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Abstract 
In recent years, intrusion detection systems have gained wide acceptance within both 
government and commercial organizations. A number of intrusion detection tools are 
commercially available and are being routinely used as part of the protection of network and 
computer systems.  
 
There are several limitations to the present generation of the intrusion detection systems: These 
tools detect only those attacks that are already known, generate too many false positives, and 
operation of these tools is too labor intensive. To overcome these problems, we developed 
methods and tools that can be used by the system security officer to understand the massive 
amount of data that is being collected by the intrusion detection systems, analyze the data, and 
determine the importance of an alarm.  
 
This report is divided into three parts. Part I describes a network intrusion detection system, 
called Audit Data Analysis and Mining (ADAM), which employs a series of data mining 
techniques including association rules, classification techniques, and pseudo-Bayes estimators to 
detect attacks using the network audit trail data. Although association rules have been used 
before for this purpose, our technique is novel in two ways: First, it compares the suspicious 
rules with a previously generated profile of “normal” rules and selects only rules not in that 
profile. Second, it does the mining incrementally by sliding a time window over the audit trail 
data, as it is being generated. Experiments using the DARPA Intrusion Detection Evaluation 
Data show that ADAM is very successful in detecting two types of attacks: TCP-dump probe 
attacks and DOS attacks, generating very few false positives per day.  
 
In Part II, we show how to build attack scenarios by explicitly including network 
vulnerability/exploit relationships (i.e., the attack graph) in the model. We map intrusion events 
to known exploits in the network attack graph, and correlate the events through the 
corresponding attack graph distances. From this, we construct attack scenarios, and provide 
scores for the degree of causal correlation between their constituent events, as well as an overall 
relevancy score for each scenario.  While intrusion event correlation and attack scenario 
construction have been previously studied, this is the first treatment based on association with 
network attack graphs.  We handle missed detections through the analysis of network 
vulnerability dependencies, unlike previous approaches that infer hypothetical attacks. In 
particular, we quantify lack of knowledge through attack graph distance.  We show that low-pass 
signal filtering of event correlation sequences improves results in the face of erroneous 
detections.  We also show how a correlation threshold can be applied for creating strongly 
correlated attack scenarios.  Our model is highly efficient, with attack graphs and their exploit 
distances being computed offline.  Online event processing requires only a database lookup and a 
small number of arithmetic operations, making the approach feasible for real-time applications.  
 
In part III, we provide a complete list of publications that have resulted from this effort. 
Moreover, we successfully licensed the resulting technology to a company called Secure 
Decisions and filed for four patents.  We have acknowledged AFRL/Rome support in the patent 
applications. 
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Part I. ADAM: Audit Data Analysis and Mining

1 Introduction

The most recent network attack, SQL worm, resulted in massive packet loss throughout the web,
caused severe latency, and caused five of the thirteen root nameserver to fail. This incidence reveals
a simple fact that network-based attacks continue to increase in frequency and severity.

Intrusion detection techniques can be classified into two broad categories: misuse detection and
anomaly detection. Misuse detection aims to detect well-known attacks as well as slight variations
of them, by characterizing the rules that govern these attacks. Due to its nature, misuse detection
systems generally have low false alarms but they are unable to detect any attacks that lie beyond
their knowledge. Three major techniques are widely used in misuse detection: expert systems
[10, 33, 31, 20, 32, 7], signature analysis, and state transition analysis [36, 41]. The other techniques
include data mining [26, 29, 28, 27] and petri net [9].

Anomaly detection is designed to capture any deviations from the established profiles of users and
systems normal behavior pattern. Profiles of normal behavior can be built with a variety of tech-
niques including statistical [10, 37], association rule [5], neural network [17], computer immunology
[14], and specification-based [38] methods. In principle, anomaly detection has the ability to detect
new attacks. In practice, this is far from easy because of two reasons. First, it is very hard to obtain
accurate and comprehensive profiles of the normal behavior, which makes an anomaly detection
system easily generate many false alarms. Second, it is hard to discriminate between normal devia-
tions and abnormal deviations from the profiles, which makes it difficult for an anomaly system to
distinguish the true intrusions from the normal instances even if new attacks are captured by the
system. Thus, anomaly detection has the potential to generate too many false alarms, and often it
can be very time consuming and labor expensive to sift true intrusions from the false alarms.

There are several limitations to the present generation of the intrusion detection systems. These
tools are only effective in detecting attacks that are already known; they often generate too many
false positives; operation of these tools is too labor intensive. To overcome these problems, we
need to develop methods and tools that can be used by the system security officer to understand
the massive amount of data that is being collected by the intrusion detection systems, analyze the
data, and determine the importance of an alarm.

The use of specialized audit trails for intrusion detection has been advocated by security experts
as a means to discover previously unknown attacks. The idea is to analyze the audit trail to spot
“abnormal” patterns of usage, performing intrusion detection; however, audit trails contain large
amounts of data, making the task of intrusion detection very laborious. In fact, in order not to
be bypassed by potential intruders, it is advisable to collect data at the lowest possible level (e.g.,
monitoring system service calls as opposed to application-level monitoring). On the other hand,
the lower one pushes the monitoring, the larger the size of the data collected. To alleviate this
problem, the use of random sampling has been suggested; however, using sampling one runs the
risk of missing intrusions.
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The problem is further complicated by the need to allow for differences in the data due to special
circumstances such as holidays and other factors. For instance, the “normal” number and duration
of FTP connections may vary from morning to afternoon to evening. It may also depend on the
day of the month or the week, or it may vary depending on the class of users being considered.

In this report, we describe a network intrusion detection system, called ADAM, which applies a
set of data mining techniques including association rules, classifications, and pseudo-Bayes estima-
tors to detect network intrusion. Even though mining of association rules has been used to detect
intrusions in audit trail data [26, 29], ADAM is unique in two ways:

• ADAM uses incremental mining (on-line mining): It does not look at a batch of TCP con-
nections, but rather uses a sliding window of time to find the suspicious rules within that
window.

• ADAM is profile-based: It builds, a-priori, a profile of “normal” rules, obtained by mining
past periods of time in which there were no attacks. Any rule discovered during the on-line
mining that belongs to this profile is ignored, assuming it corresponds to a normal behavior.
In this sense, ADAM looks for unexpected rules. This helps in reducing the number of false
positives flagged by the technique.

Additionally, ADAM has two distinct properties:

• It is able to detect novel attacks. As we stated earlier, detecting new attacks is one of the
hardest tasks to accomplish, since no knowledge about these attacks is available. ADAM uses
pseudo-Bayes estimators to enhance the ability to detect new attacks [6].

• It builds profiles using temporal association rules in terms of multiple time granularities [30].
This provides more flexibility in defining time intervals, and thus produces more precise profile
about the temporal patterns of user and system behavior.

In addition, ADAM gives a security operator the capability of drilling down into the audit trail
data in order to examine the origin of the suspicious activity, facilitating the human intervention
in the analysis by keeping the focus of the operator on the subset of data that is probably causing
the attack.

The rest of the report is organized as follows. Section 2 gives a brief review of the related
work, followed by the data mining applications in intrusion detection. Sections 3 and 4 present the
framework and techniques used in ADAM. Section 5 descibes the experimental results based on the
DARPA data, and Section 6 offers the summary and conclusions of this research.

2 Related Work

ADAM can be cataloged as using a profile base technique to identify expected (an unexpected)
behavior. Profiles, based on models of observed activity of subjects were introduced as a tool
for intrusion detection by D. Denning [11]. The model used by Denning is a rule-based pattern
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matching system, independent of the target system for which it is detecting intrusions. Audit
records, with no standard format provided, are collected and analyzed. Each observation in the
trail is used to form the profiles. Then, various statistical models are used to determine the current
activity model and look for intrusions. Our technique uses the same principle, although we focus
in the discovery of abnormal association rules instead of arbitrary patterns.

The IDES prototype, described in [10, 33], was developed in SRI and it is based on the statistical
and expert rule-based techniques. The intrusion detection measures are selected based on the
intuition and experience of the developers’ group. NIDES [3] extended the work of IDES by
introducing a results-fusion component to integrate its response logic with the results produced by
the anomaly-detection subsystem. A successor system to NIDES, called EMERALD [35], currently
under development at SRI, extends NIDES to accommodate network analysis.

NetSTAT [41] is a tool aimed at real-time network-based intrusion detection, that uses state
transition analysis to represent attack scenarios in a networked environment.

eBayes of SRI’s Emerald uses Bayes net technology to analyze bursts of traffic [40]. Defining a
session as temporally contiguous bursts of TCP/IP traffic from a given IP, eBayes applies Bayesian
inference (based on naive Bayes model) on observed and derived variables of the session, to obtain
a belief for the session over the states of hypothesis. Hypothesis can be normal events and attacks.
Given a naive Bayes model, a training data, and a set of hypothesis, a conditional probability
table(CPT) is built for the hypothesis and variables, and it will be adjusted for the current ob-
servations. By adding a dummy state of hypothesis and a new CPT row initialized by a uniform
distribution, eBayes has ability to generate the new hypothesis dynamically that helps it to de-
tect new attacks. DuMouchel proposes a statistical method that compares the sequence of each
user’s commands to a stored profile describing the probability distribution of that user’s command
sequences [13]. It uses a Bayes Factor statistic to test the null hypothesis that the observed com-
mand transition probabilities come from a profiled transition matrix. The alternative hypothesis
is formed as a a Dirichlet mixture of multinomial command probabilities.

Forrest et al. record frequent subsequences of system call that are invoked in the execution of
a program [14]. Absence of subsequences in the current execution of the same program from the
stored sequences constitutes a potential anomaly. Lane and Brodley use a similar approach but
they focus on an incremental algorithm that updates the stored sequences and used data from
UNIX shell commands [25]. Using a technique based on Teiresias algorithm, Wespi et al. extend
Forrest’s approach of modeling processes by fixed-length sequences of system calls to variable-length
patterns, which are more naturally suited to present the process model [42]. Lee et al. using a rule
learning program, generate rules that predict the current system call based on a window of previous
system calls. Abnormality is suspected when the predicted system call deviates from the actual
system call [28]. Ghosh and Schwartzbard propose using a neural network to learn a profile of
normality [17].
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2.1 Intrusion Detection using data mining techniques

Data mining refers to a process of nontrivial extraction of implicit, unknown, and potential useful
information from databases. There are other terms that carry a similar meaning to data mining,
such as knowledge discovery in databases, knowledge extraction, and data/pattern analysis.

