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Abstract. Self-timed scheduling is an attractive implementation style for multiprocessor DSP systems due to its
ability to exploit predictability in application behavior, its avoidance of over-constrained synchronization, and its
simplified clocking requirements. However, analysis and optimization of self-timed systems under real-time con-
straints is challenging due to the complex, irregular dynamics of self-timed operation. In this paper, we review a
number of high-level intermediate representations for compiling dataflow programs onto self-timed DSP platforms,
including representations for modeling the placement of interprocessor communication (IPC) operations; separat-
ing synchronization from data transfer during IPC; modeling and optimizing linear orderings of communication
operations; performing accurate design space exploration under communication resource contention; and exploring
alternative processor assignments during the synthesis process. We review the structure of these representations,
and discuss efficient techniques that operate on them to streamline scheduling, communication synthesis, and
power management of multiprocessor DSP implementations.

Keywords: Dataflow graphs, embedded systems, digital signal processing, interprocessor communication, self-
timed scheduling.

1. Background

Multiprocessor implementation of DSP applications involves the interaction of sev-

eral complex factors including scheduling, interprocessor communication, synchronization,

iterative execution, and more recently, voltage scaling for low power implementation.

Addressing any one of these factors in isolation is itself typically intractable in any optimal

sense; at the same time, with the increasing trend toward multi-objective implementation crite-

ria in the synthesis of embedded software, it is desirable to understand the joint impact of these

factors. In this paper, we examine several high-level, intermediate representations that have

been developed to analyze and optimize various multiprocessor DSP implementation factors

and manage their interactions.

The techniques discussed in this paper pertain to system specifications based on itera-

tive synchronous dataflow (SDF) graphs [10]. Iterative SDF programming of DSP applica-

tions has been researched widely in the context of multiprocessor implementation, and

numerous commercial DSP tools have been developed that incorporate SDF semantics. Exam-

ples of such tools include SPW by Cadence, COSSAP by Synopsys, and ADS by Hewlett-
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Packard.

In SDF, an application is represented as a directed graph in which vertices (actors)

represent computational tasks, edges specify data dependences, and the numbers of data val-

ues (tokens) produced and consumed by each actor is fixed. Delays on SDF edges represent

initial tokens, and specify dependencies between iterations of the actors in iterative execution.

For example, if tokens produced by the th invocation of actor  are consumed by the

th invocation of actor , then the edge  contains two delays. Actors can be of

arbitrary complexity. In DSP design environments, they typically range in complexity from

basic operations such as addition or subtraction to signal processing subsystems such as FFT

units and adaptive filters. We refer to an SDF representation of an application as an applica-

tion graph. 

In this paper, we use a form of SDF called homogeneous SDF (HSDF) that is suitable

for dataflow-based multiprocessor design tools since it exposes parallelism more thoroughly.

In HSDF, each actor transfers a single token to/from each incident edge. General techniques

for converting SDF graphs into HSDF form are developed in [10]. We represent a dataflow

graph by an ordered pair , where  is the set of actors and  is the set of edges. We

refer to the source and sink actors of a dataflow edge  by  and , we denote the

delay on  by , and we occasionally represent an edge  by the ordered pair

. We say that  is an output edge of ;  is an input edge of ;

and  is delayless if . The execution time or estimated execution time of an

actor  is denoted .

Mapping an application graph onto a multiprocessor architecture includes three

important steps — assigning actors to processors (processor assignment), ordering the actors

assigned to each processor (actor ordering), and determining when each actor should com-

mence execution. All of these tasks can either be performed at run-time or at compile time to

give us different scheduling strategies.

In relation to the scheduling taxonomy of Lee and Ha [9], we focus in this paper on

the self-timed strategy and the closely-related ordered transaction strategy. These approaches

are popular and efficient for the DSP domain due to their combination of robustness, predict-

ability, and flexibility [17]. In self-timed scheduling, each processor executes the tasks

assigned to it in a fixed order that is specified at compile time. Before executing an actor, a

processor waits for the data needed by that actor to become available. Thus, processors are

required to perform run-time synchronization when they communicate data. This provides
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robustness when the execution times of tasks are not known precisely or when they may

exhibit occasional deviations from their compile-time estimates. Examples of an application

graph and a corresponding self-timed schedule are illustrated in Figure 1.

