

AFRL-IF-RS-TR-2006-259
Final Technical Report
August 2006

SIGINT APPLICATION FOR POLYMORPHOUS
COMPUTING ARCHITECTURE (PCA):
WIDEBAND DF

L3 Communications

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. S162

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-259 has been reviewed and is approved for publication.

APPROVED: /s/

 CHRISTOPHER FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES A. COLLINS, Deputy Chief
 Advanced Computing Division

Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Apr 04 – Dec 05
5a. CONTRACT NUMBER

FA8750-04-C-0050

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

SIGINT APPLICATION FOR POLYMORPHOUS COMPUTING
ARCHITECTURE (PCA): WIDEBAND DF

5c. PROGRAM ELEMENT NUMBER
62712F

5d. PROJECT NUMBER
S162

5e. TASK NUMBER
SP

6. AUTHOR(S)

E. Scott Baker and Deepak Prasanna

5f. WORK UNIT NUMBER
CA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
L3 Communications Integrated Systems
10001 Jack Finny Blvd
PO Box 6056, CBN 124
Greenville, TX 75402

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTC
3701 N. Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-259

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-562

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The aim of signals intelligence (SIGINT) is to gather information about electronic emitters in the battlefield. The goal of
the Polymorphous Computing Architecture (PCA) program was to develop the computing foundation for agile systems by
having systems that will morph to changing missions, sensor configurations, and operational constraints during a mission
or over the life of the platform. Two PCA architectures were evaluated: The Tera-op Reliable Intelligently Adaptive
Processing System (TRIPS) from the University of Texas and the Morphable Networked Architecture (MONARCH) from
Raytheon. It was determined that the architecture that was most suitable for this application was the MONARCH
architecture. The SIGINT application chosen was wideband direction finding. In this report, a discussion of a wideband
direction finding algorithm is discussed and how it was modified for a pipelined architecture. The resulting algorithm is
then mapped onto MONARCH to determine MONARCH hardware requirements.
15. SUBJECT TERMS
SIGINT, Polymorphic Architectures, Wideband Direction Finding

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

42
19b. TELEPONE NUMBER (Include area code)

CONTENTS

1 INTRODUCTION..1

2 WIDEBAND DIRECTION FINDING FLOW..2

3 MAPPING OF WIDEBAND DF ALGORITHM TO MONARCH ARCHITECTURE10

3.1 COMPUTING ARCHITECTURE ...11
3.2 SYSTEM PARAMETERS...12
3.3 COMPUTATIONAL NOTES ..13
3.4 FFT (STAGE 1) ..14
3.5 CORNER TURN (STAGE 2)..14
3.6 RQ CORRELATION MATRICES (STAGE 3)..15
3.7 RAVE AVERAGED CORRELATION MATRIX (STAGE 4) ..15
3.8 FIRST EIGENVALUE DECOMPOSITION (STAGE 5) ...15
3.9 FIRST MUSIC (STAGE 6)...16
3.10 BQ DIRECTION MATRICES (STAGE 7) ...16
3.11 SINGULAR VALUE DECOMPOSITION (STAGE 8) ...17
3.12 TQ MATRICES (STAGE 9)..17
3.13 PQ CORRELATION MATRICES (STAGE 10) ..17
3.14 RCSS CORRELATION MATRICES (STAGE 11)...17
3.15 SECOND EIGENVALUE DECOMPOSITION (STAGE 12) ...18
3.16 SECOND MUSIC (STAGE 13)...18
3.17 SUMMARY OF MAPPING ..18

4 COOLING ..21

5 WIDEBAND DF WITHIN A TIME CRITICAL TARGETING FRAMEWORK22

6 CONCLUSIONS ..24

7 REFERENCES...25

8 APPENDIX A – POSTER SESSION ...26

9 APPENDIX B - DIRECTION MATRIX FORM ..27

i

ii

10 INTELLIGENT AGENTS APPLICATION IN THE MSI SOFTWARE FRAMEWORK29

10.1 INTRODUCTION..29
10.2 BACKGROUND ON MSI..30
10.3 USE OF INTELLIGENT AGENTS IN MSI FRAMEWORK ...31
10.4 BIBLIOGRAPHY..37

FIGURES
FIGURE 1. ANTENNA ARRAY ...3
FIGURE 2. DATA CHANNELIZATION AND ROUTING (STAGE 1) ..5
FIGURE 3. CORNER TURN (STAGES 2 AND 3) ...6
FIGURE 4. COARSE DF (STAGES 4-6)...7
FIGURE 5. DIRECTION MATRICES (STAGE 7) ...8
FIGURE 6. TRANSFORMATION MATRICES (STAGES 8 AND 9) ...8
FIGURE 7. TRANSFORMATION MATRICES (STAGES 10 AND 11) ...9
FIGURE 8. FINE DF (STAGES 12 AND 13) ..10
FIGURE 9. MONARCH CLUSTER MAPPING [7]..11
FIGURE 10. MONARCH BOARD [7]..12
FIGURE 11. SIGINT SYSTEM...13
FIGURE 12. 6U CONFIGURATION..21
FIGURE 13. COOLING...22
FIGURE 14. TCT ALGORITHM FLOW..23
FIGURE 15. TCT TIMING DIAGRAM..24
FIGURE 16. POSTER SESSION...26
FIGURE 17. FORM OF THE DIRECTION MATRICES...27

TABLES
TABLE 1 SUMMARY OF CSM ALGORITHM STAGES ...4
TABLE 2 SUMMARY OF COMPUTATIONAL COST & ASIC ESTIMATES. ...19

1

1 Introduction

The aim of signals intelligence (SIGINT) is to gather information about electronic emitters in the

battlefield. The methodology to gather information includes such steps as signal detection,

signal identification and signal localization. Each of these steps is a challenge for both

communications intelligence (COMINT) and electronic intelligence (ELINT) systems.

However, for ELINT receivers, the challenge can be even more challenging in some respects

because the signal bandwidths may be much larger. If the ELINT system is to process signals

with digital signal processing equipment, it must accommodate very large data rates and a

changing signal environment. With today’s computing technology, an all-digital approach to a

real-time ELINT system is not yet feasible. To try and address this need, a look at new DARPA

technologies on the horizon is warranted.

The goal of the DARPA Polymorphous Computing Architecture (PCA) program as stated by

Robert Graybill is to

Develop the computing foundation for agile systems by establishing computing

systems (chips, networks, software) that will morph to changing missions, sensor

configurations, and operational constraints during a mission or over the life of

the platform. [2]

The PCA program included a number of teams developing computer architectures. Two of the

architectures were evaluated for use with a SIGINT application (Tera-op Reliable Intelligently

Adaptive Processing System (TRIPS) [9] and Morphable Networked Architecture (MONARCH)

[7]). After evaluations with both teams, the architecture that was most suitable for this

application was the MONARCH architecture.

The SIGINT application chosen to exercise the PCA architecture was wideband direction finding

due to its computational complexity and rich algorithm diversity. The wideband direction

2

finding application is an important part of the time critical targeting process as discussed in [1].

In this report, a discussion of the wideband direction finding algorithm developed by Wang and

Kaveh is discussed and how it was modified for a pipelined architecture [5]. The resulting

algorithm is then mapped onto the MONARCH architecture to determine the hardware

requirements.

