
AFRL-VA-WP-TP-2006-319

A REAL-TIME JAVA VIRTUAL
MACHINE FOR AVIONICS (PREPRINT)

Austin Armbruster, Edward Pla, Jason Baker, Antonio Cunei,
Chapman Flack, Filip Pizlo, Jan Vitek, Marek Procházka, and
David Holmes

FEBRUARY 2006

Approved for public release; distribution is unlimited.

STINFO COPY

This work, resulting in whole or in part from Department of the Air Force contract
number F33615-03-C-3317, has been submitted to ACM for publication in ACM Transactions on
Embedded Computing. If published, ACM may assert copyright. The United States has for itself
and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide
license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf
of the Government. All other rights are reserved by the copyright owner.

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS)
Public Affairs Office (PAO) and is releasable to the National Technical Information Service (NTIS). It
will be available to the general public, including foreign nationals.

PAO Case Number: AFRL/WS 06-0526, 23 Feb 2006.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

*//Signature// //Signature//
__ __
DANIEL J. SCHREITER MICHAEL P. CAMDEN, Chief
Project Engineer Control Systems Development and
 Applications Branch
 Control Sciences Division

//Signature//
__
BRIAN W. VAN VLIET, Chief
Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February 2006 Journal Article Preprint 04/30/2003– 04/15/2005
5a. CONTRACT NUMBER

F33615-03-C-3317
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A REAL-TIME JAVA VIRTUAL MACHINE FOR AVIONICS (PREPRINT)

5c. PROGRAM ELEMENT NUMBER
0602201

5d. PROJECT NUMBER

A041
5e. TASK NUMBER

6. AUTHOR(S)

Austin Armbruster and Edward Pla (The Boeing Company)
Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, and Jan Vitek (Purdue
University)
Marek Procházka (SciSys)
David Holmes (DLTeCH)

5f. WORK UNIT NUMBER

 0E
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

The Boeing Company
P.O. Box 516
St. Louis, MO 63166

Purdue University

SciSys

DLTeCH

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL-VA-WP Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

Defense Advanced Research Projects
Agency (DARPA)
3701 N. Fairfax Drive
Arlington, VA 22203

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-VA-WP-TP-2006-319
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

This work, resulting in whole or in part from Department of the Air Force contract number F33615-03-C-3317, has been
submitted to ACM for publication in ACM Transactions on Embedded Computing. If published, ACM may assert
copyright. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable
worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the
Government. All other rights are reserved by the copyright owner.

PAO Case Number: AFRL/WS 06-0526 (cleared February 23, 2006). Report contains color.
14. ABSTRACT

The authors report on their experience with the implementation of the Real-time Specification for Java (RTSJ) in the
DARPA Program Composition for Embedded System (PCES) program. Within the scope of PCES, Purdue University and
the Boeing Company collaborated on the development of Ovm, an open source implementation of the RTSJ virtual
machine. Ovm was deployed on a ScanEagle Unmanned Aerial Vehicle and successfully flight tested during the PCES
Capstone Demonstration.

15. SUBJECT TERMS
Embedded systems, Distributed real-time embedded systems, software development, real time Java, Java virtual machine

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 38
 Daniel J. Schreiter
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

A Real-time Java Virtual Machine for Avionics

Austin Armbruster
The Boeing Company

and
Jason Baker, Antonio Cunei, Chapman Flack
Purdue University

and
David Holmes,
DLTeCH

and
Filip Pizlo
Purdue University

and
Edward Pla,
The Boeing Company

and
Marek Procházka
SciSys

and
Jan Vitek
Purdue University

1. INTRODUCTION

The Real-Time Specification for Java (RTSJ) [Bollella et al. 2000] was designed to be
used to construct large-scale Distributed Real-time Embedded (DRE) systems [Sharp 2001;
Dvorak et al. 2004]. The key benefits of the RTSJ are, first, that it allows programmers
to write real-time programs in a type-safe language, thus reducing many opportunities

This work was supported under a DARPA PCES contract, NSF 501-1398-1086 and NSF CSR-AES 501-1398-
1588.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

AFRL/WS 06-0526

roushrv
Text Box
PREPRINT

2 ·

for catastrophic failures; and second, that it allows hard-, soft- and non-real-time code to
interoperate in the same execution environment. This is becoming increasingly important
as multi-million line DRE systems are being developed in Java, e.g. for avionics, shipboard
computing and simulation. The success of these projects hinges on the RTSJ’s ability
to combine plain Java components with real-time ones. As of this writing commercial
implementations of the specification have been released by IBM, SUN, Aonix, Aicas, and
Timesys, and a number of research projects are working on open source implementations
[Timesys Inc 2003; Beebee, Jr. and Rinard 2001; Corsaro and Schmidt 2002; Purdue
University - S3 Lab 2005; Nilsen 1998; Buytaert et al. 2002; Tryggvesson et al. 1999;
Gleim 2002; Siebert 1999].

The DARPA PCES project’s Capstone Demonstration integrated several independently
developed real-time software systems into a live demonstration of their combined func-
tionality, using both real and simulated components. As part of that demonstration Boeing
and Purdue University demonstrated autonomous navigation capabilities on an Unmanned
Air Vehicle (UAV) known as the ScanEagle (Fig. 1). The ScanEagle is a low-cost, long-
endurance UAV developed by Boeing and the Insitu Group. This UAV is four-feet long,
has a 10-foot wingspan, and can remain in the air for more than 15 hours. The primary
operational use of the ScanEagle vehicle is to provide intelligence, surveillance and recon-
naissance data. The ScanEagle software, called PRiSMj, was developed using the Boeing
Open Experiment Platform (OEP) and associated development tool set. The OEP provides
a number of different run-time product scenarios which illustrate various combinations
of component interaction patterns found in actual Bold Stroke avionics systems. These
product scenarios contain representative component configurations and interactions. These
product scenarios were developed using three rate group priority threads (20Hz, 5Hz, and
1Hz) and an event notification mechanism.

The PCES project was a success. PRiSMj with Ovm was the first Real-time Specifica-
tion for Java system to pass Boeing’s internal qualification tests. Ovm and PRiSMj met
all of Boeing’s operational requirements and the flight test conducted in April 2005 was a
success. The system was awarded the Java 2005Duke’s Choice Awardfor innovation in
Java technology.

This paper reports on our experience working with and implementing the Real-time
Specification for Java. While our experience is limited to a single application on one
virtual machine, we view these results are encouraging.

2. REAL-TIME JAVA

The Real-Time Specification for Java (RTSJ) was developed within the Java Community
Process as the first Java Specification Request (JSR-1). Its goal was to “provide an Applica-
tion Programming Interface that will enable the creation, verification, analysis, execution,
and management of Java threads whose correctness conditions include timeliness con-
straints” [Bollella et al. 2000] through a combination of additional class libraries, strength-
ened constraints on the behavior of the JVM, and additional semantics for some language
features, but without requiring special source code compilation tools. The RTSJ covers
five main areas related to real-time programming:

—Scheduling: Priority based scheduling guarantees that the highest priority schedulable
object is always the one that is running. The scheduler must also support the periodic
release of real-time threads, and the sporadic release of asynchronous event handlers that

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

Kestrel Institute, September 2005

PCES Capstone Demo

Ovm was used for the DARPA PCES Capstone Demo

The RTSJ deployed in the ScanEagle UAV to implement
route computation, threat deconfliction algorithms

In collaboration between the Boeing Corporation,
Purdue University, DLTech, UCI, WUSTL 3 An Avionics Mission-critical DRE Middleware Stack

We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.

Embedded Planet PowerPC 8260

Core at 300 MHz

256 Mb SDRAM

32 Mb FLASH

PC/104 mechanical sized

Embedded Linux

Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.

5

Fig. 1. A ScanEagle UAV with the Boeing PRiSMj software and the Ovm Real-time JVM.

can be attached to asynchronous event objects that themselves are triggered by actual
events in the execution environment.

—Admission control and cost enforcement: Schedulable objects can be assigned parameter
objects that characterize their temporal requirements in terms of start times, deadlines,
periods, and cost. This information can be used to prevent the admission of a schedula-
ble object if the resulting system would not be feasible from a scheduling perspective.
Schedulable objects can also have handlers that are released in the event of a deadline
miss.

—Synchronization: Priority inversion through the use of Java’s synchronization mecha-
nism (monitors) must be controlled through the use of the priority inheritance protocol
(PIP), or optionally, the priority ceiling emulation protocol (PCEP). This applies to both
application code and the virtual machine itself.

—Memory Management: Time-critical threads must not be subject to delays caused by
garbage collection. To facilitate this,NoHeapRealtimeThread are prohibited from touch-
ing heap allocated objects, and so can preempt garbage collection at any time. Instead
of using heap memory, these threads can use special, limited-lifetime, memory areas
known asscoped memory areas, or an immortal memory area from which objects are
never reclaimed.

—Asynchronous Transfer of Control: It is sometimes desirable to terminate a computation
at an arbitrary point. The RTSJ allows for the asynchronous interruption of methods that
are marked as allowing asynchronous interruption. This facilitates early termination
while preserving the safety of code that does not expect such interruptions.

3. THE OVM VIRTUAL MACHINE

Ovm is a generic framework for building virtual machines with different features. It sup-
ports components that implement core VM features in a wide variety of ways. While
Ovm was designed to allow rapid prototyping of new VM features and new implementa-
tion techniques, its current implementation was driven by the requirements of the PCES

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

project, namely to execute production code written to the RTSJ at an acceptable level of
performance. While Ovm’s internal interfaces have been carefully designed for general-
ity, much of the coding effort has focused on implementations that achieve high runtime
performance with low development costs. The real-time support in Ovm is compliant with
version 1.0 of the RTSJ in the following areas:

—Real-time thread and priority scheduler support: This is the basic priority-preemptive
scheduler defined for real-time threads, and providing for deadline monitoring of those
threads.