In the past several years, data mining techniques have attracted a lot of attention in the area of
intrusion detection because of two reasons:

• Many data mining techniques are well suited for the needs of intrusion detection. Examples
of the techniques used in intrusion detection systems include decision tree, link analysis,
association rules, clustering, rule abduction, and sequence analysis.

• From the data analysis point of view, the task of intrusion detection is closely related to data
mining. An intrusion detection system aims at finding attack activity from usually very large
volume of audit trails data, which is infeasible to be handled manually. The entire process of
intrusion detection is generally involved in some of the following operations: audit trail data
preprocessing, audit data analysis, pattern extraction for attacks, “normal” activity or both,
and so on.

Several intrusion detection systems have been developed based on the data mining techniques
(see, for example, [24,3,1]). JAM is a misuse detection system developed at Columbia University.
It employs mining association rules and frequent episodes to discover patterns of intrusions, then
uses a meta-learning classifier to learn the signature of attacks [26, 29, 28, 27]. The association
rules algorithm is used to determine relationships between fields in the audit trail records. The
frequent episode algorithm is used to model sequential patterns of audit events. Then features
are extracted from both algorithms and used to compute the models of intrusion behavior. The
meta-learning classifiers build the signature of attacks. ADAM is a network anomaly detection
system [6, 5]. It employs an association rule mining module to learn system profile and to capture
suspicious patterns of network traffic. A classification module is used to learn the output of mining
module so as to further reduce the false alarms and assign right names to known attacks. IDDM
characterizes change between network data descriptions at different times, and produces alarms
when detecting large deviations between descriptions [1]. Helmer et al. present a distributed in-
trusion detection system that uses data mining agents to automate discovery of concise rules from
system call traces [19]. The intrusion detection agents are deployed at two levels. Low level agents
travel to each monitored component, gather recent information of network, and classify the data to
determine whether suspicious activity is occurring. High-level agents maintain the data warehouse
by combining knowledge and data from the low-level agents. A set of machine learning algorithms
are used to discover patterns of coordinated intrusions. Bala et al. propose an approach to building
a network profile by applying distributed data analysis methods [4]. Global profiles are built us-
ing a Distributed Data Mining approach that integrates inductive generalization and Agent based
computing. Agents generate partial trees and communicate the temporary results among them in
the form of indices to the data records. Then the classification rules are learned via tree induction
from distributed data to be used as intrusion profiles.
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Data mining techniques have also been used in virus detection and alarm analysis. Shultz et al.
propose a framework that uses data mining algorithms based on RIPPER, Naive Bayes and multi-
Naive Bayes to train multiple classifiers on a set of malicious and benign executables to detect new
malicious binaries [39]. S. Manganaris et al. propose to use association rules to detect anomaly on
the IDS alarm stream [34]. Julish et al. propose an alarm clustering algorithm to manage intrusion
detection alarms by identifying and resolving their root causes [22], and a conceptual clustering
technique to mine historical alarms so as to handle future alarms more effectively [23]. Klemettinen
designed an alarm correlation system that uses association rules and frequent episodes algorithms
to discover alarm patterns [24].

3 ADAM System

3.1 Architecture of ADAM

ADAM is a network anomaly detection system, and its architecture is shown in Figure 1. It is
composed of two modules: Preprocessing Engine and Mining Engine. The Preprocessing Engine
sniffs TCP/IP traffic data, extracts header information of each packet, and generates a record for
each connection based on a predefined schema

R = {Ts, Src.IP, Src.Port,Dst.IP,Dst.Port, F lag}
where Ts gives the starting time of a connection, Src.IP and Src.Port are source IP and port of
a connection, and Dst.IP and Dst.Port are destination IP and port. Flag gives the connection
status, which can be open, half open, close, etc. ADAM only works on TCP/IP header information
of the TCP/IP packets, and it does not analyze the payload of them.

Preprocessing
Engine

Attack free
training data

Test data

1

2

Association Rule
Mining Model

Classification
Model

Mining Engine

   2

Profile

1

2 2

1

3

Normal activity, attacks

333

Figure 1: Frame work of ADAM

The Mining Engine contains two components: Association Rule Mining module and Classification
module. The Association Rule Mining module searches for the high support association rules of the
connection records. It contains three association rule algorithms: single-level mining, domain-level
mining and feature selection. The Classification module contains a set of classification algorithms.
It accepts the association rules from the mining module and classifies them into attacks and normal
activity. Normal activity is discarded and only attacks are presented to the system security officer.
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3.2 Operation of ADAM

ADAM performs intrusion detection task in two phases: training phase (denoted by 1, 2 in Figure
1) and detecting phase (denoted by 3 in Figure 1). Given a training data with attacks labeled,
the training phase is composed of two stages. At the first stage, the Association Rule Mining
module searches for the high support association rules of an attack free data obtained by removing
all the attack connections from the training data, and puts them into the profile, because they
are believed to represent normal behavior patterns. At the second stage, ADAM takes the whole
training data and searches for high support association rules. Then it compares them with the
profile, and outputs the suspicious rules, that are either not in the profiles or are very different
from the profiles. The suspicious association rules are converted into the classification vectors, and
train the Classification module. In the detecting phase, Association Rule Mining module searches
for the suspicious association rules of the audit data, and translated them into the vectors. Then
the Classification module classifies them into normal events and attacks. The normal events are
ignored, and only attacks are output to the system security officer.

4 Techniques

ADAM uses a combination of on-line mining of association rules with classification algorithms to
identify and characterize suspicious activity in the audit trail.

4.1 Mining association rules

The task of mining association rules, first presented in [2] consists in deriving a set of rules in the
form of X −→ Y where X and Y are sets of attribute-values, with X

⋂
Y = ∅ and ‖Y ‖ = 1.

The set X is called the antecedent of the rule while the item Y is called consequent. For example,
in a market-basket data of supermarket transactions, one may find that customers who buy milk

also buy honey in the same transaction, generating the rule milk −→ honey. There are two
parameters associated with a rule: support and confidence. The rule X −→ Y has support s in the
transaction set T if s% of transactions in T contain X ∪ Y . The rule X −→ Y has confidence c if
c% of transactions in T that contain X also contain Y . The most difficult and dominating part of
an association rules discovery algorithm is to find the itemsets X

⋃
Y that have strong support.

(Once an itemset is deemed to have strong support, it is an easy task to decide which item in the
itemset can be the consequent by using the confidence threshold.) For this reason, we actually aim
to find high-support itemsets in our technique, rather than their rules. We use the terms rules and
itemsets interchangeable throughout the report.

Association Rule Mining module contains three association rule mining algorithms: single-level
mining, domain-level mining,1 and feature selection. Both single-level mining and domain-level
mining algorithms can work in two modes: static mode and dynamic mode. In static mode,

1This is known as multi-level mining in data mining terminology; to avoid confusion with multi-level security

concept, we use domain-level instead in this report
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Src.IP,Dst.IP, Serv, Dur Src.IP, Dst.Sub

Src.IP,Dst.Port, Serv, Dur Src.IP, Dst.Sub, Dst.Port

Src.IP,Dst.IP, Dst.Port,Serv, Dur Src.Sub, Dst.IP

Src.IP,Src.Port,Dst.IP, Serv, Dur Src.Sub, Dst.IP, Dst.Port

Src.IP,Src.Port,Dst.Port, Serv, Dur Src.Sub, Dst.Sub

Src.IP,Src.Port,Dst.IP, Dst.Port, Serv, Dur Src.Sub, Dst.Sub,Dst.Port

(a) single-level mining (b) domain-level mining

Figure 2: Rule set of single-level mining and domain-level mining

the algorithm scans the entire database and generates the “global” frequent association rules. In
dynamic mode, the algorithm applies a sliding window on the database and generates the frequent
association rules for the records in each window. For simplicity, we only present the dynamic
algorithms in the following discussion.

4.1.1 Single-level mining

The relation R contains the dataset that is subject of the association mining. Notice that in this
context, the association rules we can come up with are more restrictive than in the general market-
basket data case. For instance, there can be no rules with two different Src.IP values in the
antecedent (No single connection comes from two sources). Nevertheless, the number of potential
rules is large: connections may come from a large base of source IP addresses and ports. Let
S = {Src.IP, Src.Port}, D = {Dst.IP,Dst.Port}. We are interested in itemsets that are in the
form of s → d, where s ∈ S ∧ Src.IP ∈ s and d ∈ D. Figure 2(a) shows the single-level itemsets.

Notice that we have deliberately omitted itemsets that only contain Src.Prt without containing
Src.IP , since we think that these sets lack the valuable correlation between source and destination
hosts.

The dynamic single-level mining algorithm implements incremental on-line association rule min-
ing. It only needs to look at each connection record once, thus it is appropriate for on-line detection.
The sliding window size is denoted as Δw. This window size can be interpreted as either counting
the last Δw connections, or a the last Δw units of time. Let Pch

denote a pointer to the first
connection ch in a window, and c the current record being processed in the window. Let c(Pch

)
define an operation such that ch = c(Pch

), and
∏

i(c) be the projection of c to the corresponding
type of association rule shown as in Figure 2(a).

Figure 3 shows the pseudo-code of dynamic single-level mining. Notice that, at the first stage of
training phase the algorithm generates the profile of system since the input dataset is attack free.
In this case, H i

p = ∅ for i = 1, . . . , 6, and the output Li of the algorithm for i = 1, . . . , 6 make the
profile. In the test phase, Li gives a set of suspicious association rules associated with

∏
i.

