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Section 1. Summary 
 
The researchers designed a universal and parallel simulator for a special class of P 
(Priority) systems known as transitional systems. The DasPsimulator is highly 
configurable and can in principle be used to evolve membrane systems of any complexity 
as long as the computing device running the simulation provides sufficient resources. The 
architecture of the DasPsimulator allows the user to reuse the same module anywhere in 
the hierarchy of a membrane system and independently of the number of rules and 
objects to be stored within it. The results have shown that transitional membrane systems 
can be modeled and simulated very efficiently including membrane dissolution, 
membrane creation and string replication. 
 
The Model-View Controller (MVC) architecture was used for the development of this 
interactive system, where the user interfaces are changeable. The DasPsimulator is 
composed of several different components.  In the first one, Model, functional qualities 
and type abstract data are found. The second component, View, is responsible for 
showing the results to the user through a graphical interface and the third component, 
Controller, is in charge of the requests made by the user. 
 

1.1 Subsystems: 
 
Subsystem I contains the simulator engine that contains all of the functional qualities of 
the basic P systems and type abstract data. This subsystem is formed by combination of 
the following Java packages: NAryTree (implementing the tree types to represent the 
membrane structure and the computation tree), List, Membrane, Multi-set, Rules, and 
Simulator. 
 
Subsystem II includes all the classes related to the Graphical User Interface (GUI) that 
interacts with the user and is formed by the Java packages: Interface, user Data, Parse 
Rules, Serialization, and Help. 
 

1.2 Engine of the Simulator 
 
The engine is built upon two fundamental components. The first one is the simulator that 
includes the algorithms to simulate the processes and computations produced inside a 
membrane system; it also contains the functional qualities of the system, with the task of 
starting the initial configuration of the P system and constructing the initial configuration 
of the associated computation tree.  The second component includes all the type abstract 
data in order to support the membrane structure and its content (multi-sets of objects and 
rules), and contains the type data necessary for the creation and storage of the 
applicability multi-sets. 
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1.3 Graphical User Interface (GUI) 
 
The GUI is the part of the system which allows the user to interact with the application. 
The Swing Java package was used in the construction of this GUI. The package includes 
the AWT (Abstract Windows Toolkit). The GUI also uses the JPanel Java class. 
 
The following sections detail all the pertinent aspects of the development of the 
DasPsimulator, and conclude with future plans for the enhancement of the simulator. 
 

Section 2. Introduction 
 
Membrane Computing (MC) or P systems, initiated by G. Paun in 1998 [14], is a highly 
parallel, though theoretical, computational model inspired by biochemistry and by some 
of the basic features of biological membranes. Whereas Paun's membrane computing 
amalgamates in an elegant way membranes and artificial chemistries, various other 
systems with membranes also exist. For example, Langton's self-replicating loops [10] 
make use of a kind of membrane (i.e., a state of the Cellular Automata) that encloses the 
program. The embryonic projects, on the other hand, use cellular membranes to divide 
empty space into a multi-cellular organism [12, 20]. Explicit membranes (i.e., membranes 
with a material consistence) are not always required: the POEtic1project [22], for 
example, is based on a hierarchical organization of molecules and cells with implicit 
separations. 
 
The question of whether to simulate systems in software or to implement them in 
specialized hardware is not a new one (see for example [9]). With the advent of Field 
Programmable Gate Arrays (FPGA) [21, 24], however, this question took something of a 
back seat since simulation in Java is relatively straightforward and inexpensive to rapidly 
build (or rather configure) as compared to FPGAs. P systems are usually implemented 
and simulated on a standard computer using an existing simulator (such as the SimCM  
P System simulator [4], or one of the recently proposed distributed software simulators 
[5, 18]) or a custom simulator. As Paun stated, “it is important to underline the fact that 
‘implementing’ a membrane system on an existing electronic computer cannot be a real 
implementation, it is merely a simulation. As long as we do not have genuinely parallel 
hardware on which the parallelism of membrane systems could be realized, what we 
obtain cannot be more than simulations, thus losing the main, good features of membrane 
systems.” [15, p. 379]. The encouraging part is that today with a distributed system 
design, high parallelism is now possible. 
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Figure 1. Elements of a membrane system represented as a Venn diagram. Redrawn 

from [15]. 
 
