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1 Introduction 

The aim of signals intelligence (SIGINT) is to gather information about electronic emitters in the 

battlefield.  The methodology to gather information includes such steps as signal detection, 

signal identification and signal localization.  Each of these steps is a challenge for both 

communications intelligence (COMINT) and electronic intelligence (ELINT) systems.  

However, for ELINT receivers, the challenge can be even more challenging in some respects 

because the signal bandwidths may be much larger.  If the ELINT system is to process signals 

with digital signal processing equipment, it must accommodate very large data rates and a 

changing signal environment.  With today’s computing technology, an all-digital approach to a 

real-time ELINT system is not yet feasible.  To try and address this need, a look at new DARPA 

technologies on the horizon is warranted.   

 

The goal of the DARPA Polymorphous Computing Architecture (PCA) program as stated by 

Robert Graybill is to  

Develop the computing foundation for agile systems by establishing computing 

systems (chips, networks, software) that will morph to changing missions, sensor 

configurations, and operational constraints during a mission or over the life of 

the platform. [2] 

The PCA program included a number of teams developing computer architectures.  Two of the 

architectures were evaluated for use with a SIGINT application (Tera-op Reliable Intelligently 

Adaptive Processing System (TRIPS) [9] and Morphable Networked Architecture (MONARCH) 

[7]).  After evaluations with both teams, the architecture that was most suitable for this 

application was the MONARCH architecture.   

 

The SIGINT application chosen to exercise the PCA architecture was wideband direction finding 

due to its computational complexity and rich algorithm diversity.  The wideband direction 
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finding application is an important part of the time critical targeting process as discussed in [1].  

In this report, a discussion of the wideband direction finding algorithm developed by Wang and 

Kaveh is discussed and how it was modified for a pipelined architecture [5].  The resulting 

algorithm is then mapped onto the MONARCH architecture to determine the hardware 

requirements. 

2 Wideband Direction Finding Flow 

Many modern direction finding (DF) algorithms such as Schmidt’s ubiquitous MUSIC algorithm 

rely upon an underlying narrowband signal model [8].  In this case, narrowband means that the 

signal bandwidth is less than one percent of the carrier frequency; wideband includes signals 

with the remaining relative bandwidths greater than one percent.  If the data received is 

wideband in nature and the same narrowband direction finding algorithm is used, an error in the 

angle of arrival estimate is incurred.  Hence, a wideband DF algorithm is needed to compensate 

for this model inadequacy.  Among the various wideband DF techniques available, the coherent 

signal subspace method (CSM) approach developed by Wang and Kaveh was chosen as the most 

appropriate.   The CSM method in effect transforms the wideband data into narrowband data 

such that existing narrowband DF algorithms may then be used.  This transformation is 

manifested in the form of transformation matrices applied to channelized correlation matrices.  

The technique is quite effective, but the drawback of the technique is a massive amount of 

computation as the transformations are rich in matrix computations and singular value 

decompositions.   

 

The Wang and Kaveh CSM technique is given here for a pipelined implementation.  The 

mathematical derivations are not given herein, but can be found in the references [5].  The digital 

data received at the processing system is assumed to originate from an M channel 

antenna/receiver system.  The pth emitter signal originates in a far field as shown in Figure 1 and 

impinges upon a linear array of antennas.  (The array does not have to be linear however.)  The 
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output of the antenna/receiver system is an array of digital signals given by x1[n] to xM[n].  There 

are 13 stages in the CSM algorithm as listed in Table 1.  In the subsequent paragraphs, these 

stages are discussed.   

 

a1 a2 am aM

Emitter p
(far field)

x-axis

y-axis

ηmp

θp

Antenna M

AOA measured
CCW from x-axis

 
Figure 1. Antenna Array  
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Table 1 Summary of CSM Algorithm Stages 

MUSIC - Fine Stage13

EVD - Fine Stage12

RCSS11

Pi10

Ti9

SVD8

Bi7

MUSIC - Coarse Stage6

EVD - Coarse Stage5

RAVE Sum of Correlation Matrices4

Rq Correlation Matrices3

zi zi
H Outer Product (corner turn)2

FFT1

DescriptionStage

 
 

In stage one of the CSM algorithm as shown in Figure 2, the digital data is channelized into one 

of Q frequency bins.  A number of techniques can be used for the channelization process.  The 

one chosen here is the standard fast Fourier transform technique (FFT).  The routing of data is 

also needed in stage one of the algorithm.  Each of the M antenna channels {xm[n]} is first FFT’d 

into Q frequency bins.  Then data is organized by frequency so that vectors of antenna channels 

for a given bin are created.  Hence, there are Q output vectors {zq[k]} after routing is completed. 
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fQ
x1[n]

FFT

y2,1[k]

y2,2[k]

y2,Q[k]

f1
f2

fQ
x2[n]

FFT

yM,1[k]

yM,2[k]
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f2

fQ
xM[n]

z1[k]=

y1,1[k]
y2,1[k]
….
yM,1[k]

z2[k]=

y1,2[k]
y2,2[k]
….
yM,2[k]

zQ[k]=

y1,Q[k]
y2,Q[k]
….
yM,Q[k]

Routing

M spatial
channels

Q frequency channels 

 
Figure 2. Data Channelization and Routing (Stage 1) 

