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Development of an Annular Helicon Source for Electric 
Propulsion Applications 

Brian E. Beal* 
Aerojet – Redmond Operations, Redmond, WA 98052 

Alec D. Gallimore†, David P. Morris‡, and Christopher Davis§ 
ElectroDynamic Applications, Inc., Ann Arbor, MI 48113 

and 

Kristina M. Lemmer** 
University of Michigan, Ann Arbor, MI 48109 

The performance of typical electrostatic propulsion systems, such as the Hall thruster, is 
limited in part by inefficiencies in the electron bombardment ionization process.  These 
limitations become especially pronounced at the operating conditions required to achieve 
high thrust-to-power ratios.  One approach for achieving significant increases in efficiency at 
such operating conditions is to replace the typically-employed DC ionization mechanism 
with a helicon source, which is widely regarded as an efficient method for creating a high-
density, low-temperature plasma.  Standard cylindrical helicons, however, are not amenable 
to straightforward integration with annular Hall thrusters.  A rigorous mathematical 
treatment of helicon wave physics has been completed to establish the boundary conditions 
required to create an annular helicon source for both the m=0 and m=1 azimuthal modes.  
This analysis reveals no fundamental barriers to creation of an annular helicon source so 
long as the radial boundary conditions are set appropriately. 

Nomenclature 

0B

!
 = DC magnetic flux vector 

B0 = magnitude of DC magnetic flux 

B

!
 = AC magnetic flux vector 

Br, Bθ, Bz = radial, azimuthal, and axial components of magnetic field 
c = speed of light in vacuum 

E

!
 = electric field vector 

Er, Eθ, Ez = radial, azimuthal, and axial components of electric field 
e = electron charge 
Isp = specific impulse 
j
!

 = current density vector 

!
j  = current density perpendicular to magnetic field 

Jm = Bessel function of the first kind, order m 
k = axial wave number 
m = azimuthal wave mode (integer) 
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n0 = steady-state electron number density  
n = perturbed electron number density 
Pionization = ionization power 
Pinput = input electrical power 
Pother = power required for ancillary components such as electromagnets, heaters, etc. 
Pthrust = thrust power 
r = radial coordinate 
z = axial coordinate 
Rwall = radial coordinate of a physical boundary 
Rin, Rout = radial coordinates of the inner and outer walls of an annular source, respectively 
t = time 
T =   transverse wave number 
T/P = thrust-to-power ratio 
α = total wave number 
η = thrust efficiency 
θ = azimuthal coordinate 
µ0 = permeability of free space 
ω = angular frequency of wave 
ωc = electron cyclotron frequency 
ωLH = lower hybrid frequency 
ωp = electron plasma frequency 
ξq = qth zero of the J1 Bessel function 

I. � Introduction 
lectric propulsion (EP) systems are increasingly being used for orbit topping and stationkeeping maneuvers 
onboard modern spacecraft.  Due to their high specific impulse compared to chemical propulsion systems, EP 

devices offer significant reductions in the propellant mass required to perform a given mission.  Of the various types 
of EP, the Hall effect thruster (HET) is often favored for near-Earth applications due to its ability to provide 
moderately-high specific impulses (typically 1500-2500 seconds) at reasonable electrical efficiencies (generally 50-
60%).  A typical Hall thruster is annular in geometry and consists primarily of an upstream anode, a downstream 
cathode, and a magnetic circuit.1,2  Electrons emitted from the cathode, which is electrically biased to a negative 
potential, are drawn upstream to the positively biased anode.  The motion of these electrons is impeded by a 
predominantly radial magnetic field established by the magnetic circuit. As electrons migrate toward the anode, a 
fraction of them collide with propellant atoms, which are injected into the annular space.  These collisions result in 
ionization of the propellant.  The ions are then accelerated through the electrostatic field established between the 
anode and cathode resulting in a high velocity stream of ions.   

