




R PForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gatherng and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information I it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED (From - To)

14 March 2006 Technical
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
A Smallpox and an Inhalation Anthrax Model Implemented FA8721-05-C-0002
Using Ordinary Differential Equations 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
D.C. Jamrog
A.A. Szpiro 5e. TASK NUMBER

"5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
AND ADDRESS(ES) NUMBER

MIT Lincoln Laboratory TR- 1106
244 Wood Street
Lexington, MA 02420-9108

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Department of the Air Force ESC/XPKL
5 Eglin Street
Hanscom AFB, MA 01731 11. SPONSORIMONITOR'S REPORT

NUMBER(S)
ESC-TR-2005-076

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents one approach for modeling smallpox and inhalation anthrax outbreaks using ODEs (ordinary differential equations).
This approach is related to a standard SEIR (susceptible exposed infected recovered) model. For each model, we define the states that
characterize the Uninfected and infected populations, the parameters governing disease progression, and the ODEs that govern the
transitions between the population states. In both models, medical capacity and treatment limitations are considered. To quantify the benefit
of an early public health response, the number of cases and deaths resulting from an outbreak are determined as a function of delay in
public health response. The smallpox model indicates that early initiation of a mass vaccination campaign can significantly reduce the
number of deaths. The anthrax model indicates that distribution of antibiotics at a high rate within the first day following a large attack can
save nearly all those exposed. Future work will focus on replacing the ODEs with probability distribution functions based on data from
outbreaks; doing so will lead to a more accurate model of the incubation periods and, in turn, a more accurate estimate of the benefit of an
early response.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES

a. REPORT b. ABSTRACT c. THIS PAGE Same as report 19b. TELEPHONE NUMBER (include area

Unclassified Unclassified Unclassified 60 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18



Massachusetts Institute of Technology
Lincoln Laboratory

A Smallpox and an Inhalation Anthrax Model Implemented
Using Ordinary Differential Equations

D.C. Jamrog
Group 46

A.A. Szpiro
Group 901

Technical Report 1106

14 March 2006

Approved for publdic release; distribution is unlimited.

Lexington Massachusetts



ABSTRACT

This report presents one approach for modeling smallpox and inhalation an-
thrax outbreaks using ODEs (ordinary differential equations). This approach is
related to a standard SEIR (susceptible exposed infected recovered) model. For
each model, we define the states that characterize the uninfected and infected pop-
ulations, the parameters governing disease progression, and the ODEs that govern
the transitions between the population states. In both models, medical capacity
and treatment limitations are considered. To quantify the benefit of an early pub-
lic health response, the number of cases and deaths resulting from an outbreak are
determined as a function of delay in public health response. The smallpox model in-
dicates that early initiation of a mass vaccination campaign can significantly reduce
the number of deaths. The anthrax model indicates that distribution of antibiotics
at a high rate within the first day following a large attack can save nearly all those
exposed. Future work will focus on replacing the ODEs with probability distribution
functions based on data from outbreaks; doing so will lead to a more accurate model
of the incubation periods and, in turn, a more accurate estimate of the benefit of
an early response.
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1. INTRODUCTION

This report presents one approach for modeling smallpox and inhalation anthrax outbreaks
using ODEs (ordinary differential equations). This approach is related to a standard SEIR (sus-
ceptible exposed infected recovered) model; see [2], for example. One benefit of such a simple
framework is greater transparency and fewer model parameters that must be estimated and varied.
Other types of models include more complicated ODE formulations [35] and stochastic formulations
with homogeneous mixing [20] and heterogeneous mixing [6, 11]; homogeneous mixing assumes all
people in the susceptible population are equally likely to become infected. See [8,24] for a general
review of these approaches.

The two ODE models are based on a framework of states described in section 2. For each
model, we define subcategories of the primary states, the disease progression parameters, and the
transition rates between the states. In both models, medical capacity and treatment limitations
are considered. Smallpox is modeled as a single-stage illness with capacities defined for quarantine.
Inhalation anthrax is modeled as a three-stage illness to which different medical treatments and
capacities are applied.



2. DISEASE MODEL FRAMEWORK

The populations of both models can be separated into the six primary states shown in Table 1.
For each model, these states are further broken down into additional states.

TABLE 1

Basic states of the disease models, which are functions of time

Disease States Notation

Unexposed at time t U(t)
Exposed people at time t E(t)
Symptomatic people at time t S(t)
Vaccinated people at time t V(t)

Recovered people or people with immunity at time t R(t)
Dead at time t D(t)

Transitions between these states are governed by ODEs. Let P(t) C 7z be a vector of the
number of people in each state at time t, so that Pk(t) is the number of people in the kth state
of the model at time t. Given the initial conditions P(to) and the differential equations, we can
use Euler's method to estimate the number of people in each state at time t,. Euler's method is
a typical method for solving differential equations, using derivative information from the previous
time step t,-, to estimate the number of people in the kth state at time t,:

Pk(t4) = Pk(t-I) + Pk(tn- 1)/At, (1)

where Pk(t,-t) is the derivative of the kth population at time t,-,. For convenience, we define

Pk(t) = fi,k(t) - Zfk,j(t), (2)
iel jCJ

where fi,k(t) is the rate of people moving from the ith into the kth state at time t, I is the set
of states that flow into the kth state, and J is the set of states into which the kth state flows
(In j = 0). When the ith state does not flow into the jth state, fij(t) = 0 for all t. For notational
convenience when defining the rates fjj(t), we replace the notation fi,j(t) with f(i,j) and i and j
with the notation for the states shown in Table 2.

Given the initial conditions, movement between the states will continue until everyone is either
vaccinated, recovered (or immune) or dead. The initial conditions of the model are specified by
the initial number of people infected, E(to), and the initial number of people who are susceptible,
U(t 0 ). The total number of people in the simulation is

Nt = U(to) + E(to). (3)
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3. SMALLPOX MODEL

In the smallpox model, the six primary states, shown in Table 1, are subcategorized according
to whether people are quarantined or isolated (q), unsuccessfully vaccinated (v), designated as
having a traceable meeting with an infectious person (c), receiving treatment (t), or will die (d).
In all, there are twenty-one states, as shown in Table 2.

TABLE 2

States of the smallpox model

Disease State Notation: Categorized Disease States

Unexposed U(t) Uv(t) Uq(t) Uqv(t) Uc(t) Ucv(t)
Exposed E(t) Ev(t) Eq(t) Eqv(t) Ec(t) Ecv(t)

Symptomatic S(t) Sd(t) Sq(t) Sqd(t) Sqt(t) Sqtd(t)

Vaccinated V(t)

Recovered R(t)

Dead D(t)

3.1 PARAMETERS OF THE SMALLPOX MODEL

The parameters of the model can be grouped into four categories: (1) disease progression,

(2) prophylaxis effiacy, (3) public health response, and (4) resource limits. These parameters are
presented in Tables 3-6.

