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Comparison of Numerical and Experimental

Near-Field Ion Velocity Distributions of the

BHT-200-X3 Hall Thruster

Michael R. Nakles∗

ERC, Inc., Edwards Air Force Base, CA, 93524

William A. Hargus, Jr.† and Douglas B. VanGilder†

Air Force Research Laboratory, Edwards Air Force Base, CA, 93524

Near-field ion velocity distributions of a Busek BHT-200-X3 xenon Hall thruster ob-
tained through numerical simulation are compared with laser-induced fluorescence mea-
surements taken for one nominal operating condition. The numerical code Hybrid-PIC
Hall, a 2D hybrid particle-in-cell model, is used to simulate an axisymmetric cross sec-
tion of the plasma acceleration zone. A set of nine HPHall simulations are run using
three different cathode positions and three different Bohm electron mobility coefficients
to study the effects of these parameters on ion acceleration. Six additional cases were
run in an attempt to better match the simulation results to the experimental data. For
model validation, agreement between the numerical and experimental results is examined.
No simulations were able to simultaneously match both global operational parameters (i.e.
thrust, discharge current, and beam current) and the ion velocity distributions measured
in experiments. The shape of the axial velocity distributions can be closely matched by
using high Bohm electron mobility values. However, this correlation comes at the expense
of most probable ion velocity and discharge current agreement. Radial velocity distribu-
tions are more closely matched by the simulations, but the simulations uniformly predict
lower than measured inward and higher than measured outward radial velocity components
(relative to the centerline) from the annular acceleration channel.

I. Introduction

Numerical simulation is an attractive option to study Hall thruster near-plume plasma properties. Per-
forming simulations can potentially be faster and less costly than running experiments. However, cur-

rently available numerical models first require validation through correlation with experimental results before
they can be considered a dependable method for predicting Hall thruster properties. One Hall thruster code
that models the plasma in the acceleration channel and near-plume is Hybrid-PIC Hall (HPHall) devel-
oped by Fife.1 It is a 2D particle-in-cell model that simulates an axisymmetric cross section of the plasma
acceleration zone of a Hall thruster with a user-defined geometry.

The objective of this study is to compare numerical HPHall results to experimental data in order to
evaluate the ability of HPHall to predict the near-plume plasma properties of a Hall thruster. Previously,
studies of this nature have been primarily based on bulk ion velocity comparisons. Ideally, ion velocity
comparisons reveal the correlation between the acceleration mechanisms of the actual thruster and the model.
Ion velocity distribution functions (VDF’s) provide insight about the size and location of the ionization region
and the ion collisionality.

One method for measuring ion velocity experimentally is laser-induced fluorescence (LIF).2 This technique
is especially well suited for near-plume measurements because it is non-intrusive. Furthermore, LIF can also
provide velocity distribution information in specific instances.
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The 200 W Busek BHT-200-X33 thruster serves as the subject for this comparison study between HPHall
simulations and experimental LIF data. A model of the thruster was created in HPHall and several sim-
ulations were run with various input parameters. Experimental LIF data from Hargus and Charles4 was
compared with the modeling data to evaluate the accuracy of HPHall near-plume ion velocity predictions.

The long term goal of this effort is to create an accurate model of the internal plasma parameters of
the BHT-200-X3 Hall thruster. Once this is accomplished, it should be possible to predict the lifetime of a
thruster solely via simulation. Ideally, this capability may then be applied to other thrusters.

II. HPHall Model

HPHall is a hybrid particle-in-cell (PIC) model of an axisymmetric cross section of the plasma acceleration
zone inside a Hall thruster. Heavy particle motion is implemented using a PIC methodology involving a
particle-tracking Boltzmann solver. Electrons are modeled as a quasi-one-dimensional fluid1 using three
equations. The code solves a time accurate electron energy equation for the electron temperature and
determines the electric field strength from a generalized Ohm’s law. A current conservation equation is also
solved. The model operates under the assumptions of a static magnetic field, quasineutrality, Maxwellian
electrons, and a combination of Bohm and classical diffusion across magnetic field lines. A Monte Carlo
collision process is used to create ions in the acceleration channel.

HPHall requires a 2D grid for the simulation domain that contains the acceleration channel and the
near-field plume region. The non-uniform spatial grid used for the BHT-200-X3 is shown in Fig. 1. The code
solves for plasma properties such as potential, particle densities, and temperatures on the 2D grid during
the simulation. HPHall also requires the magnetic field at each grid point as input. The 2D magnetic field
for the thruster was solved using Maxwell SV R©5 software. Agreement between measurements and magnetic
field predictions from Maxwell indicated that accurate magnetic field values were used in the simulations.

Figure 1. BHT-200-X3 simulation grid
shown within the thruster geometry.