—Priority inheritance monitors: All monitor locks support the priority-inheritance proto-
col.

—Periodic and one-shot timers: These utility classes are used to release time-triggered
asynchronous event handlers.

—General asynchronous event handler support: These handlers support the release of
schedulable entities in response to system, or application defined events.

—Memory management: Scoped memory areas are fully supported along with the nec-
essary checks on their usage. The use ofNoHeapRealtimeThread objects is supported.
Full preemption of the garbage collector is not yet implemented.

Sources and documentation for Ovm are available from [Purdue University - S3 Lab
2005], and the reader is referred to [Palacz et al. 2005] for further discussion of Ovm.

The overall architecture of Ovm consists of an executive-domain core around which
multiple user-domain “personalities” can execute. The executive domain consists of a core
set of system services that provide the functionality needed to execute Java code. As such,
it provides services to both itself and the user domain. This includes code translation and
execution, memory management, threading and synchronization, and other services typi-
cally implemented in native code, or delegated to the operating system, in other virtual ma-
chines. The executive domain is isolated from the user domain and has its own type system
and type name space. Although the executive domain is written in Java, it is not subject
to regular Java semantics. We use compiler tricks such as pragmas and intrinsic methods
to allow executive domain code to perform type-unsafe operations such as pointer arith-
metic, unrestricted raw memory access, and unchecked pointer writes even within scoped
memory. Further, the executive domain notion of such classes asjava.lang.Object ,
java.lang.String , andjava.lang.Throwable is quite separate from, and quite
different to, that defined in the user domain for a Java compatible virtual machine.

Figure 2 illustrates the architecture of the Ovm. The executive domain implements the
core functionality of Java, such as monitors, memory allocation for thenew expression,
type casts, and exceptions. Because all of this functionality is normally accessed by Java
programs using ordinary bytecode instructions, the Ovm’s compiler must know to translate
these instructions into appropriate executive domain method calls. This is achieved via a
glue layer called theCore Services Access, or CSA. The compiler translates instructions
such asMONITORENTERor ATHROWinto calls to CSA methods. Because a CSA call
leads to execution of Java code, recursive CSA calls are possible. For example, the imple-
mentation of monitor entry may allocate memory using theNEW instruction, which then
causes another calls into the CSA.

Domains in the Ovm are firmly segregated. The executive domain can only call into the
user domain using a reflection API. On the other hand, the user domain can only call into

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

the executive domain usingLibrary Imports. The Ovm compiler recognizes user domain
classes that have the nameLibraryImports . Any native methods in a library im-
ports class are translated into calls to methods of the same name in the executive domain
RuntimeExports object.

Because Ovm is written in Java, the ordinary Java notion of native code does not ap-
ply. Native code in the GNU CLASSPATH library is translated into calls to user domain
LibraryGlue classes. These classes then typically use library imports to access VM
functionality. As such, the typical calling sequence for Java native methods goes like this:
native method→ library glue→ library imports→ runtime exports→Ovm kernel method
that implements the requested functionality.

Real-time support in Ovm consists of both an RTSJ-compatible implementation of the
user domainjavax.realtime runtime library, and realtime variants of many core VM
services defined in the executive domain. We discuss some of the main design choices and
their implications.

3.1 Java in Java

Ovm is implemented almost exclusively in Java with only small amounts of C for the
bootloader and low level facilities. Even though we have not conducted a thorough study,
we have anecdotal evidence of higher developer productivity and lower defect rates. The
entire system is comprised of approximately 250,000 lines of Java code and 15,000 lines

C
or

e
Se

rv
ic

es
 A

cc
es

s

Ovm Kernel

Runtime Exports

User domain

Executive domain

Domain Reflection

Library Imports

Library Glue

GNU CLASSPATH

Java Application

CSA downcalls from Java bytecode

CSA uses Ovm kernel methods to implement Java bytecode semantics

Cross-domain calls.

Fig. 2. Overview of the Ovm architecture.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

of C code.

3.2 Ahead of time compilation

The high performance real-time configuration of Ovm relies on ahead of time compilation.
The entire program is processed to maximize the opportunities for optimization and an exe-
cutable image is generated for a particular Java application. The quality of the optimization
is further discussed in section 4.5. The Ovm optimizing compiler (called j2c) translates the
entire application and virtual machine code into C++ which is then processed by gcc. The
advantages of this approach are that we obtain portability at almost no cost and we can of-
fload some of the low level optimizations to the native compiler. The main drawback is that
by going to C++, we lose some control over the generated code. For instance, some care
has to be taken to avoid code bloat due to overeager inlining (balancing the inlining that is
essential for performance). Another issue is that the C++ compiler hinders precise garbage
collection, which has forced us to rely on a mostly-copying collector. This has not proven
to be a significant problem for the implementation of the RTSJ – but does complicate the
task of implementing real-time garbage collection algorithms.

3.3 User-level threading

Threading is implemented in the VM by using user-levelcontextsthat are executed within
a single native operating system thread, with all scheduling and preemption controlled by
the VM. Asynchronous event processing, such as timer interrupts and I/O completion sig-
nals, is implemented synchronously within the VM by the means of compiler insertedpoll
checks. The cost associated with the polling is small (see Section 4.4) and can be reduced
further by more aggressive compiler analysis, for instance loop unrolling can decrease the
number of poll-checks needed as it reduces the number of backbranches. An advantage of
explicit poll-checks is that the compiler knows when a context switch may occur and also
when a sequence of instructions is atomic. This simplifies code generation and allows for
some operations performed by the VM to forgo explicit synchronization.

In designing our poll checking scheme we had the following goals:

(1) Cheap. A poll check should not require more than a load and compare on a single
32-bit word at a well-known location. In the future, we will explore register allocating
this word, making the check even cheaper.

(2) Thread- and signal-safe. A signal handler may interrupt the Ovm at any instruction
boundary. Whatever action the signal handler takes to cause the next poll check to
trigger must be correct even if the point of interruption was another poll check.
Additionally, we have explored having the Ovm start OS threads to perform auxiliary
tasks such as I/O. Such threads may wish to notify Java code of new conditions. The
only facility for doing so is to cause a poll check to trigger. The procedure for doing
this should work even in SMP environments.

(3) Fast dynamic deactivation. Often, it is necessary to run code that was compiled with
poll checks in an uninterruptible mode. For example, our linked list library is used both
from uninterruptible code in the scheduler and event manager, and in interruptible user
code. Being able to dynamically disable poll checks means that this code only needs
to be compiled once.

We achieve all three goals by using simple atomic operations over a 32-bit polling word.
The C++ definition of this word is shown in Fig. 3.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

union {
struct {

volatile int16 t notSignaled;
volatile int16 t notEnabled;

} s;
volatile int32 t pollWord;

} pollUnion;

Fig. 3. Definition of the 32-bit polling word.

Thes.notSignaled field is set to 1 by default, and is set to 0 using a simple store
operatioon whenever a signal occurs. This may happen from a signal handler, or from an
OS thread running in concurrently to the Ovm Java thread. Thes.notEnabled field is
set to 0 when poll checking is dynamically enabled, or 1 when it is disabled.

A poll check then becomes a simple matter of comparingpollWord to 0. If it is 0,
we know that both a signal occurred and poll checking is enabled. The full code for a poll
check is shown in Fig. 4

if (pollUnion.pollWord == 0) {
pollUnion.s.notSignaled = 1;
pollUnion.s.notEnabled = 1;
handleEvents();

}

Fig. 4. Code for a poll check.

Notice that the fast path is just a load and a compare. The slow path involves disabling
poll checks and clearing the signal, and then entering the event handling code. Poll checks
must be disabled because the event handler may call into common code that was compiled
with injected poll checks.

Since we do our own scheduling and synchronization, we need not rely on particular
operating system features, and so do not require the use of proprietary, commercial real-
time operating systems. With Ovm it is possible to run RTSJ programs on any OS and
have the application threads behave correctly with respect to each other; this guarantee is
not extended to other processes running on the same machine, of course.

3.4 I/O scheduling

In a user-level threaded system, blocking I/O calls such asread or write will stall the
whole virtual machine. Unfortunately, Java class libraries expect POSIX I/O calls with
blocking semantics.

To get around this we developed the Async-I/O framework. Clients, such as the Ovm
POSIX I/O emulator, are restricted to using asynchronous operations. Calling a blocking
method in the framework will only arrange for the operation to take place at some point
in the future, callbacks are used to notify the client when the operation is ready to make
progress. For example, awrite call may be processed as follows.

(1) A thread callsFileOutputStream.write. This method calls the POSIX I/O emulator’s
write method which has a fast path, where a simple non-blockingwrite is exe-
cuted. Failing this, aBlockingCallbackis allocated, and the Async-I/O write method

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

is called with the callback as argument. The thread is removed from the ready queue
and other threads are free to execute. TheBlockingCallbackwill be responsible for
making the thread ready once progress can be made.

(2) At some point in the future, the operating system notifies Ovm that it is ready for writ-
ing. The Async-I/O infrastructure dispatches a call to theBlockingCallback, passing
anAsyncFinalizerobject that encapsulates the next action that must be taken to pro-
cess the write. TheBlockingCallbackplaces the Java thread back on the ready queue
and arranges for it to call into theAsyncFinalizer.

(3) Once the Java thread awakens, it calls into theAsyncFinalizer. This may return an er-
ror, or it may return success, or it may indicate that the request was not yet completed.
In the latter case, the thread is removed from the ready queue and the process repeats.
Otherwise, the operation is complete.

