

AFRL-IF-RS-TR-2006-242
Final Technical Report
July 2006

DEVELOPMENT OF A SIMULATION MODEL FOR
P SYSTEMS WITH ACTIVE MEMBRANES

SUNY Institute of Technology

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-242 has been reviewed and is approved for publication

APPROVED: /s/

THOMAS E. RENZ
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES A. COLLINS
 Deputy Chief, Advanced Computing Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jan 05 – Jan 06
5a. CONTRACT NUMBER

FA8750-05-2-0042

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
DEVELOPMENT OF A SIMULATION MODEL FOR P SYSTEMS WITH
ACTIVE MEMBRANES

5c. PROGRAM ELEMENT NUMBER
61101E

5d. PROJECT NUMBER
NBGQ

5e. TASK NUMBER
10

6. AUTHOR(S)
Digen Das

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SUNY Institute of Technology
P. O. Box 3050
Utica New York 13504-3050

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTC
525 Brooks Rd
Rome New York 13441-4505 11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-242

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA#06-497

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Membrane Computing (MC) is a branch of Natural Computing, which abstracts from the structure and the functioning of living Cells.
The concept was introduced by Gheorghe Paun of the Romanian Academy, Romania, in the late nineties (14, 15). Membrane
computing models are commonly known as P (Priority) Systems. These systems perform distributed parallel computing, processing
multi-sets of objects synchronously, in compartments delimited by a membrane structure. This report describes a software
application, DasPsimulator created in Java. This is a simulation model similar to SimCm (4).While SimCm is limited to its capability to
simulate only the P dissolution operation, the DasPsimulator is capable of simulating Membrane Division, Membrane Creation and
Membrane String Replication operations. This is a first step to cross the interface between simulation and a Distributed
implementation of P Systems able to capture the parallelism existing in the membrane computing area. The tool is user friendly,
allowing the user to follow the evolution of a P system in a visual way. The simulator can be used to perform closer inspection of P
system theory by the advanced researcher and it can also be helpful to individuals interested in learning and understanding how P
systems work.
15. SUBJECT TERMS
Membrane Computing, Natural Computing, Parallel Computing, P Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Thomas E. Renz

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

21 19b. TELEPONE NUMBER (Include area code)

 i

Table of Contents

Section 1. Summary .. 1

1.1 Subsystems:... 1
1.2 Engine of the Simulator .. 1
1.3 Graphical User Interface (GUI) .. 2

Section 2. Introduction.. 2
Section 3. Methods, Assumptions and Procedures ... 4

3.1 Membrane Structure.. 5
3.2 Configuring a Membrane System .. 5
3.3 Self-Inspection and Self-Replication .. 7
3.4. Replicating strings ... 11
3.5 Simulation Design Flow ... 11

Section 4. Results and Discussion .. 12
4.1 HPP Example .. 12
4.2 Model Evaluation.. 14

Section 5. Conclusions.. 14
Section 6. Recommendations.. 15
References... 16

List of Figures

Figure 1. Elements of a membrane system represented as a Venn diagram. Redrawn 3
from [15]. .. 3
Figure 2. Membranes are not explicitly represented but are defined by its contents.......... 5
Figure 3. Constructing a membrane system from a single membrane (mother cell), 6
which contains the description of the entire system to be constructed. 6
Figure 4. Self-replicating an existing membrane system by self-inspection and sub-....... 8
sequent configuration.. 8
Figure 5. Illustration of the gen-rule. .. 9
Figure 6. Illustration of the gen-rule when applied in the skin compartment................... 10
Figure 7. Each compartment has to be pre-configured with a gen-rule in order to allow
the membrane system to self-replicate by self-inspection. ... 10
Figure 8. DasPsimulator Java application interface generates all the necessary
configuration files of the membrane system implementation... 12
Figure 9. The HPP problem simulated in polynomial time using string replication (ref.
page 73 in [15]). .. 14

 1

Section 1. Summary

The researchers designed a universal and parallel simulator for a special class of P
(Priority) systems known as transitional systems. The DasPsimulator is highly
configurable and can in principle be used to evolve membrane systems of any complexity
as long as the computing device running the simulation provides sufficient resources. The
architecture of the DasPsimulator allows the user to reuse the same module anywhere in
the hierarchy of a membrane system and independently of the number of rules and
objects to be stored within it. The results have shown that transitional membrane systems
can be modeled and simulated very efficiently including membrane dissolution,
membrane creation and string replication.

The Model-View Controller (MVC) architecture was used for the development of this
interactive system, where the user interfaces are changeable. The DasPsimulator is
composed of several different components. In the first one, Model, functional qualities
and type abstract data are found. The second component, View, is responsible for
showing the results to the user through a graphical interface and the third component,
Controller, is in charge of the requests made by the user.

