

AFRL-IF-RS-TR-2006-251
Final Technical Report
July 2006

VIRTUAL SECURE DYNAMIC COALITIONS

CACI Technologies, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2006-251 has been reviewed and is approved for publication.

APPROVED: /s/

 FRANCES A. ROSE
 Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY Jr., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 06
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jan 03 – Jun 06
5a. CONTRACT NUMBER

F30602-00-D-0221/0032

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
VIRTUAL SECURE DYNAMIC COALITIONS

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
Q926

5e. TASK NUMBER
QA

6. AUTHOR(S)
Francis Lee, John P. Martin

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CACI Technologies, Inc.
1300 Floyd Avenue
Rome New York 13440

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGA
525 Brooks Rd
Rome New York 13441-4505 11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-251

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA#06-527

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of the VSDC project was to create a system that could provide secure group communication in a coalition environment.
This report documents the design decisions and the outcomes of the Virtual Secure Dynamic Coalitions (VSDC) project. Sections
outline the reasons behind the decision to use each of the Defense Advanced Research Projects Agency (DARPA) projects used in
the VSDC project.

15. SUBJECT TERMS
Secure group communication in a coalition environment, Virtual Secure Dynamic Coalition

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Frances A. Rose

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

23 19b. TELEPONE NUMBER (Include area code)

 i

TABLE OF CONTENTS

1.0 Project Goal ... 1

2.0 Antigone... 1

3.0 ADF.. 3

4.0 KeyNote ... 3

5.0 Design Decisions ... 5

6.0 Implementation .. 9

7.0 The VSDC system.. 10

7.1 VSDC Mapped Server .. 10

7.2 VSDC Client ... 11

8.0 Client File Transfer .. 12

9.0 Client Database Querying .. 13

10.0 Conclusion ... 16

11.0 Recommendations.. 18

Glossary of Acronyms: ... 19

LIST OF FIGURES

Figure 1: VSDC network architecture .. 8

Figure 2: Antigone Mapped Server GUI .. 10

Figure 3: VSDC Client.. 11

Figure 4: Policy settings for a group... 12

Figure 5: File transfer in VSDC.. 13

Figure 6: Query builder... 13

Figure 7: Active transactions during a query.. 14

Figure 8: Query results displayed ... 15

Figure 9: Environment variables of function, classification, and time 15

 1

1.0 Project Goal

The goal of the VSDC project was to create a system that could provide secure group

communication in a coalition environment. The system needed to be able to support real-

time policy enforcement in a constantly changing environment. The system also needed

to be able to support policy enforcement in both hardware and software with the ability to

completely cut off rogue hosts from the network. In addition all policies used on the

network must be able to be centrally managed by policy makers and enforced globally.

The operational scenario the project was designed for is a coalition of several countries

with varying degrees of trust distributing information of various classification levels. The

operation scenario also took into account changing environments where countries or

entities within those countries could no longer be trusted and required termination of

connectivity from the network. Antigone, Autonomic Distributed Firewall, and the

KeyNote systems were used to create this environment.

2.0 Antigone
Antigone is an application-programming interface (API) developed by the University of

Michigan to provide a secure group communication middleware layer that can be used by

a variety of applications. The Antigone system is built on the notion of a group in the

same respect as multicast. A single entity creates a group at run-time. That group can

then be joined by other entities after being authenticated. Antigone provides the API for

the transport and encryption of data sent to the group. The API also includes facilities for

the authentication of entities attempting to join a group.

Antigone was chosen as the initial network authentication and communication system for

the VSDC project for its communication, encryption, and authentication capabilities. One

of the goals of the VSDC project was to provide a method of communication using

groups and limiting access to information based on domain defined prerequisites that

prospective members must possess in order to join a group. In addition, the VSDC system

needed to be able to dynamically update the policies on both the entities and the groups to

simulate changes in the environment. When a change in environment occurs, the groups

 2

must maintain integrity and ensure only those users with proper privileges are allowed

access to the information being sent to the groups.

