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Abstract

In order for Unmanned Aerial Vehicles (UAVs) to be able to fly missions cur-

rently performed by manned aircraft, they must be able to conduct in-flight refueling.

Additionally, significant fuel savings can be realized if multiple UAV’s are able to

fly in precise formation and align wingtip vortices. In either case, the precise relative

position between the aircraft must be known to an accuracy of only a few centimeters.

Previous research at the Air Force Institute of Technology culminated in the

development of a relative positioning system for manned aircraft. This thesis presents

the development of the next-generation system designed for small UAV’s. Because

of the stringent size, weight, and power consumption requirements inherent in small

UAV’s, several approaches were taken to maximize efficiency and performance while

simultaneously keeping the system small and lightweight.

At the core of the Differential GPS (DGPS) application presented in this thesis

are three separate tasks which operate asynchronously yet share information when

required. A Kalman filter task operates continuously at a 1 Hertz rate. An ambi-

guity resolution task, utilizing the Least squares AMBiguity Decorrelation Adjust-

ment (LAMBDA) method, is run whenever the floating point ambiguities must be

resolved to their integer values. A high-rate output task, operating at a 20 Hertz

rate, formulates a high-rate, centimeter-level, relative position solution with less than

10 milliseconds of latency. The use of widelane measurements generally resulted in a

2 second convergence time for ambiguity resolution and a 99.9 percent success rate of

selecting the proper ambiguity set. However, in order to minimize the increased er-

rors associated with multipath, the system quickly transitions from widelane mode to

narrowlane mode. The system was tested on the ground in both a static and dynamic

environment. Unfortunately there was inadequate time to conduct flight testing using

radio controlled aircraft to simulate small UAV’s.
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Development of a Low-Latency,

High Data Rate, Differential GPS

Relative Positioning System for

UAV Formation Flight control

I. Introduction

This thesis describes the research effort leading to the development of an instru-

mentation package which combines the use of Differential GPS (DGPS), the

resolution of GPS carrier-phase ambiguities, and Kalman filtering. The primary goal

was to design the system in such a way as to provide real-time, low-latency, 20 Hertz

precise relative position data which is required for close formation control of multiple

Unmanned Aerial Vehicles (UAV’s). Additionally, because the system was designed

for small UAV’s, emphasis was placed on minimizing the size, weight, and power

consumption.

1.1 Background

In the case of formation flight between multiple manned aircraft, the relative

position of the wing aircraft with respect to the lead aircraft is visually determined by

the pilot. This position is then compared to the desired relative position, and flight

control inputs are made to correct any deviations. However, for unmanned flight, the

determination of the relative position must be made via different means. Because of

the accuracy of the navigation solution provided to users of the Global Positioning

System (GPS), one may initially consider it as a possible solution. However, even

with a dual frequency military receiver, the stand-alone accuracy of GPS is on the

order of 3-5 meters [9]. In order for UAV’s to be able to fulfill some of the missions

typically flown by manned aircraft, they must be capable of in-flight refueling (IFR).

Additionally, significant fuel savings can be realized through the drag reduction that

occurs when aircraft fly in close formation and align aircraft vortices [22]. When
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considering potential requirements such as these, the accuracy of 3-5 meters provided

by stand-alone GPS is clearly inadequate. In fact, for multiple small UAV’s flying in

close formation, the required accuracy of the relative position vector is on the order

of a few centimeters!

Many of the errors inherent to stand-alone GPS do not change significantly

over relatively short baselines. As such, numerous techniques have been developed

that utilize Differential GPS to greatly improve performance by using a reference

receiver, whose position is known, thereby reducing or eliminating many of these

sources of error. When using DGPS, receiver clock error and satellite clock error are

completely eliminated, and satellite position error, ionospheric error, and tropospheric

error are significantly reduced. It must be noted that these benefits do come at a cost.

Both multipath and measurement noise errors are increased when utilizing DGPS.

However, even with the slight degradation due to multipath and noise, DGPS still

offers significant improvements to overall accuracy [13].

The two types of measurements that can be used by DGPS are code mea-

surements and carrier-phase measurements. Code measurements are derived from

the pseudoranges between the GPS antenna and the respective satellites. In contrast,

carrier-phase measurements are obtained by keeping track of the accumulated Doppler

of the GPS carrier signal. Since the wavelength of the C/A code is approximately 290

meters, compared to a wavelength of approximately 0.2 meters for the carrier-phase,

the code measurements are not nearly as precise as the carrier-phase measurements.

However, code measurements are known absolutely. One merely has to take the time

difference between the transmit time and the receive time and multiply by the speed

of light to calculate the pseudorange. In contrast, carrier-phase measurements are

relative measurements. This is because the number of carrier cycles at the beginning

of accumulation is not known and is frequently referred to as the carrier-phase ambi-

guity. In order to take full advantage of the precision of carrier-phase measurements,

the phase ambiguities must be resolved to their integer values. It should be noted

that both code measurements and carrier-phase measurements are used to determine
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distances. However, the difference between the two can be loosely conceptualized as

follows: 1) Using code measurements is analogous to using a traditional tape measure

that has labelled tick marks, but a large distance between each tick (290 meters!), 2)

Using carrier-phase measurements is analogous to using a tape measure whose tick

marks are very close together (0.2 meters), but lack the labels.

A frequently utilized method of expressing GPS accuracy is through the use of

Distance Root Mean Squared (DRMS) values which represent the two dimensional

horizontal accuracy. The DRMS value is defined as the square root of the average

of the square errors that exist in the horizontal plane. A summary of the expected

accuracy of several modes of GPS is presented in Table 1.1 [16]. The accuracy obtained

through the use of precise carrier-phase DGPS is readily apparent when compared to

other modes of operation.

Table 1.1: Typical GPS Accuracy [16]

Horizontal
Mode Accuracy

(DRMS)

Stand-Alone
Civilian receiver, SA on (historical) 100 m
Civilian receiver, SA off (current) 5 - 8 m
Military receiver, (dual frequency) 3 - 5 m

Differential

Code differential 1 - 3 m
Carrier-smoothed code differential 0.1 - 1 m
Precise carrier-phase (kinematic) 1 - 2 cm
Precise carrier-phase (static) 1 - 2 mm

In order to provide the most precise navigation solution possible, particularly

in a dynamic environment, a method must be utilized to combine the large number

of individual measurements into a meaningful output. One means of combining mea-

surements that is quite common in navigation algorithms is the use of a Kalman filter.

Developed by R.E. Kalman in 1960, the filter is a recursive solution to the discrete-

data linear filtering problem [21]. Through the use of mathematical equations, an

extremely efficient means is provided to allow the estimation of the state of a system

while minimizing errors.
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1.2 Problem Definition

The objective behind the research presented in this thesis was to develop an in-

strumentation package that combines the use of DGPS, the resolution of carrier-phase

ambiguities, and Kalman filtering to compute the precise relative position between

two small UAV’s flying in close formation. In order to ensure success, the system was

required to be able to process real time data from two GPS receivers at a rate of 20

Hertz. Additionally, because the GPS receivers were physically located in different

UAV’s, the data from the lead aircraft had to be transmitted to the wing aircraft

by means of a wireless serial data link. Finally, since the goal involved small UAV’s,

a key objective was to maximize performance while simultaneously minimizing the

overall size, weight, and power consumption of the system. Figure 1.1 depicts the

overall system architecture used during development and testing.

Lead Aircraft:

• GPS Receiver / Antenna

• Serial Data Link (transmitter)

• Power Supply

Trail Aircraft:

• Central Processor

• GPS Receiver / Antenna

• Serial Data Link (receiver)

• Power Supply

RF Data Link transmission

Figure 1.1: System Architecture
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1.3 Related Research

Calculating the precise relative position between two manned aircraft is not a

new concept. In 1994, research conducted by Lachapelle, et. al. [7] utilized a pair of

U.S. Navy P-3 Orion aircraft. Each aircraft was configured with a pair of NovAtel

GPS receivers. One antenna was positioned on the fuselage with the second antenna

positioned approximately 20 meters aft on the tail boom. Several of the findings are

particularly interesting. First, it was determined that it was possible to detect length

variations between the front and rear antenna of each aircraft as small as 1-2 cm. This

variation in length, caused by temperature variations, could only be detected after the

GPS carrier-phase ambiguities were resolved. Second, because the GPS receivers were

single frequency (L1 only), constraint equations were used to simplify the resolution

of GPS carrier-phase ambiguities. The constraint equations used were the known

distances between the front and rear antennas on each respective aircraft. Finally,

during flight tests it was determined that the accuracy of the three dimensional relative

position vector between the two aircraft was also on the centimeter level.

The system presented in this thesis utilizes DGPS. However, because each UAV

contains only a single GPS receiver, it does not use constraint equations. Instead, dual

frequency receivers are used to simplify the resolution of carrier-phase ambiguities.

In 2000, Williamson conducted research on real time, high accuracy, relative

state estimation for multiple vehicle systems. In addition to the GPS, wireless com-

munication, and computer support, Williamson’s system included an inertial measure-

ment unit (IMU). The results obtained included a relative range estimation error of

less than 5 cm, relative roll and pitch less than 0.2 degrees, and relative yaw less than

0.7 degrees. Of note, the system was tested on F-18’s at the NASA Dryden Flight

Research Center. It was determined that the drag reduction obtained by maintaining

close formation and aligning aircraft vortices was approximately 15% [22].

Because of the desire to minimize size, weight, and power consumption for

incorporation into small UAV’s, the system presented in this thesis does not include
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an IMU. However, the output of the system is 20 Hertz which is double the 10 Hertz

output obtained in the UCLA research by Williamson.

Research conducted by Spinelli [18] at the Air Force Institute of Technology

(AFIT) demonstrated the feasibility of a Real Time Kinetic (RTK) DGPS precise

relative positioning system for formation flight between manned aircraft. The sys-

tem utilized a Javad JNS100 GPS receiver in each aircraft. Although these receivers

were single channel, they were selected because they were capable of providing raw

GPS measurements at a 100 Hertz rate. An extended Kalman filter was utilized

to provide an approximate relative position and a floating point carrier-phase am-

biguity estimate. These floating point ambiguities were then fed into an ambiguity

resolution routine utilizing the LAMBDA method. A bank of 50 possible ambiguity

sets were stored for use in the Multiple Model Adaptive Estimator (MMAE) filters

which provide a weighted relative position solution. Because dual frequency mea-

surements were not available, the system required a two minute convergence period

to adequately determine the carrier-phase ambiguities. Although the next generation

system described in this thesis utilizes dual frequency GPS receivers, and does not use

MMAE filters, the remainder of the system is similar in functionality to the system

developed by Spinelli. As such, several of his findings worthy of discussion. First,

although the research involved single frequency GPS receivers, it was determined that

dual frequency GPS receivers are more advantageous. The computational overhead

involved in terms of initialization is drastically reduced when both L1 and L2 signals

are available. Second, the serial data link used in the research was determined to be

incapable of transmitting the necessary data at a 100 Hz rate. Because most flight

control algorithms operate at a 100 Hertz rate, a smoothing algorithm will have to

be incorporated if the precise relative position is only calculated at a 20 Hertz rate.

Third, it was determined that the Windows operating system was unusable for RTK

algorithms operating at a 20 Hertz rate. This is due to the numerous processes that

are inherently running in the background which cannot be easily de-prioritized. As

such, development was conducted in a UNIX environment. Finally, the two aircraft
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used for testing were manned aircraft. This resulted in a readily available power

supply and very few size and weight restrictions.

1.4 Assumptions

As a result of the findings mentioned above, several key assumptions were made

at the beginning of the current research effort. It was assumed that both GPS re-

ceivers would be capable of providing dual frequency measurements. The process of

resolving carrier-phase ambiguities is significantly more time consuming if dual fre-

quency measurements are not available. Additionally, even though flight control logic

generally operates at a 100 Hertz rate, the decision was made to use GPS receivers

that had a maximum output rate of only 20 Hertz. This decision was made because of

the inherent limitations of baud rate when using a wireless serial data link. It is there-

fore assumed that a time averaging method will be employed to smooth the 20 Hertz

output prior to it being processed by an autopilot operating at 100 Hertz. Lastly,

because of the assumption that Windows would be unusable in a RTK environment,

development took place in a Unix / C++ environment.

1.5 Methodology

The first stage of the research focused on gaining an understanding of the pro-

cess of calculating the precise position from raw GPS code and carrier-phase mea-

surements. The second stage research involved additional software development to

fully understand the added complexity that occurs when data has to be processed

in real-time as opposed to using post-processed data. The next stage in the spiral

development cycle involved transporting the software processes from a Windows XP /

MATLAB environment to a Linux / C++ environment. This transition to UNIX was

made because previously conducted research indicated that Windows was not suitable

for real-time processing at a 20 Hertz rate. The final stage involved optimizing the

hardware configuration and conducting both static and dynamic ground tests.

1-7



1.6 Thesis Overview

The material in Chapter 2 provides the theoretical background necessary to fully

understand the topics in later chapters. Primary topics discussed include general GPS

theory, GPS carrier-phase ambiguity resolution, and Kalman filtering. Additionally,

a description of the hardware components utilized during development and testing is

provided. Chapter 3 describes the development cycle of the instrumentation package.

Results of both static and dynamic ground tests are presented in Chapter 4. Unfor-

tunately, time constraints did not allow for the completion of dynamic flight tests.

Chapter 5 summarizes the results and provides some recommendations for future

research efforts in this area.
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II. Background

2.1 Overview

This chapter describes the theoretical background for the material presented in

later chapters. The first section provides an overview of general GPS theory. A

more detailed discussion on the resolution of carrier-phase ambiguities is provided in

the second section. The third section describes the fundamentals of Kalman filtering.

The chapter concludes with a description of the hardware components utilized during

the development and testing of the instrumentation package.

2.2 General GPS Theory

The topic of GPS is extremely broad in nature and several excellent references

[9,13,14] are available depending on one’s specific area of interest. However, the topics

discussed in this section are limited in scope to those which must be understood prior

to reading the material in subsequent chapters.

2.2.1 Basic Principles. For thousands of years, man relied upon the natural

stars and angular measurements to be able to compute his position. In a very general

sense, given three angular measurements and an almanac which provides a star’s

position at a given time, one can triangulate their position relatively easily. However,

the ability to compute this position is predicated upon one’s ability to have a clear

view of the stars. This obviously rules out navigation solutions during daylight and/or

inclement weather.

With the advent of GPS, the use of natural stars for navigation was replaced

by a satellite based radio navigation system thereby providing a means to navigate at

anytime in virtually any weather condition. A man-made constellation was created

which consists of at least 24 Satellite Vehicles (SVs) placed in six orbital planes (4

SVs in each orbital plane). For redundancy, the number of SVs in orbit at any given

time is usually higher, but never exceeds 32.
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A key difference between GPS and the use of the natural stars is that GPS does

not utilize angular measurements to compute a navigation solution via triangulation.

Instead, GPS uses the distances between the SVs and the GPS receiver to compute

a navigation solution via trilateration. This is because it is much easier to precisely

determine the distance between the SV and the GPS receiver than it is to determine

the precise bearing and elevation of arrival of the incoming signal.

In theory, if every GPS receiver contained an atomic clock that was perfectly

synchronized to the atomic clocks onboard the SVs, one would only need three SVs

to be able to achieve a 3-D navigation solution. However, to avoid such a stringent

requirement, a minimum of four SVs must be tracked in order to solve for the four

unknowns of position (X,Y,Z components) and receiver clock error. This allows GPS

receivers to be much more affordable by allowing the use of an inexpensive quartz

clock instead of an atomic clock. Since the receiver clock error will be consistent for

all simultaneous measurements in a receiver, it can be estimated, just like the three

components of position, given a minimum of four visible SVs.

Thus, in order to compute a navigation solution through the use of GPS, all

that is required, from the user’s perspective, is a GPS receiver/antenna combination

that has a clear line of sight to at least 4 SVs. By calculating the distances between

the receiver and each respective SV, the unknowns of position (X,Y,Z components)

and clock error can be simultaneously determined.

2.2.2 GPS Measurements. The remainder of this section follows Bouska

in both form and content [2]. The GPS ranging signal is simultaneously broadcast

on two frequencies. These frequencies are referred to as L1 (1575.42 MHz) and L2

(1227.60 MHz). Although each of these two frequencies are capable of having two

simultaneous modulations, referred to as phase quadrature, L1 is currently the only

frequency with two modulations. The first modulation, referred to as C/A (Coarse

Acquisition) Code, consists of a short PRN code broadcast that has a chipping rate of

1.023 MHz. As the C/A Code repeats roughly every millisecond, it is relatively easy to
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lock onto. The C/A Code is used primarily by civilian users and is always broadcast

in the clear (not encrypted). The second modulation, referred to as Precision (P)

Code, consists of a much longer PRN code that has a much faster chipping rate of

10.23 MHz. Because the P Code repeats roughly once a week, GPS receivers generally

acquire the C/A code first and then lock onto the P code. The P Code is intended to

be exclusively used by the military and is therefore encrypted. Both L1 and L2 are

capable of transmitting C/A code and P code simultaneously.

Regardless of whether L1 C/A code, L1 P code, or L2 P code are selected, there

are two types of measurements that can be used to determine the distance between the

GPS receiver and the SV. These are referred to as Code measurements and Carrier-

Phase measurements. Both types of measurements provide range information. The

difference between the two lies in the comparison between precision and accuracy.