HPHall assumes the curl of the thruster’s magnetic field
is negligible and thus allows for the existence of a magnetic
stream function, λ, whose gradient is everywhere orthogonal to
the magnetic field.1 HPHall further assumes that electron tem-
perature is constant along magnetic field stream lines. From
these assumptions, a constant thermalized plasma potential,
φ∗(λ), exists along magnetic field lines. Plasma potential is
calculated along magnetic field lines as

φ− kTe

e
ln(ne) = φ∗(λ) (1)

where k is the Boltzmann constant, Te is electron temperature,
e is the elementary charge, and ne is electron density. There-
fore, plasma potential is only a function of electron density
when calculated along magnetic field lines.

The quasi-one-dimensional electron equations are solved
only between the anode and cathode boundaries. Cathode and
anode boundaries are set along magnetic streamlines. A Dirich-
let boundary condition is placed at the cathode which sets the electron temperature to 5 eV (a value based
on experimental measurements).1 Downstream of the cathode, linear interpolation is used to calculate Te

and φ∗. Although the cathode boundary condition should ideally correspond to the magnetic field line that
intersects the actual cathode location, the cathode boundary condition can be varied in order to change the
potential field of the acceleration channel.

Another method of changing ion behavior in the acceleration channel is adjusting the electron cross-
field mobility. Electron cross-field mobility in HPHall is calculated using both classical and Bohm diffusion
terms because neither the classical nor Bohm model alone can appropriately represent the mobility measured
experimentally in Hall thrusters.1 The cross-field mobility is modeled as

µe,⊥ =
µe

βe
2 + KB

1
16B

(2)

where µe is the electron mobility in the weakly ionized limit, µe,⊥ is the electron conductivity normal to
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magnetic field lines, βe is the electron Hall parameter, and B is the magnetic field strength. The first term
on the right hand side is the classical electron mobility term (∼1/B2), where electrons rely on collisions with
heavy particles to traverse magnetic field lines. It is inversely proportional to the square of the magnetic
field strength. The second term on the right hand side is the semi-empirical Bohm mobility term, which
accounts for plasma turbulence providing enhanced cross-field electron mobility (∼1/B). The 1/16 constant
represents the maximum observed value for Bohm cross-field diffusion. The empirical coefficient KB may
be adjusted between 0 and 1 to account for the effective plasma turbulence.6 Fife determined that for the
SPT-70 Hall thruster, 0.15 was the optimal choice for matching thruster operating conditions.1

III. Description of Modeling Study

A. Cathode Position and Mobility Study: Nine Case Matrix

There are two major goals in this study. The first is to compare the HPHall simulation results to the
experimental LIF data. The second is to evaluate how changing cathode position and the electron mobility
inputs in HPHall affects the results. Experimentally measured singly charged ion velocity is the basis of
comparison for this combined study. At various locations on the thruster exit plane and in the near-plume,
two types of comparisons were made; the velocity distribution function and the most probable velocity. The
global performance parameters of thrust, discharge current, and beam current were also compared between
the simulation and actual performance data.

A key factor for obtaining accurate simulation results is the modeling of the ion acceleration mechanism.
The internal potential profile must be accurately represented in the acceleration channel region of the sim-
ulation domain. Also, the electron mobility must be modeled appropriately so that ionization will occur in
the proper region of the acceleration channel, allowing ions to be accelerated through the correct potential
gradient. In order to study the effects of cathode position and electron mobility, a matrix of nine simulation
cases was studied, where each case used a different combination of cathode position and Bohm mobility
coefficient.

Three locations were chosen for the cathode boundary; the far cathode, the mid cathode, and the near
cathode positions. These were chosen in equal magnetic stream function value increments spaced from the
exit plane. Figure 2 shows the locations of the three cathode positions used in this study. The anode
boundary was placed on a magnetic stream line upstream of the acceleration region and was not changed
between the different cases. Figure 2 also shows the location of the anode position used in the simulations.
Attempts to use the actual physical anode location led to unstable thruster discharge current.

Figure 2. Magnetic streamlines of the cathode bound-
ary positions, exit plane, and anode.

Three Bohm mobility coefficients were used in
this study, 0.15, 0.30, and 0.50. Simulations with
a lower value of KB were investigated, but the
results indicated that higher KB values produced
more physical results.

The time step duration for the simulation was
5×10−8 s and a total of 150,000 time steps were run
in order to obtain good statistical ion velocity distri-
butions. Velocity distribution functions at locations
on the exit plane and near-plume were compared
with LIF measurements. In these cases doubly-
charged ions were modeled, but charge-exchange col-
lisions were not. The simulated vacuum background
pressure was set to 2×10−5 Torr.

B. Additional Cases

After the nine case matrix was studied, additional
simulations were run in an attempt to simultane-
ously match global thruster performance parame-
ters and ion velocity data. The input values chosen
for the extra cases were derived from observations
of the results of the nine case matrix, which will be
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discussed in detail in Section V.
Thrust was most strongly affected by cathode position with the near cathode resulting in the highest

thrust level. However, each simulation in the nine case matrix under-predicted thrust. Discharge current was
most strongly influenced by Bohm mobility coefficient. The low mobility coefficient, KB = 0.15, resulted in
discharge currents that most closely matched actual thruster performance while the higher mobility levels
over-predicted discharge current. Velocity distribution shape was affected by both cathode position and
mobility coefficient. The mid and high mobility coefficients used at the near cathode position resulted in
VDF shapes that were closest to the LIF data (although using high mobility with the far cathode position
also produced reasonable distribution shapes). Input parameter value selection for additional cases was
based on these findings.