1.1 Subsystems:

Subsystem I contains the simulator engine that contains all of the functional qualities of
the basic P systems and type abstract data. This subsystem is formed by combination of
the following Java packages: NAryTree (implementing the tree types to represent the
membrane structure and the computation tree), List, Membrane, Multi-set, Rules, and
Simulator.

Subsystem II includes all the classes related to the Graphical User Interface (GUI) that
interacts with the user and is formed by the Java packages: Interface, user Data, Parse
Rules, Serialization, and Help.

1.2 Engine of the Simulator

The engine is built upon two fundamental components. The first one is the simulator that
includes the algorithms to simulate the processes and computations produced inside a
membrane system; it also contains the functional qualities of the system, with the task of
starting the initial configuration of the P system and constructing the initial configuration
of the associated computation tree. The second component includes all the type abstract
data in order to support the membrane structure and its content (multi-sets of objects and
rules), and contains the type data necessary for the creation and storage of the
applicability multi-sets.

 2

1.3 Graphical User Interface (GUI)

The GUI is the part of the system which allows the user to interact with the application.
The Swing Java package was used in the construction of this GUI. The package includes
the AWT (Abstract Windows Toolkit). The GUI also uses the JPanel Java class.

The following sections detail all the pertinent aspects of the development of the
DasPsimulator, and conclude with future plans for the enhancement of the simulator.

Section 2. Introduction

Membrane Computing (MC) or P systems, initiated by G. Paun in 1998 [14], is a highly
parallel, though theoretical, computational model inspired by biochemistry and by some
of the basic features of biological membranes. Whereas Paun's membrane computing
amalgamates in an elegant way membranes and artificial chemistries, various other
systems with membranes also exist. For example, Langton's self-replicating loops [10]
make use of a kind of membrane (i.e., a state of the Cellular Automata) that encloses the
program. The embryonic projects, on the other hand, use cellular membranes to divide
empty space into a multi-cellular organism [12, 20]. Explicit membranes (i.e., membranes
with a material consistence) are not always required: the POEtic1project [22], for
example, is based on a hierarchical organization of molecules and cells with implicit
separations.

The question of whether to simulate systems in software or to implement them in
specialized hardware is not a new one (see for example [9]). With the advent of Field
Programmable Gate Arrays (FPGA) [21, 24], however, this question took something of a
back seat since simulation in Java is relatively straightforward and inexpensive to rapidly
build (or rather configure) as compared to FPGAs. P systems are usually implemented
and simulated on a standard computer using an existing simulator (such as the SimCM
P System simulator [4], or one of the recently proposed distributed software simulators
[5, 18]) or a custom simulator. As Paun stated, “it is important to underline the fact that
‘implementing’ a membrane system on an existing electronic computer cannot be a real
implementation, it is merely a simulation. As long as we do not have genuinely parallel
hardware on which the parallelism of membrane systems could be realized, what we
obtain cannot be more than simulations, thus losing the main, good features of membrane
systems.” [15, p. 379]. The encouraging part is that today with a distributed system
design, high parallelism is now possible.

 3

Figure 1. Elements of a membrane system represented as a Venn diagram. Redrawn

from [15].

A classical P system (see [15, 16] for a comprehensive introduction) consists of cell-like
membranes placed inside a unique “skin” membrane (see Figure1). Multi-sets of objects,
usually multi-sets of symbols, objects and a set of evolution rules are then placed inside
the regions delimited by the membranes. Each object can be transformed into other
objects, can pass through a membrane, or can dissolve or create membranes. The
evolution between system configurations is done non-deterministically by applying the
rules synchronously in a maximum parallel manner for all objects that are able to evolve.
A sequence of transitions is called a computation. A computation halts when a halting
configuration is reached, (i.e., when no rule can be applied in any region). A computation
is considered successful if and only if it halts.

The following P systems with boundary rules were implemented in the DasPsimulator:
8 Communication rules: xx’ [i y’y → xy’[i x’y]]

8 Evolution rules: [i y → [i y’]] Evolution-Communication P systems

8 Communication rules: (x,in), (y,out), (x,in; y,out)

8 Evolution rules: y → y’ where x, x’, y, y’ represent multi-sets of arbitrary size

P systems are not intended to faithfully model the functioning of biological membranes;
rather they form a sort of abstract artificial chemistry (AC): "An artificial chemistry is a
man-made system which is similar to a real chemical system"[6]. AC's are a very general
formulation of abstract systems of objects which follow arbitrary rules of interaction.
They basically consist of a set of molecules S, a set of rules R, and a definition of the
reactor algorithm A. By abstracting from the complex molecular interactions in Nature, it
becomes possible to investigate how the AC's elements change, replicate, maintain

 4

themselves, and how new components are created. To be able to efficiently implement
P systems in Java code the researchers had to modify classical P systems in the following
two aspects:

1. The rules are not applied in a maximum parallel manner but follow a predetermined
order.

2. The P system is deterministic, (i.e., for a given initial configuration, the simulation
always halts in the same halting configuration).