Figure 6 shows the actual code in the POSIX I/O emulator for handling this part.
This design has several interesting consequences. First, it minimizes the amount of

work that the Ovm must do while in the interrupt service routine. Everything except for
the basic dispatching is stuffed into anAsyncFinalizer. Second, actions offloaded into
the AsyncFinalizerare executed under the priority of the Java thread. This means that
I/O operations done on behalf of low priority threads will only be executed once high
priority threads yield. Third, it allows for certain I/O operations to interact with the garbage
collector—for example, if the operation is given a heap buffer. If all of the work done for
I/O operations was done in interrupt context, interaction with the collector would have to
be limited.

The Async I/O framework enables multiple implementations of the same I/O operation,
to be selected depending on client requirements and the type of resource being accessed.
Current implementations include SIGIO and Select, which enable interrupt-driven schedul-
ing; the Polling configuration, in which the VM repeatedly attempts I/O operations until
they succeed; and the Stalling configuration, in which I/O stalls the whole VM. All of these
configurations can be made active in the VM at once, with configurations being selected
automatically every time a file is opened or a socket is created. Figure 5 shows the Ovm
I/O stack implemented using the Async framework.

POSIX I/O Emulator

Ovm Async I/O Framework

SIGIO Select Polling

CLASSPATH Library

Operating System

Stalling

Fig. 5. Ovm I/O subsystem stack. An asynchronous implementation of the POSIX I/O API is provided to prevent
the entire virtual machine from blocking during file or network operations.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

BlockingCallback bc = new BlockingCallback();
descriptor.write(buffer, byteCount, bc);
bc.waitOnDone();
if (bc.getError() != null) {

... // handle error
}
return bc.getFinalizer().getNumBytes();

Fig. 6. Code for implementing the slow path ofwrite in the Ovm POSIX I/O emulator.

3.5 Scoped Memory and Region Based Memory Management

The RTSJ identifies three different kinds of memory that can be used: heap, immortal
and scoped memory. Scoped memory operates using a reference counting scheme such
that when no thread is actively using a scope, the scope can be cleared of objects and
reclaimed. As scopes can be reclaimed it is essential that no references to objects in a
scope are stored in variables (fields or array elements) that have a longer lifetime than the
object being referred to. Otherwise, when the scope was reclaimed the reference would be
left “dangling”. This requires that all stores to variables be checked at runtime to ensure
that they are allowed.

A further runtime check is needed when variables are loaded to ensure that aNoHeap-
RealtimeThread does not acquire a reference to a heap allocated object. These two runtime
checks can have a serious impact on performance, so there is a strong motivation to make
the checks as fast as possible, and to find ways to elide the checks when it is safe to do so.
In Ovm both kinds of runtime memory checks execute in constant time and involve simple
comparisons. Ovm divides memory into three slices: one for heap, one for immortal and
one from which all scoped memory will be allocated. With heap in the top slice, a heap
check simply involves comparing the address held in a reference with the address of the
bottom of the heap.

Scope store checks are more complicated. The RTSJ restricts use of scopes such that
one scope can only ever be entered from a single other scope. This is known as thesingle
parent rule. The effect of this rule is that a safe store requires that the destination variable
exist in a child scope of the scope in which the referenced object is allocated. All of the
scopes that are in use at any moment at runtime form a tree, that is rooted in a conceptual
object known as the primordial scope. By carefully assigning upper and lower bounds
to each scope in the tree, such that a child’s range is a subrange of the parent’s range,
then a scope check consists of finding the scope in which the destination variable and the
target object exist, and checking that the destination range is a subrange of the target. The
resulting check operates in constant time and requires two comparisons. This technique
was adapted from a similar technique used for identifying subtype relationships in Ovm
[Palacz and Vitek 2003].

Ovm supports region based memory management. We use our memory region sup-
port for implementing RTSJ scoped memory as well as for managing memory in the
Ovm executive-domain. To reduce code duplication while giving the executive-domain
all of the hooks it needs, we designed our own memory area API. In this API, a single
MemoryManager object represents the capabilities of the garbage collector and region
allocator and objects of typeVMArea represent memory areas, including the heap and
immortal memory. See Figure 8 for an illustration.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
//the write barrier’s fast path is always inlined.
void storeCheck(VM Address src, int offset, VM Address tgt)

throws PragmaNoPollcheck, PragmaNoBarriers, PragmaInline {
int sb = src.asInt() >>> blockShift;

int tb = tgt.asInt() >>> blockShift;

if (sb != tb) storeCheckSlow(sb, tb);

// Succeed if objects are allocated in the same block.
}

// The slow path perform a scope inclusion check
void storeCheckSlow(int sb, int tb)

throws PragmaNoPollcheck, PragmaNoBarriers {
VM Word tidx = VM Word.fromInt(tb - scopeBaseIndex);

if (!tidx.uLessThan(scopeBlocks)) return ;

// sucess if the target is in immortal or heap memory.
Area ta = scopeOwner[tidx.asInt()];

VM Word sidx = VM Word.fromInt(sb - scopeBaseIndex);

if (!sidx.uLessThan(scopeBlocks)) fail ();
// fail if we are trying to store a scope location into heap/immortal.
Area sa = scopeOwner[sidx.asInt()];

if (sa == ta) return ;

if ((ta.prange - sa.crange) & MASK) != RES) fail ();
// fail if the location being assigned to is not in a parent/same scope.

}

// Read barriers are always inlined.
void readBarrier(VM Address src)

throws PragmaInline, PragmaNoBarriers, PragmaNoPollcheck {
if (!doLoadCheck) return ;

// doLoadCheck is true if the running thread is a NHRT

if (src.diff(heapBase).uLessThan(heapSize)) fail ();
// fail if the object is in the heap.

}

Fig. 7. Implementation of Store and Load checks in Ovm. Like most of the virtual machine the code is ex-
pressed in Java with some extensions to perform low-level operations. In this case, the typeVM Address and
VM Word are special types that are compiled to native pointer operations.

MemoryManager is an interface with multiple implementations. For example, in con-
figurations tuned for throughput, the memory manager object can serve as glue for MMTk.
In the RTSJ configuration, we currently use our ownSplit Region Mostly Copyinggarbage
collector, which implements a conservative semi-space algorithm with pinning collector
for lower priority threads and provides region-based memory management for no-heap
threads. The nameSplit Regionrefers to the fact that memory is split into heap and non-
heap parts which are managed separately, thereby allowing scoped memory management

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

to occur even when the garbage collector is running.

3.6 Region Based Memory Management and the Executive Domain

Ovm being written in Java, the most natural approach to memory management would be to
rely on the very gabage collector used to reclaim user objects. However to meet the hard
real-time requirements of the RTSJ, the Ovm executive-domain must be able to preempt
the collector. We solve this by using memory regions. In fact, Ovm’s implementation of
javax.realtime.MemoryArea is based on the same region API that the executive-
domain uses for its own memory management.

The primary goal of using regions is to ensure timely completion of executive-domain
operations. However, two additional goals can be identified. First, performing a executive-
domain call should not leak memory into the caller’s scope, with the only exception being
for operations that are commonly understood to require allocation (such as expanding a
monitor, or allocating a file descriptor for I/O). Second, system operations should never
fail due to scope checks.

Consider the following examples of system operations where these goals pose non-trivial
problems: reflection, thread scheduling, and POSIX I/O emulation.

CLASSPATH implements Java reflection routines such asClass.getDeclaredMethods
by using lazy initialization. TheClass object contains initially null pointers to arrays of
methods, constructors, and fields. Invoking a method such asgetDeclaredMethods
may cause a new array to be allocated and stored into thedeclaredMethods field.
Hence, if the first time that this method is executed is from a scope, this naive implemen-
tation would lead to an illegal assignment error. To solve this problem, we must either
arrange to run the initialization code in the appropriate memory area, or else guarantee that
initialization happens eagerly.

Lazy initialization is used throughout Java libraries. It is often essential to getting accept-
able performance. As such, whatever solution is used to solve the initialization problem
must be simple and clean, so that it can be reused throughout the virtual machine and its
libraries.

Thread scheduling poses a unique set of problems. In Ovm, much of the state of threads
is allocated using regular Java allocation routines. This includes the queue nodes that
represent threads within the scheduler. Consider that a thread is allocated within a scope.
Then consider the seemingly simple operation of placing the thread onto the ready queue.
The ready queue is a linked list. Hence, there is likely to be a pointer to a thread’s queue

SplitRegionManager

Other VM Services

Java Application

javax.realtime.MemoryArea

VM_Area & MemoryManager API

User domain Executive domain

Fig. 8. Ovm memory region stack. Java applications use memory regions directly via the
javax.realtime.MemoryArea API as well as indirectly when accessing other VM services.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

Heap Immortal Scope1 Scope2

Ready Queue

Thr1 Thr2 Thr3 Thr4

Head Tail

Fig. 9. Ovm thread ready queue with four threads allocated in four different memory areas. Notice that three
of the references are illegal:Thr2’s reference toThr3 is illegal because immortal objects cannot point at scoped
objects,Thr3’s reference toThr4 is only legal if Scope2 is a descendant of Scope1, and the ready queuesTail
pointer toThr4 is illegal, since the ready queue must be immortal.

node from a node allocated in a different scope. Done naively, this would result in an
illegal assignment error as soon as a scope allocated thread becomes ready.

Figure 0??shows an example of the ready queue problem. In RTSJ, the queue presented
in this figure could not have been created. As noted in the figure, two of the references
(fromThr2toThr3and from the queue object toThr4) cannot be legal, and a third reference
(from Thr3 to Thr4) would only be legal if we assume a certain scope hierarchy.

This particular example uncovers one of the great problems of the RTSJ’s reference
rules. The goal of these rules is to prevent dangling pointers, But in our example, the point-
ers in the linked list ready queue would never dangle, since for a scope to be reclaimed,
all threads in it must terminated, and for a thread to terminate it must be removed from the
ready queue. Hence, ready queue pointers will never point at a non-existant object.