Table 1. Additional Cases

Additional Case Cathode Position KB Value Discharge Voltage (V)
1 Super Near 0.15 250
2 Super Near 0.30 250
3 Super Near 0.30 235
4 Exit Plane 0.15 250
5 Exit Plane 0.30 250
6 Exit Plane 0.30 235

Six extra cases were run. Their input parameters are shown in Table 1. To match the performance data
of the actual thruster, a higher thrust level was needed than any of the nine matrix cases provided. Two more
cathode positions were used for these simulations: the super near cathode and the exit plane cathode. The
super near cathode position was placed where the magnetic stream function had a value halfway between the
value at the exit plane and the near cathode. It was predicted that the VDF shapes from the near cathode
case would be preserved in the two new cathode positions, but higher thrust would be achieved. In order to
keep the discharge current from being too high, only KB values of 0.15 and 0.30 were used. Some cases were
run with a lower discharge voltage (235 V) than the nominal 250 V in order to prevent the axial velocity
from being too high downstream of the exit plane (as observed in the near cathode cases).

IV. LIF Measurements

The experimental measurements presented in this work were performed in Chamber 6 at the Air Force
Research Laboratory (AFRL) Electric Propulsion Laboratory at Edwards AFB, CA and originally presented
by Hargus and Charles.4 A revised analysis of this LIF data was undertaken to extract velocity distributions
and correct previous systematic errors. The LIF measurement of xenon ion velocities is described more fully
elsewhere.4,7

Table 2. Nominal Thruster Operating Con-
ditions.

Anode flow 840 µg/s (Xe)
Cathode flow 98 µg/s (Xe)

Anode potential 250 V
Anode current 0.83 A
Keeper current 0.5 A
Magnet current 1.0 A
Heater current 3.0 A

Due to the relatively narrow line shape of the 834.68 nm
xenon ion transition (∼600 Mhz) relative to the broad distri-
butions of the near-plume LIF profiles, deconvolution is not
strictly required to closely approximate xenon ion velocity dis-
tributions from the raw LIF data in the near-plume region of
the BHT-200-X3.8 Not performing the deconvolution intro-
duces an uncertainty estimated to be less than 10%. This al-
lows the presentation of less strenuously conditioned LIF data
to provide a qualitative xenon velocity distribution, avoiding
the noise inevitably amplified by the deconvolution process.8

Previous attempts to compare experimental ion velocities
with results of numerical simulations have encountered diffi-
culties. For example, simulation efforts have usually reported
mean velocities from the calculated local VDF. Experimental methods such as LIF are often limited by poor
signal to noise ratios and are best suited to measure the most probable velocity, corresponding to the peak
of the velocity distribution function. In the skewed, non-symmetric distributions measured in Hall thruster
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plumes, the most probable (e.g. peak signal) and statistical mean velocities differ. Depending on the shape
of the distribution, these two bulk measures of velocity can vary significantly. The advantage of using a single
bulk velocity measure is that it allows for the succinct presentation of large data sets. However, this method
discards the majority of the available information. Comparison of the velocity distribution determined by
each method allows for the most meaningful comparison with minimum ambiguity.

V. Results and Discussion

A. Cathode Position and Electron Mobility Study: Nine Case Matrix

Global Thruster Parameters

The first comparison is made between the simulation and experimental thruster performance parameters. The
time-averaged performance parameters measured for BHT-200-X3 are shown along with HPHall predictions
for each simulation configuration in Table 3. In all simulations, the predicted thrust is less than the measured
thrust. Thrust increases in the simulations when the cathode position is closer to the exit plane as well as
with increasing KB values. The near cathode, KB = 0.50 case has a predicted thrust that is closest to the
measured value. However, this case predicts a discharge current a factor of two higher than the measured
value, indicating that the model has difficulty predicting the electron current. The discharge current is
observed to sharply increase with increasing mobility coefficient. The low mobility cases predict discharge
currents similar to the experimental thruster values. The mid and high mobility cases all over-predict
discharge current.

As an example of typical results, thruster performance parameters are plotted as a function of time for the
final 500 µs of the simulation in Fig. 3 for the mid cathode, KB = 0.30 case. The simulated thruster exhibits
significantly higher magnitude discharge current oscillations than seen during experimental operation of the
thruster. Simulated discharge current oscillations are approximately ±40% of the mean discharge current.
Experimental oscillations are typically about 15%.

Figure 3. HPHall performance data during the last
500 µs of the simulation for the mid cathode, KB = 0.30
case.