2 Wideband Direction Finding Flow

Many modern direction finding (DF) algorithms such as Schmidt’s ubiquitous MUSIC algorithm

rely upon an underlying narrowband signal model [8]. In this case, narrowband means that the

signal bandwidth is less than one percent of the carrier frequency; wideband includes signals

with the remaining relative bandwidths greater than one percent. If the data received is

wideband in nature and the same narrowband direction finding algorithm is used, an error in the

angle of arrival estimate is incurred. Hence, a wideband DF algorithm is needed to compensate

for this model inadequacy. Among the various wideband DF techniques available, the coherent

signal subspace method (CSM) approach developed by Wang and Kaveh was chosen as the most

appropriate. The CSM method in effect transforms the wideband data into narrowband data

such that existing narrowband DF algorithms may then be used. This transformation is

manifested in the form of transformation matrices applied to channelized correlation matrices.

The technique is quite effective, but the drawback of the technique is a massive amount of

computation as the transformations are rich in matrix computations and singular value

decompositions.

The Wang and Kaveh CSM technique is given here for a pipelined implementation. The

mathematical derivations are not given herein, but can be found in the references [5]. The digital

data received at the processing system is assumed to originate from an M channel

antenna/receiver system. The pth emitter signal originates in a far field as shown in Figure 1 and

impinges upon a linear array of antennas. (The array does not have to be linear however.) The

3

output of the antenna/receiver system is an array of digital signals given by x1[n] to xM[n]. There

are 13 stages in the CSM algorithm as listed in Table 1. In the subsequent paragraphs, these

stages are discussed.

a1 a2 am aM

Emitter p
(far field)

x-axis

y-axis

ηmp

θp

Antenna M

AOA measured
CCW from x-axis

Figure 1. Antenna Array

4

Table 1 Summary of CSM Algorithm Stages

MUSIC - Fine Stage13

EVD - Fine Stage12

RCSS11

Pi10

Ti9

SVD8

Bi7

MUSIC - Coarse Stage6

EVD - Coarse Stage5

RAVE Sum of Correlation Matrices4

Rq Correlation Matrices3

zi zi
H Outer Product (corner turn)2

FFT1

DescriptionStage

In stage one of the CSM algorithm as shown in Figure 2, the digital data is channelized into one

of Q frequency bins. A number of techniques can be used for the channelization process. The

one chosen here is the standard fast Fourier transform technique (FFT). The routing of data is

also needed in stage one of the algorithm. Each of the M antenna channels {xm[n]} is first FFT’d

into Q frequency bins. Then data is organized by frequency so that vectors of antenna channels

for a given bin are created. Hence, there are Q output vectors {zq[k]} after routing is completed.

5

FFT

y1,1[k]

y1,2[k]

y1,Q[k]

f1
f2

fQ
x1[n]

FFT

y2,1[k]

y2,2[k]

y2,Q[k]

f1
f2

fQ
x2[n]

FFT

yM,1[k]

yM,2[k]

yM,Q[k]

f1
f2

fQ
xM[n]

z1[k]=

y1,1[k]
y2,1[k]
….
yM,1[k]

z2[k]=

y1,2[k]
y2,2[k]
….
yM,2[k]

zQ[k]=

y1,Q[k]
y2,Q[k]
….
yM,Q[k]

Routing

M spatial
channels

Q frequency channels

Figure 2. Data Channelization and Routing (Stage 1)

In stages two and three as shown in Figure 3, Q spatial correlation matrices {Rq[k]} are formed

by forming rank-1 vector outer products followed by a summation of them over time. For PCA,

a slight variant was used to accommodate the pipeline architecture. Instead of summing K rank-

one outer-products, an exponentially weighted correlation matrix is formed. The exponentially

weighted matrix can be updated easily and the amount of memory needed in the architecture is

reduced. The matrix at the current output is a weighting of new data and past correlation

matrices. The update is numerically stable.

6

Correlation Matrix Formation

Correlation Matrix Formation

Correlation Matrix Formation

zq[k]
Z-1 Z-1 Z-1

Σ
zq[k] zq[k]H

() ()H

() ()H

() ()H

() ()H

zq[k-1] zq[k-1]H

zq[k-2] zq[k-2]H

zq[k-K+1] zq[k-K+1]H

Correlation Matrix Formation

z1[k]

z2[k]

zQ[k]

R1[k]

R2[k]

RQ[k]

Rq[k]

Figure 3. Corner Turn (Stages 2 and 3)

In stages four through six shown in Figure 4, an average (RAVE) of the correlation matrices is

formed, and eigenvalue decomposition of the average is found, and the MUSIC direction finding

algorithm is performed. The averaging via division by Q is not actually necessary hence some

computational cost is realized. The eigenvalue decomposition is of the form RAVE = VΛVH

where V is unitary and Λ is diagonal. The eigenvalue decomposition components are sorted and

partitioned into signal and noise portions as V = [VS VN] and Λ = [ΛS ΛN]. After the eigenvalue

decomposition, the MUSIC algorithm computes the spatial spectrum at L angles. Specifically

the spectrum amplitude at angle l is given by sl = s(θl) = (|| VN
H A(l)||2)-1 where || () ||2 is the 2-

norm. The result of this MUSIC algorithm is a spatial spectrum whose peaks give a coarse

estimate of the directions of arrival. The coarse directions of arrival are needed in a subsequent

stage.

7

RAVE

Eigenvalue
Decomposition

VN

MUSIC DF Spectrum (Coarse)

Direction
Vector

θ1
A(1)

Direction
Vector

θL
A(L)

1
|| (VN)H ()||2

1
|| (VN)H ()||2

S1

SL

ΛN
To eigenvalue test

Σ

R1

RQ MUSIC

Figure 4. Coarse DF (Stages 4-6)

In stage seven shown in Figure 5, Q direction matrices {Aq} at frequencies f1 to fQ are formed

using the coarse angles found in the MUSIC stage six. (The form of these direction matrices is

given in Appendix B.) The cross products {Bq} of the direction matrices {Aq} and a direction

matrix Ao at reference frequency fo are then formed.

8

() A0
H

DOA vector
f1

Direction
Matrix

A1

DOA vector
f0

Direction
Matrix

A0

() A0
H

DOA vector
f2

Direction
Matrix

A2

() A0
H

DOA vector
fQ

Direction
Matrix

AQ

B1

B2

BQ

Direction Matrix Products Formation

Figure 5. Direction Matrices (Stage 7)

In stages eight and nine shown in Figure 6, the transformation matrices are built by first

computing the singular value decomposition of the Bq matrices (i.e., Bq= Vq Dq Uq
H where Vq and

Uq are left and right unitary factors and Dq is diagonal) that were formed in stage 6 and then

forming a cross product of the left and right singular vector matrices. Each of the resulting

transformation matrices are of the form Tq = Vq Uq
H.

Singular
Value
Decomposition

B1
(A) (B)HU1

V1
A

B

T1

Singular
Value
Decomposition

BQ
(A) (B)HUQ

VQ
A

B

TQ

Transformation Matrices Creation

Figure 6. Transformation Matrices (Stages 8 and 9)

9

In stages ten and eleven shown in Figure 7, the transformation matrices are now applied to the

original correlation matrices that were formed after the FFT stage. Each of the transformed

correlation matrices {Pq} at frequencies fq are now focused to the reference frequency fo. The

focusing allows them to all be added in a spatially coherent fashion.