Finally, consider what needs to be done to make thewrite call in Fig 6 scope safe.
The main actors in this operation are the thread, the memory buffer being written, the I/O
descriptor being written to, and temporary objects such as theBlockingCallback. In the
implementation originally presented, every write operation would leak temporary objects
into the caller’s memory area. If we are operating in the heap, this is fine, since the garbage
collector will clean up these temporary objects. But if scoped memory is being used, this
leak puts an undue burden on the user: suddenly, the user must bound the number of I/O
operations performed in a scope to prevent out-of-memory conditions. We believe that
such a requirement would be unreasonable. For this reason, we introduce a per-thread
memory area known as thescratch padfor allocating temporary objects.

But this does not solve all of the problems. Consider that the Async I/O framework has
its own scheduler, not unlike the thread scheduler. The same exact linked list management
problem occurs here. But by introducing the scratch pad, we have actually made this
problem worse: now, even if the user does not use scoped memory, the Async I/O code
may cause illegal assignment errors due to scratch pad usage.

Furthermore, thewrite call is not the only place where the scratch pad needs to be
used. Hence, whatever idioms are used for the scratch pad, they must be easy to reuse.

It should be clear from these examples that to achieve our original goals (preventing
leaks and illegal assignment errors), we need a clear, simple, and reusable facility for
quickly entering the appropriate memory area for a given operation. Further, we see a need
a facility for eliding scope checks.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

Name Description
Exception Safe Area An area from which it is safe to throw an exception. Dynamically selected to be

either the heap or immortal depending on the parent area.
Monitor Area The area in which we allocate monitors. This is selected dynamically depending

on the monitor’s parent object.
Mirror Area Area used to allocate objects referenced by system objects, such as objects of

classClass . This area is used for allocating both user-level and executive-
domain objects. As such, routines to enter and exit this abstract memory area are
exported from the executive-domain.

Meta-data Area Memory area for static data, such asstatic fields,Class objects, etc.
Interned String Area Memory area used for string interning.
Class Init Area Area in which static initializers are run.
Repository Query Area Area in which to allocate temporary objects when performing queries for type

information.
Repository Data Area Area in which internal type information, as well as bytecode for all methods, is

stored.
Scratch Pad Area Per-thread area used for temporary data.

Fig. 10. Abstract memory areas that the Ovm executive-domain is aware of. Whenever the executive-domain
performs an operation that may require changing memory areas, it requests the appropriate area using theMem-
oryPolicyAPI. As such, these areas do not have a one-to-one correspondence to real memory areas. Instead, the
appropriate memory area is often selected dynamically.

Implementing these facilities is further complicated by the Ovm’s need for configurabil-
ity. In the RTSJ configuration, it is clear that memory areas must be used to meet the user’s
requirements. But in a regular Java configuration, we would like to have that same code
use the heap. Even within the RTSJ configuration, it may be desirable to introduce multiple
sub-configurations that differ in the arrangement of memory areas. To make this possible,
we created an API known as theMemoryPolicythat provides abstract memory areas to the
executive-domain. Whenever executive-domain code wishes to perform an operation that
may require changing memory areas, it requests the appropriate abstract memory area. The
MemoryPolicyresponds by giving a concrete memory area. Fig. 10 shows a table of ab-
stract memory areas that the Ovm executive-domain is aware of. Depending on the choice
of memory management policy, these abstract areas may be linked to different actual areas.
For example, a non-real-time configuration may link all of these areas to the heap. Some
areas, like the repository query area and the scratch pad area, are typically the same.

To make using memory areas in the executive-domain as simple and reusable as possible,
we have created our own memory API for use in the executive-domain and system libraries.
This API trades in safety for increased power by introducing the following features: first,
we streamline the process of entering memory areas; second, we introduce thread-local
scoped memory areas; and third, we make it easy to elide scope checks. These features are
discussed in detail below.

First, we change the way that memory areas are entered. Instead of passing anRunnable
callback to anentermethod, we have methods for directly setting the current area. See
Fig 11 for a code snippet that illustrates this approach.

Not having to allocate a callback whenever a memory area is to be entered reduces the
likelihood of memory leaks. On the other hand, it requires the programmer to follow the
try/finally idiom. We also introduce an explicit call to reset the area. It is up to the user to
decide when this call is made, which further increases the utility of memory areas.

Second, we have thread-local memory areas. If a thread requires a temporary memory

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
Object oldArea = setCurrentArea(area);
try {

... // perform operations inside the area
} finally {

setCurrentArea(oldArea);
area.reset();

}

Fig. 11. Entering a memory are using the Ovm Executive Domain memory area API.

area, it does not need to retrieve one from a pool, or risk using one that another thread
is using. Instead, each thread has memory areas attached to it, so when that thread needs
some temporary memory, it can use its own private area.

Third, scope checks can be elided using a special pragma. This allows parent scopes to
contain pointers into child scopes. Although potentially dangerous, such pointers pose no
problems as long as they are managed with care. As mentioned previously, we have found
numerous cases where eliding scope checks was necessary to make the code work; without
this feature, we would have had to resort to object pools.

3.7 Implementing Priority Inheritance Monitors

The RTSJ enriches the semantics of Java monitors with monitor control policies. The
default policy is the Priority Inheritance Protocol (PIP) [Sha et al. 1990; Locke et al.
1988] and, optionally, implementations of the RTSJ may provide Priority Ceiling Emu-
lation [Goodenough and Sha 1988]. Ovm has built-in support for PIP monitors. In this
section we discuss an implementation approach for the PIP within a real-time Java envi-
ronment. One of the main departures from previous implementations of the basic priority
inheritance protocol, such as [Borger and Rajkumar 1989], is that RTSJ allows threads
to change their base priority dynamically. This feature impacts the implemantion of PIP
monitors as they must accurately reflect any changes in priorities of blocked threads.

3.7.1 Basic Concepts and Definitions.We start by summarizing some of the key con-
cepts of an implementation of PIP:

—The basePriorityof a thread is the priority assigned to the thread by the application
program. In terms of the RTSJ, this is the priority defined in thePriorityParameters
object bound to the realtime thread and which we assume can be changed at any time.

—TheactivePriorityof a thread is its current execution priority as seen by the scheduler.
This is the priority value used to establish execution eligibility and to order the thread on
any system queues that are ordered by priority (such as monitor lock acquisition queues,
and monitor wait-set queues).

—Theownerof a monitor is the thread that currently holds the monitor lock.

—The lockSetof a monitor is the set of all threads blocked trying to acquire that monitor
(ordered by active priority). Thetop of the lock-set is the thread with the highest active
priority.

—The lockSet.topthread bequests its priority to the monitor owner. If the bequested pri-
ority is greater than the owners active priority then the owner inherits the bequested

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

priority as its active priority. ThelockSet.topthread is known as apriority sourcefor the
monitor owner.

—TheownedSetis the set of monitors owned by a thread.
—The inheritanceQueueof a thread is the ordered set of priority sources for that thread.

The top of the inheritance-queue is the thread with the highest active priority.

3.7.2 Properties and Invariants.A correct implementation of PIP monitors must main-
tain the following invariants.

—Invariant 1: ∀ t ∈ threads, t .activePriority ≥ t .basePriority .

—Invariant 2: ∀ t ∈ threads,
t .activePriority = max(t .basePriority , t .inheritanceQueue.top.activePriority).

—Invariant 3: ∀ t ∈ threads,∀ monitor m ∈ t .ownedSet ,
t .inheritanceQueue.contains(m.lockSet .top).

—Invariant 4: a thread can exist in only one lockSet at a time, and thus in only one
inheritance queue.

—Invariant 5: ∀m ∈ monitors,m.owner .activePriority ≥ m.lockSet .top.activePriority .

—Invariant 6: ∀ t ∈ threads, t .ownedSet .size() ≥ t .inheritanceQueue.size().

Furthermore, it will be the cases that threads are started and terminated in consistent
states.

—Property: when a thread t is started:t .ownedSet .size() = 0
∧ t .inhertanceQueue.size() = 0 ∧ t .activePriority = t .basePriority .

—Property: when a thread t terminates:t .ownedSet .size() = 0 ∧
t .inhertanceQueue.size() = 0 ∧ t .activePriority = t .basePriority .

3.7.3 Basic Operations.There are four actions that affect the operation of the priority
inheritance protocol:

(1) A thread blocks trying to acquire a monitor (either directly through entry to a synchro-
nized method or statement, or indirectly when returning from a call toObject.wait())
and so may become a priority source for the owning thread.

(2) A thread moves to the top of the lockSet for a monitor (because the previous top thread
has either acquired the monitor or abandoned its attempt) and so becomes a priority
source for the current owner.

(3) A thread releases a monitor lock (and so loses the priority source from that monitor).
(4) A thread has its priority changed. Depending on the state of the thread this might

cause it to become a priority source, or cease to be a priority source; or simply require
a change to the active priority of the thread for which it is a priority source.

In all cases correct operation simply involves maintaining the invariants that were pre-
viously listed, for all threads. We define two helper functions to express the basic actions
that must occur in each case: maintainPriority and propagatePriority.

MaintainPriority : Causes a thread to check that it’s active priority invariant is met, and if
not to change its active priority so that the invariant is met. An implementation can opti-
mise things by checking for actual changes in active priority.

