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LOCAL SCALABLE CFD ALGORITHMS BASED ON FIRST-ORDER
PDE’S

AFOSR GRANT NR. F49620-03-1-0226

Bram van Leer
Department of Aerospace Engineering
University of Michigan, Ann Arbor

Abstract

Hyperbolic-Relaxation (HR) systems of partial differential equations (PDE’s)
bear the promise of describing rarefied flows in the transition regime (0.001 <
Kn < 10) much more efficiently than pseudo-particle methods like DSMC. In
order to arrive at a maximally efficient numerical methodology a Discontinuous-
Galerkin (DG) spatial discretization was combined with a Hancock-type tem-
poral integration scheme. A linear HR system of two equations, describing
1-D advection-diffusion in the equilibrium limit, was used as a test-bed for
error analysis and numerical experiments. The new method is more efficient
than any of the traditional DG and finite-volume methods tested, and re-
mains accurate in the diffusion limit. The method is ready to be extended to
nonlinear systems and multiple dimensions. In addition it was demonstrated
that spurious inviscid shocks embedded in viscous shock structures, found on
the basis of HR systems, can be avoided by modifying the relaxation term.

Objective

The objective of the current research project is to develop and test numer-
ical methods for Hyperbolic-Relaxation (HR) systems of PDE’s. These are
first-order systems with (usually stiff) source terms that exhibit hyperbolic
behavior (wave propagation) for times small compared to the relaxation time
7 (“frozen” physics), but over long times exhibit diffusive behavior (“equilib-
rium” physics). Such systems are useful, for instance, in describing the flow
of rarefied gases, whether in the upper atmosphere (re-entry, braking) or in
a MEMS device. Numerical methods for HR systems bear the promise of
describing these flows much more efficiently than DSMC (particle) methods,
for Knudsen numbers as high as 10. The savings could be orders of magni-
tude in CPU time for current simulations, greatly reducing the turn-around

20061108104




time for any design cycle.

Crucial to the success of the HR description is the emergence of numeri-
cal methods that are uniformly accurate with regard to the parameter At/7,
where At is the time step used in the scheme. These so-called Asymptotic-
Preserving (AP) methods would make it possible to compute flows with
widely varying local Knudsen number.

For the design and analysis of numerical methods we use an HR system
of only two equations, the so-called “generalized hyperbolic heat equation”
(GHHE), which in the equilibrium limit reduces to a single advection-diffusion
equation. The system is one-dimensional and is taken to be linear when
Fourier analysis is in order; it can be made nonlinear for numerical experi-
mentation.

Past year’s progress
This performance report covers the final grant period 9/1/2005 - 4/30/2006;
it also serves as final report.

Results on DG for HR systems

We wish to adopt a discretization method that combines compactness with
high-order accuracy. In standard finite-volume methods, higher-order accu-
racy relies on piecewise-polynomial reconstruction, which requires extended
stencils. Discontinuous Galerkin (DG) methods overcome the draw-back of
reconstruction by using extra equations for updating the polynomial repre-
sentation of state variables. Currently, the most successful DG methods are
semi-discretizations combined with TVD Runge-Kutta (RK) ODE solvers,
denoted as RKmDG(k) where m is the order of the RK method and k is the
degree of the polynomial basis functions.

DG methods were previously shown (1] to be automatically AP provided
the advection speed is small compared to the “frozen” wave speed. This
guarantee is lost when the advection speed is comparable to the frozen wave
speed, due to diffusive numerical errors stemming from approximating the
advection operator. In order to arrive at a DG method that remains AP for
a finite advection speed, we started from the method of Arora [2], developed
earlier in our group. which uses a locally implicit characteristic method to
evaluate the cell-interface fluxes with strong coupling to the source terms. To
realize the AP property for all practical values of At/7, Arora recommends
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a minimum of three flux evaluations for computing the flux integral over one
time step. Using Huynh'’s [3] idea of combining a Hancock-type time integra-
tor with DG spatial discretization (“upwind moment scheme”), we were able
to cast Arora’s idea in a form that uses locally implicit updates inside a cell,
and a standard Riemann solver to couple the cells, thus greatly simplifying
the method, and making it more attractive to use.

Our HR model system is of the form
1
Oyu + 0.f(u) = Zs(u), (1)

where u is the vector of conserved variables, f is the flux of u, s is the source
term, and ¢ is the nondimensional relaxation time. The numerical results we
obtained for the DG-Hancock method are based on a 2 x 2 linear HR system
with u = [u,v]7,f = [v,4|T, and s = [0,7u — v]7 in Eq.(1). This system
has “frozen” wave speeds +1 when relaxation is weak (¢ > 1); when the
relaxation dominates (¢ < 1), it reduces to the advection-difiusion equation
O + r0,u = €(1 — r?)0yu, with an “equilibrium” wave speed of r. For
stability, |r| < 1.

The solution representation is piecewise linear (k = 1); thus, the gradient
of each flow variable evolves according to an independent update equation.
Details of the method and the numerical experiments are presented in a
conference paper by Suzuki and Van Leer [4]. It requires solving a Riemann
problem twice at each cell interface but achieves third-order accuracy in time
and space. We solve an initial-value problem on a periodic domain with a har-
monic initial condition ug = vy = cos(27z), x € [0, 1]; the other parameters
r, € are chosen so that the reduced equation becomes an advection-dominated
advection-diffusion equation (r = 1/2,¢ = 107°). The new method is com-
pared with a second-order Godunov-type finite-volume method, HR2, and a
DG(1) method, both incorporating the IMEX-RK method [5]. At ¢ = 300,
when the wave has moved 150 times its own length, while its amplitude
has been reduced by about 8%, the new method was seen to be the least
dissipative and dispersive of all, whereas the RK2HR2 method produces a
completely inaccurate solution. A grid-convergence study confirmed that the
new method is third-order accurate, as expected from the truncation-error
analysis. In contrast, RK2HR2 and RK2DG(1) show second-order conver-
gence in the Ly-norm.



2. Shock representation by HR systems

Resolved shock structures computed on the basis of standard hyperbolic-
relaxation systems include, for most Mach numbers, embedded discontinu-
ities (inviscid shocks) that are not validated by DSMC calculations [6]. The
appearance of such a discontinuity indicates that the chosen relaxation term
is inadequate: it lacks information about the nonlinear characteristic fields
of the hyperbolic operator. By modifying the relaxation term we have
succeeded, for a nonlinear HR model system, in obtaining the correct vis-
cous shock profile. In order to show that a time-marching scheme can find
the proper asymptotic steady solution of an HR system, we used a stan-
dard second-order upwind-biased finite-volume scheme with a two-stage time-
integrator for the modified system

u+v, = 0; (2)
1,2\ £2, 2
5 o (v —3u®) fPu
x = T 3
vy + feuu 7 (3)
with f = 2.0, 7 = 0.1, and boundary conditions
Ut = TU, Vi =U, U =1 (4)

The original relaxation term was (v — 2u?)/7. Figure 1 shows the numeri-
cal results plotted on top of the exact profile, for Az = 0.075. There is no
trace of an inviscid jump, and the agreement appears to be excellent. For
comparison, Figure 2 shows the incorrect profile obtained with the original
system; it has an infinite derivative at the origin). A grid-refinement study
confirms the second-order convergence of the numerical to the exact solution.
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Figure 1: Steady Burgers shock
profile (line, exact solution cell
averaged) and numerical approx-
imation (symbols) obtained with
the modified hyperbolic-relaxation
system (3); 7 = 0.1, Az = 0.075.
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