

AFRL-IF-RS-TR-2006-244
Final Technical Report
July 2006

PROCESSING-IN-MEMORY TECHNOLOGY FOR
KNOWLEDGE DISCOVERY ALGORITHMS

University of Southern California

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-244 has been reviewed and is approved for publication

APPROVED: /s/

 CHRISTOPHER J. FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES A. COLLINS, Deputy Chief
 Advanced Computing Division

Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 06
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Dec 04 – Nov 05
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-04-1-0265

4. TITLE AND SUBTITLE

PROCESSING-IN-MEMORY TECHNOLOGY FOR KNOWLEDGE
DISCOVERY ALGORITHMS

5c. PROGRAM ELEMENT NUMBER
N/A

5d. PROJECT NUMBER
HPCS

5e. TASK NUMBER
31

6. AUTHOR(S)

Mary Hall, Hans Chalupsky, Jacqueline Chame, Jafar Adibi and Tim Barrett

5f. WORK UNIT NUMBER
20

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
Information Sciences Institute
4676 Admiralty Way, Suite 1001
Los Angeles CA 90089-8001

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-244

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-499

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of this project was to gain insight into whether processing-in-memory (PIM) technology can be used to accelerate the
performance of link discovery (LD) algorithms, which represent an important class of emerging knowledge discovery techniques
being used by DoD to identify complex, multi-relational patterns. To this end, we evaluate the mapping of LD algorithms to a PIM
workstation-class architecture, the DIVA/Godiva hardware testbeds developed by USC/ISI. These hardware testbeds incorporate
PIMs into the memory of a conventional processor. Our performance measurements on bandwidth benchmarks, StreamAdd and
RandomAccess, show that our prototype PIMs offer increased memory bandwidth to the applications over the Itanium2, with a
commensurate increase in performance. The raw performance measurements for two LD kernels show a slowdown on a single PIM,
but our analysis shows a performance gain when the differences in clock speed and data scaling are taken into account.

15. SUBJECT TERMS
Processing-In-Memory, Link Discovery, High Performance Computing

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher J. Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

46
19b. TELEPONE NUMBER (Include area code)

N/A

 i

Abstract

The goal of this project was to gain insight into whether processing-in-memory
technology can be used to accelerate the performance of link discovery algorithms,
which represent an important class of emerging knowledge discovery techniques
being used by DOD to identify complex, multi-relational patterns. Such algorithms
can greatly benefit law enforcement and intelligence organizations in their efforts to
detect and prevent illegal and fraudulent activities as well as threats to national
security.

As LD algorithms are data-intensive and highly parallel, involving read-only
queries over large data sets, parallel computing power extremely close (physically) to
the data has the potential of providing dramatic computing speedups. For this reason,
we evaluated the mapping of LD algorithms to a processing-in-memory (PIM)
workstation-class architecture, the DIVA / Godiva hardware testbeds developed by
USC/ISI. These hardware testbeds incorporate PIMs into the memory of a
conventional processor. The Godiva prototype, the focus of the investigation,
includes PIMs as replacement memories in an HP Long’s Peak Itanium-2 system.

To test the hypothesis of whether the memory bandwidth provided by PIMs will
accelerate link-discovery algorithms, we selected two representative data and graph
mining algorithms, condensed them to their core functionality that exhibits most of
the computational complexity, and implemented them on the hardware testbed. To
compare with a conventional architecture, we also measured the performance of the
kernels on the Itanium-2 host. In addition, we performed a similar experiment on two
benchmarks that are commonly used for measuring memory bandwidth,
RandomAccess and StreamAdd.

Our performance measurements on the bandwidth benchmarks show that our
prototype PIMs offer increased memory bandwidth over the Itanium2, with a
commensurate increase in performance. Speedups of 8x are shown on the two
benchmarks, even though the Itanium-2 has a clock rate 6X faster. The raw
performance measurements for the LD kernels show a slowdown on a single PIM, but
our analysis shows a performance gain when the differences in clock speed and data
scaling are taken into account.

In addition to this performance measurement, we also developed a MATLAB
simulator of a parallel LD algorithm, so that we could quickly derive measurements
on algorithm variations, and impact of data set properties on performance metrics.

 ii

Table of Contents

List of Figures and Tables.. iii
1. Introduction... 1
2. Background... 2

Link Discovery Algorithms .. 2
PIM System Environment... 3

Hardware Platform.. 3
Compiler Frontend Technology.. 5

3. Benchmarks... 7
Bandwidth Benchmarks .. 8

StreamAdd .. 8
RandomAccess.. 8

Link Discovery Benchmarks... 10
Mutual Information... 10
Graph Clustering using In/Out Ratios... 12

Parallel Graph Clustering Algorithm.. 13
4. Parallel Graph Clustering Algorithm Simulation ... 16

Analysis of Sample Data Sets ... 16
Experimental Setup... 19

Cost ... 20
Load Balance .. 21

5. Performance Analysis on PIMs .. 25
Bandwidth Benchmarks .. 26

StreamAdd .. 26
Random Access... 27

Mutual Information on a Single PIM.. 29
Graph Clustering, Sequential and Parallel .. 31
Scaling Analysis and Projected Performance ... 33

6. Summary, Conclusions and Future Directions ... 35
7. Outreach.. 36
References... 38

 iii

List of Figures and Tables

Figure 1. DIVA DIMM with two PIMs. ... 4
Figure 2. PIM architecture. ... 4
Figure 3. PIMs installed in HP zx6000 Long’s Peak Itanium-2 system............................. 5
Figure 4. DIVA PIM Compiler Technology... 6
Figure 5. Speedups due to compiler optimizations... 7
Figure 6. Bandwidth Benchmarks... 8
Figure 7. Host and PIM collaborating RandomAccess code. ... 9
Figure 8. Illustration of Host+PIM collaboration on RandomAccess. 9
Figure 9. High-level MutualInformation Algorithm... 11
Figure 10. Graph clustering algorithm using InOut ratio……………………………… 12

Figure 11. Link Table Representation. ... 13
Figure 12. PIM Parallel In/Out Ratio Algorithm, in MPI... 14
Figure 13. PIM reduction computation for parallel IOR algorithm................................. 15
Figure 14. MPI reduction computation for parallel IOR algorithm.................................. 16
Figure 15: Summary of ARDA/Eagle Data Sets. ... 17
Figure 16: Representation of 2 data sets, demonstrating their differences. 18
Figure 17: Scatterplot of all data sets.. 19
Figure 18: Processing Cost vs. Communication Cost. For 1,2,4,8 and 16 PIMS.1,2,3,4. 20
Figure 19: Load imbalance in 8 PIMs, Group Size = 10, M = 1 (communicate one) 21
Figure 20: Load imbalance: 8 PIMs, Group Size = 10, M = 2 (communicate two) 22
Figure 21: Cost vs. Connectivity .. 24
Figure 22: Speedup vs. Connectivity .. 24
Figure 23. Performance Tuning Process on Hardware. .. 26
Figure 24. StreamAdd Performance Measurements……………………………… .27
Figure 25. G-updates/second for RandomAccess. ... 28

Table 1. Benchmark Programs………………………………………………………… 6

Table 2: Summary of Load Balance Experiment.. 23
Table 3: Computation and Communication cost for 1,2,4,8, 16 PIMs for M = 1,2......... 23
Table 4: Result Deterioration (F-value compared to the M =1 case) ………………..…25
Table 5. Performance comparison for MutualInformation on TEST input. 29
Table 6. Mutual Information Data Scaling on Itanium-2 ... 31
Table 7. Performance comparison for Graph Clustering on TEST input. 31
Table 8. Graph Clustering Data Scaling on Itanium-2 ... 32
Table 9. Comparison of Itanium-2 and PIM processors. .. 33
Table 10. Projections of commercial implementations of PIMs for 2007 and 2010. 34
Table 11. Projected performance accounting for clock and data scaling. 34

 1

1. Introduction
Link discovery (LD) algorithms represent an important class of emerging knowledge

discovery techniques being used by DOD to identify complex, multi-relational patterns.
Such algorithms can greatly benefit law enforcement and intelligence organizations in
their efforts to detect and prevent illegal and fraudulent activities as well as threats to
national security. LD algorithms are data-intensive and highly parallel, involving read-
only queries over large data sets.

 Developing parallel link discovery algorithms presents a variety of difficult challenges.
First, data ranges from highly unstructured sources such as reports, news stories, etc. to
highly structured sources such as traditional relational databases. Unstructured sources
need to be preprocessed first either manually or via natural language extraction methods
before they can be used by LD methods. Second, data is complex, multi-relational and
contains many mostly irrelevant connections (connectivity curse). Third, data is noisy,
incomplete, corrupted and full of unaligned aliases. Finally, relevant data sources are
heterogeneous, distributed and can be very high volume.

In this project, we evaluated the mapping of LD algorithms to a processing-in-
memory (PIM) workstation-class architecture, the Data Intensive Architecture (DIVA)
[Hall et al, 1999] and Godiva hardware testbeds developed by USC/ISI. These hardware
testbeds incorporate PIMs into the memory of a conventional processor. The Godiva
prototype, the focus of the investigation, includes PIMs as replacement memories in an
HP Long’s Peak Itanium-2 system. This testbed was developed under the Godiva project
supported by DARPA High Productivity Computing Phase I program, in collaboration
with Hewlett-Packard, and completed in February 2004.

We hypothesized that for LD algorithms, parallel computing power extremely close
(physically) to the data has the potential of providing dramatic computing speedups. To
test whether the memory bandwidth provided by PIMs will accelerate link-discovery
algorithms, we selected two representative data and graph mining algorithms, condensed
them to their core functionality that exhibits most of the computational complexity, and
implemented them on the hardware testbeds. To compare with a conventional
architecture, we measured the performance of the kernels on the Itanium-2 host.

At the beginning of this project, the Godiva hardware testbed and associated tools had
recently been integrated and demonstrated to work on a single benchmark (NAS CG).
No other benchmarks had been tested nor had we tuned the infrastructure to deliver
performance measurements. Thus, given the limited timeline of this project, we initially
measured performance of two common bandwidth benchmarks (StreamAdd and
RandomAccess) which were simpler than the LD algorithms, not just to gather results
from these benchmarks but also to develop an approach to performance tuning for this
experimental system and tune our tool implementations. PIMs were successful at
delivering memory bandwidth comparable to the Itanium-2 with just a single PIM, and
8X more bandwidth with 8 PIMs, in spite of the Itanium-2’s far more powerful and 6X
faster processor.

In addition to the raw performance measurements of the LD benchmarks, through
appropriate scaling and modeling to reflect current and future technology we derive an

 2

expected performance gain of 1.3X to 2.6X for a single PIM on the LD benchmarks, and
predict speedups of as much as 10X for 8 PIMs.