PropagatePriority: For a threadt this has the following effect:

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

if t blocked acquiring monitor m then
m.lockSet .reposition(t); // ensure the lockSet is correctly ordered
if m.lockSet .top 6= old m.lockSet .top then

m.owner .inheritanceQueue.remove(old m.lockSet .top)
m.owner .inheritanceQueue.insert(m.lockSet .top)
m.owner .maintainPriority()
m.owner .propagatePriority()

else if t = m.lockSet .top then
m.owner .inheritanceQueue.reposition(t)
m.owner .maintainPriority()
m.owner .propogatePriority()

else if t is runnable/running then
reorder ready queue

3.7.3.1 Monitor Acquisition. If a threadt tries to acquire a monitorm and that monitor
already has an owner other thant, thent is placed in the lockSet ofm and the following
occurs:

if t = m.lockSet .top then
m.owner .inheritanceQueue.remove(old m.lockSet .top)
m.owner .inheritanceQueue.insert(t)
m.owner .maintainPriority()
m.owner .propagatePriority()

Whent eventually acquires the monitor then the following happens:

t .inheritanceQueue.insert(m.lockSet .top)
t .maintainPriority()
t .propagatePriority()

3.7.3.2 Monitor Release.When a threadt releases a monitorm, such thatt is no longer
the owner ofm, then the following occurs:

t .inheritanceQueue.remove(m.lockSet .top)
t .maintainPriority()
t .propagatePriority()

3.7.3.3 Priority Change. If a threadt has its priority changed to a valuep then the fol-
lowing occurs:

t .basePriority = p
t .maintainPriority()
t .propagatePriority()

The Ovm framework currently does not provide an implementation of PCE monitors.
In Ovm, it is possible to implement PIP monitors as either fat- or thin-locks [Bacon et al.
1998], the choice is a configuration option of the virtual machine.

4. OVM PERFORMANCE EVALUATION

We have evaluated Ovm on a number of benchmarks and report some of these results here.
All benchmarks in this section were run on an AMD Athlon(TM) XP1900+ running at
1.6GHz, with 1GB of memory. The operating system is Real-time Linux with a kernel
release number of 2.4.7-timesys-3.1.214.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

4.1 Throughput Benchmarks.

We evaluate the raw performance of Ovm on the SpecJVM98 benchmark suite and com-
pare with the Timesys jTime RTSJVM (compiled), and the GCJ compiler. The goal of this
experiment is to provide a performance baseline. We measure two versions of Ovm: one
which is the standard Ovm and the other (Ovm w. bars) including the read and write bar-
riers on memory operation mandated by the RTSJ. jTime, likewise, has read/write barriers
turned on. All three systems are ahead-of-time compiled.

0

1

2

3

co
m

pre
ss

je
ss db

ja
va

c

m
peg

au
dio

m
tr

t
ja

ck

Ovm
Ovm/w bars
GCJ
jTime

5.2 11.5 7.1

Fig. 12. SpecJVM98. (normalized wrt. Ovm)

The results, given in Fig. 12 show that performances of Ovm and GCJ are close. Typi-
cally, Ovm is slightly faster with the exception of mpegaudio where massive slowdown is
due in part to our treatment of floating point numbers, this will be addressed in forthcoming
releases. The figure also illustrates the costs of RTSJ barriers (up to 50%). Now, clearly
SpecJVM is by no means representative of a real-time application, but it gives a worst case
estimate. GCJ did not execute jack successfully, and jTime could not run jess, db, javac
and mpegaudio.

4.2 Startup Latency.

We measure the startup time of Ovm on a 300MHz PPC. Fig. 13 gives the distribution of
the time required to load the virtual machine from disk, perform any initialization and up
to and excluding the first instruction in the user’smain() method. The image used here is
that of PRiSMj (22 MB of data, and 11 MB of code).

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·
Histogram of jan/1e+06

Start-up time in milliseconds

F
re

q
u

e
n

c
y

250 260 270

~

280 290 300

0
1

2
3

4
5

Fig. 13. Ovm Startup Latency.

4.3 Boeing Latency Benchmarks.

Early on in the project Boeing developed a number of latency benchmarks to compare
implementations of the RTSJ [Sharp et al. 2003]. Fig. 14 shows the latency of a number of
basic RTSJ operations and compare to the jTime virtual machine on Timesys Linux. The
figure shows the minimum, average and maximum latencies of 100 runs.

Event Latency: We create an event handler and periodically fire an event in a thread.
We measure latency between the time of firing the event and the time the event handler is
invoked.

Periodic Thread Jitter: We run a single periodic thread with a given period and with no
computation performed. We measure jitter of period starts.

Preemption Latency: We start two threads, a low-priority one and a periodic high-
priority one, which perform no computation. In the low-priority non-periodic thread we
repeatedly get the current time. Once the high-priority thread is scheduled, it gets the
current time. We are interested in measuring the time interval between these times as it
approximates the preemption latency.

Yield Latency: Two threads with the same priority are started. The first one repeatedly
gets the current time and yields. The second thread gets the current time once it is sched-
uled. We measure the interval between the first thread yields and the second thread is
scheduled.

Synchronization Latency: n threads are started and each of them tries in a loop to enter
a synchronized block. In each iteration, we get the owner of the lock and the time of
acquisition. The synchronization latency is measured as the time interval between the time
the previous thread left the synchronized block and the time the next thread entered the
synchronized block.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

2 4 6 8 10 12

0
5

0
1

0
0

1
5

0

1:length(jan1[, 3])

L
a

te
n

c
y
 (

u
s
)

-

-
-

- - -

- - - -

~

- -

-

-

-
- -

-

- -
- - -

-

Ev
en
t

Pe
rio
d

Pr
ee
m
pt

Sy
nc

In
he
rit

Yi
el
d

2 4 6 8 10 12

0
5

0
1

0
0

1
5

0

1:length(jan1[, 3])

L
a

te
n

cy
 (

u
s)

-

-
-

- - -

- - - -

~

- -

-

-

-
- -

-

- -
- - -

-

2 4 6 8 10 12

0
5

0
1

0
0

1
5

0

1:length(jan1[, 3])

L
a

te
n

c
y
 (

u
s
)

-

-
-

- - -

- - - -

~

- -

-

-

-
- -

-

- -
- - -

-

jTime
Ovm

Fig. 14. Boeing RTSJ Latency benchmarks.

Priority Inheritance Latency: We startn lower-priority threads with priorities 1, ...,n,
and we usen different locks. We also start a mid-priority and a high-priority thread. The
lower-priority threads are started in the way that a thread with a priorityi is waiting for a
thread with priorityi−1 to release a lockli. But none of those threads are in fact scheduled,
since they are blocked by mid-priority thread. We measure boost/unboost times.

Overall the Ovm latencies are in line with those observed in the jTime VM running
on Timesys Linux. Preemption latency is much better in Ovm as context switches are
performed within the VM and are lightweight and jTime must call into the OS.

4.4 The effect of poll-checks.

Compiler inserted poll-checks are essential to Ovm’s scheduling infrastructure. Poll-checks
are the only points in the program code where scheduling actions can occur. The benefit
of this approach is that it simplifies the implementation of synchronization primitives. The
downsides are (i) performance overhead, both from the time spent executing the poll-check
and from compiler optimizations impeded by their presence, and (ii) potential increase in
latency. Latency may increase if there is a long span of code without poll-checks. While
the code runs, interrupts received will be deferred. To help developers understand the na-
ture of latencies due to poll-checks, Ovm includes a profiler that produces a distribution of
interrupt-to-poll-check latencies. Fig. 15 includes such a distribution for the PRiSMj 100X
scenario. Other benchmarks exhibit similar behavior. It is easy to see that the current
implementation of poll-checks is unlikely to have an adverse effect on latency.

To estimate the impact of poll-checks on throughput, we run Ovm on SpecJVM98 with
all poll-checks deactivated. See Fig. 16 for percent overheads measured for poll-checks
in the Spec benchmarks. The overheads were computed based on the median of 20 runs
with and without poll checks. All benchmarks exhibit under 10% overhead. Thejavac
benchmark actually runs slightly faster with poll checks activated.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

0 5 10 15 20 25 30
Pollcheck Latency in Microseconds

20

40

60

80

100

st
n
u
o

C

pollcheck histos.nb 1

Printed by Mathematica for Students

Fig. 15. Distribution of poll check latencies for the PRiSMj 100X scenario. Poll-check latency is the time between
an interrupt and a poll-check that services that interrupt.

0% 5% 10% 15% 20%

compress

jess

db

javac

mpegaudio

mtrt

jack

pollcheck histos.nb 1

Printed by Mathematica for Students

Fig. 16. Percent overhead of poll checks in SpecJVM98 benchmarks. In this graph, 0% overhead indicates that
enabling poll checks did not slow down the benchmark.

4.5 Effectiveness of optimizations.

When building an Ovm image for an embedded system, we require developers to provide
all Java sources in advance as well as a list of all reflective methods that may be invoked.
This information is used to by the optimizing compiler to improve code quality. We give the
example of two applications, PRiSMj and RT-Zen (both are described later). Fig. 17 gives
the size of all components that can potentially go into an image: the application source
code, the JDK classes, the source code of the virtual machine and the implementation of
the RTSJ.

The compiler performs a Reaching Types Analysis to discover the call graph of the
application and in the process prune dead methods and dead classes. The result are shown
in Fig. 18. The number of classes loaded refers to the classes that are inspected by the
compiler (the majority of classes are never referenced by the application). The number of
classes used is the number of classes that are determined to be live, i.e. may be accessed
at runtime. The number of methods defined is the sum of all methods of live classes. The

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

LOC Classes Data Code

Boeing PRiSMj 108’004 393 22’944 KB 11’396 KB
UCI RT-Zen 202’820 2447 26’847 KB 12’331 KB
GNU classpath 479’720 1974
Ovm framework 219’889 2618
RTSJ libraries 28’140 268

Fig. 17. Footprint. Lines of code computed overall all Java sources files (w. comments). Data/Code
measure the executable Ovm image for PPC.

number of method used is the subset of those methods which may be invoked. Methods
that are not used need not be compiled.

classes methods call casts
loaded/used defnd / used sites (devirt) (removed)

RTZEN 3266 / 941 20608 / 9408 67514 (89.7%) 5519 (37.7%)
PRiSMj 3446 / 953 13473 / 6616 46564 (89.8%) 73408 (96.9%)

Fig. 18. Impact of compiler optimizations.