The Antigone system allowed for the creation of a series of tools that permitted an entity

to create a new group. Once a group has been created the group’s creator sets the policy

for that group. When another entity, which is not the group’s creator, attempts to join a

group they are authenticated based on the policy set by the creator. If the connecting

entity does not meet the requirements of the policy set by the group’s creator they are not

allowed access to information for the group.

To protect information sent to groups all communication is encrypted using the OpenSSL

library. By using an open standard to provide encryption the Antigone system can

provide all of the encryption capabilities supported by the OpenSSL library. The initial

key exchanges done by Antigone are done using a form of group diffie-helman exchange.

Antigone uses the Ismene policy language to set policies for the groups. Ismene is a

relatively simple policy language using a series of predicates to enforce policy. Each

group requires its own policy file to be generated before the group is created. The policy

language used by Antigone is composed of simple predicates to validate users. An

example of these predicates is shown below:

join: timeofday(034500,040000) :: accept;

This predicate states that members will only be allowed to join the group between 3:45

and 4:00 AM. At the time of this writing only nine predicates are built into the Antigone

system by default. The Ismene language supports extension through custom source code

written to support user defined predicates. For a single group several predicates may be

defined to further restrict access to the group.

The communication facility provided by Antigone uses standard multicast

communication to send data out over the network. This means that every message that is

 3

sent to a group will be sent to every member of the group. This also means it is possible

for anyone to join the multicast session regardless of the policies implemented and

receive the encrypted data. Since the data is encrypted this may or may not be a possible

way to attack and defeat the system.

3.0 ADF
The Autonomic Distributed Firewall is a system built for DARPA by Secure Computing

and 3Com to provide a hardware firewall solution. The ADF is a network interface card

(NIC) that can be either PCI or PCMCIA, and provides encryption and network filtering

rules. The system accomplishes this goal by having a VLSI cryptographic engine on the

card capable of doing hardware level encryption at a reasonable rate. The card also has

memory that is isolated from the host operating system for storing packet filtering rules.

The ADF cards are administered from a single policy server. At the time of this writing

only the Microsoft WindowsTM operating system is supported. Each of the NICs on the

network can have their own filtering rules for packets.

4.0 KeyNote
KeyNote is an API developed by the University of Pennsylvania that provides a generic

policy system based on trust management. The trust management system used by

KeyNote is composed of several parts: principals, actions, policies, and credentials.

Principals are entities authorized to perform some action. Actions are operations with

security consequences that are enacted by the system. Policies regulate the actions that

principals are allowed to perform. Credentials allow principals to delegate authority to

other principals.

KeyNote uses a system of trust established as a hierarchy. A top level “trusted” policy

must be used to grant principals a certain level of trust. Trust is granted based on a series

of predicates that a principal must comply with. Unlike the Antigone system, the

KeyNote system does not use a simple accept or reject mechanism as the only levels of

 4

compliance. KeyNote allows multiple user defined levels of compliance to be defined by

the policy creators.

Each level of trust granted by the KeyNote system is defined by a policy. An initial top

level “trusted” policy is given to the compliance checker specifying those principals that

are allowed to grant further trust. This top-level policy must have implicit trust and

usually resides on the machine running the compliance checker. The top-level policy also

contains some conditions the principals must comply with to grant further trust. These

conditionals are based on the actions specified in that principal’s environment. Actions

are basically variables with values that are either static or queried when compliance with

a policy is verified. Each principle named by the top-level policy can then grant other

principals trust with credentials. Credentials are slightly different than the top-level

policy since they require the credential creator to sign the policy using their private key.

This allows principals to send credentials over insecure networks. KeyNote ensures that

no principal can grant trust greater than they are given and that all recipients of a

principal’s trust must at a minimum meet the same criteria for actions the principal must

meet.

To enforce policy the KeyNote policy checker uses a simple policy system. Each time

policy is checked there are three requirements that must be passed into the compliance

checker. A trusted policy is used to grant the initial level of trust in the system. A signed

credential granting permissions to principals other than those specified in the trusted

policy, and an authorizer specifying the principal requesting an action. The credential can

make assertions about the environment of the principal requesting the action.