In stages two and three as shown in Figure 3, Q spatial correlation matrices {Rq[k]} are formed 

by forming rank-1 vector outer products followed by a summation of them over time.  For PCA, 

a slight variant was used to accommodate the pipeline architecture.  Instead of summing K rank-

one outer-products, an exponentially weighted correlation matrix is formed.  The exponentially 

weighted matrix can be updated easily and the amount of memory needed in the architecture is 

reduced.  The matrix at the current output is a weighting of new data and past correlation 

matrices.  The update is numerically stable. 
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Correlation Matrix Formation

Correlation Matrix Formation

Correlation Matrix Formation

zq[k]
Z-1 Z-1 Z-1

Σ
zq[k] zq[k]H

( ) ( )H

( ) ( )H

( ) ( )H

( ) ( )H

zq[k-1] zq[k-1]H

zq[k-2] zq[k-2]H

zq[k-K+1] zq[k-K+1]H

Correlation Matrix Formation

z1[k]

z2[k]

zQ[k]

R1[k]

R2[k]

RQ[k]

Rq[k]

 
Figure 3. Corner Turn (Stages 2 and 3) 

In stages four through six shown in Figure 4, an average (RAVE) of the correlation matrices is 

formed, and eigenvalue decomposition of the average is found, and the MUSIC direction finding 

algorithm is performed.  The averaging via division by Q is not actually necessary hence some 

computational cost is realized.  The eigenvalue decomposition is of the form RAVE = VΛVH 

where V is unitary and Λ is diagonal.  The eigenvalue decomposition components are sorted and 

partitioned into signal and noise portions as V = [VS VN] and Λ = [ΛS ΛN].  After the eigenvalue 

decomposition, the MUSIC algorithm computes the spatial spectrum at L angles.  Specifically 

the spectrum amplitude at angle l is given by sl = s(θl) = (|| VN
H A(l)||2)-1 where || ( ) ||2 is the 2-

norm.  The result of this MUSIC algorithm is a spatial spectrum whose peaks give a coarse 

estimate of the directions of arrival.  The coarse directions of arrival are needed in a subsequent 

stage. 
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RAVE

Eigenvalue
Decomposition

VN

MUSIC DF Spectrum (Coarse)

Direction
Vector

θ1
A(1)

Direction
Vector

θL
A(L)

1       
|| (VN)H (  )||2

1       
|| (VN)H (  )||2

S1

SL

ΛN
To eigenvalue test

Σ

R1

RQ MUSIC

 
Figure 4. Coarse DF (Stages 4-6) 

In stage seven shown in Figure 5, Q direction matrices {Aq} at frequencies f1 to fQ are formed 

using the coarse angles found in the MUSIC stage six.  (The form of these direction matrices is 

given in Appendix B.)  The cross products {Bq} of the direction matrices {Aq} and a direction 

matrix Ao at reference frequency fo are then formed. 
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( ) A0
H

DOA vector
f1

Direction
Matrix

A1

DOA vector
f0

Direction
Matrix

A0

( ) A0
H

DOA vector
f2

Direction
Matrix

A2

( ) A0
H

DOA vector
fQ

Direction
Matrix

AQ

B1

B2

BQ

Direction Matrix Products Formation

 
Figure 5. Direction Matrices (Stage 7) 

In stages eight and nine shown in Figure 6, the transformation matrices are built by first 

computing the singular value decomposition of the Bq matrices (i.e., Bq= Vq Dq Uq
H where Vq and 

Uq are left and right unitary factors and Dq is diagonal) that were formed in stage 6 and then 

forming a cross product of the left and right singular vector matrices.  Each of the resulting 

transformation matrices are of the form Tq = Vq Uq
H.   

Singular
Value
Decomposition

B1
( A) ( B)HU1

V1
A

B

T1

Singular
Value
Decomposition

BQ
( A) ( B)HUQ

VQ
A

B

TQ

Transformation Matrices Creation

 
Figure 6. Transformation Matrices (Stages 8 and 9) 
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In stages ten and eleven shown in Figure 7, the transformation matrices are now applied to the 

original correlation matrices that were formed after the FFT stage.  Each of the transformed 

correlation matrices {Pq} at frequencies fq are now focused to the reference frequency fo.  The 

focusing allows them to all be added in a spatially coherent fashion. 

 

 

CSS Correlation Matrix Formation

( A) (B ) (A )H
A

B

T1

R1

P1

( A) (B ) (A )H
A

B

TQ

RQ

PQ

Σ RCSS

 
Figure 7. Transformation Matrices (Stages 10 and 11) 

The last two stages in Figure 8, the MUSIC algorithm is now performed on the transformed 

correlation matrix.  The result is an enhanced estimate of where the angles of arrival are for the P 

emitters. 
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RCSS Eigenvalue
Decomposition

VN

MUSIC DF Spectrum (Fine)

Direction
Vector

θ1
A(1)

Direction
Vector

θL
A(L)

1       
|| (VN)H (  )||2

1       
|| (VN)H (  )||2

S1

SL

ΛN
To eigenvalue test

 
Figure 8. Fine DF (Stages 12 and 13) 

A summary of stages one though thirteen is given in the poster presentation which can be found 

in Appendix A. 

3 Mapping of Wideband DF Algorithm to MONARCH Architecture 

In this section, the computing architecture is first discussed followed by a description of the 

SIGINT system parameters.  Some computational cost notes are presented followed by the 

computational cost for each stage in the algorithm.  A summary of the computational cost is then 

presented with a comparison of MONARCH to the PowerPC.  The PowerPC was chosen as a 

point of comparison because it is a primary building block to many of Mercury Computer 

Systems high power parallel processing machines to which MONARCH must compete.  