 Beyond the performance measurements on the PIM, the project also included two
other activities. First, to target the individual PIM processors, the DIVA/Godiva team
has developed an innovative front-end compiler technology to exploit the processor’s
256-bit datapath automatically from sequential code based on SUIF [Shin et al., 2002a]
[Shin et al., 2002b] [Shin et al., 2003], and a back-end technology based on GCC.
Additional work on this compiler to deal with larger and more complex application code
features, including parallelization of control flow constructs, was completed under this
project [Shin et al, 2004] [Shin et al, 2005]. This allowed the compiler to generate SIMD
parallel code for the wide datapath for both of the LD kernels.

 A second additional activity was an algorithm simulation in MATLAB to test out
alternative parallel algorithms and impact of data set properties without having to run a
large number of cases on the hardware testbed. These measurements demonstrated that
there is potential for PIMs in speeding up graph clustering as the data scales, and
particularly for highly connected graphs. We identified load imbalance, and also found
that algorithms that drop communication sacrifice precision with just modest
performance improvements.

 The remainder of this report is organized into seven additional sections. The next
section presents background on our previous work on link discovery algorithms and PIM
architecture development, which provided the foundation for this project. The subsequent
section presents the bandwidth and LD benchmarks. The fourth section describes the
MATLAB simulation of alternative parallel LD algorithms. The performance analysis
and scaling results are presented in the fifth section, followed by a summary. Two
sections at the end of the document describe outreach activities and deliverables.

2. Background

Link Discovery Algorithms
The link discovery codes used in our experiment focus on a specific problem called

group detection. The group detection task can be qualified into either (1) discovering
hidden members of known groups (or group extension), or (2) identifying completely
unknown groups. A known group is identified by a given name and a set of known
members. The problem then is to discover potential additional hidden members of such a
group given evidence of communication events, business transactions, familial
relationships, etc. In our study, we only focus on known groups.

 To extend known groups we generally start with a set of known seed members (e.g., a
group of suspects) and then proceed in three phases. First, a function θ is applied to find
likely new candidates for each group, producing an extended group. Second, the same
function θ is used to rank these likely members by how strongly connected they are to the
seed members. Third, the ranked extended group is pruned using a threshold to produce
the final output. To discover unknown groups we need to locate some initial points and
treat them as seed members of a virtual group and apply a similar technique to known
groups. The process of Seed Selection can use any number of techniques, but we are

 3

using seeds provided by the sample data sets discussed in the next section. Once we have
a set of seeds, Group Detection discovers potential additional members of groups
represented by each seed.

 Group detection looks for entities that are strongly connected with one or more of the
seed members. To compute θ we transform the problem space into a graph in which each
node represents an entity (such as a person) and each link represents the set of actions
(e.g., emails, phone calls etc.) in which the entities are involved. There are several
choices for the function θ. For instance we can use mutual information (MI) between
random variables representing individuals' activities which provides a measure of their
dependence. To find two strongly connected entities, we aggregate the known links
between them and statistically contrast them with connections to other candidates and the
general population. This is done by an MI model that exploits evidence such as
individuals sharing an attribute (e.g., their address) or being involved in the same activity
(e.g., communicating via email). These attributes and actions are represented as random
variables, and we measure connection strength by measuring the Mutual Information
(MI) between them. If the variables (or entities) are independent, the MI between them is
zero. If they are strongly dependent, the MI between them is large. Hence, MI can be
used as an indicator whether two entities are strongly connected to each other compared
to the rest of the population.

 Alternative approaches to MI are conventional social network techniques such as
InOutRatio (IOR). In this and previous reports, we refer to this kernel interchangeably as
graph clustering. In this method the measure of membership is the ratio between the
number of links within the group and the number of links from group members to nodes
outside the group.

PIM System Environment

Hardware Platform
The DIVA system architecture was specifically designed to support a smooth

migration path for application software by integrating PIMs into conventional systems as
seamlessly as possible. DIVA PIMs resemble, at their interfaces, commercial DRAMs,
enabling PIM memory to be accessed by host software either as smart-memory co-
processors or as conventional memory. In Figure 1 below, we show 2 DIVA PIMs on a
standard memory DIMM board. These PIMs are connected to a host processor through
nearly conventional memory control logic. A separate memory-to-memory interconnect
enables communication between memories without involving the host processor.

 4

Figure 1. DIVA DIMM with two PIMs.

Aside from memory bus accesses the host processor communicates with the PIMs

using parcels. A parcel is closely related to an active message as it is a relatively
lightweight communication mechanism containing a reference to a function to be invoked
when the parcel is received.

Figure 2. PIM architecture.

Figure 2 shows two interconnects that span a PIM chip for information flow between

nodes, the host interface, and the PIM Routing Component (PiRC). Each interconnect is
distinguished by the type of information it carries. The PIM memory bus is used for
conventional memory accesses from the host processor. The parcel interconnect allows
parcels to transit between the host interface, the nodes, and the PiRC. The host interface
also contains a parcel buffer (PBUF) for parcel communication between host and PIM.
Each PIM node also has a PBUF, for node-to-node parcel communication.

The DIVA PIM node processing logic supports single-issue, in-order execution, with
32 bit instructions and 32-bit addresses. There are two datapaths whose actions are
coordinated by a single execution control unit: a 32-bit scalar datapath that performs
operations similar to those of standard 32-bit integer units, and a 256-bit Wide-Word
datapath that performs fine-grain parallel operations on 8-, 16-, or 32-bit operands. The
Wide-Word datapath is similar to multimedia extensions like AltiVec. Both datapaths
execute from a single instruction stream under the direction of a single 5-stage pipeline,
complete with register forwarding logic to resolve data dependence hazards. This pipeline
fetches instructions from a small instruction cache, which is included to minimize
memory contention between instruction reads and data accesses. Each datapath has its

 5

own independent general-purpose register file with 32 registers. Special instructions
permit direct transfers between register files without going through memory.

The PIM devices used in the experiments represent our second-generation devices.
As compared to the first-generation devices, discussed in [Draper2002], the Godiva PIMs
include address translation and eight parallel floating-point units for concurrent use on
the Wide datapath. In addition, their memory implements a Double-Data-Rate
(DDRAM) interface for integration into an Itanium-2. Figure 3 is a picture of the PIMs
inserted in an HP Long’s Peak (zx6000) Itanium-2 system.

Figure 3. PIMs installed in HP zx6000 Long’s Peak Itanium-2 system.

Compiler Frontend Technology
In prior work, we developed a compiler for the PIM processor that generates

optimized code in the PIM ISA [Shin 2002a][Shin 2002b][Shin 2003]. Figure 4 illustrates
the components of the DIVA compiler. The DIVA front-end compiler is based on SUIF,
a research compiler infrastructure developed at Stanford University. The SUIF-based
DIVA front end takes as input a C or Fortran program and generates optimized Single
Instruction Multiple Data (SIMD) code, a C representation with extensions for
superword-level parallelism (SLP) developed for the PowerPC AltiVec. The optimized
SIMD code is the input to the DIVA compiler backend. The DIVA backend is based on
the Gnu GCC 2.95.3 compiler, ported from the PowerPC toolset. GCC is a commonly
used optimizing compiler, but it targets conventional scalar instruction sets. To support
optimizations targeting the unique bandwidth-exploiting features of the DIVA ISA, we
developed front-end compiler technology that performs DIVA-specific optimizations:

- superword-level parallelism: The PIMs’ Wide functional unit has operations
similar to a multimedia extension architecture such as the PowerPC AltiVec,
where the data type is larger than a machine word, and can be configured to
perform SIMD parallel operations on different field widths, 8-, 16- and 32-bit.

- compiler-controlled caching: The PIMs do not have a data cache, so it is desirable
for the compiler to cache reused data in the register file associated with the wide
datapath, representing 1KB of storage very close to the processor.

 6

- control flow optimizations: As part of the current effort, we have extended this
compiler to perform SIMD parallelization in the presence of control flow.

Figure 4. DIVA PIM Compiler Technology

Figure 5 shows the impact of this compiler’s optimizations on performance, as
measured by speedup over sequential performance. Table 1 describes the benchmarks
used in this experimental performance evaluation.

Name Source Description Input Size

VMM multimedia kernel vector-matrix multiply 512 elements

FIR multimedia kernel finite impulse response filter 256 filter, 1M signal

YUV multimedia kernel RGB to YUV conversion 32 K elements

MMM multimedia kernel matrix-matrix multiply 512 elements

Swim SPECfp shallow water model SPECfp reference input

tomcatv SPECfp mesh generation SPECfp reference input

Chroma multimedia kernel chroma keying 48x48 color image (12 KB)

Sobel multimedia kernel Sobel edge detection 1024x768 image (3 MB)

TM Sandia Labs image correlation 64x64, 72 32x32 (1.4 MB)

Max multimedia kernel max value search 2 100x256x256 (52 MB)

Transitive Closure DIS Stressmarks shortest path search 2 1024x1024 nodes (8 MB)

MPEG-dist1 UCLA media bench dist1 of MPEG-2 encoder data for first 1000 calls (11 MB)

EPIC-unquantize UCLA media bench unquantize_image of unepic reference input (393 KB)

GSM-calculation UCLA media bench full rate speech transcoding reference input

Table 2. Benchmark Programs

C/ Fortran program

Macintosh
G4

executable

Superword-extended
C program (SIMD)

Suif-based frontend compiler
superword-level parallelism
compiler-controlled caching
control flow optimizations

Pre-existing ISI Extensions

DIVA
executableMIT-SLP

Pentium
executable

C/ Fortran program

Macintosh
G4

executable

Macintosh
G4

executable

Superword-extended
C program (SIMD)

Suif-based frontend compiler
superword-level parallelism
compiler-controlled caching
control flow optimizations

Pre-existing ISI Extensions

DIVA
executable

DIVA
executableMIT-SLP

Pentium
executable

Pentium
executable

 7

The experiments were performed on the PowerPC AltiVec, as there was not sufficient
scope on this effort to port all of these applications to the experimental hardware testbed.
Figure 5 shows speedup over a sequential baseline. Our compiler platform extends an
earlier SUIF-based compiler from MIT called MIT-SLP. Thus the first (red) bar in the
graph shows performance of the MIT-SLP compiler relative to sequential performance.
The second (yellow) bar shows our SUIF-based SLP compiler, which extends MIT-SLP
to optimize in the presence of constructs such as type casting and reductions. The third
(blue) bar shows the control flow optimizations partially developed under this effort
[Shin 2004][Shin 2005]. The fourth (green) bar also includes the compiler-controlled
caching optimizations.

Figure 5. Speedups due to compiler optimizations.

Overall the results show speedups over sequential ranging from 1.05x to 15x for the

14 benchmarks. The control flow optimizations funded by this effort make the difference
between little or no speedup and speedups ranging from 1.38x to 15x. We will see in
Section 5 that this kind of optimization benefits the MI calculation.