CSS Correlation Matrix Formation

(A) (B) (A)H
A

B

T1

R1

P1

(A) (B) (A)H
A

B

TQ

RQ

PQ

Σ RCSS

Figure 7. Transformation Matrices (Stages 10 and 11)

The last two stages in Figure 8, the MUSIC algorithm is now performed on the transformed

correlation matrix. The result is an enhanced estimate of where the angles of arrival are for the P

emitters.

10

RCSS Eigenvalue
Decomposition

VN

MUSIC DF Spectrum (Fine)

Direction
Vector

θ1
A(1)

Direction
Vector

θL
A(L)

1
|| (VN)H ()||2

1
|| (VN)H ()||2

S1

SL

ΛN
To eigenvalue test

Figure 8. Fine DF (Stages 12 and 13)

A summary of stages one though thirteen is given in the poster presentation which can be found

in Appendix A.

3 Mapping of Wideband DF Algorithm to MONARCH Architecture

In this section, the computing architecture is first discussed followed by a description of the

SIGINT system parameters. Some computational cost notes are presented followed by the

computational cost for each stage in the algorithm. A summary of the computational cost is then

presented with a comparison of MONARCH to the PowerPC. The PowerPC was chosen as a

point of comparison because it is a primary building block to many of Mercury Computer

Systems high power parallel processing machines to which MONARCH must compete.

Mercury is arguably the leader in VME parallel processing systems and are used frequently in

the SIGINT market.

11

3.1 Computing Architecture

In the early phase of this contract effort, two of the PCA architectures were evaluated for the

SIGINT application. The Tera-op Reliable Intelligently Adaptive Processing System device is

being designed by the University of Texas at Austin team. We met with them at the outset and

after examining our application, they determined the MONARCH would be more suitable due to

the high data rates of the SIGINT application. The Morphable Networked Architecture device is

being designed by the team consisting of USC Information Sciences Institute, Raytheon,

Mercury, Georgia Tech and Exogi. One of the primary goals of their MONARCH is “to support

multiple classes of military missions with a single morphable architecture” [7]. The MONARCH

device cluster mapping is shown in Figure 9 with all of the Application-Specific Integrated

Circuit (ASIC) specifications listed as well. A single MONARCH ASIC is projected to process

64 GFLOPS per second sustained when all resources are fully utilized. A MONARCH board

consists of four MONARCH ASIC devices. It is shown in Figure 10 [7].

ED R P

ED R P

ED R P

EDRP

EDRP

EDRP

RIO

P

Memory
Interface

P

P P

PP

CM

ROM
Port

DIFLs

DIFLs

DIFLs

DIFLs DIFLs

DIFLs

DIFLs DIFLs

DIFLsDIFLs

XPIRX

XPIRXMemory
Interface

P

DIFL =Differential IFL

12 Arithmetic Clusters
96 adders (32 bits) fixed
and float
96 multipliers

31 Memory Clusters
124 dual port memories
256 wx32 bits each
(128KB)
248 address generators

6 RISC processors
12 MBytes on chip DRAM
RapidIO (serial) interface
14 DMA engines
20 DIFL ports (1.3 GB/s ea)
On-chip ring 40 GB/s
Bulk memory interface (8
GB/s BW)
Clock 333 MHz
Power 8-50 W (nom)
Throughput 64 GOPS peak
Multiple programming
modes

Reconfigurable, data flow
RISC scalar
RISC SIMD (Altivec like)

Status (3Q2004)
Emulator 4Q04
VHDL in simulation
Preliminary tools 7/04
90 nm bulk CMOS

Figure 9. MONARCH Cluster Mapping [7]

12

DDIFL

8 DIFL

PCI
RIO/PCI
Bridge

(Primary)

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

3.3 V
REG

2.5 V
REG

1.2 V
REG

Monarch

Monarch Monarch

Monarch

RIO

333 MHz
OSC

JTAG

PCI
RIO/PCI
Bridge

(Redundant)

8 DIFL DIFL(test)
DIFL(test)
DIFL(test)
DIFL(test)

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

1/2 GB
DRAM

Figure 10. MONARCH Board [7]

3.2 System Parameters

The SIGINT system as shown below in Figure 11 consists of several M channel antenna arrays

that are selectable with an RF distribution panel. The RF frequencies are down-converted to first

and second-IF frequencies in the block down converter and coherent tuner. The second-IF

frequency signals are then input to the A/D converter bank. The resulting digital signals are then

processed by the computing system which contains the MONARCH cards.

13

RFD

Block
Down

Convert
Coherent

Tuner

Computing
System

GPS

A/D

Figure 11. SIGINT System

A set of parameters has been chosen for the wideband DF application to be that of a problem that

cannot be solved with today’s computing technology. An even more challenging problem can be

realized by increasing the bandwidth of the system or the number of antenna channels of the

system. For this application, a bank of M = 8 antenna/receiver systems is assumed. The inputs

to the A/D converters are IF frequencies of 160 MHz and band-limited to 80 MHz. The IQ

sample rate is assumed to be 80 MHz (Ts = 12.5 ns) and the real and imaginary part of the

complex IQ sample are each two bytes. The resulting data rate for each A/D converter is hence

320 MB/sec; the aggregate data rate is 2.56 GB/sec.

3.3 Computational Notes

A complex multiply of the form (a + jb)(c + jd) requires CM = 6 flops. A complex addition of the

form (a+jb)+(c+jd) requires CA = 2 flops.

14

3.4 FFT (Stage 1)

The Fast Fourier transform performs the data channelization. The computation required for the

FFT is based on the number of frequency bins and the data rate. The number of frequency bins

Q is set by defining a bin width to be equal to the definition of what a narrowband signal is. In

this case, a narrowband signal is defined as a signal whose bandwidth is less than one percent of

the RF carrier frequency. The low end of the ELINT spectrum is fc = 500 MHz, hence the bin

width should be no larger than BWBIN < .01* fc = 5 MHz. For an 80 MHz bandwidth then, the

number of bins is equal to about 20 bins. For this project, the number of bins was chosen as a Q

= 16 which violates the narrowband assumption in a minor, but very acceptable amount.

The FFT can then be easily computed every Q samples assuming no FFT overlap is used. The

number of flops for an FFT is given by the following formula:

 CFFT = 5 * Q * M * log2(Q) (M Q-point FFT’s)

 RFFT = CFFT / TQ (Rate in flops / second)

Where TQ = Q Ts is the time it takes to compute a single FFT for the Q samples.

3.5 Corner Turn (Stage 2)

At each frequency bin q, a rank-one outer product of a length M vector zq is made. This requires

M2 complex multiplications if symmetry is not taken advantage of. To be conservative in the

hardware estimates, symmetry will not be taken into account. A scaling of the vector zq by an

exponential fading constant is also required but the cost is minor so not added. The resulting

flops for the corner turn becomes

 CCT = Q * M2 * CM (Q rank-1 corner turns)

 RCT = CCT / TQ (Rate in flops / second)

15

3.6 Rq Correlation Matrices (Stage 3)

The rank-one outer products (zq zq
H) are then added to a scaled correlation matrix Rq. The

resulting operation is of the form: Rq α * Rq + (1-α) * (zq zq
H) where α is a scaling factor

just under unity. The cost of the scaling factor and the cost savings of symmetry are ignored for

simplicity and the errors are negligible. The resulting flops for the correlation matrices becomes

 CCM = Q * M2 * CA (Q MxM matrix additions)

 RCM = CCM / TQ (Rate in flops / second)

3.7 RAVE Averaged Correlation Matrix (Stage 4)

The sum of the Q Rq matrices is then summed together to form a single non-coherent correlation

matrix. A division of the resulting summed matrix by Q is not actually needed for the wideband