The dynamic single-level mining algorithm proceeds as follows. First it takes the current connec-
tion c recorded in the audit trail (corresponding to the preprocessing of TCP packets) and examines
if any of its projections

∏
i(c) is in the corresponding table H i

p. If this is not the case, it inserts the
projection into the table Hi. Otherwise, the projection is ignored, since it is a normal occurrence.
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Input: H i
p (i=1,...,6): the hash tables of normal association rules, winSize, sup. Each Hi

p

stores one of six types of associations
Output: L: A set of new association rules

begin
(1) for all connection records c do begin
(2) if c is the first record then
(3) ph = pc

(4) ch = c
(5) th = c.T s
(6) if c.T s− th <= winSize then
(7) for i = 1, . . . , 6
(8) HashUpdate(Hi, Hi

p,
∏

i(c))
(9) else
(10) for i = 1, . . . , 6
(11) Li = Li∪ HFilter(Hi, sup)
(12) while c.T s − th > winSize
(13) ch = r(ph)
(14) th = Ch.T s
(15) ph = ph + 1
(16) HDelete(Hi,

∏
i(Ch))

(17) return L1, . . . , L6

end

HashUpdate(H i, Hi
p,

∏
i(c)) {

if (
∏

i(c) /∈ Hi and
∏

i(c) /∈ Hp
i )

inserts
∏

i(c) into Hi;
if (

∏
i(c) /∈ Hp

i and
∏

i(c) ∈ Hi)∏
i(c).sup =

∏
i(c).sup + 1;

}
HDelete(Hi,

∏
i(c)) {

if
∏

i(c).sup = 1
delete

∏
i(c) from Hi

else∏
i(c).sup =

∏
i(c).sup − 1

}
HFilter(H i, sup) {

Gi = ∅
for all entries e in Hi

if e.sup ≥ sup
Gi = Gi ∪ e

return Gi

}

Figure 3: Dynamic single-level mining algorithm
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Starting with the first connection record ch in the audit trail, the algorithm processes connection
records and updates the hash tables Hi until it reaches a connection record c such that it cannot be
in the same window with ph, i.e., c.T s − ch.T s > winSize. Here, ch.T s denotes the starting time
of the connection ch, and c.T s the starting time of c. Then the algorithm updates each Li with
the entries in Hi whose supports are higher than a predefined threshold sup. Then the algorithm
slides down the window and locates the head c′h (the first record) of the new window such that
c.T s − c′h.T s ≤ winSize. Let S be the set of records that are moved outside of the new window.
The algorithm updates Hi by reducing the support for the projections of each record in S. A
projection is removed from Hi if its support reaches to zero. The algorithm repeats until the entire
database has been processed.

4.1.2 Domain-level mining

Sometimes an attack will take place as a coordinated effort from several hosts or to multiple hosts,
such as distributed denial of service attack (DDOS), Internet worm, etc. In that case, it is likely that
itemsets of the form {Src.IP,Dst.IP} will not have enough support to be flagged as suspicious.
However, if we aggregate the support of all the itemsets of the same form where all the source IPs
or destination IPs belong to the same subnet, the support may be enough to recognize this as a
suspicious event. So we complemented our technique by using domain-level mining, which roughly
speaking, can be thought of clustering itemsets that have some commonality and aggregating the
support that the individual (flat) itemsets exhibit. The mining of multi-level association rules were
first proposed by J. Han et al. [18]. We use a bottom-up method to produce the domain-level rules.

Given the schema R:

R(Ts, Src.IP, Src.Port,Dst.IP,Dst.Port, FLAG)

we can produce higher abstractions of the IP related attributes. For instance, the first byte of
the IP address usually identifies the subnet to which the host belongs, while the first two bytes
of the IP address identify the net ID. In the domain level mining, we define four layered sub-
nets from the lowest level to highest level: Sub1 which is identified by the first three bytes of
the IP address, Sub2 by the first two bytes of the IP address, Sub3 by the first 1 byte of the
IP address, Sub4 is the highest level subnet that contains all possible IPs. Clearly Sub1 is the
first level abstraction on IP address, Sub2 is the first level abstraction on Sub1, and so on. This
gives rise to the itemsets of interest showed in Figure 2(b), in which Sub can be either one of
the four subnets. For instance, the itemset {Src.IP,Dst.Sub} represents the association be-
tween a source IP and a destination subnet, and it includes four possible types of associations:
{Src.IP, sub1},{Src.IP, sub2},{Src.IP, sub3},{Src.IP, sub4}. Similarly, {Src.Sub,Dst.IP} con-
sists of four types of associations, and Src.Sub,Dst.Sub consists of 42 = 16 possible types of
associations. Figure 4 shows all possible domain-level associations.

The dynamic domain-level mining algorithm is very similar to the single-level mining algorithm,
except that it needs more hash tables to store all possible domain-level association rules. For
brevity, we do not show the pseudo-code of domain-level algorithm.
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Sub1
a.b.c.*

Sub4
Internet

Sub3
a.*.*.*

Sub2
a.b.*.*

Sub1
e.f.g.*

Sub4
Internet

Sub3
e.*.*.*

Sub2
e.f.*.*

source destination

Dst.IP Src.IP

Figure 4: Domain-level association rules

4.1.3 Feature selection

Feature selection by nature is a multi-windows mining process. Both single-level mining and
domain-level mining algorithms use single size time window, and it is very hard to choose an
optimum window size that can capture all kinds of rules that appear at different frequencies. For
instance, if the time window is too big, the algorithms may miss some rules that are hot only in
a short period of time. On the other hand, if the time window is too small, they may miss the
rules that span a long time period in a slow manner. Our motivation to do feature selection is
to overcome the limitations of single window size mining algorithms. Two time windows are used
here. One is three seconds wide, and it is used to capture the rules that are only hot in a very
short period of time and can easily be missed in a wide window. The other is 24 hours long, and
it is used to capture the rules that appear at very low frequency but last for long time. Both time
windows are applied on single-level mining and domain-level Mining algorithms. Some features
like average connection rate per second, contiguity index of a source IP to a set of destination IP,
etc., are extracted from the mining results and will be used for the further analysis.

4.1.4 Profiling process by temporal association rules

Temporal association rules is one of new features being added to ADAM. They provide more
flexibility in defining time intervals, and thus produce more precise profile regarding to temporal
patterns of user and system behavior.

Generally, user behavior during different time intervals tend to be very different. For example
the “normal” number and duration of FTP connections may vary from working hours to midnight,
from business day to weekend or holiday. Furthermore, these variations may depend on the day of
the month or the week. However, the time factor, expeically in terms of multiple time granualrity,
has not been utilized extensively in generation of profiles by association rules. To capture the “time
factors” in user and system normal behavior, we enhance the profiling process of ADAM by adding
a temporal association rule mining module, which builds profiles using temporal association rules
in terms of multiple time granularities [30].

10



A temporal association rule is an association rule with a calendar pattern represented as a pair
(r, e), where r is an association rule and e is a calendar pattern on a calender schema R. Here, A
calendar schema is a relational schema (in the sense of relational databases) R = (fn : Dn, fn−1 :
Dn−1, . . . , f1 : D1) together with a valid constraint (explained below). Each attribute fi is a
calendar unit name like year, month, and week etc. Each domain Di is a finite subset of the
positive integers. The constraint valid is a Boolean function on Dn × Dn−1 × · · · × D1 specify-
ing which combinations of the values in Dn × · · · × D1 are “valid”. This constraint serves two
purposes. The first is to exclude the combinations that do not correspond to any time inter-
vals due to the interaction of the calendar units. For example, we may have a calendar schema
(year : {1995, 1996, · · · , 1999},month : {1, 2, · · · , 12}, day : {1, 2, · · · , 31}) with the constraint valid
that evaluates 〈y,m, d〉 to True only if a combination gives a valid date (for example, 〈1995, 1, 3〉
is a valid date while 〈1996, 2, 31〉 is not). The second purpose of the valid constraint is to exclude
the time intervals that we are not interested in. For example, if we do not want to consider the
weekend days and holidays in our problem, we can let valid evaluate to False for all such days.

Given a calendar schema R = (fn : Dn, fn−1 : Dn−1, . . . , f1 : D1), a calendar pattern on the
calendar schema R is a tuple on R of the form 〈dn, dn−1, . . . , d1〉 where each di is in Di or the
wild-card symbol ∗. A temporal profile over a calendar schema is defined as a set of temporal
association rules discovered from a set of timestamped transactions over the same calendar schema.
Given a calendar schemar R, we extend Apriori algorithm to mine the temporal association rules.
Details of temporal profiling can be found in [30].

4.2 Classification

The abnormal rules generated by mining association rules algorithm are intended to guide the
further detection work. To filter out as many false positives as possible, we complement the
technique by adding a classification step. There are two major functionalities of the Classification
module: (1) reduce the false alarm; (2) recognize known attacks and assign them with right names.

Three classification algorithms are used in ADAM to capture known attacks. They are decision
tree, Naive Bayes and cascading classifier. These algorithms classify association rules generated
from Mining module into normal activity and attacks. Attacks will be further given a name.

The classifiers have two limitations. First, they can only recognize known attacks that appear
in the training data. Thus, even novel attacks are captured by the mining module, they can be
easily missed by the decision tree. Second, no training data with attacks instances may be available
at all in reality. To overcome the limitation of classification algorithms, ADAM employs a novel
technique called pseudo-Bayes estimators which is able to detect novel attacks and meanwhile to
keep as low false positive as possible.

Association rules from mining module are converted into classification vectors that can be ac-
cepted by the Classification Module. The rule set obtained by each mining algorithm captures the
different characteristics of the network traffic data, and thus is trained individually by the clas-
sification module. Total three classification models will be generated, one for each rule set. For
instance, given a single-level association rule
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(Src.IP : 1.2.3.4 → Dst.IP : 5.6.7.8,Dst.Port : 23, Serv : telnet,Dur : 15.20.49 − 15.29.03)
[support = 1000]

the corresponding vector is {23, telnet, 494, 1000}, each field of which in order corresponds to the
Dst.Port, Serv, Dur, support. The vector does not contain information about Src.IP and Dst.IP

because the IP addresses do not convey any statistical characteristics about the network traffic.
To convert association rules into classification vectors, we extract a set of attributes from each

rule set. The description of the chosen attributes is shown as follows. The first group of attributes
are extracted from the rule set of single-level mining, the second from the domain-level mining,
and the third from the feature selection algorithm. The attribute support in the first group and all
attributes in the second group group are measured over a set of contiguous windows.