The ordered transaction method is similar to the self-timed method, but it also adds

the constraint that a linear ordering of the communication actors is determined at compile

time, and enforced at run-time [18]. The linear ordering imposed is called the transaction

order of the associated multiprocessor implementation. The transaction order, which is

enforced by special hardware, obviates run-time synchronization and bus arbitration, and also

enhances predictability. Also, if constructed carefully, it can in general lead to a more efficient

pattern of actor/communication operations compared to an equivalent self-timed implementa-

tion [6].

2. Modeling Self-timed Execution

In this section, we discuss two related graph-theoretic models, the interprocessor

communication graph (IPC graph)  [17][18] and the synchronization graph  [17], that

are used to model the self-timed execution of a given parallel schedule for a dataflow graph.

Given a self-timed multiprocessor schedule for , we derive  by instantiating a vertex for

each task, connecting an edge from each task to the task that succeeds it on the same proces-

sor, and adding an edge that has unit delay from the last task on each processor to the first task

on the same processor. Also, for each edge  in  that connects tasks that execute on dif-

ferent processors, an IPC edge is instantiated in  from  to . Figure 2 shows the IPC

graph that corresponds to the application graph and self-timed schedule of Figure 1. In this
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Figure 1. An example of an application graph and an associated self-
timed schedule. The numbers on edges  and  denote
nonzero delays.
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graph, the nodes labeled with “s” are nodes that send data and the nodes labeled with “r” are

nodes that receive data.

Vertices in these graphs correspond to individual tasks of the application being imple-

mented. Each edge in  and  is either an intraprocessor edge or an interprocessor edge.

Intraprocessor edges model the ordering (specified by the given parallel schedule) of tasks

assigned to the same processor. Interprocessor edges in , called IPC edges, connect tasks

assigned to distinct processors that must communicate for the purpose of data transfer, and

interprocessor edges in , called synchronization edges, connect tasks assigned to distinct

processors that must communicate for synchronization purposes.

Each edge  in  represents the synchronization constraint

 for all , (1)

where  and  respectively represent the time at which invocation  of actor

 begins execution and completes execution, and  represents the delay associated

with edge .

Initially, the synchronization graph  is identical to . However, various trans-

formations can be applied to  in order to make the overall synchronization structure more

efficient. After all transformations on  are complete,  and  can be used to map the
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Figure 2. The IPC graph constructed from the application graph
and schedule of Figure 1. Dashed edges represent IPC edges
and the shaded actors are communication actors (send and
receive actors) that perform interprocessor communication.
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given parallel schedule into an implementation on the target architecture. The IPC edges in

 represent buffer activity, and are implemented as buffers in shared memory, whereas the

synchronization edges of  represent synchronization constraints, and are implemented by

updating and testing flags in shared memory. If there is an IPC edge as well as a synchroniza-

tion edge between the same pair of tasks, then a synchronization protocol is executed before

the buffer corresponding to the IPC edge is accessed to ensure sender-receiver synchroniza-

tion. On the other hand, if there is an IPC edge between two tasks in the IPC graph, but there is

no synchronization edge between the two, then no synchronization needs to be done before

accessing the shared buffer. If there is a synchronization edge between two tasks but no IPC

edge, then no shared buffer is allocated between the two tasks; only the corresponding syn-

chronization protocol is invoked.

Any transformation that we perform on the synchronization graph must respect the

synchronization constraints implied by . If we ensure this, then we only need to imple-

ment the synchronization edges of the optimized synchronization graph (in conjunction with

the IPC edges of ). If  and  are synchronization graphs with

the same vertex-set and the same set of intraprocessor edges (edges that are not synchroniza-

tion edges), we say that  preserves  if for all  such that , we have

, (2)

where  if there is no path from  to  in the synchronization graph , and if

there is a path from  to , then  is the minimum over all paths  directed from  to

 of the sum of the edge delays on . Thus,  preserves  if for any new edge in  (i.e.,

for any edge not in ), there is a path in  directed from the source of the edge to the sink

that has a cumulative delay that is less than or equal to the delay of the edge. The following

theorem (developed in [17]) is fundamental to synchronization graph analysis. 