Table 3 lists disease progression parameters for smallpox up to and including the infectious

period. Smallpox has a relatively long incubation period followed by a non-infectious prodromal
period, marked by high fever and flu-like symptoms, that is in turn followed by the infectious
period, marked by the characteristic smallpox rash. Because the prodrome is assumed to be non-
infectious, it is included in the incubation period. The final step to recovery is progression through
a non-infectious scabbing period, which is not modeled. Thus, R(t) is the number of individuals
who have survived infection with immunity but who may not be fully physically recovered yet.

Currently, there is no treatment to improve the likelihood of survival once the rash has
developed. However, we have included variables related to treatment (At, Pt, and 6 t) in the model
so that the model may be applied to an infectious disease that does have effective treatments or to
model the outcome of a smallpox outbreak if an acceptable antiviral drug becomes available.

In the absence of any medical interventions, whether or not an outbreak becomes an epidemic
depends on the value of the basic reproductive number, R0 ; R0 is defined as the expected average
number of secondary infections resulting from a single infectious person in a fully susceptible pop-
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TABLE 3

Smallpox disease progression parameters

Parameter Notation Value

incubation period (days) a-1 14.6 [10]
proportion of people expected to die A 0.30 [29]
infectious period given recovery (days) p- 1  8.5 [10]
infectious period given death (days) 6-t 8.5 [10]
proportion of treated people expected to die At 0.30
infectious period given recovery with treatment (days) pt- 8.5
infectious period given death with treatment (days) 6t1 8.5
proportion of contacts infected 0.20 [10]
average number of secondary infections R0 10 [27]
contacts per day per member of population /3 see equation (4)
general population ("herd") immunity Ch 0.20 in US [27]
environmental infections per day 'Y 0

ulation. If RO < 1, then the outbreak will die out. However, if RO > 1 and no interventions are
imposed to force Ro < 1, then the disease will continue to spread. In this analysis, the contact rate
between people, /3, is defined as

Ro (4)
/= Nt (A 6-1 + (1 - A)p-1)

The definition of 03 ensures that at the outset of the outbreak each infectious person infects on
average R0 people. This is a standard way to define the contact rate; for a similar definition
see [10] in which contact rate is defined as 13 = Ro/(^6N137) where 6.-1 is the amount of time an
individual is infectious [10].

TABLE 4

Smallpox prophylaxis efficacy

Parameter Notation Value

prophylaxis efficacy when uninfected C, 0.975 [10]
prophylaxis efficacy when infected but latent ce 0.30 [10]

Table 4 lists the assumed efficacy of the smallpox vaccine. The prophylaxis efficacy for those
already infected is an approximation based on the fact that the vaccine should be effective at
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preventing or reducing the severity of the illness if administered early during the incubation period,
which may last between 9 to 14 days [25]. The window of opportunity for effective vaccination is
estimated to be up to 4 days after infection [14].

TABLE 5

Smallpox public health response parameters

Parameter Notation Value

time elapsed before response is initiated (days) K varied
individuals per 1 million given prophylaxis per day V 100,000 [28]
fraction of contacts traced O0 varied
quarantine period (days) J 16.7 [10]

average time delay to self-isolate or seek treatment O0 0.95 [10]

TABLE 6

Resource limits for a smallpox outbreak

Parameter Notation

daily prophylaxis available Mv
total prophylaxis available MvItotal

daily new contact quarantine capacity Mq
daily total contact quarantine capacity Mqtotal

daily treatment capacity M,

Recently, there has been much debate about the proper response to a smallpox outbreak.
See [6,11, 18, 20,35] for examples of mathematical models currently being used to compare control
policies for a smallpox outbreak. In this paper, we consider three basic responses: (1) contact
tracing and ring vaccination, the final strategy used during the smallpox global eradication cam-
paign [7,21]; (2) mass vaccination, like that used during the last mass vaccination campaign in the
US [34] (which also included contact tracing [33]); and (3) these two responses in combination. In
addition, the model can also simulate isolation of infectious people, which would also be another
method of controlling an outbreak.

In the event of a smallpox outbreak, the current plan based on CDC guidelines is to use an
"enhanced version of the surveillance-containment strategy that was successfully employed by the
World Health Organization (WHO) to eradicate smallpox worldwide in the sixties and seventies"
[281 and to resort to mass vaccination only if the surveillance-containment strategy does not appear
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to be effective. In the case of mass vaccination, the plan is to vaccinate 100,000 people/day
per million people in the area [28]. As of July 2003, the Massachusetts Emergency Management
Association plan is to vaccinate the entire state of Massachusetts (6.4 million) within 6 days,
vaccinating 80% of the population in the first 3 days and the remaining 20% in the next 3 days [23].
One interesting point of reference is the last mass vaccination campaign that occurred in the U.S. in
1947, which began after a man with undiagnosed hemorrhagic smallpox infected twelve others [7].
In this case, 6.35 million people in New York City were vaccinated between April 4 and May 2 [34]
(although there is some debate as to the total number vaccinated [33]).

Yet another unknown is the fraction of infected people who would be able to be traced by
the public health system. When modeling the Kosovo outbreak of 1972 that occurred in rural
Yugoslavia, Gani and Leach assumed that 97.5% of infected population was traceable [10]. Given
our modern, mobile world population, this percentage may be much lower.

3.2 INFECTION AND CONTACT TRACING

In this section, we present the equations that govern movement between unexposed and
exposed states via "meetings" between susceptible and infectious people as well as environmental
exposures ('y $ 0). In addition, we also identify whether the meetings are traceable (O0 $ 0) or not.
Some equations deal only with identifying those individuals who have had a traceable meeting and
will be subsequently contacted and either vaccinated or quarantined.

In the model, contact tracing is only applied to those who have not yet become symptomatic,
namely people in states Uc, Ucv, Ec and Ecv. These states contain people that have had traceable
meetings (as designated by the letter c in their state names) and will be contacted if and when
contact tracing is initiated. Until such time, people in Ec and Ecv will simply progress to a
symptomatic state as if they were in E or Ev. Similarly, people in Uc and Ucv will be just as
susceptible to infection as people in U and Uv.

Below are the equations governing movement out of states U, Uv, Uc, Ucv, E and Ev. A
schematic of these transitions is shown in Figure 1. For convenience, let the number of people who
can infect others (that is, the number of infectious people not isolated) be

i = S + Sd, (5)

and let the number of unexposed people susceptible to environmental exposure be

U = U + Uq + Uv + Uqv + Uc + Ucv. (6)

The first four equations below represent traceable meetings with infectious people while the
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last two equations represent untraceable meetings.

f(U, Uc) = 00(1- )03iU (7)

f(Uv, Ucv) = 0c(1- ),3 Uv (8)

f(U, Ec) = Ocoq3iU (9)

f(Uv, Ecv) = 0co/3 iUv (10)
f (U, E) = (1 -Oc)0/3IU +min( U • (11)U

U Ut

U At~
Uv Uv

f(Uv, Ev) = (1 - OC)OI3 IUv + min(--U ' -) (12)

(Note that when this model is implemented, care must be taken when U becomes small; this issue
can be addressed by adding a small positive number to U, one on the order of floating point
precision.)