The primary reason is that a straight-forward implementation of classical P systems
would have been too expensive in terms of computer resources required. The researchers
were primarily interested in a minimal software implementation and not by a faithful
classical P systems implementation. More details on the rules embedded in the
DasPsimulator are summarized below:

8 Rules are able to perform operations for modifying the membrane structure:

9 membrane creation: [i a]i→ [j b]j
9 membrane division: [i a]i → [k b]k[j c]j
9 membrane duplication: [i a]i → [k b [j c]j]k
9 membrane dissolution: [i a]i → a where a, b are objects and i, j, k are labels of

possible membranes

8 Communication and Evolution rules assume the form:

[i a → v]i, [i a]i → [i b]i, [i a]i → [i b]i

 where a, b are objects and i, j, k are labels of possible membranes

Section 3. Methods, Assumptions and Procedures

In this section, the implementation of the membrane system shall be described in detail.
The implementation basically supports P systems with priority using membrane
dissolution, creation and string replication. The resulting design is a universal membrane
module that can be instantiated and used anywhere in a membrane system.

For the current implementation, the researchers chose Java 2 SDK as the software
development platform for designing the P systems simulation. Alternatively, a hardware
based P system implementation [17, 21] is an array of (a usually large number of) logic
cells placed in a highly configurable infrastructure of connections. Each logical cell can
be programmed for a certain function (see also [21] for more details). In addition, once a
design has been modeled and simulated via the DasPsimulator it may be subsequently

 5

transferred to a full customized Application Specific Integrated Circuit (ASIC)
technology, which would in principle provide even better performance.

3.1 Membrane Structure

The membranes described in this implementation are without a material consistence, (i.e.
they do not exist as physical manifestations). Therefore, reference to the membrane
actually refers to its contents, (i.e., to the multi-sets of objects and the evolution rules of
the region it encloses (see Figure 2). The relationships between the membranes, which
are represented in this implementation, are illustrated using Venn diagrams as transition
containers. A collection is basically only used when objects are being transferred between
two membranes.

Figure 2. Membranes are not explicitly represented but are defined by its contents.

3.2 Configuring a Membrane System

As an illustrative example, let us assume that we would like to construct the initial
membrane system configuration, as depicted in Figure 3 (right), from a single membrane
system (i.e., called “mother cell”, left). The following questions immediately arise:
(1) how do we represent the description of the membrane system in a compacted form
(i.e., the genome), (2) how do we build the membrane system’s initial configuration from
this description, and (3) how does the system know when the configuration is terminated
and when it can start evolving in “normal” mode? The researchers termed the process of
building an initial membrane system configuration a configuration or self-configuration.
Thus configuring (or self-configuring) the system happens before the membrane system
starts evolving its initial configuration. From a more biological point of view, both steps
together are similar to the development of a cell’s structure and functionality.

Formatted: Bullets and
Numbering

cameras
Text Box

 6

Figure 3. Constructing a membrane system from a single membrane (mother cell),

which contains the description of the entire system to be constructed.

As explained for example in [15, p. 301], the membrane creation rule:

cre =a -> [iv]i,

where a is an object, v is a string representing a multiset of objects, and i is the membrane
label, allows the creation of a new membrane with the label i and the contents as given in
v. For our purposes, the string v contains objects and also evolution rules, e.g., v = ab2c(a
-> b)(b -> c). For enhanced readability, the evolution rules shall be put in parenthesis.