The credential system KeyNote uses contains two key pieces of information for the

compliance checker, the principals allowed to request actions, and the conditions that

must be met in order for the action to be performed. The conditions are composed of

simple boolean conditions that if met return a level of trust based on how many

conditions are met. A credential can have multiple levels of trust returned allowing a

great deal of flexibility when implementing policy.

 5

The KeyNote system was chosen for the VSDC project for its flexible way of dealing

with policy. The VSDC project needed a policy checking system that could handle

multiple levels of compliance to deal with DoD standard classification rules. The

flexibility offered by using ASCII based policies also allows the ability to build policy

strings that can be manipulated dynamically from any program using the system. For the

VSDC project, template policy files were used where special keywords marked locations

that could be modified at run-time.

5.0 Design Decisions
The design of VSDC had to meet three basic requirements. First was the ability to have

runtime policy modification. Situations change quickly and suddenly, often in ways that

a static policy would be unable to handle. Relationships between coalition members

change in unpredictable ways, so policies governing information exchange must be

dynamic to accommodate the changes. The VSDC design addresses this requirement by

allowing all policy criteria and user permissions/information to be altered at runtime.

Second was the ability to have runtime policy enforcement. Policy implementers must be

able to process policy queries and modifications in a reasonable amount of time. While

not a strict requirement for VSDC clients, which only enforce local policy, it is vitally

important for VSDC servers, which enforce and modify policies for all clients. The

VSDC design attempts to minimize the amount of time and resources servers devote to

policy enforcement and modification. The third and final requirement was an integration

of hardware and software policy. Policy must be able to affect hardware and software

with equal ease. True integration of the ADF functionality into the distributed policy

management software should result in an environment where a hardware restriction to

information is as easy to erect as a software restriction. The VSDC design treats any

hardware policy modifications as just another step in software policy enforcement.

The operating system chosen for the VSDC project was Red Hat Linux 9. This was the

latest operating system available at the time that supported Antigone, KeyNote, and the

ADF NICs. The ADF policy server had to be run on a Microsoft Windows 2000 machine

since it didn’t support Linux directly and attempts to get the server running under Linux

 6

were unsuccessful. The availability of Red Hat and the development tools for Java, C++,

and C were the determining factors in the choice of Red Hat. The development language

chosen for the project was Java since it is the language the Secure Computing ADF

policy server was written in. Java also allowed rapid development of the GUI

demonstration applications.

Secure Computing built a system for managing multiple hosts on an internal network

with the specific goal of providing encrypted communication with auditing to prevent

attacks from inside the network. The system comprised a policy server and NICs built by

3Com. The policy server allows an administrator to set the policy for the entire network

from a single interface. The NICs handle the encrypted communication with minimal

overhead using hardware encryption that does DES and triple DES encryption. The ADF

cards and policy server formed the core the VSDC system would be designed around.

Using the ADF cards we gained the ability to encrypt all traffic from host to host without

the performance penalty of doing it in software. It also provided the ability to detect

packets that violated the policy rules with an audit database. The most important feature

of the cards though was the ability to quarantine hosts that might be considered harmful

to the network. Since the ADF system provided the capabilities required for VSDC, it

was the first component choice and the only system considered for enforcing hardware

level policy.

The Antigone API was chosen as the communication medium. It already had the ability

to form communication groups over secure multicast. The other option for the part of the

VSDC is the integrated KeyNote and Secure Spread system. The KeyNote and Secure

Spread system has some limitations that made it unacceptable for use in a real system.

One issue is hosts that connect have access to a group for a small period of time before

the compliance checking system rejects them if their credentials are insufficient. This

would allow arbitrary hosts to attack the system by connecting rapidly to access

information. Antigone already had a built in policy language through the use of the

Ismene language which allowed simple predicates to be created to enforce access policies

to groups.

 7

An additional requirement was added late in the project that required the communication

system to be able to query an external data source. While not a necessary requirement to

achieve the goal of secure group communication, it required considerable effort to

implement policy-based control to an external data source. The KeyNote policy

compliance engine was chosen for this function. Its ability to verify generic policy

requirements with an extensive policy language made it an ideal candidate for the project.