Due to the desire to make maximum use of the electrical power available for propulsion aboard a given 
spacecraft, one of the most important figures of merit used to characterize the performance of an EP device is its 
thrust efficiency.  In its most fundamental form, the thrust efficiency can be defined as in Eqn. 1 and, using the 
expression shown in Eqn. 2, written in the form of Eqn. 3.  Considering Pother to be small, Eqn. 3 reveals the 
intuitively obvious result that the thrust efficiency of an EP device is maximized when the power required for 
propellant ionization is minimized.  In conventional HETs, propellant atoms are ionized via a DC electron 
bombardment process as described above.  Devices relying on such processes are generally reported to result in an 
ionization cost (i.e. the energy required to create an ion) of approximately ten times the theoretical minimum.3  For 
example, if one assumes that most of the thermal power deposited into a Hall thruster results from inefficiencies in 
the ionization process, it can be inferred from previously published measurements that the ionization cost in the 
current state-of-the-art Hall thruster, Aerojet’s BPT-4000, is approximately 120 eV for operation on xenon, which 
has a first ionization potential of 12.1 eV.4  This inefficient ionization process limits the efficiency of Hall thrusters 
at all operating conditions. 
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In addition to limiting the Hall thruster’s ultimate efficiency at all operating conditions, the reliance on DC 
electron bombardment also limits the range of specific impulses over which reasonably efficient operation can be 
achieved. At high specific impulses, many Hall thrusters show a decrease in efficiency due, in part, to the creation of 
multiply-charged ions as a result of the increasing electron temperature that occurs at high discharge voltages. 
Fortunately, this limitation has been largely mitigated by advanced magnetic field topologies that prevent significant 
increases in ionization cost at high specific impulse operating conditions.5  The limitation encountered at low-Isp 
(i.e., high T/P, low discharge voltage) operating conditions, on the other hand, is more fundamental and is unlikely 
to be fully mitigated by straightforward design advances.  First, to achieve high T/P a Hall thruster must operate at 
low discharge voltages and high currents.  Operating at high currents requires creation of more ions such that any 
inefficiencies in the ionization process become a larger fraction of the total power input.  Second, electron 
bombardment ionization occurs only when a neutral propellant atom is struck by an electron traveling with a kinetic 
energy in excess of the first ionization potential of the propellant atom. For a thermal electron population, the 
electron velocity distribution is qualitatively similar to the function depicted in Fig. 1.  In this figure, the cross-
hatched areas represent electrons having sufficient energy to cause ionization.  Since the ionization potential is a 
function only of the propellant gas being used, it does not change as a function of thruster operating conditions.  
Examination of Fig. 1 shows that the fraction of the electron population having energy in excess of the ionization 
threshold is a function of the width of the electron velocity (or energy) distribution; i.e. the electron temperature.  
While the factors determining the maximum electron temperature in a typical Hall thruster are complicated, this 
value can be approximated to be roughly 10% of the applied discharge voltage for most modern thrusters (Ref. 6 and 
references therein).  It follows that at the low discharge voltages required to provide operation at high T/P, only a 
small fraction of the electron population has sufficient energy to result in propellant ionization.  This decreasing 
fraction of energetic electrons leads to an increase in the effective ionization cost and contributes to the decrease in 
overall efficiency exhibited by typical Hall thrusters at low specific impulses.  

 

 One approach that may be considered to improve the performance of the Hall thruster, as well as other EP 
devices, is to replace or supplement the conventional electron bombardment ionization mechanism with a more 
efficient plasma source.  In particular, one device that appears promising is the helicon source, which employs an RF 
antenna and a static magnetic field to produce cylindrically bounded whistler waves and is widely regarded as the 
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Figure 1. A qualitative depiction of a thermal electron velocity distribution. The cross-hatched areas 

represent the fraction of the population having sufficient energy to cause ionization.  
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most efficient method for producing a high-density, low-temperature plasma.3,7,8  For example, helicon sources have 
been reported to produce approximately an order of magnitude more plasma than a DC electron bombardment 
source for a given input power.3 Helicon sources are thus capable of realizing actual ionization costs approaching 
the theoretical minimum, which is almost a factor of 10 lower than that obtained in traditional Hall thrusters. 
Although employing helicon ionization sources is likely to be beneficial for a variety of EP devices, their 
traditionally cylindrical geometry may prove to be a liability in attempting to integrate them into certain engines 
such as the annular Hall thruster.  In an attempt to expand the geometric configurations in which the benefits of 
helicon sources may be realized, the analysis below generalizes the derivation of the helicon wave relations and 
presents the conditions that must be met in order to establish an annular helicon source. 

II. � Analysis 
The requirements for propagation of helicon waves in an annular geometry can be accomplished via a “first 

principles” approach that follows directly from linearized versions of Maxwell’s equations. In the derivation below, 
we follow the classical approach of Chen and deviate from well-established results only to the extent necessary to 
expand the applicability of the governing equations to annular, rather than cylindrical, boundary conditions.9  