3. Benchmarks
Prior to the experiments with the LD kernels, we performed measurements on two

bandwidth benchmarks, StreamAdd and RandomAccess. We felt the addition of these
benchmarks was important, as it tests out the hypothesis that PIMs really do offer a
bandwidth advantage over conventional architectures. In addition, since the bandwidth
benchmarks are less complex than the LD kernels, it provided an opportunity to test out

0

3

6

9

12

VMM FIR YUV
MMM

sw
im

tomcatv

Chro
ma

So
bel

TM Max

tra
nsi

tiv
e

MPE
G2-d

ist1

EP
IC

-u
nq

ua
ntize

GSM
-C

alculatio
nSp

ee
du

p
ov

er
 b

as
el

in
e

MIT-SLP
SLP
SLPCF
SLPCF+SLL

15

 8

our infrastructure and timing methodology. This section presents all the benchmarks used
in the experiment, with original pseudo code and optimized versions targeting the PIMs.

Bandwidth Benchmarks

Figure 6. Bandwidth Benchmarks

StreamAdd
StreamAdd measures the performance of a stream of floating point additions and

updates, and is shown in Figure 6(a). Because there is no reuse of data values in this
computation, and very little computation to hide memory latency, it is a useful
benchmark for stressing memory bandwidth of architectures. PIMs are effective at
speeding up this benchmark, since with the appropriate data distribution, all computation,
reads and writes can be performed locally within a PIM. Since the PIM implementation
of StreamAdd is straightforward, it is not shown here.

RandomAccess
RandomAccess is part of the HPC Challenge benchmark suite [HPC 2005] and it is

designed to stress the memory system by performing updates to randomly selected entries
of a large table. Since the updates are to random memory locations there is effectively no
spatial reuse. There is a small amount of temporal reuse because each table entry is
updated more than once, but the intervals between updates to the same data are typically
too large to result in data locality in caches. By design, the table does not fit in the local
cache(s) or memory of a system node: the default table size is half of the total memory in
the system, and the number of updates to the table is four times the table size.

Figure 6(b) shows the host-only implementation of RandomAccess. For our Itanium2
architecture most random updates result in a cache read miss followed by a write. As the
memory latencies are quite high and there is virtually no computation between memory
accesses, eventually the memory system is swamped and the application's performance is
limited by the main memory system performance.

(b) Host-only code for RandomAccess

StreamAdd

float a[], b[], c[];
for (i=0; i< DATASIZE; i++)
 a[i] = b[i]+c[i];

RandomAccess

uint64 Table[TABSIZE], ran;
// initialize main table
For (i=; i< TABSIZE; i++)
 Table[i] = i;
// perform updates
ran = 1
for (i=0; i<NUPDATES; i++) {
 ran = (ran << 1 ^ (ran < 0) ? POLY: 0);
 Table[ran & (tableSize-1]^= ran;
}

(a) Host-only code for StreamAdd.

 9

An alternative implementation of RandomAccess that takes advantage of the PIM
processors is to let the PIMs perform the updates locally. The host processor generates
the random addresses and, for each update, sends a parcel to the PIM where the table
entry resides. The PIMs check for parcels from the host and, once a parcel is received,
perform the update to the desired table entry. Figure 7 shows the host and PIM
implementations of the PIM-enhanced version of the benchmark, and an illustration that
accompanies the code excerpt is shown in Figure 8.

Figure 7. Host and PIM collaborating RandomAccess code.

H
O

ST

Generate next update pair <ran, offset>

Bucket update for PIM according to address

If bucket full, send parcel

Buckets
b0 b1 bn-1

PI
M

0

PI
M

n-
1

PI
M

1

Parcel buffer

Memory
Recv

parcel

Perform
updates

ran3

ran1

ran0

ran2

Figure 8. Illustration of Host+PIM collaboration on RandomAccess.

The following feature of our implementation is shown in the illustration of Figure 8

but omitted from the code for simplicity. The host collects four updates destined for each
PIM prior to sending a parcel. This is because four <ran,offset> pairs can fit in the 256-
bit parcel payload. This binning maximizes utilization of the host-to-PIM bandwidth,
while also reducing the frequency with which parcels arrive at the PIM for handling.

// Host code for Host-and-PIM RandomAccess
// initialize main table
for (i=0; i<TableSize; i++)

Table[i]=i;
ran = 1;
for (i=0; i<NUpdates; i++) {

ran = (ran << 1) ^ (ran < 0? POLY:0);
offset = ran & (TableSize-1);
parcel.command = UPDATE;
parcel.payload[0] = ran;
parcel.payload[1] = offset;
SendParcel (&Table[offset], parcel);

}
parcel.command = DONE;
for (pim=0; pim<NumPims; pim++)

SendParcel(&done[pim], parcel);

// PIM code for Host-and-PIM RandomAccess
done = FALSE;
while (!done) {

// check for parcels from host processor (non blocking)
RecvParcel(hostParcelBuffer, recvStatus, parcel);
if (recvStatus == TRUE) {

if (parcel.command == UPDATE) {
ran = parcel.payload[0];
offset = parcel.payload[1];
Table[offset] ^= ran; // local memory access

}
else if (parcel.command == DONE) {

done = TRUE;
}

}
}

 10

Link Discovery Benchmarks

Mutual Information
The MutualInformation kernel was initially written in Stella [Stella 2003], a domain-

specific language developed by PI Hans Chalupsky for interaction with LD tools. Stella
automatically generates C++, and it was the C++ code that was used as the basis for the
kernel.

Figure 9 shows a high-level version of the algorithm that computes the mutual
information for all node pairs in the graph. For brevity, some operations are shown as
“vector” operations akin to Fortran95 array notation, but the actual implementation is in
sequential C, and the vector operations on the inner dimension of the arrays are
recognized automatically by our compiler.

This computation captures the relationship between edges in a graph, based on
conditional probability calculations. For each pair of nodes (representing entities) for
which the MI computation is performed, we perform a conditional probability calculation
which includes invocation of a log function. For an independent set of pairs, we can
perform this calculation in parallel on DIVA's WideWord datapath. There are two large
input data structures associated with this algorithm. The first is LinkTable, which
represents the edges in the graph. There may be several edges in the graph between two
nodes, each representing a different type of link (e.g., email, telephone call, etc.). The
second is FrequencyTable, which represents the frequency of edges between two nodes.
The output of this computation is the structure MiTable, the result of the mutual
information calculation. Other auxiliary structures represent the intermediate results of
the mutual information calculation, as will be discussed in Section 5.

The implementation shown in Figure 9 was a result of organizing the computation so
that it could be parallelized to support both fine-grain parallelism in the PIM’s
WideWord unit and coarse-grain parallelism across PIMs. While graph algorithms are
thought of as computations with irregular data access patterns, this computation reflects
an organization of the graph where some accesses are strided and there are data parallel
computations.

 11

Figure 9. High-level MutualInformation Algorithm.

ComputeAllMi(LinkTable, FrequencyTable, pxv, cpyxt, int nlinks, int ntypes, MiTable)
{
 /* Compute mutual information for all node pairs in ‘LinkTable' and deposit results in
‘MiTable'. This computation is O(t3) where ‘t' is the number of link types. */

 for all indices in LinkTable {

 /* strided access to LinkTable */
 x = LinkTable[index][FROM];
 y = LinkTable[index][TO];

 /* strided accesses on x, irregular accesses on y */
 xfreq = FrequencyTable[x][LINKTYPE];
 yfreq = FrequencyTable[y][LINKTYPE];
 xyfreq = LinkTable[index][1:ntypes];
 /* probability vectors */
 pxv[1:ntypes][link] = FrequencyTable[x][1:nytpes] * (1/nlinks);
 for type = 1, ntypes {
 cpyxt[type][type][link] = yfreq / xfreq;
 cpyxt[0][type][link] = 1.0 – (yfreq / xfreq);
 cpyxt[type][0][link] = (yfreq - xyfreq) / nullfreq;
 }
}
aux1[1:ntypes][1:ntypes][1:nlinks] += pxv[1:ntypes][1:nlinks] *
 cpyxt[1:nytpes][1:ntypes][1:nlinks];

 aux2[1:ntypes][1:ntypes][1:nlinks] += MASK(cpyxt[1:ntypes][1:ntypes][1:nlinks]) > 0,
cpyxt[1:ntypes,1:ntypes][1:nlinks] *
LOG(cpyxt[1:ntypes][1:ntypes][1:nlinks] / aux1),
0.0);

 mit[2][1:nlinks] += MASK(cpyxt[1:ntypes][1:ntypes][1:nlinks] > 0,
 pxv[1:ntypes][1:nlinks]*cpyxt[j][i][link]*aux2[1:ntypes][1:ntypes][1:nlinks], 0.);
 MiTable[pair][FROM] = x;
 MiTable[pair][TO] = y;
 mi = 0.0;
 aux1 = 0.0
 /* i and j loops for 1 to nytpes are omitted */
 aux2 = 0.0
 for (k = 0; k<ntypes; k= k+1) {
 aux2 += pxv[k] * cpyxt[j][k]; /* i and j are fixed */
 mi = mi + pxv[i] * aux1;
 }
 MiTable[pair][LINK_TYPE] = mi;
 pair = pair + 1;
 }
}

 12

Graph Clustering using In/Out Ratios
As in Mutual Information, a graph node represents an entity or individual, and a link

(or edge) represents one instance of communication between two nodes. Each link has an
associated link type, which represents the type of communication between the nodes
(email, phone call, etc).

The second link discovery kernel performs graph clustering as part of a group finding
algorithm. For each node we model its activities with a random variable. The graph

clustering component organizes the graph according to the strength of links. This code
was initially implemented in MATLAB, and was rewritten in C.

Figure 10. Graph clustering algorithm using InOut ratio.
A high-level description of an InOutRatio algorithm is shown in Figure 10. The

inputs to the algorithm are the initial cluster and the number of new members to be added
to the cluster. Here a cluster is a set of nodes such that each node has at least one link to
another node in the set. A node in the initial cluster is called a seed member and a link
among two nodes in the initial cluster is called a seed link. A member is a node
belonging to the cluster.

algorithm InOutRatio ({seed members}, numNewMembers) : Group
{
 Group = {seed members}
 bestRatio = 0.0

while (numNewMembers > 0) {
 foreach node connected to Group {

 newInLinks = newOutLinks = 0
 foreach node connected to node {
 // calculate InOutRatio of node
 if (node is in Group)
 newInLinks += ∑(links between node , node)
 else
 newOutLinks += ∑(links between node , node)
 InOutRatio=(inlinks+newInLinks)/(outLinks–newInLinks + `

 newOutLinks)
 if (InOutRatio > bestRatio) {
 newMember = node
 bestRatio = InOutRatio
 }
 }

 Group = Group U {newMember}
 numNewMembers = numNewMembers - 1
}

return Group
}

 13

The algorithm selects new cluster members based on the InOutRatio of nodes that do
not belong to the current cluster. At each step, the node with the highest InOutRatio with
respect to the current cluster is selected and added to the cluster. This algorithm is a
greedy algorithm that only considers one “hop” in connectivity and so the order in which
nodes are selected might be an important factor in the final cluster.