For the back end sample database the Derby database was chosen for its lightweight

implementation that supports ANSI SQL.

 8

Figure 1 shows the working network layout with an ADF policy server, Antigone VSDC

server, and the clients.

Figure 1: VSDC network architecture

Autonomic
Distributed
Firewall Policy
Server

VSDC
Server VSDC

Client

VSDC
Client

VSDC
Client

ADF Policy
Distribution

Encrypted
Multicast

Traffic

Encrypted
RMI Traffic

 9

6.0 Implementation
The first step to implementing the VSDC system was getting the ADF hardware installed

and working with the Secure Computing policy server. The ADF software was supplied

with documentation for installation on Microsoft Windows. The hardware installation

guides were supplied for both Microsoft Windows and Linux. The project had four 3Com

ADF NICs installed on desktop PCs. No PCMCIA variants of the cards were tested with

the project. Both the hardware and software were easily installed.

Three of the ADF NICs were installed on machines running Red Hat Linux 9. The fourth

was installed on a Microsoft Windows 2000 machine to run the Secure Computing policy

server. Since no installation instructions were provided for setting up the server under

Linux, after a few attempts Linux was dropped by the project for the policy server.

Although the policy server runs using the Java Runtime Environment (JRE), and should

theoretically run on any machine capable of running the JRE, the policy server was

always problematic.

After the completion of installation and testing that all of the machines could

communicate with each other, the next phase was begun. The Antigone API was

integrated into the VSDC system. The Antigone API is written in C++, but the policy

server is written in Java and depends heavily on Remote Method Invocation (RMI). In

order to use Antigone a Java Native Interface (JNI) to Antigone would need to be created.

There are limited references on how to create JNI interfaces to C/C++ code available.

Initially there were several issues with the Antigone JNI interface including stability

problems, linking problems, and issues with native to Java object binding. After the

Antigone interface to the policy server was finished, a client/server pair of applications

was built to generate traffic and show the communication between the hosts on the

network.

 10

7.0 The VSDC system
7.1 VSDC Mapped Server
The “Mapped Server” graphical user interface (GUI) shown in figure 2 below shows

three hosts connected to a server. When communication occurs between the hosts and the

servers the messages are displayed in the console at the top of the window. The bottom of

the window uses indicator lights to display who is communicating. The network topology

can be run on any of the machines on the network.

Figure 2: Antigone Mapped Server GUI

 11

The “Mapped Server” GUI manages the connections with the clients and also connects

the Antigone server to the Autonomic Firewall server in order to manage and distribute

the network interface cards’ communication policies. The GUI also allows the

administrator to “quarantine” a user, causing the Embedded Firewall of a client to stop all

traffic on a particular machine.

7.2 VSDC Client
The VSDC Client GUI shown in figure 3 allows users to connect to and utilize the

functionalities of the VSDC system.

Figure 3: VSDC Client

The client application allows members of a coalition to create, join, and administer

coalition “groups” in a communication chat room. It also allows a group administrator to

set up the group policies for joining and participating in the chat room, as shown in figure

4.

 12

Figure 4: Policy settings for a group

8.0 Client File Transfer
The client software also allows for reliable file transfers over Antigone’s Secure Spread

infrastructure. This allows a client user to send a file simultaneously to all other

participating coalition group members securely and robustly. As shown in Figure 5, the

file can be readily classified, and the policy enforcement can be implemented for the file

transfer to each member.

 13

Figure 5: File transfer in VSDC

9.0 Client Database Querying
The database function was another addition to the Client GUI. Each Client connected to a

local Derby SQL engine with different sets of data, and every client had an ability to

create a query to retrieve data from all the members of the group. The query builder is

shown in figure 6.

Figure 6: Query builder

 14

When a member of a group sends out a query, the query would be distributed via the

Antigone system shown in figure 7, and each client would query their local database for

the information.

Figure 7: Active transactions during a query

 15

If the query is valid for client (i.e. database is present, the table is structured correctly,

data is present, etc) then the client sends the results via the Antigone system, and the

results will be displayed on each client, as illustrated in figure 8.

