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Abstract ing (DSP) [10]. An iterative dataflow specification consists
A critical challenge in synthesis techniques for itera-of a dataflow representation of the body of a loop that is to
tive applications is the efficient analysis of performance irbe iterated a large or indefinite number of times (e.g.,
the presence of communication resource contention. Tacross a vast stream of speech samples). In self-timed exe-
address this challenge, we introduce the concept of theution, the assignment of tasks (dataflow graph nodes) to
period graph. The period graph is constructed from the outprocessors, and the execution ordering of tasks on each pro-
put of a simulation of the system, with idle states includedessor are determined at compile-time, and at run-time, pro-
in the graph, and its maximum cycle mean is used to esttessors synchronize with one another only based on inter-
mate overall system throughput. As an example of the utilitgrocessor communication requirements, and do not neces-
of the period graph, we demonstrate its use in a joinsarily synchronize at the end of each loop iteration.
power/performance optimization solution that uses either a In this paper, we assume that a deterministic protocol
nested genetic algorithm, or a simulated annealing algois used to arbitrate contention for communication resources.
rithm. We analyze the fidelity of this estimator, and quantifyWe assume that a schedule has already been computed so
the speedup and optimization accuracy obtained compareithe order of the tasks on the processors is known, and that
to simulation. we are adjusting some task parameters that vary the task
execution times in order to perform an optimization of the
. system. We assume that reasonably accurate estimates are
1 Introduction . _available for the task execution times, and for the variation
In many practical multiprocessor systems, there igf execution times with parameter changes. Later in the
contention for one or more shared communicationyaper, we specifically address the problem of finding an
resources. One example of this is a shared bus. A processtimum set of supply voltages for the processors in order

must first gain access to the bus before it can execute @ reduce power while satisfying a throughput constraint.
interprocessor communicatiolPC) operation. One conse-

quence of this contention is that under self-timed, iterativ Previous work

execution, there is no known method for deriving an analyt-  The estimates for task execution times can be obtained
ical expression for the throughput of the system [14], anthrough several methods. The most straightforward is for
thus, simulation is required to get a clear picture of applicathe programmer to provide them while developing a library
tion performance. However, simulation is computationallyof primitive blocks, as is done in the Ptolemy system [19].
very expensive, and it is highly undesirable to perform simAnalytical techniques also exist. Li and Malik [17] have
ulation inside the innermost optimization loop during syn-proposed algorithms for estimating the execution time of
thesis. To avoid such a simulation, an accurate and efficieembedded software in an efficient manner. Much work has
estimator for throughput is required. This paper presents dmeen done on scheduling and binding methods for high
efficient estimator for the throughput of these systems. Ouevel synthesis [12][6][7][5]. These techniques attempt to
work is in the context of self-timed execution of iterative optimize the schedulmakespanwhich is a suitable perfor-
dataflow specifications, which is an efficient and popularmance metric for non-iterative applications or fully-static
design methodology in the domain of digital signal processimplementations, but is not ideally suited to the iterative,
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self-timed context that we address in this paper. SuppliMCM can be computed in low polynomial time [9].
voltage reduction has been used for some time in memories  The first step in the construction of the period graph is
and consumer electronics [11]. Chandrakasan et al. [3][4he identification of the period from the simulator output.
have presented a method based on reduced voltage levidlis can be performed by tracing backward through the
operation combined with architectural-level parallelism,simulation and searching for the latest intermediate time
showing that the throughput can be maintained while redudnstantt, at which theystem stat&(t,) equals the state
ing power. Tiwari et al. [16] presented a technique for esti§({) obtained at the end of the simulation (heéfe, denotes
mating the power given a set of software instructions. Thishe simulation time limit). If no match is found, then the
technique can be used in conjunction with the approachesnd of the first period exceeds , and thus, the simulation
proposed in this paper to obtain more accurate or automategeds to be extended beyomd . Otherwise, the region
estimates for the power consumption of the tasks in periofGantt chart) that spans the intervl, t;] constitutes a
graph model. (minimal) period of the simulated steady state.