A classical P system (see [15, 16] for a comprehensive introduction) consists of cell-like 
membranes placed inside a unique “skin” membrane (see Figure1). Multi-sets of objects, 
usually multi-sets of symbols, objects and a set of evolution rules are then placed inside 
the regions delimited by the membranes. Each object can be transformed into other 
objects, can pass through a membrane, or can dissolve or create membranes. The 
evolution between system configurations is done non-deterministically by applying the 
rules synchronously in a maximum parallel manner for all objects that are able to evolve. 
A sequence of transitions is called a computation. A computation halts when a halting 
configuration is reached, (i.e., when no rule can be applied in any region). A computation 
is considered successful if and only if it halts. 
 
The following P systems with boundary rules were implemented in the DasPsimulator: 
8 Communication rules: xx’ [i y’y → xy’[ i x’y]] 

 
8 Evolution rules: [i y → [i y’]] Evolution-Communication P systems 

 
8 Communication rules: (x,in), (y,out), (x,in; y,out) 

 
8 Evolution rules: y → y’ where x, x’, y, y’ represent multi-sets of arbitrary size 

 
 
P systems are not intended to faithfully model the functioning of biological membranes; 
rather they form a sort of abstract artificial chemistry (AC): "An artificial chemistry is a 
man-made system which is similar to a real chemical system"[6]. AC's are a very general 
formulation of abstract systems of objects which follow arbitrary rules of interaction. 
They basically consist of a set of molecules S, a set of rules R, and a definition of the 
reactor algorithm A. By abstracting from the complex molecular interactions in Nature, it 
becomes possible to investigate how the AC's elements change, replicate, maintain 
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themselves, and how new components are created. To be able to efficiently implement  
P systems in Java code the researchers had to modify classical P systems in the following 
two aspects: 
 
1. The rules are not applied in a maximum parallel manner but follow a predetermined 
order. 
 
2. The P system is deterministic, (i.e., for a given initial configuration, the simulation 
always halts in the same halting configuration). 
 
The primary reason is that a straight-forward implementation of classical P systems 
would have been too expensive in terms of computer resources required. The researchers 
were primarily interested in a minimal software implementation and not by a faithful 
classical P systems implementation. More details on the rules embedded in the 
DasPsimulator are summarized below: 
 
8 Rules are able to perform operations for modifying the membrane structure: 

 
9 membrane creation: [i a ]i→ [j b ]j  
9 membrane division: [i a ]i → [k b ]k[j c ]j 
9 membrane duplication: [i a ]i → [k b [j c ]j ]k 
9 membrane dissolution: [i a ]i → a where a, b are objects and i, j, k are labels of 

possible membranes 
 
 
8 Communication and Evolution rules assume the form: 

 
[i a → v ]i, [i a ]i → [i b ]i, [i a ]i → [i b ]i  

 
 where a, b are objects and i, j, k are labels of possible membranes 
 

Section 3. Methods, Assumptions and Procedures 
 
In this section, the implementation of the membrane system shall be described in detail. 
The implementation basically supports P systems with priority using membrane 
dissolution, creation and string replication. The resulting design is a universal membrane 
module that can be instantiated and used anywhere in a membrane system. 
 
For the current implementation, the researchers chose Java 2 SDK as the software 
development platform for designing the P systems simulation. Alternatively, a hardware 
based P system implementation [17, 21] is an array of (a usually large number of) logic 
cells placed in a highly configurable infrastructure of connections. Each logical cell can 
be programmed for a certain function (see also [21] for more details). In addition, once a 
design has been modeled and simulated via the DasPsimulator it may be subsequently 
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transferred to a full customized Application Specific Integrated Circuit (ASIC) 
technology, which would in principle provide even better performance. 
 

3.1 Membrane Structure 
 
The membranes described in this implementation are without a material consistence, (i.e. 
they do not exist as physical manifestations). Therefore, reference to the membrane 
actually refers to its contents, (i.e., to the multi-sets of objects and the evolution rules of 
the region it encloses (see Figure 2). The relationships between the membranes, which 
are represented in this implementation, are illustrated using Venn diagrams as transition 
containers. A collection is basically only used when objects are being transferred between 
two membranes.  
 