The main data structure in InOutRatio is a table that keeps, for each pair of nodes in
the graph, the number of links of each link type. Figure 11 illustrates a simple LinkTable.
In this example there are three link types, and the first pair of nodes in the table has two
links of type 1, one link of type 2 and one link of type 3. A second table (NodeAddress)
keeps a pointer to the first pair of each node (that is, the entry of LinkTable
corresponding to the first pair of the node). This representation allows the algorithm to
compute a node’s InOutRatio without having to search the LinkTable.

Figure 11. Link Table Representation.

Parallel Graph Clustering Algorithm
We developed a parallel PIM InOutRatio (IOR) algorithm in three steps. First, we

implemented the sequential algorithm described above. Then, we implemented a parallel
version of the algorithm, described in this section, in MPI (Message Passing Interface) so
that we could debug it on a conventional platform. We leveraged a working version of
the computation phase of each PIM, which is the same as that of the MPI
implementation, and then integrated it with the PIM-to-PIM communication phase, for
which we also had prior code that was executing correctly on the hardware. For the PIM
version we replaced the MPI constructs with parcels to implement the communication
phase of the algorithm, which consists of a parallel reduction. In the MPI version the
communication phase is implemented using MPI collective communication functions
such as MPI_Bcast and MPI_Reduce. The parallel algorithm is described next.

 The data and computation are partitioned among PIM nodes as follows. Each PIM
keeps a fraction of the PairTable, that is, a subset of the pairs of nodes in the graph,
where a pair is a set of two nodes with at least one link between them. The PairTable is
partitioned so that, for a given node, all pairs containing that node are kept on the same

……….….…

11212

10031

11 221

Link
Type 3

Link
Type 2

Link
Type 1

Node 2Node 1

……….….…

11212

10031

11 221

Link
Type 3

Link
Type 2

Link
Type 1

Node 2Node 1

4

3

2

1

id

4

3

2

1

id

4

3

2

1

id

4

3

2

1

id

….

….

3

1

Node
Address

….

….

3

1

Node
Address

NodeAddress LinkTable

 14

PIM. Hence the whole graph is represented in a link table of twice the number of all links
times the number of all link types plus 2 (for two nodes). This duplication of information
avoids unnecessary cross communication among PIMs during the IOR computation. In
addition to a subset of the PairTable each PIM keeps a copy of the current cluster in its
local memory (initially the current cluster is the set of seed members).

 The algorithm iterates until a desired number of new nodes is added to the group,
finding a new cluster member at each iteration or until there are no more nodes to be
added. At each iteration each PIM computes the node, among the nodes in its subset, with
highest InOutRatio. After that, all PIMs communicate to find the node with highest
InOutRatio across all PIMs. Finally, at the end of each iteration each PIM adds the new
“global” best node to its local copy of the current cluster. Figure 12 shows a high-level
version of the PIM InOutRatio algorithm. The parallel reduction, shown in Figure 13,
uses parcels to implement the communication among PIMs.

Figure 12. PIM Parallel In/Out Ratio Algorithm, in MPI

algorithm ParallelInOutRatio ({seed members}, numNewMembers) : Group
{
Group = {seed members}
LocalOutList = {nodes in local PIM memory connected to Group}
localBestRatio = 0.0
while (numNewMembers > 0) {
 foreach node in LocalOutList {

 newInLinks = newOutLinks = 0
 foreach pair (node , node) in PairTable {
 if (node is in Group)
 newInLinks += ∑(links of pair (node , node))
 else
 newOutLinks += ∑(links of pair (node , node))
 InOutRatio = (inlinks+newInLinks)/(outLinks – newInLinks + newOutLinks);
 if (InOutRatio > localBestRatio) {
 localBestRatio = InOutRatio;
 localBestNode = node ;
 }
 }
 }
 ParallelReduction(localBestNode, localBestRatio, newInLinks, newOutLinks,

 globalBestNode, inLinks, outLinks)
 Group = Group U {globalBestNode}
 update LocalOutList
 numNewMembers = numNewMembers - 1
}
return Group
}

 15

Figure 13. PIM reduction computation for parallel IOR algorithm.
The computation phase of the MPI version is the same as that of the PIM version. The

MPI communication phase implements a parallel reduction using MPI collective
communication functions. Figure 14 illustrates a simplified version of the MPI parallel
reduction. MPI_Reduce with operator MPI_MAXLOC is used to compute the global
maximum ratio and the node corresponding to the maximum ratio. The root process then
uses MPI_Bcast to broadcast the global best node to all processes.

ParallelReduction (localBestNode, localBestRatio, newInLinks, newOutLinks,
 globalBestNode, inLinks, outLinks)
{
 /* all PIMs compute best node in log(nPims) steps */
 for (step = 0; step < log(nPims); step ++) {
 /* if PIM is a sender at this step */
 if (Sender (myId, step)) {
 dest = ComputeDest(myId, step, nPims)
 SendParcel (dest, localBestNode, localBestRatio, newInLinks, newOutLinks)
 }
 /* else if PIM is a receiver at this step */
 else if (Receiver (myId, step)) {
 RecvParcel(node, ratio, recvInLinks, recvOutLinks)
 if (ratio > localBestRatio) {
 localBestNode = node
 localBestRatio = ratio
 newInLinks = recvInLinks
 newOutLinks= recvOutLinks
 }
 }
 else { /* neither sender or receiver */
 /* do nothing during this step */
 }
 barrier
 }

 /* PIM0 computes best node and sends it to all */
 if (myId == PIM0) {
 globalBestNode = localBestNode
 inLinks = inLinks + newInLinks
 outLinks = outLinks – newInLinks + newOutLinks
 BroadcastParcel (globalBestNode, inLinks, outLinks)
 }
 barrier

 /* all PIMs update LocalOutList and local copy of InList */
 RecvParcel(globalBestNode, inLinks, outLinks)
 InList = InList U globalBest
 UpdateLocalOutList(globalBestNode)
 barrier

}

 16

Figure 14. MPI reduction computation for parallel IOR algorithm.

As the MPI and parcel code are structured similarly, this intermediate step to

development was valuable to obtaining the correct parallel version.

4. Parallel Graph Clustering Algorithm Simulation
Performance measurement on the PIMs takes a significant amount of work; we

anticipated that we would have limited time to evaluate alternative implementations of
the Parallel InOutRatio Algorithm. To facilitate experimenting with alternative
algorithms and algorithm parameters, we developed a MATLAB graph clustering
framework to quickly prototype a variety of alternative parallel implementations.

We simulated the parallel implementation in PIMs to achieve the following goals:

1. Compare the result of the simulated version vs. actual parallelization for
correctness.

2. Measure and compare a set of performance-related indices to compare different
algorithms and communication strategies.

We have developed a prototype of the specific parallel algorithm from the previous
section and minor variations of it, and instrumented this implementation to gather
performance-related indices. We also used the MATLAB simulation environment to
analyze the data sets from the ARDA EAGLE program, where ARDA and EAGLE are
abbreviations for “Advanced Research and Development Activity” and “Evidence
Assessment, Grouping, Linking, and Evaluation”, respectively.

Analysis of Sample Data Sets
The data sets evaluated for group (cluster) detection are derived from synthetic data

developed by Information Extraction & Transport, Inc. These datasets were created by
running a simulation of an artificial world whose main design focus was to produce
datasets with large amounts of relationships between entities (as opposed to data with a
large number of entity properties). The artificial world consists of individuals that belong

MPI_ParallelReduction(localBestNode, localBestRatio, globalBestNode)
{
 Local.bestRatio = localBestRatio
 Local.bestNode = localBestNode
 MPI_Reduce(&Local, &Global, 1, MPI_DOUBLE_INT, MPI_MAXLOC,

 root, MPI_COMM_WORLD)
 if (myRank == root) {
 globalBestNode = Global.bestNode
 }
 MPI_Bcast(&globalBestNode, 1, MPI_DOUBLE, root, MPI_COMM_WORLD)
}

 17

to groups and exploit targets. Groups can be threat groups or non-threat groups that
exploit targets in threat and non-threat. Individuals are threat individuals or non-threat
individuals. Every threat individual belongs to at least one threat group. Non-threat
individuals belong to non-threat groups. Threat groups have only threat individuals as
members. Threat individuals can belong to non-threat groups as well.

Figure 15: Summary of ARDA/Eagle Data Sets.

D
at

as
et

#o
f N

od
es

 (P
eo

pl
e)

#o
f L

in
ks

A
vg

. F
an

ou
t

Ph
on

e
C

al
ls

Te
le

co
ns

Te
le

co
n

R
es

po
nd

en
ts

A
vg

. T
el

ec
on

Pa

rt
ip

an
ts

A
vg

. T
el

ec
on

 L
in

ks

(c
om

pl
et

e
gr

ap
h)