DF operation so it is not done. The resulting matrix is of the form: RAVE RAVE + R1 + R2 + …

+ RQ. The resulting flops for the averaged correlation matrix becomes

 CRAVE = Q * M2 * CA (Q MxM matrix additions)

 RRAVE = CCM / TQ (Rate in flops / second)

3.8 First Eigenvalue Decomposition (Stage 5)

The eigenvalue decomposition of the averaged correlation is then taken. The resulting

decomposition is of the form: RAVE = V S VH where V is partitioned into a signal and noise

subspace matrix V = [Vs Vn] and S is a diagonal matrix of eigenvalues sorted in descending

order. The EVD QR algorithm cost is equivalent to fourteen MxM matrix multiplications which

is O(M3) flops. This is not realistic in an environment where the EVD is fairly stationary from

block to block. A subspace tracking algorithm can be used in place of a QR algorithm. An

O(M2) algorithm is more feasible. So, for this project, the factor of fourteen is not used. The

resulting flops for the averaged first EVD becomes

 CEVD1 = M2 * (M * CM + (M-1)CA) (MxM matrix multiply)

16

 REVD1 = CEVD1 / TQ (Rate in flops / second)

3.9 First MUSIC (Stage 6)

The MUSIC algorithm includes sweeping the spatial angular spectrum by multiplying the MxM-

P noise subspace matrix Vn computed in the previous stage with an M x 1 direction vector A(θ).

P is the number of signals detected in the signal environment. The number P is found as the

number of eigenvalues in the matrix S larger than a threshold. The full sweep of the spatial

spectrum is too computational to perform in a single TQ interval as well as not necessary.

Instead, the full spectrum is swept every H blocks. The number of angles examined is L1. At

each angle, in addition to the matrix-vector multiply, a two norm of the resulting vector is

computed. The resulting flops for the first MUSIC becomes

 CMUS1 = [(M-P) * (M *CM + (M-1)CA) + M] * L1 / H (Mat-vec mult + 2-norm)

 RMUS1 = CMUS1 / TQ (Rate in flops / second)

3.10 Bq Direction Matrices (Stage 7)

The Bq direction matrices are formed as the product of a direction matrix at a reference

frequency and a direction matrix at the qth frequency. The form of the direction matrix is given

in Appendix B. There are a total of Q matrix multiplies of matrices of size M x P. The resulting

flops for the Bq computation becomes

 CB = Q * M2 * [P * CM + (P-1)CA)]

 RB = CB / TQ (Rate in flops / second)

17

3.11 Singular Value Decomposition (Stage 8)

The SVD computes the factorization Bq = Uq Dq Vq
H . The computational cost is the same as the

EVD cost. It will be assumed that the transformation matrices only need to be updated every Q

blocks. Hence, the cost of the EVD and SVD are the same.

 CSVD = CEVD1

 RSVD = REVD1

If further accuracy was required (and this is not likely), then all Q SVD’s can be computed at

each block of data (i.e., every TQ seconds).

3.12 Tq Matrices (Stage 9)

The Tq matrices are formed as the product of the left and right SVD factors found in the previous

stage, or Tq = Vq Uq
H. There are Q M x M matrix multiplications. The resulting flops for the Tq

computation becomes

 CT = Q * M2 * [M * CM + (M – 1) * CA] (Q matrix multiplies)

 RT = CT / TQ (Rate in flops / second)

3.13 Pq Correlation Matrices (Stage 10)

The Pq correlation matrices are formed as the Hermitian product Pq = Tq Rq TqH. Forsaking

symmetry, the computation takes double that of forming the matrix product in stage 9. Hence,

the resulting flops for the Pq computation becomes

 CP = 2 * CT

 RP = 2 * RT

3.14 RCSS Correlation Matrices (Stage 11)

The coherent signals subspace correlation matrix requires the addition of Q Pq matrices. This

requires the following flops

 CRCSS = (Q – 1) * M2 * CA (Q – 1 matrix additions)

18

RRCSS = CRCSS / TQ (Rate in flops / second)

3.15 Second Eigenvalue Decomposition (Stage 12)

The second eigenvalue decomposition requires exactly the same computation as the first one and

is given by

 CEVD2 = CEVD1

 REVD2 = REVD1 (Rate in flops / second)

3.16 Second MUSIC (Stage 13)

The second MUSIC cost is exactly the same as the first MUSIC except that there are L2 / H

spatial spectrum points calculated every TQ seconds.

 CMUS2 = [(M-P) * (M *CM + (M-1)CA) + M] * L2 / H

 RMUS2 = CMUS2 / TQ (Rate in flops / second)

3.17 Summary of Mapping

In Table 2, a summary of the computational cost is given for the 80 MHz bandwidth system with

M = 8 channels and Q = 16 FFT bins. The first column is the stage number with each of the 13

stages being described in Sections 3.4 through 3.16. The second column describes the algorithm

step for that stage. The third column gives the algorithmic computational cost in GFLOPS on a

sustained basis assuming that wideband direction finding estimates are computed continuously.

The fourth column is the number of MONARCH ASIC devices required per stage. The

determination of the number of devices needed was based upon the connectivity of the devices

and the peak sustainable capability of the devices. It was also dependent on the amount of

memory required at each stage. A MONARCH ASIC chip is projected to sustain 64 GFLOPS

maximum when all resources are fully utilized. Each MONARCH board is projected to have

19

four ASIC devices and memory chips. Each ASIC device is projected to have six reduced

instruction set computer (RISC) processors with 2MB of Dynamic Random Access Memory

(DRAM) and a single field programmable computing array (FPCA). Each FPCA is projected to

have 12 arithmetic clusters and 31 memory clusters. For each of the thirteen stages, the number

of memory clusters and arithmetic clusters needed was estimated as well as examining the fan-

in/fan-out type connectivity needed between stages. These estimates were then used to

determine the resulting number of ASIC devices needed for each stage. This result is shown in

the fourth column.

In summary, a total of 328 GFLOPS / second sustained was required to handle this problem.

With the data routing and correlation matrix delay needed between the narrowband DF to

wideband DF sections (see poster for delay box description), a total of 32 ASIC chips is needed.

This is a conservative estimate. The poster in the appendix shows the mapping of the algorithm

onto the hardware.

Table 2 Summary of Computational Cost & ASIC Estimates.

32328.58TOTALS
689.43MUSIC - Fine Stage13

119.84EVD - Fine Stage12

09.6RCSS11

439.68Pi10

24.96Ti9

619.84SVD8

21.76Bi7

459.63MUSIC - Coarse Stage6

119.84EVD - Coarse Stage5

110.24RAVE Sum of Correlation Matrices4

210.24Rq Correlation Matrices3

230.72zi zi
H Outer Product (corner turn)2

112.8FFT1

ASICsGFLOPSDescriptionStage

20

A PowerPC G5 processor (e.g., an MPC7447A) running at 2 GHz has a peak performance of 8

GFLOPS per second, but that would not be attainable in practice. If peak performance is

assumed to be sustained, then 41 G5 processors would be required in comparison to 32

MONARCH ASIC devices. However, if a more realistic sustained performance is assumed, say

2 GFLOPS per second, then 164 G5 processors would be needed. With four G5 processors per

6U board, this would require 41 circuit cards plus a controller card. (This requires two 6U

chassis.) The MONARCH arrangement by comparison requires 8 circuit cards and no controller

card. Hence, the hardware cost for the G5 arrangement would be about 5X the cost of the

MONARCH arrangement, delineated as follows:

• Board cost is expected to be comparable, hence the overall cost of MONARCH

board set would be 20% of that of the G5 set. However, there is an additional

controller card single board computer that is needed for the G5 arrangement too.