The multisets of objects and evolution rules of each membrane compartment contained in
Figure 3 are as follows:

v1 = bc(b -> cf)
v2 = ac2(c -> a)(a -> c)
v3 = af(a -> ab)(b -> bf)(f -> f2)
v4 = b(b -> d)(d -> f)

Now, let us assume that the skin membrane [1] has already been created and that it
contains a description in some form of the entire membrane system to be built. Here we
consider the initial multisets of rules r1 and objects w1 that would have to be placed inside
this single membrane system in order to obtain the desired initial configuration after
some time. A straightforward solution is as follows:

w1 = M1
r1 = (M1 -> v1[2v2M3M4(M3 -> [3v3]3)(M4 -> [4v4]4)]2)

The symbols M1, M2, and M3 are used as auxiliary symbols for initiating the membrane
creation process in each membrane compartment, v1, v2, v3, v4 are the multisets of rules
and objects as specified above. The only symbol contained in the multiset w1 (i.e., M1)
shall be called seed symbol, the rule r1 genome. The very first step consists in applying
rule r1 to the only object M1 present in the single membrane system. This step creates
membrane number two and puts the “building plans” for the next inner cells within its
compartment. The process continues until membranes three and four are created. From a

 7

mathematical point of view, this can be compared to a recursive construction of the
underlying tree structure that represents the membranes. Note that the construction rules
remain in the compartments after a successful construction. The reader should note that
during the construction process, those membranes whose construction has already
completed, will start evolving. Assuming that creating a new membrane can be done
within one time step (i.e., one macro-step), the construction time might play a role for
deeply nested hierarchies, although one might always take that into consideration while
designing the chemistry. Here we propose as an illustrative example another pragmatic
solution by introducing a special object DT, that prevents the chemistry from evolving in
the compartment where this object is present as long as T > 0. T, which specifies the
number of macro-steps the cell will be inactive, is automatically decremented during each
macro-step. One can compare this symbol with a counter that decrements T at each time
step until it reaches 0. The symbol is automatically removed from the chemistry once T =
0. By expanding the multisets of objects in the genome as following, the membrane
system will first be completely built before it starts evolving:

v1 = bc(b -> cf)D2
v2 = ac2(c -> a)(a -> c)D1

Since the multisets v3 and v4 are at the lowest level in the hierarchy (i.e., the membrane
structure’s tree leaves), no delay is necessary for them and they can start evolving
immediately once created. Membrane 2 (v2) requires a one-unit delay, the outer
membrane compartment v1 two-units.

Note that there are other ways to implement delays and to stop the evolution of the
chemistry. In particular, one might convert all rules (e.g., a -> b) into co-operative rules
(e.g., at -> b) by adding a special symbol (e.g., t), which has to be present in the
compartment for the rules to be applied. These symbols would then be generated by
another special rule.

3.3 Self-Inspection and Self-Replication

Csuhaj-Varj´u et al. [25] proposed a divide-rule denoted as, [ha]h ->[h!b]h! [h!!c]h!! ,
which replicates objects and membranes in h alike and puts them into two new
membranes h! and h!!, at the exception of object a, which is replaced by b in h! and by c in
h!!. The researchers felt that such a rule is certainly useful from the theoretical point of
view, but that (1) it leaves out very important aspects of self-replication, (2) that the rule
is too complex compared to other rules to be implemented with a reasonable number of
micro-steps, and (3) that it is too complicated to be efficiently implemented in software.
The researchers therefore proposed a more pragmatic software-oriented approach in this
section, which allows to self-replicate a membrane system (i.e. obtain an identical copy)
by means of self-inspection. In the previous section, the configuration process started
from a single membrane (i.e., the mother cell) that contained a single seed symbol and a
single evolution rule called genome. In this section, we are interested in how we can
obtain the genome and the seed symbol from an existing cell by using a sequence of

 8

rather simple instructions, which would be implemented by a reasonable number of
micro-steps. The situation is illustrated in Figure 4.

The first step of the process will consist of inspecting the current membrane system and
in creating a genome-rule in the skin compartment, which will then be used to create a
new mother cell in the environment outside the current membrane. In the following steps,
the mother cell will develop, i.e., self-configure, until the membrane system’s initial
configuration is reached (as explained in the previous section). As a result, we will end
up with two potentially identical membrane systems. Note that depending on whether the
initial membrane system was in a halting configuration and whether the replicated
membrane system starts evolving during the configuration process, there might never
exist an instant when the two membrane systems are strictly identical. In order to self-
replicate a membrane system, the following mechanisms are required: (1) initiate the
process of self-inspection; (2) copy the contents (i.e., objects and rules) of a given
compartment; (3) incrementally compose the genome; and (4) create the mother cell
outside the current skin membrane.

Figure 4. Self-replicating an existing membrane system by self-inspection and sub-

sequent configuration.

Let us introduce a new rule, gen = a -> (DC,Mi, out), which allows the duplication of all
objects and evolution rules in the current compartment and which sends the configuration
in the form of a special rule to the outer compartment. More specifically, the gen-rule
does the following in one macro-step:

(1) duplicates all objects and evolution rules in the current compartment I and puts them
together in a temporary and virtual multiset DC;
(2) if a rule of the form Mj -> [j . . .]j is present in the current compartment, an additional
symbol Mj, i.e., the seed symbol, will be added to DC and the rule will be removed from
the compartment (but remains in DC);
(3) it sends the rule, Mi -> [iDC]i to the outer compartment; and
(4) if a rule of the form Mi -> [i. . .]i was already present in the outer compartment, it
will simply be replaced by the new rule.