2.2.2.1 Code Measurements. Because the wavelength of the C/A

code is approximately 290 meters, compared to only 0.2 meters for the carrier-phase

signal, the resulting code measurements are not as precise as the carrier-phase mea-

surements. However, the range measurements obtained are known absolutely and can

be expressed in meters. The pseudorange is nothing more than the time difference

between transmit time and receive time, multiplied by the speed of light. In contrast,

the carrier-phase measurements, discussed in the next section, are expressed in cycles

and contain an ambiguity term that must be determined before the measurements

can be used.

The pseudorange measurement (in meters) can be expressed as:

ρ = r + c(δtr − δtsv) + T + I + mρ + vρ (2.1)

where

ρ ≡ GPS pseudorange measurement (meters)

r ≡ actual range from receiver to satellite (meters)
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c ≡ speed of light (meters / second)

δtr ≡ receiver clock error (seconds)

δtsv ≡ satellite clock error (seconds)

T ≡ tropospheric error (meters)

I ≡ ionospheric error (meters)

mρ ≡ multipath error of pseudorange measurement (meters)

vρ ≡ noise error of pseudorange measurement (meters)

2.2.2.2 Carrier-Phase Measurements. Carrier-phase measurements

are extremely precise but ambiguous. This is because the wavelength of the carrier-

phase signal is approximately 0.2 meters compared to the wavelength of the C/A

code which is approximately 290 meters. However, carrier-phase measurements are

not known absolutely. Instead, they are ambiguous in nature and are expressed in

cycles. The receiver can keep track of the carrier-phase shift quite easily. However,

it does not know a priori the number of integer cycles that were present at the time

the accumulation began. This is referred to as the carrier-phase ambiguity. In order

for carrier-phase measurements to be both precise and accurate, this ambiguity must

be resolved to its actual integer value using one of several methods that have been

developed over the years. A more detailed description of GPS carrier-phase ambiguity

resolution is provided later in this chapter.

The carrier-phase measurement (in cycles) is markedly similar to the preceding

equation for pseudorange.

φ = λ−1(r + c(δtr − δtsv) + T − I + mφ + vφ) + N (2.2)

where

φ ≡ GPS carrier-phase measurement (cycles)

λ ≡ carrier-phase wavelength (meters / cycle)
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mφ ≡ multipath error of carrier-phase measurement (meters)

vφ ≡ noise error of carrier-phase measurement (meters)

N ≡ carrier-phase integer ambiguity (cycles)

The remaining terms in the above equation are as defined in Equation (2.1). It

should be noted that the signs of the ionospheric error terms are reversed between

the two equations. This is due to a phenomena known as code-carrier divergence

in which the ionosphere delays the pseudorange measurement while advancing the

carrier-phase measurement.

The last term in Equation (2.2) represents the carrier-phase integer ambiguity

and will be discussed in much more detail in the next section. However, for the time

being, one can look at this term as an initially unknown bias that is added to each

carrier-phase measurement [15]. This is because the GPS receiver can only track the

accumulated doppler beginning from an initial time epoch and has no way of knowing

the number of cycles between the satellite and the receiver at the instant tracking

began.

2.2.3 Single Differencing. By computing the measurement differences be-

tween two receivers and a common satellite, the satellite clock error (δtsv) can be

eliminated and the atmospheric errors (T and I) can be reduced. Figure 2.1 is used

to demonstrate the calculation of a single-difference carrier-phase measurement. In

the discussions to follow, superscripts are used to represent the satellite and sub-

scripts are used to represent the receiver. For example ρk
A is the pseudorange between

satellite k and receiver A.

The single-difference carrier-phase measurement between two receivers and a

common SV is defined as:

∆φk
AB = φk

A − φk
B (2.3)
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where

φk
A ≡ Phase measurement between receiver A and satellite k

φk
B ≡ Phase measurement between receiver B and satellite k

The cancellation of the SV clock error can be seen by substituting Equation (2.2) into

Equation (2.3) as follows:

∆φk
AB = (λ−1(rk

A + c(δtrA
− δtksv) + T k

A − Ik
A + mk

φA
+ vk

φA
) + Nk

A)

−(λ−1(rk
B + c(δtrB

− δtksv) + T k
B − Ik

B + mk
φB

+ vk
φB

) + Nk
B)

(2.4)

k

A B

Figure 2.1: Single-Difference Measurement: Two receivers and one SV
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Combining like terms and simplifying yields the following:

∆φk
AB = λ−1(∆rk

AB + c∆δtrAB
+ ∆T k

AB − ∆Ik
AB + ∆mk

φAφB
+ vk

φAφB
) + ∆Nk

AB (2.5)

The last term in Equation (2.5), (∆Nk
AB), is referred to as the single-difference carrier-

phase ambiguity.

2.2.4 Double Differencing. A double-difference measurement is nothing

more than the difference between two single-difference measurements. The utility of

such a measurement becomes apparent when one forms a single-difference between a

satellite and a pair of receivers (as discussed in the preceding section) and another

single-difference between a receiver and a pair of satellites. The first single-difference

eliminates the receiver clock error while the second single-difference eliminates the

satellite clock error. The newly formed double-difference effectively eliminates both

satellite clock error and receiver clock error. Figure 2.2 is used to demonstrate the

calculation of a double-difference carrier-phase measurement.

Using the same notation as in the single-difference case, the double-difference

carrier-phase measurement is defined as follows:

∆∇φjk
AB = ∆φj

AB − ∆φk
AB (2.6)

The cancellation of the receiver clock error can be seen by substituting Equation (2.5)

into Equation (2.6) as follows:

∆∇φjk
AB = λ−1(∆rj

AB + c∆δtrAB
+ ∆T j

AB − ∆Ij
AB + ∆mj

φAφB
+ vj

φAφB
) + ∆N j

AB

−λ−1(∆rk
AB + c∆δtrAB

+ ∆T k
AB − ∆Ik

AB + ∆mk
φAφB

+ vk
φAφB

) + ∆Nk
AB

(2.7)
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j

A B

k

Figure 2.2: Double-Difference Measurement: Two receivers and two SVs

Combining like terms and simplifying yields:

∆∇φjk
AB = λ−1(∆∇rjk

AB + ∆∇T jk
AB − ∆∇Ijk

AB + ∆∇mjk
AB + ∆∇vjk

AB) + ∆∇N jk
AB (2.8)

The last term in Equation (2.8), ∆∇N jk
AB, is referred to as the double-difference

carrier-phase ambiguity.

Of note, although the preceding discussion was for single and double-difference

carrier-phase measurements, the same methodology can be utilized to calculate single

and double-difference code measurements.

2.2.5 Virtual Measurements. Because the GPS signal is transmitted on

two different frequencies, it is possible to use linear combinations of the raw mea-

surements to formulate new measurements. The most common linear combination

utilized in DGPS applications is frequently referred to as widelane. For carrier-phase

measurements, the new widelane measurement is defined as follows:

φWL ≡ φL1 − φL2 (2.9)
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There are several advantages to using widelane measurements. The wavelength of the

widelane measurements is roughly 86.19 cm compared to 19.03 cm for L1 and 24.42

cm for L2. The longer wavelength results in a smaller search space and greatly aids in

the carrier-phase ambiguity resolution which is further discussed in the next section.

Another linear combination utilized in DGPS applications is frequently referred

to as narrowlane. For carrier-phase measurements, the new narrowlane measurement

is defined as follows:

φNL = φL1 + φL2 (2.10)

The advantage of using narrowlane, as the name implies, is that the shorter wavelength

(approximately 10 cm) results in higher precision. However, because carrier-phase

ambiguity is much more difficult in narrowlane, DGPS applications generally start

with widelane measurements, transition to single frequency measurements, and then

transition to narrowlane measurements.

2.3 Carrier-Phase Ambiguity Resolution

To obtain the most precise navigation solution possible, the carrier-phase am-

biguity terms must be resolved to their integer values. Numerous methods have been

developed over the years to perform this ambiguity resolution. Discussion in this

section is limited in scope to the method utilized in the development of the system

presented in this thesis.

2.3.1 Basic Principles. Although there are numerous techniques to perform

ambiguity resolution, the majority of the algorithms perform two basic tasks. First,

a determination is made regarding the ambiguity search space. This involves creating

a number of possible ambiguity sets to be evaluated. The first step is critical to

the success of the algorithm. If the collection of ambiguity sets is too small then

it may not contain the correct set. However, if it is too large, then it becomes

computationally difficult to select the proper set. Once the ambiguity search space
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has been determined, the second task is to select the correct ambiguity set and discard

the rest.

2.3.2 The LAMBDA Method. One of the methods developed to resolve

carrier-phase ambiguities to their integer values is the Least-squares AMBiguity Decor-

relation Adjustment (LAMBDA) method. Developed by Teunissen, Jonge, and Tiberius

[5], the algorithm utilizes a two step process to determine the integer ambiguity values.

As the name implies, the first step decorrelates the ambiguities through the use of a

Z-transformation. This greatly reduces the size of the ambiguity search space while

ensuring the correct solution is still included in the set of possibilities. The second

step solves the integer ambiguities by performing a discrete search of the ellipsoidal

search space generated by the Z-transformation. The LAMBDA method provides

an extremely efficient way of determining the correct ambiguity set. On a relatively

slow computer such as a 486-66 MHz PC, the complete process of performing the

Z-transformation and determining the correct ambiguity set typically takes less than

30 ms for a baseline of 12 ambiguities [5].

Source code is openly available through Delft University in both MATLAB and

FORTRAN formats [6]. The system presented in this thesis utilizes a C++ imple-

mentation of the LAMBDA method, designed by the author, which closely follows

the MATLAB code mentioned above.

As discussed by Teunissen [19], the first step in the implementation of the

LAMBDA method is to perform a Z-transformation. In general, the ambiguity esti-

mates are highly correlated resulting in a covariance matrix where the diagonal terms

are not significantly larger than the off-diagonal terms. This condition makes the

ambiguity search more difficult. The goal of the Z-transformation is to decorrelate

the original ambiguities which makes the search more efficient. The original double-

difference carrier-phase ambiguities can be transformed as follows:

z = ZTa (2.11)
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where

z ≡ transformed ambiguity vector

ZT
≡ Transpose of Z-transformation matrix

a ≡ original ambiguity vector

Similarly, the least-squares estimate of the double-difference carrier-phase ambigu-

ities can be transformed as follows:

ẑ = ZTâ (2.12)

where

ẑ ≡ transformed ambiguity estimate

â ≡ original ambiguity estimate

Finally, the double-difference carrier-phase covariance matrix can be transformed as

follows:

Qẑ = ZTQâZ (2.13)

where

Qẑ ≡ transformed covariance matrix

Qâ ≡ original covariance matrix

It is important to note that the Z-transformation matrix is required to be volume

preserving [19]. Additionally, it must composed entirely of integer numbers and it

must reduce the product of ambiguity variances.

An example of the transformation of the covariance matrix is provided below

[17]:
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Qâ =











6.290 5.978 0.544

5.978 6.292 2.340

0.544 2.340 6.288











(2.14)

ZT =











1 −1 0

−2 3 −1

3 −3 1











(2.15)

Substituting Equation (2.14) and Equation (2.15) into Equation (2.13) yields the

following:

Qẑ =











0.626 0.230 0.082

0.230 4.476 0.334

0.082 0.334 1.146











(2.16)

One can see quite easily that the covariance matrix in Equation (2.16) is significantly

more de-correlated than the covariance matrix in Equation (2.14).

For additional information regarding the LAMBDA method, the reader is re-

ferred to several excellent sources of information [5, 6, 19].

2.4 Kalman Filtering

Introduced in 1960 [21], the Kalman filter has frequently been utilized in the

field of navigation as a means to smooth out the inherently noisy nature of position

related measurements. Zarchan and Musoff [23], as well as Maybeck [8], provide an

excellent description of the fundamentals of Kalman filtering along with the associated

mathematical details necessary for implementation. This section, is limited in scope

to those aspects of the Kalman filter that must be understood prior to the discussions

in following chapters.
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2.4.1 Basic Principles. In essence, the Kalman filter is used as a means

to provide an estimation of the state of a system. By comparing the current state

estimate, which is based on all previous measurements, with the noisy measurement

data, the filter attempts to provide the most accurate state estimate possible. In order

to utilize a Kalman filter, there are two criteria that must be met. First, the system

to be estimated must be described by a linear model. Second, all noise processes

must be zero-mean, white-Gaussian in nature. If one, or both, of these conditions are

not met, the performance of the filter will be adversely impacted. The Kalman filter

performs two basic operations [21]. First, the time update, also known as prediction,

projects the current state and error covariance estimates forward in time to obtain

the estimates for the next time epoch. Second, the measurement update, also known

as the correction, is responsible for comparing the estimated measurement with the

actual measurement and updating the state to achieve a more precise estimate for the

next time epoch.

2.4.2 Kalman Filter Equations. In order to utilize a Kalman filter to perform

state estimation, the state of the system may be described in the following continuous

state-space form:

ẋ = Fx + Gu + w (2.17)

where

x is a column vector containing the n states of the system (dimensions n x 1).

F is the system dynamics matrix (dimensions n x n).

G is the control input matrix (dimensions n x r).

u is the control vector (dimensions r x 1).

w is a white-noise process (dimensions n x 1)

Of note, for the research presented in this thesis, there is no control input. The
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G matrix is included here for completeness only. Since it is zero, it will be left out of

all future equations.

The measurements must be linearly related to the states as follows:

z = Hx + v (2.18)

where

z is the measurement vector.

H is the measurement matrix.

v is the white measurement noise.

Because the GPS measurements are not continuous in nature, and occur at discrete

time intervals, the preceding equations are normally converted to a discrete-time case.

To do so, the fundamental matrix (also referred to as the transition matrix), Φ, is

computed as:

Φ(Ts) ≡ eFTs (2.19)

where

Ts is the measurement sampling period.
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The discrete state vector time update (prediction) is then computed as follows:

xk+1 = Φkxk (2.20)

where

xk+1 is the state vector at time k+1

Φk is the fundamental matrix

xk is the state vector at time k

Likewise, the state covariance matrix time update (prediction) is computed as fol-

lows:

Pk+1 = ΦkPkΦ
T
k + Qd (2.21)

where

Pk+1 is the state covariance at time k+1

Pk is the state covariance at time k

Qd is the discrete noise covariance

There are two different methods that can be utilized to model the noise in the system.

The first, known as the random walk, is used to represent a discrete stochastic process

in which there is no predisposition for the process to tend towards a given direction

and the covariance grows in an unbounded manner. In contrast, the second method,

known as the Gauss-Markov process [8], is used to represent a discrete stochastic

process in which the covariance is bounded over time. As discussed in Chapter 4, the

system presented in this thesis utilizes both of these methods.

The discrete measurement vector zk is modeled as follows:

zk = Hxk + vk (2.22)
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where

H is the measurement matrix.

vk is discrete white measurement noise.

Before the discrete measurement vector can be used to update the state vector and

covariance matrix, a Kalman gain matrix must be computed as follows:

Kk = PkH
T(HPkH

T + R)−1 (2.23)

where

Kk is the Kalman gain matrix at time k.

Pk is the state vector covariance matrix at time k.

H is the measurement matrix.

R is the measurement noise covariance matrix.

After the new measurements are received, the measurement update (correction) is

applied and the new discrete state vector is computed as follows:

xk+1 = xk + Kk(zk − Hxk) (2.24)

where

xk+1 is the state vector at time k+1.

xk is the state vector at time k.

Kk is the Kalman gain matrix at time k.

zk is the measurement at time k.

H is the measurement matrix k.
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Similarly, the measurement update (correction) results in a new discrete state co-

variance matrix as follows:

Pk+1 = Pk − KkHPk (2.25)

Finally, it must be noted that the Kalman filter requires initial values for both

the state vector and the state covariance matrix. Discussions relating to filter ini-

tialization will be provided in Chapter 3. For a more in-depth discussion of Kalman

filtering, the reader is referred to several excellent sources of information [8, 21,23].

2.5 Hardware Components

The hardware components for the instrumentation package were specifically

chosen with the objective of minimizing size, weight, and power consumption require-

ments. The major components will now be briefly discussed.

2.5.1 GPS Receiver. The GPS cards selected for use in the instrumentation

package were NovAtel OEM4-G2L’s which are depicted in Figure 2.3 [11].

Figure 2.3: NovAtel OEM4-G2L GPS Receiver Card [11]
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The OEM4-G2L GPS receiver cards are capable of providing dual frequency,

raw GPS measurements at a 20 Hertz rate. Additional features which support the

requirements to minimize size, weight, and power consumption are shown in Table

2.1.

Table 2.1: NovAtel OEM4-G2L Specifications [11]
size 6 cm x 10 cm x 1.6 cm
weight 56 grams
typical power consumption 1.6 Watts

Of note, the OEM4-G2L’s are 40% smaller than the OEM4-G2’s and consume 15%

less power.

The NovAtel OEM4-G2L’s provide measurements and data in the form of logs.

Three separate logs were utilized to provide input to the processing algorithm dis-

cussed in the next chapter. The Best Position log (BESTPOS) provides latitude, lon-

gitude, and height above sea-level. The Decoded GPS Ephemerides log (GPSEPHEM)

provides a set of GPS ephemeris parameters which is required to determine the po-

sition and orbital information for each SV. The Compressed version of the Range

log (RANGECMP) provides raw GPS pseudoranges and carrier-phase measurements.

Additionally, the RANGECMP log provides the signal lock time which can be used

for cycle slip detection. Cycle slips are discussed in Chapter 3.

2.5.2 Antenna. The GPS antennas selected for initial ground testing were

Ashtech 700936-E, dual frequency, chokering antennas (with radome). After these

antennas were positioned on the roof of the Air Force Institute of Technology, a 24

hour data collection effort (15 second interval) was undertaken. The data was then

uploaded to the Online Positioning User Service (OPUS) and a precise position was

returned. The difference between the two known positions was calculated to yield the

truth value for static ground tests.