Theorem 1: The synchronization constraints (from (1)) of  imply the constraints of  

if  preserves .

Theorem 1 underlies the validity of a variety of useful synchronization graph transfor-

mations, which include systematic removal of redundant synchronization edges; rearrange-

ment of synchronization edges to trade-off latency and throughput; graph transformations for

use of low-overhead synchronization protocols; and streamlined sizing of interprocessor com-

munication buffers [17].
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3. Ordering Communication

The IPC graph is an instance of Reiter’s computation graph model [14], also known

as the timed marked graph model in Petri net theory [13], and from the theory of such graphs,

it is well known that in the ideal case of unlimited bus bandwidth, the average iteration period

for the ASAP execution of an IPC graph is given by the maximum cycle mean (MCM) of ,

which is defined by 

, (3)

where  denotes the sum of the edge delays over all edges in the cycle .

The MCM is thus the maximum over all directed cycles  of the sum of the task exe-

cution times in  divided by the sum of the edge delays in . The quotient in (3) is referred to

as the cycle mean of the associated cycle . A variety of efficient, low polynomial-time algo-

rithms have been developed for computing MCMs (e.g., see [5]).

IPC costs (estimated transmission latencies through the multiprocessor network) can

be incorporated into the IPC graph model, and the performance expression (3), by explicitly

including communication (send and receive) actors, and setting the execution times of these

actors to equal the associated IPC costs. In this case, the performance estimate (3) is limited by

any underlying uncertainties in the actor execution times, and run-time contention due to

shared communication resources. Nevertheless, it has proven to be a useful estimate of perfor-

mance during design space exploration for multiprocessor DSP.

A similar data structure, which is useful in analyzing ordered transaction implementa-

tions, is Sriram’s ordered transaction graph model [18]. Given an ordering

 for the communication actors in an IPC graph , the

corresponding ordered transaction graph  is defined as the directed graph

, where

, , (4)

, (5)

 for , 

and . (6)
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Thus, an IPC graph can be modified by adding edges (the edges in ) obtained from

the ordering  to create the ordered transaction graph.

A closely related data structure is the transaction partial order graph  that is

computed from the IPC graph by first deleting all edges in  that have delays of one or

more, and then deleting all of the computation actors. The transaction partial order graph rep-

resents the minimum set of dependencies imposed among different processors by the commu-

nication actors of the IPC graph. These dependencies must be obeyed by any ordering of the

communication operations.

Figure 3 shows an example of a transaction partial order graph. 

As described in Section 1, when the ordered transaction strategy is implemented using

a hardware method such as a micro-controller that imposes the linear order, there is no need

for synchronization and contention for shared communication resources is also eliminated.

Therefore, if the execution time estimates for the actors are accurate or are true worst-case val-

ues, then the MCM of the ordered transaction graph gives us an accurate estimate or worst-

case bound, respectively, of the iteration period of the associated application graph under the

ordered transaction strategy. Such efficient, accurate performance assessment is useful for

design space exploration in general, and it is especially useful when implementing applica-

tions that have real time constraints.

If interprocessor communication costs are negligible, an optimal transaction order can

be computed in low polynomial time for a given self-timed schedule [18]. We call this method

of deriving transaction orders the Bellman-Ford Based (BFB) method since it is based on

applying the Bellman-Ford shortest path algorithm to an intermediate graph that is derived
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Figure 3. The transaction partial order graph constructed from
IPC graph of Figure 2.
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from the given self-timed schedule.

However, when IPC costs are not negligible, as is frequently and increasingly the case

in practice, the problem of determining an optimal transaction order is NP-hard [6]. This

intractability has been shown to hold both under iterative and non-iterative execution of appli-

cation graphs. Thus, under nonzero IPC costs, we must resort to heuristics for efficient solu-

tions. Furthermore, the polynomial-time BFB algorithm is no longer optimal, and alternative

techniques that account for IPC costs are preferable.