Mercury is arguably the leader in VME parallel processing systems and are used frequently in 

the SIGINT market. 
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3.1 Computing Architecture 

In the early phase of this contract effort, two of the PCA architectures were evaluated for the 

SIGINT application.  The Tera-op Reliable Intelligently Adaptive Processing System device is 

being designed by the University of Texas at Austin team.  We met with them at the outset and 

after examining our application, they determined the MONARCH would be more suitable due to 

the high data rates of the SIGINT application.  The Morphable Networked Architecture  device is 

being designed by the team consisting of USC Information Sciences Institute, Raytheon, 

Mercury, Georgia Tech and Exogi.  One of the primary goals of their MONARCH is “to support 

multiple classes of military missions with a single morphable architecture” [7].  The MONARCH 

device cluster mapping is shown in Figure 9 with all of the Application-Specific Integrated 

Circuit (ASIC) specifications listed as well.  A single MONARCH ASIC is projected to process 

64 GFLOPS per second sustained when all resources are fully utilized. A MONARCH board 

consists of four MONARCH ASIC devices.  It is shown in Figure 10 [7]. 

 

 

ED R P

ED R P

ED R P

EDRP

EDRP

EDRP

RIO

P

Memory
Interface

P

P P

PP

CM

ROM
Port

DIFLs

DIFLs

DIFLs

DIFLs DIFLs

DIFLs

DIFLs DIFLs

DIFLsDIFLs

XPIRX

XPIRXMemory
Interface

P

DIFL =Differential IFL

12 Arithmetic Clusters
96 adders (32 bits) fixed 
and float
96 multipliers

31 Memory Clusters
124 dual port memories
256 wx32 bits each 
(128KB)
248 address generators

6 RISC processors
12 MBytes on chip DRAM
RapidIO (serial) interface
14 DMA engines
20 DIFL ports (1.3 GB/s ea)
On-chip ring 40 GB/s
Bulk memory interface (8 
GB/s BW)
Clock 333 MHz
Power 8-50 W (nom)
Throughput 64 GOPS peak
Multiple programming 
modes

Reconfigurable, data flow
RISC scalar
RISC SIMD (Altivec like)

Status (3Q2004)
Emulator 4Q04
VHDL in simulation
Preliminary tools 7/04
90 nm bulk CMOS  

Figure 9. MONARCH Cluster Mapping [7] 
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DDIFL
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RIO/PCI
Bridge

(Primary)

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

3.3 V
REG

2.5 V
REG

1.2 V
REG

Monarch

Monarch Monarch

Monarch

RIO

333 MHz
OSC

JTAG

PCI
RIO/PCI
Bridge

(Redundant)
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DIFL(test)
DIFL(test)
DIFL(test)

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

 
Figure 10. MONARCH Board [7] 

3.2 System Parameters 

The SIGINT system as shown below in Figure 11 consists of several M channel antenna arrays 

that are selectable with an RF distribution panel.  The RF frequencies are down-converted to first 

and second-IF frequencies in the block down converter and coherent tuner.  The second-IF 

frequency signals are then input to the A/D converter bank.  The resulting digital signals are then 

processed by the computing system which contains the MONARCH cards. 
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RFD

Block
Down

Convert
Coherent

Tuner

Computing 
System

GPS

A/D 

 
Figure 11. SIGINT System 

A set of parameters has been chosen for the wideband DF application to be that of a problem that 

cannot be solved with today’s computing technology.  An even more challenging problem can be 

realized by increasing the bandwidth of the system or the number of antenna channels of the 

system.  For this application, a bank of M = 8 antenna/receiver systems is assumed.  The inputs 

to the A/D converters are IF frequencies of 160 MHz and band-limited to 80 MHz.  The IQ 

sample rate is assumed to be 80 MHz (Ts = 12.5 ns) and the real and imaginary part of the 

complex IQ sample are each two bytes.  The resulting data rate for each A/D converter is hence 

320 MB/sec; the aggregate data rate is 2.56 GB/sec.   

3.3 Computational Notes 

A complex multiply of the form (a + jb)(c + jd) requires CM = 6 flops.  A complex addition of the 

form (a+jb)+(c+jd) requires CA = 2 flops. 
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3.4 FFT (Stage 1) 

The Fast Fourier transform performs the data channelization.  The computation required for the 

FFT is based on the number of frequency bins and the data rate.  The number of frequency bins 

Q is set by defining a bin width to be equal to the definition of what a narrowband signal is.  In 

this case, a narrowband signal is defined as a signal whose bandwidth is less than one percent of 

the RF carrier frequency.  The low end of the ELINT spectrum is fc = 500 MHz, hence the bin 

width should be no larger than BWBIN < .01* fc = 5 MHz.  For an 80 MHz bandwidth then, the 

number of bins is equal to about 20 bins.  For this project, the number of bins was chosen as a Q 

= 16 which violates the narrowband assumption in a minor, but very acceptable amount. 

 

The FFT can then be easily computed every Q samples assuming no FFT overlap is used.  The 

number of flops for an FFT is given by the following formula: 

 CFFT = 5 * Q * M * log2(Q)   (M Q-point FFT’s) 

 RFFT = CFFT / TQ    (Rate in flops / second) 

Where TQ = Q Ts is the time it takes to compute a single FFT for the Q samples.   

