Boyd Fletcher

United States Joint Forces Command J9
Suffolk, Virginia

9. Monica Shephard

United States Joint Forces Command J9
Suffolk, Virginia

10. RADM James Winnefeld

United States Joint Forces Command J9
Suffolk, Virginia

11. Erik Chaum

Naval Undersea Warfare Center
Newport, Rhode Island

170

12. Fred Burkley
Naval Undersea Warfare Center
Newport, Rhode Island

13. Dr. LorRaine Duffy
Space and Naval Warfare Systems Center
San Diego, California

14. Dr. Shelley Gallup
Naval Postgraduate School
Monterey, California

15. Captain Adrian D. Armold
 United States Marine Corps

Seaside, California

16. Dr. Mel Armold
Alamosa, Colorado

17. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

18. Director, Marine Corps Research Center, MCCDC, Code C40RC

Quantico, Virginia

19. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

20. Deputy Commander, C4I Integration (SG 06)
Marine Corps Systems Command
Quantico, Virginia

21. Director, Systems Engineering and Integration (SG 061)
Marine Corps Systems Command
Quantico, Virginia

22. Director, Information Assurance and Joint Requirements (SG 062)
Marine Corps Systems Command
Quantico, Virginia

23. Operations Manager, Systems Engineering and Integration
Marine Corps Systems Command
Quantico, Virginia

171

24. Technical Director
Marine Corps Technical Systems Support Activity
Camp Pendleton, California

25. Dianne Boettcher
SRA International
Fairfax, Virginia

26. USW-XML Mailing List

Monterey, California

27. Captain Richard Lee USN Retired
Office of the Secretary of Defense
Washington, District of Columbia

28. RADML Bill Landay III USN
 Office of Naval Research

Arlington, Virginia

29. Captain James Neushul
First Light Armored Reconnaissance Battalion
Camp Pendleton, California

30. Dr. Dan Boger
Naval Postgraduate School
Monterey, California

31. Tom Burns
 Defense Information Systems Agency

Arlington, Virginia

32. Dr. Yvonne Masakowski

Naval Undersea Warfare Center
Newport, Rhode Island

33. Pierre Corriveau
Naval Undersea Warfare Center
Newport, Rhode Island

34. Captain David G. Yoshihara

U.S Pacific Fleet
Pearl Harbor, Hawaii

35. Captain Scott Miller USN
Space and Naval Warfare Systems Center
San Diego, California

172

36. USW- Announce Mailing List
Naval Postgraduate School
Monterey, California

37. XMSF-Announce Mailing List
Naval Postgraduate School
Monterey, California

38. XTC Mailing List
Naval Postgraduate School
Monterey, California

39. F.P. Gustavson
Kailua, Hawaii

40. Commander Danelle Barrett USN
 Pacific Command

Camp Smith, Hawaii

41. Chris Gunderson
W2COG
Reston, Virginia

42. Eugene Hackney
U.S. Pacific Fleet
Pearl Harbor, Hawaii

43. Richard Coupland
Naval Sea Systems Command
Newport, Rhode Island

44. Mark Kenny
Submarine Group Two
Groton, Connecticut