The GPS antennas selected for use in the radio control airplanes were ANTCOM

3G1215X1000, dual frequency, active antennas and are shown in Figure 2.4 [10].
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Figure 2.4: ANTCOM 3G1215X1000 40 dB GPS Antenna [10]

Overall dimensions and weight are provided in Table 2.2 [1]

Table 2.2: ANTCOM 3G1215X1000 Specifications [1]
diameter 8.9 cm
height 1.6 cm
weight 0.142 grams

2.5.3 Serial Data Link. During development, as well as initial static ground

testing, the serial data link was not used. Instead, each of the NovAtel GPS receivers

was connected to the CPU via a separate serial cable.

The Serial Data Link selected for use during dynamic ground testing, and future

incorporation into the radio controlled aircraft, is the Freewave FGR09CS Spread

Spectrum Radio Modem shown in Figure 2.5 [4]. Overall dimensions, weight, and

power consumption rates are provided in Table 2.3 [4]. Previous testing by Spinelli [18]

determined that the Freewave modem could reliably handle data transfer at a 20 Hertz

rate. However, the modem did not have the bandwidth to process data at 100 Hertz.

For this reason, the NovAtel receivers were chosen since they provide dual frequency

measurements at a 20 Hertz rate. Assuming that the NovAtel RANGECMPB data
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Figure 2.5: Freewave FGR09CS Wireless Modem [4]

log is providing dual frequency measurements for 12 SVs at a 20 Hertz rate, the

required bandwidth of 97.92 Kbps is moderately below the maximum bandwith of

the Freewave FGR09CS which is 115.2 Kbps. This allows for additional data logs

such as GPSEPHEMB updates. Of note, to process the data at a rate of 100 Hertz,

the bandwidth of the serial data link would have to be increased by a factor of slightly

more than four.

Table 2.3: FreeWave FGR09CS Specifications [4]
size 12.7 cm x 6.1 cm x 1.8 cm
weight 74.4 grams
typical power consumption 6 W (transmit), 1 W (receive)

2.5.4 CPU / Power supply. Because time did not permit the software to be

ported over to PC-104 or GUMSTIX PC boards, all testing was done on a 1.4 GHz

desktop computer with a clock speed of 400 Hz. However, the available processing

power on select PC-104 and/or GUMSTIX PC boards meets or exceeds the system

on which the instrumentation package was tested on. Additionally, in the case of the

GUMSTIX PC boards, the LINUX operating system is burned into the read-only

memory. Lastly, both PC-104 and GUMSTIX systems support multi-threading.

2.6 Summary

This chapter has provided the reader with the necessary background to be able

to follow the discussion in later chapters. In the material to follow, general GPS
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theory, resolution of carrier-phase ambiguities, and Kalman filtering will be combined

with the goal of developing a system whose primary algorithm rapidly calculates the

precise relative position between miniature UAV’s while minimizing the system size,

weight and power consumption.
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III. Development of Instrumentation Package

3.1 Overview

This chapter describes in detail the development of an instrumentation package

which provides a precise relative position vector between two UAV’s that is

suitable for formation flight control. After providing a big picture overview of the

top-level design, some of the factors that must be considered when designing real-

time DGPS systems are discussed. After a brief description of the front-end parser

used to synchronize the raw measurements, the remainder of the chapter discusses

the three main tasks that are performed at various discrete time intervals. These

consist of a Kalman filter task operating at a 1 Hertz rate, a LAMBDA ambiguity

resolution task which is called by the Kalman filter when required, and a high-rate

precise relative position output task operating at a 20 Hertz rate.

3.2 Top-Level Design

The instrumentation package discussed in this chapter was developed to provide

a high-rate, low-latency, extremely precise relative position vector between a lead

UAV and a wing UAV flying in close formation. Additionally, because the system

was designed for small UAV’s, emphasis was placed on minimizing the size, weight,

and power consumption of the system. Figure 3.1 is used to assist in the visualization

of the interaction of the various tasks which are discussed below.

In order to compute the relative position vector, raw GPS measurements are

provided by a single NovAtel GPS card in each aircraft. The lead aircraft broadcasts

these measurements to the wing aircraft through the use of a Freewave serial data link

wireless communication device. In the case of the wing aircraft, the NovAtel GPS

card is connected directly to the CPU by means of a serial cable. Once the system

begins receiving data from both aircraft, a front-end parser is utilized to synchronize

the data into measurements which are common to both aircraft. Once these common

measurements have passed through the parser, there are three core tasks, discussed

below, which operate asynchronously yet share information when needed.
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COM 1:
(lead aircraft)

COM 2:
(wing aircraft)

PARSE:
(20 Hertz)

Kalman Filter Task
(1 Hertz)

Ambiguity Resolution Task
(As Required)

High Rate Task
(20 Hertz)

High Rate,
Precise Rel. Pos.
(20 Hertz)

Low Rate,
Approx. Rel. Pos.
(1 Hertz)

Figure 3.1: Top Level Design of Instrumentation Package

The first task, performed at a 1 Hertz rate, is a floating point Kalman filter.

The state vector in the Kalman filter contains the floating point double-difference

carrier-phase ambiguity estimates. The state vector contains additional data which

is dependent on the operating mode selected by the user. In position mode, the

first three rows of the state vector contain the relative position of the wing aircraft

with respect to the lead aircraft. In position-velocity mode, the first six rows of the

state vector contain the relative position and relative velocity respectively of the wing

aircraft with respect to the lead aircraft. In position-velocity-acceleration mode, the

first nine rows of the state vector contain the relative position, relative velocity, and

relative acceleration respectively of the wing aircraft with respect to the lead aircraft.

The floating point double-difference carrier-phase ambiguity estimates start at row

four, row seven, or row ten of the state vector, depending on the operating mode

selected by the user. The Kalman filter provides several useful outputs. First, the

floating point carrier-phase ambiguity estimates, as well as the covariance matrix, are

fed to the LAMBDA ambiguity resolution task. Second, the unit line-of-sight vector

to each of the SVs is fed to the high-rate output task. Finally, the Kalman filter

provides a low rate (1 Hertz), approximate relative position which is independent of
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the computations performed by the high-rate output task. This provides a means of

validating the high-rate output since a direct comparison is possible.

The second task, an ambiguity resolution routine, is summoned by the Kalman

filter when required. The Kalman filter can only provide a floating point estimate

of the double-difference carrier-phase ambiguities. As previously discussed, these

floating point estimates must be resolved to their integer values in order for the

high-rate output to achieve the desired level of precision. The LAMBDA method,

mentioned briefly in Chapter 2, is used to perform this ambiguity resolution. The

LAMBDA method requires as input the floating point estimates of the ambiguity

values as well as the associated covariance matrix. Both of these are provided by

the Kalman filter task. The ambiguity resolution task provides as output a vector

of the integer ambiguities to the high-rate output task which is discussed next. Of

note, after the integer ambiguities have been initially determined, the high-rate task

is able to determine the correct integer ambiguities for newly acquired SVs. However,

if too many SVs are lost at a single epoch, the Kalman filter has the ability to pass

the required data to the ambiguity resolution routine and re-calculate the complete

ambiguity set. This will be discussed in much greater detail later in the chapter.

The final task is the low-latency, high-rate, extremely precise, relative position

output. This task operates at a 20 Hertz rate and receives information from both the

Kalman filter task as well as the LAMBDA ambiguity resolution task. In an ideal case,

the high-rate output would have all data available at a 20 Hertz rate. However, this is

computationally intensive and is impractical for applications such as miniature UAV’s

where size, weight, and power consumption requirements are extremely stringent. An

in-depth discussion of the effect of using data with a 1 Hertz update rate in a 20 Hertz

process will be delayed until Chapter 4.

3.3 Real-Time Considerations

Implementing an algorithm that operates real-time is significantly more com-

plex than one that utilizes post-processed data. The system presented in this thesis
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is capable of operating in both the real-time environment and the post-processed en-

vironment. When the system operates in real-time mode, an output file is generated

which contains all of the raw GPS measurements. This file can then be used as input

when the system is operating in post-processed mode. This allows the same raw GPS

measurements to be processed multiple times, with different Kalman filter tuning

parameters, and was extremely beneficial during development and testing.

When utilizing DGPS, the only measurements that may be used are from those

SVs that are common to both the reference receiver and the mobile receiver. If one

of the receivers has data from a SV that the other does not see, the data from the

former is essentially useless and must be discarded. The system presented in this

thesis utilizes a front-end parser, discussed in a later section, to synchronize the raw

GPS measurements from the two receivers. When operating in real-time mode, the

parser sends data to the other processes and also generates a data file consisting of

the synchronized raw measurements which can then be used as inputs when operating

in post-processed mode. It is important to note that the parser does not account for

the gain and/or loss of SVs. This is a real-time consideration, discussed below, which

must be dynamically handled regardless of whether the user selects real-time mode

or post-processed mode.

When a system must operate in a real-time environment, there will be numerous

instances of new SVs coming into view and existing SVs falling below the line of sight

and becoming unavailable. Additionally, even though the SV may be in view, there

may be momentary instances where the GPS signal is temporarily unavailable. These

instances, referred to as cycle slips, are generally very short in duration. However,

cycle slips must be accounted for regardless of how short in duration they are.

The first question that must be answered when a SV becomes unavailable is

whether or not the SV was the base SV used for each of the double-difference pseudo-

range and carrier-phase measurements. If an SV, which is not the base SV, becomes

unavailable then a single row of the state vector must be eliminated. Additionally, a
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single row and a single column must be removed from the covariance matrix. Finally,

if the total number of SVs change, then several other matrices require re-sizing so

that the matrices in the equations to follow are of the proper dimensions. If the base

SV becomes unavailable then the process is more complicated. Because the loss of the

base SV affects every double-difference pseudorange and carrier-phase measurement,

a transformation matrix must be formed which will allow a new state vector and new

covariance matrix to be formed which utilize a new base SV. An example of each of

these scenarios will now be provided.

3.3.1 Loss of Non-Base SV. For this example, it is assumed that there are

5 SVs in view. Additionally, for simplicity the SVs are numbered sequentially with

PRN 1 being the base SV and PRN 3 being the SV that goes out of view. To minimize

the size of the matrices, it is assumed that the system is operating in position only

mode with the double-difference carrier-phase ambiguity terms starting in the fourth

row of the state vector. Prior to the loss of the SV, the state vector and covariance

matrix is as follows:

x =


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


















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





x

y

z

∆∇φ1,2
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∆∇φ1,4
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































(3.1)
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


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(3.2)

After accounting for the loss of PRN 3, the new state vector and covariance matrix

is as follows:

x =


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(3.3)
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
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
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

(3.4)

3.3.2 Loss of Base SV. For this example, it is also be assumed that there

are 5 SVs in view, numbered sequentially. The old base SV is PRN 3, and the new
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base SV is PRN 4. It will again be assumed that the system is operating in position

only mode with the double-difference carrier-phase ambiguity terms starting in the

fourth row of the state vector. Prior to the loss of the base SV, the state vector and

covariance matrix is as follows:

x =
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


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(3.5)
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
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(3.6)

Upon inspection of Equation (3.5) and Equation (3.6), one can see that the loss of

PRN 3 affects multiple rows. One option that exists is to re-initialize the entire state

vector and covariance matrix. However, a better alternative is to create a transfor-

mation matrix (T) that allows a switch to a different base SV without losing valuable

data. The new state vector and covariance matrix can then be calculated as follows:

xnew = Txold (3.7)
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Pnew = TPoldT
T (3.8)

The formation of the T matrix in Equation (3.7) and Equation (3.8) is possible

because of the fact that the double-difference carrier-phase measurements are linear

combinations. For example, consider the equations below:

∆∇N4,3 = ∆N4
− ∆N3 = −(∆N3

− ∆N4)

= −∆∇N3,4
(3.9)

∆∇N4,5 = ∆N4
− ∆N5 = ∆N4

− ∆N3 + ∆N3
− ∆N5

= (−∆∇N3,4) + ∆∇N3,5
(3.10)

By utilizing linear combinations such as those in Equation (3.9) and Equation

(3.10), a T matrix that switches the base SV can be formed for any combination of

old and new base SVs. For the example above, where the old base SV of PRN 3 is

replaced by the new base SV of PRN 4, the T matrix is as follows:

T =


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(3.11)
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Utilizing Equation (3.7), Equation (3.8), and (3.11) yields following state vector and

covariance matrix:

x =




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(3.12)
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
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(3.13)

A comparison of Equation (3.5), Equation (3.6), Equation (3.12), and Equation (3.13)

reveals that whereas the loss of SV 3 affects numerous rows and columns in the first

two equations, it only affects a single row and column in the second two equations.

This is a direct result of the use of the transformation matrix. It must be noted that

accounting for a change in the base SV is a two-step process. First, the state vector

and covariance matrix must be transformed as shown above. After the transformation

is performed, the single row containing the old base SV must be removed from the

state vector. Similarly, the single row and column containing the old base SV must

be removed from the covariance matrix. However, it is important to note that these

rows and columns may not be removed until after the transformation is complete. An
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additional consideration is that the SV selected as the new base must be present at

both the current epoch as well as the previous epoch.

3.3.3 Gain of SV. Should an additional SV be acquired, both the state

vector and covariance matrix must be expanded to account for the additional mea-

surements. Consider the case where the system originally has the following SVs in

view: 1, 3, 5, 7. It is assumed that PRN 1 is the base SV. It will also be assumed that

the newly acquired SV is PRN 4. Before acquisition, the state vector and covariance

matrix is as follows:

x =




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(3.14)
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(3.15)

After accounting for the gain of PRN 4, the new state vector and covariance matrix
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is as follows:

x =
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(3.17)

3.4 Front-End Parser

The system presented in this thesis utilizes three data logs from the NovAtel

GPS receivers. The binary version of these logs was selected for use since they are

roughly half the size of the ASCII version. As mentioned in the previous section, any

DGPS application requires that the raw measurements be synchronized. After a brief

discussion of the data logs, a description of the method utilized to synchronize the

raw measurements will be provided.

The NovAtel GPSEPHEMB data log was selected to provide the orbital ephemeris

data for each SV. Because this data is common to both receivers, combined with the

fact that the size of the data log is quite large, it is read directly from the GPS card
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located in the wing aircraft and is not transmitted by the lead aircraft over the serial

data link. The GPS card outputs this information once at initialization and whenever

new ephemeris information becomes available.

The NovAtel BESTPOSB data log was selected to provide the GPS receiver

computed best position fix. This data log is obtained from both GPS receivers (lead

and wing aircraft), and is passed to the CPU at a 1 Hertz rate. This data log is used

to initialize the relative position in the state vector. The data for the wing aircraft

is also used in the computation of the unit line-of-sight vector to each respective

SV. After initialization, the BESTPOSB data log for the lead aircraft is no longer

required by the instrumentation package (unless a reset is required). However, the

data logs for both lead and wing aircraft continue at a 1 Hertz rate. This is because

the receiver computed position fix for each aircraft, although a non-DGPS solution,

can be utilized to calculate an approximate relative position which is stored in an

output file for post-flight data analysis. The impact of transmitting this data log

for the lead aircraft over the Freewave serial data link results in less than a 1 Hertz

reduction in maximum throughput of the RANGECMPB data log which is discussed

next.

The NovAtel RANGECMPB data log was selected to provide the raw GPS

measurements. They provide dual-frequency pseudorange and carrier-phase measure-

ments, as well as signal lock times, for each SV in view. They are passed to the CPU

at a 20 Hertz rate.

The implementation of the front-end parser consists of three threads that run

simultaneously. After initializing the COM port associated with the lead aircraft

(reference receiver), the first thread decodes the messages described above and passes

them to the parsing thread. Similarly, after initializing the COM port associated with

the wing aircraft (mobile receiver), the second thread decodes the messages described

above and passes them to the parsing thread. The parsing thread pushes the raw

GPS measurements received from the previous two threads onto a memory stack.
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When the memory stack contains measurements from both receivers having identical

times, those measurements are removed from the stack and a comparison is made.

The raw measurements from any SV that is common to both receivers are allowed to

pass, while raw measurements from any SV that is not common to both receivers are

discarded.

The parsing thread creates two additional sub-threads. The first sub-thread,

the Kalman filter task, operates at a 1 Hertz rate. After initialization, and whenever

the integer carrier-phase ambiguity set must be re-computed, the Kalman filter task

passes data to the ambiguity resolution task. The second sub-thread, the high-rate

output task, operates at a 20 Hertz rate. Both sub-threads (Kalman filter task and

high-rate output task) as well as the ambiguity resolution task will be thoroughly

discussed in later sections within this chapter.

If the user selects post-processed mode, the two COM port threads and parsing

thread are not needed. Instead, a simple function is called to process the user provided

input file (obtained from a previous data collection using the real-time mode) which

contains the raw measurements common to both receivers. After creating the two

sub-threads mentioned above (Kalman filter task and high-rate output task), this

function processes the file line-by-line and passes the data to the appropriate task in

the same manner that the parsing thread does when operating in real-time mode. A

significant benefit is that the system can operate approximately ten times faster in

post-processed mode than in real time. This allows a great deal of data to be quickly

processed and was particularly useful during development and testing.