Equations (13) and (14) below, which are similar to equations (11) and (12), represent infec-
tions that result from a meeting between an infectious person and an unexposed person who has
had a prior meeting with an infectious person that was traceable. (Of course, this prior, traceable
meeting did not result in infection as they are still in Uc and Ucv.)

Uc Uc
f(Uc,Ec) = 0I3!Uc+min( -- Y,-) (13)

U A
UcV Ucv

f(Ucv,Ecv) = 003IUcv+min( ,,-- ) (14)

The equations below are similar to equations (7) and (8) but represent traceable meetings
between infectious and already infected people.

f(E,Ec) = O/3IE (15)

f(Ev,Ecv) = OOiIEv (16)

The equations below represent infections while in quarantine due to environmental exposure.

f(Uq, Eq) = min( -', -) (17)
Uqv Uqv (8

f(Uqv, Eqv) = min( Uv AL 
(18

If -y = 0, then no one will become infected while in quarantine.

Expressions involving the min(-, .) function, which represent environmental exposures, also
appear in equations (11)-(14), but riot in the equations governing movement into Uc, Ucv, Ec
and Ecv because movement into these states implies that the source of infection was traceable.
In the current model, we assume that environmental exposures are not traceable. As a side note,
environmental exposures may be traceable if a large number of people can be traced back to a
single place where the exposure occurred. However, this is currently unlikely in a time frame

9



Unexposed Successful Exposed
unsuccessful Vaccination unsuccessful
Vaccination h Vecention

UV Unexposed Exposed Ev

"Unexposed Exposed
unsuccessful Un exposed Expose unsuccessful
Vaccination & Quaane des thatined Vaccination &
Quarantined .Q Q Quarantined

Uqv0

UnexposedExoe
unucs lUepsdEpsdunsuccessful
Vaccination, Traceable Traceable Vaccination,

Traceable Meeting Meetncrcal\ Meeting cEMetn
Ucv Ucv

Figure 1. A schematic of the transitions between states due to infection and contact tracing. Movement
of people who have had traceable meetings is indicated by an orange arrow, while movement of those who
have been exposed via an untraceable meeting is indicated by a brown arrow. Note that although individuals
in Uc and Ucv become infected via an untraceable meeting (hence, the brown arrows), they retain their
"traceable" status and are moved into Bc and Ecv. Individuals in Uc and Ucv have had traceable contacts
with an infectious person in the past; howevJer, that contact did not lead to an infection. Finally, infections
due solely to an environmental exposure (-y $4 0) are indicated by a purple arrow. A blue circle indicates
that those in this state have been vaccinated, while a green circle indicates that those in this state are in
quarantine.
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on the order of a week or so. A recent example of identifying a common source of exposure is
the cluster of SARS cases at the Amoy Gardens Estate, where approximately 300 people were
infected [30]. In this case, transmission appears to have been the result of both close contact and a
leaking sewer system. It was contact tracing and subsequent analysis that led to the identification
of a possible environmental source. Finally, the min(., .) expression does not always yield an ODE.
For example, when (Uq/At) < -y(Uq/U), the number of people leaving Uq and entering Eq is
f(Uq, Eq)At = (Uq/At)At = Uq, which is not a differential equation.

3.3 SMALLPOX DISEASE PROGRESSION

The following equations govern movement from exposed states to symptomatic states:

f (E, S) (I (-A)aE (19)

f(E, Sd) = A• E (20)
f(Ec, S) = (1 - A)aEc (21)

f(EcSd) = AaEc (22)

f(Ev, S) = (1 - A)aEv (23)

f(Ev, Sd) = AaEv (24)

f(Ecv, S) = (1 - A)aEcv (25)

f(Ecv, Sd) = Aa Ecv (26)

f(Eq, Sq) = (1 - A)aEq (27)

f(Eq, Sqd) = Aa Eq (28)

f(Eqv, Sq) = (1 - A)a Eqv (29)

f(Eqv, Sqd) = AsaEqv. (30)

These equations distinguish between the fraction of those infected people that will recover, (1 - A),
and of those that will die, A.

The following equations govern movement from symptomatic to the immune and dead states:

f(S,R) = pS (31)

f(Sq, R) = pSq (32)

f(Sqt, R) = ptSqt (33)

f(Sd, D) = 6Sd (34)

f(Sqd, D) = 6Sqd (35)

f(Sqtd, D) = 6tSqtd. (36)

As mentioned earlier, the infectious period is followed by a non-infectious recovery period,
which is currently not modeled. The parameters p and 6 determine the amount of time individuals
are in S and Sd and allowed to spread disease. Thus, R(t) is the number of individuals who have
survived infection with immunity but who have not likely fully recovered yet. See Appendix A for
equations that can be used to model the non-infectious recovery period.
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3.4 OUTBREAK CONTROL POLICIES

Whether or not someone is vaccinated or quarantined during a particular time step (that is,

f(i, j) # 0, where j is a state holding either vaccinated or quarantined people) depends on whether
or not there is room in quarantine or vaccine available. See Appendix B for the scheme used to
impose the resource limits defined in Table 6.

3.4.1 Quarantine and vaccination of non-symptomatics

In this section, we present the equations governing quarantine and vaccination of those not
yet symptomatic. Since the vaccine efficacy window is estimated to be only about the first four
days after exposure, we do not model the vaccination of those already symptomatic.

Whether people are vaccinated or quarantined depends on whether or not contact tracing

has been initiated and whether quarantine capacity or vaccination supply limits have been reached.
Quarantining individuals with no symptoms can only occur if they have been designated as traceable
contacts (0, $ 0). We consider three possibilities: (1) both vaccination and quarantine, (2) only
vaccination and (3) only quarantine.

Let V' be the populations in the model that may request and receive vaccination; that is,

V = U + E. (37)

If both vaccination and quarantine can occur, then the following transition rates are used:

U
f(U, V) = cE, min(= (-V,U) (38)

V
E

f(E, V) = (E min(=-• -,E) (39)
V

U
f(U, Uv) = (1 - E,,) min(U V, U) (40)

V
E

f (E, Ev) = (1 - E,) min(=-z-wE) (41)
V

f (Uc, V) = E" Uc (42)

f (Ec, V) = ceEc (43)

f (Uc, Uqv) = (1 - ,) Uc (44)
f(Ec, Eqv) = (1 - ,)Ec (45)

f(Ucv, Uqv) = Ucv (46)

f(Ecv, Eqv) = Ecv. (47)

A schematic of these transitions is shown in Figure 2. In this case, when people move to quarantine,
they are also vaccinated if they have not been vaccinated already. Equations (42)-(45) model
vaccination as a result of contact tracing.