• The chassis cost for the MONARCH system is anywhere from ½ to 1/5 less than

the G5 system. The total number of slots for the MONARCH system would be

approximately 16 assuming 8 slots for the receivers and 8 for MONARCH

boards. The total number of slots for the G5 system would be approximately 50

assuming 8 slots for receivers, 41 for G5 boards and 1 controller card. So, one

chassis would be needed for the MONARCH system and three for the G5 system.

Other arrangements are of course possible.

• Size reduction would be a factor of three based on the number of chassis required.

If special chassis were designed, then a space savings of five could be achieved.

• The power draw will be much higher for the G5 compute portion system at

around a ratio of 41 to 8 assuming comparable power of a G5 at 2GHz and a

MONARCH ASIC. Hence, there is a 5X power savings for the compute portion.

Software development time is probably comparable; though mapping data across two or more

chassis is a bit more complex for the G5 case.

21

4 Cooling

It has been estimated that the MONARCH ASIC devices when operating at full capacity will

draw 30 watts of power. There are four MONARCH ASIC devices on a 6U MONARCH circuit

board. With all of the ancillary devices, a total of 150 watts could be drawn. This is a very

conservative worst case type of estimate. An eight board configuration as shown in Figure 12

would then consume up to 1.2 KW. This type of power consumption is too high for a standard

VME chassis and requires a non-VME configuration.
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H
M

O
N

AR
C

H

6U Chassis

Peak Power = 150W / Board

Figure 12. 6U Configuration

There are several types of cooling that can be used including forced convection, liquid cooled

core, and spray cooling. Forced convection has the advantage that it is a proven technology and

has an easy COTS insertion. The main disadvantage with forced convection air cooling is that

heat sinks will have to be placed on each of the MONARCH boards. The heat sinks require an

extra amount of volume besides that available in a single slot. Hence, for the eight board

configuration, a sixteen slot chassis is needed. Will forced convection be able to keep up? Yes,

it will. This was demonstrated with a device similar to the MONARCH device. It was

demonstrated at two power levels including 27 watts and 35 watts. Infrared images of the device

were taken and shown below in Figure 13. The temperature scales are shown on the right hand

vertical axis and the power levels are indicated at the bottom of the figures. The air flow was

kept at a constant 800 ft/ min. The device dimensions are also indicated and it is about the same

22

size as the expected MONARCH ASIC. For both cases in Figure 13, temperatures stay under

typical operating temperatures not exceeding 55o C.

Figure 13. Cooling

5 Wideband DF within a Time Critical Targeting Framework

Wideband direction finding is but a single step in the time critical targeting process. Time

critical targeting (TCT) is the overarching goal to quickly and precisely detect, locate and

identify signal emitters on the electronic battlefield. This broader picture of TCT is discussed

more thoroughly in the reference paper [1] though a brief review is given here for the UAV case.

In Figure 14, a diagram showing the TCT process for a typical ELINT scenario is presented.

The mode of operation of the MONARCH device is given in the legend in the upper left. There

are 8 data input streams clocked at an 80MHz rate with 4 bytes per complex IQ sample. (Even

more challenging bandwidths are around the corner.) The data originates in a fixed point format

and is initially calibrated (Receiver Cal box) with an equalization algorithm. For continuous

wave signals, the data is formatted into a floating point format (Format box) and channelized

with an FFT (Channelization box). The channelized data is then corner turned into a correlation

matrix (Spatial Corr box). Eigenvalue decompositions (EVD) and the direction finding

23

(Wideband/Narrowband DF) are then performed. After the signal is found, it is classified and

identified. For pulsed signals, the pulsed data is encoded (Pulse Encoding box - measuring pulse

width, amplitude, frequency, etc.) and then sent to the deinterleaving algorithm which sorts

pulses into groups sent by a given emitter. The pulsed signals are also classified and identified.

For both pulsed and CW signal cases, the results are sent with a communications system to a

remote platform such as a wide-body reconnaissance plane.

Pulse Encoding
Receiver Cal

Format Channelization
Channel #8

80MHz Analog Bandwidth
16 bits I and 16 bits Q
320 Mbytes/sec data rate
8 Sensor Channels

Pulse Encoding
Receiver Cal

Format Channelization
Channel #1

PDW
Memory
Buffer__

Spatial Correlation
Spectral Search

IQ
Memory
Buffer__

To A

A EVD
Narrowband DF

Wideband DF

To B

B

Classify
Identify

Pulse Deinterleaving Classify
Identify Communication

To Transmitter

Streamed

ThreadedStreamed
Fixed Pt

Figure 14. TCT Algorithm Flow

In Figure 15, a diagram of computing assets used vs. time is given. We can assume that about

1/3 of the computing assets are always used for navigation of the UAV and for hardware control.

These functions will be performed on the RISC portions (threaded) of the MONARCH devices.

The FPCA portions (streamed) of the MONARCH device perform the majority of the direction

finding activities. The RISC portions are also used for pulse deinterleaving and identification

activities. It will vary from mission to mission, but in this case about 25 updates of TCT

activities are communicated off-board to the remote platform. Each update utilizes the SIGINT

24

system to about the 75% capacity level. Estimates of computation were quite conservative

before, so a 75% estimate is realistic. Also, the wideband DF algorithm is assumed to take the

largest burst of computation which is also realistic. After 25 TCT updates, communication with

the remote platform occurs in burst fashions.

C
om

pu
tin

g
A

ss
et

s (
%

 u
se

d)

100

75

50

25

0
Navigation and Hardware Control

time0 15 30 45 60 75 90 2m 3m 4m 5m

2 sec
update

Streamed

Threaded

Unused

2 sec
update

Streamed
Fixed Pt

Pulse Encoding

Receiver Cal Format Channelization

Spatial Correlation

Spectral Search

EVD

Narrowband DF Wideband DF

IQ Identify

Pulse Deinterleaving Pulse Identify

Communication

Registration Enhancement
Communication

tim
e

Detailed Timeline

Detailed Timeline

tim
e

 Figure 15. TCT Timing Diagram

6 Conclusions

A challenging SIGINT application, namely wideband direction finding, was chosen as one of the

test vehicles for the DARPA PCA program. Currently, ELINT systems are not able to perform

digital wideband direction finding in a practical manner because of the large number of

processors needed to handle the high data rates due to large signal bandwidths. A detailed

computational analysis and data flow of the wideband direction finding algorithm was

completed. The algorithm was mapped into a pipeline format and onto the MONARCH

25

architecture. Using the computational models and data flow, the MONARCH system

architecture was constructed. USC/ISI was instrumental in determining this layout and

architecture. It was found that the resulting MONARCH based SIGINT architecture was well

suited for this application. By using MONARCH boards instead of G5 PowerPC boards, a

conservative factor of five in reduction of board count can be realized. Additionally, since the

G5 PowerPC (MPC7447A) has a power consumption on the same order as the MONARCH

ASIC, the power savings will also be approximately a factor of five. Similarly, the weight

reduction will be reduced by a factor of five; however, since less power is needed, then the

weight is further reduced by eliminating power supplies in the chassis. Furthermore, only one

chassis instead of say four (or five at most) will further reduce the weight. In addition, the

complexity of interchassis communication is no longer necessary.