Because the NovAtel GPS cards provide dual frequency measurements, the ques-

tion arises as to which measurements to use. If one recalls from Chapter 2, we can

not only select L1 or L2 measurements, but can utilize linear combinations of the two

measurements such as widelane and narrowlane. To facilitate the real-time switch-

ing from widelane measurements to narrowlane measurements, the front-end parser

passes both L1 and L2 measurements for each GPS receiver to the Kalman filter task
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as well as the high-rate output task. This allows each task to form the appropriate

measurements via the use of the following equation:

m =a(mL1)+b(mL2) (3.18)

where

m ≡ new measurement vector

a ≡ scalar coefficient of L1 measurement

mL1 ≡ L1 measurement vector

b ≡ scalar coefficient of L2 measurement

mL2 ≡ L2 measurement vector

In the case of widelane measurements, a = +1 and b = -1. For narrowlane measure-

ments, a = +1 and b = +1.

3.5 Floating Point Kalman Filter

The Kalman filter task operates at a 1 Hertz rate and serves several purposes.

First, depending on the operating mode selected by the user, the filter provides an

approximation of: 1) relative position, 2) relative position, and relative velocity, or

3) relative position, relative velocity, and relative acceleration between the lead and

wing aircraft. The reason for giving the user the option of selecting various operating

modes is to provide some flexibility regarding the required size of the matrices used in

the Kalman filter equations. Assuming a full complement of 12 SVs, the state vector

covariance matrix (P) will be a 14x14 matrix in position mode, a 17x17 matrix in

position-velocity mode, and a 20x20 matrix in position-velocity-acceleration mode.

The increase in the sizes of the other matrices utilized in the Kalman filter equations

when going from position mode to position-velocity-acceleration mode are similar

as well. Second, regardless of the operating mode selected by the user, the filter

provides floating point estimates of the carrier-phase ambiguity values, as well as the
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associated covariance matrix, to the ambiguity resolution task discussed in the next

section. Finally, the filter computes a matrix containing the unit line-of-sight vectors

to each of the SVs and passes it to the high-rate output task which is discussed later

in the chapter.

For ease of discussion, the three operating modes will be discussed in parallel.

After discussing the initialization for each of the matrices involved, the implementa-

tion of the governing Kalman filter equations are discussed.

3.5.1 Initialization of State Vector. The state vector contains the relative

position vector expressed in Earth Centered Earth Fixed (ECEF) coordinates and the

floating point double-difference carrier-phase ambiguities. Additionally, depending on

the operating mode selected by the user, it may also contain relative velocity and

relative acceleration estimates.

In position mode, the state vector is as follows:

xP =
[

X Y Z ∆∇N1,2 ... ∆∇N1,n

]T

(3.19)

where

x1 ≡ X ≡ ECEF X relative position (m)

x2 ≡ Y ≡ ECEF Y relative position (m)

x3 ≡ Z ≡ ECEF Z relative position (m)

Note that the remaining terms (∆∇N) are the floating point double-difference carrier-

phase ambiguity estimates between the base SV and each of the non-base SVs and

are expressed in cycles.

In position-velocity mode, the state vector is as follows:

xPV =
[

X Y Z Ẋ Ẏ Ż ∆∇N1,2 ... ∆∇N1,n

]T

(3.20)
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where

x4 ≡ Ẋ ≡ ECEF X relative velocity (m/s)

x5 ≡ Ẏ ≡ ECEF Y relative velocity (m/s)

x6 ≡ Ż ≡ ECEF Z relative velocity (m/s)

In position-velocity-acceleration mode, the state vector is as follows:

xPVA =
[

X Y Z Ẋ Ẏ Ż Ẍ Ÿ Z̈ ∆∇N1,2 ... ∆∇N1,n

]T

(3.21)

where

x7 ≡ Ẍ ≡ ECEF X relative acceleration (m/s2)

x8 ≡ Ÿ ≡ ECEF Y relative acceleration (m/s2)

x9 ≡ Z̈ ≡ ECEF Z relative acceleration (m/s2)

Regardless of the operating mode selected by the user, the first three rows of the

state vector are initialized as follows:

x1 = Xmob − Xref (3.22)

where

Xmob ≡ ECEF X coordinate of wing aircraft (NovAtel computed)

Xref ≡ ECEF X coordinate of lead aircraft (NovAtel computed)

x2 = Ymob − Yref (3.23)

where

Ymob ≡ ECEF Y coordinate of wing aircraft (NovAtel computed)
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Yref ≡ ECEF Y coordinate of lead aircraft (NovAtel computed)

x3 = Zmob − Zref (3.24)

where

Zmob ≡ ECEF Z coordinate of wing aircraft (NovAtel computed)

Zref ≡ ECEF Z coordinate of lead aircraft (NovAtel computed)

The relative velocity and relative acceleration, if selected by the user, are initialized

to zero and are updated by the filter.

The double-difference carrier-phase ambiguity terms in the state vector are ini-

tialized as follows:

∆∇N j,k = ((φj
mob−φj

ref ))−(φk
mob−φk

ref )−(1/λ)((ρj
mob−ρj

ref )−(ρk
mob−ρk

ref )) (3.25)

where

j is the base SV

k is the non-base SV

λ is the wavelength of the carrier-phase signal

3.5.2 Initialization of State Vector Covariance Matrix. The state vector co-

variance matrix represents the uncertainty of the estimated state vector. The diagonal

terms represent the variances and the off-diagonal terms represent the covariances.
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In position mode, the state vector covariance matrix is initialized as follows:

PP =





























σ2
∆X 0 0 0 ... 0

0 σ2
∆Y 0 0 ... 0

0 0 σ2
∆Z 0 ... 0

0 0 0 σ2
∆∇N1,2 ... 0

...
...

...
...

. . .
...

0 0 0 0 0 σ2
∆∇N1,n





























(3.26)

where

σ2
∆X is the variance of relative position (ECEF X coordinate)

σ2
∆Y is the variance of relative position (ECEF Y coordinate)

σ2
∆Z is the variance of relative position (ECEF Z coordinate)

σ2
∆∇N j,k is the variance of the double-difference carrier-phase measurement.

In position-velocity mode, the state vector covariance matrix is initialized as

follows:

PPV =















































σ2
∆X 0 0 0 0 0 0 ... 0

0 σ2
∆Y 0 0 0 0 0 ... 0

0 0 σ2
∆Z 0 0 0 0 ... 0

0 0 0 σ2

∆Ẋ
0 0 0 ... 0

0 0 0 0 σ2

∆Ẏ
0 0 ... 0

0 0 0 0 0 σ2

∆Ż
0 ... 0

0 0 0 0 0 0 σ2
∆∇N1,2 ... 0

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 0 σ2
∆∇N1,n















































(3.27)

where

σ2

∆Ẋ
is the variance of relative velocity (ECEF X coordinate)
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σ2

∆Ẏ
is the variance of relative velocity (ECEF Y coordinate)

σ2

∆Ż
is the variance of relative velocity (ECEF Z coordinate)

In position-velocity-acceleration mode, the state vector covariance matrix is

initialized as follows:

PPVA =

































































σ2
∆X 0 0 0 0 0 0 0 0 0 ... 0

0 σ2
∆Y 0 0 0 0 0 0 0 0 ... 0

0 0 σ2
∆Z 0 0 0 0 0 0 0 ... 0

0 0 0 σ2

∆Ẋ
0 0 0 0 0 0 ... 0

0 0 0 0 σ2

∆Ẏ
0 0 0 0 0 ... 0

0 0 0 0 0 σ2

∆Ż
0 0 0 0 ... 0

0 0 0 0 0 0 σ2

∆Ẍ
0 0 0 ... 0

0 0 0 0 0 0 0 σ2

∆Ÿ
0 0 ... 0

0 0 0 0 0 0 0 0 σ2

∆Z̈
0 ... 0

0 0 0 0 0 0 0 0 0 σ2
∆∇N1,2 ... 0

...
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 σ2
∆∇N1,n

































































(3.28)

where

σ2

∆Ẍ
is the variance of relative acceleration (ECEF X coordinate)

σ2

∆Ÿ
is the variance of relative acceleration (ECEF Y coordinate)

σ2

∆Z̈
is the variance of relative acceleration (ECEF Z coordinate)

Of note, only the diagonal terms (variances) are set during initialization. The off-

diagonal terms (covariances) are populated and updated by the Kalman filter equa-

tions discussed later in the chapter.

The initial values of the state vector covariance matrix can be easily changed by

the user through modification of a parameter input file which is in an ASCII format.
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An in-depth analysis of Kalman filter tuning is provided in Chapter 4. However values

that resulted in good filter performance under a variety of conditions are provided in

Table 3.1 below:

Table 3.1: Initial Covariance Values
relative position σ2

p = (5m)2

relative velocity σ2
v = (5m/s)2

relative acceleration σ2
a = (5m/s2)2

∆∇N σ2
N = (50

λ
cycles)2

3.5.3 Initialization of Transition Matrix. From Chapter 2, the fundamental

or transition matrix, Φ, was shown to be:

Φ(Ts) = eFTs (3.29)

where

Ts is the measurement sampling period.

However, instead of numerically calculating a matrix exponential, the system

presented in this thesis constructs the Φ matrix as discussed below.
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In position-velocity-acceleration mode, the Φ matrix is constructed as follows

[17]:

ΦPV A(Ts) =

































































1 0 0 ∆t 0 0 A 0 0 0 ... 0

0 1 0 0 ∆t 0 0 A 0 0 ... 0

0 0 1 0 0 ∆t 0 0 A 0 ... 0

0 0 0 1 0 0 B 0 0 0 ... 0

0 0 0 0 1 0 0 B 0 0 ... 0

0 0 0 0 0 1 0 0 B 0 ... 0

0 0 0 0 0 0 C 0 0 0 ... 0

0 0 0 0 0 0 0 C 0 0 ... 0

0 0 0 0 0 0 0 0 C 0 ... 0

0 0 0 0 0 0 0 0 0 1 ... 0
...

...
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 0 0 0 0 1

































































(3.30)

where

∆t is the sampling rate of the Kalman filter (1 second)

A = T 2
s (e−∆t/Ts − 1) + Ts∆t

B = Ts(1 − e−∆t/Ts)

C = e−∆t/Ts
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In position-velocity mode, the first three rows and the first three columns of

Equation (3.30) are removed to yield the following [17]:

ΦPV (Ts) =















































1 0 0 B 0 0 0 ... 0

0 1 0 0 B 0 0 ... 0

0 0 1 0 0 B 0 ... 0

0 0 0 C 0 0 0 ... 0

0 0 0 0 C 0 0 ... 0

0 0 0 0 0 C 0 ... 0

0 0 0 0 0 0 1 ... 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 1















































(3.31)

In position mode, the Φ matrix is simply the identity matrix:

ΦP (Ts) =





























1 0 0 0 ... 0

0 1 0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0
...

...
...

...
. . .

...

0 0 0 0 0 1





























(3.32)

3.5.4 Initialization of Discrete Noise Matrix. In position-velocity-acceleration

mode, the process noise is modeled as a First-Order Gauss-Markov Approximation
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(FOGMA) and the discrete noise matrix, Qd, is computed as follows [17]:

QdPVA =

































































D 0 0 E 0 0 G 0 0 0 ... 0

0 D 0 0 E 0 0 G 0 0 ... 0

0 0 D 0 0 E 0 0 G 0 ... 0

E 0 0 K 0 0 L 0 0 0 ... 0

0 E 0 0 K 0 0 L 0 0 ... 0

0 0 E 0 0 K 0 0 L 0 ... 0

G 0 0 L 0 0 M 0 0 0 ... 0

0 G 0 0 L 0 0 M 0 0 ... 0

0 0 G 0 0 L 0 0 M 0 ... 0

0 0 0 0 0 0 0 0 0 U ... 0
...

...
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 0 0 0 0 U

































































(3.33)

where

D ≡
1

2
T 5

s qva(1− e−2∆t/Ts) + T 4
s qva∆t(1− 2e−∆t/Ts)−T 3

s qva(∆t)2 + 1

3
T 2

s qva(∆t)3

E ≡ T 4
s qva(1

2
e−2∆t/Ts − e−∆t/Ts + 1

2
) + T 3

s qva∆t(e−∆t/Ts − 1) + 1

2
T 2

s qva(∆t)2

G ≡
1

2
T 3

s qva(1 − e−2∆t/Ts) − T 2
s qva∆te−∆t/Ts

K ≡
1

2
T 3

s qva(−e−2∆t/Ts + 4e−∆t/Ts + 2∆t
Ts

− 3)

L ≡ −
1

2
T 2

s qva(−e−2∆t/Ts + 2e−∆t/Ts − 1)

M ≡ −
1

2
Tsqva(e−2∆t/Ts − 1)

U ≡ qN∆t

In position-velocity mode, the process noise is also modeled using a FOGMA.

As was the case for the Φ matrix, the first three rows and the first three columns of
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Equation (3.33) are removed to yield the following:

QdPV =















































K 0 0 L 0 0 0 ... 0

0 K 0 0 L 0 0 ... 0

0 0 K 0 0 L 0 ... 0

L 0 0 M 0 0 0 ... 0

0 L 0 0 M 0 0 ... 0

0 0 L 0 0 M 0 ... 0

0 0 0 0 0 0 U ... 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 U















































(3.34)

In position mode, the process noise is modeled using a random walk and Qd

matrix is simply:

QdPV =





























qp∆t 0 0 0 ... 0

0 qp∆t 0 0 ... 0

0 0 qp∆t 0 ... 0

0 0 0 qN∆t ... 0
...

...
...

...
. . .

...

0 0 0 0 0 qN∆t





























(3.35)

The noise characteristics of the Kalman filter can be easily modified by the

user through the parameter input file. As mentioned during the discussion of the

initialization of the state vector covariance matrix, aspects relating to filter tuning

are deferred until Chapter 4. However, values that were determined to result in good

filter performance under a variety of conditions are shown in Table 3.2:

3.5.5 Initialization of Measurement Covariance Matrix. The measurement

covariance matrix represents the uncertainty of the measurements and is not depen-

dent on the operating mode selected by the user. Instead, it is only dependent on the
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Table 3.2: Initial Noise Values
parameter position position-velocity position-velocity-acceleration
Ts 3 sec 3 sec 3 sec

qpva qp = 15 qav = 2σ2
v

Ts
qav = 2σ2

a

Ts

qN 1.1e-2 1.1e-2 1.1e-2

number of visible SVs which are common to both receivers. However, there are five

cases which must be considered.

The first case is determination of the code variances. Recall from Equation

(2.1):

ρ = r + c(δtr − δtsv) + T + I + mρ + vρ (3.36)

Because the double differencing of the measurements eliminated both receiver and

satellite clock error, the second and third terms on the right hand side of the equation

may be discounted. Because the application presented in this thesis involves UAV’s in

formation flight, i.e. very short baselines, the impact of tropospheric and ionospheric

errors will be ignored. Hence, the only remaining source of error is multipath and

noise. The code variance will therefore be a conservative best guess of the average

deviation due to these two error sources.

The second case is the determination of the phase variances. Recall from Equa-

tion (2.2):

φ = λ−1(r + c(δtr − δtsv) + T − I + mφ + vφ) + N (3.37)

Using the same methodology as for the code variance, the phase variance is driven only

by multipath and noise errors and will differ from code variance only in magnitude

and units.

The third case is the determination of the code covariances. If one assumes

that each visible SV has a relatively unique bearing and elevation, then the impact of

multipath and noise errors will be different for each measurement and the covariances

(off-diagonal terms) would be zero. However, the use of double-difference measure-
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ments with a common SV complicates things slightly. Because one of the two SVs

in each double-difference measurements is identical for each measurement, the code

covariances will be exactly half the value of the code variances.

The fourth case is the determination of the phase covariances. Using the same

methodology as for code covariances, it can easily be seen that the phase covariance

values must be exactly half the value of the phase variances.

The fifth and final case is the determination of the code/phase cross-covariances.

Unless the baseline between GPS receivers grows large enough for tropospheric errors

to become significant, the code and phase measurement errors are uncorrelated and

the code/phase cross-covariances are zero.

By combining the five aforementioned cases, the complete measurement covari-

ance matrix with five visible SVs is as follows:

R =









































a c c c 0 0 0 0

c a c c 0 0 0 0

c c a c 0 0 0 0

c c c a 0 0 0 0

0 0 0 0 b d d d

0 0 0 0 d b d d

0 0 0 0 d d b d

0 0 0 0 d d d b









































(3.38)

where

a ≡ code variances (Case I)

b ≡ phase variances (Case II)

c ≡ code covariances (Case III)

d ≡ phase covariances (Case IV)
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Values which were experimentally determined [18] are shown in Table 3.3 below:

Table 3.3: Initial Values for Measurement Covariance Matrix
parameter value

code variance 10.24
phase variance 0.0994
code covariance 5.12
phase covariance 0.0497

3.5.6 Implementation of Real-Time Considerations. After the state vector,

state vector covariance matrix, transition matrix, discrete noise matrix, and mea-

surement covariance matrix have been initialized, the Kalman filter is ready to begin

processing measurements. However, after each new measurement is received, sev-

eral tests must be performed to ensure that the added complexity due to real-time

considerations does not cause the filter to become unstable.

The first test performed by the filter determines whether or not measurements

exist for the base SV. If the base SV is still in view, the algorithm proceeds to

the second test. If, however, the base SV is no longer available, then a new base

SV is selected and both the state vector and the state vector covariance matrix are

transformed utilizing Equation (3.7) and Equation (3.8).

The second test performed by the filter determines whether or not any SVs have

been gained or lost since the previous epoch. For each new SV, a row is added to the

state vector and both a row and a column are added to the state vector covariance

matrix. For each SV that is no longer in view, a row is deleted from the state vector

and both a row and a column are deleted from the state vector covariance matrix.

Of note, should the base SV be lost, the first test will have already performed the

necessary transformation of variables to switch the base SV.