. Here, the system stat§( 1) contains the execution
3 Period Graph state of each processor, which is either “idle” or represent-

If contention is resolved deterministically, and execu-gp|e by an ordered pa{A, 1) , whefe is the task being
tion times are constant, then self-timed evolution may leadyecuted at timé , and  denotes the time remaining until
to an initial transient state, but the execution will eventuallfhe current invocation ofA  is completed. The sts(d)
become periodic. This holds because the multiprocessejiso contains the current buffer sizes of all IPC buffers, as
may be modeled as a finite-state system, and thus, aperiogig|| as any information (e.g., request queue status) that is
behavior — which implies the presence of infinitely manyysed by the protocol for resolution of communication con-
distinct states — cannot hold. In DSP systems, althougfention. Pseudo-code for our method of period extraction is
execution times are not always constant, or known Pregiven in [20].
cisely, they typically adhere closely to their respective esti- Figure 1(a) illustrates aapplication graph(a data-
mates with high frequency. Under such conditions, thgow specification of an application) along with a self-timed
periodic execution pattern obtained from the estimated exechedule: Figure 1(c) shows the periodic steady state that
cution times provides an estimate of overall systemegyits from the schedule of Figure 1(a) and the execution
throughput based on the task-level estimates. Due to thgne estimates shown in Figure 1(b); and Figure 1(d) shows
largely deterministic nature of DSP applications, such sysge resulting period graph. The nodes in Figure 1(d) that
tem-level performance analysis, and optimization based ofontain diagonal stripes correspond to idle time ranges in
task-level estimates is common practice in the DSP desigpe period, and solid black circles on edges represent
community [10]. delays, which model inter-iteration dependencies. Note that

For self-timed systems, when we apply execution timgne steady state period may span multiple graph iterations
estimates to estimate overall throughput, it is necessary {2 in this example), and in the period graph, this translates
simulate (using the execution time estimates) past the trag, multiple instances of each application graph task.
sient state until a periodic execution pattern (steady state) Eqr clarity in this illustration, we have assumed negli-
emerges. Unfortunately, the duration of the transient mayjp|e |atency associated with IPC. As described below, non-
be exponential in the size of the application specificatiothegligible IPC costs can easily be accommodated in the
[14], and this makes simulation-intensive, iterative Symheperiod graph model by introducirsgndandreceivetasks at
sis approaches highly unattractive. appropriate points.

The objective in this paper is to greatly reduce the rate  As jllustrated in Figure 1, the period graph consists of
at which simulation must be carried out during iterativey|| the tasks comprising the period that was detected, with
synthesis through the use of a nopetiod graphmodel.  the idle time ranges between tasks (including those that are
Given an assignment  of task execution times, and a selfzysed by communication contention) also treated as nodes
timed schedule, the associated period graph is construct@ghe graph. The nodes are connected by edges in the order
from the periodic, steady-state pattern of the resulting simup at they appear in the period. An edge is placed from the
lation. The maximum cycle meaMCM) of the period |35t node in the period for each processor to the first node in
graph (with certain adjustments) is then used as a computgge period. This edge is given a delay value of one (to
tionally-efficient means of estimating the iteration periodmodel the associated transition between period iterations),
(the reciprocal of the throughput) as changes are explorgghile all of the other intraprocessor edges have delay val-
within a neighborhood ob . In this context, the MCM is es of zero. This is done for all the processors in the system.
the maximum over all directed cycles of the sum of the tasiyyr model utilizesendandreceivenodes for IPC. For each
execution times divided by the sum of the edge delays. Thec point, a send node is placed on the processor that is



sending data, and a corresponding receive node is placed on 0 Vi12 O
the processor that will receive the data. The period graph is Oy Ve O
completed by adding an edge from each send node to its Apg = pq%f-c SC _1% @)
corresponding receive node. 0 ref 1__\_/1_ 0
0 V 0

4 Fidelity of the estimator

We calculate the fidelity of the period graph estimator as
the task execution times are varied. Here, we use the exa

where V. is the new voltage. It is not obvious, however,
fow one should adjust the idle times in the period graph.

ple of varying the processor voltages in order to change thiVe separate the idle nodes into two sets: contention idles

task execution times. When the voltage on a processor i

varied, the execution time of a computational task varies

\Y
according to delay = kD—-—-gg—--2 . (1)
(Vaa—Wo)

whereV,, is the supply voltag¥, is the threshold volt-

age, andk is a constant [3]. We use a valu@.®folts

the threshold voltage. The execution tipe of each of

these states in the original (non-scaled) period graph is ref!
. The change in execution time of  Given an application graph, construct a valid schedule.

erenced to a voltag¥, .

each computation node is found by taking the derivative.
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Figure 1. An illustration of the period graph model.