To
ta

l T
el

ec
on

Li

nk
s

EASY_PROXY 1022 411026 804.4 133724 11720 74975 7.4 23.7 277302
Y3_DATASET_4018 2504 478047 381.8 153520 13479 87037 7.46 24.1 324527
Y3_DATASET_4019 10040 402151 80.1 147861 14184 78137 6.51 17.9 254290
Y3_DATASET_4020 12399 456040 73.6 152520 14113 85771 7.08 21.5 303520
Y3_DATASET_4021 3469 565977 326.3 162578 15128 103172 7.82 26.7 403399
Y3_DATASET_4022 98786 7591891 153.7 2952081 256648 1420244 6.53 18.1 4639810
Y3_DATASET_4023 101630 5423828 106.7 1826185 153916 978216 7.36 23.4 3597643
Y3_DATASET_4024 99405 3928352 79.0 1553019 137027 741217 6.41 17.3 2375333
Y3_DATASET_4025 9896 6534616 1320.7 2210888 208940 1243756 6.95 20.7 4323728
Y3_DATASET_4026 98715 4443255 90.0 1740857 102140 693681 7.79 26.5 2702398
Y3_DATASET_4027 987 7130817 14449.5 1909397 232232 1445500 7.22 22.5 5221420
Y3_DATASET_4028 9820 292955 59.7 122295 6145 42828 7.97 27.8 170660
Y3_DATASET_4029 9696 447616 92.3 125187 8407 69546 9.27 38.4 322429
Y3_DATASET_4030 19207 6093580 634.5 1954447 183996 1145593 7.23 22.5 4139133
Y3_DATASET_4031 16475 352556 42.8 121152 10362 64263 7.2 22.3 231404
Y3_DATASET_4032 15184 378151 49.8 110208 9571 66991 8 28.0 267943
Y3_DATASET_4033 10106 387739 76.7 129087 10968 70040 7.39 23.6 258652
Y3_DATASET_4034 1001 4662298 9315.3 1757329 107008 736795 7.89 27.1 2904969
Y3_DATASET_4035 1019 6159045 12088.4 1845146 126810 984503 8.76 34.0 4313899
Y3_DATASET_4036 9960 319464 64.1 116393 9903 58661 6.92 20.5 203071
Y3_DATASET_4037 10077 357262 70.9 128671 6306 50633 9.03 36.2 228591
Y3_DATASET_4038 999 7509741 15034.5 1929505 178686 1325649 8.42 31.2 5580236
Y3_DATASET_4039 1005 7746349 15415.6 2120496 190132 1370658 8.21 29.6 5625853
Y3_DATASET_4040 10047 321574 64.0 109490 9236 58143 7.3 23.0 212084
Y3_DATASET_4041 1011 6220428 12305.5 1856964 173629 1147197 7.61 25.1 4363464
Y3_DATASET_5046 13236 486321 73.5 160688 14639 90596 7.19 22.2 325633
Y3_DATASET_5047 2532 444121 350.8 138926 12670 81834 7.46 24.1 305195
Y3_DATASET_5048 13756 580285 84.4 191273 18000 109682 7.09 21.6 389012
Y3_DATASET_5049 988 401210 812.2 145145 7784 59366 8.63 32.9 256065
Y3_DATASET_5050 1008 5377252 10669.1 1881901 167128 1000560 6.99 20.9 3495351
Y3_DATASET_5051 9983 5840910 1170.2 1890410 178338 1101209 7.17 22.2 3950500
Y3_DATASET_5052 986 7579064 15373.4 1988612 180644 1333729 8.38 30.9 5590452
Y3_DATASET_5053 1002 8352377 16671.4 2138445 198368 1474070 8.43 31.3 6213932
Y3_DATASET_5054 990 4922863 9945.2 1815853 114619 788580 7.88 27.1 3107010
Y3_DATASET_5055 9967 7031532 1411.0 1810730 222562 1417211 7.37 23.5 5220802
Y3_DATASET_5056 1022 5793970 11338.5 1935004 131240 942947 8.18 29.4 3858966
Y3_DATASET_5057 1011 7691295 15215.2 2002565 197638 1403973 8.1 28.8 5688730
Y3_DATASET_5058 100301 3359485 67.0 1362705 117337 628379 6.36 17.0 1996780
Y3_DATASET_5059 99234 5860723 118.1 1969722 174317 1080802 7.2 22.3 3891001
Y3_DATASET_5060 99092 3335785 67.3 1483291 79730 505101 7.34 23.2 1852494
Y3_DATASET_5061 100507 7280506 144.9 2829247 245918 1361766 6.54 18.1 4451259
Y3_DATASET_5062 9897 348054 70.3 137533 11119 63088 6.67 18.9 210521
Y3_DATASET_5063 9998 488142 97.6 114363 12734 91408 8.18 29.4 373779
Y3_DATASET_5064 9939 408214 82.1 117006 9870 71044 8.2 29.5 291208
Y3_DATASET_5065 16046 308471 38.4 144141 7223 45245 7.26 22.8 164330
Y3_DATASET_5066 16743 367904 43.9 114073 10027 66509 7.63 25.3 253831
Y3_DATASET_5067 9970 399881 80.2 136443 10917 70579 7.47 24.1 263438
Y3_DATASET_5068 14209 435478 61.3 135433 11838 78573 7.64 25.3 300045
Y3_DATASET_5069 9907 390022 78.7 150192 7683 56986 8.42 31.2 239830
min 986 292955 38.4 109490 6145 42828 6.36 17.0 164330
avg 22587 3185686 3413.2 1023729 88429.2 572784.55 7.5818 25.2 2161958
max 101630 8352377 16671.4 2952081 256648 1474070 9.27 38.4 6213932

 18

Figure 15 above illustrates data characteristics. Most of the simulations use Y3-
DATASET_4028, selected in the table. We see from the table that there is a huge
discrepancy among the datasets in terms of connectivity and size. This point is illustrated
in the next three figures. In Figure 16, each axis represents one dimension in the dataset.
However to make these graphs comparable to each other we normalized the axes over all
datasets. Hence a dataset with maximum number of nodes gets 1 in #of Nodes axis and
the dataset with highest number of links gets 1 in #of Links axes.

0.000

0.200

0.400

0.600

0.800

1.000
#of Nodes (People)

#of Links

Avg. Fanout

Phone Calls

TeleconsTelecon Respondents

Avg. Telecon Partipants

n Links (complete graph)

Total Telecon Links

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800
#of Nodes (People)

#of Links

Avg. Fanout

Phone Calls

TeleconsTelecon Respondents

Avg. Telecon Partipants

n Links (complete graph)

Total Telecon Links

Figure 16: Representation of 2 data sets, demonstrating their differences.

Figure 17 shows a scatterplot of all the datasets, comparing number of links to
number of nodes. It is shown on a log-log scale to highlight behaviors when either
number of links or number of nodes is small. As you can see from this data, there are
many variations in dataset properties – some have large numbers of nodes but small
numbers of links, others have lots of links and fewer nodes, and a few have both large
numbers of nodes and large numbers of links. This sample suggests that the best parallel
algorithm for one data set may not be the best for all, a topic of future work.

 19

Figure 17: Scatterplot of all data sets.

To run the IOR over a set of PIMs we split the Link Table and distribute the load over

all PIMs, as described in the previous section. In addition each PIM has a copy of the set
of nodes in the initial cluster (seed members) and the links among them (seed links). At
each iteration each PIM finds the node with the highest IOR and reports the result to
other PIMs. Using this basic approach, we identify a couple of variations on the
algorithm in Section 4. First, we can evaluate the impact of reporting one or more
members at each iteration. (We call this parameter M.) Obviously, if the number of
members reported by each PIM is more than one, the overall accuracy of IOR decreases,
but parallelism increases and communication costs are reduced. As with other such
algorithms, small differences in results can be tolerated. We can also vary the group size,
a parameter we call N. We can also vary the number of PIMs. We assume PIMs
communicate with each other hierarchically. Each PIM is located in a leaf of a balanced
tree and reports the best node to its parents. The results of these variations are shown in
this section.

Experimental Setup
We ran our simulation of IOR on a group of 1, 2, 4, 8 and 16 PIMs over the Y3-

DATASET_4028 of Figure 15. The following are the main parameters for this
experiment.

100000

1000000

10000000

100 1000 10000 100000 1000000

 20

Figure 18: Processing Cost vs. Communication Cost. For 1,2,4,8 and 16 PIMS.
Left: N = 20, M = 1,2,3,4. Right: N = 10 and M = 1, 2.

Parameter Definition

A Number of PIMs in the simulation {1,2,4,8,16}

N Number of new cluster members to be found {10,20}

M Number of new cluster members to be reported by each PIM at each
round ={1,2}

Cost
There are two type of costs associated with PIM execution, processing and

communication. We represent processing cost with the total number of links accessed by
all PIMs. Because we are prototyping the algorithm in MATLAB, this measurement
gives an indication of how the amount of work is affected by different algorithm
strategies. Any direct execution time performance measurements of the MATLAB
prototype would not necessarily be representative of a production parallel
implementation. We also represent the communication cost with the total number of links
passed from one PIM to another.

Processing cost
In each step In/Out ratio treats a node as a potential new cluster member. The

processing cost is calculated through the following steps:

1. Count number of all links connected to this node
2. Count “in” links between the new node and nodes in current seed cluster (In List)
3. “out” links are the differences between 1 and 2

o 1 can be calculated once in O(F) time (F = avg. fan out)
o 2 calculated in each iteration in O(F) time

 21

Communication Cost
Communication cost represents the aggregate message passing among PIMS when

the best In/Out ratio is calculated (reporting up) and when the best ratio is reported back
to all PIMs (reporting down).

• Reporting Up
o The best node from each PIM plus relevant rows from the link table
o Cost: the number of rows associated with the best local node

• Reporting Down
o The selected node and relevant rows from link table are sent to all PIMs
o Cost: the number of rows associated with the best global node

Figure 18 compares the cost (processing and communication) across all architectures
for group size equal to 10 and 20. As is expected, the communication cost increases when
the number of PIMs increases.

Load Balance
In this section we briefly address the following issues regarding load imbalance.

• Why there is load imbalance and how big is it
• Sensitivity to group size and number or members reported at each round
• Is there an opportunity to overlap computation and communication (to reduce

the communication cost)?

Figure 19: Load imbalance in 8 PIMs, Group Size = 10, M = 1 (communicate one)
Figure 19 and Figure 20 illustrate the load balance among 8 PIMs. The total number

of new cluster members to be discovered is 10. M, the number of newly discovered
members per step is set to one in the upper graph, and two in the lower graph. Each row

 22

in the figure shows a step of the ten-step computation, and work on PIMs is represented
horizontally.

Figure 20: Load imbalance: 8 PIMs, Group Size = 10, M = 2 (communicate two)
From Figures 19 and 20, we see that the amount of work at each PIM varies

significantly, and also varies across different time steps. However, the trend is toward
similar behavior at each time step, related to connectivity of the subgraph allocated to a
PIM. Thus, there is load imbalance, suggesting that various strategies for managing load
might be useful for this algorithm, such as virtualization and dynamic scheduling. In
addition, with increase in the number of seed member’s each PIM will be loaded to
somewhat similar link table (especially in a scale free network there are a couple of nodes
with extremely high degree) and load imbalance reduces consequently. Another
important observation is that when the amount of load imbalance increases there is
enough time for some of the PIMs to communicate with each other.

 23

Table 2 summarizes lessons learned from this experiment.

1 Seed Member Size Load Imbalance

2 M
(members reported at each round) Load Imbalance

3 Uniformity in the data Load Imbalance

4 Load Imbalance Communication Cost

5 Load Imbalance Computation Cost

Table 2: Summary of Load Balance Experiment

Table 3 summarizes the cost of computation and communication (as the number of
accessed links) for increasing numbers of PIMs, following a hierarchical policy for
communication. Comparing Figure 18 and Table 3 shows in general increasing the
number of PIMs reduces the cost of overall computation. However, the benefits depend
on the actual cost of communication relative to computation cost.

PIM 1 2 4 8 16

M=1 35373 20209 10866 6675 4602 Computation
Cost M=2 33923 18427 9251 5078 2770

M=1 0 123 369 861 1845 Communication
Cost

M=2 0 138 369 861 2250

Table 3: Computation and Communication cost for 1, 2, 4, 8, 16 PIMs for M = 1, 2.