3.5 Corner Turn (Stage 2) 

At each frequency bin q, a rank-one outer product of a length M vector zq is made.  This requires 

M2 complex multiplications if symmetry is not taken advantage of.  To be conservative in the 

hardware estimates, symmetry will not be taken into account.  A scaling of the vector zq by an 

exponential fading constant is also required but the cost is minor so not added.  The resulting 

flops for the corner turn becomes 

 CCT = Q * M2 * CM    (Q rank-1 corner turns) 

 RCT = CCT / TQ     (Rate in flops / second) 
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3.6 Rq Correlation Matrices (Stage 3) 

The rank-one outer products (zq zq
H ) are then added to a scaled correlation matrix Rq.  The 

resulting operation is of the form: Rq  α * Rq  + (1-α) * (zq zq
H ) where α is a scaling factor 

just under unity. The cost of the scaling factor and the cost savings of symmetry are ignored for 

simplicity and the errors are negligible.  The resulting flops for the correlation matrices becomes 

 CCM = Q * M2 * CA    (Q MxM matrix additions) 

 RCM = CCM / TQ    (Rate in flops / second) 

3.7 RAVE Averaged Correlation Matrix (Stage 4) 

The sum of the Q Rq matrices is then summed together to form a single non-coherent correlation 

matrix.  A division of the resulting summed matrix by Q is not actually needed for the wideband 

DF operation so it is not done.  The resulting matrix is of the form: RAVE  RAVE + R1 + R2 + … 

+ RQ.  The resulting flops for the averaged correlation matrix becomes 

 CRAVE = Q * M2 * CA    (Q MxM matrix additions) 

 RRAVE = CCM / TQ    (Rate in flops / second) 

3.8 First Eigenvalue Decomposition (Stage 5) 

The eigenvalue decomposition of the averaged correlation is then taken.  The resulting 

decomposition is of the form: RAVE = V S VH where V is partitioned into a signal and noise 

subspace matrix V = [Vs Vn] and S is a diagonal matrix of eigenvalues sorted in descending 

order.  The EVD QR algorithm cost is equivalent to fourteen MxM matrix multiplications which 

is O(M3) flops.  This is not realistic in an environment where the EVD is fairly stationary from 

block to block.  A subspace tracking algorithm can be used in place of a QR algorithm.  An 

O(M2) algorithm is more feasible.  So, for this project, the factor of fourteen is not used.  The 

resulting flops for the averaged first EVD becomes 

 

 CEVD1 = M2 * (M * CM + (M-1)CA)  (MxM matrix multiply) 
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 REVD1 = CEVD1 / TQ    (Rate in flops / second) 

3.9 First MUSIC (Stage 6) 

The MUSIC algorithm includes sweeping the spatial angular spectrum by multiplying the MxM-

P noise subspace matrix Vn computed in the previous stage with an M x 1 direction vector A(θ).  

P is the number of signals detected in the signal environment.  The number P is found as the 

number of eigenvalues in the matrix S larger than a threshold.  The full sweep of the spatial 

spectrum is too computational to perform in a single TQ interval as well as not necessary.  

Instead, the full spectrum is swept every H blocks.  The number of angles examined is L1.  At 

each angle, in addition to the matrix-vector multiply, a two norm of the resulting vector is 

computed.  The resulting flops for the first MUSIC becomes 

 

 CMUS1 = [(M-P) * (M *CM + (M-1)CA) + M] * L1 / H (Mat-vec mult + 2-norm) 

 RMUS1 = CMUS1 / TQ       (Rate in flops / second) 

3.10 Bq Direction Matrices (Stage 7) 

The Bq direction matrices are formed as the product of a direction matrix at a reference 

frequency and a direction matrix at the qth frequency.  The form of the direction matrix is given 

in Appendix B.  There are a total of Q matrix multiplies of matrices of size M x P.  The resulting 

flops for the Bq computation becomes 

 

 CB = Q * M2 * [P * CM + (P-1)CA)] 

 RB = CB / TQ       (Rate in flops / second) 
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3.11 Singular Value Decomposition (Stage 8) 

The SVD computes the factorization Bq = Uq Dq Vq
H .  The computational cost is the same as the 

EVD cost. It will be assumed that the transformation matrices only need to be updated every Q 

blocks.  Hence, the cost of the EVD and SVD are the same.  

 CSVD = CEVD1 

 RSVD = REVD1       

If further accuracy was required (and this is not likely), then all Q SVD’s can be computed at 

each block of data (i.e., every TQ seconds).   

3.12 Tq Matrices (Stage 9) 

The Tq matrices are formed as the product of the left and right SVD factors found in the previous 

stage, or Tq = Vq Uq
H.  There are Q M x M matrix multiplications.  The resulting flops for the Tq 

computation becomes 

 CT = Q * M2 * [M * CM + (M – 1) * CA]   (Q matrix multiplies) 

 RT = CT / TQ       (Rate in flops / second) 

3.13 Pq Correlation Matrices (Stage 10) 

The Pq correlation matrices are formed as the Hermitian product Pq = Tq Rq TqH.  Forsaking 

symmetry, the computation takes double that of forming the matrix product in stage 9.  Hence, 

the resulting flops for the Pq computation becomes 

 CP = 2 * CT 

 RP = 2 * RT 

3.14 RCSS Correlation Matrices (Stage 11) 

The coherent signals subspace correlation matrix requires the addition of Q Pq matrices.  This 

requires the following flops 

 CRCSS = (Q – 1) * M2 * CA    (Q – 1 matrix additions) 
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RRCSS = CRCSS / TQ     (Rate in flops / second) 

3.15 Second Eigenvalue Decomposition (Stage 12) 

The second eigenvalue decomposition requires exactly the same computation as the first one and 

is given by 

 

 CEVD2 = CEVD1 

 REVD2 = REVD1      (Rate in flops / second) 

3.16 Second MUSIC (Stage 13) 

The second MUSIC cost is exactly the same as the first MUSIC except that there are L2 / H 

spatial spectrum points calculated every TQ seconds. 