The best simulation agreement with regard to
thrust generation is the near cathode, KB = 0.50
case. The ion velocity flow field for this simula-
tion domain is shown in Fig. 4. Ion acceleration
begins at z = 0.014 m extending outward until at
least 0.030 m, approximately 10 mm beyond the
exit plane. The streamlines in Fig. 4 show a gen-
erally well focused near-field plume; however, there
are some highly divergent streamlines near the outer
diameter.

Figure 5 shows the effects of varying cathode
position and KB on the potential and Bohm cross-
field mobility along the centerline of the acceleration
channel. (Note that Bohm cross-field mobility is
only calculated in the plasma acceleration region by
HPHall and therefore is not shown on the plots out-
side of this region.) Figure 5(a) shows the potential
and the cross-field mobility for the different cath-
ode positions while KB is kept constant at 0.30. A
significant variation in potential profiles is observed
among the different cathode positions. At the exit
plane, the far cathode potential is about 15 V higher

than the near cathode potential. This difference increases to approximately 70 V at 3 mm past the exit plane.
This large variation in potential profile leads to significantly different ion velocity fields among the simu-
lations with different cathode positions. Figure 5(a) also indicates that cross-field mobility is not strongly
affected by cathode position, although there is some effect observed for the near cathode case at z values
near the exit plane.

Figure 5(b) shows the effects of varying Bohm mobility coefficient while the cathode position is fixed at
mid cathode position. It shows mobility increases linearly with increasing KB value as described by Eqn. 2.
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The electron mobility affects the properties of the ionization region of the acceleration channel. Simulations
with different electron mobility values will predict different near-field ion velocities due to the variation in
the location of the ionization process. Figure 5(b) also shows a small change in the potential profile as a
result of changing KB . The profile is noticeably different for the KB = 0.15 case than the other two cases.

Table 3. BHT-200-X3 performance data.

Experimental Far Cathode Mid Cathode Near Cathode
KB = 0.15 0.30 0.50 0.15 0.30 0.50 0.15 0.30 0.50

ID (A) 0.809 0.635 1.02 1.40 0.720 1.15 1.61 0.788 1.33 1.93
IB(A) < 0.61 0.428 0.466 0.459 0.444 0.467 0.464 0.446 0.465 0.485
T (mN) 12 7.30 8.75 8.46 8.09 9.26 9.41 8.33 9.90 11.1

Figure 4. Ion velocity magnitude for the near cathode, KB = 0.50 case. Ion velocity streamlines are shown to
reveal the direction of the flow.

Bulk Velocity Comparisons

The simplest comparison between the LIF experimental data and the simulation results is the comparison
of representative velocities. Immediately, the issue of which velocity best represents the flow may be raised.
Numerically and with respect to global measures of performance such as thrust, the obvious choice would
be the mean velocity. However, LIF measurements of velocity most clearly identify the peak of the velocity
distribution. Signal noise and a variety of other issues produce significant uncertainties in determining the
mean velocity from the LIF profiles, but the peak of the distribution is usually easily identified even in high
noise environments. The velocity distribution peak represents the most probable velocity of the interrogated
ions. The value of comparing the measured most probable velocities to those produced by the simulations is
that it allows for large amounts of data to be compared quickly. However, as the flow complexity grows with
distance from the exit plane due to convergence of the annular ion beam, the application of this comparison
methodology fails when multiple ion populations mix.

Most probable axial and radial ion velocities along the centerline of the acceleration channel are plotted
in Fig. 6. Axial velocity data shows how the ion acceleration differs between the simulations and the actual
thruster. Large variations are observed among axial velocities of the simulations, especially within the first
10 mm downstream of the exit plane. The mid cathode, high mobility case exhibits erratic data due to dual
peaks in its axial velocity distribution functions (seen in section A). For the most part, velocity increases
at all axial locations as the cathode boundary is placed closer to the exit plane and as Bohm mobility is
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(a) Three different cathode positions, KB = 0.30. (b) Three different Bohm mobility coefficients, mid cathode po-
sition.

Figure 5. Potential and Bohm cross-field electron mobility along the channel centerline.

increased. The most notable difference between the simulations and the LIF data is the slope of the curve
within the first 10 mm downstream of the exit plane. All the simulation cases show that a larger portion of
the ion acceleration occurs within this region than the LIF data indicate. The LIF data show that the ions
have reached 82% of their maximum velocity at the exit plane, whereas only 68% of the final velocity has
been reached at the exit plane for the high mobility, near cathode case. Changes in the cathode boundary
and the KB value did not seem to significantly affect the slope of the velocity curve. Radial most probable
velocities from the simulations along the acceleration channel centerline had good overall agreement with
the LIF data.

Figure 7 displays the most probable ion velocities at the exit plane as a function of radial position. The
experimental data show that the axial velocity is uniform at approximately 14.3 km/s and the radial velocity
data is approximately symmetrically divergent about the center of the acceleration channel (r = 0.012 m).4

Most simulations predict substantially lower axial ion velocities at the exit plane. As also observed in Fig. 6,
the effect of cathode position on exit plane velocity is clearly visible as closer cathode positions result in
an increase in most probable axial velocity. The electron mobility is also shown to increase exit plane axial
velocity when the mobility is increased from the low to mid value. However, when going from mid to high
mobility, the axial velocity slightly decreases for the far cathode case and slightly increases for the near
cathode case. Figure 7 also shows that neither the cathode position or the KB value significantly affect the
most probable radial ion velocity. All of the simulation radial velocities are slightly higher than the LIF
data, but overall agreement is reasonable. The HPHall prediction of most probable axial velocity that has
the best agreement with experimental data is the case with the near cathode position and the high KB value
of 0.50.