12



Unexposed Exposed
unsuccessful Exposed n "unsuccessfulVaccination VEVccintio

Unexposed Traceabl

Vaccination &rrceable Vaccination,Quarntindntine E q Quarantined I

\q " I E I

STraceableTraceable
Traceable Meeting Meeting Trcal

Meeting UcM
UCY Ecv

Figure 2. A schematic of the transitions allowed when mass vaccination and contact tracing are instituted
to control an epidemic. The dashed arrows indicate that movement will only be allowed if there is sufficient
capacity. The blue arrows indicate movement due to the mass vaccination protocol. The pink arrows indicate
movement due to contact tracing. Successfully vaccinated individuals resulting from. contact tracing or from.
the mass vaccination campaign move into V. (To place these transitions in context, we've also shown
connections between the states representing new infections and identification of those who would be contacted
if contact tracing were initiated. As in Figure 1, brown arrows indicate movement of those who have been
exposed via an untraceable meeting, while movement of those who have had a traceable meeting is indicated
by an orange arrow.) The color coding of the circles is the same one used in Figure 1.
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Unexposed Successful Exposed
unsuccessful Vaccination unsuccessful
Vaccination V

U E

UnexposedExoe
unsuccessful Unexposed
Vaccination & Quarantined Vaccination &
Quarantined Quaranted

Uqv q

Unexposed Exposed
unsuccessful Exposed unsuccessful
Vaccination, Traceable Traceable Vaccination,

TraceableMeeting Traceable
\ Meeting UMeeting

Ucv EcV

Figure 3. A schematic of the transitions allowed when contact tracing is followed by quarantine. The color
coding of the arrows and circles is the same as that in Figure 2; pink arrows indicate transitions due to
contact tracing and quarantining if there is capacity.

If only vaccination can occur, then equations (52)-(43) and the equations below are used.

f(Uc, Ucv) = (1 - EJ)Uc (48)

f(Ec, Ecv) = (1 - E,)Ec. (49)

In this case, equations (42), (43) and the two above model vaccination as a result of contact tracing.
(In the experiments to follow, we assume that quarantine space is unlimited.)

If only quarantining can occur, then equations (52)-(55), (46), (47) and the equations below
are used.

f(Uc, Uq) = Uc (50)

f(Ec,Eq) = Ec (51)

A schematic of these transitions is shown in Figure 3.
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In all cases, people move out of the quarantine after an average of a- 1 days:

f(Uq, U) = uUq (52)

f(Uqv, Uv) = oUqv (53)

f(Eq, E) = oEq (54)

f(Eqv, Ev) = oEqv, (55)

where cr- 1 should be greater than c-r, the incubation period, so that those who are infected and in
quarantine will not be released back into the general population but rather will become sick while
in quarantine and thus be held there.

3.4.2 Isolation and treatment of symptomatics

Other rates (or f(i, j)) may be nonzero due to isolation and treatment of symptomatic people.
Once the epidemic control policies are initiated, we assume that symptomatic people will be isolated
with an average delay of 071 days between symptom onset and isolation. If there is no treatment
available and symptomatic people can only be isolated, then the following rates are used:

f(S, Sq) = 0, S (56)

f(Sd, Sqd) = O0 Sd. (57)

If we are modeling an infectious disease for which there is treatment and unfilled capacity,
then the following rates are used:

f(S, Sqt) = 0,S (58)

f(Sq, Sqt) = Sq (59)

f(Sd, Sqt) = 0,(1 - A) Sd (60)

f(Sd, Sqtd) = OsASd (61)

f(Sqd, Sqt) = (1 - A) Sqd (62)

f(Sqd, Sqtd) = A Sqd, (63)

where A = At/A is the ineffectiveness of the treatment. Currently, if only supportive care is given
to smallpox patients, then we assume that At = A; that is, mortality remains constant despite
treatment. However, antiviral drugs are being developed [12,19]. Also, we assume that the mean
transition time to enter treatment while in isolation is 1 day (implied by the lack of the factor 0,
in some of the equations above).

3.5 MODEL RESULTS

3.5.1 Model validation: comparison to Kosovo 1972

To validate our model, we compare the output of the model (number of cases) to data from

the Kosovo outbreak of 1972 [7, 21], for which the global eradication strategy was implemented.
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We used the parameters given in Tables 3-5, except those shown in Table 7, and we place no limits

on the amount of vaccine available (daily or total) or quarantine space. The initial conditions are
E0 = 1, Nt = 2.2 million people [7]. In addition, we set Mt, = 0, that is, no simulation of treatment
during the symptomatic infectious period.

TABLE 7

Parameters for the 1972 smallpox outbreak in Kosovo

Parameter Notation Value

time elapsed before response is initiated (days) K 45.5

number of individuals given prophylaxis per day v (1-Eh)(Nt/45)

general population ("herd") immunity Eh 0.50 [10]
fraction of contacts traced 0, 0.975 [10]

daily prophylaxis available Mv V

total prophylaxis available Mvtotal Nt (unlimited)
daily new contact quarantine capacity Mq Nt (unlimited)

daily total contact quarantine capacity Mqtotal Nt (unlimited)

daily treatment capacity Mt 0

On March 16 vaccinations in Kosovo began, two days after smallpox was suspected in 4
patients [7], 45 days after the index case is estimated to have become infected (K= 45.5 days). By
the end of April, after about 45 days, nearly 95% of the population of Kosovo (Nt = 2.2 million) was
vaccinated, implying an average vaccination rate of (Nt/45) people/day [7]. This rate corresponds
to a rate of (1 - ch)(Nt/45) non-immune people/day, given the initial placement of (hNt people in
V to simulate 'herd' immunity (V0 = chNt and U0 = (1 - Ch)Nt - Eo).

As shown in Figure 4, there is good agreement between the recorded number of symptomatic
individuals and the number predicted by the model for R0 = 10. If we increase R0 to 10.2, we get
a better fit to the number of symptomatic cases between 50 and 70 days; however, doing so leads
to an overestimation of the cumulative number of cases.

Although the model does not capture the typical waves of cases or generations of illness, we

see that the ODEs do capture the average transition time. For example, we see that the index case
becomes sick after approximately 15 days.

As shown by the data, the incubation period of smallpox appears to follow a unimodal dis-
tribution rather than an exponential one, which necessarily underlies the ODE that governs this
transition. This is one reason to move to a slightly more complicated model that can use general
probability distribution functions (not just exponential ones) to define the transitions between the
states.
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Figure 4. A comparison of the number of cases from the 1972 Kosovo outbreak and number of cases predicted
by the ODE model when there is a 45.5-day delay in initiating the control policy. Depending on the value of
Ro the model can be made to fit the steep increase in cases (Ro = 10.2) or the cumulative number of cases
(Ro = 10.o0)

3.5.2 Hypothetical contemporary outbreak

To simulate a contemporary outbreak, we used the parameters given in Tables 3-5 except those
shown in Table 8. We consider an initial release of smallpox that infects 100 people (E0 = 100)
out of a total population of Nt = 3 million people, which is approximately the number of people
in the Boston metropolitan area, and we place no limits on the amount of vaccine available (daily
or total) or quarantine space. (See Appendix C for the combinations of the parameters required to
model the public health responses.)

If the U.S. health care system responds as the one in Kosovo did, that is, during the second
generation of secondary cases, then the model estimates that there will be roughly 106,600 cases
and over 31,800 deaths, as shown by the red curves in Figures 5 and 6. The second generation of
cases would be expected to surface around day 45 because of the assumed average incubation period
of 14.6 days. (The first cases will appear around day 15, the first generation of secondary cases
around day 30, and the second generation of secondary cases around day 45.) If the public health
system is able to diagnose and respond after the first few cases, but before the first generation of
cases, then the number of cases and deaths will be bounded by the green and the blue curves. On
the other hand, if we were able to detect and then initiate a response once the first case appears,
then the model estimates there will be about 890 cases and roughly 270 deaths.