7 References

[1] E. Scott Baker. January, 2002. “A MONARCH Application: Time Critical Targeting”, G4899.00.26,
L-3 Communications Integrated Systems General Report

[2] Robert Graybill. March 16-17, 2004. “Polymorphous Computing Architecture: 6th PI Meeting”,
Baltimore, Maryland

[3] Hsiensen Hung and Mostafa Kaveh. 1988. “Focussing Matrices for Coherent Signal-Subspace
Processing”, IEEE Trans. On ASSP, vol 36, (August):1272-81.

[4] S. Sivanand, Jar-Ferr Yang, and M. Kaveh. 1991. “Focusing Filters for Wide-Band Direction
Finding”, IEEE Trans. On SP, Vol 39 (February): 437-45.

[5] H. Wang and M. Kaveh. 1985. “Coherent Signal-Subspace Processing for the Detection and
Estimation of Angles of Arrival of Multiple Wide-band Sources”, IEEE Trans ASSP, vol. ASSP-33, No. 4
(August): 823-31.

[6] Mati Wax, Tie-Jun Shan, and Thomas Kailath. 1984. “Spatio-Temporal Spectral Analysis by
Eigenstructure Methods”, IEEE Trans. On ASSP, vol ASSP-32, No. 4, 817-27.

[7] Mike Vahey and John Granacki. August 2004. “MONARCH”, PCA PI Meeting, Monterrey, CA.

[8] Ralph Schmidt. March 1986. “Multiple emitter location and signal parameter estimation”, IEEE
Transactions on Antennas and Propagation, Volume 34, Issue 3. 276-80

26

[9] D. Burger, S.W. Keckler, K.S. McKinley, et al. July 2004. "Scaling to the End of Silicon with EDGE
Architectures," IEEE Computer, Volume 37, Issue 7, 44-55.

8 Appendix A – Poster Session

A DARPA PCA PI meeting was held in March of 2005 in Scottsdale Arizona. A poster made

from Figure 16 below was presented at that meeting.
Scott Baker
L-3 Communications Integrated Systems

Jeff La Coss
USC Information Sciences InstituteSIGINT Application for PCAScott Baker

L-3 Communications Integrated Systems
Jeff La Coss
USC Information Sciences InstituteSIGINT Application for PCA

Algorithm Description

Hardware Implementation

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

M
O

N
AR

C
H

6U Chassis

Peak Power = 150W / Board

RFD

Block
Down

Convert
Coherent

Tuner

Computing
System

GPS

A/D

SIGINT System

Operational Cost Architecture

RFD

Block
Down

Convert
Coherent

Tuner

Computing
System

GPS

A/D

SIGINT System

Operational Cost Architecture

Wideband Direction Finding Application
Goal

Determine computing resources needed for an important SIGINT application
Wideband DF for ELINT

An important step in Time Critical Targeting
New radars use wideband signal types
Conventional DF equipment assumes narrowband signals, leading to errors
Computationally demanding
Not feasible with 2005 computing technology

System Parameters
Antennas and Receivers: 8 Channels
Typical DF frequency band: 0.5 – 40GHz
Sampling rate: 80 MHz complex (320MB/sec)
Aggregate data rate: 2.56 GB/sec
Processing estimate: ~330 GFLOP/s

Wideband Direction Finding Application
Goal

Determine computing resources needed for an important SIGINT application
Wideband DF for ELINT

An important step in Time Critical Targeting
New radars use wideband signal types
Conventional DF equipment assumes narrowband signals, leading to errors
Computationally demanding
Not feasible with 2005 computing technology

System Parameters
Antennas and Receivers: 8 Channels
Typical DF frequency band: 0.5 – 40GHz
Sampling rate: 80 MHz complex (320MB/sec)
Aggregate data rate: 2.56 GB/sec
Processing estimate: ~330 GFLOP/s

Representative
Cooling

32328.58TOTALS

689.43MUSIC - Fine Stage13

119.84EVD - Fine Stage12

09.6RCSS11

439.68Pi10

24.96Ti9

619.84SVD8

21.76Bi7

459.63MUSIC - Coarse Stage6

119.84EVD - Coarse Stage5

110.24
RAVE Sum of Correlation
Matrices4

210.24Rq Correlation Matrices3

230.72zi zi
H Outer Product (corner turn)2

112.8FFT1

ASICsGFLOPSDescriptionStage

32328.58TOTALS

689.43MUSIC - Fine Stage13

119.84EVD - Fine Stage12

09.6RCSS11

439.68Pi10

24.96Ti9

619.84SVD8

21.76Bi7

459.63MUSIC - Coarse Stage6

119.84EVD - Coarse Stage5

110.24
RAVE Sum of Correlation
Matrices4

210.24Rq Correlation Matrices3

230.72zi zi
H Outer Product (corner turn)2

112.8FFT1

ASICsGFLOPSDescriptionStage

Form Transformation
Matrix
(Cross Product)

Form Transformation
Matrix
(Cross Product)

Form Transformation
Matrix
(Cross Product)

FFTx1[n]

FFTx2[n]

FFTxM[n]

Routing

Q Bins

Q Bins

Q Bins

M signals
bin 1

M signals
bin 2

M signals
bin Q

z1 z1
H

z2 z2
H

zQ zQ
H

Σ
MxM Matrix

store

Σ EVD
RAVE

MUSIC
Direction
Finding
Algorithm

Vs, Vn, Λ
θ1
θ2

θL

Spatial
Spectrum
Peak
Search

φ1
φ2

φP

COARSE
Direction of Arrival
Vector

φ

DF
Matrix

DF
Matrix

φ

φ

fref

f1

f2

fref

B1

B2

SVD

SVD

T1

T2

V1

V2

U1

U2

DF
Matrix

φ
fQ

fref

BQ

TQ

VQ

UQ

P1

P2

PQ

Σ
RCSS FINE

Direction of Arrival
Vector

φ

D

1. FFT Routing 2. Rank-1 Outer
Product

3. Correlation
Matrices

5. Eigenvalue
Decomposition

6. First MUSIC4. Averaged
Correlation

Matrix

7. Direction Matrices 8. Singular Value
Decomposition

9. Ti Matrices 10. Pi Matrices 11. RCSS
Correlation Matrix

12. Eigenvalue
Decomposition

13. Second MUSIC

Σ
MxM Matrix

store

Σ
MxM Matrix

store

R1

R2

RQ

EVD

MUSIC
Direction
Finding
Algorithm

Vs, Vn, Λ
θ1
θ2

θL

Spatial
Spectrum
Peak
Search

φ1
φ2

φP

SVD

D D D=Delay

Form Transformed
Correlation Matrix
(Herm Cross Product)

Form Transformed
Correlation Matrix
(Herm Cross Product)

Form Transformed
Correlation Matrix
(Herm Cross Product)

Form Transformation
Matrix
(Cross Product)

Form Transformation
Matrix
(Cross Product)

Form Transformation
Matrix
(Cross Product)

FFTx1[n]

FFTx2[n]

FFTxM[n]