Figure 8 presents four types of data for each simulation in the nine case matrix. Average axial ion velocity
over the length of the acceleration channel centerline is plotted along with LIF measurements of the most
probable and the average ion velocity. For the LIF data, the most probable velocity is smoother than the
average velocity and more clearly represents the velocity versus distance trend, but was observed to differ
from the average by over 2 km/s at some locations. The LIF average velocity data is a more appropriate
comparison to the HPHall average velocity data than the LIF most probable data, but due to the noise in
the LIF signal the average velocity data contains more error. The potential profile is also plotted along the
acceleration channel centerline. For comparison, an estimated experimental value for the potential profile
was calculated using the most probable LIF ion velocity data to infer the change in potential. Also included
in Fig. 8 are contour plots of electron density and ionization rate in the simulation domain. These two plots
reveal the effects of the electron physics on the ionization and ion acceleration processes.

The layout of Fig. 8 depicts the trends of how the simulation results change with cathode position and
Bohm mobility coefficient. However, the near cathode, high mobility case does not neatly fit the trends
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(a) KB = 0.15.

(b) KB = 0.30.

(c) KB = 0.50.

Figure 6. Most probable ion velocity along the acceleration channel centerline (r = 0.012 m).
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(a) KB = 0.15. (b) KB = 0.30.

(c) KB = 0.50.

Figure 7. Most probable ion velocity at the exit plane (z = 0.020 m) at various radial positions.

established by the other cases. The reason for this inconsistency is extra effective discharge voltage that
results from the anode sheath potential term calculated by HPHall. This term accounts for an almost 20 V
increase in potential in the acceleration channel in this particular case. Average axial ion velocity increases
with both increasing mobility and positioning the cathode boundary closer to the exit plane. However, when
mobility increases from KB = 0.30 to KB = 0.50 there is not a noticeable difference in axial velocity, except
in the near cathode case where there is extra potential due to the anode sheath. The electron density in
the ionization region appears to increase in an approximately linear fashion with increasing Bohm mobility
coefficient. Electron density reaches its highest values in the near cathode case for a given KB value. Electron
density also increases as the cathode boundary is positioned closer to the exit plane. From the ionization
rate plots, most of the ionization appears to take place around z = 0.012 m. This feature however does
not apply to the near cathode, high mobility case. Here the ionization rate is highest around z = 0.009 m.
The ionization region also exhibits a more narrow band of concentration. The location of ionization is an
additional source of high average velocity ions besides the additional potential of this case. Almost all the
ions are formed at the highest potential regions of the acceleration channel.
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(a) Far Cathode, KB = 0.15 (b) Far Cathode, KB = 0.30 (c) Far Cathode, KB = 0.50

(d) Mid Cathode, KB = 0.15 (e) Mid Cathode, KB = 0.30 (f) Mid Cathode, KB = 0.50

(g) Near Cathode, KB = 0.15 (h) Near Cathode, KB = 0.30 (i) Near Cathode, KB = 0.50

Figure 8. Centerline axial velocity, centerline potential, electron density, and ionization rate for the nine case matrix
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Ion Velocity Distributions

The limitations of comparing only most probable ion velocities is readily apparent in the small amount of
information it conveys about the ions. It is therefore informative to compare the velocity distributions in
various near-plume locations. It is assumed that if the simulations can predict near-plume ion distributions,
then the internal physics are adequately captured.

Beginning with the centerline of the exit plane and extending in 10 mm increments in axial direction, we
examine the evolution of the ion velocity distribution. For both measurement and simulations, ion velocity
distribution functions at the center of the acceleration channel are shown in Figs. 11, 12, and 13 at the exit
plane, and at distances of 10 and 20 mm beyond the exit plane. These plots show the effects of cathode
position and KB value on the evolution of velocity distribution. The best agreement with the axial data, in
terms of distribution shape, appears with the near cathode placement when the two higher KB values are
used. At the exit plane, these cases predict velocities that are similar to the LIF data, but they over-predict
velocity at the points beyond the exit plane. The radial velocity distributions are relatively insensitive to
placement of cathode position and Bohm coefficient. All simulations have good overall agreement with the
radial velocity LIF data at the exit plane and 10 mm past the exit plane. However, at 20 mm beyond the
exit plane the simulations predict a larger portion of the flow having a negative radial velocity than the LIF
data, indicating that the simulations predict over-focusing.