 

 CMUS2 = [(M-P) * (M *CM + (M-1)CA) + M] * L2 / H  

 RMUS2 = CMUS2 / TQ       (Rate in flops / second) 

3.17 Summary of Mapping 

In Table 2, a summary of the computational cost is given for the 80 MHz bandwidth system with 

M = 8 channels and Q = 16 FFT bins.  The first column is the stage number with each of the 13 

stages being described in Sections 3.4 through 3.16.  The second column describes the algorithm 

step for that stage.  The third column gives the algorithmic computational cost in GFLOPS on a 

sustained basis assuming that wideband direction finding estimates are computed continuously.  

The fourth column is the number of MONARCH ASIC devices required per stage.  The 

determination of the number of devices needed was based upon the connectivity of the devices 

and the peak sustainable capability of the devices.  It was also dependent on the amount of 

memory required at each stage.  A MONARCH ASIC chip is projected to sustain 64 GFLOPS 

maximum when all resources are fully utilized.  Each MONARCH board is projected to have 
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four ASIC devices and memory chips.  Each ASIC device is projected to have six reduced 

instruction set computer (RISC) processors with 2MB of Dynamic Random Access Memory 

(DRAM) and a single field programmable computing array (FPCA).  Each FPCA is projected to 

have 12 arithmetic clusters and 31 memory clusters.  For each of the thirteen stages, the number 

of memory clusters and arithmetic clusters needed was estimated as well as examining the fan-

in/fan-out type connectivity needed between stages.  These estimates were then used to 

determine the resulting number of ASIC devices needed for each stage.  This result is shown in 

the fourth column.   

 

In summary, a total of 328 GFLOPS / second sustained was required to handle this problem.  

With the data routing and correlation matrix delay needed between the narrowband DF to 

wideband DF sections (see poster for delay box description), a total of 32 ASIC chips is needed.  

This is a conservative estimate.  The poster in the appendix shows the mapping of the algorithm 

onto the hardware. 

Table 2 Summary of Computational Cost & ASIC Estimates.   

32328.58TOTALS
689.43MUSIC - Fine Stage13

119.84EVD - Fine Stage12

09.6RCSS11

439.68Pi10

24.96Ti9

619.84SVD8

21.76Bi7

459.63MUSIC - Coarse Stage6

119.84EVD - Coarse Stage5

110.24RAVE Sum of Correlation Matrices4

210.24Rq Correlation Matrices3

230.72zi zi
H Outer Product (corner turn)2

112.8FFT1

ASICsGFLOPSDescriptionStage
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A PowerPC G5 processor (e.g., an MPC7447A) running at 2 GHz has a peak performance of 8 

GFLOPS per second, but that would not be attainable in practice.  If peak performance is 

assumed to be sustained, then 41 G5 processors would be required in comparison to 32 

MONARCH ASIC devices.  However, if a more realistic sustained performance is assumed, say 

2 GFLOPS per second, then 164 G5 processors would be needed.  With four G5 processors per 

6U board, this would require 41 circuit cards plus a controller card.  (This requires two 6U 

chassis.)  The MONARCH arrangement by comparison requires 8 circuit cards and no controller 

card.  Hence, the hardware cost for the G5 arrangement would be about 5X the cost of the 

MONARCH arrangement, delineated as follows: 

• Board cost is expected to be comparable, hence the overall cost of MONARCH 

board set would be 20% of that of the G5 set.  However, there is an additional 

controller card single board computer that is needed for the G5 arrangement too. 

• The chassis cost for the MONARCH system is anywhere from ½ to 1/5 less than 

the G5 system.  The total number of slots for the MONARCH system would be 

approximately 16 assuming 8 slots for the receivers and 8 for MONARCH 

boards.  The total number of slots for the G5 system would be approximately 50 

assuming 8 slots for receivers, 41 for G5 boards and 1 controller card.  So, one 

chassis would be needed for the MONARCH system and three for the G5 system.  

Other arrangements are of course possible. 

• Size reduction would be a factor of three based on the number of chassis required.  

If special chassis were designed, then a space savings of five could be achieved. 

• The power draw will be much higher for the G5 compute portion system at 

around a ratio of 41 to 8 assuming comparable power of a G5 at 2GHz and a 

MONARCH ASIC.  Hence, there is a 5X power savings for the compute portion.   