 

 
 

Figure 2. Membranes are not explicitly represented but are defined by its contents. 
 

3.2  Configuring a Membrane System 
 
As an illustrative example, let us assume that we would like to construct the initial 
membrane system configuration, as depicted in Figure 3 (right), from a single membrane 
system (i.e., called “mother cell”, left). The following questions immediately arise:  
(1) how do we represent the description of the membrane system in a compacted form 
(i.e., the genome), (2) how do we build the membrane system’s initial configuration from 
this description, and (3) how does the system know when the configuration is terminated 
and when it can start evolving in “normal” mode? The researchers termed the process of 
building an initial membrane system configuration a configuration or self-configuration. 
Thus configuring (or self-configuring) the system happens before the membrane system 
starts evolving its initial configuration. From a more biological point of view, both steps 
together are similar to the development of a cell’s structure and functionality. 
 

Formatted: Bullets and
Numbering

cameras
Text Box
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Figure 3. Constructing a membrane system from a single membrane (mother cell), 

which contains the description of the entire system to be constructed. 
 
As explained for example in [15, p. 301], the membrane creation rule: 
 
cre =a ->  [iv]i, 
 
where a is an object, v is a string representing a multiset of objects, and i is the membrane 
label, allows the creation of a new membrane with the label i and the contents as given in 
v. For our purposes, the string v contains objects and also evolution rules, e.g., v = ab2c(a 
-> b)(b -> c). For enhanced readability, the evolution rules shall be put in parenthesis.  
 
The multisets of objects and evolution rules of each membrane compartment contained in 
Figure 3 are as follows: 
 
v1 = bc(b -> cf) 
v2 = ac2(c -> a)(a -> c) 
v3 = af(a -> ab)(b -> bf)(f -> f2) 
v4 = b(b -> d)(d -> f) 
 
Now, let us assume that the skin membrane [1] has already been created and that it 
contains a description in some form of the entire membrane system to be built. Here we 
consider the initial multisets of rules r1 and objects w1 that would have to be placed inside 
this single membrane system in order to obtain the desired initial configuration after 
some time. A straightforward solution is as follows: 
 
w1 = M1 
r1 = (M1 -> v1[2v2M3M4(M3 -> [3v3]3)(M4 -> [4v4]4)]2) 
 
The symbols M1, M2, and M3 are used as auxiliary symbols for initiating the membrane 
creation process in each membrane compartment, v1, v2, v3, v4 are the multisets of rules 
and objects as specified above. The only symbol contained in the multiset w1 (i.e., M1) 
shall be called seed symbol, the rule r1 genome. The very first step consists in applying 
rule r1 to the only object M1 present in the single membrane system. This step creates 
membrane number two and puts the “building plans” for the next inner cells within its 
compartment. The process continues until membranes three and four are created. From a 
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mathematical point of view, this can be compared to a recursive construction of the 
underlying tree structure that represents the membranes. Note that the construction rules 
remain in the compartments after a successful construction. The reader should note that 
during the construction process, those membranes whose construction has already 
completed, will start evolving. Assuming that creating a new membrane can be done 
within one time step (i.e., one macro-step), the construction time might play a role for 
deeply nested hierarchies, although one might always take that into consideration while 
designing the chemistry. Here we propose as an illustrative example another pragmatic 
solution by introducing a special object DT, that prevents the chemistry from evolving in 
the compartment where this object is present as long as T > 0. T, which specifies the 
number of macro-steps the cell will be inactive, is automatically decremented during each 
macro-step. One can compare this symbol with a counter that decrements T at each time 
step until it reaches 0. The symbol is automatically removed from the chemistry once T = 
0. By expanding the multisets of objects in the genome as following, the membrane 
system will first be completely built before it starts evolving:  

 
v1 = bc(b -> cf)D2 
v2 = ac2(c -> a)(a -> c)D1 
 
Since the multisets v3 and v4 are at the lowest level in the hierarchy (i.e., the membrane 
structure’s tree leaves), no delay is necessary for them and they can start evolving 
immediately once created. Membrane 2 (v2) requires a one-unit delay, the outer 
membrane compartment v1 two-units. 
 