Finally, Fig. 18 measures the opportunities for devirtualization and type casts removal.
In Java, every method is virtual by default, we show that in the two applications at hand
90% of call sites can be devirtualized. Type casts (e.g.instanceof) are frequent operation
in Java. The compiler is able to determine that a large portion of them are superfluous and
can be optimized away.

4.6 Application level benchmarking.

RT-Zen is a freely available, open-source middleware component developed at UC Irvine
and written to the RTSJ API’s. The system is about 50,000 lines of code. For this ex-
periment, we use an application which implements a server for a distributed multi-player
action game. The application allows players to register with the server, update location
information, and find the position of all of the other players in the game. RT-Zen has a
pool of worker threads that it uses to serve client requests. In our experiment, we have
implemented a small server for a multi-player interactive game, the application runs with
a low priority and a high priority real-time thread. Fig. 19 reports on the time taken to
process a request.

The jitter for the high priority thread is approximately 7 milliseconds, this is almost
entirely due to interaction between the two threads. Both of them try to acquire a shared
lock and priority inheritance kicks in when the low priority threads cause the high priority
thread to block. When the same benchmark is run without synchronization, as one would
expect, the jitter on the high priority thread disappears.

5. EXPERIENCES IMPLEMENTING THE RTSJ

Each of the real-time programming areas addressed by the RTSJ presents its own imple-
mentation challenges to the VM. Ideally the implementation of different aspects of behav-
ior would be essentially independent, and allow modular composition of system services.
In practice this is not the case and in particular memory management and support for

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

0

5

10

15

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

0

5

10

15

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

R
e
s
p

o
n

s
e
 t

im
e
 [

m
s
]

Frames Frames
Synchronized Preemptible

Low priority
High priority

Figure 6: RT-Zen Results. Comparing the response time for a game server running on top of a
Real-time Java CORBA implementation. There are two thread groups (low and high) handling 300
requests each. The y-axis indicates the time taken by the application code to process the request.
Lower is better.

RTSJ also poses some unusual challenges for the garbage collector. During GC, the bootimage
and scoped memory must be walked to find and update pointers into the heap. But, no-heap
realtime threads may mutate these memory areas while the GC runs. In the worst case, a no-heap
thread may overwrite a pointer into the heap with a pointer into scoped memory. Ovm accounts for
this possibility by updating pointers from the bootimage and scope with a compare and exchange
instruction. The result of the compare and exchange is ignored. If the update failed, at worst, the
garbage collector copied a free object into to-space.

3.5 Benchmarking and Measurements

RT-Zen is a freely available, open-source, middleware component developed at UC Irvine and
written using the Real-time Specification for Java. For this experiment, we use an application
which implements a server for a distributed multi-player action game. The application allows
players to register with the server, update location information, and find the position of all of the
other players in the game. RT-Zen has a pool of worker threads that it uses to serve client requests.
In our experiment, a worker thread has one of two priorities: high or low priority.

We have used Ovm to prototype JVM extensions such as Preemptible Atomic Regions. Pre-
emptible Atomic Regions (PARs) are alternative to priority inheritence: a thread is optimistically
allowed to enter a PAR, but a thread executing within a PAR will be rolled back to the start of
the region if a higher-priority thread becomes runnable. Code within a PAR may alter the heap
in arbitrary ways and appears to execute atomically. The PAR-enabled Ovm logs each write that
executes within an atomic region. We implement this logging using Ovm’s bytecode rewriting and
static analysis framework. We implement logging through program specialization: code that exe-
cutes within an atomic region performs logging unconditionally, while code that executes outside an
atomic region pays no overhead for logging. Because Ovm specializes code based on the program’s
call graph, specialization does not double code size.

16

Fig. 19. RT-Zen Results. Comparing the response time for an application running on top of a RTSJ CORBA
ORB. Two thread groups (low and high) handle 300 requests each. The y-axis indicates the time to process a
request.

NoHeapRealtimeThread objects infects much of the VM design. The following sections
discuss some of the more interesting implementation issues and how we dealt with them.

5.1 Priority Scheduling

Priority scheduling is not enforced by traditional operating systems, which generally em-
ploy time-sharing or time-sliced based preemption models. These models are fair in a gen-
eral sense but unsuitable for real-time systems because of the need to ensure higher priority
threads always run in preference to lower priority ones. Priority preemptive scheduling is
typically provided in commercial real-time operating systems, and may be available as
an option for other operating systems that support the POSIX Real-time Extensions, like
Linux, but often only when executing as the superuser.

While it had been the intent to make Ovm work with a native threading model, the initial
use of the user-level threading model quickly demonstrated how easily real-time scheduling
requirements could be implemented in Ovm independently of the operating system. This
freed Ovm from any dependency on commercial real-time operating systems, or the need
for privileged execution rights (where an errant real-time thread could easily hang an entire
machine and necessitate a hard reboot!). Additionally, the scheduling requirements of the
RTSJ need not match those provided by an OS. For example, they may differ on how a
yielding thread is replaced in the ready queue: the RTSJ says it goes to the tail of the set
of threads with the same priority, while the OS scheduler might place it at the head. If the
VM uses native threads on such a system then it will have to take additional steps to ensure
that the RTSJ execution semantics are adhered to. For Ovm, user-level scheduling allows
us to easily implement any semantics required by the RTSJ.

The use of real-time Ovm on a non-realtime operating system, achieving real-time exe-
cution characteristics, was demonstrated in its use on the payload board of the ScanEagle.
This single-processor embedded computer board ran Ovm as the single non-system pro-
cess, with only minimal operating system services running.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

5.2 Priority Inheritance

The Priority Inheritance Protocol (PIP) is well known in the real-time literature as a means
of bounding priority inversion. It is also an optional component of the POSIX Real-time
Extensions and supported by many commercial real-time operating systems. However,
support for PIP is harder to find on non-real-time operating systems, even those that support
priority scheduling. Further, the POSIX specification for how priority inheritance operates
is unclear on the interaction between priority inheritance and the explicit setting of priority
values, allowing for differences in how a particular implementation behaves. So again, the
use of user-level threading in Ovm allowed us to easily implement the PIP as required by
the RTSJ without any reliance on operating system support.

One reason for delaying the implementation of Protocol Ceiling Emulation is the added
complexity of having to support both PCE and PIP in the same program. Implementation
issues aside, reasoning about programs with mixed protocols seems difficult.

Another question is which of fat- or thin-locks [Bacon et al. 1998] should be the default
in a real-time virtual machine. Thin locks provide much greater throughput but at the cost
of predictability. While the worst case execution time of locking is sensibly the same, it
is conceivable that programs perform very differently from one run to the next. So for the
sake of a simpler performance model, the default synchronization mechanism is based on
fat-locks. Thin-locks remain available for application where higher throughput is required.
As for their space requirements, both kinds of locks require the same data structure. The
difference is that fat-locks are allocated the first time the lock is acquired, while thin-locks
are only allocated on blocking.

5.3 Scoped Memory

5.4 Garbage Collection

The RTSJ does not require real-time garbage collection, so the garbage collector in the VM
can use whatever techniques are normally available. However, the garbage collector can
not be implemented without consideration of the other parts of the memory system and the
existence ofNoHeapRealtimeThread objects.

First, the additional immortal and scoped memory areas must all be considered GC roots
(though there is an optimization to ignore a scope that has only been used byNoHeap-
RealtimeThread objects). Second, the garbage collector (depending on type) has to be
aware that a field that held a reference to a heap object when the GC started, may not
hold a heap reference late in the GC pass, due to the actions of aNoHeapRealtimeThread.
This is particularly an issue for copying collectors that move an object during GC and
then go through and fix up all references to the object. For immortal memory this can be
fixed by using an atomic compare-and-set operation that only updates the reference if it
hasn’t changed (a reference field that exists in immortal memory can only be changed by
a NoHeapRealtimeThread to either contain a reference to an immortal object, or null). For
scoped memory it is a little more complicated. Between the time that the GC sees a heap
reference and goes back to update it, the scope could have been reclaimed and reused. So
the address that previously held a reference may now be a completely different type, but
might coincidentally hold the same value. This can not be detected by using a compare-
and-set operation (and is the commonly known ABA problem). In this case the GC must
be informed that the scope has been reused and should be ignored.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·

5.5 Real-time Scope-aware Class Libraries

The general Java class libraries provided by proprietary virtual machines, or created by
projects such as GNU Classpath (which is used by Ovm), are not written to support real-
time. At the simplest level this often means that they don’t have sufficiently predictable
performance characteristics to be used by real-time, especially hard real-time, threads. An
additional failing, however, is that many classes will cause store check failures if instances
of those classes are used from scoped memory. There are two common programming tech-
niques that typically result in these failures: lazy initialization and dynamic data structures.
Lazy initialization delays the creation of an object until it is actually needed. For example,
if you create aHashMap you can ask it for a set that allows access to all the keys or values
in the map. This set is typically a view into the underlying map and is only created when
asked for. But when it is created the reference is stored so that later requests for the view
simply return the same object and don’t create another one. If the original map is created
in heap or immortal memory, and the set is first asked for when executing within scoped
memory, then the set will be created in scoped memory. The attempt to store a reference
to the scope allocated set into the heap or immortal allocated map, will then fail. Dynamic
data structures grow (and shrink) as needed based on their usage. If a linked list allocates
a node object for each entry added to the list, then adding to an immortal allocated list
from scope memory will require linking an immortal node to a scoped node. This is not
permitted so the attempt will fail.

We must either accept these limitations and work within them in our applications, or else
rewrite libraries to ensure they always change to an allocation context that is compatible
with the main object. Such changes however are detrimental to the performance of non-
real-time code that also uses the libraries; and represent significant development effort.
A third option may be to define a real-time library that contains a subset of the general
library classes, written to be predictable, scope-aware, and perhaps even asynchronously
interruptible.