Figure 7 shows that the number of people in quarantine peaks soon after the control policies
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TABLE 8

Parameters for a contemporary smallpox outbreak

Parameter Notation Value

time elapsed before response is initiated (days) r, 15, 30, 45
number of individuals given prophylaxis per day v 100,000 (Nt/lO6) [28]
fraction of contacts traced 0, 0.20
daily prophylaxis available M, u
total prophylaxis available Mvtotal Nt (unlimited)
daily new contact quarantine capacity Mq Nt (unlimited)
daily total contact quarantine capacity Mqtotal Nt (unlimited)
daily treatment capacity Mt 0

are implemented, as expected. On the other hand, the number of symptomatics peaks many days
(a few more than the incubation period) after the policies are implemented, as shown in Figure 8.
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Figure 5. The cumulative number of people infected during the contemporary smallpox outbreak, S(t)
S(t) + Sd(t) + Sq(t) + Sqd(t) + R(t) + D(t).

Figure 9 shows the number of deaths for each of the response delays considered and for each
control policy: (1) the combined policy (contact tracing with 0, = 0.20 and mass vaccination at a
rate of 100,000 people/day per 1 million people), (2) mass vaccination alone, (3) contact tracing
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alone with a very optimistic value for the percentage of infected people found (O0 = 0.90), and (4)
contact tracing with a much lower value for the percentage of infected people found (0c = 0.20).

As shown, if a response is initiated very shortly after the first case appears, then there is
not much difference between the four policies considered, but a mass vaccination campaign would
likely result in more vaccine-related deaths (which is currenIty not modeled). The number of
vaccine-related deaths is expected to be 1 to 2 per million people vaccinated [22]. However, rapidly
identifying and tracing the initial cases infected during an attack, who are not yet symptomatic
or just becoming symptomatic, might be difficult without biosensors. As delay increases, mass
vaccination and the combined policy are equally effective at controlling the epidemic.

Finally, it should be noted that the contact tracing rate will likely be limited; this is not
simulated in the model. In addition, random effects at the beginning of an epidemic are not modeled
by this deterministic model [8] nor are social networks, which may facilitate contact tracing.
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Figure 6. The cumulative number of deaths resulting from the contemporary outbreak, D(t).
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Figure 7. The number- of people in quarantine (not including symptomatic people) during the contemporary

outbreak, Q(t) Eq(t) + Uq(t) + Eqv(t) + Uqv(t).
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Figure 8. The number of symptomatic people during the contemporary outbreak, 5(t) = S(t) +Sd(t) +Sq(t) +
Sqd(t).
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Figure 9. A comparison of the number of deaths given three different smallpox control policies. For the
policy of contact tracing alone, we considered two different values for 0", 0.20 and 0.90. For each policy, the
deaths for a 15-day delay are under 1,000; they are 269, 270, 502, and 944 with respect to order shown in
the legend.
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4. A MODEL FOR INHALATION ANTHRAX

Inhalation anthrax is a noncontagious disease that we have modeled using three stages (a
prodromal period, a brief "recovery" period, and then fulminant illness) to which different medical
treatments and capacities may be applied. This model is different from the contagious disease
model in that (1) there are no quarantine or contact states and (2) there are multiple stages of
the disease. In addition, for smallpox, individuals are protected from infection by vaccination;
for anthrax, individuals would likely be given a 60-day supply of prophylactic antibiotics, such as
ciprofloxacin [15].

In this model, the six primary population states are categorized according to whether a
person is unsuccessfully given prophylaxis (v), receiving treatment (t), will recover (r), or will die
(d). Table 9 lists the nineteen states. Figure 10 shows a complete state diagram for this model,
which is reflected by the transition rates defined in sections 4.2 and 4.3.

TABLE 9

States of the inhalation anthrax model

Disease States Notation: Categorized Disease States

Unexposed U(t) Uv(t)
Exposed E(t) Ev(t)

Symptomatic stage 1 Slr(t) S1(t) Slvr(t) Slv2(t) Sltr(t) Slt2(t)
Symptomatic stage 2 S2(t) S2tr(t) S2t3(t)
Symptomatic stage 3 S3(t) S3tr(t) S3td(t)
Immune V(t)
Recovered R(t)
Dead D(t)

Individuals with inhalation anthrax initially experience nonspecific flu-like symptoms for a
period of days and then sudden fever, labored breathing, and shock over a time period as short as
a few hours, followed by death. However, it has been noted that there often appears to be a brief
period of recovery before the final stage [17]. In this model, stage 1 represents the initial nonspecific
flu-like stage; stage 2, the brief recovery period between the prodromal and fulminant stages; and
stage 3, the fulminant and final stage.

When creating the model, we assumed that prodromal patients will receive the same pro-
phylaxis as that given to patients with no symptoms. Thus, unexposed, exposed and prodromal
people draw off the prophylaxis supply. To prevent so-called double counting or someone receiving
prophylaxis before and after they become symptomatic, we define states Sly and Slvr. If individ-
uals have received prophylaxis when they are latent (infected but not symptomatic), but it was not
successful (that is, they are in Ev), they are prevented from receiving additional prophylaxis by

23



I ' Successful Successful ' Successful
prophylaxis p $1t2 $ S2t3 S3td

(antibioot1CS)(atics) cs 1 2S

Figure 10. A schematic of the transitions between states of the anthrax model. The dashed arrows indicate
that movement will only occur if related resource limits have not been exceeded.

moving them into Sly and Sivr rather than Si and Sir. See Appendix D for an alternate version
of the model in which the prodromal treatment is independent of prophylaxis supply and rate of
distribution.

Currently, the model does not consider the dependence of the incubation period and other
parameters on the dose of anthrax received. The model could be updated to include a number of
"levels" of illness corresponding to various levels of dose received, thus requiring additional disease
parameters, but at the moment there is relatively little data from animal studies to support such

a model.

4.1 PARAMETERS OF THE INHALATION ANTHRAX MODEL

The parameters can be grouped into four categories: (1) disease progression, (2) prophylaxis
efficacy, (3) public health response, and (4) resource limits, as shown in Tables 10-12. Most of
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the disease progression parameters, shown in Table 10, were defined based on data from the most
recent inhalation anthrax cases in 2001.

We chose an average incubation time of 4.5 days [17]. The incubation periods that could be
estimated from the most recent cases are shown in Figure 11. It is possible that longer incubation
periods would have been observed in 2001 if antibiotic prophylaxis had not been distribued to the
at-risk population [3,4]. Much longer incubation periods were observed during the 1979 Sverdlovsk
outbreak [13, 26] as shown in Figure 11. The average incubation period of this outbreak was
12.2 days, which is longer than estimates of 1 to 6 days for "high-dose exposures" [31]. Potential
explanations for the longer incubation times are delayed germination of spores [13, 26], low dose
exposure [31], and reaerosolization of spores.