The third test performed by the filter determines whether or not the total num-

ber of visible SVs has changed. If there is no change, the filter proceeds to the fourth

and final test. If the number of visible SVs has changed, then the measurement covari-

ance matrix (R), transition matrix (Φ), and discrete noise matrix (Qd) are resized
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to the proper dimensions. The reason for conducting this test separately from the

previous two tests is as follows. During testing, there were several instances of a new

SV coming into view and an existing SV becoming unavailable during the 1 second

time interval between Kalman filter updates. Should this happen, there is no need to

resize the above mentioned matrices since the total number of SVs is the same.

The fourth and final test performed by the filter determines whether or not

there has been a cycle slip. Recall from Chapter 3 that a cycle slip is a momentary

lapse of SV availability. The significance of a cycle slip becomes apparent when one

considers that the GPS receiver must start the accumulation of Doppler over again.

This results in a new carrier-phase measurement and a new carrier-phase ambiguity

value. The NovAtel RANGECMPB data log provides a signal lock time for both L1

and L2 measurements. This signal lock time is utilized by the filter for cycle slip

detection. In the event of a cycle slip, the affected double-difference carrier-phase

measurement in the state vector is re-initialized using Equation (3.25). Additionally,

the affected row and column of the state vector covariance matrix are re-initialized

with the covariances set to zero and the variance set to the value stored in the user

defined parameter input file.

3.5.7 Time Propagation of State Vector and State Vector Covariance Matrix.

After the filter ensures that all real time considerations have been properly dealt with,

it is ready to propagate the state vector and state vector covariance matrix forward

in time using the equations shown in Section 2.4.2.

3.5.8 Formulation of Measurement Equation. In Chapter 2 it was shown

that the measurement vector must be related to the state vector. For convenience,

the relationship, provided in Equation (2.18), is repeated below:

z = Hx + v (3.39)
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The Kalman filter presented in this thesis utilizes double-difference pseudorange and

double-difference carrier-phase measurements. For ease of explanation, it is assumed

that there are only 4 SVs with SV 1 selected as the base SV. However, the concepts

shown here can be easily extended to other cases. With the preceding assumptions,

the left side of Equation (3.39) is defined as follows:

z =
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(3.40)

where

A is the mobile receiver (wing aircraft)

B is the reference receiver (lead aircraft)

The next step is to determine a measurement matrix (H) that when post-

multiplied by the state vector (x) is, with the exception of the zero-mean white

Gaussian noise, equal to the measurement vector (z). To facilitate the discussion,

refer to Figure 3.2.

Because the distance between the SV and each GPS receiver, approximately 20

million meters, is much greater than the distance between the two aircraft, it can be

assumed that for any given SV, both aircraft share the same unit vector line of sight

to the SV. In Figure 3.2, this unit line of sight vector (for the jth SV) is annotated as

ej. Additionally, an inspection of the geometry present in Figure 3.2 reveals:

rj
mob − rj

ref = ∆x · ej (3.41)

3-29



j

Lead

Wing

x

rj
mob - rj

ref

x
e j

Figure 3.2: Formulation of H matrix

Hence, the difference in ranges between the jth SV and each receiver is related to the

state vector and the unit line of sight vector to the jth SV through the use of Equation

(3.41).

Remembering that the double-difference pseudorange measurement is defined

as:

∆∇ρjk
AB = ∆ρj

AB − ∆ρk
AB (3.42)

and the pseudorange is defined as:

ρ = r + c(δtr − δtsv) + T + I + mρ + vρ (3.43)
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One can utilize Equation (3.43) to expand Equation (3.42), neglect insignificant (or

zero) terms, and obtain the following:

∆∇ρjk
AB = (rj

A − rj
B) − (rk

A − rk
B) (3.44)

Utilizing Equation (3.41), Equation (3.44) can be re-written as:

∆∇ρjk
AB = (∆x · ej) − (∆x · ek) (3.45)

Rearranging terms yields:

∆∇ρjk
AB = (ej

− ek) · ∆x (3.46)

A similar analysis for the case of double-difference carrier-phase measurements yields

the following:

∆∇φjk
AB = λ−1(ej

− ek) · ∆x + ∆∇N jk
AB (3.47)

Using Equation (3.46) and Equation (3.47) to build the complete H matrix, Equation

(3.39), neglecting noise, becomes:
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(3.48)

With the above mentioned matrices now computed, the state vector (x) and state

covariance matrix (P) can be updated utilizing the equations in Section 2.4.2.

This concludes the section on the Kalman filter. In review, the filter operates at

a 1 Hertz rate and receives raw GPS measurements as input. It provides three separate
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outputs. First, it provides the floating point estimate of the carrier-phase ambiguities,

and the associated covariance matrix, to the ambiguity resolution routine. Second,

it provides a matrix of unit line-of-sight vectors (e) from the wing aircraft to each of

the SVs. This is used by the high-rate output routine to calculate the measurement

matrix (H). The reason for passing the e matrix instead of the H matrix is that the

H matrix for the Kalman filter contains both code and phase data. In contrast, the

H matrix utilized by the high-rate output task contains only phase data. Finally, the

Kalman filter provides an independent approximate relative position output, as well

as relative velocity and relative acceleration, if selected by the user.

3.6 Carrier-Phase Ambiguity Resolution

The carrier-phase ambiguity task is summoned by the Kalman filter task when-

ever the integer ambiguity set must be determined from the state vector and covariance

matrix. After the floating point estimates of the carrier-phase ambiguities, along with

the associated covariance matrix, are received from the Kalman filter, the ambiguity

resolution task passes these matrices to a LAMBDA routine which returns two possi-

ble integer ambiguity sets and an associated value, referred to as the squared normal,

for each set. The squared normal value represents how good the LAMBDA routine

believes the fit is and is nothing more than the distance between the respective integer

ambiguity candidate set and the floating point ambiguity set. Of note, the ambiguity

resolution routine does not have to operate continuously. Instead, once the ambiguity

estimates have been correctly determined, the high-rate task uses the known integer

ambiguities to determine the integer ambiguities for any newly acquired SVs. This

aspect will be discussed in greater detail in the next section.

The LAMBDA routine, coded in C++ by the author, is nearly identical to

the lambda2.m routine which is publicly available through Delft University [5]. The

function calls each of the subroutines used by the lambda2.m routine are also nearly

identical. As Teunissen, Jonge, and Tiberius [5] provide an excellent description of
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the MATLAB implementation, a detailed discussion here is not warranted. However,

there are several items that do require further discussion.

First, the floating point values and covariance matrix passed to the ambiguity

routine are only those associated with the carrier-phase ambiguities. The Kalman

filter data for relative position, relative velocity, and relative acceleration is not needed

and is stripped off before passing the matrices to the ambiguity resolution task.

Second, as mentioned above, the LAMBDA routine returns two possible integer

ambiguity sets. This is because the ambiguity set with the lowest squared normal

value (i.e., the best fit) may not in fact be the correct set. Although the correct

ambiguity set generally has the lowest value, there will occasionally be times where

an incorrect ambiguity set has a value that briefly dips below that of the correct set

before rising back to an elevated level. An example of this is given in Section 4.4.2.

However, a means is required to enable the selection of the correct ambiguity despite

this phenomena.

As discussed by Teunissen [20], one of the earliest and most popular ways of

validating the integer ambiguity solution is through the use of a ratio test. As the

name implies, a value is formed that is the ratio of the squared normal value of the

“second-best” ambiguity set to the squared normal value of the “best” ambiguity set.

When this ratio is below a certain user defined threshold, referred to as the critical

value, the computed integer ambiguity set is not known with confidence. Typically,

the critical value is above 1.5 and below 5.0, however it may be as high as 10 [20].

In cases where the ratio is below the critical value, the user must discard the integer

solution and can either proceed by using the floating point solution or wait for the

two squared normal values to diverge which will result in a ratio that is above the

critical value.

The instrumentation package presented in this thesis utilizes the ratio test dis-

cussed above. If the ratio is greater than 2.5, the algorithm assumes that the ambiguity

set associated with the low squared normal value is correct and passes the ambiguity
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set to the high-rate output task. However, if the ratio is less than this, the ambiguity

resolution routine waits for the Kalman filter to provide an updated state vector and

covariance matrix. After passing these updated matrices to the LAMBDA routine

and receiving updated ambiguity sets and squared normal values, the ratio test is

repeated. Once the ratio test passes, the ambiguity resolution task returns a flag to

the Kalman filter task which lets the filter know that the carrier-phase ambiguities

have been resolved to their integer values. Once this flag is set, the Kalman filter no

longer passes the state vector and covariance matrix to the ambiguity resolution task

unless a reset is required. Results for the length of time to pass the ratio test and the

success rate of selecting the proper ambiguity set are presented in Chapter 4.

3.7 High-Rate Relative Position Output

The high-rate output task operates at a 20 Hertz rate. Because of the desire to

obtain an extremely precise solution while simultaneously minimizing system latency,

a key objective was to make this task as efficient as possible. As a result, the only

raw measurements utilized by the high-rate task are the double-difference carrier-

phase measurements. By using only the phase measurements, and discarding the

code measurements, the size of the matrices involved are significantly reduced.

3.7.1 Formulation of Relative Position Vector. For ease of discussion, as

was done in the discussion on Kalman filtering, it will be assumed that there are four

SVs with the base SV being PRN 1. From Chapter 2, recall that the measurements

are related to the state vector as follows:
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(3.49)

After eliminating the double-difference code measurements, Equation (3.49) becomes:











∆∇φ1,2
A,B

∆∇φ1,3
A,B

∆∇φ1,4
A,B











=











λ−1(e1
− e2) 1 0 0

λ−1(e1
− e3) 0 1 0

λ−1(e1
− e4) 0 0 1







































∆x

∆y

∆z

∆∇N1,2
A,B

∆∇N1,3
A,B

∆∇N1,4
A,B





























(3.50)

It is desired to separate the components of the relative position vector from the

other terms in Equation (3.50). In order to do this, the relative position terms are

separated from the double-difference carrier-phase ambiguities as follows:
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(3.51)

Rearranging terms in Equation (3.51) yields the following:
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In general form, Equation (3.52) can be expressed as follows:

Hx = z (3.53)

Because the H matrix is not a square matrix, the relative position can not be isolated

by simply multiplying by H−1. Instead, a pseudoinverse must be used as follows:

x = (HTH)−1HTz (3.54)

where:
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It can be seen that solving the right side of Equation (3.54) yields the relative position

vector, which is the ultimate goal.
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Recall from the discussion of the Kalman filter task that the H matrix was

defined as:

H =





























(e1
− e2) 0 0 0

(e1
− e3) 0 0 0

(e1
− e4) 0 0 0

λ−1(e1
− e2) 1 0 0

λ−1(e1
− e3) 0 1 0

λ−1(e1
− e4) 0 0 1





























(3.58)

By inspection, one can see that the H matrix used in Equation (3.56) is nothing more

than the lower left quadrant of Equation (3.58). The benefit of using the reduced

H matrix becomes apparent when one realizes that the term (HTH) is always a 3x3

matrix. Thus, the inverse which must be computed every 0.05 seconds by the high-

rate task is always a 3x3 matrix and requires far less computational power than that

required by the Kalman filter which must compute the inverse of the H matrix where

the dimensions can be as high as 22x22.

There are two components in Equation (3.57) which must now be discussed.

The first are the double-difference carrier-phase measurements. These are obtained

directly from the front end parser at a 20 Hertz rate. The second are the double-

difference carrier-phase ambiguities, resolved to their integer values. These are ini-

tially obtained from the ambiguity resolution task. However, when a new SV comes

into view, it is not necessary to recompute the entire ambiguity set from scratch. In-

stead, the double-difference carrier-phase integer ambiguity associated with the newly

acquired SV can be determined as discussed below.

Equation (3.51) can be rearranged as follows:
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Now consider the case where a new SV, PRN 5, comes into view. Inspection of

Equation (3.59) reveals that the new double-difference carrier-phase measurement is

as follows:

∆∇N1,5 = ∆∇φ1,5
A,B − λ−1(e1

− e5)x (3.60)

Thus, in order to compute the double-difference carrier-phase ambiguity in Equation

(3.60), the only unknown value we need is the relative position vector. Initially it may

appear that we need the double-difference carrier-phase ambiguity term to calculate

the relative position vector, and vice-versa. However, by initially ignoring the newly

acquired SV, and calculating the relative position without it, formation of the x vector

is possible. This relative position vector (x) can now be used in Equation (3.60) to

calculate the ambiguity value. By simple rounding of the result, the ambiguity value

can be resolved to its integer value and saved for use during future epochs.

The preceding discussion has shown that in order to calculate the high-rate

relative position, there are three required pieces of information. First, the reduced

H matrix must be derived from the e matrix which is obtained from the Kalman

filter task operating at a 1 Hertz rate. Second, the double-difference carrier-phase

measurements must be obtained from the front end parser at a 20 Hertz rate. Finally,

the integer values of the carrier-phase ambiguities must be obtained. Initially the

integer ambiguity set is obtained by the ambiguity resolution task. However, after

the ambiguity set has been determined, the integer value of the double-difference

carrier-phase ambiguity for any newly acquired SV is determined internally by the

high-rate output task as previously discussed. Thus, by combining these three pieces

of data, through the use of Equation (3.54), the high-rate relative position vector may

be computed.

3.7.2 Additional Real-Time Complexity. As was the case for the Kalman

filter task, the requirement that the system operate in a RTK environment creates

added complexity. For the high-rate output task, this complexity is relatively specific

and is due to the latency associated with updating the H matrix at a reduced 1 Hertz
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rate. Additionally, the integer ambiguity set must be adjusted for the gain and/or

loss of SVs. There are three instances, discussed below, which must be considered.

3.7.2.1 Gain of SV. If a new SV comes into view after the unit line-of-

sight vector (e) has been passed by the Kalman filter, the process is relatively straight

forward. Because it is impossible to form an H matrix containing a unit line-of-sight

vector that has yet to be calculated, the newly acquired SV is simply ignored for up

to 0.95 seconds until it is seen by the Kalman filter task and a unit line-of-sight vector

computed. In terms of carrier-phase ambiguities, the newly acquired SV is excluded

from use until the e matrix which includes the new SV is formulated by the Kalman

filter and passed to the high-rate task. At this point, the precise relative position

vector is computed, again ignoring the new SV. Finally, after the precise relative

position is known, it is used to calculate the new ambiguity value. This value is then

saved for use during all subsequent epochs.

3.7.2.2 Loss of non-base SV. If an existing SV becomes unavailable

after the unit line-of-sight vector (e) is calculated, the process is also relatively straight

forward. When formulating the H matrix, the unit line-of-sight for the lost SV is

simply ignored. In terms of carrier-phase ambiguities, the double-difference carrier-

phase ambiguity associated with the lost SV is no longer of any use and is therefore

eliminated.

3.7.2.3 Loss of base SV. The most complicated real-time occurrence

which must be considered is the loss of the base SV after the (e) matrix is computed.

In this case, a transformation similar to the transformation done by the Kalman filter

must be performed. As was the case for the Kalman filter task, after the transforma-

tion to a new base SV is complete, any term containing data associated with the old

base SV (SV which was lost) must be deleted from further consideration.
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3.8 Summary

This chapter has fully described the development of the algorithm utilized by

the instrumentation package. After the raw data is synchronized by a front end parser,

there are two separate tasks which operate simultaneously but asynchronously.

The Kalman filter task, operating at 1 Hertz, provides a rough estimate of

relative position, and if selected by the user, relative velocity and relative accelera-

tion. Additionally, it provides the unit line-of-sight information required to allow the

high-rate output task to construct the H matrix. Finally, when required, it provides

a floating point estimate of double-difference carrier-phase ambiguities, and the as-

sociated covariance matrix, to the ambiguity resolution task. When summoned by

the Kalman filter, the ambiguity resolution task utilizes the LAMBDA method, and

passes the integer carrier-phase ambiguity values to the high-rate output task.

The high-rate output task receives the previously mentioned data, along with

raw GPS measurements at a 20 Hertz rate, and provides as output a low-latency, 20

Hertz, precise relative position which is accurate to a few centimeters.
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IV. Results and Analysis

This chapter provides the results and analysis of the testing which was performed

on the instrumentation package presented in this thesis. After describing the

methodology used to test performance, a brief discussion is provided on how the truth

values were obtained. Next, an example is provided to illustrate how DGPS can obtain

higher accuracy than stand-alone GPS. After providing results and analysis for the

ground based static tests, the chapter concludes by presenting the results and analysis

for the ground based dynamic tests.

4.1 Testing Methodology

In order to fully determine the effectiveness of the instrumentation package

presented in this thesis, one must be concerned with more than just the preciseness of

the high-rate output. In fact, each of the three tasks discussed in the previous chapter

(Kalman filtering, ambiguity resolution, and high-rate output) must be evaluated.

4.1.1 Kalman Filter Task. Because the Kalman filter provides floating point

estimates of the carrier-phase ambiguities and an associated covariance matrix to the

ambiguity resolution task, it is imperative that the filter be properly tuned. One

means of evaluating filter tuning is to compare the error in the state vector to the

expected error statistics as represented by the covariance matrix.

Additionally, one of the roles of the Kalman filter is to dampen the noisy nature

of the raw GPS measurements. In order to evaluate its effectiveness in accomplishing

this task, we can compare the error in the filter calculated relative position to the

error in the NovAtel single point calculated relative position.

4.1.2 Ambiguity Resolution Task. As was discussed in Chapter 3, the am-

biguity set returned from the LAMBDA routine having the lowest squared normal

value is not always the correct ambiguity set. To visualize the typical characteristics

of the squared normal value, a comparison can be made between the value returned

for the correct set and the value returned for an incorrect set.
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In order to obtain the desired precision in the high-rate output task, the ambi-

guity resolution task must resolve the double-difference carrier-phase ambiguities to

their integer values. One way of evaluating performance in this area is to conduct a

large number of data runs, re-initializing the Kalman filter each time. After the data

runs are complete, the performance statistics describing the length of time required

to determine the ambiguity set and the percentage of correct ambiguity sets can be

calculated.