Connectivity Effect
Connectivity is an important feature of a graph which refers to the number of links in

the graph. In this experiment we measured the effect of connectivity on the processing
cost. As is illustrated in Figure 21, the processing cost increases when the connectivity
increases. However this rise in cost is smaller for 16 PIMs than for smaller numbers of
PIMs. Figure 22 illustrates the effect of connectivity on speedup. As it shows, 16 PIMs
perform even better as the connectivity increases. For high connectivity performance
improvements trail off due to load imbalance among PIMs for this data set.

 24

Figure 21: Cost vs. Connectivity

Figure 22: Speedup vs. Connectivity

Compromising Accuracy for Speedup

To minimize the number of communications we may report more than one potential
new member at each round. Table 4 illustrates the change in accuracy of the result when
M (the number of members reported in each round by each PIM) changes from 1 to 2.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

78,964 103,918 128,866 153,802

Connectivity
(Number of edges in the graph)

C
os

t
(n

um
be

r o
f p

ro
ce

ss
ed

 li
nk

s)

1 PIM
2 PIMs
4 PIMs
8 PIMs
16 PIMs

0

2

4

6

8

10

12

78,964 103,918 128,866 153,802

Connectivity
(Number of edges in the graph)

Sp
ee

du
p

(c
om

pa
re

 to
 1

 P
IM

)

1 PIM
2 PIMs
4 PIMs
8 PIMs
16 PIMs

 25

For actual evaluation one should compare the result of in/out ratio with ground truth
(actual members of the cluster). However, since access to ground truth is not possible in
many real world datasets we only measure the deviation of the final result from M = 1
(when we report only one member at each time)

PIM 1 2 4 8 16

N = 10
M = 2 1 .75 .75 .64 .25

N = 20
M = 2 1 .41 .36 .36 .16

Table 4: Result Deterioration (F-value compared to the M =1 case)
N: number of desired members to be discovered

M: number of members reported in each round by each PIM

The result of Table 4 is that the deterioration of the result grows with M and N and
number of PIMs. Only for small numbers of PIMs with N=10 are the results within an
acceptable range of accuracy.

5. Performance Analysis on PIMs
Figure 23 below illustrates our approach to performance evaluation of codes on the

PIM hardware testbed. The process has many steps. Initially, scalar code for a single
PIM is developed that implements a specific algorithm. As an initial test, we compile
and assemble the code, without any optimization (i.e., gcc –O0), and validate its
execution on the hardware, using very small TEST INPUT data. To collect performance
measurements, the process is far more complex. The code must be highly tuned. Also,
the data sets should be as representative of realistic data sets as possible within the
constraints of the system (referred to as SCALE INPUT). It is important that the SCALE
INPUT be large enough to stress the Itanium-2 memory system, since this is the regime
where PIMs will be advantageous. To optimize for single PIM performance, we use the
frontend compiler described in Section 2 that converts sequential code to SIMD code to
exploit the hardware’s WideWord capability. We also use the optimization within the
gcc backend (i.e., gcc –O2) to further optimize the code, performing register allocation,
constant propagation, strength reduction, and other standard optimizations.

Our performance measurements are compared against the Itanium-2. For this
experiment, the host-only versions were compiled with the icc 8.0 C compiler with -O3
options available from Intel, running under Linux version 2.4 on the single processor
900MHz HP zx6000 workstation.

 To develop parallel code, we add explicit parallel constructs to the code to
communicate between PIMs, and optimize the data/computation partitioning by hand.

 26

G
cc

-b
as

ed
 b

ac
ke

nd

O
pt

im
iz

at
io

n
an

d
C

od
e

G
en

er
at

io
n

(-O
0

or
 –

O
2)

D
eb

ug
 o

n
ha

rd
w

ar
e

Ti
m

e
on

 h
ar

dw
ar

e

SUIF-based
Frontend

Optimization

Scalar
Code
(1 PIM)

Explicitly
Parallel
Code

(8 PIMs)

A
D

JU
ST

TEST
INPUT
DATA

SCALE
INPUT
DATA

Automatically
Generated
SIMD Code

A
D

JU
ST

Figure 23. Performance Tuning Process on Hardware.

 Due to the complexity of the code to be analyzed, it was our goal to minimize any
manual intervention in the generation of code. While this goal was challenging given the
shot timeline of this project and its limited scope, we believe it is important to the
credibility of the resulting measurements. Thus, we have invested in improving the
compiler implementations rather than handcoding in assembly. Only very minor
handcoding was performed on compiler-generated code – to enhance instruction
scheduling in StreamAdd and to optimize control flow in MI.

Bandwidth Benchmarks

StreamAdd
We present performance measurements for the implementations of StreamAdd and

Random Access described in Section 3. Performance results for StreamAdd, a subset of
STREAM from the HPC benchmarks, are shown in Figure 24. The y-axis represents
execution time, and the x-axis shows performance as a function of data set size. There
are four curves. The one labeled Itanium2-icc8 represents the code executing on the
Itanium-2 host. The one labeled PIM.compiled shows execution time of the same data
set on 1 PIM, and is generated by the compiler. The one labeled PIM.tuned represents
the hand-tuned version of the code. The fourth curve projects execution time on 8 PIMs.
As there is no communication in this code, the PIM performance speeds up linearly with
the number of PIMs.

 27

Figure 24. StreamAdd Performance Measurements.

The PIM floating-point performance for StreamAdd shows deterministic performance
monotonically increasing as the problem size increases. The Itanium2 result shows
performance that varies as a function of problem size. It is better for smaller problem
sizes, but as the problem sizes get larger, the way in which the system allocates memory
leads to worse performance.1

We observe in Figure 24 that the single PIM execution time (pim) is comparable to
that of the Itanium2 execution time (zx6000). With eight PIMs running in the memory
system, there is an 8x speedup over the single Itanium 2 processor (8pim-projected).

Random Access
We mapped the RandomAccess code to the hardware implementation using the

approach outlined in Section 3. Because this application requires host and PIM
collaboration at a fairly fine grain, it was substantially more difficult than StreamAdd to
achieve a working implementation, and stressed the host-to-PIM interface. The process

1 Although the details of this performance result are beyond the scope of this report, we
pinpointed this behavior using the Itanium2 hardware performance monitoring support
and discovered it has to do with how data is laid out in memory and resulting cache
behavior.

 28

of writing from host to PIMs is complex. To send a 256-bit parcel to a PIM requires
reordering bits and a stream of writes due to the spreading of data across multiple
memory chips and bit interleaving by the Itanium-2 memory controller. We write a
subset of the bits on each memory operation, and must rearrange the bits on arrival at the
PIMs. While this works in our system, we envision a system where this sort of
reorganization is not required, and we do not include the cost of this reorganization in our
timings.

Instead of including end-to-end performance, we show performance of the host and
PIM portions of the implementation, as measured on the hardware, and combine these
measurements. On the PIM side, the code was instrumented and measured from the time
a parcel is sensed through the update until the time it is waiting again for another parcel.
Measurements are made in terms of clock cycles. The performance of the PIM across
timing measurements has proven to be deterministic and consistent. On the host side, we
replaced the writes to the host parcel buffer on the PIMs with a conventional write. To
force the write to occur, we flush the cache line in which the PIM payload resides just
prior to the point where the parcel should be sent. We verified with a logic analyzer that
this implementation had the appropriate number of memory operations.

Performance measurements are shown in Figure 25. Using the code of Section 3,
with four <ran, offset> pairs sent per parcel, the host will be able to send parcels at the
rate of 2.5M parcels per second (we discuss below how to increase this rate). A single
PIM can process parcels at the rate of 1.2M parcels per second. In a system with two
PIMs, the PIMs and host can process parcels at the same rate. Beyond this, the rate at
which PIMs process parcels is much faster than the host's ability to produce parcels, and
the host system bus becomes a performance bottleneck.
.

Figure 25. G-updates/second for RandomAccess.

 29

Using these results, we can project end-to-end performance as shown in Figure 25.
The first bar is the measurement of the host-only implementation on the zx6000. The
performance is 0.0044 GIGA Updates Per Second (GUPS.) If the Host+PIM code is
used with just one PIM, the performance is comparable, 0.0045 GUPS. With a second
PIM in the system, we can achieve a 2X speedup, achieving 0.01 GUPS.

The 8 PIM results rely on sending parcels to 8 PIMs in parallel. This is possible by
exploiting what is in some sense a challenging aspect of the host-to-memory interface. A
write to a particular PIM must be done 4 bytes at a time, with the remainder of the bytes
ignored by the memory system. If the address space is arranged appropriately, the
remainder of the bits can go to distinct PIMs, four bytes at a time. This would require a
slightly different implementation, such that when the buckets are full for one PIM, an
aggregate communication would be performed for all PIMs. This complex arrangement
of bytes/addresses could be transparent to the user by implementing it in the boot and
communication libraries. With such an implementation, we could achieve 0.038 GUPS.

Scaling the PIM clock rate up by 2x is easy and will then provide a 2x speedup on
GUPs with just one PIM since it will then match the single PIM memory lane parcel
production rate. That is true for each additional PIM also. But increasing PIM speed
beyond that does no further good since the bandwidth per 32 bit PIM lane is fixed by the
Host production (frequency of parcel buffer writes) number of 2.54 Mparcels/sec. The
zx6000 cannot produce more parcels through that 4 byte wide memory lane, but there are
7 other lanes that can be used when all host parcel buffers are written in parallel. At that
point a 16x speedup can be reached. With double speed PIMs filling the entire memory
bus width, PIMs can consume the maximum parcel bandwidth the zx6000 can produce.

Mutual Information on a Single PIM
 Execution

Time
Cycles Instructions

Per Clock

Itanium-2 5.5ms 4.9M 1.588

Single PIM
(scalar)

113.0ms 16M <1

Single PIM
(superword,
compiler-
generated)

94.6ms 13M <1, but includes
SIMD ops

Single PIM
(superword,
hand tuned)

32.1ms 4M <1, but includes
SIMD ops

Table 5. Performance comparison for MutualInformation on TEST input.
We present numbers on the TEST data set of 520 nodes and 4768 links, which was

derived by deleting nodes and links from a larger data set, and its purpose was to derive a

 30

test input small enough to be conveniently loaded onto a single PIM. It is roughly
500Kbytes. Performance results for the Itanium-2 and for a single PIM on the TEST
input are shown in Table 5.

The first column identifies whether the code was run on the Itanium-2 or the PIMs.
The execution time is shown in the next column. Recall that the Itanium-2 clock is
operating at 900 MHz while the PIM clock rate is 140MHz, and the Itanium-2 is 6-way
Very Long Instruction Word (VLIW) while the PIM processor is a single-issue, in–order
processor. Thus, to facilitate comparison between the two systems, the number of cycles
is shown in the next column, followed by instruction-per-clock in the fourth column.