6. THE PCES EXPERIMENTS

In the design of the test experiments both small scale prototypes and full-scale prototypes
were considered. Small-scale prototypes provide an early indication of the predicted be-
havior of a full-scale system. Unfortunately, costly problems sometimes occur when these
prototypes are extrapolated to large-scale systems. Potential problems include unexpected
increases of execution times and memory utilization. On the other hand, full-scale systems
can require a significant amount of manpower to develop.

To balance these forces, various size scenarios were developed by combining a number
of slightly modified small-scale test scenarios into larger scale scenarios with the aid of
automation tools. This collection of scenarios provided sufficient test coverage for predict-
ing the behavior of a full-scale mission critical embedded system at reduced development
costs. Leveraging technology from the DARPA Model-Based Integration of Embedded
Software (MoBIES) program [Roll 2003], allowed for rapid development of large scale
scenarios. MoBIES program products included a component-based real-time Open Exper-
iment Platform (OEP) and associated development tool set with well-defined XML based
interfaces. For benchmarking purposes, a modified version of a MoBIES Product Scenario
with oscillating modal behavior was selected. This product scenario has been identified as
the “1X” scenario and is illustrated in Fig. 20. The original version provided use of three

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

rate group priority threads (20Hz, 5Hz, and 1Hz), event correlation, and modal behavior.
Larger-scale scenarios were created incrementally by duplicating component classes and

instances from the 1X scenario. For example, a 20X scenario was created by duplicating
the eight application component instances above the Physical Device layer twenty times.
In addition to duplicating component instances, component types were also increased via a
simple copy/renaming approach to also scale the associated code base. The 100X scenario
contains a representative number of components and events in a typical single processor
avionics system, while executing within a representative multi-rate cyclical context, and
is therefore used to evaluate success criteria. Success criteria is based on Boeing’s ex-
perience with mission critical large scale avionics systems. Fig. 21 illustrates the flight
configuration.

6.1 Experiments

Experiments were run on flight hardware used on the ScanEagle UAV: an Embedded Planet
PowerPC 8260 processor running at 300MHz with 256Mb SDRAM and 32 Mb FLASH.
The operating system is Embedded Linux. An illustration of the 1X modal scenario is
shown in Fig. 22. The test results indicated low jitter in the order of 10’s of microsec-
onds and provided the expected behavior as demonstrated previously with the reference
implementation on the desktop.

The Purdue University Ovm implementation was the first Real-Time Java application to
qualify on the flight hardware. Other implementations considered included jTime, which
did not support PPC, and jRate and Flex, but these could not be made ready in time. The
100X scenario test was used for the formal testing. The success criteria was that the vari-
ability in the initiation of periodic processing frames shall not exceed 1% of the associated
period. For example, during the 50 millisecond period, the maximum allowable jitter is

The Boeing Company Program Composition for Embedded Systems II Final Report

A - 3

Larger-scale scenarios were created incrementally by duplicating component
classes and instances from the 1X scenario. For example, a 20X scenario was
created by duplicating the eight application component instances above the
Physical Device layer twenty times as depicted in Figure 2. In addition to
duplicating component instances, component types were also increased via a
simple copy/renaming approach to also scale the associated code base.

Physical
Device Layer

1 Hz: Mode Change

Low Priority

20 Hz; Tactical Steering

High Priority

5 HZ: Steering Point

Medium Priority

tacticalSteering
Modal

navDisplay :
Display

navSteering :
Modal

navSteeringPts:
Passive

navigator:

PushDataSource

pilotControl :
ModeSource

GPS :
Device

OR
Correlation

airframe :
LazyActive

AND

Correlation

Full Channel

Events

8. Push() 15. Push()

12.Push()

6. Push()

7. Push()
18. Set()

19. Set()

11. Push()

14. Push()

10. SetData1()

13. SetData2()

17. Push()

16. Push()

5. Push()

9. Push()

Infrastructure

 Layer
frameController :
FrameController

Full Channel
Events1. Push()

2. Push()
3. Push()

4. Push()

device1 :
Device

device4 :

Device

device2 :

Device

device3 :

Device

Application

 Layer

Figure 1: RTJES Modal 1X Scenario
Fig. 20. The overview of the Boeing PRiSMj 1X scenario.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·

Fig. 21. ScanEagle Flight Product Scenario RTSJ Architecture.

500 microseconds. The jitter measured at approximately 100 microseconds during the 50
millisecond period. This was well within the 1% success criteria. The results are illustrated
in Fig. 22.

7. SCANEAGLE FLIGHT DEMONSTRATION

Ovm was used as the Java Virtual Machine for the Real-Time Java Open Experiment Plat-
form in demonstrations at Chicago in June 2004; St. Louis, for a ground demonstration in
December 2004; and White Sands Missile Range, NM, for the capstone demonstration in
April 2005.

7.1 ScanEagle Flight Product Scenario

The flight product scenario was added to the OEP in order to support the ScanEagle flight
demonstration using a real avionics asset. The ScanEagle using the Ovm was designated
as the Reconnaissance UAV (RUAV). This ScanEagle’s main function was surveillance of
real-time targets during the mockup mission. The flight product scenario was responsible
for providing autonomous auto-routing and health monitoring by (1) communicating with
the flight controls card, (2) computing navigational cues for the flight controls based on
threats and no fly zone data from the ground station, and (3) computing performance mon-
itoring information to be transmitted to the ground station for real-time observation of jitter
and priority processing. Synchronized communication with the flight controls was deemed
as the most important mission critical function. This communication was assigned to high-
est priority and executed at a periodic rate of 20Hz. The navigational cue computation was
deemed mission critical but not at the same level as the flight controls communication. The
navigational cue computation was assigned a medium priority and computed at a periodic
rate of 5Hz. The lowest priority was assigned to the computation of the performance data.
This data was sent to the flight controls in the form of pass through messages and computed

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381

Infrastructure

5Hz

20Hz

1Hz

(b) PRiSMj 100x workload.

-

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381

5Hz

20Hz

1Hz

(a) PRiSMj 1x workload.

Fig. 22. Response times of 100 threads split in three groups (high, medium, low) on a
modal workload. The x-axis shows the number of data frames received by the UAV control,
the y-axis indicates the time taken by by a thread to process the frame in milliseconds. (on
flight hardware)

at a periodic rate of 1Hz. The flight product scenario is illustrated in Fig. 21. The italic
yellow boxes are the RTSJ classes that were used during the demonstration.

A similar flight product scenario was developed using a C++ implementation. The
ScanEagle using C++ was designated as the Tracking UAV (TUAV). This second ScanEa-
gle was responsible for tracking a moving target. For this flight product scenario, the C++
code referenced the TimeSys real-time library functions in order to achieve the real-time
performance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 ·

7.2 ScanEagle Qualification Test

Before the mission computers could be flown, the software and hardware had to pass qual-
ification. Both EP8260’s, one loaded with the RUAV and the other the TUAV, along with
the Serial UDP Bridge, had to pass the test specified by The Insitu Group. Each EP8260
was tested individually.

During February 2005, the on-board mission computer and ground base C2 systems
were integrated with ScanEagle flight controls and ground station. The mission computer
attached to the ScanEagle flight controls board, and the two communicated through a serial
connection. The C2 system connected to the ScanEagle ground station through another
serial connection. The ground station would pass appropriately formatted messages to the
flight controller which would again check the message before passing it on to the mission
computer. The mission computer would communicate with the C2 system by traversing the
same path in the opposite direction and with the flight controls just over the direct serial
connection. The integration effort was spent getting the hardware and software to accept
appropriately formatted messages at the data rates that the information was supplied.

With a fully communicating system, ground qualification testing could commence. In-
situ and Boeing had to demonstrate that adding the mission computer would not interfere
with the flight controls in a way that the ground operator could not reassume control. The
primary concerns were that a mission controller message would corrupt the flight controls
or that the mating of the mission controller board to the flight controls board would cause
a physical problem. To qualify the message traffic, the mission computer was installed
into the hardware-in-the-loop test bed. The test bed was initialized using the ScanEagle
standard operating procedure for pre-flight and take-off. Once the test-bed as in flight, the
mission computer was turned on. Since the flight demonstration script was complete, the
first test was to verify that the message traffic necessary to complete the script would not
cause a problem. After completing that test, the test conductors, Insitu’s head of software
development and head of flight operations, requested a random sequence of messages be
sent. Testing continued with intermixing random messages, expected message sequences,
and turning the board on and off. The test was successfully passed after both test conduc-
tors signed off on the experiment.

With the electronic qualifications complete, the boards were removed from the test bed
and placed in the aircraft that were going to be used for the flight demonstration. One of
the planes was taken out to a test facility for a physical check of the system. After the plane
was subjected to simulated forces in flight, the plane was returned for additional electronic
tests. The whole electronic system was tested to make sure the system could still execute
during the demonstration. After passing both the electronic and physical test, the plane
was qualified for flight tests.

7.3 ScanEagle Flight Test

On February 26, 2005, the Reconnaissance UAV (RUAV) and Tracking UAV (TUAV) were
taken to the Boeing Boardman Test Facility to conduct flight tests. The first plane to fly was
the RUAV. After a ground check of the systems, including the mission computer, the plane
was launched. After the plane reached the preplanned reconnaissance route, the standard
sequence of events was sent to the mission computer. Each step was allowed to complete
before sending the next command. After successfully completing the test, the mission
computer was turned off, and a test was conducted by The Insitu Group for a new part on

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 29

the plane. Once the RUAV landed, the same ground tests were conducted on the TUAV,
and it was launched. The only difficulty experienced during the flight tests was with the
laptop used for the Serial UDP Bridge for the TUAV. The computer acted erratically during
the pre-flight check and was replaced before the launch. In the end, all of the qualification
tests resulted in a smooth, successful flight test.