In the presence of non-negligible communication costs, an efficient transaction order

can be constructed with the help of the transaction partial order graph  described earlier.

The transaction partial order algorithm is one systematic approach for using transaction par-

tial order graphs to construct efficient orderings of communication operations. This algorithm

proceeds by considering — one by one — each vertex of  that has no input edges (verti-

ces in the transaction partial order graph that have no input edges are called ready vertices) as

a candidate to be scheduled next in the transaction order. Interprocessor edges are inserted

from each candidate vertex to all other ready vertices in , and the corresponding MCM is

measured. The candidate whose corresponding MCM is the least when evaluated in this fash-

ion is chosen as the next vertex in the ordered transaction, and deleted from . This pro-

cess is repeated until all communication actors have been scheduled into a linear ordering. 

Figure 4 shows an example of an ordered transaction graph that is derived using the

transaction partial order algorithm. The algorithm has been shown to perform consistently

well on DSP application graphs [6].

While the ordered transaction method is useful in its total elimination of run-time syn-

chronization and bus arbitration overhead, the transaction partial order heuristic is able to

improve the performance beyond what is achievable by a self-timed schedule even if synchro-

nization and arbitration costs are negligible compared to actor execution times [6]. Such per-

formance benefit is achieved by strategic positioning of the communication operations in ways

that do not evolve from the natural evolution of self-timed schedules [6][7].

In summary, the ordered transaction and transaction partial order graphs are useful

representations for ordering communication operations on platforms that provide support for

enforcing such orderings. Optimal transaction orders can be derived in polynomial time if IPC

costs are negligible; however, the performance of the self-timed schedule is an upper bound on 

the performance of corresponding ordered transaction schedules under negligible IPC costs.

Conversely, when IPC costs are non-negligible, optimal transaction ordering is NP-hard, but

GTPO

GTPO

Gipc
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the performance of a self-timed schedule can, in general, be exceeded significantly by a care-

fully-constructed transaction order. As the relative costs of global communication increase in

embedded multiprocessor platforms, this latter relationship becomes an important design con-

sideration.

4. The Period Graph Model

Recall that given predictable actor execution times, one can apply (3) to accurately

assess system throughput in the absence of any contention for communication resources.

However, with the use of shared buses, which are employed in many embedded multiproces-

sor architectures, the accuracy of estimates based on (3) can be expected to degrade with the

level of bus contention that results at run-time. Fortunately, this does not affect the validity or

utility of the communication and synchronization management techniques discussed in Sec-

tion 2, since these techniques operate directly on the sets of interprocessor communication and

synchronization edges, without need for performance estimation. Furthermore, this limitation

is not encountered when using the ordered transaction model of Section 3, since contention is

eliminated under this implementation model regardless of the medium used for communica-

tion.

However, accurate performance assessment of self-timed systems involving shared
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communication resources in general must be able to handle contention on these resources. In a

typical embedded multiprocessor optimization scenario, such assessment is carried out repeat-

edly in order to evaluate candidate solutions for a given design. There are many optimizations

for which one could explore variations in task execution times. Examples include exploring

migrations between hardware and software, applying voltage scaling, exploring code size/per-

formance trade-offs for a particular task in the application, or investigating alternative proces-

sor assignments in a heterogeneous multiprocessor. In order to evaluate a particular change to

a given task, the performance impact of the change must be evaluated.

One consequence of communication resource contention in this context is that under

iterative execution that is self-timed, there is no known method for deriving an analytical

expression for the throughput of the system, and thus, simulation is required to get a clear pic-

ture of application performance. However, simulation is computationally expensive, and it is

highly undesirable to perform simulation inside the innermost optimization loop during syn-

thesis.

The period graph is an efficient estimator for the system throughput that can be

employed to avoid such inner-loop simulation [2]. In particular, the reciprocal of the MCM of

the period graph can be used as an efficient estimate of the throughput.