and data idles. When a node has the necessary data to exe-
cute, but is idle waiting for access to the bus, the associated
idle node is classified as a contention idle. When a node is
idle waiting for its predecessors’ data, the associated idle
node is classified as a data idle. By experimenting with a
large number of application graphs, we found that we could
capture the effects of contention and obtain the best fidelity

foy zeroing out the data idles and leaving the contention

idles constant as the computation idles are scaled. Using
hese rules, the fidelity is calculated as follows:

We used the dynamic level scheduling algorithm given
in [18]. Next, construct the period graph as discussed
earlier. GenerateN voltage vectors (assignments of
voltages to the processors in the target architecture). For
each voltage vector, perform a simulation to determine
the throughput, with the execution times of the tasks on
each processor given by (1) according to the voltage on
the processor. Also, obtain an estimate for the through-
put by calculating the MCM of the voltage-scaled
period graph, in which the execution times of the com-
putation nodes are given by (1), and the execution times
of the idle nodes are as explained above.

Calculate the fidelity according to:

) -1 N 0
Fidelity = NIt D) f.0 , 3)

NN 1)q:1j =ji+1 '0

where
fij _ El if sign(ﬁ—%) = ?ign(M—Mj); @)
ad 0 otherwise
5{—1) if (x<0)

sign(®) = g O0if(x=0) ; (5)

5 1if (x>0)

the S s denote the simulated throughput values; and the
M; s are the corresponding estimates from the period graph.
Figure 2 plotsFidelity for a six-processor system in
which the voltage on the individual processors can vary
between plus or minus five percent. The x-axis represents



the sum of the absolute values of the voltage changes over Using the Period Graph in a Joint Power/

all processors. Each point on the graph is a fidelity calculaPerformance Algorithm

tion for N = 100 voltage vectors. A value of one is a “per- An effective way to reduce power consumption of a

fect” fidelity. It can be seen that in the range shown, therocessor core in CMOS technology is to lower the supply

fidelity is always greater than 0.65. It is also important thavoltage level, which exploits the quadratic dependence of

the estimator have a small error at each point. Figure 3 plofswer on voltage [3]. Reducing the supply voltage also has
N the effect of decreasing the clock speed and increasing cir-
)3 [(S-M)/S]. (6) cuit delay. The circuit delay can be modeled by (1). The

P21 power consumption is given by

It can be seen that the error increases as the voltage vector P = aC Vi4f, (7)
moves away from the reference point, and that the estimaigheref is the clock frequencg, s the load capacitance,
is slightly biased. For the range shown in the graphs, whergnd o is the switching activity [3]. To accommodate the
each processor voltage is changed by a maximum of fifteepossibility of putting processors in states of lower switching
percent, the error is less than four percent. activity during idle periods, our model includes a parameter
a4 for the idle states, and a paramedgr . _iqie for the
computational tasks, where <0 on_igqe - A more
detailed power analysis could assign a differ@nt  for each
computational task if that data were available. A different
Pl — power optimization technique, which can be used in con-
junction with the voltage scaling technique presented here,
utilizes a nearly complete processor shutdown during the
idle periods [8][15]. In our model, this would correspond to
a;4e = 0. Our model for the power is the average energy
consumption per graph iteration period. This corresponds in
a typical DSP system to the average energy required to pro-
cess one sample. Here, the energy of each node equals its
power times its execution time.

In a system consisting of multiple processors, one has
S the ability to choose, within a certain range, the (fixed)
At Vs oot g mvomge s proceseas operating voltage on each processor. This opens up an addi-

tional degree of freedom that can be exploited to minimize

the system power consumption. By choosing a lower volt-
Figure 2. Plot of fidelity (equation 3) for six processor sys- age of a processor that is executing tasks that are not on the
tem vs. magnitude of voltage change on all processors critical path, the throughput can remain unchanged while
the overall power consumption is reduced. In general, a
combination of raising voltages on some processors while
lowering others can yield the most attractive power/perfor-
mance solution.

When applying voltage scaling to a multiprocessor
system, the valid solution space is typically much too large
to search by brute-force methods. In addition, since there is
no general analytical formula for calculating the throughput
of these systems in the presence of communication resource
contention, each candidate solution must either be simu-
lated or estimated using some heuristic.