• First group (measured in a window)

1. Service Type: service type of each connection.

2. Destination Port: generally related with service type.

3. Duration Time: duration time of a connection.

4. Support: Number of occurrences of a connection during a time window.

5. Pair1: parameters from the itemset Src.Sub → Dst.IP

– Number of distinct destination IPs: the first parameter in this pair measures
the number of distinct source IPs in Src.Sub.

– Number of connections: the second parameter in this pair measures the num-
ber of different connections (several connections may be from the same Src.IP in
Src.Sub) that comply with the rule.

6. Pair2: parameters from the itemset Src.IP,Dst.Sub

– Number of distinct destination IPs from Dst.Sub: the parameter measures
the number of distinct destination IPs in Dst.Sub that receive a connection from
Src.IP .

– Number of connections to a destination IP from a particular subnet:
the parameter measures the number of different connections from Src.IP to the
particular Dst.Sub.

7. Pair3: destination subnets

– Number of destination subnets receiving connections from a source IP:
Given an itemset {Src.IP,Dst.Sub}, the Dst.Sub has four abstraction levels. If an
itemset {Src.IP,Dst.Subi} has the support higher than a predefined threshold sup,
then the itemset {Src.IP,Dst.Subj} has the support higher than sup if Dst.Subj is
a higher abstraction of Dst.Subi. For simplicity, the subnect is defined as the lowest
abstraction level of Dst.Sub such that {Src.IP,Dst.Sub} has the support higher
than a predefined threshold. So are the subnets in the following discussion.
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– Number of destination subnets receiving connections from a source sub-
net: the parameter counts the number of distinct destination subnets receiving
connections from a specific source subnet.

8. Pair4: source subnets

– Number of source subnets having connections to a destination IP: the
parameter counts the number of distinct source subnets having connections to a
single destination IP.

– Number of source subnets having connections to a destination subnet:
the parameter counts the number of distinct source subnets having connections to
a single destination subnect.

• Second group: measured over several contiguous windows (e.g. a day of data).

1. Number of connections per second.

2. Maximum number of ports that a source IP connects to: the maximum taken
over all the windows where the itemset is flagged.

3. Contiguity index of ports accessed from a source IP: this parameter measures the
“contiguity” of the destination ports touched by a single source IP, revealing a scanning
of ports from the source IP. It is computed as the number of “holes” in the sequence
of ports touched by the source IP divided by the total number of ports that received
connections. For instance, if connections were found to ports 1, 3, 4 and 5, the number
of holes is 1 (missing value between 1 and 3) and the total number of ports is 4, given
an index of 0.25.

4. Number of priority ports: this counts the number of destination ports accessed that
are well known ports (those from 0 through 1023).

5. Contiguity index of IPs accessed from a source IP: this parameter measures the
“contiguity” of the destination IPs touched by a single source IP, revealing a scanning
of IPs from the source IP. It is computed as the number of “holes” in the sequence of
IPs where the source established connections divided by the total number of IPs that
received connections.

4.2.1 Decision tree

A decision tree algorithm generates a classifier from a training data in the form of a tree structure
that is either:

• a leaf, indicating a class or

• a decision node that specifies some test to be carried out on a single attribute value, with one
branch and subtree for each possible outcome of the test.
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A decision tree is used to classify a case by starting at the root of the tree and moving through it
until a leaf is encountered. C4.5 algorithm is trained from the training data and used to classify
the rules that come out of the on-line mining algorithm.

4.2.2 Naive Bayes

Naive Bayes [21, 12] relies on an assumption that given a predicted value, the attributes used for
deriving the prediction are independent of each other. The idea behind Naive Bayes is as follows.
Given an example E = x1, x2, . . . , xm where E is composed of m attributes, Naive Bayes assigns
E to the class ck with the highest conditional probability P (ck|E). The independent assumption
makes

P (ck|E) =
P (E|ck)P (ck)

P (E)

=
P (x1|ck)P (x2|ck) . . . P (xm|ck)P (ck)

P (E)

For a discrete variable xi, P (xi|ck) can be simply estimated by the sample frequency of training
data, i.e., P (xi|ck) = P (xi, ck)/P (ck). For a continuous variable, P (xi|ck) can be computed by the
probability density function of the distribution of Xi. There are many simplified ways to estimate
the pdf , for the simplicity we don’t address here.

4.2.3 Cascading classifier

Cascading classifier sequentially runs a set of classifiers, at each step performing an extension of the
original data set by adding new attributes [15, 16]. Given a set of component classifiers, cascading
classifier aims at improving the overall performance by combining the decision of each component
classifier.

Given a training set L, a test set T , two classifiers 
1, 
2, and a constructive operator Φ(D,C)
that represents the operation to concatenate the input vectors of a dataset D with the output of
classifier C, Cascading classifier works as follows:

Level1train = Φ(L,
1(x,L))

Level1test = Φ(T,
1(x,L))

Classifier 
2 learns on Level1 training data and classifies the Level1 test data:


2(x,Level1train) for each x ∈ Level1test

Classification module uses Naive Bayes at Level1 and C4.5 at Level2 to build a cascading classi-
fier. Cascading classifier is trained along with decision tree and Naive Bayes in the training phase.
In the detection phase, the final decision about a test vector is given by the cascading classifier.
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4.2.4 Pseudo-Bayes estimators

Decision tree, Naive Bayes, and cascading classifier are all supervised learning algorithms. They
help reduce false alarms generated by association rules algorithms, and recognize known attacks
in the detecting phase. However, they require to be trained using training data that have been
previously collected and in which the attacks and attack-free periods are correctly labeled. This
reveals two problems with classification algorithms. First, no training data with attack instances
may be available at all. Second, it is impossible to train the classifier for new forms of attacks.
To overcome the limitation of classification algorithms, ADAM employs a novel technique called
pseudo-Bayes estimators which is able to detect novel attacks and meanwhile to keep as low false
positive as possible. Pseudo-Bayes estimators is also a new feature of ADAM.

Pseudo-Bayes estimators is a non-parametric technique of discrete multivariate analysis to pro-
vide the estimated cell values of contingency tables which may contain a large number of sampling
zeros. The idea behind pseudo-Bayes is as follows [8]:

Let X = (X1, . . . ,Xt) have the multinomial distribution with parameters N =
∑t

i=1 Xi and
p = (p1, . . . , pt). We observe a vector of values x = (x1, . . . , xt), where xi is the observed count in
the ith category and

∑t
i=1 xi = N . The vector p takes values in the parameter space

Lt = p = (p1, . . . , pt) : pt ≥ 0 and
t∑

i=1

pt = 1 (1)

The kernel of the likehood function for this multinomial distribution is

l(p | x) = l(p1, . . . , pt | x1, . . . , xt) =
t∏

i=1

pxi
i . (2)

It can be proved that both the prior and posterior distribution for this likelihood l(p | x) are the
Dirichlet, and the the prior and posterior means of pi are given by

E(pi | K,λ) = λi (prior mean) (3)

E(pi | K,λ,x) =
xi + Kλi

N + K
(posterior mean) (4)

where

K =
t∑

i=1

βi, λi =
βi

K
(5)

and βi, i = 1, . . . , t are the parameters of the prior distribution of l(p | x).
The posterior mean is the Bayesian point estimate of p. It can be rewritten in vector notation

as

E(p | K,λ,x) =
N

N + K
(x/N) +

K

N + K
λ (6)
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We can define risk function as the expected value of the squared distance from an estimator T
to p as follows:

R(T,p) = NE‖T − p‖2 = N
t∑

i=1

E(Ti − pi)2 (7)

If λ is regarded as fixed, then we can find the value of K that minimizes the risk R(q̂(K,λ),p)
by differentiating (7) in K and solving the resulting equation. This yields

K = K(p, λ) =
1 − ‖p‖2
‖p − λ‖2 (8)

This optimal value of K depends on the unknown value of p, which can be estimated by p̂ = X/N .
In terms of x, the observed value of the random variable X, K̂ is

K̂ =
N2 − ∑t

i=1 x2
i∑t

i=1 x2
i − 2N

∑t
i=1 xiλi + N2

∑t
i=1 λ2

i

(9)

A pseudo-Bayes estimator of p is then

p∗ = q̂(K̂, λ) = (
N

N + K̂
)p̂ +

K̂

N + K̂
λ (10)

where K̂ is given in (9). Other pseudo-Bayes estimators of p are possible, and they correspond to
alternative ways of estimating the optimal value of K.

Given a training data that is composed of both normal and known attack instances, we can
construct a contingency table, in which each column refers to an attribute characterizing an aspect
of the instances and each row refers to a class of the training data that is either normal or a attack
name. The non-categorical attributes are converted to the categorical ones. Besides all the possible
classes of training data, an extra class will be added to represent new attacks. The table is built in
such way that the cell value of ith row and jth column denotes the number of instances in training
data that class i and attribute j both are present. The cell values of new attacks will be initialized
with zeros. By pseudo-Bayes, the contingency table will be smoothed and each cell will be given
an estimated value. The estimated cell values of unknown attacks will be Kλi/(N + K) by (4).
Figure 5 shows the algorithm of pseudo-Bayes estimators.

Based on the “smoothed” contingency table by pseudo-Bayes estimators, we compute the prior
and post probability of normal activity, known attacks, and novel attacks, and then build a Naive
Bayes classifier. The classifier is able to detect novel attacks.

5 Performance of ADAM

ADAM is very effective in detecting Denial of Service(DOS), Distributed Denial of Service (DDOS)
and PROBE attacks. In this section, we discuss the system performance of ADAM based on
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Procedure of pseudo-Bayes estimator

begin
select λij as following:
λij = 1

g0

xij

Sj
, Sj =

∑I
i=0 xij

compute the weighted factor K̂ = (N2 − ∑
x2

ij)/
∑

i,j(xij − Nλij)2

compute the cell estimates m∗
ij = Np∗ij = N(xij + K̂λij)/(N + K̂)

end

Figure 5: Algorithm Pseudo-Bayes estimator algorithm

1999 DARPA Intrusion Detection System Evaluation results, though many new features (including
pseudo-Bayes estimators, temporal association rules, etc.) have been added to the ADAM after
1999 DARPA evaluation,

5.1 Performance with DARPA Intrusion Detection Evaluation data

DARPA Intrusion Detection Systems (IDS) Evaluation project is the first effort to provide data
and methodology for off-line evaluation of intrusion detection systems. It was led by the Infor-
mation System Technology Group of MIT Lincoln Laboratory, under DARPA ITO and Air Force
Research Laboratory sponsorship. Details information can be found in [10]. The project started
from 1998 and continued in 1999. Today DARPA data sets are widely used as the benchmark for
IDS evaluation. 1998 DARPA evaluation data contain seven weeks of training data and two weeks
of test data. 1999 DARPA evaluation data contain three weeks of training data and two weeks of
test data. Attacks in all training data are labeled. The test datasets of 1999 Evaluation contain
two parts collected at a gateway inside the mimic subnet and at one outside the subnet respectively.
Both training and test data are provided in several forms: UNIX BSM, tcpdump, and NT Data.