4.1.3 high-rate Output Task. In the case of the high-rate output task, there

are two items of concern, precision and latency. In order to evaluate precision, a

comparison is made between the calculated relative position and the actual relative

position.

To evaluate system latency, the time from the reception of the raw GPS measure-

ments to the time that the use of those measurements resulted in a relative position

solution is calculated. Additionally, the interval between solutions is determined to

ensure that solutions are being provided at a steady state rate.

4.2 Truth Values

In order to determine errors in relative position, the actual relative position

must be known. For the ground based static tests this was quite simple. Raw GPS

measurements for both receivers were collected at a 30 second interval for 24 hours.

These measurements were then electronically submitted to the Online Positioning

User Service (OPUS) [12]. After waiting for precise orbital information to become

available, the actual ECEF position for each GPS antenna was returned via e-mail.

Taking the difference between these two known absolute positions yields the known

relative position. The truth values used during static testing are shown in Table 4.1.

Truth values for dynamic testing are more difficult in nature. One possibility is

to compare the change in reported relative position to the change in actual relative

position when the antennas are moved from a start point to an end point. The change
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Table 4.1: Truth Values Utilized During Ground Static Testing
ECEF X (m) ECEF Y (m) ECEF Z (m)

reference receiver 506,070.120 -4,882,258.343 4,059,613.328
standard deviation 0.019 0.016 0.006

mobile receiver 506,072.907 -4,882,262.297 4,059,609.497
standard deviation 0.027 0.019 0.011

relative position (reference - mobile) -2.787 3.954 3.831

in reported relative position is obtained directly from the change in the high-rate out-

put. The change in actual relative position is obtained by physically measuring the

distance between the two points. However, a better means of obtaining dynamic truth

values, which was utilized during the dynamic testing discussed later in the chapter,

is to incorporate two reference receivers and two mobile receivers. In this case, both

reference receivers are connected to a common antenna through a coaxial cable split-

ter. Additionally, both mobile receivers are connected to a common antenna through

another coaxial cable splitter. One pair of receivers is utilized by the instrumentation

package presented in this thesis. The second pair is utilized by an independent, com-

mercially available, DGPS application. Post processing analysis can be performed

and a comparison made between the two independent solutions.

4.3 The Benefit of DGPS - An Example

Before examining the performance of the DGPS application presented in this

thesis, it is beneficial to briefly look at the errors that exist in a typical stand-alone

application and how DGPS can improve performance. To illustrate this, consider the

accuracy of the stand-alone absolute position for each of the two locations used during

static testing. Figure 4.1 depicts the East-North-Up (ENU) errors for each of the two

locations during a 60 minute data run.

One can see that in the horizontal plane, the magnitude of the error is generally

within 1 meter. In the vertical plane, accuracy is slightly worse and the magnitude of

the errors is approximately twice that found for the horizontal plane. These values are

consistent with the generally agreed upon precision expected from a dual frequency,
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Figure 4.1: Static Testing, ENU Errors: Absolute Position (non-DGPS solution).

stand-alone (non-DGPS) navigation solution. Finally, one can see that the reference

receiver errors are markedly similar to the mobile receiver errors.

A single-point DGPS relative position will now be formed that is nothing more

than the difference between the two stand-alone absolute positions. Figure 4.2 com-

pares the ENU errors of the two absolute positions (non-DGPS) to those for the

single-point relative position (DGPS) for a data run of 75 minutes.

Although all three position solutions in Figure 4.2 are rather noisy, the benefit

of DGPS is clearly evident. When looking at the first 30 minutes of the data run,

both absolute positions have an Up error of approximate 1 meter. In contrast, the

Up error of the relative position is quite small. In fact, for all three plots, the relative

position errors are quite small when compared to the errors for the two absolute

positions. This is a direct result of the error cancelation and/or minimization which
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Figure 4.2: Static Testing, ENU Errors: Comparison Between Absolute Position
(non-GPS) and Relative Position (DGPS).

can be expected when using Differential GPS. Of note, because both receivers were

static, with a very short baseline, they shared the same SV geometry. As such, it is

expected that the errors would be nearly identical.

Now that the benefit of utilizing DGPS, even if only by taking the difference

between two absolute positions, has been demonstrated, the next section will focus on

the static testing and analysis which was performed for the Kalman filter, ambiguity

resolution, and high-rate output tasks.

4.4 Static Test Results and Analysis

The results and analysis for static testing will now be presented. Recall that for

static tests, the truth values for relative position were easily available.
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4.4.1 Kalman Filter Performance. Because the Kalman filter provides es-

timates of the floating point double-difference carrier-phase ambiguities, and an as-

sociated covariance matrix, to the ambiguity resolution routine, it is important that

the filter be properly tuned. If the Kalman filter error estimates, represented by the

covariance matrix, are large when the filter estimates, represented by the state vec-

tor, are actually very good, then the performance of the filter will be degraded. Even

worse is the case where the Kalman filter error estimates are very small, when in

fact the filter estimates contain relatively large errors. Figure 4.3 shows the actual

error in relative position (ECEF coordinates) for a data run of just over 5 minutes.

Additionally, the state covariance matrix was used to provide the filter computed +/-

3 standard deviation lines. The actual error should lie within the standard deviation

lines 99 percent of the time.
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Figure 4.3: Static Testing, Comparison of Relative Position Error to Filter Com-
puted Covariance Matrix (1 data run).
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Clearly, the actual error lies within the error range expected by the filter. How-

ever, it must be noted that it is relatively easy to tune a Kalman filter for a specific

set of data and achieve good results. Much more challenging is tuning the Kalman

filter so that it provides good results for a variety of conditions. As such, and in

an effort to conduct a more rigorous test of the performance of the Kalman filter, a

test was conducted in which 50 different sets of data were collected. Each data set

consisted of a 5 minute test run. Additionally, the data sets were collected at different

times of the day and on different days of the week. By conducting the test in this

manner, Kalman filter performance was tested using a different number of SVs and a

variety of SV geometry conditions. Results for this test are presented in Figure 4.4.

Note that the filter computed standard deviation lines vary from run to run. This is

because the measurement matrix (H) changes from run to run (different line-of-sight

vectors to each SV) and is used to propagate the state covariance matrix (P). As a

result, the filter computed standard deviations are also different from run to run.
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Figure 4.4: Static Testing, Comparison of Relative Position Error to Expected Error
Range (50 data runs).
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However, for the 50 data runs discussed above, the actual relative position error

is consistently within the filter computed expected region, represented by the state

covariance matrix, which is bounded by +/- 3 standard deviations (99 percent).

The preceding discussion was for the state vector error analysis of relative po-

sition errors. However, a similar analysis can be performed for the floating point

double-difference carrier-phase ambiguity errors. Before presenting the results for

this test, a subtle difference between the two must be noted. In the case of relative

position, the truth value for static testing will not change from one run to the next.

However, in the case of the floating point estimate of carrier-phase ambiguities, the

truth value will be different for each ambiguity pair during the same run. Addition-

ally, the ambiguities from one run will generally be different from those found during

another run. This is because the actual integer value of each of the double-difference

carrier-phase ambiguities will generally be unique and can also vary from one run to

the next. Figure 4.5 depicts the difference between the floating point double-difference

carrier-phase ambiguity and the actual integer value.

Each of the four subplots presented in Figure 4.5 represent a separate run with

a duration of 5 minutes. For a given subplot, each line represents the error for one of

the double-difference carrier-phase floating point ambiguity estimates. As an example,

during the run depicted in the upper left subplot, there were 6 SVs which resulted

in an ambiguity set of 5 values, and 5 lines on the subplot. As before, lines of the

filter computed +/- 3 standard deviations are provided. One can see, as was the

case for the relative position analysis, the actual error generally falls within the range

expected by the Kalman filter. Additionally, as was previously discussed, because

the measurement matrix changes from run to run, and is used to propagate the state

covariance matrix, the lines representing +/- 3 standard deviations will vary from run

to run. This concludes the analysis of Kalman filter tuning. Attention will now focus

on the role of the filter in dampening the noisy nature of the raw GPS measurements.
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Figure 4.5: Static Testing, Comparison of Floating Point double-difference Carrier-
Phase Ambiguity Errors to Expected Error Range (4 Separate Data Runs)

One of the key features of a Kalman filter is that it significantly dampens the

noisy nature of the measurements while providing estimates of the state of a system.

Figure 4.6 compares the East-North errors of the single point relative position, ob-

tained by taking the difference between the NovAtel computed absolute positions, to

the East-North errors of the Kalman filter estimated relative position.

The benefit of the Kalman filter is readily apparent. Whereas the relative po-

sition solution derived from the difference in the stand alone absolute positions (left

side) is extremely noisy, the Kalman filter estimated relative position (right side) is

much more stable. It must be noted the Kalman filter only utilized measurements

that were common to both receivers. In contrast, the NovAtel computed absolute

positions for each receiver utilized all of the SVs which were available to the respec-

tive receiver. The smooth nature of the filter relative position is due to both the
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Figure 4.6: Static Testing, East-North Errors. Comparison of Filter Errors to Single
Point Errors.

ability of the filter to dampen the raw GPS measurements and the use of common

measurements.

Figure 4.7 presents similar data, but from a different test run. Additionally, the

format has been changed to show the error for all three axes of the ENU coordinate

system plotted versus time.

The value of utilizing the Kalman filter to dampen the noisy nature of the raw

GPS measurements can clearly be seen. In the case of the single point NovAtel calcu-

lated relative position, the errors in all three axes exhibit large changes in magnitude

over very short time spans. In stark contrast, the Kalman filter estimated relative

position provides a much more stable solution.
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Figure 4.7: Static Testing, ENU Errors. Comparison of Filter Errors to Single
Point Errors.

4.4.2 Ambiguity Resolution Performance. As mentioned in Chapter 3, the

LAMBDA routine generates two possible double-difference carrier-phase integer am-

biguity sets. Each ambiguity set has an associated squared normal value, described

by Joosten [5], which is an approximation of how good the LAMBDA routine believes

the set is. The reason for generating two sets is that although the correct ambiguity

set will usually have the lowest value, sometimes it does not. An incorrect ambiguity

set, for a brief time, may have a squared normal value that dips slightly below that

of the correct set. Figure 4.8 provides a comparison of squared normal values for the

“best” and “second best” ambiguity sets on four separate data runs. As will be dis-

cussed later in the section, after the ambiguities were solved for (generally 2 seconds),

the filter was re-initialized and a new floating point estimate and covariance matrix

were passed to the ambiguity task. In this mode, a new squared normal value was
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Figure 4.8: Static Testing, Comparison of Squared Normal Values. Four Data Runs
(Filter Reset)

computed approximately every 2 seconds. The system does not usually operate in this

mode; however, it was useful in obtaining a large number of observations regarding

the algorithm’s ability to determine the ambiguity set correctly and quickly.

By far, the most common trend observed during testing is that shown in the

upper left quadrant of Figure 4.8. In this case, the “best” solution has a squared

normal value that is significantly lower than that of the “second best” value. In this

case, the correct ambiguity set can be chosen very quickly and with high confidence.

As mentioned, this case was by far the most common one seen during testing. How-

ever, several other types of behavior were observed and these will now be discussed.

The data run shown in the upper right quadrant shows a time segment where both

the “best” and “second best” squared normal values exhibit significant fluctuations

for an extended time. Another type of behavior that was observed during testing is
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shown in the lower left quadrant. In this case, besides having fluctuations, both the

“best” and “second best” squared normal values exhibit a single very large jump and

remain at an elevated level before returning to lower values. In this case, the critical

value of 2.5 was exceeded for almost the entire run. The final type of behavior that

was seen during testing is shown in the lower right quadrant. This case is similar to

the one just discussed. However, the difference is that the values did not remain at

elevated levels after a significant jump. Instead, they returned very quickly to the

lower levels that existed immediately before the jump.

In the preceding discussion, the Kalman filter was reset immediately after the

critical value was exceeded. However, it is also beneficial to look at the characteristics

of the squared normal values when the Kalman filter is not reset even though the

ambiguities are calculated at every epoch. Figure 4.9 shows results from four separate

data runs where the Kalman filter operated continuously but the ambiguities were

calculated every epoch.

Because the Kalman filter was not reset, and instead allowed to operate con-

tinuously, the floating point estimates and covariance matrix passed to the ambiguity

resolution routine become more and more accurate. As a result, the squared normal

value of the “best” set generally starts low and stays low. In contrast, the squared

normal of the “second best” set diverges quickly which makes ambiguity resolution

relatively easy. However, as can be seen in the upper right quadrant, even with the

filter operating continuously, there were times where the difference between the two

values converge.
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Figure 4.9: Static Testing, Comparison of Squared Normal Values. Four Data Runs
(No Filter Reset)

As discussed in Chapter 3, to ensure the correct ambiguity set is chosen, the

ambiguity resolution task utilizes a ratio test with a critical value of 2.5 and waits

until this threshold is exceeded before passing the ambiguity set to the high-rate

output task. In order to determine the time required to resolve the ambiguities, and

the success rate of choosing the correct ambiguity set, a test was conducted which is

discussed below.

The raw measurements for all static testing were re-run in post-processed mode

with several variations to the program. First, after exceeding the critical value, the

number of epochs from filter initialization to solution were saved. Additionally, the

ambiguity set associated with the “best” squared normal value was saved. Finally, the

correct ambiguity set, analytically determined as discussed in Chapter 3, was saved.

A simple comparison was made between the computed set and the correct set. If the
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two sets were identical, the instrumentation package chose the correct set. If the two

sets were different, then the wrong ambiguity set was chosen. The results of this test

are provided in Table 4.2 below.

Table 4.2: Ambiguity Resolution Performance (Widelane Measurements)
Time to Solve Ambiguities Occurrences Percentage
2 seconds 6,750 98.1 percent
3 seconds 78 1.1 percent
4 seconds 23 0.4 percent
5 seconds 12 0.2 percent
6+ seconds 13 0.2 percent

The longest time to reach the critical value was just under two minutes (117

seconds). However, most of the longer convergence times were much shorter in dura-

tion.

In terms of success rates, for the 6,876 calls to the ambiguity resolution routine,

there were only 7 instances in which the returned ambiguity set was incorrect. This

results in a 99.9 percent success rate. Achieving 100 percent success rate is possible if a

critical value above 2.5 is used. However, selecting a higher critical value can result in

substantially longer times to converge to the correct ambiguity set. Raising the critical

value to 5.0 resulted in numerous instances of a 3-4 minute delay before the ratio test

passed. Additionally, the few ambiguity sets that were wrong were not drastically

wrong. Most had only one integer ambiguity that had been rounded the wrong way.

As a result, the relative position error achieved when using the wrong ambiguity set

was on the order of 1-2 meters. Although this is excessive for precise positioning, it

was deemed acceptable given the extremely low probability of occurrence.

As will be seen in the next section, the overall accuracy obtained when uti-

lizing widelane measurements is relatively poor. The accuracy can be significantly

improved if the widelane measurements are replaced with either L1 only measure-

ments or narrowlane measurements. However, ambiguity resolution becomes more

difficult when widelane measurements are not used. To demonstrate this, the test

discussed above was repeated using the same raw measurements, but instead of using
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widelane measurements, the test utilized L1 only measurements. The results of this

test are provided in Table 4.3 below.

Table 4.3: Ambiguity Resolution Performance (L1 Measurements)
Time to Solve Ambiguities Occurrences Percentage
2 seconds 2,978 93.5 percent
3 seconds 86 2.7 percent
4 seconds 32 1.0 percent
5 seconds 23 0.7 percent
6+ seconds 65 2.0 percent

In terms of success rates, for the 3,090 calls to the ambiguity resolution routine,

there were 94 instances in which the returned ambiguity set was incorrect. This

results in a 97.0 percent success rate. Although these results are not bad, they are

noticeably lower than the 99.9 percent success rate obtained with the use of widelane

measurements. Additionally, in terms of convergence times, of the 65 occurrences that

were six seconds or longer, most were several minutes in duration. When narrowlane

measurements were used, results for the above test were significantly worse. Thus,

in terms of ambiguity resolution, the use of widelane measurements offers the best

performance. As a result, in order to obtain the desired accuracy, the high-rate

output task will have to transition from widelane to L1 only and finally to narrowlane

measurements. This, along with other considerations, will be discussed in the next

section.

4.4.3 High-Rate Output Performance. A key measure of performance for the

instrumentation package is the precision of the high-rate output. Because the truth

value for static testing was known, a simple comparison between the actual relative

position and the reported relative position is possible. Figure 4.10 provides two views

of the high-rate relative position errors over a 5 minute test run. The upper figure is a

top-down view which shows the North and East errors. The lower figure is a forward

looking view which shows the Up and East errors.
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Figure 4.10: Static Testing, high-rate Output: Comparison of Horizontal Errors
and Vertical Errors (Widelane Measurements)

An inspection of Figure 4.10 yields an initial estimated horizontal accuracy of

approximately +/- 5 cm and an estimated vertical accuracy of approximately +/- 10

cm. The tendency for the vertical error to be roughly twice the horizontal error was

found in virtually all data runs and is consistent with what is commonly observed in

GPS and DGPS positioning.

The relative concentration of points shown in Figure 4.10 was found in almost

all of the data runs. However, many of the runs exhibited biases in one or more

directions. Figure 4.11 shows the horizontal and vertical errors for several different

data runs superimposed on top of each other. Each data run is represented by a

different color.