In other words, this rule allows one to incrementally compose the genome from the
bottom of the membrane structure to the top by assembling each membrane’s

 9

configuration on the way in the form of a rule, which will then be used during the
construction process as a genome. Here, the symbol Mi is a symbol, i.e., the seed
symbol, not in the symbol alphabet, which is unique for each membrane.

The rule of the form Mi -> [i. . .]i together with the symbol Mi allows one to create and
configure a new membrane i during the construction of the replicated cell. The second
step prevents the rule from being used during the self-inspection process. Also, the rule
has to be removed because it is not part of the actual configuration and would otherwise
be accumulated in case of multiple replication steps. Figure 5 illustrates the application of
the gen-rule in a simplified setting. The rule sends the configuration of compartment 2 to
the outer compartment. Since no rule of the form Mj -> [j . . .]j is present in the current
compartment, no Mj-symbol is added.

Figure 5. Illustration of the gen-rule.

These rules basically send a copy of the current
objects and evolution rules in the form of a rule to the outer compartment, which

creates a new membrane system in the environment.

If the rule is applied in the top compartment, i.e., the skin compartment 1, the resulting
M1 -> [1. . .]1 rule, i.e., the complete genome, as well as a seed symbol M1 will be sent
to the environment. Once outside the skin membrane, the rule will be immediately
applied because of the seed symbol, and a new membrane will be created that contains
the genome and the seed symbol for the further construction of the new membrane
system (see also Section 3.1). Figure 6 illustrates this procedure, which is not entirely
biologically plausible as it involves a moment where the seed symbol and the genome are
not surrounded by a membrane, but the researchers felt that this represented an acceptable
and more straightforward solution than to introduce another rule, such as a -> [1. . .]1, for
this particular case.

 10

Figure 6. Illustration of the gen-rule when applied in the skin compartment.

In order for the gen-rule to be applied in the correct order (i.e., from the bottom to the top
compartment), we need to pre-configure the membrane system with additional symbols
and rules. Let us assume that the self-inspection process will be initiated at the bottom of
the membrane system, i.e., at the leaves of the underlying tree structure. In Figure 3, the
process would thus start in membranes 3 and 4. The entire configuration is then
incrementally put together by moving from the leaves to the root of the tree. Here the
researchers proposed a self-timed approach, which is illustrated in Figure 7. The idea is
that each compartment contains a gen-rule which is being activated by a special symbol
(i.e., go). The entire process is initiated by generating a go-symbol in each leaf of the
tree, which then triggers the sequential activation of the gen-rules in each compartment.
Obviously, if the membrane system changes its own configuration during its normal
evolution (i.e., by adding or removing membranes), the gen-rules will have to be
modified accordingly, which might not be a trivial undertaking in all cases. For example,
if a membrane with label 5 is added in compartment 2 of Figure 7, then the rule would
have to be changed from go2-> . . . to go3-> . . . and the new membrane would also have
to contain a gen-rule. Finally, sending the go-symbol from, for example, the skin
compartment to the inner-most membranes, might be realized by means of additional
rules not detailed here.

Figure 7. Each compartment has to be pre-configured with a gen-rule in order to allow the

membrane system to self-replicate by self-inspection.
The process is initiated by generating a go-symbol in compartment 3 and 4.

 11

3.4. Replicating strings

Another powerful way to obtain exponential space sufficient for solving NP-complete
problems in polynomial time is to use the replication of string-objects, as considered in
P systems with replicated rewriting and in systems with worm objects. It was proven in
[26, 27] that the Hamiltonian Path Problem (HPP) and the satisfiability problem (SAT)
can be solved in linear time by such systems. (If the replication produces only two new
strings, then HPP requires a quadratic time, see [28].) The replication of strings can be
obtained not only in a “direct” way, by replicating rules as mentioned above, but also in
an “indirect” manner, starting from a conditional way of communicating objects through
membranes. The basic idea is to consider certain predicates on strings and
communication rules of the form (II; inj); (II; out), with the meaning that if II(w)=true,
then the string w must follow the addressing inj ; out. A variant is to send the string w to
one of these targets, non-deterministically choosing it, but we may also choose to send
the string to all membranes for which a predicate holds true. That is, we replicate the
string in as many copies as many communication predicates are true.