TABLE 10

Inhalation anthrax disease progression parameters

Parameter Notation Value

incubation period (days) a-1 1-7 [5]
untreated mortality A historically 0.89 [13]
untreated recovery time (days) P-1 25.1 [17, 26]

length of stage 1 (days) 3-1 3.5 [17]
length of stage 2 (days) 6 -1 1.5
length of stage 3 (days) 63- 0.5

treatment inefficacy, stage 1 A1  0.45 [17]
treatment inefficacy, stage 2 )A2  0.95

treatment inefficacy, stage 3 , 3  0.99

treated recovery time, stage 1 (days) p-1 22.3 [17]
treated recovery time, stage 2 (days) p-] 23.3
treated recovery time, stage 3 (days) p-1 24.3
treated length of stage 1 (days) 6-1 3.5
treated length of stage 2 (days) 6-1 1.5t2

treated length of stage 3 (days) 8-1 0.5

According to the 2001 data, patients took approximately 3.5 days on average to go to their
doctor after becoming sick [17]. Thus, we estimated the initial stage to last about 3.5 days, which
is in keeping with the CDC fact sheet, which states 1 to 5 days [5].

To define the remaining disease progression parameters for untreated individuals, we used the
data for the two patients who were sent home without receiving antibiotics and who later returned
to the emergency room with fulminant illness, dying after 1 and 3 days after their initial visits.
For these patients, an average of 5.5 days passed between onset and death. Thus, we estimate the
average length of the last 2 stages to be 2 days. Since stage 3 is relatively short, we define the
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Figure 11. On the right are the incubation periods of the 2001 U.S. outbreak that could be estimated [17].
On the left are the observed incubation periods of the 1979 Sverdlovsk outbreak [26].

duration of stage 2 to be 1.5 days and the duration of stage 3 to be 0.5 days. We define untreated
recovery time to be 25.1 = 21 [26] + 4.1 [17] days for stage 1. For stages 2 and 3, we increased
this recovery time by 1 and 2 days, respectively. We assume that unsuccessful treatment does not
shorten nor lengthen the duration of the symptomatic disease stages.

Table 11 shows the assumed prophylaxis efficacy. We assume an efficacy of 90% when pro-
phylaxis is started during the incubation period. Significant protection against death was achieved
with prophylactic antibiotics for Rhesus monkeys before discontinuation of the antibiotics 30 days
post-exposure [9]. However, it is not likely that there will be 100% compliance in the completion
of a 60-day course of antibiotics [35]. Among the 2,000 postal workers that were advised to take
prophylactic antibiotics for 60 days, it is estimated that only about 40% of them completed the full
course of antibiotics [16].

The response parameters considered in this model are shown in Table 12. These parameters
include response delay, prophylaxis distribution rate, and average time delay to enter treatment.
In addition, capacity limits can be imposed on the treatment states. These limits are shown in
Table 13.

TABLE 11

Inhalation anthrax prophylaxis efficacy

Parameter Notation Value

prophylaxis efficacy when uninfected c, 0.90 [9, 35]

prophylaxis efficacy when infected Ce 0.90 [9, 35]
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TABLE 12

Inhalation anthrax public health response parameters

Parameter Notation Value

time elapsed before response is initiated (days) r, varied

individuals given prophylaxis per day V varied

average time delay to enter treatment (days) 0j 1

TABLE 13

Resource limits for an anthrax outbreak

Parameter Notation

daily prophylaxis capacity 1W,

total prophylaxis capacity Mv total
daily treatment capacity, stage 2 Mt 2

daily treatment capacity, stage 3 M, 3

4.2 INHALATION ANTHRAX DISEASE PROGRESSION

If all infections occur within a short time period, for example, a few hours, then it is reasonable
to define the number of exposed people by the initial condition, E(to) = E0 , rather than modeling
their movement from unexposed to exposed, as we did for smallpox. Since we are considering an

aerosol release of anthrax, this is the approach we took.

We begin by defining the transition rates from exposed to symptomatic:

f(E, S1) = AaE (64)

f(E, Slr) = (1 - A)aE (65)

f(Ev, S1) = AaEv (66)

f(Ev, Sir) = (1 - A)aEv. (67)

Once symptomatic, without treatment, the disease progresses according to these equations:

f(Slr,R) = pSlr (68)

f(S1,S2) = 61 S1 (69)

f(S2,S3) = 6 2 S2 (70)

f(S3, D) = 63S3 (71)
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With treatment, the disease either progresses or results in recovery according to these equations:

f(Sltr, R) = ptSltr (72)

f(Slt2, S2) = 6tS1t2 (73)

f(S2tr, R) = pt2S2tr (74)

f(S2t3, S3) = 6t2S2t3 (75)

f(S3tr, R) = ptf3 S3tr (76)

f(S3td, D) = bt3S3td (77)

4.3 MEDICAL INTERVENTIONS

In this section, we define the transition rates related to prophylaxis distribution and treatment.
These rates are non-zero as long as the resource limits have not been reached. Let V be the states
in the model that may request and receive prophylaxis; that is,

V/ = U + E + S1 + Sir. (78)

If the prophylaxis supply (daily or total) has not been reached, then the following equations rates
model successful and unsuccessful administration of prophylaxis to those unexposed, latent and
prodromal.

U U
f (U, V) = c,,min(- U, -- ) (79)

f(U, Uv) = (1 - E) min( U, --) (80)

E E
f(E,V) = E, min(= , ,(1 - a)-) (81)

V A
E E

f(E, Ev) = (1 - ce) min(= , (,(1 - 0) -) (82)
V At

Sir Sir.
f(Slr, Sltr) = min( V, (1 - p) S-) (83)

V At

f(Sl, Sltr) = (1 - )min( S1 v, (1 - 6)-t) (84)
V At

f(SI,Sit2) = Aimin( S1 V, (1-6l) ) (85)
V At

Equations (86) and (87) define the rate at which those in stage 2 and 3 enter treatment that will
ultimately lead to recovery.

f(S2, S2tr) = (1 -A, 2 )O S2 (86)

f(S3, S3tr) = (1 -A,3 )O S3 (87)
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Equations (88) and (89) define the rate at which those in stage 2 and 3 enter treatment that will

not stop the disease progression.

f(S2, S2t3) = A2OS2 (88)

f(S3, S3td) = A30sS3 (89)

4.4 RESULTS FOR A LARGE-SCALE AEROSOL ANTHRAX ATTACK

The model was used to investigate the effect of delaying prophylaxis and treatment. Of course,
the effect of delay can be heightened or lessened by decreasing or increasing the average incubation

time, respectively. We chose an average incubation time of 4.5 days, based on the most recent
cases [17]. However, as mentioned, the Sverdlovsk outbreak did have a longer average incubation
time [13,26].

For the large-scale attack, an initial number of exposed people was determined using an HPAC
(Hazard Prediction and Assessment Capability1 ) simulation of a brief line release of anthrax from
a boat travelling in Boston Harbor, assuming wind from the south east. In the simulation, 1 kg of
anthrax was released in 16 minutes. The simulation reported that approximately 510,000 people
within the greater Boston area would be exposed (that is, receive a dose greater than or equal to
LCt2, a dose lethal for greater than 2% of those exposed) with an average mortality of 61%. Thus,
we assume that 510,000 people are infected (E0 = 510,000) and that A = 0.61.