One can see that the relative position solution appears to wander over time

and the overall precision achieved is undesirable. After ensuring that the apparent
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Figure 4.11: Static Testing, high-rate Output: Biases Found in ENU Errors (Wide-
lane Measurements)

drift was not due to tropospheric error or differences in clock error between the two

receivers, attention was turned to multipath as a possible cause. Two tests were

conducted to ensure that the errors found during initial testing were in fact due to

multipath and not other factors. The first test consisted of collecting multiple data

sets at the same time interval on two consecutive days. The second test consisted

of computing the relative position with L1 only measurements instead of widelane

measurements. Both of these tests, and their associated results, are discussed below.

Because of the periodic nature of the SV orbits, one can replicate the exact

SV geometry by waiting exactly 24 hours and 4 minutes. Additionally, for static

testing, the error caused by multipath will be nearly the same for two observation

periods having the same SV geometry, because multipath is dependent on the relative

geometry between the satellites and the receiver. Therefore, if the error causing the
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apparent wander discussed above is truly due to multipath, and not due to other

factors, then one should obtain the same error biases for multiple runs taken at

intervals of 24 hours and 4 minutes.

Figure 4.12 shows the relative position error (ECEF coordinates) versus time for

two runs taken at 24 hour intervals. One can see that the magnitude of the errors for

the runs shown are similar. However, it is difficult to determine the extent to which

the run taken on Thursday is offset relative to the run taken on Wednesday. Therefore,

a second graph was generated in which the measurements for Thursday were shifted

to the right by exactly 4 minutes. If the error causing the wander discussed above

is really due to multipath, then the errors should have a high degree of correlation.

Figure 4.13 provides the the graph with the above mentioned offset applied. It can

easily be seen that the correlation between the two runs, with the 4 minute offset

added in, is almost perfect. As a result, most of the apparent drift observed during

testing is almost certainly due to multipath.
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Figure 4.12: Static Testing, High-Rate Output: Periodicity of Multipath Errors
(No Offset)
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Figure 4.13: Static Testing, High-Rate Output: Periodicity of Multipath Errors (4
Minute Offset)

Another independent means of determining whether the apparent drift was

caused by multipath is to compare the relative position solution obtained using wide-

lane measurements to that obtained when using L1 only measurements. This is be-

cause the errors caused by multipath will be reduced by a factor of approximately four

when switching from widelane measurements to L1 only measurements [15]. Hence,

if the accuracy is generally four times better when using L1 only measurements than

for the case when widelane measurements are used, then the apparent drift discussed

above is likely due to multipath, and not other factors.

Figure 4.14 provides a comparison of the accuracy obtained by using widelane

measurements to that obtained when utilizing L1 measurements for the same data

run. The top two plots depict the relative position error when widelane measurements

were used. The bottom two plots depict the relative position error when L1 only

measurements were used. These results also provide a strong indication that the

apparent drift observed during initial widelane measurement testing is in fact due to

multipath errors.
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Figure 4.14: Static Testing, High-Rate Output: Comparison of Accuracy (Widelane
Measurements vs. L1 only Measurements)

Because multipath errors are significantly higher when using widelane measure-

ments, combined with the better accuracy obtained when using L1 only measure-

ments, one might wonder why widelane is used at all. The answer lies in ambiguity

resolution. The benefit of higher accuracy obtained by using the lower wavelength of

L1 measurements is offset by the added difficulty in determining the correct ambiguity

set. With the critical value left at 2.5 as was discussed in the previous section, there

were instances where it took in excess of four minutes for the ambiguity resolution task

to determine the ambiguities when L1 only measurements were used. Additionally,

even after the ratio test passed, the success rate of choosing the correct ambiguity

set was noticeably lower when L1 only measurements were used than was found when

widelane measurements were used. For this reason, the instrumentation package pre-

sented in this thesis utilizes widelane measurements until the ambiguities are resolved.
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Once the widelane ambiguities are known, an accurate relative position can be for-

mulated. This newly formed position can then be used to analytically compute the

correct ambiguities for L1 only measurements. The high-rate relative position, with

better precision and accuracy, can then be recalculated using L1 only measurements

and their associated integer ambiguities. This same procedure can be repeated to

yield the correct ambiguities for narrowlane measurements. Of note, this process only

has to be completed one time. After the L1 only, or narrowlane, ambiguities have

been determined, the high-rate task continues in either L1 only mode or narrowlane

mode as appropriate. The instrumentation package developed in this thesis has the

capability to step from widelane measurements to L1 only measurements and finally

to narrowlane measurements. However, time did not permit adequate testing of this

process. One concern is whether the relative position solution obtained in L1 only

mode is precise enough to correctly determine the integer ambiguities for narrowlane

mode. This will be further discussed in Chapter 5.

A statistical analysis was conducted to compare the precision of widelane, L1

only, and narrowlane measurements. Following a data collection period of 40 minutes,

the same raw measurements were run three times in post-processed mode. During

the first run, the instrumentation package utilized widelane measurements exclusively.

During the second run, L1 only measurements were used. During the third run,

narrowlane measurements were used. Of note, all relative positions were converted to

ENU coordinates. Table 4.4 provides the results of the statistical analysis.

One of the first items in Table 4.4 that draws attention is the relatively large

error bias of over 3 cm in the East/West direction for each of the three modes. It is

believed that this bias is due to an error in the “truth” values. Recall that the truth

values were obtained by taking the difference between the two absolute positions re-

turned from OPUS. If these positions are slightly inaccurate, then the computed truth

value will be inaccurate as well. Fortunately, in addition to the calculated absolute

value, OPUS returns standard deviation values as well. The standard deviations for

the OPUS computed “truth values” are shown in Table 4.5.
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Table 4.4: Statistical Analysis of High-Rate Output (ENU Coordinates)
East North Up

Truth Value -2.365 5.645 -0.792

Average Relative Position (Widelane) -2.397 m 5.631 m -0.793 m
Average Relative Position (L1 only) -2.401 m 5.647 m -0.796 m
Average Relative Position (Narrowlane) -2.401 m 5.649 m -0.797 m

Mean Error (Widelane) -3.22 cm -1.49 cm -0.10 cm
Mean Error (L1 only) -3.60 cm 0.27 cm -0.42 cm
Mean Error (Narrowlane) -3.65 cm 0.49 cm -0.46cm

Standard Deviation (Widelane) 1.03 cm 2.12 cm 4.17 cm
Standard Deviation (L1 only) 0.19 cm 0.49 cm 0.77 cm
Standard Deviation (Narrowlane) 0.15 cm 0.39 cm 0.69 cm

Table 4.5: Standard Deviation for OPUS Truth Values (ENU Coordinate Frame)
East North Up

Reference Receiver 2.05 cm 1.35 cm 0.69 cm
Mobile Receiver 2.88 cm 1.88 cm 0.53 cm

Thus, the standard deviation of the East/West component returned from OPUS

is large enough to indicate that the relative position truth value may be a centimeter

or two off from the actual value. Table 4.6 provides the computed DRMS values for

the same data run just discussed.

Table 4.6: Static Testing: Typical DRMS Values (ENU Coordinate Frame)
DRMS

Widelane 4.26 cm
L1 only 3.65 cm
Narrowlane 3.71 cm

It can be seen that making the transition from widelane measurements to L1

only measurements yields significant improvements. The transition from L1 only to

narrowlane, at least in the static environment, does not add much in the way of

performance. However, the computational overhead of switching between modes is

extremely small. As a result, the instrumentation package presented in this thesis

converges to the use of narrowlane measurements.
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In addition to precision, a key performance criterion is to minimize system

latency. For purposes of discussion, system latency is defined as the length of time

that passes from the time the instrumentation package receives a RANGECMPB data

log from each of the two serial ports until the time that the use of those measurements

result in a computed relative position vector. To clarify, the amount of time required

to read the incoming data log from each serial port and identify them both as being a

RANGECMPB log is not included in the latency computations. However, the system

latency does include the time required by the COM 1 and COM 2 threads to decode

the binary log, the time required by the parser to synchronize the measurements, and

the time required by the high-rate output task to collect data from the Kalman filter

task, the ambiguity resolution task (if required), and compute the relative position.

Figure 4.15 shows the system latency for a sample data run of just under seven

minutes.

One can see that the overall system latency is relatively steady at 10 ms with

a brief spike of 15 ms. In order to have the capability to process data at a rate of

100 Hertz, the system latency must never exceed 10 ms. It would appear initially

that system latency would prohibit operation at 100 Hertz, even if the data link could

handle the required throughput of approximately 400 Kbps. However, by examining a

much shorter sample period, the system latency can be reassessed. Figure 4.16 shows

the system latency for a small portion of the same run which was depicted in Figure

4.15.
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Figure 4.15: Static Testing - System Latency

0 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

la
te

nc
y 

(s
ec

on
ds

)

run time (seconds)

Latency of High Rate Output

Figure 4.16: Static Testing - System Latency, Expanded View
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One can see that the steady-state latency of the high-rate output is between

2-4 ms. This is considerably less that was evident in Figure 4.15. The spikes in

total latency, which reveal a latency of 8-10 ms is clearly due to the added processing

of the Kalman filter which operates at a 1 Hertz rate. Thus, there are two ways

to improve performance and be able to provide 100 Hertz output. The first option

is to use a CPU which is faster than the 1.4 GHz processor with a 400 Hz clock

speed. However, another possibility is to adjust the priority of the threads to give

precedence to the high-rate output. Because the Kalman filter has nearly a full second

to process its data, it can be given a much lower priority than the high-rate output

which has much less time to complete its required computations. It should be noted

that selecting one of the two previously mentioned options is only required if 100

Hertz output is required, or if a less capable processor is used. The second case is

rather likely for a flight test scenario because of size, weight, and power consumption

restrictions. Thread prioritization is discussed in Chapter 5. For 20 Hertz operation,

the instrumentation package presented in this thesis does not need to be adjusted.

Just as important as low latency, the high-rate output must provide relative

position solutions at a steady rate. For use in formation flight control, where inputs

are seen as step inputs, the output interval must be consistent. Figure 4.17 shows

the interval between computed relative position solutions for a data run of just under

seven minutes.

As can be seen, the high-rate output generates a relative position solution that

is generally within 10 ms of the ideal 20 Hertz rate. Occasionally, the interval is

slightly more or slightly less. However, it must be noted that the times were gathered

directly from the system clock time, rather than a high-precision timer. This was

done because of the inherent difficulty of incorporating a high-precision timer into an

application which is simultaneously running multiple threads asynchronously. This

concludes the static testing and analysis. We will now consider the dynamic scenarios

which were examined.
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Figure 4.17: Static Testing - Interval of Relative Position Solution
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4.5 Dynamic Test Results and Analysis

As previously discussed, truth values for dynamic testing are more difficult

than for the static environment. Dynamic testing was conducted utilizing a modified

golf cart which contained two GPS receivers, two GPS antennas, two CPU’s, and two

wireless serial data link transceivers. Additionally, a base reference station consisted of

two GPS receivers, a common antenna, and two wireless serial data link transceivers.

One pair was dedicated to the instrumentation package presented in this thesis. The

second, independent pair, was dedicated to a DGPS application from NovAtel.

The instrumentation package logged the real-time relative position to a data

file. The truth values were obtained from the NovAtel GPS solution software men-

tioned above. Of note, the NovAtel system cannot provide real-time relative position.

Instead, it provides real-time absolute position with centimeter-level accuracy. It

accomplishes this through the use of a GPS reference station and a wireless serial

data link which provides differential corrections. By taking the difference between

the NovAtel computed absolute position and the absolute coordinates of the refer-

ence station, a post-processed relative solution was formulated. This relative position

truth value was then compared to the real-time relative position obtained by the

instrumentation package.

One complication that arose during testing was that the mobile location had to

use two closely spaced antennas, one for each receiver, rather than a common antenna

for both. This resulted in a distance of 24 cm between the two antennas. Depending

on the heading of the golf cart, this offset was applied in a different cardinal direction.

Figure 4.18 provides a comparison of the post-processed horizontal relative po-

sition computed by the Novatel DGPS application to the real-time horizontal relative

position computed by the system presented in this thesis. Although the offset due to

the use of separate antennas is obvious, the results clearly show that the two systems

computed nearly identical tracks over the ground.
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Figure 4.18: Dynamic Testing - Horizontal Relative Position
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As mentioned in Chapter 3, the Kalman filter gives the user the option of ob-

taining relative velocities and relative acceleration vectors as well as relative position.

For obvious reasons, during static testing, this capability was not discussed. However,

for dynamic testing, it is worthy of discussion.

Figure 4.19 and Figure 4.20 provide the Kalman filter relative position and

relative velocity plotted versus time for the same data run. For ease of discussion,

let’s only focus on the X axis (top third of each subplot). Additionally, let’s focus

attention on the series of S-turns beginning 48 seconds into the run and ending 75

seconds into the run. From the velocity plot, it can be seen that the golf cart began

a turn to the left. The position plot confirms a displacement to the left. After a

delay of approximately 7 seconds, the golf cart reversed directions to the right. Both

the velocity plot and the position plot confirm a reversal took place. Finally, at

approximately 65 seconds into the run, the golf cart reversed directions (to the left)

and returned to its original heading. Both the velocity plot and position plot confirm

these dynamics. Additionally, an inspection of both plots reveals that the magnitudes

of the velocities are consistent with the magnitude of the displacements in position. Of

note, this discussion has focused on the Kalman filter computed relative position and

relative velocity terms. A similar analysis could be performed for relative acceleration

but would yield the same results.

4-30



20 40 60 80 100 120 140 160 180 200 220
−50

−40

−30

−20

−10

0

Time (seconds)
E

C
E

F
 P

os
iti

on
 (

X
 a

xi
s)

Dynamic Test: Run 2 (Kalman ECEF Position)

0 20 40 60 80 100 120 140 160 180 200 220
−20

0

20

40

60

E
C

E
F

 P
os

iti
on

 (
Y

 a
xi

s)

0 20 40 60 80 100 120 140 160 180 200 220
0

20

40

60

80

E
C

E
F

 P
os

iti
on

 (
Z

 a
xi

s)

Figure 4.19: Dynamic Testing - Kalman Filter: Relative Position
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Figure 4.20: Dynamic Testing - Kalman Filter: Relative Velocity

4-31



4.6 Asynchronous Input Analysis

A final consideration is the determination of the impact of having the Kalman

filter task and ambiguity resolution task provide data to the high-rate output task at

rate of less than 20 Hertz. In the case of the ambiguity resolution task, this determi-

nation is quite easy. The integer ambiguity values determined utilizing the LAMBDA

method and the ratio test are only passed to the high-rate task one time. After this

occurs, the high-rate output task can use the known ambiguities to determine the

relative position and can use the known position to calculate any remaining unknown

ambiguities. However, the Kalman filter passes the unit line-of-sight vector informa-

tion for each SV to the high-rate task at a reduced 20 Hertz rate. This results in

up to a second of latency in the reduced measurement (H) matrix and is worthy of

follow-on analysis.

Figure 4.21 shows the ECEF errors in relative position for a very short time span

of 5 seconds. If the latency associated with a 1 Hertz update rate of the measure-

ment matrix were a concern, then there would be apparent step inputs to the graph.

However, since the graph is relatively smooth from one second to the next, the very

small errors that are induced by using a slightly outdated H matrix are negligible.

Given the large distances involved, it is expected that the unit line-of-sight vectors

will change very slowly. Hence, this is why the Kalman filter was designed to operate

at a much slower rate to save computational overhead.

4-32



0 1 2 3 4 5

−5 

0  

5  

10 

Time (seconds)

E
as

t E
rr

or
 (

cm
)

East−North−Up Error (High Rate Output)

 

 

Widelane
L1 Only

0 1 2 3 4 5
−10

−5 

0  

5  

10 

Time (seconds)

N
or

th
 E

rr
or

 (
cm

)

0 1 2 3 4 5
−20
−15
−10
−5 
0  
5  

10 
15 
20 

U
p 

E
rr

or
 (

cm
)

Time (seconds)

Figure 4.21: Effect of Asynchronous Data: ECEF Errors (Expanded View)

4.7 Summary

This chapter has presented the results and analysis for both static and dynamic

ground testing. In terms of Kalman filter performance, attention was placed on

filter tuning and the ability of the filter to dampen the noisy nature of the raw GPS

measurements. Additionally, the capability of the filter to provide relative velocity

and relative acceleration in a dynamic environment was shown. For the ambiguity

resolution task, attention was placed on the relationship between the squared normal

value associated with the “best” ambiguity set and the “second best” ambiguity set.

Additionally, the time to select the correct ambiguity set and the success rate of

actually choosing the correct set were discussed. In terms of the high-rate task, both

the precision of the relative position and the system latency were evaluated.
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V. Conclusions and Recommendations

This chapter provides a brief summary of the system design and highlights the

results of the testing and analysis which was conducted. Additionally, recom-

mendations are made that will hopefully be beneficial to those who elect to add to

the research effort in this area.

5.1 Overview

The goal of the research presented in this thesis was to develop a DGPS instru-

mentation package capable of providing high-rate, extremely precise, relative position

solutions between two small UAVs, with very low latency. Because the system was

designed for small UAVs, a key criteria was to minimize the overall size, weight, and

power consumption.

The raw GPS measurements from the lead UAV (reference receiver) are trans-

mitted to the wing UAV via a wireless serial data link. The raw measurements from

the wing UAV (mobile receiver) are sent to the CPU by means of a serial cable con-

nected to a COM port. The CPU, onboard the wing aircraft utilizes multi-threading

to simultaneously decode both binary streams into a useable format and pass the data

to the parser discussed below.