Predicates for controlling the string-object communication were considered in [28], but
without investigating the computational efficiency of the replication. This was done in
[29], for the so-called P systems with valuations, introduced in [30]: a morphism from
symbols to integer numbers assigns “valuations” to strings; the sign of this valuation is
interpreted as an electrical charge and used for communicating the string as discussed in
Section 3.3 (a string of a given polarization goes to a membrane of the opposite
polarization, while the neutral strings remain in the same membrane). When a string can
go to several adjacent membranes (for instance, it has polarity + and there are several
adjacent membranes with polarity −), then the string is replicated and copies of it are sent
to all targets. As expected, by using this idea, polynomial solutions of NP-complete
problems can be devised; this is illustrated in [30] by SAT and HPP.

3.5 Simulation Design Flow

The membrane system has been programmed using the Java software development kit
[3]. The process basically requires three software tools (note that many other tools exist):
Eclipse, Java Swing Toolkit and the DasPsimulator.

The Java files are first compiled with Eclipse, which allows the operator to simulate and
debug the code on a behavioral level. Once compiled and simulated, the design is
synthesized, analyzed, and optimized. This includes all technological relevant details
with regards to the chosen schemas, the program flow analysis and the resources
required. In addition, Eclipse also outputs the file which is used in the next step by the
software. The Eclipse design tool essentially maps (i.e., place and route) the design of the
chosen configuration and generates the necessary configuration files. In this case, the
Java initialization routine generates the necessary configuration files for simulating the
model. A significant part of the code is dependent on the membrane system to be
simulated and on its initial values. The DasPsimulator Java application (see Figure 8)

 12

allows the user to specify in a convenient way all relevant parameters of the membrane
system and then automatically generates the configuration and initialization files as well
as several scripts that automate the simulation process.

Figure 8. DasPsimulator Java application interface generates all the necessary configuration files of
the membrane system implementation.

Section 4. Results and Discussion

In this section, one example of using the DasPsimulator to solve an NP complete problem
is provided and results shall be presented. The DasPsimulator successfully solved the
Hamiltonian Path Problem (HPP) in polynomial time and the SAT problem was also
solved in polynomial time by applying P system rules with active membranes, by using
membrane creation, dissolution and string replication. In the following section the
researchers discuss how the DasPsimulator solved the HPP, giving full details, in order to
provide the reader with an example of solving an NP complete problem.

4.1 HPP Example

Consider a graph g = (N; E) with the nodes N = {a1; a2; : : : ; an}. In order to decide
whether a Hamiltonian path exists which starts in a1 and ends in an we construct the
P system II with the membrane structure u = [0[1]1]0 (the skin membrane is labeled by 0,
and it contains a unique membrane, with label 1), with the object (a1; 1) present in
membrane 1, using the following alphabet of objects:

 13

V = {(ai; j); (a!
i ; j) | 1 ,<= i; j <= n} � {M � N |M _= �}(note that the subsets of N are

interpreted as symbol-objects); the possible membranes are labeled by 0; 1; 2; : : : ; n − 1,
and the associated sets of rules are as follows:

R0 = {N →yesout};

Ri = {(ai; j)→(a!

k1; j + 1) : : : (a!
ksi; j + 1) | (ai; akr) � E; for all

1 <= r <= si; si >= 1; and 1 <= j <= n − 1}

�{(a!

k; j) → [k (ak; j)]k | 1 <= k; j <= n − 1}

�{(a_n; n) → {an}}

�{M → (M � {ai})out |M � N}; for all i = 1; 2; : : : ; n − 1:

The idea behind this construction is the following. The tuple symbols (ai; j) encode the
fact that we have reached node ai on a path starting in a1 which has already passed
through j nodes. Each object (ai; j) introduces as many objects of the form (a!k; j +1) as
many successors of ai exist in the graph. Then, each object (a!k; j + 1) creates a
membrane with label k. That is, the paths we create are encoded in the membrane
structure (all the paths in the graph g consisting of at most n nodes are “recorded” as
paths from the root to the leaf nodes of the tree describing the membrane structure of II).
When we reach the node an or the paths already containing n nodes, this process (it takes
2(n−1)−1 steps) is finished, and we pass to the second phase of the computation, that of
checking whether or not among the generated paths there is one which is Hamiltonian.
This process can start only from object (a!n; n), that is, only if we have reached node an
after passing through exactly n nodes. After producing an object of the form of a subset
of N (at the first step, this is {an}), we exit the membranes, one by one; when we exit
membrane i we add the node ai to the current set of nodes. In this way, after at most n
steps (one for passing from (a!

n; n) to {an}, and n − 1 for other nodes), we reach the skin
membrane with several objects of the form M � N. Only N can exit the skin membrane,
sending out the message yes, that is, we have an output (after 3n−2 steps) if and only if
the graph g contains a Hamiltonian path from a1 to an.