Routing

Q Bins

Q Bins

Q Bins

M signals
bin 1

M signals
bin 2

M signals
bin Q

z1 z1
H

z2 z2
H

zQ zQ
H

ΣΣ
MxM Matrix

store

Σ EVD
RAVE

MUSIC
Direction
Finding
Algorithm

Vs, Vn, Λ
θ1
θ2

θL

Spatial
Spectrum
Peak
Search

φ1
φ2

φP

COARSE
Direction of Arrival
Vector

φ

DF
Matrix

DF
Matrix

φ

φ

fref

f1

f2

fref

B1

B2

SVD

SVD

T1

T2

V1

V2

U1

U2

DF
Matrix

φ
fQ

fref

BQ

TQ

VQ

UQ

P1

P2

PQ

Σ
RCSS FINE

Direction of Arrival
Vector

φ

D

1. FFT Routing 2. Rank-1 Outer
Product

3. Correlation
Matrices

5. Eigenvalue
Decomposition

6. First MUSIC4. Averaged
Correlation

Matrix

7. Direction Matrices 8. Singular Value
Decomposition

9. Ti Matrices 10. Pi Matrices 11. RCSS
Correlation Matrix

12. Eigenvalue
Decomposition

13. Second MUSIC

ΣΣ
MxM Matrix

store

ΣΣ
MxM Matrix

store

R1

R2

RQ

EVD

MUSIC
Direction
Finding
Algorithm

Vs, Vn, Λ
θ1
θ2

θL

Spatial
Spectrum
Peak
Search

φ1
φ2

φP

SVD

D D D=Delay

Form Transformed
Correlation Matrix
(Herm Cross Product)

Form Transformed
Correlation Matrix
(Herm Cross Product)

Form Transformed
Correlation Matrix
(Herm Cross Product)

A/D ASIC

1. FFT

ASIC

ASIC

2. zi zi
H

ASIC

ASIC

3. RQ

ASIC ASIC

4. RAVE 5. EVD

ASIC

ASIC

6. MUSIC

ASIC

ASIC

ASIC

ASIC

7. Bi

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

8. SVD

ASIC

9. Ti

ASIC

ASIC

ASIC

10. Pi

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

13. MUSIC

11. RCSS
12. EVD

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

Mem

Mem

MONARCH Board

R

R

R

FPCA

ASIC

R=RISC

ASIC

ASIC

Mem

Mem

R

R

R

Device & Board Level Details

A/D ASIC

1. FFT

ASIC

ASIC

2. zi zi
H

ASIC

ASIC

3. RQ

ASIC ASIC

4. RAVE 5. EVD

ASIC

ASIC

6. MUSIC

ASIC

ASIC

ASIC

ASIC

7. Bi

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

8. SVD

ASIC

9. Ti

ASIC

ASIC

ASIC

10. Pi

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

13. MUSIC

11. RCSS
12. EVD

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

ASIC

Mem

Mem

MONARCH Board

R

R

R

FPCA

ASIC

R=RISC

ASIC

ASIC

Mem

Mem

R

R

R

Device & Board Level Details

Figure 16. Poster Session

27

9 Appendix B - Direction Matrix Form

Direction vectors and direction matrices have the form shown in Figure 17. For a direction

vector, only one column is realized. For a direction matrix, all P columns are realized. The

mathematical details are less important, but what is important is to realize that these vectors and

matrices can be pre-computed and stored in memory.

()

()

()

()

()

() ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−−−

−−−

−−−

−−−

−−−

−−−

PMADDCk

PADDCk

MADDCk

ADDCk

MADDCk

ADDCk

dj

dj

dj

dj

dj

dj

i

e

e

e

e

e

e

θωωω

θωωω

θωωω

θωωω

θωωω

θωωω

)(

)(

)(

)(

)(

)(1

2

21

1

11

MMMA

()
c
aad m

m
θθ cos)(1−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Θ

Pθ

θ
θ

2

1

= DOA vector

Figure 17. Form of the Direction Matrices

28

 ATTACHMENT

 Intelligent Agents Application in the

Morphware Stable Interface (MSI) Software Framework

29

10 Intelligent Agents Application in the MSI Software Framework

This attachment addresses the high level implementation of intelligent agents within the MSI

software framework in order to provide an autonomous optimized reconfiguration capability in

dynamic environments.

10.1 Introduction

The Polymorphous Computing Architecture (PCA) program is an initiative to create

embedded computing systems that can adapt to dynamic mission parameters and operational

conditions, eliminate data processing redundancies, and reduce development costs and time [1].

PCA architectures consist of both hardware and software aspects. The hardware embedded

computing elements are composed of specialized processors, memories, caches, and network

elements that can morph, meaning that they dynamically reconfigure themselves based on input

parameters. The PCA Morphware software is responsible for managing the morphing of PCA

hardware, as well as the decision and process of how and when to morph. One of the key

requirements for successful implementation of PCA within a large complex system is to

autonomously manage compute resources in order to dynamically optimize the total system

effectiveness – without this autonomous capability, the system resource allocation derived from

an original static optimization may become significantly sub-optimal in a real environment

where compute requirements are dynamic. Currently, the PCA Morphware does not have any

such mechanism to dynamically manage compute resource allocation; nor has such a mechanism

been suggested by the Morphware community before now.

Note that any mechanism for PCA autonomous resource allocation in a dynamic

environment must take into account the fact that this type of multiple-input multiple-output

control and management requires a high-level of abstraction to encompass all of the possible

combinations and configurations of the PCA hardware. In addition, any such mechanism must

30

take into account additional factors such as the priority of the change defined by the PCA

application, and the time and resources required to morph [2]. However, this dynamic resource

allocation mechanism cannot be embedded with overly specific hardware information without

loss of decreased portability and scalability, two essential requirements of PCA. On the other

hand, if this dynamic resource allocation mechanism does not contain any kind of hardware

resource information, then it will not be able to manage the morphing requirements of PCA

given by [3]. One approach to dynamically managing heterogeneous reconfigurable compute

resources is to use intelligent agents based on software agent technology along with team

behavior and optimization algorithms as discussed in [4]. This section examines the application

of the concept described in [4] to the PCA and Morphware architecture.

10.2 Background on MSI

The PCA team developed the Morphware Stable Interface (MSI) as an application

development framework with the goals of optimizing application performance, handling

hardware morphing, and allocating resources while trying to preserve abstraction and optimize

portability. However, the Morphware Forum has not yet specified the details or specifications on

the implementation of PCA software architecture for autonomous dynamic management of the

morphing PCA hardware. The Morphware Forum itself is described as follows [2]:

The Morphware Forum is a joint activity of the participants in DARPA’s Polymorphous
Computing Architectures (PCA) program, as well as other interested developers of embedded
computing hardware, software, and application technology. The purpose of the Morphware
Forum is to define an open, portable software environment for the development of high
performance applications on PCA platforms. Morphware Forum products and information are
available at www.morphware.org.

The MSI is a multi-level component based architecture that is intended to support several

high-level languages. The MSI architecture classifies the development of PCA applications into

two categories. The first category is to create optimal instantiations of high-level application

software to run on PCA hardware configurations. The second is managing the competing goals

between hardware elements in a PCA system to choose the optimal platform configuration and

31

composition of component instantiations [3]. As mentioned above, it is the combination of PCA

application requirements, the framework of the MSI, and the theoretical nature of resource

allocation problem that necessitate the use of Intelligent Agent (IA) architecture concepts. The

duration of this section will discuss the application of existing IA architectures, the MSI

components and their realization using intelligent agents.

The MSI is similar to the Object Management Group’s (OMG) Common Object Request Broker

Architecture (CORBA) [5][6][7]. Although CORBA provides many of the software

requirements required by the PCA architecture, it has not been fully adopted in the MSI

architecture because it does not address certain key aspects of PCA such as metadata modeling.