The properties of helicon waves may be derived starting with the relations shown in Eqns. 4-6 where variables 
with the subscript 0 represent static quantities while unscripted variables denote perturbed, or wave, quantities.  
Manipulation of Eqns. 4-6 leads to Eqns. 7-9, where the subscript ⊥ represents the direction perpendicular to the 
static magnetic field, which is assumed to be in the axial, z, direction by convention. In the derivation of Eqns. 7-9, 
it has been assumed that the frequency range of interest is high enough that ion motions can be neglected and low 
enough that electron cyclotron motion can be neglected relative to guiding center motion, as described by Eqn. 10. 
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Given the fundamental relations of Eqns. 4-9, the derivation of helicon wave parameters can proceed by 
assuming perturbations of the form exp [i(mθ+kz-ωt)]. Assuming waves of this form and combining Eqns. 4-6 leads 
to Eqn. 11. Defining the parameter α according to Eqn. 12 and taking the curl of Eqn. 11 results in Eqn. 13, which is 
the main equation from which subsequent helicon wave relations are derived. Further, by comparing Eqn. 11 with 
Eqn. 5, one can deduce Eqn. 14, which reveals that the wave current is parallel to the perturbed magnetic field for 
this type of wave. This point will become important later when boundary conditions are applied to the general 
relations. 
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Separating Eqn. 13 into components and formulating the problem in cylindrical coordinates leads to Eqn. 15 for 
the z component. Here we have defined T as shown in Eqn. 16. We note by examination that Eqn. 15 is a form of 
Bessel’s equation, the general solution of which is given by Eqn. 17 where Jm and Ym are the Bessel functions of the 
first and second kind (order m), respectively, and C1 and C2 are constants of integration. Because Ym diverges at 
small values of Tr, physically meaningful solutions are generally taken to be those for which C2=0, such that the 
axial wave magnetic field is given by Eqn. 18.†† 
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The r and θ components of Eqn. 13 can be written as Eqns. 19 and 20, respectively, which can be solved in terms 
of Bz and its radial partial derivative. Substituting Eqn. 18 into this result yields Eqns. 21 and 22, which, along with 
Eqn. 17, define all three components of the wave magnetic field. The wave electric field follows directly from Eqn. 
4 and its components are given here for reference as Eqns. 23-25.9 
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†† Strictly speaking, if one considers only the annular case, it may be possible to generate solutions with C2≠0. In 
order to show the compatibility of the cylindrical and annular solutions, however, we limit our discussion here to the 
more restrictive case of C2=0, which is the only physically meaningful solution for a cylindrical helicon source. 
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At this point it is worth reiterating that all of the results shown above are universal and are not a function of 
geometry. In other words, we have made no assumptions that would limit the applicability of the above results to 
cylindrical rather than annular sources. We can now proceed with the application of boundary conditions by 
assuming a pair of cylindrical boundaries at arbitrary radii. For an insulating boundary, the condition jr=0 must hold, 
and from Eqn. 14 this requires Br=0. On the other hand, a conducting boundary condition requires Eθ=0, which also 
requires Br=0 according to Eqn. 24. Thus, regardless of the nature of the bounding wall, the condition Br=0 must 
hold at the physical boundaries of the plasma. From Eqn. 21, we can then establish the boundary condition shown in 
Eqn. 26 at r=Rwall. 
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One can solve Eqn. 26 by first selecting an azimuthal wave mode (m=0, 1, etc.), which is physically determined 
by the geometry of the driving antenna. The most common wave modes for helicon sources are the m=0 and m=1 
modes.3 Examining first the m=0 mode, we see that a nontrivial solution to Eqn. 26 requires that the derivative of 
the zeroeth order Bessel function must go to zero at the boundaries. By applying the well-known recurrence relation 
shown in Eqn. 27, this requirement can be written more conveniently as a requirement on the first order Bessel 
function as shown in Eqn. 28. Eqn. 28 then gives an exact boundary condition for the m=0 mode. In general, Eqn. 
28 is satisfied for cylindrical helicon sources since J1 goes to zero at r=0 and the bounding cylinder then forces the 
Bessel function to zero by satisfying the condition TRwall=3.83 where 3.83 is the first root of J1. The boundary 
condition thus simply specifies a relation between the transverse wave number, T, and the geometry of the bounding 
cylinder. For the purposes of creating an annular source, however, the solutions of greatest interest are those that do 
not rely on the trivial zero of the Bessel function at r=0. Such a solution can be obtained if one concentrates not on 
the area between r=0 and the first zero of J1, but rather on the area between two zeroes at finite radii (e.g. the area 
between the second and third zeroes of J1). Considering an annular source with boundaries at Rinner and Router then 
gives the condition shown in Eqn. 29. This relation is satisfied by Eqn. 30 where q is a positive integer. The inner 
and outer radii of the annulus are then related through Eqn. 31. Thus, so long as the proper relationship between 
Rinner and Router is maintained, it is possible to create an annular discharge while maintaining the fundamental 
properties of the helicon source for the m=0 mode. For reference, the J0-J2 Bessel functions are plotted in Fig. 2 as a 
function of their argument, Tr. 
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We next turn our attention to the m=1 mode. The relation shown in Eqn. 26 can be reformulated by applying the 
substitution Z=Tr and utilizing the chain rule to write the boundary condition on Br as Eqn. 32. Applying the 
recurrence relation of Eqn. 33 leads to Eqn. 34, where we have explicitly taken m=1. Finally, this equation can be 
solved numerically for Z=TRwall in terms of k/α. The two lowest order solutions are shown in Figure 3 and can be 
interpreted as giving required conditions for TRinner and TRouter just as Eqn. 30 did for the m=0 mode. Taking the 
ratio of these curves gives the annulus ratio, Router/Rinner, needed to satisfy the boundary condition Br=0 at the walls 
of an annular source for the m=1 wave mode. This ratio is shown in Fig. 4 and can be seen to vary with k/α. 
Recalling that α is entirely determined by T and k through Eqn. 16 reveals the fact that Fig. 4 specifies a required 
relationship between Router/Rinner and k/T. In other words, for the m=1 mode, there is a unique relationship between 
the antenna geometry (which defines k/T) and the annulus geometry, and therefore the two may not be specified 
independently. 
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Figure 2. The Bessel functions of the first kind order 0 through 2. 
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Figure 3. The two lowest order solutions to Eqn. 34 showing the relationship between TRwall and k/α for 