Figure 8: Query results displayed

However, each client has a set of environment variables as shown in figure 9, and a

KeyNote policy engine to determine whether or not the received information should or

should not be displayed to the user.

Figure 9: Environment variables of function, classification, and time

 16

10.0 Conclusion
The combination of Antigone and the Autonomic Distributed Firewall network interface

cards allowed the development of the Virtual Secure Dynamic Coalition project to

complete the following goals:

 Design and develop an information management system that utilizes both

hardware and software policies to restrict access.

 Implement the VSDC system by combining previous Defense Advanced Research

Projects Agency (DARPA) projects, Antigone and ADF.

 Integrate the software packages with only minimal changes.

 Provide a highly dynamic and flexible policy system.

 Provide the ability to modify user permissions and information at any time.

 Encrypt all multicast User Datagram Protocol (UDP) transmissions used for

policy and information distribution.

 State persistence: saves the state of user permissions so that it can be loaded and

recreated later.

 Distribute files in a secure manner, to a designated group that is restricted by the

policy of the group and the criteria of the sender.

 Allow for database queries for information from all clients in a group.

 Implement KeyNote so that database results may be filtered from Clients that do

not have the correct characteristics and environmental variables for accessing the

datum.

Although the project was successful in allowing secure, encrypted, policy-based group

communication in a controlled environment, there are a few issues, which, if addressed,

would pave the way for great improvements in the future of the VSDC approach.

One example of these issues is the current separation of the hardware (ADF) server and

the group communication policy (Antigone/Ismene) server. Although they are both Java

applications, they both require native libraries that can only run on different operating

systems. These libraries provide two different, but related and essential services. And

 17

unfortunately, Antigone and KeyNote are written specifically for the Unix/Linux

environment, while the ADF server must operate in the Windows environment. Such a

division is inefficient and wasteful of resources.

Another major issue is the 3Com EFW PCI NICs for which 3Com has discontinued

support; thus making it difficult to implement the ADF on large networks (since the NICs

won’t be produced). The software is another concern. Antigone, Ismene, and ADF are all

unsupported and inactive projects. Without the backing of the original developers, all

improvements, upgrades, and bug patches will have to be done by the end user.

Furthermore, Antigone requires that all the client machines operate with their network

cards in promiscuous mode. For a user to enable promiscuous mode under Linux, they

need to have access to an account that gives administrative permissions on the machine.

This is more power than should be allotted to typical users, especially in a paranoid

environment.

Currently the policy restrictions are written in Ismene, whose language grammar is

outdated and overly restrictive. Greater policy implementation flexibility is required if the

policy rulesets are to be more descriptive and complex as demanded by the application.

 18

11.0 Recommendations
The future integration of Matt Blaze’s KeyNote Trust Management System would allow

VDSC significantly greater flexible in its policy sets. This added flexibility could allow

VSDC’s applications to be expanded beyond the battlefield and into areas such as

international diplomacy, urban warfare, or secure intra-governmental group

collaboration. Additionally it is recommended that future implementations be made more

hardware and platform independent; chief among these changes is the use of both

application and hardware-level embedded firewalls. This new architecture would help to

avoid situations like the ones we now face (the discontinuation of the EFW NICs) while

not compromising the security and integrity required by the application. Another

recommendation is to have a way to attach clearance levels to the users. Current policies

(for data-filtering/access) use an external, arbitrary clearance level assigner, while in the

real world a clearance level is attached to each person before they are allowed access to

material or data.

 19

Glossary of Acronyms:

ADF: Autonomic Distributed Firewalls

API: Application Programming Interface

ASCII: America Standard Code for Information Interchange

DARPA: Defense Advanced Research Projects Agency

DES: Data Encryption Standard

DoD: Department of Defense

EFW: Embedded Firewall

GUI: Graphical User Interface

IRC: Internet Relay Chat

JRE: Java Runtime Environment

NIC: Network Interface Card

PC: Personal Computer

PCI: Peripheral Component Interconnect

PCMCIA: Personal Computer Memory Card International Association

SQL: Structured Query Language

UDP: User Datagram Protocol

VLSI: Very Large Scale Integration

VSDC: Virtual Secure Dynamic Coalitions