7.4 Capstone Demonstration

On April 14, 2005, the live PCES Capstone Demonstration was conducted at White Sands
Missile Range (WSMR). The demonstration consisted of a net centric demonstration of
multiple kinds of systems distributed over a wide area, and networked together. Two live
ScanEagles and four simulated ScanEagles with insufficient bandwidth to provide stream-
ing video for all assets were positioned on the north end of the demonstration. The PCES
program developed an end-to-end QoS technology to make optimum use of limited band-
width communications stretching 100 miles across WSMR. The demonstration scenario
started with multiple UAVs in the air in reconnaissance followed by the appearance of
multiple pop up targets being prosecuted by the PCES operations center commander who
has the ability to task UAVs and designate targets for track. Two of the UAVs were live
ScanEagles. The RUAV played the role of an asset that has on-board autonomy support-
ing a variety of reconnaissance modes in support of finding and assessing damage of time
sensitive targets, including support for real-time monitoring of weapon strikes against sur-
face targets. The software on the RUAV hosted Real-Time Java technology from the PCES
program. The other ScanEagle was the TUAV. The TUAV was responsible for tracking a
moving target and deploying a virtual weapon capable of destroying that target.

7.5 Evaluation

This milestone marked the first flight using the RTSJ on an Unmanned Air Vehicle and
received the Java 2005Duke’s Choice Awardfor innovation in Java technology.

The Embedded Planet EP8260 on board mission computer was integrated with ScanEa-
gle flight controls in order to insure the C++ and Real-Time Java software were ready for
flight. During this time, both applications needed similar changes to the flight controls
interface, so the benefits and difficulties of working with each language were apparent.

Converting the OEP code from C++ to Java was fairly straight forward. The RTSJ ex-
tensions mapped well to the fully developed in-house infrastructure features with minor
wrapper modifications. For example, the event channel service was developed with the
underlying RTSJ BoundAsyncEventHandler class and the frame controller was developed
with a periodic NoHeapRealtimeThread. Porting the C++ code to the TimeSys Linux from
VxWorks presented more of a challenge. In order to get acceptable deterministic perfor-
mance, the C++ frame controller had to be modified to use the TimeSys Linux specific
real-time libraries instead of using the standard POSIX libraries. This required some re-
search and debugging to determine this solution.

The development environment associated with the Java code consisted of compiling
bytecodes on a desktop and connecting the desktop directly to the ground station via a
serial connection. On the C++ side, the software required compilation on the desktop,
perform initial unit testing on the desktop, cross compilation for the target hardware, and
final testing on the ground station. These additional steps on the C++ side were due to
byte ordering differences in the development x86 desktop environment and the PowerPC
target platform environment combined with use of proprietary libraries to communicate

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 ·

with the flight controls that prevented global macro solutions. Also important to note that
compiling bytecodes was in the order of 10 times faster than compiling C++ code. Thus
during the majority of the integration, the C++ flight scenario product required more effort
to prototype new functionality.

The C++ development suffered from tool incompatibilities. Developer studio 6.0 was
used for desktop C++ development. Developer studio provides a rich set of development
and debug features. Unfortunately, developer studio is not compatible with the target
TimeSys Linux O/S. In order to generate the target executable, the GNU g++ compiler
was selected. Unexpected compilation and executable errors propagated to the target exe-
cutable due to macro definitions (#DEFINE) not being set properly, missing precompiled
headers, and accidental use of win32 specific libraries. With the Java development, the
Eclipse tool set was used. Eclipse also provides a rich set of development and debug fea-
tures. In contrast, the same Eclipse tool could be used for both the development and target
environment thereby eliminating tool set incompatibility errors.

8. CONCLUSION

Overall our experience implementing and using the Real-time Specification for Java was
positive. The implementation of the virtual machine presented a number of challenges
which were resolved. We uncovered some ambiguities in the Specification which are be-
ing addressed in the upcoming revision of the RTSJ. From the user’s perspective, the RTSJ
extensions mapped well to the infrastructure services already developed on Boeing avion-
ics platforms. Given the same constraints placed on large scale real-time embedded C++
applications, the Ovm running RTSJ classes provided comparable performance. In gen-
eral, the Java language itself offered better portability and productivity over a traditional
language such as C++. The main concern expressed was about the level of maturity of
tools and vendor support.

Acknowledgments. The authors thank Kenn Luecke from Boeing and Chip Jones from
Open Computing, Inc. for collaboration and development of the Boeing OEP. The au-
thors thank James Liang, Krista and Christian Grothoff, Andrey Madan, Gergana Markova,
Jeremy Manson, Krzystof Palacz, Jacques Thomas, Ben Titzer, Bin Xin, Hiroshi Yamauchi
for their contributions to the Ovm framework. We also thank Doug Lea and Bill Pugh for
their feedback and advice, Doug Schmidt and Joe Cross for their continued support.

REFERENCES

BACON, D., KONURU, R., MURTHY, C.,AND SERRANO, M. 1998. Thin locks: Featherweight synchronization
for Java. InSIGPLAN Conference on Programming Language Design and Implementation (PLDI). 258–268.

BEEBEE, JR., W. S.AND RINARD , M. 2001. An implementation of scoped memory for Real-Time Java.Emsoft
- LNCS 2211, 289–305.

BOLLELLA , G., GOSLING, J., BROSGOL, B., DIBBLE , P., FURR, S., AND TURNBULL , M. 2000. The Real-
Time Specification for Java. Addison-Wesley, Reading, MA, USA.

BORGER, M. AND RAJKUMAR , R. 1989. Implementing priority inheritance algorithms in an Ada runtime
system. Tech. Rep. CMU/SEI-89-TR-15, Software Engineering Institute, Carnegie Mellon University. April.

BUYTAERT, D., ARICKX , F., AND VOS, J. 2002. A profiler and compiler for the Wonka Virtual Machine. In
USENIX JVM’02 Work in Progress, San Francisco, CA. USENIX, Berkeley, CA.

CORSARO, A. AND SCHMIDT, D. C. 2002. The design and performance of the jRate Real-Time Java imple-
mentation.Lecture Notes in Computer Science 2519, 900–921.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 31

DVORAK , D., BOLLELLA , G., CANHAM , T., CARSON, V., CHAMPLIN , V., GIOVANNONI , B., INDICTOR, M.,
MEYER, K., MURRAY, A., AND REINHOLTZ, K. 2004. Project Golden Gate: Towards Real-Time Java in
Space Missions. InProceedings of the 7th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004), 12-14 May 2004, Vienna, Austria(12–14). IEEE Computer Society
Press, Silver Spring, MD 20910, USA, 15–22.

GLEIM , U. 2002. JaRTS: A portable implementation of real-time core extensions for Java. InProceedings of
the Java Virtual Machine Research and Technology Symposium (JVM ’02): August 1–2, 2002, San Francisco,
California, US. USENIX, Berkeley, CA, USA.

GOODENOUGH, J. B.AND SHA , L. 1988. The priority ceiling protocol: A method for minimizing the blocking
of high priority Ada tasks.ACM SIGADA Ada Letters 8,7 (Fall), 20–31.

LOCKE, D., SHA , L., RAJKUMAR , R., LEHOCZKY, J.,AND BURNS, G. 1988. Priority inversion and its control:
An experimental investigation.ACM SIGADA Ada Letters 8,7 (Fall), 39–42.

NILSEN, K. 1998. Adding real-time capabilities to Java.Communications of the ACM 41,6 (June), 49–56.
PALACZ , K., BAKER, J., FLACK , C., GROTHOFF, C., YAMAUCHI , H., AND V ITEK , J. 2005. Engineering a

common intermediate representation for the Ovm framework.The Science of Computer Programming 57,3
(September), 357–378.

PALACZ , K. AND V ITEK , J. 2003. Java subtype test in real-time. InProceedings of the European Conference on
Object Oriented Programming (ECOOP03). Lecture Notes in Computer Science. Springer-Verlag, Darmstadt,
Germany, 378–404.

PURDUE UNIVERSITY - S3 LAB. 2005. The Ovm Virtual Machine homepage,http://www.ovmj.org/ .
ROLL , W. 2003. Towards model-based and ccm-based applications for real-time systems. InProceedings of

the 6th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2003),
14-16 May 2003, Hakodate, Hokkaido, Japan. IEEE Computer Society Press, Silver Spring, MD 20910, USA,
75–82.

SHA , L., RAJKUMAR , R.,AND LEHOCZKY, J. P. 1990. Priority inheritance protocols: An approach to real-time
synchronization.IEEE Trans. Comput. 39,9 (Sept.), 1175–1185.

SHARP, D. C. 2001. Real-time distributed object computing: Ready for mission-critical embedded system
applications. InProceeding of the 3rd International Symposium on Distributed Objects and Applications,
DOA 2001, 17-20 September 2001, Rome, Italy. IEEE Computer Society Press, Silver Spring, MD 20910,
USA, 3–4.

SHARP, D. C., PLA , E., LUECKE, K. R., AND II, R. J. H. 2003. Evaluating Real-Time Java for mission-critical
large-scale embedded systems. InProceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2003), May 27-30, 2003, Toronto, Canada. IEEE Computer Society Press,
Silver Spring, MD 20910, USA, 30–36.

SIEBERT, F. 1999. Hard real-time garbage collection in the Jamaica Virtual Machine. InProceedings of the 6th
International Workshop on Real-Time Computing and Applications Symposium (RTCSA ’99), 13-16 December
1999, Hong Kong, China. IEEE Computer Society Press, Silver Spring, MD 20910, USA.

TIMESYS INC. 2003. The jTime Virtual Machine,http://www.timesys.com/ .
TRYGGVESSON, J., MATTSSON, T., AND HEEB, H. 1999. Jbed: Java for real-time systems.Dr. Dobb’s Journal

of Software Tools 24,11 (Nov.), 78, 80, 82–84, 86.

ACM Journal Name, Vol. V, No. N, Month 20YY.