Note that there are other ways to implement delays and to stop the evolution of the 
chemistry. In particular, one might convert all rules (e.g., a -> b) into co-operative rules 
(e.g., at -> b) by adding a special symbol (e.g., t), which has to be present in the 
compartment for the rules to be applied. These symbols would then be generated by 
another special rule. 
 

3.3 Self-Inspection and Self-Replication 
 
Csuhaj-Varj´u et al. [25] proposed a divide-rule denoted as, [ha]h ->[h!b]h! [h!!c]h!! , 
which replicates objects and membranes in h alike and puts them into two new 
membranes h! and h!!, at the exception of object a, which is replaced by b in h! and by c in 
h!!. The researchers felt that such a rule is certainly useful from the theoretical point of 
view, but that (1) it leaves out very important aspects of self-replication, (2) that the rule 
is too complex compared to other rules to be implemented with a reasonable number of 
micro-steps, and (3) that it is too complicated to be efficiently implemented in software. 
The researchers therefore proposed a more pragmatic software-oriented approach in this 
section, which allows to self-replicate a membrane system (i.e. obtain an identical copy) 
by means of self-inspection. In the previous section, the configuration process started 
from a single membrane (i.e., the mother cell) that contained a single seed symbol and a 
single evolution rule called genome. In this section, we are interested in how we can 
obtain the genome and the seed symbol from an existing cell by using a sequence of 
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rather simple instructions, which would be implemented by a reasonable number of 
micro-steps. The situation is illustrated in Figure 4.  
 
The first step of the process will consist of inspecting the current membrane system and 
in creating a genome-rule in the skin compartment, which will then be used to create a 
new mother cell in the environment outside the current membrane. In the following steps, 
the mother cell will develop, i.e., self-configure, until the membrane system’s initial 
configuration is reached (as explained in the previous section). As a result, we will end 
up with two potentially identical membrane systems. Note that depending on whether the 
initial membrane system was in a halting configuration and whether the replicated 
membrane system starts evolving during the configuration process, there might never 
exist an instant when the two membrane systems are strictly identical. In order to self-
replicate a membrane system, the following mechanisms are required: (1) initiate the 
process of self-inspection; (2) copy the contents (i.e., objects and rules) of a given 
compartment; (3) incrementally compose the genome; and (4) create the mother cell 
outside the current skin membrane. 

 
Figure 4.  Self-replicating an existing membrane system by self-inspection and sub- 

sequent configuration. 
 
Let us introduce a new rule, gen = a -> (DC,Mi, out), which allows the duplication of all 
objects and evolution rules in the current compartment and which sends the configuration 
in the form of a special rule to the outer compartment. More specifically, the gen-rule 
does the following in one macro-step: 
 
(1) duplicates all objects and evolution rules in the current compartment I and puts them 
together in a temporary and virtual multiset DC; 
(2) if a rule of the form Mj -> [j . . . ]j is present in the current compartment, an additional 
symbol Mj, i.e., the seed symbol, will be added to DC and the rule will be removed from 
the compartment (but remains in DC);  
(3) it sends the rule, Mi -> [iDC]i to the outer compartment; and  
(4) if a rule  of the form Mi -> [i. . . ]i was already present in the outer compartment, it 
will simply be replaced by the new rule. 
 
In other words, this rule allows one to incrementally compose the genome from the 
bottom of the membrane structure to the top by assembling each membrane’s 
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configuration on the way in the form of a rule, which will then be used during the 
construction process as a genome.  Here, the symbol Mi is a symbol, i.e., the seed 
symbol, not in the symbol alphabet, which is unique for each membrane. 
 
The rule of the form Mi -> [i. . . ]i together with the symbol Mi allows one to create and 
configure a new membrane i during the construction of the replicated cell. The second 
step prevents the rule from being used during the self-inspection process. Also, the rule 
has to be removed because it is not part of the actual configuration and would otherwise 
be accumulated in case of multiple replication steps. Figure 5 illustrates the application of 
the gen-rule in a simplified setting. The rule sends the configuration of compartment 2 to 
the outer compartment. Since no rule of the form Mj -> [j . . . ]j is present in the current 
compartment, no Mj-symbol is added. 
 