Attacks in DARPA data are classified into four types: user-to-root attacks (ROOT), remote-to-
local attacks (LOC), surveillance or probe attacks (PROBE), and DOS.

Due to the attacks nature, ADAM is more efficient in PROBE and DOS attacks. The reason is as
follows. PROBE and DOS attacks are mostly IP level attacks, which means we can detect them by
checking TCP/IP headers (on which ADAM is based). Password guess (PSSWD) and dictionary
attacks (DIC) attacks are application level attacks, but they happen to generate more than normal
activities during a short time period, so they can be captured as generating “hot” and abnormal
association rules. Of course, in order to identify them as PSSWD, DIC or snmpget2, we have to
resort to the TCP raw data (packets) to see what operations these connections performed. (E.g.,
long login trails in the PSSWD attack, each with a different password as input.) These operations

2DARPA describes snmpget as an attack in which the intruder monitors a router after guessing the SNMP

password. If the SNMP configuration is allowed, an attacker with this password can modify the routing tables.
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max. number of false positives allowed 1/day 10/day 100/day
total number of attacks detected 24 24 24
percentage of the total number of attacks detected 100% 100% 100%

(a) PROBE attacks detected versus the maximum number of false positives

max. number of false positives allowed 1/day 10/day 100/day
total number of DOS attacks detected 33 35 35
percentage of the total number of attacks detected 82.5% 87.5% 87.5%

(b) DOS attacks detected versus the maximum number of false positives

Figure 6: Experimental results on DARPA 1998 data

max. number of false positives allowed 1/day 10/day 100/day
total number of attacks detected 12 12 12
percentage of the total number of attacks detected 32.4% 32.4% 32.4%

(a) PROBE attacks detected versus the maximum number of false positives

max. number of false positives allowed 1/day 10/day 100/day
total number of DOS attacks detected 30 30 30
percentage of the total number of attacks detected 46.2% 46.2% 46.2%

(b) DOS attacks detected versus the maximum number of false positives

Figure 7: Experimental results on DARPA 1999 data

that act as a signature to PSSWD and DIC can be captured by the classifier. On the other hand,
most of the other LOC and ROOT attacks occur at the application level and they can be finished
in a single connection. That makes it impossible for them to be captured by using association rules
(the support of the generated rule is not enough to pass the threshold and if we decreased the
threshold to that level, we would generate lots of false positives).

Figure 6 give the ADAM’s performance on 1998 DARPA data regarding to DOS and PROBE
attacks. Figure 6(a) shows the results for TCP-dump Probe attacks, and Figure 6(b) shows them
for the TCP-dump DOS attacks. 1/day means only 1 false alarm per day is allowed in a system,
10/day means 10 false alarms per day are allowed, and so on. These are exact criteria that DARPA
used to evaluate an IDS performance, and they are used to compare the number of detected attacks
by IDSs given the restricted number of false alarms. In this way, an IDS needs to sort the output
alarms by their severity levels. The most serious alarm should be on the top of an alarm list.

As it can be seen in the tables, all the Probe attacks are detected regardless of the level of false
positives tolerated. For the DOS attacks, the range of attacks goes from 70% to 75%, a number
that makes ADAM rank very competitively with respect to the results obtained by the participants
of the contest.

Figure 7 shows the results of DARPA 1999 test data. ADAM participated in DARPA 1999
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Index 1 2 3 4 5 6 7 8 9 10
Name smurf ipsweep portsweep pod mailbomb teardrop snmpget back neptune process

Figure 8: Attacks that are used in progressive training

Name #ins. Round Number
0 1 2 3 4 5 6 7 8 9 10

pod 73 73 73 73 73 73 73 73 73 73 73 73
mailbomb 2 2 2 2 2 2 2 2 2 2 2 2
satan 10 2 2 2 2 2 2 2 2 2 2 2
apache2 9 0 0 0 0 0 0 0 0 0 0 0
teardrop 11 11 11 11 11 11 11 11 11 11 11 11
snmpget 13 1 1 1 1 1 1 1 1 1 1 0
snmpguess 2 2 2 2 2 2 2 2 2 2 2 2
neptune 23 7 7 7 7 7 7 7 7 7 9 9
process 6 6 6 6 6 6 6 6 6 6 6 6
portsweep 5 5 5 5 5 5 5 5 5 5 5 5
back 8 0 0 0 0 0 0 0 0 0 0 0
mscan 6 6 6 6 6 6 6 6 6 6 6 6
smurf 156 156 156 156 156 156 156 156 156 156 156 156
nmap 6 4 4 4 4 4 4 4 4 4 4 4
ipsweep 3 3 3 3 3 3 3 3 3 3 3 3
false alarms/day 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7

Figure 9: Experiments on 1998 DARPA test data

intrusion detection evaluation, focusing on detecting DOS and PROBE attacks from tcpdump data
and performed quite well.

5.2 Performance of ADAM on novel attacks

In this section, we report ADAM’s performance when facing new attacks based on DARPA data.
We configure the experiments in several different ways, and all experiment give very similar results
and demonstrate that, with the help of pseudo-Bayes estimator, ADAM is able to detect novel
attacks with low false alarms. For brevity, we only present the result of one experiment. Details of
other experiment results can be referred to [6, 43].

The experiment is done in two stages. First, we derive pseudo-Bayes estimator and a Naive
Bayes classifier from an attack free training data which is constructed by removing all the attack
instances from 1998 DARPA training data. The reason we use 1998 training data is that it contains
more weeks of data and is claimed to be more complete. The second stage is composed of several
rounds. In each round, the pseudo-Bayes estimator and a Naive Bayes classifier are obtained by
adding one attack instances to the previous round’s training data, which starts with the attack
free training data of stage 1 in the beginning and is accumulated by one attack instance in each
round. We refer to the second stage as the progressive training step. Then we test the Naive Bayes
classifiers of two stages against 1998 and 1999 DARPA test data.

Figure 8 shows the attacks that are added into the training data in the progressive training.
Index gives the order of attacks that are added into the training data, and it also equals to the
number of attack types that are included in the training data. Note that the order of attacks is
chosen randomly. Figures 9 shows the experimental results of the classifiers of two stages on 1998
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DARPA test data. The first two columns of the table give the attack name as well as the number
of occurrence in the test data. The rest of the columns list the number of instances of each attack
that has been captured in a round. Round Index refers to the round number of the progressive
training. n means that it is the nth round and training data contains the attacks whose index
number(shown in figure 8) is less than or equal to n. For instance, round number 2 means that
both smurf and ipsweep are in the training data. Here we use round 0 to represent the classifier
of stage 1 since the training data does not contain any attacks. false alarms/day gives the average
number of false alarms in each day.

It is interesting to see that the classifiers behave very similarly regardless of the number of
different attacks are included in their training data. As each round’s training data share the
same normal instances which are supposed to be complete, it reveals a very important and desired
property of pseudo-Bayes approach: the detection mainly depends on the normal instances in
training data, and whether the training data contain attacks or not does not affect detection much
if the normal instances give a complete description of the normal activities. Totally, around 80%
percent attacks are either fully or partially detected, while at the same time the false alarm rates are
pretty low. Besides, the figures show that more instances of the attack neptune are captured after
round 9. It is understandable because as more information about attacks is present, the classifiers
become more robust.

As we study the missed attacks of each test data, we find that they are very similar to the normal
instances regarding to the attribute values. The experiments show that pseudo-Bayes estimator
performs very well in deriving the characteristics of abnormal activities from the knowledge of
normal ones. Pseudo-Bayes estimator method is good at capturing those attacks that can be
distinguished from normal instances in terms of attribute values, but it does not perform well on
the attacks that are similar to normal instances. Indeed it is hard for any classifier to distinguish
attacks from normal instances if they are similar. The significance of pseudo-Bayes estimators lies in
that it can derive the posterior probabilities of abnormal activity without any prior knowledge about
them. If we can characterize the normal activity accurately, then this method can be very promising
in detecting the abnormal activity that deviate from the normal ones. If the abnormal activity are
similar to the normal ones, it would be difficult to distinguish them not only for pseudo-Bayes
estimator, but for all classifiers. Most importantly, pseudo-Bayes estimators methods eliminates
the dependency of ADAM on training data with labeled attacks.

6 Conclusions

We have presented ADAM system which is built on a data mining core to accomplish network
anomaly detection. ADAM has two distinct properties: it uses temporal association rules to char-
acterize time factors in profile, and it employs pseudo-Bayes estimator technique to capture novel
attacks with low false alarms.

We are continuing this research on ADAM in three different ways. First, instead of selecting
the threshold and window size in the test phase arbitrarily, we want to automate the selection
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with the guidance of pro le so that different values of these parameters will be chosen according 
to the property of data, such as the time of connections, the direction of connections which can 
be inbound (from outside hosts to inside hosts), outbound (from inside hosts to outside hosts) and 
internal(from inside hosts to insides hosts), etc. Second, we will investigate new techniques that 
can completely eliminate the dependency of ADAM on attack free training data. Like any other 
anomaly detection systems, ADAM requires an attack free training data to learn the pro le, 
which is not easy to obtain in reality. Third, we want to enhance the system by enlarging the 
scope of attack types that can be detected. 
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Part II.  Correlating Intrusion Events and Building Attack Scenarios  
Through Attack Graph Distances 

1. Introduction 

Since intrusion detection systems generally focus on low-level events and report them 
independently, network administrators are often overwhelmed by large volumes of alerts.  This has 
motivated recent work in alarm aggregation, to reduce administrator workload and provide higher-
level situational awareness.  Ideally, alarm aggregates should help one distinguish coordinated, multi-
step attacks from isolated events.  It is also critical to know if one’s network is actually vulnerable to 
detected attacks, and not just from the standpoint of individual machines but also in the context of the 
overall network and its most critical resources. 