Software development time is probably comparable; though mapping data across two or more 

chassis is a bit more complex for the G5 case. 
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4 Cooling  

It has been estimated that the MONARCH ASIC devices when operating at full capacity will 

draw 30 watts of power.  There are four MONARCH ASIC devices on a 6U MONARCH circuit 

board.  With all of the ancillary devices, a total of 150 watts could be drawn.  This is a very 

conservative worst case type of estimate.  An eight board configuration as shown in Figure 12 

would then consume up to 1.2 KW.  This type of power consumption is too high for a standard 

VME chassis and requires a non-VME configuration.   
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Figure 12. 6U Configuration 

There are several types of cooling that can be used including forced convection, liquid cooled 

core, and spray cooling.  Forced convection has the advantage that it is a proven technology and 

has an easy COTS insertion.  The main disadvantage with forced convection air cooling is that 

heat sinks will have to be placed on each of the MONARCH boards.  The heat sinks require an 

extra amount of volume besides that available in a single slot.  Hence, for the eight board 

configuration, a sixteen slot chassis is needed.  Will forced convection be able to keep up?  Yes, 

it will.  This was demonstrated with a device similar to the MONARCH device.  It was 

demonstrated at two power levels including 27 watts and 35 watts.  Infrared images of the device 

were taken and shown below in Figure 13.  The temperature scales are shown on the right hand 

vertical axis and the power levels are indicated at the bottom of the figures.  The air flow was 

kept at a constant 800 ft/ min.  The device dimensions are also indicated and it is about the same 
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size as the expected MONARCH ASIC.  For both cases in Figure 13, temperatures stay under 

typical operating temperatures not exceeding 55o C. 

 
Figure 13. Cooling  

5 Wideband DF within a Time Critical Targeting Framework 

Wideband direction finding is but a single step in the time critical targeting process.  Time 

critical targeting (TCT) is the overarching goal to quickly and precisely detect, locate and 

identify signal emitters on the electronic battlefield.  This broader picture of TCT is discussed 

more thoroughly in the reference paper [1] though a brief review is given here for the UAV case.  

In Figure 14, a diagram showing the TCT process for a typical ELINT scenario is presented.  

The mode of operation of the MONARCH device is given in the legend in the upper left.  There 

are 8 data input streams clocked at an 80MHz rate with 4 bytes per complex IQ sample.  (Even 

more challenging bandwidths are around the corner.)  The data originates in a fixed point format 

and is initially calibrated (Receiver Cal box) with an equalization algorithm.  For continuous 

wave signals, the data is formatted into a floating point format (Format box) and channelized 

with an FFT (Channelization box).  The channelized data is then corner turned into a correlation 

matrix (Spatial Corr box).  Eigenvalue decompositions (EVD) and the direction finding 
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(Wideband/Narrowband DF) are then performed.  After the signal is found, it is classified and 

identified.  For pulsed signals, the pulsed data is encoded (Pulse Encoding box - measuring pulse 

width, amplitude, frequency, etc.) and then sent to the deinterleaving algorithm which sorts 

pulses into groups sent by a given emitter.  The pulsed signals are also classified and identified.  

For both pulsed and CW signal cases, the results are sent with a communications system to a 

remote platform such as a wide-body reconnaissance plane. 

 

Pulse Encoding  
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Format Channelization
Channel #8

80MHz Analog Bandwidth 
16 bits I and 16 bits Q
320 Mbytes/sec data rate
8 Sensor Channels

Pulse Encoding  
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Spatial Correlation
Spectral Search
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Buffer__

To A

A EVD
Narrowband DF
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To B

B
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Pulse Deinterleaving Classify
Identify Communication

To Transmitter
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ThreadedStreamed
Fixed Pt

 
Figure 14. TCT Algorithm Flow 

In Figure 15, a diagram of computing assets used vs. time is given.  We can assume that about 

1/3 of the computing assets are always used for navigation of the UAV and for hardware control.  

These functions will be performed on the RISC portions (threaded) of the MONARCH devices.  

The FPCA portions (streamed) of the MONARCH device perform the majority of the direction 

finding activities.  The RISC portions are also used for pulse deinterleaving and identification 

activities.  It will vary from mission to mission, but in this case about 25 updates of TCT 

activities are communicated off-board to the remote platform.  Each update utilizes the SIGINT 
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system to about the 75% capacity level.  Estimates of computation were quite conservative 

before, so a 75% estimate is realistic.  Also, the wideband DF algorithm is assumed to take the 

largest burst of computation which is also realistic.  After 25 TCT updates, communication with 

the remote platform occurs in burst fashions. 
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 Figure 15. TCT Timing Diagram  

6 Conclusions 

A challenging SIGINT application, namely wideband direction finding, was chosen as one of the 

test vehicles for the DARPA PCA program.  Currently, ELINT systems are not able to perform 

digital wideband direction finding in a practical manner because of the large number of 

processors needed to handle the high data rates due to large signal bandwidths.  A detailed 

computational analysis and data flow of the wideband direction finding algorithm was 

completed. The algorithm was mapped into a pipeline format and onto the MONARCH 
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architecture.  Using the computational models and data flow, the MONARCH system 

architecture was constructed.  USC/ISI was instrumental in determining this layout and 

architecture.  It was found that the resulting MONARCH based SIGINT architecture was well 

suited for this application.  By using MONARCH boards instead of G5 PowerPC boards, a 

conservative factor of five in reduction of board count can be realized.  Additionally, since the 

G5 PowerPC (MPC7447A) has a power consumption on the same order as the MONARCH 

ASIC, the power savings will also be approximately a factor of five.  Similarly, the weight 

reduction will be reduced by a factor of five; however, since less power is needed, then the 

weight is further reduced by eliminating power supplies in the chassis.  Furthermore, only one 

chassis instead of say four (or five at most) will further reduce the weight.  In addition, the 

complexity of interchassis communication is no longer necessary. 

7 References  

[1] E. Scott Baker.  January, 2002.  “A MONARCH Application: Time Critical Targeting”, G4899.00.26, 
L-3 Communications Integrated Systems General Report 

[2] Robert Graybill. March 16-17, 2004.  “Polymorphous Computing Architecture: 6th PI Meeting”, 
Baltimore, Maryland 

[3] Hsiensen Hung and Mostafa Kaveh. 1988. “Focussing Matrices for Coherent Signal-Subspace 
Processing”, IEEE Trans. On ASSP, vol 36, (August):1272-81. 