 

 
Figure 5. Illustration of the gen-rule.  

These rules basically send a copy of the current 
objects and evolution rules in the form of a rule to the outer compartment, which 

creates a new membrane system in the environment. 
 
If the rule is applied in the top compartment, i.e., the skin compartment 1, the resulting 
M1 -> [1. . . ]1 rule, i.e., the complete genome, as well as a seed symbol M1 will be sent 
to the environment. Once outside the skin membrane, the rule will be immediately 
applied because of the seed symbol, and a new membrane will be created that contains 
the genome and the seed symbol for the further construction of the new membrane 
system (see also Section 3.1). Figure 6 illustrates this procedure, which is not entirely 
biologically plausible as it involves a moment where the seed symbol and the genome are 
not surrounded by a membrane, but the researchers felt that this represented an acceptable 
and more straightforward solution than to introduce another rule, such as a -> [1. . . ]1, for 
this particular case. 
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Figure 6. Illustration of the gen-rule when applied in the skin compartment. 

 
In order for the gen-rule to be applied in the correct order (i.e., from the bottom to the top 
compartment), we need to pre-configure the membrane system with additional symbols 
and rules. Let us assume that the self-inspection process will be initiated at the bottom of 
the membrane system, i.e., at the leaves of the underlying tree structure. In Figure 3, the 
process would thus start in membranes 3 and 4. The entire configuration is then 
incrementally put together by moving from the leaves to the root of the tree. Here the 
researchers proposed a self-timed approach, which is illustrated in Figure 7. The idea is 
that each compartment contains a gen-rule which is being activated by a special symbol 
(i.e., go). The entire process is initiated by generating a go-symbol in each leaf of the 
tree, which then triggers the sequential activation of the gen-rules in each compartment. 
Obviously, if the membrane system changes its own configuration during its normal 
evolution (i.e., by adding or removing membranes), the gen-rules will have to be 
modified accordingly, which might not be a trivial undertaking in all cases. For example, 
if a membrane with label 5 is added in compartment 2 of Figure 7, then the rule would 
have to be changed from go2-> . . . to go3-> . . . and the new membrane would also have 
to contain a gen-rule. Finally, sending the go-symbol from, for example, the skin 
compartment to the inner-most membranes, might be realized by means of additional 
rules not detailed here. 
 

 
Figure 7. Each compartment has to be pre-configured with a gen-rule in order to allow the 

membrane system to self-replicate by self-inspection.  
The process is initiated by generating a go-symbol in compartment 3 and 4. 
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3.4. Replicating strings 
 
Another powerful way to obtain exponential space sufficient for solving NP-complete 
problems in polynomial time is to use the replication of string-objects, as considered in  
P systems with replicated rewriting and in systems with worm objects. It was proven in 
[26, 27] that the Hamiltonian Path Problem (HPP) and the satisfiability problem (SAT) 
can be solved in linear time by such systems. (If the replication produces only two new 
strings, then HPP requires a quadratic time, see [28].) The replication of strings can be 
obtained not only in a “direct” way, by replicating rules as mentioned above, but also in 
an “indirect” manner, starting from a conditional way of communicating objects through 
membranes. The basic idea is to consider certain predicates on strings and 
communication rules of the form (II; inj); (II; out), with the meaning that if II(w)=true, 
then the string w must follow the addressing inj ; out. A variant is to send the string w to 
one of these targets, non-deterministically choosing it, but we may also choose to send 
the string to all membranes for which a predicate holds true. That is, we replicate the 
string in as many copies as many communication predicates are true. 
 
Predicates for controlling the string-object communication were considered in [28], but 
without investigating the computational efficiency of the replication. This was done in 
[29], for the so-called P systems with valuations, introduced in [30]: a morphism from 
symbols to integer numbers assigns “valuations” to strings; the sign of this valuation is 
interpreted as an electrical charge and used for communicating the string as discussed in 
Section 3.3 (a string of a given polarization goes to a membrane of the opposite 
polarization, while the neutral strings remain in the same membrane). When a string can 
go to several adjacent membranes (for instance, it has polarity + and there are several 
adjacent membranes with polarity −), then the string is replicated and copies of it are sent 
to all targets. As expected, by using this idea, polynomial solutions of NP-complete 
problems can be devised; this is illustrated in [30] by SAT and HPP. 
 