If communication resource contention is resolved deterministically, and execution

times are constant, then self-timed evolution may lead to an initial transient state, but the exe-

cution will eventually become periodic [17]. This holds because the multiprocessor may be

modeled as a finite-state system, and thus, aperiodic behavior — which implies the presence

of infinitely many distinct states — cannot hold. In DSP systems, although execution times are

not always constant, or known precisely, they typically adhere closely to their respective esti-

mates with high frequency. Under such conditions, the periodic execution pattern obtained

from the estimated execution times provides an estimate of overall system throughput based

on the task-level estimates.

For self-timed systems, when we apply execution time estimates to assess overall

throughput, it is necessary to simulate (using the execution time estimates) past the transient

state until a periodic execution pattern (steady state) emerges. Unfortunately, the duration of

the transient may be exponential in the size of the application specification [17], and this

makes simulation-intensive, iterative synthesis approaches highly unattractive. 

The period graph model greatly reduces the rate at which simulation must be carried

out during iterative synthesis. Given an assignment  of task execution times, and a self-timedν
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schedule, the associated period graph is constructed from the periodic, steady-state pattern of

the resulting simulation. The MCM of the period graph (with certain adjustments) is then used

as a computationally-efficient means of estimating the iteration period (the reciprocal of the

throughput) as changes are explored within a neighborhood of .

Figure 5(a) and Figure 5(b) illustrate an application graph along with a self-timed

schedule and the associated IPC graph, as defined in Section 2, which we use to illustrate con-

struction of period graphs. The solid black circles on the edges in the IPC graph represent

delays, which model inter-iteration dependencies. Here, a node labeled  represents a

communication actor that sends data from node  to node . Similarly, a node labeled 

represents an actor that receives data from node  destined for node . The throughput can be

determined by conducting a discrete event simulation of the IPC graph, given a model for res-

ν

Figure 5. An example of an application and IPC graph that are used to illustrate the
construction of period graphs.
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olution of communication resource contention. Figure 6 shows the periodic portion of the sim-

ulator output of the IPC graph of Figure 5, where the processors are connected by a shared

bus, and lower numbered processors are granted priority in the case where two processors

request the bus simultaneously.

The first step in the construction of the period graph is the identification of the period

(steady state periodic execution pattern) from the simulator output. This can be performed by

tracing backward through the simulation and searching for the latest intermediate time instant

 at which the system state  equals the state  obtained at the end of the simulation

Figure 6. (a) The periodic component of simulation output for the IPC graph in Figure 5;
(b) The period graph constructed from (a).
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(here,  denotes the simulation time limit). If no match is found, then the end of the first

period exceeds , and thus, the simulation needs to be extended beyond . Otherwise, the

region in the simulation profile (Gantt chart) that spans the interval  constitutes a (min-

imal) period of the simulated steady state.

Here, the system state  contains the execution state of each processor, which is

either “idle” or is represented by an ordered pair , where  is the task being executed at

time , and  denotes the time remaining until the current invocation of  is completed. The

state  also contains the current buffer sizes of all IPC buffers, as well as any information

(e.g., request queue status) that is used by the protocol for resolution of communication con-

tention. The periodic part of the simulator output may span one iteration of all the tasks as

shown in Figure 6, or multiple iterations of all the tasks as illustrated in Figure 7. As illustrated

in Figure 6, the period graph consists of all the tasks comprising the period that was detected,

with the idle time ranging between tasks (including those that are caused by communication

contention) also treated as nodes in the graph. For purposes of analysis, it is useful to separate

the idle nodes into two sets. When a node has the necessary data to execute, but is idle waiting

tf

tf tf

ta tf,[ ]

S t( )

A τ,( ) A

t τ A
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Figure 7. An illustration of a period graph model that spans multiple application iterations.
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for access to the bus, the associated idle node is classified as a contention idle. When a node is

idle waiting for its predecessors’ data, the associated idle node is classified as a data idle. Con-

tention idles are a consequence of mutual exclusivity, while data idles are a form of condition

synchronization. The nodes are connected by edges in the order that they appear in the period.