TABLE 14

Parameters specific to the hypothetical anthrax attack

Parameter Notation Value

incubation period (days) a-I 4.5 [17]

untreated mortality A 0.61
daily prophylaxis capacity My 100,000 - 750,000

total prophylaxis capacity JVIItotal Nt (unlimited)
daily treatment capacity, stage 2 Mt2  0.50(16,600 [32])

daily treatment capacity, stage 3 Mt, 600 [1.]

Next, we must define the number of people who will not become sick but will demand pro-
phylaxis, U0 . If we define this number to be small, say 50,000, this corresponds to accurately
identifying those exposed and preferentially treating them, that is, having very accurate knowledge
of the shape of the plume as a function of time and those people in the plume area at that time.
However, if there is no way to determine this information, then with so many people becoming sick,
it is likely that the entire metropolitan population will seek prophylaxis, and the total number of

'http://www.dtra.mil/Toolbox/Directorates/td/programs/acec/hpac.cfm

29



people in the simulation who will demand prophylaxis should be reflective of the number of people
in the metropolitan area (Nt = 3,000,000, U0 = Nt - Eo).

For this scenario, we use the parameters shown in Tables 10-12, except for those shown in
Table 14. We define the capacity limit for those in stage 2 (Mt,) to be a percentage of the number
of hospital beds in Massachusetts, which is estimated to be 16,600 [32]; we assume that 50% of these
beds can be made available to patients needing advanced care. The capacity limit for stage 3 (Mt,)
is estimated by the number of ventilators (portable and stationary) in the push packs delivered to
New York City on September 11th [1]; we assume that existing ventillators in the city will already
be in use. It should be noted that the capacity for stage 2 and stage 3 treatments are not drivers
of the attack outcome because the efficacy of these treatments are so low.

Figures 12 and 13 show the total number of deaths and symptomatic people as a function
of delay in public health response, which is primarily distribution of prophylaxis. Each pair of
colored curves corresponds to a different distribution rate (v). Figure 12 shows that as treatment is
delayed, the number of symptomatic people approaches the number of those exposed, while Figure
13 shows that as delay increases the number of deaths approaches 311,300 people (or AEO).

In addition, from these figures we can see that the number of cases and deaths is also depen-
dent on the prophylaxis demand. During the incubation period, those exposed and unexposed will
be indistinguishable from each other, so that if many uninfected people demand prophylaxis, then
those who are infected will not receive prophylaxis in the most timely fashion possible. Overall,
the sooner medical interventions are provided and the higher the distribution rate, the greater the
reduction in deaths.

Assuming a higher prophylaxis efficacy, for example, 95% due to higher compliance or more
effective prophylaxis, does not have much of an effect on the number of cases and deaths if prophy-
laxis must be distributed to the metropolitan population. Figures 14 and 15 show the predicted
numbers of cases and deaths assuming 95% efficacy. There is a greater difference between the 95%
and 90% prophylaxis efficacy when plume mapping can be used to target prophylaxis distribution
(dashed curves).
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Figure 12. The number of symptomatic people as a function of delay in initiating a public health response.
assuming a prophylaxis efficacy of 90%. This figure shows four possible distribution rates for prophylaxis.Solid lines correspond to the assumption that the metropolitan region will seek prophylaxis, while the dashed
lines correspond to only those in the plume plus an extra 50,000 people demanding prophylaxis.

350-

3o00

250o

alo-

Fiur 12.

1001
, . m 100000 people / day1

50 --" 250000 people / day
500000 people / day

I0 I• 7 50 0 0 0 M pe ope / d ay i
0 2 4 6 a 10 12

treatment delay (days)

Figure 13. The number of deaths as a function of delay in initiating a public health response, assuming a
prophylaxis efficacy of 90%. The curves are colored-coded according to prophylaxis distribution rate as in.
Figure 12.
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Figure 14. The number of symptomatic people as a function of delay in initiating a public health response.
assuming a prophylaxis efficacy of 95%. The curves are colored-coded according to prophylaxis distribution
rate as in Figure 12.
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Figure 15. The number of deaths as a function of delay in initiating a public health response, assuming a
prophylaxis efficacy of 95%. The curves are colored-coded according to prophylaxis distribution rate as in
Figure 12.
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5. CONCLUSIONS

The disease progression models can shed light on critical windows of opportunity for public
health interventions by quantifying the benefit of early response and high treatment rates. In
particular, if antibiotic prophylaxis is distributed at a high rate within the first day following a
large anthrax attack, nearly all those exposed can be saved if plume localization is successful.
The results indicate plume localization is most beneficial when response is initiated within 2 days
post-attack.

Similarly, the smallpox model indicates that early initiation of a mass vaccination campaign
and quarantine can significantly reduce the number of deaths. However, the current smallpox model
may underestimate the effectiveness of contact tracing for certain outbreaks since it does not model
social networks. On the other hand, it is easy to imagine a threshold number of index cases that
would overwhelm the contact tracing strategy [28], in which case mass vaccination would likely be
the best containment strategy.
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6. FUTURE WORK

To more accurately quantify the benefit of early prophylaxis, the differential equation-based
model should be updated to a more general transition-based model. The exponential distribution
underlies the transitions of the ODE-based model and, as a result, leads to premature transitions
between states, in particular the transition from exposed to symptomatic. For example, there
were no cases of anthrax 2 days prior to the estimated release date in Sverdlovsk [26]. Thus the
ODE model underestimates the benefit of early intervention since treatment is less effective once
the individual becomes symptomatic. An updated model will have the option to use probability
distribution functions defined by data from outbreaks whenever possible, such as the Sverdlovsk
anthrax outbreak [26].
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APPENDIX A

MODELING THE NON-INFECTIOUS RECOVERY PERIOD

Given the current assumption that all symptomatic people will be isolated within 0;' days,
we could use the following equations to estimate the number of physically recovered individuals,
R(t).

f(S,R) = pS (A-i)

f(Sq, R) = (p + p,)Sq (A-2)

f(Sqt, R) = (Pt + pt,)Sqt (A-3)

In this case, nearly all those who become sick move into R(t) from Sq(t) and Sqt(t) with average
delays of p 1 + phI and ptI + pn1 days, respectively. With no capacity limits imposed on isolation,
only a fraction of symptomatic people would move to R(t) with a delay of p' days, which would
essentially represent a shortened recovery time. However, if the isolation is not assumed, then
additional states and equations would be warranted. In particular, a state to hold non-infectious
recovering people who are never isolated would be required.