The results from this simulation have a special significance in view of the theorem cited
above: when we have exponentially many symbol-objects placed in a bounded number of
membranes we can simulate the system by a Turing machine of a similar efficiency (with
a polynomial slowdown); when one uses an exponential number of string-objects placed
in a bounded number of membranes, or an exponential number of objects placed in an
exponential number of membranes this is no longer true. We can “explain” these results
by the much greater quantity of information stored in a string or in a membrane than in a
multiset of symbol objects. The result is depicted in Figure 9. The DasPsimulator
successfully solved the HPP problem in polynomial time by using string replication. The
algorithm was applied by applying P system rules generating all paths from a specified
initial node, and then checking whether or not at least one of these paths is Hamiltonian.

 14

Figure 9. The HPP problem simulated in polynomial time using string replication (ref. page 73 in
[15]).

4.2 Model Evaluation

In order to evaluate the performance of this implementation, the researchers simulated
multiple membrane models of varying sizes and complexities. The researchers found the
resources used are nearly directly proportional to the maximum number of objects.
Furthermore, adding the possibility of membrane creation adds complexity and therefore
results in a design that is almost twice as large and runs at a much slower speed.

This DasPsimulator has been tested by means of examples from [15] with the following
features: membrane dissolution, membrane creation, and string replication consisting of
transferring objects to upper- and lower-immediate membrane systems.

Section 5. Conclusions

The researchers presented a universal and massively parallel implementation of a special
class of P systems. The architecture of the universal membrane allows us to use the same
module anywhere in the hierarchy of a membrane system and independently of the

 15

number of rules and objects to be stored within it. The conclusions summarized below
were modeled and simulated efficiently using the DasPsimulator:

8 Membrane Computing provides computational models that abstract from the

living cells' structure and function

8 Such models have been proven to be computationally powerful (equivalent to a

Turing machine) and efficient (solving NP-Complete problems)

8 Membrane Computing defines an abstract framework for reasoning about
9 distribute architectures
9 communication
9 parallel information processing

8 Such features are relevant both for Computer Science (Distributed Computing

Models, Multi-Agent Systems) and Networking (Modeling and Simulation of
Biological Networks)

Section 6. Recommendations

Future work will concentrate on the development and improvement (in terms of speed
and resources used) of the existing design. In addition, it is planned to extend the existing
design in order to be able to reuse dissolved membranes and in order to apply rules in a
fully parallel and nondeterministic manner. In addition, dealing with a larger number of
objects would probably require extensive processor capacity. This was not a serious
limitation in the current implementation. Furthermore, the researchers also envisage
extending the current design to other important classes of P systems such as for example
systems with symport/antiport [15, p. 130] and systems with membrane division
[15, p. 273] such as those summarized below:

Examples of specialized P system models:

8 Energy-Controlled P systems
8 P systems with promoters/inhibitors
8 P systems with carriers
8 P systems with mobile membranes
8 Tissue P systems
8 Probabilistic P systems
8 P systems with elementary graph productions
8 Parallel Rewriting P systems

Ongoing research consists of developing a hardware based architecture for membrane
systems using FPGA’s, amalgamated with alternative computational and organizational
metaphors. Amorphous Membrane Blending (AMB) [19], for example, is an original and

 16

not less unconventional attempt to combine some of the interesting and powerful traits of
Amorphous Computing [2], Membrane Computing [15], Artificial Chemistries [6], and
Blending [7]. One of the goals is to obtain a novel, minimalist, and computational
architecture with organizational principles inspired by biology and cognitive science.