[4] S. Sivanand, Jar-Ferr Yang, and M. Kaveh. 1991. “Focusing Filters for Wide-Band Direction 
Finding”, IEEE Trans. On SP, Vol 39 (February): 437-45. 

[5] H. Wang and M. Kaveh. 1985. “Coherent Signal-Subspace Processing for the Detection and 
Estimation of Angles of Arrival of Multiple Wide-band Sources”, IEEE Trans ASSP, vol. ASSP-33, No. 4 
(August): 823-31. 

[6] Mati Wax, Tie-Jun Shan, and Thomas Kailath. 1984. “Spatio-Temporal Spectral Analysis by 
Eigenstructure Methods”, IEEE Trans. On ASSP, vol ASSP-32, No. 4, 817-27. 

[7]  Mike Vahey and John Granacki.  August 2004.  “MONARCH”, PCA PI Meeting, Monterrey, CA. 

[8] Ralph Schmidt. March 1986. “Multiple emitter location and signal parameter estimation”, IEEE 
Transactions on Antennas and Propagation, Volume 34,  Issue 3. 276-80  



       
 

                                                    

 

 

26

[9] D. Burger, S.W. Keckler, K.S. McKinley, et al.  July 2004.  "Scaling to the End of Silicon with EDGE 
Architectures," IEEE Computer, Volume 37, Issue 7, 44-55. 

8 Appendix A – Poster Session  

A DARPA PCA PI meeting was held in March of 2005 in Scottsdale Arizona.  A poster made 

from Figure 16 below was presented at that meeting.  
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9 Appendix B - Direction Matrix Form 

Direction vectors and direction matrices have the form shown in Figure 17.  For a direction 

vector, only one column is realized.  For a direction matrix, all P columns are realized.  The 

mathematical details are less important, but what is important is to realize that these vectors and 

matrices can be pre-computed and stored in memory. 
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10 Intelligent Agents Application in the MSI Software Framework 

This attachment addresses the high level implementation of intelligent agents within the MSI 

software framework in order to provide an autonomous optimized reconfiguration capability in 

dynamic environments. 

10.1 Introduction 

The Polymorphous Computing Architecture (PCA) program is an initiative to create 

embedded computing systems that can adapt to dynamic mission parameters and operational 

conditions, eliminate data processing redundancies, and reduce development costs and time [1]. 

PCA architectures consist of both hardware and software aspects. The hardware embedded 

computing elements are composed of specialized processors, memories, caches, and network 

elements that can morph, meaning that they dynamically reconfigure themselves based on input 

parameters.  The PCA Morphware software is responsible for managing the morphing of PCA 

hardware, as well as the decision and process of how and when to morph.  One of the key 

requirements for successful implementation of PCA within a large complex system is to 

autonomously manage compute resources in order to dynamically optimize the total system 

effectiveness – without this autonomous capability, the system resource allocation derived from 

an original static optimization may become significantly sub-optimal in a real environment 

where compute requirements are dynamic.  Currently, the PCA Morphware does not have any 

such mechanism to dynamically manage compute resource allocation; nor has such a mechanism 

been suggested by the Morphware community before now. 

Note that any mechanism for PCA autonomous resource allocation in a dynamic 

environment must take into account the fact that this type of multiple-input multiple-output 

control and management requires a high-level of abstraction to encompass all of the possible 

combinations and configurations of the PCA hardware.  In addition, any such mechanism must 
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take into account additional factors such as the priority of the change defined by the PCA 

application, and the time and resources required to morph [2].  However, this dynamic resource 

allocation mechanism cannot be embedded with overly specific hardware information without 

loss of decreased portability and scalability, two essential requirements of PCA.  On the other 

hand, if this dynamic resource allocation mechanism does not contain any kind of hardware 

resource information, then it will not be able to manage the morphing requirements of PCA 

given by [3].  One approach to dynamically managing heterogeneous reconfigurable compute 

resources is to use intelligent agents based on software agent technology along with team 

behavior and optimization algorithms as discussed in [4].  This section examines the application 

of the concept described in [4] to the PCA and Morphware architecture. 

10.2 Background on MSI 

The PCA team developed the Morphware Stable Interface (MSI) as an application 

development framework with the goals of optimizing application performance, handling 

hardware morphing, and allocating resources while trying to preserve abstraction and optimize 

portability. However, the Morphware Forum has not yet specified the details or specifications on 

the implementation of PCA software architecture for autonomous dynamic management of the 

morphing PCA hardware.  The Morphware Forum itself is described as follows [2]: 

The Morphware Forum is a joint activity of the participants in DARPA’s Polymorphous 
Computing Architectures (PCA) program, as well as other interested developers of embedded 
computing hardware, software, and application technology.  The purpose of the Morphware 
Forum is to define an open, portable software environment for the development of high 
performance applications on PCA platforms.  Morphware Forum products and information are 
available at www.morphware.org. 

The MSI is a multi-level component based architecture that is intended to support several 

high-level languages. The MSI architecture classifies the development of PCA applications into 

two categories. The first category is to create optimal instantiations of high-level application 

software to run on PCA hardware configurations. The second is managing the competing goals 

between hardware elements in a PCA system to choose the optimal platform configuration and 
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composition of component instantiations [3].  As mentioned above, it is the combination of PCA 

application requirements, the framework of the MSI, and the theoretical nature of resource 

allocation problem that necessitate the use of Intelligent Agent (IA) architecture concepts.  The 

duration of this section will discuss the application of existing IA architectures, the MSI 

components and their realization using intelligent agents.  