In the case of limited isolation capacity for symptomatic people, one approach to model the
number of fully recovered individuals requires one additional state and two additional parameters (a
state to hold those individuals who are still recovering but not infectious and two parameters equal
to the non-infectious recovery period with and without treatment). We only need one additional
state for two reasons. First, we can assume that those in isolation do not spread disease (given
the current definition of I), so the average transition time between Sq and R can be increased to
the infectious period plus the non-infectious recovery period, and similarly for Sqt to R, without
increasing disease spread. Second, in the case of a fatal illness, there is no symptomatic yet non-
infectious period. In this case, the equations would be

f(S, Sn) = pS (A-4)

f(Sn, R) = pnSn (A-5)

f(Sq, R) = (p + pn)Sq (A-6)

f(Sqt, R) = (Pt + ptn)Sqt, (A-7)

where Sn is the number of recovery people who are no longer infectious, p, is the non-infectious
recovery period, and Pnt is the non-infectious recovery period with treatment, which would hopefully
be the shorter of the two periods.
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APPENDIX B

IMPLEMENTATION OF RESOURCE LIMITS

The ODEs presented in the earlier sections were solved using Euler's method with a time
step At = 0.1 day prior to the initiation of an epidemic control policy. After the initiation of this
policy, the time step is allowed to vary so that the capacities for quarantine and treatment are not
exceeded. To do so, we define

Ati = min(At,AtMv, AtMq, AtMt, AtMvtotal, AtMQ"ot.l ), (B-i)

where

AtM, = (M, - Vdaity(ti))/(AV) (B-2)

AtMq = (Mq - Qdaily(ti))/(AQ) (B-3)

AtM, = (Mt - Tdaiiy(ti))/(AT) (B-4)

AtM'toto = m - Vtott(ti))/(AV) (B-5)

AtMqtotal = (Mqtot - Qtotai(ti))/(AQ), (B-6)

where AV, AQ and AT are the number of new people who would be vaccinated, moved into
quarantine and treated (determined by evaluating all of the relevant differential equations and
assuming a time step of At = 0.1); Vdaily is a running total of all prophylaxis distributed during the
current day; Qdaily and Tdaily are running totals of people in quarantine and treatment respectively;
and Vtotal is the number of units of prophylaxis given out so far. Note care must be taken, when
the denominator becomes close to zero; this can be addressed by adding a tiny number to the
denominator.

At the start of a new 24-hour period, V/daily is reset to zero. However, Qdaily and Tdaily are
treated differently; people must recover from these states for room to become available.

If the capacity limits for any of the interventions is not met, that is,

Vdaily(ti) < My (B-7)

Qdaily(ti) < iV/q (B-8)
Tdaily (ti) < At (B-9)

Vtotal (ti) < M,,oaj (B-10)

Qtotal(ti) < Mqto,,, (B-11)

then AV, AQ and AT are calculated as follows:

AV =E f(:,J) - E f(Uvj) - E f(Uqv,j) -... - f(Ecv,j), (B-12)
• j7Uv j#Uqv jEcv

where j = [Uv Uqv Ucv Ev Eqv Ecv V] is a vector of states where people are vaccinated upon
entrance. Thus, people moving from Uv into Ev and Uqv into Eqv, etc., are not counted as using
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another prophylaxis unit. (For the inhalation anthrax model, j = [Uv Ev V].) Similarly,

AQ=E •f(:, ) - 1 f(Uq, j) - E f(Uqv,j), (B-13)
j jTAUq j#Uqv

where j = [Uq Uqv Eq Eqv ] is a vector of the non-symptomatic, quarantine states; thus, people
moving from Uq into Eq and Uqv into Eqv are not recounted as entering quarantine. Also, note
that quarantine capacity does not apply to those who are already symptomatic. (For the inhalation
anthrax model, quarantines are not modeled.) And finally,

AT = -f(:,j) - E3 f(St,j) - ... - >- f(Sqtd, j), (B-14)
j jSt j7Sqtd

where j = [St Std Sqt Sqtd] is a vector of states where people undergo treatment upon entering
these states; thus, for example, people moving from St into Sqt and Std into Sqtd are not recounted
as entering treatment.
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APPENDIX C
RESPONSE PARAMETER VALUES

In the next two paragraphs, we describe the parameter values required to initiate the public
health responses we are considering (using the Matlab model): (1) contact tracing followed by quar-
antine and vaccination, (2) mass vaccination, and (3) both of these responses in combination. To
simulate contact tracing followed by quarantine and vaccination of contacts but no mass vaccina-

tion, set 0, C (0, 1] equal to the proportion of contacts expected to be found, set Mqtotal• >Mq > 0,

and set Mvtotal > M, > 0. To turn off mass vaccination, set V = 0. If v = 0 and Mvtotai > Mv > 0,
then only those contacted will be vaccinated; note, 1 or the mass vaccination rate applies only to
U and E.

To simulate mass vaccination (of people in U and E) only, define the vaccination rate (, > 0)
and set Mvtotai > M, > 0. (If Mvtotai = M, = 0, no one will receive prophylaxis even if v > 0.) In
addition, set 0, = 0 (so that people in U are not moved to Uc, a state to which mass vaccination
does not apply and similarly for E and Ec). If 0, = 0, then Uc(t) = 0 and Ec(t) = 0 for all t (and
thus, Ucv(t) = 0 and Ecv(t) = 0 for all t); this ensures that all those unexposed and not vaccinated
will remain in U and will receive prophylaxis according to v and similarly for those in E.
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APPENDIX D
ALTERNATE ANTHRAX MODEL

In section 4, we introduced an inhalation anthrax model that assumes that the treatment
for prodromal patients is the same unit of prophylaxis distributed during the mass prophylaxis
campaign. In this model, people enter the prodromal treatment states (Sltr and S1t2) at a rate
of v. We could assume a different treatment scheme for prodromal patients, either the number of
people allowed to enter the state can be rate-limited using a different rate, or the number of people
allowed to enter can be based on a capacity limit in terms of people. In the first case, the capacity
is defined by the number of people treated per day and should be reset daily. In the second case,
space in the state becomes available as people recover.

The alternate model described in this section assumes that prophylaxis and the prodromal
treatment are different, so states Slvr and S1v2 are not needed to ensure that people will not
receive prophylaxis twice. In addition, V = U + E. Figure D-1 shows a schematic of this model.
As a result, v is replaced by Mt,, and we must redefine the equations governing movement into the
treatment states Sltr and S$t2, as shown below.

f(Slr, Sltr) = O Sir (D-1)

f(S1, Sltr) = (1 - Ai )0, S1 (D-2)

f(S1,Slt2) = Aý1OS1 (D-3)

Movement into Sltr and Slt2 should now be dictated by the capacity limit Mt,, and capacity will
not be exceeded by appropriately defining Ati as

min(At, At m., Atm, , /Atm,,to•tal, (D-4)

where AtM, = min(AtMt, At/t•, AtM,,) and AtM1 , AtM,2 , and AtMV1 3 are defined taking into
consideration the respective capacity limits:

AtM, = (Mr1 - Tdaily, (ti))/(AT1 ) (D-5)

AtM, 2 = (M1 2 - Tdaily,(ti))/(AT 2 ) (D-6)

AtM, = (A - Tdaily, (ti))/(AT,) (D-7)
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Figure D-1. A schematic .showing the allowed movement between states of the alternate anthrax model. The

dashed arrows indicate that movement will only occur if related resource limits have not been exceeded.
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