 There are three versions of code for the PIMs in Table 5. The first uses the scalar
processor, and does not exploit the PIM’s WideWord unit. The second is automatically
generated from sequential code by the SUIF compiler frontend to perform SIMD
operations in the WideWord unit. The third was a result of hand tuning the second
version. There is a modest speedup of 1.2X in the Wide version of the code over scalar
code. However, with minor tuning having to do with control flow optimizations as
discussed in Section 2, there is a speedup of 3.5X over the scalar version of the code.

 In comparing the Itanium-2 performance to the PIMs, the PIM code runs slower, but it
is executing 18% fewer cycles than the Itanium-2. The performance difference is largely
due to the Itanium-2’s 6X faster clock rate. In addition, the Itanium-2 memory system is
performing well for this relatively small data set. It is essentially operating completely
out of its L2 cache.2 (Note that this is somewhat an artifact of the fact that the Itanium-2
does not allocate floating point data, such as the conditional probability results, to L1
cache.) Even though the L1 miss rate is somewhat high, there is plenty of work to keep
the processor busy, achieving an Instructions-Per-Clock of 1.588. This means that the
Itanium-2 is retiring more than one instruction per cycle, while the single-issue, in-order
PIM processor is retiring less than one instruction per cycle.

 The TEST input was very small, so we were interested in how the MutualInformation
kernel would perform on the larger data sets of Section 3, Figure 15. We selected three
datasets from Figure 15, as shown in Table 6 below. The first column describes the data
set, with the TEST input included for reference. The second column provides how many
nodes and links are in the graph associated with each dataset, followed by its size in bytes
in the third column. Itanium-2 execution time for each data set is in the fourth column,
and Itanium-2 IPC is shown in the fifth column. The sixth and seventh columns show L1
and L2 miss rates, respectively.

2 Because the code in Section 3, Figure 9 was designed to expose fine-grain and coarse-
grain parallelism, the sequential Itanium code is slightly different in its loop structure,
and the size of the intermediate structures pxv, aux1, aux2, and cpyxt. Shown in Figure 9,
they can be quite large, but the original implementation used on the Itanium2 keeps them
small, the size of O(ntypes2), and performs the complete MI computation for each link.

 31

Data Set Nodes and
Links

Size (in
bytes)

Execution
Time

Instructions
Per Clock

L1 Miss
Rate

L2 Miss
Rate

TEST 520 nodes
4764 links

499KB 5.5ms 1.588 20.37% 0.51%

Y3_4027 987 nodes
3.368M links

350MB 1.719 s 1.478 21.50% 0.66%

Y3_4028 9820 nodes
387668 links

40MB 332.4ms 1.540 22.52% 0.57%

Y3_4036 9960 nodes
384240 links

40MB 408.2ms 1.561 31.84% 0.48%

Table 6. Mutual Information Data Scaling on Itanium-2

Overall, the table reveals that this kernel behaves similarly regardless of execution
time or data set size. While there is some variation in IPC across the different data sets, it
is generally high, ranging from 1.478 to 1.588. L2 miss rates are extremely low, less
than one percent. L1 miss rates are somewhat high, but the L2 accesses comprise over
80% of memory references across all the different data set sizes.

 In summary, this kernel performs well on the Itanium-2’s memory system, and there
is little room for improvement. The reduction in PIM cycles as compared to the Itanium-
2 cycles is apparently a result of optimizations for the PIM’s WideWord unit.

Graph Clustering, Sequential and Parallel
 Execution

Time
Cycles Instructions

Per Clock

Itanium-2 0.26ms 233K 0.806

Single PIM
(scalar)

1.11ms 155K <1

2 PIM parallel 1.65ms 231K <1

Table 7. Performance comparison for Graph Clustering on TEST input.
For graph clustering, we present numbers on a TEST data set of 9820 nodes, 23656

links, and 9704 pairs. Note that this data is organized more compactly than for
MutualInformation. It is represented by pairs of nodes, rather than by links. As in the

 32

previous example, this data set was derived by deleting nodes and links from a larger data
set, and its purpose was to derive a test input small enough to be conveniently loaded
onto a single PIM. It is roughly 273Kbytes. Performance results for the Itanium on the
Itanium-2, for a single PIM running sequential code and 2 PIMs executing the parallel
code on the TEST input are shown in Table 7 above. A version of the code with SIMD
instructions for the Wideword unit was generated by the compiler and validated in
simulation, but we did not have time to debug it on the hardware.

The columns are as in Table 5. For this code, the IPC on the Itanium-2 is much lower

at 0.806. As a result, the scalar single PIM code (without any WideWord code) is only
4.26X slower than on the Itanium-2, and executes a third fewer cycles than the Itanium-2.
This improvement in cycle count is an indication that the memory behavior of this code
on the Itanium-2 is limiting its performance.

 We developed the parallel version of the algorithm as described in Section 3 and
show preliminary performance results for two PIMs. The performance is slower than the
scalar code, and while we did not have time to investigate the reason, we suspect it is the
usual problem that the overhead of the parallelization is too high for this data set size and
only 2 processors. Usually speedups can be improved by scaling up the data set size, but
we are limited by the 1MByte storage on each PIM.

To investigate how data scaling impacts performance of the graph clustering
benchmark, we performed measurements on the same three data sets as in Table 6, shown
in Table 8 below. The data has been translated to use the compact pair representation.

Data Set Nodes and
Links

Size (in
bytes)

Execution
Time

Instructions
Per Clock

L1 Miss
Rate

L2 Miss
Rate

TEST 9820 nodes
23656 links
9704 pairs

273KB 2.59ms 0.806 19.6% 14.2%

Y3_4027 987 nodes
3.368M links
769298 pairs

15MB 7.234s 0.489 15.7% 39.9%

Y3_4028 9820 nodes
387668 links
157928 pairs

3MB 219.7ms 0.653 31.5% 26.5%

Y3_4036 9960 nodes
384240 links
196544 pairs

4MB 592.5ms 0.464 31.8% 25.1%

Table 8. Graph Clustering Data Scaling on Itanium-2
We see from Table 6 that performance of graph clustering is greatly affected by data

set size. The data sets range from the 273KB of the TEST input, to 3 and 4MB for the
intermediate sizes and 15MB for the large size. IPC is as low as 0.464. One interesting
observation from this table is the difference in performance behavior of the Y3_4028 and
Y3_4036 data sets. While they have a comparable number of nodes and links, the
number of pairs is about 24% larger in the latter case, resulting in a 33% increase in data

 33

set size. This difference leads to a more than doubling of execution time, and a much
lower IPC. While not shown here, the data set in Y3_4036 has a significant increase in
L3 misses which appears to be the cause of the performance difference.

 Our results on graph clustering are more preliminary than the others in this report, but
these results demonstrate a potential for PIMs in graph clustering algorithms. Our scalar
PIM code is not at all tuned, and yet there are fewer cycles than on the Itanium-2. A
scalable parallel algorithm for graph clustering, which is an open research problem, is
required to achieve speedups for large graphs.

Scaling Analysis and Projected Performance
The previously described measurements of these kernels on the prototype hardware

are very valuable, but as it is an academic hardware implementation that was developed
on a short time schedule, it does not achieve performance levels that we could expect
from a commercial-quality PIM implementation. Table 9 below summarizes the
differences between the Itanium-2 and PIM processors.

 Clock CPU Info Area Transistor Power

Itanium-2 900 MHz EPIC, 6-way 421mm2 221M ~100W

1 PIM 140 MHz single-issue, in-
order, pipelined

121mm2 56.6M
(55M

memory)

~1W

8 PIMs 140 MHz single-issue, in-
order, pipelined

8 x
121mm2

453M
(440M

memory)

~8W

Table 9. Comparison of Itanium-2 and PIM processors.
The key differences are that the Itanium-2 has a 6x faster clock rate, and it is a 6-way

issue EPIC processor rather than the single-issue, in-order processor of the PIM chip. A
further constraint on our PIM implementation is that the on-chip memory is just 1 Mbyte.
On the other hand, the Itanium-2 consumes a maximum of 130 watts while each PIM
runs at about one watt, that is, a single PIM has an over 100x power consumption
advantage. In terms of performance/watt, our PIM produces 1.12 Gflops/watt while the
Itanium-2 produces 0.036 Gflops/watt giving the PIM a 30x advantage in peak
performance per watt. For these reasons, in this section we evaluate the measurements of
the previous section in a broader context, to account for the constraints of an academic
project, consider architectural variations and look to the impact of future technology
trends.

 The technology trend is toward denser memories and multi-core processors, not
higher clock speeds or more complex processors. Thus we can expect that production
PIM chip processor speeds can be on par with IBM Cell (which is multi GHz in 90nm).
In the end, the best performance/watt may be achieved by slower clock speeds, and in

 34

fact, it may be best to have PIM processors operate no faster than the embedded DRAM
frequency. These trends are reflected in Table 10, which was derived from the 2006
ITRS Road Map.

Year
Metric

Unit

2007 2010

Technology node nm 65 45

Clock* GHz 0.5 1

Processor/eDRAM cores Per chip 16 32

Aggregate memory bandwidth GB/s/chip 256 1K

Memory size MB/chip 128-256 256-512

Table 10. Projections of commercial implementations of PIMs for 2007 and 2010.

Based on these projections, we scale the performance measurements from the
previous section, and the result of this exercise is shown in Table 11 below. In the first
column, we show the raw 1-PIM speedup over Itanium-2, which is in both cases less than
one. The next column shows the impact of clock scaling, based on the following formula:

 IT2 Cycles
 Clock Scaling = (1)
 PIM Cycles

That is, we assume the PIM and Itanium-2 have the same clock rate. In the next
column, we also try to account for the impact of scaling to larger and more representative
data set sizes. We normalize the speedup by adjusting the IPC from the TEST input set
up to the SCALE input set, using the following formula:

 IT2 Cycles * (IPCtest /IPCscale)

 Data Scaling = (2)
 PIM Cycles

In examining the results, we see that, since the graph clustering code started out
closer to the Itanium-2 performance, it yields a 1.5X speedup in terms of reduction in
cycles, as compared to 1.225X for Mutual Information. Further, since the IPC for the
graph clustering code varies significantly with larger data sets, it shows an additional gain

 Raw
1-PIM

Speedup

Clock
Scaling

(1) above

Data
Scaling

(2) above

2 PIMs

Projected
8 PIMs

MutualInformation 0.171X 1.225X 1.316X ~2.632X
(projected)

~10.528X

Graph Clustering 0.234X 1.503X 2.611X 1.752X unknown

Table 11. Projected performance accounting for clock and data scaling.

 35

up to a 2.6X speedup as compared to a minor improvement for Mutual Information. We
also considered parallel performance. The Mutual Information kernel is embarrassingly
parallel as written, performing for the most part independent computation, and thus we
 project linear speedups for 2 and 8 PIMs. The 2 PIM results, even after clock and
data scaling, does not perform as well as the scalar version, as discussed in the previous
section. Given the complexity of the parallel implementation, we did not attempt to
project 8 PIM performance for this kernel.