 

The MSI is similar to the Object Management Group’s (OMG) Common Object Request Broker 

Architecture (CORBA) [5][6][7].  Although CORBA provides many of the software 

requirements required by the PCA architecture, it has not been fully adopted in the MSI 

architecture because it does not address certain key aspects of PCA such as metadata modeling.  

CORBA specifies the design of component-based Object Request Brokers (ORBs). A broker 

arbitrates communication between objects (e.g., agents). The ORB is responsible for all of the 

mechanisms required to find the object implementation for the request, to prepare the object 

implementation to receive the request, and to communicate the data making up the request. The 

interface the client sees is completely independent of where the object is located, what 

programming language it is implemented in, or any other aspect that is not reflected in the 

object’s interface [5].  CORBA is a service-oriented architecture based on object-oriented (OO) 

methodologies that can specify requirements for agent architectures; and, in fact, intelligent 

agent architectures have been implemented using CORBA-based models [8]. 

 

10.3 Use of Intelligent Agents in MSI Framework 

This section addresses the question:  How would intelligent agent technology be applied to the 

MSI framework in order to provide an autonomous reconfiguration capability in order to 

optimally manage compute resources in a dynamic environment?  First of all, we note that the 

component framework of the MSI architecture is compatible with the requirements of an 

intelligent agent architecture.  In fact, the components of the MSI architecture could be 
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represented by intelligent agents.  The intelligent agents could then form collaborations based on 

what layers they would be representing.  Then these teams of intelligent agents representing the 

layers would perform the functionality of the MSI.  Some additional agents would be required as 

negotiators, facilitators, or brokers to collaborate between the different MSI layers facilitated by 

an Agent Communication Protocol (ACP).  This protocol could be specified using Lightweight 

CORBA-based protocols, or something simpler such as the Intelligent Network Management 

(INM) protocol [8].  Note that intelligent agents allow for another level of abstraction in that 

PCA hardware and software can both be encapsulated by intelligent agents.  The following 

discusses the different components of the MSI and their compatibility with intelligent agent (IA) 

concepts, as well as some existing IA systems implementing resource allocation and 

collaboration. 

 As shown in Figure 10-1, the MSI maintains portability via a two layer structure: a Stable 

API (SAPI) layer that inputs into a High Level Compiler (HLC), and the Stable Architecture 

Abstraction Layer (SAAL), which inputs into a Low Level Compiler (LLC). The end result is 

translated executable code to run on PCA hardware without this hardware needing knowledge of 

what language the application code was written in. The different layers of the MSI must 

collaborate with each other and additional agents in order to achieve this level of abstraction. 
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Figure 10-1:  Elements of the MSE 

As shown in Figure 10-2, there are other knowledge-bases required to execute PCA 

applications. These are more complex than standard databases in that they need to store 

information on evolving states. This metadata format is currently being specified by the 

Morphware Forum. However as mentioned before, no such specification exists for the 

implementation of the infrastructure and protocols. One of the key roles of these metadata 

models both for software and hardware is to facilitate the morphing aspect of PCA. Using the 

collaboration protocols such as in the architectures of [10] or [11], software metadata could be 

read and updated by agents arbitrating between HLC and SAPI Agents.  Hardware metadata 

would also need collaboration between LLC and SAAL Agents.  IA collaboration would 

maintain the adaptation necessary to meet the goals of the PCA. 
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Figure 10-2:  Typical PCA Application Decomposition in MSI Framework 

 Figure 10-3 shows what the MSI framework would look like with IAs. It is very similar 

to the proposed MSI framework. Many of the MSI IAs would actually be encapsulations of 

existing software. Naturally, modifications are needed to create the communication protocols, 

and collaboration algorithms to make the system satisfy IA constraints. The Metadata Library 

(ML) agent is a new addition that would broker metadata management as well as collaboration 

between other agents in the MSI. It would also be comprised of many agents just as in the 

representation of the layers of the MSI. The ML behavior would be analogous to a cache 

coherence invalidation protocol. It would be responsible for updating and invalidating metadata 

values that are incorrect. The other MSI Agents would collaborate as to the resources required by 

a PCA application, and the ML would broker the requests among the Knowledge Base (KB) 

Agents.   
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Figure 10-3:  MSI Architecture with Intelligent Agents 

 It is important to note that the LLC agent requires the most communication and 

collaboration between the other MSI layers. Multiple IAs would be necessary in the LLC to 

maintain the variety of translation and resource allocation issues involved in a heterogeneous 

architecture. The LLC agent must be capable of compiling components that make use of 

specified subsets of the PCA device resource pool. The higher agents will help in filtering out 

undesired resource configurations. Feedback mechanisms to refine and possibly redeploy a PCA 

application from the start could be beneficial in creating an optimal but practical solution.  

Resource allocation, utilization, and other federated protocols derived from game theory should 

be used to find optimal hardware configurations. These algorithms are based on distributed 
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decision-based (i.e. IA concepts also) concepts that could be facilitated using the MSI agent 

architecture.   Other more adaptive IA architectures based on polyadic pi-calculus are also being 

implemented [10]. These adaptive architectures try to incorporate evolution, the process of 

agents changing along with their environment. The agents could change by reorganizing, 

adding/removing, or changing their interaction protocols.  
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