CORBA specifies the design of component-based Object Request Brokers (ORBs). A broker

arbitrates communication between objects (e.g., agents). The ORB is responsible for all of the

mechanisms required to find the object implementation for the request, to prepare the object

implementation to receive the request, and to communicate the data making up the request. The

interface the client sees is completely independent of where the object is located, what

programming language it is implemented in, or any other aspect that is not reflected in the

object’s interface [5]. CORBA is a service-oriented architecture based on object-oriented (OO)

methodologies that can specify requirements for agent architectures; and, in fact, intelligent

agent architectures have been implemented using CORBA-based models [8].

10.3 Use of Intelligent Agents in MSI Framework

This section addresses the question: How would intelligent agent technology be applied to the

MSI framework in order to provide an autonomous reconfiguration capability in order to

optimally manage compute resources in a dynamic environment? First of all, we note that the

component framework of the MSI architecture is compatible with the requirements of an

intelligent agent architecture. In fact, the components of the MSI architecture could be

32

represented by intelligent agents. The intelligent agents could then form collaborations based on

what layers they would be representing. Then these teams of intelligent agents representing the

layers would perform the functionality of the MSI. Some additional agents would be required as

negotiators, facilitators, or brokers to collaborate between the different MSI layers facilitated by

an Agent Communication Protocol (ACP). This protocol could be specified using Lightweight

CORBA-based protocols, or something simpler such as the Intelligent Network Management

(INM) protocol [8]. Note that intelligent agents allow for another level of abstraction in that

PCA hardware and software can both be encapsulated by intelligent agents. The following

discusses the different components of the MSI and their compatibility with intelligent agent (IA)

concepts, as well as some existing IA systems implementing resource allocation and

collaboration.

 As shown in Figure 10-1, the MSI maintains portability via a two layer structure: a Stable

API (SAPI) layer that inputs into a High Level Compiler (HLC), and the Stable Architecture

Abstraction Layer (SAAL), which inputs into a Low Level Compiler (LLC). The end result is

translated executable code to run on PCA hardware without this hardware needing knowledge of

what language the application code was written in. The different layers of the MSI must

collaborate with each other and additional agents in order to achieve this level of abstraction.

33

Figure 10-1: Elements of the MSE

As shown in Figure 10-2, there are other knowledge-bases required to execute PCA

applications. These are more complex than standard databases in that they need to store

information on evolving states. This metadata format is currently being specified by the

Morphware Forum. However as mentioned before, no such specification exists for the

implementation of the infrastructure and protocols. One of the key roles of these metadata

models both for software and hardware is to facilitate the morphing aspect of PCA. Using the

collaboration protocols such as in the architectures of [10] or [11], software metadata could be

read and updated by agents arbitrating between HLC and SAPI Agents. Hardware metadata

would also need collaboration between LLC and SAAL Agents. IA collaboration would

maintain the adaptation necessary to meet the goals of the PCA.

34

Figure 10-2: Typical PCA Application Decomposition in MSI Framework

 Figure 10-3 shows what the MSI framework would look like with IAs. It is very similar

to the proposed MSI framework. Many of the MSI IAs would actually be encapsulations of

existing software. Naturally, modifications are needed to create the communication protocols,

and collaboration algorithms to make the system satisfy IA constraints. The Metadata Library

(ML) agent is a new addition that would broker metadata management as well as collaboration

between other agents in the MSI. It would also be comprised of many agents just as in the

representation of the layers of the MSI. The ML behavior would be analogous to a cache

coherence invalidation protocol. It would be responsible for updating and invalidating metadata

values that are incorrect. The other MSI Agents would collaborate as to the resources required by

a PCA application, and the ML would broker the requests among the Knowledge Base (KB)

Agents.

35

Figure 10-3: MSI Architecture with Intelligent Agents

 It is important to note that the LLC agent requires the most communication and

collaboration between the other MSI layers. Multiple IAs would be necessary in the LLC to

maintain the variety of translation and resource allocation issues involved in a heterogeneous

architecture. The LLC agent must be capable of compiling components that make use of

specified subsets of the PCA device resource pool. The higher agents will help in filtering out

undesired resource configurations. Feedback mechanisms to refine and possibly redeploy a PCA

application from the start could be beneficial in creating an optimal but practical solution.

Resource allocation, utilization, and other federated protocols derived from game theory should

be used to find optimal hardware configurations. These algorithms are based on distributed

36

decision-based (i.e. IA concepts also) concepts that could be facilitated using the MSI agent

architecture. Other more adaptive IA architectures based on polyadic pi-calculus are also being

implemented [10]. These adaptive architectures try to incorporate evolution, the process of

agents changing along with their environment. The agents could change by reorganizing,

adding/removing, or changing their interaction protocols.

37

10.4 Bibliography

[1] Daniel P. Campbell, Kenneth M. Mackenzie, and Mark A. Richards. “The Morphware
Stable Interface: A Software Framework for Polymorphous Computing Architectures,”
Morphware Forum, Georgia Tech Research Institute and the Georgia Institute of
Technology, 2003

[2] Daniel P. Campbell, Dennis M. Cottel, Randall R. Judd, and Mark A. Richards.
“Introduction to Morphware: Software Architecture for Polymorphous Computing
Architectures,” Morphware Forum, Georgia Institute of Technology and Space and Naval
Warfare Systems Center San Diego, 2004.

[3] Daniel P. Campbell, Dennis M. Cottel, Randall R. Judd, and Mark A. Richards. “Facilitating
Middleware for Polymorphous Computing Architectures,” Morphware Forum, Georgia
Institute of Technology and Space and Naval Warfare Systems Center San Diego, 2002

[4] Deepak Prasanna and Gerald L. Fudge, “Heterogeneous Reconfigurable Agent Compute
Engine (HRACE) Concept,” L-3 Integrated Systems Technical Report G3054.1205.02A, 30
January 2006.

[5] The Object Management Group. 2004. “Common Object Request Broker Architecture: Core
Specification v. 3.0,” http://www.omg.org/technology/documents/corba_spec_catalog.htm.

[6] Peter Mattson. 2004. “PCA Machine Model,” Morphware Forum, Reservoir Labs.
[7] James E. Kulp. 2003. “Points of Connectivity between PCA Morphware and Commercial

Standards,” DARPA BAA 00-59 Technical Report.
[8] J. Wang, J. Wu, and J. Zhang. 2002. “A Novel Network Management Structure based on

CORBA and Intelligent Agent Technology,” IEEE Proceedings from the First International
Conference on Machine Learning and Cybernetics, Beijing.

[9] OMG Model Driven Architecture Website. http://www.omg.org/mda
[10] Wenpin Jiao, Minghui Zhou, Qianxiang Wang. “Formal Framework for Adaptive Multi-

Agent Systems,” IEEE/WIC International Conference on Intelligent Agent Technology
(IAT'03), Halifax, Canada, October 13-16, 2003.

[11] H. Jung, S. Kulkarni, P. J. Modi, W. Shen, M. Tilbe. “A Dynamic Distributed Constraint
Satisfaction Approach to Resource Allocation,” In Proceedings of the 7th International
Conference on Principles and Practice of Constraint Programming (November 26 -
December 01, 2001). T. Walsh, Ed. Lecture Notes In Computer Science, vol. 2239.
Springer-Verlag, London, 685-700.