3.5 Simulation Design Flow  
 
The membrane system has been programmed using the Java software development kit 
[3]. The process basically requires three software tools (note that many other tools exist): 
Eclipse, Java Swing Toolkit and the DasPsimulator. 

 
The Java files are first compiled with Eclipse, which allows the operator to simulate and 
debug the code on a behavioral level. Once compiled and simulated, the design is 
synthesized, analyzed, and optimized. This includes all technological relevant details 
with regards to the chosen schemas, the program flow analysis and the resources 
required. In addition, Eclipse also outputs the file which is used in the next step by the 
software. The Eclipse design tool essentially maps (i.e., place and route) the design of the 
chosen configuration and generates the necessary configuration files. In this case, the 
Java initialization routine generates the necessary configuration files for simulating the 
model. A significant part of the code is dependent on the membrane system to be 
simulated and on its initial values. The DasPsimulator Java application (see Figure 8) 
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allows the user to specify in a convenient way all relevant parameters of the membrane 
system and then automatically generates the configuration and initialization files as well 
as several scripts that automate the simulation process. 
 
 

 
 

Figure 8. DasPsimulator Java application interface generates all the necessary configuration files of 
the membrane system implementation. 

 

Section 4. Results and Discussion 
 
In this section, one example of using the DasPsimulator to solve an NP complete problem 
is provided and results shall be presented. The DasPsimulator successfully solved the 
Hamiltonian Path Problem (HPP) in polynomial time and the SAT problem was also 
solved in polynomial time by applying P system rules with active membranes, by using 
membrane creation, dissolution and string replication. In the following section the 
researchers discuss how the DasPsimulator solved the HPP, giving full details, in order to 
provide the reader with an example of solving an NP complete problem.  

4.1 HPP Example 
 
Consider a graph g = (N; E) with the nodes N = {a1; a2; : : : ; an}. In order to decide 
whether a Hamiltonian path exists which starts in a1 and ends in an we construct the  
P system II with the membrane structure u = [0[1 ]1]0 (the skin membrane is labeled by 0, 
and it contains a unique membrane, with label 1), with the object (a1; 1) present in 
membrane 1, using the following alphabet of objects: 
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V = {(ai; j); (a!
i ; j) | 1 ,<= i; j <= n} � {M � N |M _= �}(note that the subsets of N are 

interpreted as symbol-objects); the possible membranes are labeled by 0; 1; 2; : : : ; n − 1, 
and the associated sets of rules are as follows:  
 
R0 = {N →yesout}; 
 
Ri = {(ai; j)→(a!

k1; j + 1) : : : (a!
ksi; j + 1) | (ai; akr ) � E; for all 

 
1 <= r <= si; si >= 1; and 1 <= j <= n − 1} 
 
�{(a!

k; j) → [k (ak; j)]k | 1 <= k; j <= n − 1} 
 
�{(a_n; n) → {an}} 
 
�{M → (M � {ai})out |M � N}; for all i = 1; 2; : : : ; n − 1: 
 
The idea behind this construction is the following. The tuple symbols (ai; j) encode the 
fact that we have reached node ai on a path starting in a1 which has already passed 
through j nodes. Each object (ai; j) introduces as many objects of the form (a!k; j +1) as 
many successors of ai exist in the graph. Then, each object (a!k; j + 1) creates a 
membrane with label k. That is, the paths we create are encoded in the membrane 
structure (all the paths in the graph g consisting of at most n nodes are “recorded” as 
paths from the root to the leaf nodes of the tree describing the membrane structure of II). 
When we reach the node an or the paths already containing n nodes, this process (it takes 
2(n−1)−1 steps) is finished, and we pass to the second phase of the computation, that of 
checking whether or not among the generated paths there is one which is Hamiltonian. 
This process can start only from object (a!n; n), that is, only if we have reached node an 
after passing through exactly n nodes. After producing an object of the form of a subset 
of N (at the first step, this is {an}), we exit the membranes, one by one; when we exit 
membrane i we add the node ai to the current set of nodes. In this way, after at most n 
steps (one for passing from (a!

n; n) to {an}, and n − 1 for other nodes), we reach the skin 
membrane with several objects of the form M � N. Only N can exit the skin membrane, 
sending out the message yes, that is, we have an output (after 3n−2 steps) if and only if 
the graph g contains a Hamiltonian path from a1 to an. 
 