An edge is placed from the last node in the period for each processor to the first node in the

period. This edge is given a delay value of one (to model the associated transition between

period iterations), while all of the other intraprocessor edges have delay values of zero. This is

done for all the processors in the system. The period graph is completed by adding an edge

from each send node to its corresponding receive node. Further details on period graph extrac-

tion are developed in [2].

Figure 7(a) and Figure 7(b) illustrate another application graph along with a self-timed

schedule; Figure 7(c) shows the periodic steady state that results from the schedule of Figure

7(a) and the execution time estimates shown in Figure 7(b); and Figure 7(d) shows the result-

ing period graph. The nodes in Figure 7(d) that contain diagonal stripes correspond to idle

time ranges in the period. Note that the steady state period may span multiple graph iterations

(2 in this example), and in the period graph, this translates to multiple instances of each appli-

cation graph task. For purposes of clarity in Figure 7, we have assumed negligible latency

associated with IPC in this illustration.

Once the period graph has been constructed, it can be used as an efficient estimator for

the throughput in any optimization for which the execution times of the nodes are varied (e.g.,

when exploring migrations between hardware and software, applying voltage scaling, or

exploring alternative processor assignments in a heterogeneous multiprocessor). However, it

is not obvious how one should adjust the idle times in the period graph. It is observed in [2]

that the effects of contention can be captured efficiently with high estimation accuracy by

ignoring (setting to zero) the data idles and leaving the contention idles constant as the compu-

tation times are scaled.

The period graph has been applied to the problem of voltage scaling for power reduc-

tion of multiprocessor DSP systems. It has been shown to increase overall power optimization

efficiency significantly when used to explore voltage variations within a limited range around

a given voltage vector (assignment of processor voltages) [2]. For larger changes in node exe-

cution times, the fidelity (accuracy) of the estimate decreases. In general, one would use the

period graph in a local search, for which the fidelity is acceptable, and re-simulate and rebuild

the period graph outside this region when necessary. This integration of period graph analysis
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with occasional re-simulation has been studied in [3].

5. Clusterization Function Representations

The concept of clustering has been widely applied to various applications and

research problems such as parallel processing, load balancing and partitioning [11][12]. Clus-

tering is also often used as a front-end to multiprocessor system synthesis tools. In this con-

text, clustering refers to the grouping of actors into subsets that execute on the same processor.

The purpose of clustering is thus to constrain the remaining steps of synthesis, especially

scheduling, so that they can focus on strategic processor assignments.

In the context of embedded system implementation, one limitation shared by many

existing clustering and scheduling techniques is that they have been designed for general pur-

pose computation. In the general-purpose domain, there are many applications for which short

compile time is of major concern. In such scenarios, it is highly desirable to ensure that an

application can be mapped to an architecture within a matter of seconds. The internalization

algorithm [15] and the dominant sequence algorithm [19] are examples of such low complex-

ity algorithms.

Several probabilistic search approaches to multiprocessor scheduling have been pro-

posed in the literature, such as genetic algorithms, that exploit the increased compile time tol-

erance available with embedded systems (e.g., see [1] for a general discussion of genetic

algorithms, and [4] for an example of a recent genetic algorithm approach to scheduling).

However, these approaches typically have complex, highly specialized solution representa-

tions in the underlying genetic algorithm formulation, and require “repair” mechanisms that

further reduce their search efficiency. Specifically, the result of applying genetic operators,

such as crossover or mutation, may generate an infeasible solution, which the GA must either

discard or repair (to make it feasible). Repair mechanisms thus transform infeasible solutions

into feasible ones. Repair may not always be successful.

The clusterization function representation is a mechanism for encoding candidate

clustering solutions that is amenable to probabilistic search strategies, perhaps most notably to

genetic algorithms, but that avoids the asymmetries and repair requirements that plague the

effectiveness of conventional solution encodings that are used during scheduling [8]. The clus-

terization function concept is captured by the following definition.

Definition 1: Suppose that  is a subset of application graph edges. Then  

denotes the clusterization function associated with . This function is defined by:

β fβ E: 0 1{ , }→

β
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, (7)

where  is the set of application graph edges and .