The Bohm coefficient strongly affects the width of the axial velocity distributions. The low KB = 0.15
cross-field mobility coefficient tends to produce significantly broader distributions than the higher KB values.
At the KB = 0.30 value, the mid cathode position simulation produces a double peaked axial velocity
distribution. At present, the exact cause of this double peak is unknown. The value of KB does not seem to
have as dramatic of an effect on radial velocity distribution functions. However, various trends appear to be
consistent for each cathode placement in the various simulations. For the near cathode case, increasing KB

results in narrowing radial velocity distributions. For the far cathode case, the opposite is true as increasing
KB appears to broaden the radial velocity distributions. These effects lessen further into the plume. The
mid position cathode experiences little or no variation in radial velocity distributions although the axial
distributions are quite different.

Exit plane velocity distributions near the inner insulator are important due to the proximity of the central
magnetic pole. It is the erosion of the boron nitride cover of the central magnetic pole which limits thruster
life. Figure 14 shows the velocity distributions determined by LIF measurement and the nine simulations.
The measurements show that the axial velocity distribution here is different than that of the acceleration
channel centerline. The familiar sharp peak is followed by a higher populated low velocity tail extending
to zero velocity. Of the nine simulation cases, only the two higher Bohm conductivity, near cathode cases
produce similar distributions to the measured data. All simulations under-predict the axial velocity here. The
measured radial velocity distribution also exhibits a low velocity tail indicating that the flow in this region
may be the result of several distinct ion populations. The simulations predict significantly less divergence
than the measurements show. Also, the distinct low and reversed radial velocity feature is not captured.
From the LIF data, it also appears than there may be a local source of ionization producing low velocity
ions which are less well-collimated than the main peak due to the local divergence of the electric field.

Figure 15 shows the velocity distributions at the exit plane at a radial coordinate of 15 mm corresponding
to a location near the outer insulator. The measured distributions are similar to that near the inner insulator
shown in Fig. 14. This measured axial distribution has a sharper main peak than that of the inner insulator.
The low velocity tail of the axial distribution is less pronounced and more uniform without local maxima.
As in the previous exit plane cases, the simulation cases that best match the data are the near cathode,
moderate and high Bohm conductivity cases. These simulations closely resemble the measured axial velocity
distribution, but with a broader main peak. The measured radial velocity distribution is narrower than all
the simulations. (Note that the flat top of the experimental radial distribution is an artifact due to signal
saturation of the lock-in amplifier.) The simulated radial distributions are also significantly more divergent
than the measured radial distribution. When taken in together, Figs. 14 and 15 show that the simulations
under-predict the inward focus at the inner insulator wall and over-predict the plume divergence at the outer
insulator.

Moving into the center of the near-plume, Fig. 16 shows the velocity distributions at 20 mm past the exit
plane (z = 0.040 m) at r = 2 mm. Evidence of ion cross flow is observed, particularly in the radial velocity
data where the flow from either side of the annulus can be clearly differentiated. The radial measurements
also clearly show a distributed population of low velocity ions between the two radial velocity peaks. These
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may be the result of momentum exchange collisions between the two ion streams. The general form of the
axial distribution can be matched by the simulation, but not for cases with reasonable discharge currents. As
in previous cases, it is not possible for the simulations to match both the magnitude and the shape of the axial
distribution simultaneously. The agreement of the radial data is better. The simulations predict the peaks’
shapes, but over-predict the velocity increment separation. This is indicative of the general simulation result
incorrectly predicting radial flow divergence from the inner and outer portions of the anode annulus. The
simulations predict a lower than measured intermediate radial velocity distribution. This may be a result
of not modeling charge-exchange collisions or may indicate that the model does not predict the magnitude
of plume ion collisions accurately. The discrepancy in the low radial velocity population may be due to an
underestimation of the ion collision cross sections.

B. Additional Cases

Global Thruster Parameters

The global thrust parameters of the additional cases are displayed in Table 4. None of the new cases strongly
match both the experimental values of discharge current and thrust. Although both low mobility cases seem
to the best attempts of this study. Once again the mid mobility cases significantly over-predict discharge
current. The exit plane cathode, mid mobility, nominal discharge voltage case succeeds in predicting the
correct thrust. However, its prediction of discharge current is over a factor of two too high. For the super near
cathode cases, both the low and mid mobility, nominal discharge voltage cases only show a small increase in
thrust compared to the near cathode cases. The increase in thrust is also small when comparing the super
near cathode and exit plane cathode cases. Lowering the discharge voltage led to a slight decrease in both
discharge current and thrust.

Table 4. BHT-200-X3 performance data compared with additional simulations.

Experimental Super Near Cathode Exit Plane Cathode
KB = 0.15 0.30 0.15 0.30
Vd = 250 V 235 V 250 V 250 V 235 V 250 V

ID (A) 0.809 0.875 1.39 1.46 0.992 1.60 1.67
IB(A) < 0.61 0.455 0.464 0.473 0.459 0.475 0.490
T (mN) 12 8.97 9.92 10.7 9.80 11.0 12.0

Bulk Velocity Comparisons

Figure 10 shows the most probable axial ion velocities compared with LIF data. The super near cathode
cases have velocities close to the measured values at the exit plane, but the velocities are significantly too
high downstream of the exit plane. All of the exit plane cathode cases greatly over-predicted axial velocity
at all axial locations. The cases with a 235 V discharge display a lower velocity than the nominal discharge
cases, but still are not close to matching the experimental data. As seen in the nine case matrix results, a
much greater portion of ion acceleration occurs within the first 10 mm downstream of the exit plane than
the LIF data show.