Various approaches have been proposed to correlate intrusion alarms and build attack scenarios 
from them.  For building attack scenarios, a particularly effective form of correlation is causal 
correlation, which is based on analyzing dependencies among intrusion events. 

One approach to causal event correlation is to apply logical rules that chain together events based 
on their relevant attributes.  But there are several problems with rule-based approaches to event 
correlation.  It can be difficult for complex rule systems to keep pace with online streams of events, 
and maintaining the rule sets needed for constructing attack scenarios from disparate events can be 
difficult.  Also, missing events can prevent rules from assembling a proper attack scenario, and 
attempts at inferring hypothetical missing attacks can lead to irrelevant results. 

Another approach to causal correlation is to represent relationships among events with graphs 
instead of logical rules.  However, because this is still based on intrusion detection information only, it 
can potentially give irrelevant results when hypothesizing missing events.  Also, because the attack 
scenario graphs are constructed as events occur, it may be difficult for to keep pace with online event 
streams. 

In existing approaches, the implicit assumption is that intrusion events are caused by the execution 
of attacker exploits.  These approaches then model intrusion events in terms of rules 
(preconditions/postconditions) for the implicit exploits.  But the fundamental problem with these 
approaches is they do not include network vulnerabilities in their model, which would provide the 
proper context for their implied exploits.  This is the source of potentially irrelevant scenarios or 
ambiguity for hypothesized missing events. 

In this paper, we extend previous approaches to building attack scenarios by explicitly including 
network vulnerability/exploit relationships (i.e., the attack graph) in the model.  In other words, the 
network attack graph is precisely the model component that adds the necessary context to the exploits 
implied by intrusion events.  A crucial design criterion is to maintain low overhead for online event 
processing.  Our online processing depends solely on a manageable set of pre-computed attack graph 
distances.  To process an online intrusion event, only a distance lookup and a small number of 
arithmetic operations are required. 

We first build a joint model of attacker exploits and network vulnerabilities.  The network 
vulnerability model is created either manually or automatically from the output of the Nessus 
vulnerability scanner.  From the joint exploit/vulnerability model, we then compute distances (number 
of steps in the shortest path) between each pair of exploits in the attack graph (for all possible network 
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attacks).  These distances provide a concise measure of exploit relatedness, which we use for 
subsequent online causal correlation of intrusion detection events. 

As detection events occur, we map them to attack graph exploits, and look up the distances 
between pairs of corresponding exploits.  This allows us to correlate events through attack graph 
information, without the online overhead of rule execution or graph building.  We iteratively build 
event paths, with a numeric correlation score for each event.  Missing events are handled in a natural 
way, i.e., we quantify gaps in attack scenarios through attack graph distances.  Events that cannot be 
mapped to the attack graph initially can be considered in post-analysis and possibly merged with 
existing attack scenarios. 

Sequences of correlation scores over event paths indicate likely attack scenarios.  We apply a low-
pass signal filter (the exponentially weighted moving average filter) to correlation sequences, which 
improves quality in the face of detection errors.  We apply a threshold to filtered correlations to 
separate event paths into attack scenarios, i.e., only paths with sufficient correlation (sufficiently small 
attack graph gaps) are placed in the same attack scenario.  We also compute an overall relevancy score 
for each resulting attack scenario, which measures the extent that it populates a path in the attack 
graph. 

In the next section, we review related work in this area.  Section 3 then describes our underlying 
model, and Section 4 gives details of our implementation of this model.  In Section 5, we provide 
experimental evidence in support of our approach, and in Section 6 we summarize this work and draw 
conclusions. 

2. Related Work 

Our approach extends recent work in causal correlation of intrusion events.  But rather than 
correlating based on dependencies among events only, we take the novel direction of including the 
interdependent network vulnerabilities (i.e., network attack graph) in the correlation model. 

In [1], the approach to causal correlation is to define logical rules that relate generic (network 
independent) events through preconditions/postconditions.  As events occur, the generic rules are 
instantiated with attributes such as time, source/destination machine, and vulnerability type, and 
evaluated via Prolog to chain events together.  This approach does include additional implication rules 
for handling missed attacks.  However, because it lacks knowledge of the network vulnerabilities, it is 
unable to narrow down hypothesized attacks to ones that are truly relevant.  Also, while this approach 
generates rules offline (from a set of generic exploit specifications), in online mode it still needs to 
evaluate the rules.  The approach in [1] does include merging of identical events, which is 
complementary to our approach.  The event merging is accomplished through clustering correlation, a 
form of correlation that has been described by other authors, e.g., [2][3][4]. 

The approach in [5] is to represent relationships among events as a graph rather than through rules.  
Such graphs are less complex than rule systems, and indeed we apply a similar graph representation in 
our approach.  But the approach in [5] does not correlate events with vulnerability information, as we 
do.  It can therefore give irrelevant results when hypothesizing missing events, because events are not 
grounded in real network vulnerabilities.  Also, the attack scenario graphs are constructed as events 
occur, making it more difficult to keep pace with online event streams.  In contrast, we capture 
relationships among attack graph elements in concise distance measurements, so that no graph 
manipulation is done online. 

Work has been done in integrating intrusion detection with vulnerabilities information, notably [6].  
However, this work considers vulnerabilities in isolation, without considering the overall impact of 
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combined vulnerabilities on a network.  Also, it does not address the critical problem of building 
attack scenarios from individual events.  There are actually 2 vendors (Tenable Network Security and 
Internet Security Systems) that integrate their respective intrusion detection and vulnerability scanning 
tools, but again this considers vulnerabilities only in isolation. 

On a related research front, work has been done in automatic construction of attack graphs from 
network vulnerability models.  Our attack graph construction is based on such prior work [7][8][9].  
Other approaches to attack graph construction have been proposed, including logic-based [10][11] and 
graph-based [12][13][14] approaches.  These have been generally effective for assessing overall 
network security posture or hardening networks, although not all the proposed approaches are 
scalable.  Our attack graph representation is based on exploit dependencies rather than security state 
enumeration, so that we avoid combinatorial explosion.  The basic representation was first described 
in [14], and later modified in [8][15]. 

3. Underlying Model 

Construction of network attack graphs is based on the application of attacker exploit rules.  These 
rules map the conditions for exploit success (preconditions) to conditions induced by the exploit 
(postconditions).  For example, an exploit may require user privilege on the attacker machine and 
yield root privilege on the victim machine.  An attack graph is constructed by finding the 
interdependencies of exploits with respect to machines on a network. 

While we employ a scalable (low-order polynomial) attack graph representation, the cost of attack 
graph computation still prohibits online calculation per intrusion event.  The attack graph needs to be 
fully realized before events occur.  Once an alarm is raised, its event is mapped to an exploit in the 
attack graph.  Multiple precondition/postcondition dependencies between exploits are represented with 
a single graph edge, meaning that the “to” exploit depends on at least one postcondition of the “from” 
exploit. 

A typical scenario for network vulnerability analysis includes an initial attacking machine (either 
outside or inside the administered network) and a set of attack goal conditions (e.g., root) on one or 
more machines.  Given that an exploit’s preconditions are met, the state of the victim machine changes 
per the exploit’s postconditions.  Upon success of an exploit, the conditions of the victim machine 
may meet other exploits launched from that machine.  Successful exploits launched from the victim 
machine are linked to the exploits that provide its preconditions.  By executing and linking exploits in 
this fashion, an attack graph is formed. 

For constructing attack scenarios, we do not base the attack graph on a fixed attacker/goal scenario 
as is typically done in network vulnerability analysis.  Neither the goal nor the attacker is known when 
the attack graph is computed, before intrusion events are actually considered.  The assumption is that 
attacks can come from any machine inside or outside an administered network.  The attacker may 
have infiltrated the network through stealth attacks, or the attack may have come from an insider who 
abuses his granted privileges.  Similarly, the attack goal is open, since it could be any adverse 
condition (such as denial of service, root privilege, or unauthorized data access) on any machine.  In 
short, our model considers the full scope of possible attack paths. 

Two events that fall on a connected path in an attack graph are considered correlated (at least to 
some extent).  Clearly, events should be fully correlated if they map to adjacent exploits in the attack 
graph, since this is the strongest relationship possible.  Conversely, events mapped to non-adjacent 
exploits are only partially correlated, as shown in Figure 1.  In this case, we determine the degree of 
event correlation through graph distance between corresponding exploits. 
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The graph distance between a pair of exploits is the minimum length of the paths connecting them.  
If no such path exists, then the distance is infinite.  Graph distance measures the most direct path an 
attacker can take between two exploits.  While longer paths might be possible between exploits, the 
shortest path is the best assumption for event correlation, and is the most efficient to compute.  The 
use of minimum path length does not hinder the ability to analyze longer paths, since these paths are 
constructed by assembling shorter paths.  Using minimum path length also resolves cycles in the 
attack graph, which would otherwise indicate redundant attack steps.  Our graph distances are 
unweighted, i.e., no weights are applied to graph edges between exploits. 

Exploit 1
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vuln1

Exploit 2
machine2->machine3

vuln2

Exploit 3
machine3->machine2

vuln3

Event 1
machine1->machine2
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Distance = 2
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machine3->machine2
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Distance = 2

 
Figure 1:  Partially correlated events. 

The exploit distances are pre-computed once for an attack graph, and then applied continuously for 
a real-time stream of intrusion events.  The exploit distances supply the necessary information to form 
event paths.  An event is added to the end of a path if it maps to an exploit that has a finite distance 
from the exploit mapped to the last event in the path.  Event time is naturally accounted for, because 
events are added at the ends of paths, which were constructed from prior events.  If a new event is 
unreachable from all existing event paths (i.e., if the corresponding attack graph distances are infinite), 
then the event forms the beginning of a new path. 