the m=1 mode. 
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Having derived the boundary conditions necessary to allow propagation of helicon waves in an annular channel, 
it is helpful to next examine the resulting wave field patterns for both the m=0 and m=1 modes.  This is facilitated 
by first applying the recursion relations of Eqns. 27 and 35 to the electric field equations given by Eqns. 23 and 24.  
These results are shown in Eqns. 36 and 37, which, after applying the assumed waveform exp [i(mθ+kz-ωt)], taking 
the real component, and writing the result in terms of the dimensionless parameter k/α, can be expressed more 
conveniently as Eqns. 38 and 39.  The relative magnitudes of the radial and azimuthal electric fields (i.e. the terms in 
square brackets in Eqns. 38 and 39) are plotted in Fig. 5, which shows the values of Tr delineating the lowest order 
cylindrical and annular wave modes for k/α=0.2.  These same fields, including their azimuthal variation, are 
depicted in Figs. 6 and 7 at various values of the parameter kz-ωt.  The existence of the solutions shown below 
suggests that there are no fundamental barriers to creation of annularly-bounded helicon waves so long as the 
boundary conditions are set appropriately.    

 ( ) ( ) ( )( )xJxJ
m

x
xJ

mmm 112 !+ +=  (35) 

 ( ) ( ) ( )[ ]TrJkTrJk
kT

C
E

mmr 11
1 )(

2 +!
!!+

!
= ""

#
 (36) 

 ( ) ( ) ( ) ( )[ ]TrJkTrJk
kT

iC
E

mm 11
1

2 !+ ++!
!

= ""
#

$
 (37) 

 ( ) ( ) ( ) ( )[ ] ( )tkzmTrJkTrJk

kT

C
E

mmr
!"

##

#

!
$+$$+

$
= +$

cos11
2 11

1  (38) 

0

0.5

1

1.5

2

2.5

0.01 0.1 1

k/alpha

R
ou

te
r/R

in
ne

r

 
Figure 4. The relationship between annulus ratio, Router/Rinner, and k/α for the lowest order solution of the 

m=1 mode. 
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Figure 5. The relative magnitudes of the radial and azimuthal electric fields for the a.) m=0 and b.) m=1 modes. 
Values of Tr below the first zero of Eθ (or Br) correspond to the cylindrical solution while values above this zero 

represent the lowest order annular solution. 
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   a.)                   b.) 

 
c.)                d.) 

Figure 6. The electric field patterns for the m=0 wave mode with k/α=0.2. Field patterns are shown at values 
of kz-ωt of a.) 0, b.) π/2, c.) π, and d.) 3π/2. The inner blue band in a.) depicts the boundary between the 

cylindrical and annular solutions. 
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III. Similar Work 
Near the conclusion of the work reported here, it was learned that a very similar analysis was being conducted in 

parallel by Yano and Walker at the Georgia Institute of Technology.  The interested reader is referred to their work 
for an alternate approach to determining the governing relations for an annular helicon source.10  In agreement with 
the analysis reported in the present work, Yano and Walker concluded that it is possible to create a helicon plasma 
source with a coaxial configuration.10 
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a.)              b.) 
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Figure 7. The electric fields patterns for the m=1 wave mode with k/α=0.2. Field patterns are shown at values of 
kz-ωt equal to a.) 0, b.) π/2, c.) π, and d.) 3π/2. 



 
American Institute of Aeronautics and Astronautics 

 

13 

IV.� Conclusion 
A rigorous analysis of helicon wave physics has revealed the boundary conditions required for creation of a 

helicon plasma source in an annular configuration.  The required boundary conditions differ between the two most 
common azimuthal modes, m=0 and m=1, showing that source geometry is fundamentally coupled to characteristics  
of the driving antenna.  The results shown here should facilitate creation of high-density, low-temperature, coaxial 
helicon plasma sources that may prove beneficial as ionization stages in various EP devices, including Hall thrusters 
operating at high thrust-to-power ratios. 
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