Figure 9 shows the centerline velocity and potential comparisons, electron density, and ionization rate for
the additional simulations. In some cases, the average centerline velocity closely resembles the experimental
most probable ion velocity. However, agreement between average and most probable velocity is not necessarily
a good indication of correlation between the model and experimental data as discussed earlier. Note that
figure 10 clearly shows that the centerline most probable velocity from the model is greatly over-predicted.

Ion Velocity Distributions

Ion velocities at locations of interest are shown in Figs. 17, 18, 19, and 20. Figure 17 shows that axial
VDF’s for the super near cathode cases with mid mobility matched LIF velocity distributions well at the
exit plane. However, the exit plane cathode cases all predicted axial velocities that were too great. Here the
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(a) Super Near Cathode, KB = 0.15, Discharge Voltage =
250 V

(b) Exit Plane Cathode, KB = 0.15, Discharge Voltage =
250 V

(c) Super Near Cathode, KB = 0.30, Discharge Voltage =
250 V

(d) Exit Plane Cathode, KB = 0.30, Discharge Voltage =
250 V

(e) Super Near Cathode, KB = 0.30, Discharge Voltage =
235 V

(f) Exit Plane Cathode, KB = 0.30, Discharge Voltage =
235 V

Figure 9. Centerline axial velocity, centerline potential, electron density, and ionization rate for the new cases.
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mid mobility cases produced distribution shapes that were similar to the LIF data. The low mobility cases
produced distributions overly broad in shape as observed in the nine case matrix results.

Figure 10. Most probable axial ion velocity along the
acceleration channel centerline (r = 0.012 m)

Figures 17 and 19, 30 and 40 mm downstream of
the exit plane on the acceleration channel centerline
show similar trends. The mid mobility cases predict
shapes similar to the LIF data, but their peak veloc-
ity is higher than the LIF data. The cases with the
exit plane cathode have similar distribution shapes
to the super near cathode, but have a slightly higher
most probable velocity.

At the z = 0.040 m, r = 0.002 m location in
the center of the near-plume the same phenomenon
is observed as in the nine case matrix study. Fig-
ure 20 shows evidence of cross flow. The model again
displays a slight over-focusing of the plume. The in-
termediate region of low-velocity ions between the
peaks is once again not accounted for by the model.

VI. Conclusions and Future Work

Numerical simulation predictions from the
HPHall code were compared to experimental ion ve-
locity data. The simulations do not accurately pre-

dict the ion axial velocity magnitude or distribution functions consistently throughout the near-plume.
Moreover, HPHall captures the trends but does not produce the discharge current and performance values
obtained experimentally.

The low mobility cases, with KB = 0.15, best match the experimental discharge current values. How-
ever, the velocity distributions in these case are significantly broader than those experimentally measured.
Increasing values of KB results in an improved correspondence of the velocity distributions; however, the
simulations predict unrealistically large discharge currents due to very high electron currents. None of the
cathode boundary locations were able to match most probable axial velocity both at the exit plane and
the plume region downstream of the exit plane. The near cathode and the super near cathode bound-
ary conditions produced axial velocity data that matched exit plane LIF data, but over-predicted velocity
downstream.

The simulations produce radial distributions that match the measured data better than the axial profiles.
However, the simulations consistently predict greater divergence, particularly with the higher values of the
KB parameter. These cases with the higher KB values have considerably larger discharge currents, and hence
electron current, than actual thruster operation. This indicates that the cross-field electron conductivity is
excessive and models the ionization and acceleration regions further into the plume than the KB = 0.15
case. At the exit plane, the result is that the measured distribution has a greater inward focus, while the
simulations are more outwardly divergent. In the intersecting radial flow region downstream of the central
magnetic pole, the results show consistent shifts between the two peaks representing the flow originating
from opposite sides of the annular anode discharge. It is noteworthy to draw attention to the intermediate
low velocity radial populations between the two peaks. These are clear in the experimental data, but not
seen in the simulation results. These could be collisional effects that are currently not modeled by the
code. Alternatively, a portion of the measured low velocity distribution may be due to saturation of the
fluorescence signal. Saturation of the axial LIF signal has been examined in the vicinity of the acceleration
channel centerline several millimeters downstream and the LIF data has been found to be in the linear
regime. With probe beam powers less than 4 mW, it is not believed that the signal is saturated. However,
this possibility will be closely examined in a future study.