In Figure 2, suppose an initial event path exists as Event 1, corresponding to Exploit 1.  A new 
Event 2 arrives, corresponding to Exploit 3.  Since Exploit 3 is reachable from Event 1 with a graph 
distance of 2, Event 2 is added to the event path.  A new event may trigger the creation of additional 
independent event paths.  Continuing with our example, suppose a new Event 3 arrives, which 
corresponds to Exploit 4.  Exploit 4 is reachable from both Exploit 1 and Exploit 3.  Therefore, 
Event 3 can be correlated to Event 1 independently of Event 2.  Since Event 2 might have nothing to 
do with Event 1, a new path is created as a record of another potential attack scenario.  Thus we have 
the 2 paths Event 1 Event 2→ Event 3 and Event 1 Event 3.  In the figure, these 2 paths are drawn 
with solid lines and dashed lines, respectively, in the event graph. 

→ →

In our model, cycles in the event graph are unrolled.  For example, in Figure 2, Exploit 4 can reach 
back to Exploit 1 through a distance of 3.  Event 4 occurs after Event 3, and is identical to Event 1, 
i.e., it also maps to Exploit 1.  For example, Exploit 4 might yield new privileges based on trust gained 
from the intervening 3 exploits.  Thus two new paths are formed: 

1. Event 1→ Event 2 Event 3→ Event 4 (solid lines) →
2. Event 1→ Event 3  Event 4 (dashed lines) →

These are shown with solid and dashed lines, respectively, in Figure 2. 
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Figure 2:  Creating event paths. 

For the example in Figure 2, the events correspond to exploits that lie within relatively close 
distances to each other.  But this may often not be the case.  Indeed, it is reasonable to assign events 
whose exploits are widely separated in the attack graph to separate attack scenarios.  Since event 
distances greater than unity represent missed detection events (according to the attack graph), it is 
possible that such distances sometimes occur within a set of coordinated attacks, since real attacks are 
sometimes missed.  But when event distances become larger, larger numbers of attacks would need to 
be missed if they were really coming from a coordinated attack. 

Thus, we apply a correlation threshold that segments event paths into highly correlated attack 
scenarios.  In other words, a consecutive sequence of events that lies above the threshold defines an 
attack scenario.  When individual event paths are formed from the incoming stream of events, new 
event paths are created when a new event is not reachable (infinite distance) from the currently 
existing set of event paths.  In this way, event paths have an obvious beginning based on (non-) 
reachability.  The correlation threshold provides a way to end an event path when the distance to the 
next event is too large, but is still finite. 

The distances between events in an event path are crucial information.  But because of possible 
false detections (positive and negative), the individual distance values are somewhat suspect.  We 
could gain more confidence in our estimate by averaging the individual distance values.  While this 
would capture the global trend of the event path, local trends would be lost.  Also, it is convenient to 
invert the event distances (use their reciprocals), so that they lie in the range [0,1], with larger values 
representing stronger correlation.  Thus the inverse distances represent similarities rather than 
dissimilarities. 

But rather than computing the global average of inverse event distances, we compute a moving 
average, which has the ability to capture local trends while still providing error resiliency.  An 
unweighted moving average defines a data window, and treats each data point in the window equally 
when calculating the average.  However, it is reasonable to assume the most current events tend to 
better reflect the current security state.  We therefore apply the exponentially weighted moving 
average, which places more emphasis on more recent events by discounting older events in an 
exponential manner.  It is known to be identical to the discrete first-order low-pass signal filter. 
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Let  be the attack graph distance between a pair of intrusion events.  Then the inverse event 
distance is 

kd

kk dx 1= .  We then apply the exponentially weighted moving average filter to a sequence 
of these : kx

 ( ) kkk xxx αα −+= − 11 . (1) 

The sequence of values of kx  is the filtered version of the original sequence of inverse event distances 
, for some filter constant kx 10 ≤≤α .  The filtered inverse event distances kx  are the basic measure of 

event correlation in our model.  For convenience, we define a correlation of unity for the first event in 
a path (i.e., it is fully correlated with itself), even though there is no previous event to compare it to. 

The inverse intrusion event distances are filtered very efficiently through the recursive formulation 
in Equation (1).  Computation requires no storage of past values of x, and only one addition and 2 
multiplications per data point are required. 

In the exponentially weighted moving average filter, the filter constant 10 ≤≤α  dictates the degree 
of filtering.  As 1→α , the degree of filtering is so great that individual event (inverse) distances do 
not even contribute to the calculation of the average.  On the other extreme, as 0→α , virtually no 
filtering is performed, so that kk xx → .  Values in the range of 4.03.0 ≤≤α  generally work well in 
practice. 

The filtered inverse distances in Equation (1) provide a good local measure of event correlation.  
In particular, they perform well for the application of the score threshold for segmenting event paths 
into attack scenarios.  But once an attack scenario is formed, the individual filtered inverse distances 
do not provide an overall measure of correlation for it.  We introduce another score that provides a 
measure of relevancy for the entire scenario, based on attack path occupancy by events. 

For attack scenario , ks ks  is the number of events in the scenario.  Next, let  be the cumulative 
distance between pairs of events in the scenario.  Then the attack scenario relevancy score  is 

kl

kr

 kkk lsr = . (2) 

Because the cumulative distance  is the length of the attack path that the scenario maps to, this 
relevance score  is the proportion of the attack path actually occupied by an attack scenario’s 
intrusion events. 

kl

kr

Our model is robust with respect to inconsistencies between events and vulnerabilities.  Events 
that cannot be mapped to an exploit in the attack graph simply remain as isolated events.  This might 
occur because there is no known mapping from a particular event to a vulnerability, or because a 
certain vulnerability was not known when constructing the attack graph.  The converse is that there are 
certain vulnerabilities in the attack graph that have no corresponding intrusion detection signature.  In 
this case, distances between events (in event paths) can be normalized by the expected distance 
between corresponding exploits in the attack graph. 

4. Implementation Details 

Figure 3 shows the system architecture for our implantation of the model described in the previous 
section.  The Attack Graph Analyzer requires a joint model of the network and attacker exploits.  
Exploit Modeling is done through manual analysis of reported vulnerabilities and known exploits.  We 
have researched almost 2000 Nessus vulnerabilities, from which we have modeled about 650 exploits 
(a significant portion of Nessus vulnerabilities are irrelevant for this kind of modeling).  Because we 
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usually model exploits at a relatively high level of abstraction (e.g., in terms of access type, privilege 
level, and network connection), this manual process generally proceeds quickly. 

Accurate modeling depends on sufficient information about vulnerabilities and exploits.  Our 
exploit modeling is supported by an extensive database, which includes 37,000 vulnerabilities and 
7,400 exploits, taken from 24 information sources including X-Force, Bugtraq, CVE, CERT, Nessus, 
and Snort.  Network Modeling can be done manually, or generated automatically from Nessus 
vulnerability scanner output.  In the case of network models created manually, we support model 
specification in terms of vulnerable software components (OS, patch level, web servers, configuration 
files, etc.), with rules to map these to Nessus vulnerabilities. 

Exploit
Modeling

Attack Graph
Analyzer

Network
Modeling

Event
Analyzer

Exploit
Distances

Attack
Graph

Vulnerability
Database

Attack
Graph

Visualization

Attack
Scenario

Visualization

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Off Line

Exploit
Modeling
Exploit

Modeling

Attack Graph
Analyzer

Network
Modeling

Event
Analyzer

Exploit
Distances

Attack
Graph

Vulnerability
Database

Attack
Graph

Visualization

Attack
Scenario

Visualization

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Off Line

 
Figure 3:  System architecture. 

From the combined network and exploit models, we analyze attack paths and load the resulting 
exploit distances into an Oracle database.  For efficiency, infinite distances (caused by some exploits 
not being reachable to others) are not recorded in the database.  Rather, they are represented by their 
absence.  In practice, a value can be chosen as an effective infinity, giving the distance computation 
algorithm a reasonable stopping point in declaring an exploit unreachable.  Once exploit distances are 
calculated, they become a static image of the attack graph to be correlated with intrusion events.  We 
can also store the attack graph itself for future offline attack graph visualization and post-analysis.  All 
of this processing is done offline, as shown by the shaded region in Figure 3. 

When Snort intrusion detection events are logged in the database, this triggers Oracle stored 
procedures in the Event Analyzer to process them.  For each Snort event, we map the Snort identifier 
to the corresponding Nessus vulnerability identifier.  In the case that a Snort identifier maps to 
multiple Nessus identifiers, we report all the identifiers, and conservatively select the shortest distance 
from among the candidate exploits for computing the correlation score.  The lookup of pre-computed 
attack graph distances is based on source and destination IP addresses and Nessus vulnerability 
identifier.  Note that only the distances between exploits are looked up, and no processing of the actual 
attack graph occurs online. 

Event paths are formed in the manner described in the previous section, i.e., by adding new events 
to the ends of paths if the new event is reachable from the last event in the path, etc.  For each path of 
intrusion events, the Event Analyzer inverts the distances between events (converts them from 
dissimilarities to similarities), then applies the exponentially weighted moving average filter in 
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Equation (1) to the inverse distances.  The correlation threshold is then applied, as described in the 
previous section, which segments event paths into highly correlated attack scenarios.  In practice, 
proper values of correlation threshold should be based on expected rates of missed detections. 

5. Experiments 

In this section, we demonstrate our approach through various experiments.  The first experiment 
focuses on the application of correlation threshold for separating event paths into highly-correlated 
attack scenarios and the interaction between threshold value and low-pass filter constant.  To instill a 
deeper understanding of this, we examine a small number of attacks in greater detail, as opposed to 
showing statistical results for large number of attacks.  In the second experiment, we show more 
clearly how low-pass filtering makes it easier to distinguish regions of similar attack behavior in the 
presence of intrusion detection errors.  The third experiment is a larger-scale scenario to demonstrate 
overall performance. 

5.1 Scenario Building via Correlation Threshold 

Figure 4 is a concise summary of the attack graph for this experiment.  The network model in this 
experiment is generated from Nessus scans of real machines.  In the figure, an oval between a pair of 
machines represents the set of exploits between that machine pair.  In most cases, there are 2 numbers 
for exploit sets, reflecting the fact that some exploits are in one direction (from one machine to 
another), and other exploits are in the opposite direction.  Unidirectional sets of exploits are drawn 
with directional arrowheads; for sets of exploits in both directions, arrowheads are omitted.  This is a 
variation of the aggregated attack graph representation described in [15]. 