6. Summary, Conclusions and Future Directions
This project offered the first opportunity to derive performance measurements on the

Godiva hardware testbed, a PIM-based architecture implementation developed at
USC/ISI over a 7 year period. An important result of this project was that we were able
to demonstrate the effectiveness of PIMs at delivering memory bandwidth on the
bandwidth benchmarks StreamAdd and RandomAccess. For both kernels, our PIMs
were able to deliver comparable bandwidth to the Itanium-2 with just a single PIM, and
8X more bandwidth with 8 PIMs, in spite of the Itanium-2’s far more powerful and 6X
faster processor. Further, RandomAccess demonstrated the advantage of supporting
sharing of data between host and PIM, a unique feature of our PIM architecture as
compared to others. While not included in our scaling results, we expect these kernels
would be at least 6 times faster on a single commercial PIM than a conventional platform.

The link discovery kernels, which were the focus of this project, were much larger
than the bandwidth benchmarks, and proved more difficult to demonstrate bandwidth
gains. The results in Table 10 of the previous section suggest that, while there is up to a
10X improvement shown for the MutualInformation kernel using a commercial
implementation of PIMs, it is largely due to parallelization and optimizations targeting
the SIMD WideWord unit, which could be obtained on other architectures. The
algorithm has data locality and operates almost completely out of the L2 cache, limiting
the performance gain of PIM’s nearby and conceptually larger DRAM. This could be, to
some extent, the result of turning this computation into a kernel and abstracting away the
gathering of data into the link table data structures. Constructing the link table could be
the bigger limitation to memory system performance.

The results for the graph clustering kernel are far more promising for PIMs. As the
graph gets larger, the kernel exhibits poor memory-system behavior on the Itanium-2.
As a result, the number of cycles on the PIM is a third lower than on the Itanium-2 even
with our 273KB TEST input. Our analysis suggests that much larger gains would be
obtained for memory sizes in a commercial PIM implementation. The real open question
is how to perform graph clustering in parallel and manage the communication overhead.
Our parallel PIM results are preliminary, and did not show performance improvement for
the small TEST data set on 2 PIMs. We augmented these parallel results with the
simulations described in Section 4. We found potential for performance gains in graph
clustering with PIMs, but also some load imbalance, and sensitivity to data set features.

Beyond these results, this project offered a window into the impact of architectural
features on performance and suggested architectural improvements, as follows:

• The processor must incorporate a simple load/store unit to overlap data movement
with computation. While the PIM memory was just 3 cycles away on our

 36

implementation, sometimes this reduced our performance gains, and looking to
the future, the latencies of eDRAM are increasing with technology shrinks.

• We encountered limitations in the size of the wide register file in the
MutualInformation kernel, and would have benefited from deeper, narrower
register file (64x128 bits rather than 32x256 bits).

• There are a number of specialized features we included in our implementation that
limited clock speed and were rarely if ever used, for example, the leftmost and
rightmost participation operations.

• Additional research is needed in the relationship between on-chip and off-chip
scalable networks for PIMs

In conclusion, this was a complex and and interesting project requiring a variety of
expertise: link discovery algorithms and general parallel algorithms, compilers,
optimization, performance tuning and low-level engineering. It was only possible
because we leveraged several million dollars in prior DOD funding (hardware, compilers,
and algorithms). However, the short time line of the project was challenging, particularly
given that the broad number of skills required that a large number of people be involved –
the project supported the equivalent of about two full-time researchers, but spread across
eight people. Given the complexity of debugging on an experimental system, a 15-month
timeline proved too short to iterate on alternative implementations or complete the
analysis of the performance we obtained. Tuned code is even harder to debug, as it uses
special instructions, compiler-optimized code and parallel constructs.

Looking to the future, there is much to be done in all the areas supported by this
project. In addition to the architectural advances described above, there is a need to
develop parallel algorithms for link discovery and identify the appropriate algorithms and
programming models to manage communication in graph data structures. We are
interested in investigating the transactional memory as a strategy for programming link
discovery codes, as we are performing a similar investigation under the DARPA
Architectures for Cognitive Information Processing (ACIP) program. Other compiler
research could benefit link discovery codes. Interestingly, for both kernels, there was
SIMD parallelism that could be exploited automatically by our compiler, and SIMD
functional units are becoming common features in not only multimedia extensions but
also graphics and other high-performance domain-specific processors such as, for
example, the IBM Cell processor [Kahle 2005]. Also, our compiler’s approach to
compiler-controlled caching of data will be useful in architectures such as Cell,
CPUTech, GPUs and others that require data-movement in software-controlled storage.

7. Outreach
During this short project, there were several activities that disseminated information

about the work supported by this project. Several participants presented a poster and a
demonstration board from the PIM testbeds at the USC research booth at the
Supercomputing 2004 conference. A press release on the StreamAdd results came out
concurrently with the conference. A research poster on this work appeared at
Supercomputing 2005 poster exhibit [Barrett et al 2005] and again at the USC booth.
After the project end but at the time of this report, two additional publications on this

 37

work have been accepted, a summary of this report [Adibi et al 2006] and a journal
article on the compiler technology [Shin et al 2006].

Mary Hall participated in the AFRL Workshop on Research
Directions in Architectures and Systems for Cognitive Processing, July 14-15, 2005, at
Cornell University (http://csl.cornell.edu/wcas/), and gave a presentation in the
Architectures and Systems for Cognitive Processing working group.

A poster on this work was presented at the ISI Industrial Affiliates meeting in June,
2005. Jaewook Shin, a PhD student supported on this project, who developed the
frontend compiler, completed his dissertation in May 2005 and presented this work at
several universities, government laboratories, and computer companies. He is currently a
postdoctoral scientist at Argonne National Laboratories.

 In August, 2005, several participants met with representatives from CPU Technology
Inc. to discuss the potential for future collaboration.

 38

References
[Adibi et al. 2004a] J. Adibi, H. Chalupsky, E. Melz and A. Valente. The KOJAK Group Finder:
Connecting the Dots via Integrated Knowledge-Based and Statistical Reasoning. In Proceedings of the
Sixteenth Innovative Applications of Artificial Intelligence Conference (IAAI-04), 2004.

[Adibi et al. 2004b] Adibi, J., Valente, A., Chalupsky, H. & Melz, E. (2004). Group detection via a mutual
information model.

[Adibi et al 2006] Adibi, J., Barrett, T., Bhatt, S., Chalupsky, H., Chame, J., Hall, M. “Processing in
Memory Technology for Knowledge Discovery Algorithms,” Proceedings of the Second International
Workshop on Data Management on New Hardware (DaMoN 2006) June 25, 2006, Chicago, Illinois, USA.

[Barrett et al., 2005] T. Barrett, S. Bhatt, J. Chame, J. Draper, “PIMs in Action, Delivering Memory
Bandwidth,” Poster presentation at the International Conference on Supercomputing, Nov. 2005.

[DIS 2000] Data Intensive Systems Benchmark Suite. http://www.aaec.com/projectweb/dis/ .

[Draper, 2002] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen,
C. W. Kang, I. Kim, G. Daglikoca, “The Architecture of the DIVA Processing-In-Memory Chip,” In
Proceedings of the International Conference on Supercomputing, June, 2002.

[Hall et. al., 1999] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J.
Brockman, W. Athas, A. Srivastava, J. Shin, J. Park, “Mapping Irregular Computations to DIVA, a Data-
Intensive Architecture,” In Proceedings of the International Conference on Supercomputing, Nov. 1999.

[Hall & Steele, 2000] M.W. Hall and C. Steele, “Memory Management in PIM-Based Systems,'' In
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with Architectural
Support for Programming Languages and Operating Systems, Boston, MA, Nov. 2000.

[HPC 2005] HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/ .

[Kahle 2005] The Cell Processor Architecture. In Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture, 2005.

[Lin & Chalupsky 2003a] Lin, S. & Chalupsky, H. Using unsupervised link discovery methods to find
interesting facts and connections in a bibliography dataset. SIGKDD Explorations, 5(2): 173-178,
December 2003

[Lin & Chalupsky 2003b] S. Lin and H. Chalupsky. Unsupervised Link Discovery in Multi-relational Data
via Rarity Analysis. In Proceedings of the Third IEEE International Conference on Data Mining (ICDM
'03). 2003

[Senator 2002] Senator, T. (2002). Evidence Extraction and Link Discovery, DARPA Tech 2002.

[Shin2002a] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword Register Files
for Multimedia Extension Architectures.” In Proceedings of the Parallel Architectures and Compilation
Techniques Conference, Sept. 2002.

Shin2002b] J. Shin, J. Chame and M. W. Hall, “A Compiler Algorithm for Exploiting Page-Mode Memory
Accesses in Embedded-DRAM Devices,'' In Proceedings of the Fourth Workshop on Media and Stream
Processors Workshop, held in conjunction with MICRO '02, November, 2002.

[Shin2003] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword Register Files
for Multimedia Extension Architectures,” Distinguished paper selected from PACT '02, Journal of
Instruction-Level Parallelism, 2003.

[Shin 2004] J. Shin, M. Hall and J. Chame, ``Evaluating Compiler Technology for Control-Flow
Optimizations for Multimedia Extension Architectures,''. In Proceedings of the Media-Specific Processors
Workshop, held in conjunction with MICRO '04, December, 2004.

[Shin 2005] J. Shin, M. Hall and J. Chame, ``Superword-Level Parallelism in the Presence of Control
Flow,'' In Proceedings of the Conference on Code Generation and Optimization, March, 2005.

 39

[Shin et al 2006] J. Shin, M. Hall and J. Chame, “'Evaluating Compiler Technology for Control-Flow
Optimizations for Multimedia Extension Architectures,'' Invited paper to appear in the International Journal
of Embedded Systems, 2006.

[STELLA 2003] http://www.isi.edu/isd/LOOM/Stella/ .

 40

Table of Acronyms

Acronym Meaning

ACIP Architectures for Cognitive Information Processing

AFRL Air Force Research Laboratory

ARDA Advanced Research and Development Activity

DIMM Dual Inline Memory Module

DIVA Data Intensive Architecture

DRAM Dynamic Random Access Memory

EAGLE Evidence Assessment, Grouping, Linking, and Evaluation

GUPS Giga Updates Per Second

IOR In-Out Ratio

IT2 Itanium-2

LD Link Discovery

MCHIP Monarch Cognitive Heterogeneous Information Processor

MI Mutual Information

MPI Message Passing Interface

PBUF Parcel Buffer

PIM Processing in Memory

PIRC Pim Routing Component

SIMD Single Instruction Multiple Data

SPL Superword-Level Parallelism

SUIF Stanford University Infrastructure