A major difficulty in conducting the comparison study between the model and the experimental data
was that most of the common data locations for comparison existed outside of the region of simulation
domain where the electron fluid equations are solved (i.e. between the anode and cathode boundaries).
Downstream of the cathode boundary, linear interpolation is used to find thermalized potential and electron
temperature. Unfortunately, only a few of the data point locations used for comparison fell between the
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anode and cathode boundaries of simulation. This difficulty points to the need for velocity measurements
made within the acceleration channel of the Hall thruster. Future LIF experiments will be performed on
a specially modified thruster, which allows laser passage into the acceleration channel, to measure internal
velocity distribution functions. Comparing data points inside the acceleration channel will give a better
indication of the ability of the model to predict the ion acceleration physics.

It should be noted that the non-standard geometry of the BHT-200-X3 Hall thruster may be responsible
for some of the lack of correspondence of the simulations with experimental data. HPHall was originally
designed to model the SPT family of Hall thrusters. The BHT-200-X3 thruster geometry varies considerably
from that of the SPT, particularly in the geometry of the anode. The BHT-200-X3 has a large plenum region
designed to increase neutral residence time, which is lined with the magnetically permeable anode material.3

HPHall fixes anode position at a magnetic streamline. The position of the anode was not varied during
this study. The results of varying the cathode location in the simulations strongly imply that anode location
will also influence the computed flow parameters. One of the major discrepancies between the simulation
and experimental data was the most probable axial velocity along the acceleration channel centerline within
10 mm downstream of the exit plane as seen in Fig. 6. Placing the anode farther away from the exit plane
and thus increasing the anode-cathode distance may result in a potential profile that is more similar to the
actual thruster. This would lead to more acceleration upstream of the exit plane and a velocity curve with a
smaller slope. Matching the slope of the most probable axial velocity versus axial distance curve by changing
the anode-cathode distance will be the first step in creating a simulation that predicts most probable axial
velocity accurately throughout the near-plume in future modeling efforts.

It is apparent that further analysis of the sensitivity of HPHall to various input parameters as well as the
electron conduction mechanisms are warranted. However, the issues may be better accomplished by a joint
simulation and experimental effort that attempts to characterize the ionization, acceleration, and electron
conductivity within the acceleration channel. Knowledge of these internal properties will allow for the
correct selection of simulation boundary conditions and may lead to the modification of the model electron
conductivity and ionization assumptions. The objective is to create an accurate model of the internal plasma
parameters of the BHT-200-X3 Hall thruster that can be applied to other Hall thrusters. This capability
coupled with an accurate erosion model could then be used to predict the lifetime of a thruster via simulation.
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A. Velocity Distribution Function Plots

(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 11. Ion velocity distribution functions at z = 0.020 m (exit plane), r = 0.012 m (channel center). Peaks
are normalized by area.
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(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 12. Ion velocity distribution functions at z = 0.030 m (10 mm past exit plane), r = 0.012 m (channel
center). Peaks are normalized by area.
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(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 13. Ion velocity distribution functions at z = 0.040 m (20 mm past exit plane), r = 0.012 m (channel
center). Peaks are normalized by area.
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(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 14. Ion velocity distribution functions at z = 0.020 m (exit plane), r = 0.009 m (near the inner insulator).
Peaks are normalized by area.
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(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 15. Ion velocity distribution functions at z = 0.020 m (exit plane), r = 0.015 m (near the outer insulator).
Peaks are normalized by area.
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(a) f(vz), Far Cathode. (b) f(vr), Far Cathode.

(c) f(vz), Mid Cathode. (d) f(vr), Mid Cathode.

(e) f(vz), Near Cathode. (f) f(vr), Near Cathode.

Figure 16. Ion velocity distribution functions at z = 0.040 m (20 mm past exit plane), r = 0.002 m (near the
thruster centerline). Peaks are normalized by area.
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(a) f(vz), Super Near Cathode. (b) f(vr), Super Near Cathode.

(c) f(vz), Exit Plane Cathode. (d) f(vr), Exit Plane Cathode.

Figure 17. Ion velocity distribution functions at z = 0.020 m (exit plane), r = 0.012 m (channel center). Peaks
are normalized by area.
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(a) f(vz), Super Near Cathode. (b) f(vr), Super Near Cathode.

(c) f(vz), Exit Plane Cathode. (d) f(vr), Exit Plane Cathode.

Figure 18. Ion velocity distribution functions at z = 0.030 m (10 mm past exit plane), r = 0.012 m (channel
center). Peaks are normalized by area.
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(a) f(vz), Super Near Cathode. (b) f(vr), Super Near Cathode.

(c) f(vz), Exit Plane Cathode. (d) f(vr), Exit Plane Cathode.

Figure 19. Ion velocity distribution functions at z = 0.040 m (20 mm past exit plane), r = 0.012 m (channel
center). Peaks are normalized by area.
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(a) f(vz), Super Near Cathode. (b) f(vr), Super Near Cathode.

(c) f(vz), Exit Plane Cathode. (d) f(vr), Exit Plane Cathode.

Figure 20. Ion velocity distribution functions at z = 0.040 m (20 mm past exit plane), r = 0.002 m (near the
thruster centerline). Peaks are normalized by area.
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