In this experiment, only remote-to-root exploits are included, to make results easier to interpret.  
That is, each exploit has preconditions of (1) execute access on the attacking machine and (2) a 
connection from the attacking machine to a vulnerable service on the victim machine, and 
postconditions of (1) execute access and (2) superuser privilege on the victim machine.  Since 
connections to vulnerable services exist in the initial network conditions, and each exploit directly 
yields superuser access on the victim machine, the shortest exploit distance between machines is 
always one.  In interpreting these distances from the figure, the actual numbers of exploits between 
pairs of machines are therefore irrelevant. 

The important information from Figure 4 is the attack graph distances between the 8 intrusion 
events, which we can determine directly from the figure.  The arrow beside “Event x” indicates the 
direction (source and destination machine) of the event.  So the distance from Event 1 (an exploit from 
machine m23 to m80) to Event 2 (an exploit from machine m80 to m52) is one, the distance from 
Event 2 to Event 3 is 2, etc. 
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Figure 4: Aggregated attack graph. 

Counting the distance from Event 4 to Event 5 is a bit more subtle. Here one must realize that 
“3/2 exploits” means there 3 exploits from m30 to m28, one of which is associated with Event 4. 
Then from the Event-4 exploit, in counting the shortest path to Event 5, there is one exploit from 
m28 to m30, one from m30 to m42, etc., for a total distance of 5. Figure 5 shows the full attack 
graph for this experiment, although it is cumbersome to use this complex graph for visually 
counting event distances.  

 
Figure 5: Non-aggregated attack graph. 

Figure 6 shows the sequence of distances for the events in this experiment. Because every 
event is reachable from the previous event, only a single event path is generated.  
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Figure 6: Attack graph distances for events.  

Figure 7(a) shows the inverse of the attack graph distances from Figure 6, filtered via 
Equation (1), for different values of filter constant α . The vertical axis is the filtered inverse 
distance (i.e., the correlation score), the horizontal axis is the event number, and the axis into the 
page is 0.1 ≤α ≤ 0.9. We apply a correlation threshold value of T = 0.6, shown as a horizontal 
plane.  

For α= 0.1 (front of page), very little filtering is applied, so that the filtered sequence looks 
very similar to the original sequence of inverse distances. In this region of α values, for the 
threshold T = 0.6, the event path is separated into 4 short attack scenarios:  

1 Event 1 → Event 2  
2 Event 4  
3 Event 6  
4 Event 8  
 
The remaining events (3, 5, and 7) fall below the threshold and are considered isolated. 
However, the more likely scenario is that the distances=2 for Event 3 and Event 7 represent 
missed detections, since they are in the region of fully-correlated events. The distance=5 for 
Event 5 would require an unlikely high number of missed detections, so it is probably really is 
the start of a separate (multi-step) attack.  

The problem is that, without adequate filtering, event distances are not being considered in 
the context of the recent history. One could lower the threshold to below T = 0.5 in this case, 
which would yield these most likely attack scenarios:  

1 Event 1 → Event 2 → Event 3 → Event 4  
2 Event 6 → Event 7 → Event 8  
 
However, in general values below T = 0.5 are not particularly strong correlations, so this is not 
advisable.  
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Figure 7:  Distance filtering and threshold 

For larger values of α (going into the page), more filtering is applied, so that distance recent 
history is considered more strongly.  In this case, the threshold does separate the path into the 2 most 
likely attack scenarios.  A cross section for 4.0=α  is shown in Figure 7(b).  For overly large values of 
α (e.g., in the region of 9.0=α ), so much filtering is applied that the entire path is considered a single 
attack scenario.  In other words, it misses Event 5 as the start of a new attack scenario. 

5.2 Signal Filtering for Detection Errors 

Next, we describe an experiment that more clearly shows the need for low-pass signal filtering for 
handling intrusion detection errors.  In particular, this experiment demonstrates how low-pass filtering 
makes it easier to distinguish regions of similar attack behavior through the application of a 
correlation score threshold. 

The results of this experiment are shown in Figure 8.  Here, the horizontal axis is the event in an 
event path.  The vertical axes of the 4 plots are (respectively) raw attack graph distance between 
events, global average of inverse event distance, filtered inverse event distance, and unfiltered inverse 
event distance. 

As a ground truth, the event path is divided into 7 regions.  Region 1 (Events 1-7) is an 
uncoordinated series of events, i.e., one in which the events are unrelated and scattered across the 
network, so that distances between events are relatively long.   Region 2 (Event 8) is a pair of events 
that occur immediately together in the attack graph (i.e., event distance=1, fully correlated).  Region 3 
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(Events 9-14) is an uncoordinated series of events.  Region 4 (Events 15-17) is a series of fully 
correlated events, and Region 5 (Events 18-24) is an uncoordinated series of events. 
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Figure 8:  Filtering inverse event distances. 

Regions 6 and 7 (Events 25-36 and Events 37-48, respectively) are a bit more subtle.  In Region 6, the 
attack graph distances between events fluctuate between one and two.  This represents a series of events for a 
single (multi-step) attack, or at least the work of a fairly consistently successful attacker.  We could assume the 
distance=2 event pairs are from missed detections.  In Region 6, the attack graph distances between events 
fluctuate between 2 and 3.  In this case, it seems more likely to be an uncoordinated series of events that happen 
to occur more closely on the attack graph than say Region 1. 

In Figure 8, we include global average (2nd from top in the figure) as a comparison to moving average.  
While each value captures the overall average inverse distance up to a given event, that does not allow us to 
make local decisions (e.g., through a correlation threshold) for separating the path into individual attack 
scenarios.  Even the occurrence of fully-correlated Region 4 events cannot be distinguished through the 
application of a threshold. 

For the unfiltered inverse distances (bottom of Figure 8), we can correctly distinguish the isolated pair of 
fully correlated events in Region 2, as well as the unbroken path of fully correlated events in Region 4.  But 
there are problems for Region 6.  This is the region in which fully correlated events are mixed with distance=2 
events.  This could be expected in a real sequence of attacks, when some of the attacks go undetected.  Here, the 
unfiltered correlations fluctuate strongly, causing problems for setting a threshold for segmenting event paths 
into likely scenarios.  At the threshold shown of 0.55, this region is segmented into multiple very small attack 
scenarios. The threshold could be lowered (to below 05), but that would cause problems for Region 7.  Here, 
distance=2 and distance=3 event pairs are occurring.  In this case, it is much less likely a coordinated attack is 
occurring.  It would mean one or 2 attacks are repeatedly being missed, with no fully correlated events 
occurring.  Lowering the threshold to handle Region 6 would cause Region 7 to be segmented into multiple 
very small scenarios. 

In contrast, when the threshold is applied to the filtered version of the inverse event distances (2nd from 
bottom in Figure 8), this correctly forms attack scenarios corresponding to Regions 1 through 7.  When filtering 
is applied, the distance for a new event takes into account the recent history of events, so that distances 
occurring after shorter distances tend to become shorter and distances occurring after longer distances tend to 
become longer.  The degree of this effect is controlled by the filter constant α . 
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5.3 Performance 

This experiment demonstrates overall performance for the implementation of our approach (see Section 4 
for implementation details), using a large number of network attacks.  In particular, we apply our 
implementation to a network of 9 victim machines, separated into 3 subnets, as shown in Figure 9. 

In this experiment, subnet x.x.100.0 services internet traffic with a web server and an FTP server.  Subnet 
x.x.128.0 supports administrative servers and an Oracle database server.  Subnet x.x.200.0 is for administrative 
purposes.  Traffic between subnets is filtered as shown in Figure 9.  Traffic within each subnet is unfiltered, so 
that there is full connectivity to vulnerable services among machines in a subnet. 
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Figure 9:  Network connectivity for third experiment. 

The attack graph in this experiment contains 105 (machine-dependent) exploits.  While there are 
1052=11025 possible distances between 105 exploits, the exploits leading from the internet are not 
reachable from the remaining exploits, and such infinite distances are not recorded (using an 
adjacency list representation).  In particular, there are 10,395 recorded exploit distances. 

We then injected 10,000 intrusion events, mixed with random traffic.  We included isolated events 
as well as multi-step attacks.  Using a filter constant of 4.0=α  and a correlation threshold of 0.55, we 
correctly distinguished the multi-step attacks from the isolated events. 

In online mode, it takes less than 4 minutes to process 10,000 events (about 24 milliseconds per 
event).  This is on a machine with a 2-GHz processor, 1 megabyte of main memory, and two 100-
gigabyte 15,000 RPM SCSI disk drives.  Neither memory nor disk traffic showed more than 30% 
load. 

6. Summary and Conclusions 

In this paper, we extend previous approaches to attack scenario building by explicitly including the 
network attack graph in the model.  The attack graph provides the necessary context for intrusion 
events, and provides the graph distances upon which our correlations are based.  Our online event 
processing depends on pre-computed attack graph distances only, and requires only a lookup and 4 
arithmetic operations. 
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 To compute attack graph distances (offline), we build a model of attacker exploits and network 
vulnerabilities. We can create the network vulnerability model automatically from output of the Nessus 
vulnerability scanner. We then compute the distance of the shortest path between each pair of exploits in the 
attack graph. These distances are a concise measure of exploit relatedness, which we use for subsequent online 
causal correlation of intrusion detection events.  
 
 From the online stream of intrusion events, we build individual event paths based on attack graph 
reachability.  The inverse distance between each event in a path is a measure of correlation.  We apply a low-
pass filter to sequences of inverse distances to provide resiliency against detection errors.  The application of a 
threshold to the filtered distances separates event paths into highly correlated attack scenarios. We also 
compute an overall relevancy score for each resulting attack scenario.  
 
 We demonstrate our approach through several experiments.  The results show that the approach 
generates attack scenarios with a high degree of causal correlation.  We demonstrate the effectiveness of 
correlation thresholding, and well as its relationship to degree of applied filtering.  We demonstrate real-time 
performance, processing an event every 24 milliseconds.  
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