Because DGPS applications require common measurements between the ref-

erence receiver and the mobile receiver, a front-end parser is used to strip off any

measurements that are not common to both the lead and wing UAV’s. The data that

is common to both UAV’s is passed at a 1 Hertz rate to a Kalman filter and at a 20

Hertz rate to a high-rate output task.

The core of the system consists of three tasks which operate asynchronously yet

share information when required. These tasks consist of a Kalman filter, an ambiguity

resolution routine, and a high-rate output task. A brief discussion of each is provided

below.

The Kalman filter task, operating at a 1 Hertz rate, receives raw GPS mea-

surements from the parser and provides several useful outputs. First, a low-rate,
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approximate relative position solution is provided. Additionally, the user has the op-

tion of receiving relative velocity and relative acceleration estimates as well. Second,

the Kalman filter provides a floating point estimate of the double-difference carrier-

phase ambiguities, and an associated covariance matrix, to the ambiguity resolution

routine when required. Third, the Kalman filter calculates the unit line-of-sight vector

from the mobile UAV to each SV in view.

The ambiguity resolution routine is summoned by the Kalman filter whenever

the floating point estimates of the double-difference carrier-phase ambiguities need

to be resolved to their integer values. It receives the floating point estimates, and

an associated covariance matrix, from the Kalman filter and utilizes the LAMBDA

method to resolve the ambiguities. Because the “best” set may not necessarily be

the correct set, the LAMBDA routine returns two possible ambiguity sets with an

associated squared normal value which represents how good the LAMBDA routine

believes the fit is for each ambiguity set. The ambiguity resolution routine then

utilizes a ratio test with a critical value of 2.5 to compare the squared normal value

associated with the “best” set to the squared normal value of the “second best” set.

After ensuring that the ratio test has passed, the correct integer ambiguity set is

passed to the high-rate output task.

The high-rate output task receives data from multiple sources. First, the raw

GPS measurements are received from the front-end parser at a 20 Hertz rate. Second,

the unit line-of-sight vector from the mobile UAV to each of the SVs in view is

received from the Kalman filter. Finally, after the ratio test has passed, the integer

value of the widelane ambiguities is received from the ambiguity resolution routine.

After the widelane integer ambiguities have been received, the high-rate output task

is capable of internally determining the integer ambiguities for any new SVs. The

notable exception is the case when an excessive number of SVs are simultaneously

lost. However, in this case, the Kalman filter retains the capability of passing the

floating point estimates, and covariance matrix, to the ambiguity resolution routine.

Thus, the entire integer ambiguity set can be determined from scratch whenever
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necessary. Finally, for added precision, after the widelane ambiguities have been

determined, a relative position is formulated which permits the computation of the

L1 only ambiguity set. This L1 only ambiguity is then used to formulate a more

accurate relative position which is then used to determine the narrowlane ambiguity

set. Finally, the narrowlane ambiguity set is used to determine the most precise

relative position. Of note, the process of stepping from widelane to L1 only, and

finally to narrowlane measurements only has to be completed once. The high-rate

output task uses the known narrowlane ambiguities to compute the ambiguities for

any newly acquired SVs.

5.2 Conclusions

Because the Kalman filter provides floating point estimates of the double-difference

carrier phase ambiguities, and a covariance matrix, to the ambiguity resolution rou-

tine, an analysis of the tuning parameters was performed. The state vector errors

generally fell within the expected range represented by the covariance matrix.

A properly functioning Kalman filter should significantly reduce the noisy nature

of the GPS measurements. To evaluate performance in this area, two relative position

solutions were formed. The first solution was obtained by merely taking the difference

between the two absolute positions computed by the NovAtel GPS receiver. The

second solution was obtained directly from the Kalman filter state estimate of relative

position. While the first solution was quite noisy, having significant fluctuations over a

short time span, the Kalman filter estimated relative position was much less oscillatory

in nature.

A final test of the Kalman filter involved analyzing the performance of the

relative velocity and relative acceleration in a dynamic environment. While utilizing

a modified golf cart, a series of turns was made while simultaneously logging the

state vector data. Post-processing analysis revealed that the estimated velocities and

estimated position computed by the Kalman filter were consistent with each other,

as well as with the path over the ground.
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Because the floating point estimates of the double-difference carrier-phase am-

biguities must be resolved to their integer values to obtain the most precise relative

position, performance of the ambiguity resolution routine was conducted. The two

main performance parameters were the time to resolve the ambiguities and the success

rate of actually choosing the correct set.

In terms of the time required to resolve the ambiguities, a test was conducted

which involved a sample size of 6,876 calls to the ambiguity resolution routine in

a wide variety of measurement conditions. The ambiguities were resolved within 2

seconds for all but 126 cases (98 percent). Additionally, the ambiguities were resolved

in 5 seconds or less for all but 13 cases (99.8 percent). Finally, the longest time to

resolve the ambiguities was just under two minutes (117 seconds); however, most of

the longer convergence times were much less than 117 seconds.

In terms of success rate, of the 6,876 calls to the ambiguity resolution routine,

there were only 7 instances where the incorrect ambiguity was returned. This results

in a 99.9 percent success rate. Achieving a 100 percent success rate is possible by

choosing a higher critical value. However, doing so results in much longer convergence

times. Additionally, even when the incorrect set was returned, the error in the relative

position was on the order of a meter. Given the low probability of selecting the

incorrect set, the critical value was left at 2.5 which results in acceptable accuracy

and very fast convergence times.

As will be discussed below, the precision obtained through the use of widelane

measurements was less than adequate with errors frequently in the 10-15 cm range.

Performance can be significantly improved by using either L1 only or narrowlane

measurements. However, it was determined that the time required to resolve the

ambiguities was significantly higher when ambiguity resolution was attempted with

measurements other than widelane. Additionally, the success rate was moderately

lower as well. For this reason, ambiguity resolution is always accomplished with
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widelane measurements. To achieve the desired level of precision, the high-rate output

task transitions from widelane to L1 only, and finally to narrowlane measurements.

There are two key performance parameters for the high-rate output task. First,

the relative position must be accurate to within a few centimeters. Second, the latency

of the computed solution must be kept as small as possible.

In terms of precision, the use of widelane resulted in a horizontal accuracy of

roughly 8-10 cm and a vertical accuracy of roughly 15-20 cm. An in-depth analysis

resulted in the determination that these errors were caused by multipath. As a result,

the high-rate output task utilizes the relative position obtained from using the wide-

lane measurements to formulate the ambiguity set for L1 only measurements. This

ambiguity set is then used to obtain a more accurate relative position which is used

to formulate the ambiguity set for narrowlane measurements. It was determined that

making the transition from widelane directly to narrowlane was not possible, because

the relative position obtained with widelane was not accurate enough to consistently

obtain the correct narrowlane ambiguity set. However, the transition to narrowlane

mode only has to be accomplished once. After the narrowlane ambiguity set has been

determined, the system remains in narrowlane, unless a reset is required. Should a

new SV come into view, the high-rate output task utilizes the known ambiguities to

calculate a precise relative position. This relative position is then used to formulate

the integer ambiguity for the new SV which is then saved for future epochs.

In terms of latency, initial testing resulted in a latency of approximately 10 ms.

This is well below the required levels for 20 Hertz output. However, it indicates that

the system won’t operate reliably if 100 Hertz output is desired. However, additional

testing indicated that the 10 ms latency was completely due to the added processing

that occurs at a 1 Hertz interval when the Kalman filter is processing data. Neglecting

the overhead of the Kalman filter, the system latency is reduced to a range of 2-4 ms.

Several recommendations are made in the next section which should permit the system

to successfully operate at a significantly faster rate of 100 Hertz.
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Time constraints did not allow for dynamic testing as extensive as was done

for static testing. However, the limited testing which was conducted revealed that

the system was both reliable and accurate in the real-time dynamic environment.

Recommendations for follow-on testing are provided in the next section.

One of the initial concerns at the beginning of the research effort was the impli-

cation of utilizing data with a 1 Hertz update rate in a 20 Hertz process. Specifically,

the unit line-of-sight vector from the wing UAV (mobile receiver) to each of the SVs in

view is only calculated at a 1 Hertz rate. This information is required in order to for-

mulate the measurement matrix. The reason for calculating this vector at a reduced

rate is because of the added latency inherent in the Kalman filter which was discussed

above. However, an analysis of the precision of the high-rate output revealed that the

one second latency induced into the measurement matrix was not even noticeable.

5.3 Recommendations

Unfortunately, time constraints did not permit the system to be ported over to a

PC-104 or GUMSTIX hardware configuration. There are no known issues that would

preclude the system from operating on such a system. In particular, the GUMSTIX

systems have the LINUX operating system permanently burned on the ROM and

also support multithreading. However, the testing discussed in Chapter 4 should be

repeated on the applicable hardware to ensure that the system continues to operate

in an acceptable manner.

A major bottleneck which was identified during development and testing was

the transmission of the data from the lead aircraft to the wing aircraft. The cur-

rent implementation utilizes the NovAtel RANGECMPB data log. This means that

for each SV in view, the system presented in this thesis must transmit the following

data: L1 lock time, L2 lock time, L1 pseudorange measurement, L2 pseudorange mea-

surement, L1 carrier-phase measurement, L2 carrier-phase measurement, L1 doppler

frequency, L2 doppler frequency, and other miscellaneous information contained in the

NovAtel log. For a baseline of 12 SVs this required nearly 100 Kbps with the system
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operating at 20 Hertz. Several possibilities exist to increase throughput. The most

obvious choice is to replace the serial data link system with a faster USB or Ethernet

system that has higher data transmission capabilities. However, there are some other

alternatives which could prove to be viable. Because the NovAtel RANGECMPB

data log contains a great deal of data, a pre-processor could be placed onboard the

lead aircraft that extracts the information from the NovAtel log and only transmits

the necessary data. For example, the L1 and L2 lock times which require 42 bits per

epoch for each SV (10 Kbps for 12 SVs at 20 Hertz) could be replaced by a single bit

per epoch for each SV (0.24 Kps for 12 SVs at a 20 Hertz rate) and there would be no

impact on cycle slip detection. The L1 doppler frequency and L2 doppler frequency

measurements could be completely eliminated yielding a savings of 56 bits per SV

per epoch (a savings of 13 Kbps for 12 SVs at 20 Hertz). Even though the Kalman

filter operates at a 1 Hertz rate and is the only task that requires code measurements,

both L1 and L2 code measurements are transmitted at a 20 Hertz rate. By only

transmitting the L1 code measurements, at a reduced 1 Hertz rate, a savings of 16.8

Kbps can be realized for 12 SVs at 20 Hertz.

In terms of latency, it is desired to reduce the overall system from 10 ms to

roughly 5-6 ms. This would allow the system to process data a 100 Hertz rate. The

limiting factor for system latency is the Kalman filter which has to calculate the inverse

of relatively large matrices (22x22). The instrumentation package currently gives the

Kalman filter thread the same priority as the high-rate output thread. However, it

should be relatively easy to lower the thread priority associated with the Kalman

filter since it has 1 second to complete its calculations before it receives the next set

of measurements. Unfortunately time did not permit the completion of this task.

As mentioned in Chapter 4, there was insufficient time to conduct adequate

testing of the transition from widelane to L1 only and from L1 only to narrowlane

measurements. Preliminary indications revealed that the accuracy obtained in when

utilizing widelane measurements was accurate enough to successfully determine the

L1 only ambiguity set. Additionally, the accuracy of the L1 only solution appeared
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to be accurate enough to correctly determine the narrowlane ambiguity set. It also

appeared that going directly from widelane to narrowlane was not possible because

the accuracy of the widelane solution was not accurate enough to consistently select

the proper narrowlane ambiguity set. However, more testing needs to be undertaken

regarding the success rates of transitioning from widelane to narrowlane.

Because cycle slips occur very infrequently during static testing combined with

the fact that dynamic testing was relatively limited due to time constraints, more

testing is needed to evaluate cycle slip detection and handling. It was assumed that

the NovAtel signal lock times would reliably indicate a cycle slip. If this is a valid

assumption, then cycle slips can artificially be created by modifying the signal lock

times in the file utilized during post-processed mode. However, testing needs to be

conducted utilizing actual cycle slips to ensure that the signal lock time provides a

reliable indication of cycle slips.
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Appendix A. Software Documentation

This appendix provides a top-level description of how the software is organized.

It is hoped that the material to follow will be beneficial to those desiring to

utilize and/or enhance the instrumentation package presented in this thesis.

A.1 File Listing

All source code was written in C++ in a SUSE Linux environment. Table A.1

provides a listing of all required files.

Table A.1: Software Development: File Listing
File Name Brief Description

amb res.cpp Contains functions for ambiguity resolution task
amb res.h Header file for amb res.cpp

cserial.cpp Contains functions relating to serial ports I/O
cserial.h Header file for cserial.cpp

data.cpp Contains class definitions for various data types
data.h Header file for data.cpp

filter.cpp Contains functions for Kalman filter task
filter.h Header file for filter.cpp

high rate.cpp Contains functions for high-rate output task
high rate.h Header file for high rate.cpp

lambda.cpp Contains functions for C++ implementation of LAMBDA routine
lambda.h Header file for lambda.cpp

parse.cpp Contains functions for front end parser
parse.h Header file for parse.cpp

project.cpp Contains function for top level program
project.h Header file for project.cpp

Additionally, an open source matrix library was obtained and utilized. The matrix

library, designed by Robert Davies, can be downloaded from his website [3] and con-

tains extensive documentation on the various matrix functions which were used.
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A.2 Software Organization

The program initializes by calling the “main” function which is located at the

end of the “project.cpp” source code file. Depending on the operating mode selected

by the user, one of two paths are taken.

In post-processed mode, the “main” function generates two threads which oper-

ate simultaneously. The first thread, “filter thread”, is for the Kalman filter task and

is located in the “filter.cpp” source code file. The second thread, “high rate thread”,

is for the high-rate output task and is located in the “high rate.cpp” source code file.

Once the two previously mentioned threads have been initialized, the “main” function

passes control to the “process data file” function which is located in the “parse.cpp”

source code file. This function reads the raw measurements from the “common.txt”

input file and passes the data to the appropriate thread in the same manner as the

“Parse thread” does when operating in the real-time mode discussed next.

In real-time mode, the “main” function generates three threads which operate

simultaneously. The first thread, “COM1 thread”, is located in the “project.cpp”

source code file and handles communication with the reference receiver (lead aircraft

via serial data link). The second thread, “COM2 thread”, is also located in the

“project.cpp” source code file and handles communication with the mobile receiver

(wing aircraft via serial cable). The third thread, “Parse thread” is located in the

“parse.cpp” source code file and is used to synchronize the raw GPS measurements.

The “Parse thread” generates the “common.txt” input file which is required in order

to be able to operate in the previously discussed post-processed mode. Finally, the

“Parse thread” generates two additional sub-threads. These are the “filter thread”

and the “high rate thread” and are identical to those discussed in the post-processed

mode section.

Both the “COM1 thread” and the “COM2 thread” are nearly identical in na-

ture. The only difference between the two is that the first handles communication

with the lead aircraft while the second handles communication with the wing air-
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craft. After initializing the appropriate communication port, each thread requests

the RANGECMPB, GPSEPHEMB, and BESTPOSB NovAtel data logs be sent at

the required intervals. After a data log is sent by the NovAtel, each thread calls the

“process HEADER” function, located in the “project.cpp” source code file, to decode

the 28 byte header. Depending on the message type contained in the header, one

of the following functions are called to decode the remainder of the data log: “Pro-

cess RANGECMPB”, “Process GPSEPHEMB”, or “Process BESTPOSB”. Each of

these files is located in the “project.cpp” source code file. Once a complete data log

has been received and decoded, the data is pushed onto a memory stack. After the

“Parse thread” synchronizes the measurements, the data is popped off the stack and

passed to the “filter thread” at a 1 Hertz rate and to the “high rate thread” at a 20

Hertz rate.

The “filter thread”, located in the filter.cpp source code file, contains several

subroutines that are called at various time intervals while the Kalman filter is operat-

ing. These are summarized in Table A.2 and can be found in the “filter.cpp” source

code file.

Table A.2: Kalman Filter Thread: List of Subroutines
Function Name Brief Description

lla2ecef Converts longitude, latitude, and altitude into
ECEF coordinates

get filter params Reads the user defined Kalman filter tuning
parameters from the “input.txt” file

init matrix 1 Initializes Φ, Qd, and R matrices
init matrix 2 Initializes P matrix
calc sv pos Calculates SV position in ECEF coordinates.

Required to compute H matrix.
Generate T Matrix Generates T matrix. Used to transform

x and P matrices when base SV is lost

The “filter thread” also calls the “amb resolution” function which is located in the

“amb res.cpp” source code file. In turn, the “amb resolution” function calls the

“lambda2” function. The “lambda2” function and all of its subroutines are contained

in the “lambda.cpp” source code file.
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The “high rate thread”, located in the high rate.cpp source code file, contains

the code which calculates the relative position. It receives data from three sources.

First, the “filter thread” provides the unit line-of-sight vector to each SV in view. Sec-

ond, the “amb resolution” function passes the integer ambiguity values after the ratio

test has been passed. Finally, the “Parse thread” passes the raw GPS measurements

at a 20 Hertz rate. It should be noted that after the fixed ambiguities are initially

received, any new ambiguities (from newly acquired SVs) are internally determined

from within the “high rate thread”.

A.3 Implementation Aspects

In order to successfully compile the program, there are two compiler flags that

must be set within the KDE environment. First, because the application utilizes

multi-threading, the -pthread flags must be set. Second, because the application

utilizes the previously discussed matrix library, the path containing the matrix library

must also be included in the compiler flags directives.
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