The results from this simulation have a special significance in view of the theorem cited 
above: when we have exponentially many symbol-objects placed in a bounded number of 
membranes we can simulate the system by a Turing machine of a similar efficiency (with 
a polynomial slowdown); when one uses an exponential number of string-objects placed 
in a bounded number of membranes, or an exponential number of objects placed in an 
exponential number of membranes this is no longer true. We can “explain” these results 
by the much greater quantity of information stored in a string or in a membrane than in a 
multiset of symbol objects. The result is depicted in Figure 9. The DasPsimulator 
successfully solved the HPP problem in polynomial time by using string replication. The 
algorithm was applied by applying P system rules generating all paths from a specified 
initial node, and then checking whether or not at least one of these paths is Hamiltonian. 
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Figure 9. The HPP problem simulated in polynomial time using string replication (ref. page 73 in 
[15]). 

 

4.2 Model Evaluation 
 
In order to evaluate the performance of this implementation, the researchers simulated 
multiple membrane models of varying sizes and complexities. The researchers found the 
resources used are nearly directly proportional to the maximum number of objects. 
Furthermore, adding the possibility of membrane creation adds complexity and therefore 
results in a design that is almost twice as large and runs at a much slower speed.  
 
This DasPsimulator has been tested by means of examples from [15] with the following 
features: membrane dissolution, membrane creation, and string replication consisting of 
transferring objects to upper- and lower-immediate membrane systems.  
 

Section 5. Conclusions 
 
The researchers presented a universal and massively parallel implementation of a special 
class of P systems. The architecture of the universal membrane allows us to use the same 
module anywhere in the hierarchy of a membrane system and independently of the 
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number of rules and objects to be stored within it. The conclusions summarized below 
were modeled and simulated efficiently using the DasPsimulator:   
 
8 Membrane Computing provides computational models that abstract from the 

living cells' structure and function 
 
8 Such models have been proven to be computationally powerful (equivalent to a 

Turing machine) and efficient (solving NP-Complete problems) 
 
8 Membrane Computing defines an abstract framework for reasoning about 
9 distribute architectures 
9 communication 
9 parallel information processing 

 
8 Such features are relevant both for Computer Science (Distributed Computing 

Models, Multi-Agent Systems) and Networking (Modeling and Simulation of 
Biological Networks) 

 

Section 6. Recommendations 
 
Future work will concentrate on the development and improvement (in terms of speed 
and resources used) of the existing design. In addition, it is planned to extend the existing 
design in order to be able to reuse dissolved membranes and in order to apply rules in a 
fully parallel and nondeterministic manner. In addition, dealing with a larger number of 
objects would probably require extensive processor capacity. This was not a serious 
limitation in the current implementation. Furthermore, the researchers also envisage 
extending the current design to other important classes of P systems such as for example 
systems with symport/antiport [15, p. 130] and systems with membrane division  
[15, p. 273] such as those summarized below: 
 
Examples of specialized P system models: 
 
8 Energy-Controlled P systems 
8 P systems with promoters/inhibitors 
8 P systems with carriers 
8 P systems with mobile membranes 
8 Tissue P systems 
8 Probabilistic P systems 
8 P systems with elementary graph productions 
8 Parallel Rewriting P systems 

  
 
Ongoing research consists of developing a hardware based architecture for membrane 
systems using FPGA’s, amalgamated with alternative computational and organizational 
metaphors. Amorphous Membrane Blending (AMB) [19], for example, is an original and 
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not less unconventional attempt to combine some of the interesting and powerful traits of 
Amorphous Computing [2], Membrane Computing [15], Artificial Chemistries [6], and 
Blending [7]. One of the goals is to obtain a novel, minimalist, and computational 
architecture with organizational principles inspired by biology and cognitive science. 
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