References

1. International technology roadmap for semiconductors. Semiconductor Industry
Association, retrived from http://public.itrs.net/Files/2001ITRS, 2001.
2. H. Abelson, D. Allen, D. Coore, C. Hanson, E. Rauch, G. J. Sussman, and R.Weiss.
Amorphous computing. Communications of the ACM, 43(5):74-82, May 2000.
3. P. J. Ashenden. The Designer's Guide to VHDL. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1996.
4. G. Ciobanu and D. Paraschiv. Membrane software. A P system simulator. Fundamental
Informaticae, 49(13):61-66, 2002.
5. G. Ciobanu and G. Wenyuan. A parallel implementation of the transition P systems.
In A. Alhazov, C. Martin-Vide, and G. Paun, editors, Proceedings of the
MolCoNet Workshop on Membrane Computing (WMC2003), volume 28/03, page
169, Tarragona (Spain), 2003. Rovira I Virgili University, Research Group on
Mathematical Linguistics.
6. P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries: a review. Artificial
Life, 7(3):225-275, 2001.
7. G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the
Mind's Hidden Complexities. Basic Books, 2002.
8. S. De Franceschi and L. Kouwenhoven. Electronics and the single atom. Nature,
417:701-702, June 13 2002.
9. L. Garber and D. Sims. In pursuit of hardware-software codesign. IEEE Computer,
31(6):12{14, June 1998.
10. C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135-144,
1984.
11. M. Madhu, V. S. Murty, and K. Krithivasan. A hardware realization of P systems
with carriers. Poster presentation at the Eight International Conference on DNA
based Computers, Hokkaido University, Sapporo Campus, Japan, June 10-13 2002.
12. D. Mange, M. Sipper, A. Stauer, and G. Tempesti. Toward robust integrated
circuits: The embryonics approach. Proceedings of the IEEE, 88(4):516-540, April
2000.
13. N. Mathur. Beyond the silicon roadmap. Nature, 419(6907):573-575, October 10
2002.
14. G. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108-143, 2000. First published in a TUCS Research Report, No 208,
November 1998, http://www.tucs.fi.
15. G. Paun. Membrane Computing. Springer-Verlag, Berlin, Heidelberg, Germany,
2002.
16. G. Paun and G. Rozenberg. A guide to membrane computing. Journal of Theoretical
Computer Science, 287(1):73-100, 2002.

 17

17. E. Sanchez. An introduction to digital systems. In D. Mange and M. Tomassini,
editors, Bio-Inspired Computing Machines: Towards Novel Computational Architectures,
chapter 2, pages 13-47. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1998.
18. A. Syropoulos, E. G. Mamatas, P. C. Allilomes, and K. T. Sotiriades. A distributed
simulation of P systems. In A. Alhazov, C. Martin-Vide, and G. Paun, editors,
Proceedings of the MolCoNet Workshop on Membrane Computing (WMC2003),
volume 28/03, pages 455-460, Tarragona (Spain), 2003. Rovira i Virgili University,
Research Group on Mathematical Linguistics.
19. C. Teuscher. Amorphous Membrane Blending and Other Unconventional Computing
Paradigms. PhD thesis, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switerland, 2004. To be published.
20. C. Teuscher, D. Mange, A. Stauer, and G. Tempesti. Bio-inspired computing
tissues: Towards machines that evolve, grow, and learn. BioSystems, 68(2)(3):235-
244, February-March 2003.
21. S. M. Trimberger. Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Boston, 1994.
22. A. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J.-M. Moreno,
J. Rosenberg, and Alessandro E. P. Villa. Poetic tissue: An integrated architecture
for bio-inspired hardware. In A. M. Tyrrell, P. C. Haddow, and J. Torresen,
editors, Evolvable Systems: From Biology to Hardware. Proceedings of the 5th
International Conference (ICES2003), volume 2606 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Heidelberg, 2003.
23. F. Varela, H. Maturana, and R. Uribe. Autopoiesis: The organization of living
systems, its characterization and a model. BioSystems, 5:187-196, 1974.
24. J. Villasenor and W. H. Mangione-Smith. Configurable computing. Scientific
American, 276(6):54-59, June 1997.
25. Csuhaj-Varju, E., Nola, A.D., Paun, G. Perez-Jiminez, M.J., Vaszil, G., 2005. Editing
configurations of P Systems, submitted.
26. J. Castellanos, A. Rodriguez-Paton, G. Paun, Computing with membranes: P systems
with worm-objects, IEEE 7th International Conference on String Processing and
Information Retrieval, SPIRE, La Coruna, Spain, 2000, pp. 64-74
27. S.N. Krishna, R. Rama, P systems with replicated rewriting, J. Automata, Languages,
Combin. 6 (2001) pp. 345-350.
28. P. Bottoni, A. Labella, C. Martin-Vide, G. Paun, Rewriting P systems with
conditional communications, in: W. Brauer, H. Ehrig, I. Karhumaki, A Salomaa (Eds.),
Formal and Natural Computing. Essays Dedicated to Gregorz Rozenberg, Lecture Notes
in Computer Science 2300. Springer, Berlin. 2002, pp. 325-353.
29. C. Martin-Vide, V. Mitrana, P systems with valuations, in I. Antoniou, C.S. Calude,
M.J. Dinneen (Eds.), Unconventional Models of Computation, Springer, London, 2000.
pp. 154-166.
30. C. Martin-Vide, V. Mitrana, G. Paun, On the power of P systems with valuations,
Computacion Sistemas 5 (2001) pp. 120-127.