By means of this definition, an enclosing search algorithm initially places actors in

different clusters in some fashion (e.g., randomly) to generate an initial solution space, and

then through successive refinement steps moves edges between clusters until solutions con-

verge or some pre-defined limit on the number of refinement steps expires. When using a clus-

terization function to represent a clustering solution, the edge subset  is taken to be the set of

edges that are contained in clusters. An illustration is shown in Figure 8. 

This subset view of clustering develops a natural and efficient mapping into the

framework of genetic algorithms. Derived from the schema theory of genetic algorithms (a

schema denotes a similarity template that represents a subset of ), canonical genetic

algorithms (which use binary representation of each solution as fixed-length strings over the

set  and efficiently handle optimization problems of the form ) provide

near-optimal sampling strategies over subsequent generations. Furthermore, binary encodings

in which the semantic interpretations of different bit positions exhibit high symmetry (e.g.,

with the clusterization function, each bit corresponds to the existence or absence of an edge

within a cluster) allow search techniques to leverage extensive prior research on genetic oper-

ators for symmetric encodings rather than forcing the development of specialized, less-thor-

f ei( )
0 if ei β∈( )

1 otherwise



=

E ei E∈

β

Figure 8. (a) An application graph representation of an FFT and the associated clusterization function
; (b) a clustering of the FFT application graph, and  (c) the resulting subset  of clustered

edges, along with the (empty) subset  of clustered edges in the original (unclustered) application
graph.

fβa
fβb

βb
βa

={e1, e3}

 {e4, e6}

 {e8, e9}

{e14,e15}

= {e1, e3, e4, e6, e8,
e9, e14, e15}

c.

βa ∅=

βb

∪

∪

∪

0 1,{ }l

0 1{ , } f 0 1{ , }: ℜ→
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oughly-tested operators to handle the underlying non symmetric, non traditional and

sequenced-based representation. Accordingly, the clusterization function encoding scheme is

favored both by schema theory, and significant prior work on genetic operators. Furthermore,

by providing no constraints on genetic operators, clusterization functions preserve the natural

behavior of genetic algorithms. Finally, a clusterization function encoding never generates an

illegal or invalid solution, and thus saves repair-related synthesis time that would otherwise

have been wasted in locating, removing or correcting invalid solutions.

The clusterization function approach has been applied to develop a genetic algorithm

that schedules application graphs to minimize the latency of each application graph iteration

(schedule makespan), while taking interprocessor communication overhead into account. In

this approach, the initial genetic algorithm population is initialized with a random selection of

clusterization functions (mappings from  into ) and the fitness is evaluated using a

modified version of list scheduling that abandons the restrictions imposed by a global schedul-

ing clock, as proposed in [16]. This application of the clusterization function has been shown

to significantly outperform existing clustering techniques, including the internalization algo-

rithm, the dominant sequence algorithm, and randomized versions of the internalization and

dominant sequence algorithms that were evaluated under equal amounts of synthesis time

(equal amounts of time available for probabilistic search) [8].

Since clustering is widely applicable as a front-end to many multiprocessor design con-

texts, and the CFA formulation captures all possible clustering alternatives in an efficient and

elegant representation, it is suitable for use in many types of tools for DSP system synthesis.

6. Summary

Designers of co-design and system synthesis tools for DSP can exploit the use of pre-

dictable, coarse-grain programming models, such as synchronous dataflow (SDF), which are

considered too restrictive for general-purpose design tools. However, at the same time, multi-

processor DSP implementation is typically faced with an unusually complex range of design

constraints and objectives. To help address this increasing trend toward high design complex-

ity, this paper has discussed several SDF-based intermediate representations for self-timed

implementation of multiprocessor DSP applications, including the interprocessor communica-

tion graph for modeling the placement of IPC operations; the synchronization graph for sepa-

rating synchronization from data transfer during IPC; the ordered transaction and transaction

partial order graphs for modeling and optimizing linear orderings of communication opera-

E 0 1,{ }
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tions; the period graph for accurate design space exploration under communication resource

contention; and the clusterization function concept for representing processor assignments

during the scheduling process.
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