Fidelity

6 processors each changing by at most 15%

Mean Error

6 Genetic algorithm formulation
I To demonstrate the general utility of the period graph
S o e e e based performance estimation approach, we incorporated it
into two significantly different probabilistic search tech-
Figure 3. Plot of average error vs. voltage change on niques to derive two different algorithms for systematic
processors. voltage scaling. The first algorithm presented utilizes the




framework of genetic algorithms (GAs) [1]. The specific
GA explored here consists of an inner GA nested within an 1
outer GA. The inner GA performs a local search around a N
point from the population of the outer GA, using the MCM !

of the period graph in its objective function as an estimat : J :
Febuilt, andCVj - LSVj . ForT = 0 , the graph will be

for the throughput. A period constraiitynggin; 1S 9VeN \esimulated every time, and the period graph will offer no

as an input to the optimization problem, where the period 'gpeed advantage. The larger the valudof , the less often

the reciprocal of the throughput. The objective function caI-the graph will be resimulated, and the faster the optimiza-

culates the power consumption associated with each soIH- n algorithm will perform. However, whefi  is too large

tion by calculating the total energy per period, as discusse[ e fidelity of the period graph estimate will be unaccept-

earlier. If the period associated with a solution violates th%‘ny low and the quality of the final result will suffer. Based

period constraint(Tgq ion™ Teonstraint » e power con on our experiments with a number of graphs, the optimal

sumption is multiplied by a large penalty faCtorvalue of T is highly application-dependent, but a value of

exp(L0X(Tso1yti0n~ Teonstraint) - The GA attempts to mini- - -_ 5 4 (10%) generally gives good results.
mize this objective function.

In the outer loop, a population &f ., voltage vec-8 Results

tors is generated. A simulation is run and a period graph  Figure 4 shows an example of the reduction in power
constructed for each of these outer loop voltage vectors. F@ésulting from the genetic optimization algorithm on the

each of the outer |00p VOItage vectors, a new inner |00ﬁt1 app”cation graph_ The parameters of the GA were

population is generated such th|évtouteri—Vinneri| <Eg Noyter = Nipper = 50, Generationg,,, = 10,

for i 0Ny, whereN, . is the number of DVOCESSOYS,G%neration-rﬁner = 20. The local search voltages were
Vouter; is the voltage on processor in the outer populagonstrained to be within five percent of the corresponding
tion, Vinner, is the voltage on processor in the inner popouter loop voltages. The period constraint was calculated
ulation, and e is a user-defined threshold. The innepy simulating the system with all six processors operating
population size isN;,,o, . The inner GA then performs aat voltageV, . For this example, the system power con-
local search using this population for a number of generasymption was reduced by 42%, while maintaining the origi-
tions Generationg e, in an attempt to find a locally opti- nal throughput. To evaluate the advantage of the period
mal voltage vector. The inner GA uses the MCM of thegraph approach over using brute-force simulation, a second
period graph in its objective function. After an invocationnested GA was implemented. This algorithm was identical
of the inner GA is finished, one simulation is performedio the algorithm discussed above, except that the inner loop
using the resulting voltage vector, and the actual throughpufid not use the period graph estimate for the throughput.
for this point is used to compute its fitness. The outer loopnstead, each voltage vector was evaluated by simulation.
voltage vector is then replaced with this locally-optimizedThijg algorithm consumed 26 times more CPU time, and
voltage vector for use in the next outer loop generation. Thgroduced similar results, as shown in Figure 5.

outer loop is run for a number of generations

Generationg,q,-

V, LSV,

>T, 8
LSV, ®

=1
the graph is resimulated usifgV; . The period graph is

Genetic algo. power reduction (fixed throughput constraint) using period graph

7 Simulated annealing algorithm 0s T T T T T paer oo

Simulated annealing is another well-known method
for searching large design spaces. Using a standard simu-
lated annealing package [2], we have implemented an alter-
native version of period-graph-based voltage scaling
optimization. The objective function here is the same as for
the genetic algorithm. The system is first simulated with an
initial voltage vectorV. = LSV, , and the period graph is
built. In order to insure that the period graph will be a good
enough estimator, aesimulation thresholdT is main- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
tained. The difference between the current inpu to the T ¥ aton mier (1000 gonratnteraton) (5 minues cpuimottraion)
objective function, and the voltage vecttzSVj corre-

sponding to the simulation used to compute the current o -
period graph, is calculated. If Figure 4.' Plot of 1-(c.>pt|m|.zed p.ower)/(lnltlgl power)
vs. genetic algorithm iteration using the period graph

estimator.

power reduction




Figure 6 summarizes the power reduction results fothroughput constraint. In the table, the first two rows corre-
the simulated annealing algorithm applied to a fast Fouriespond to two different FFT implementatiomsisrefers to a
transform (FFT) application graph, for different values ofmusic synthesis algorithmmfrefers to a quadrature mirror
the resimulation threshol@ . It can be seen thafTas  iiiter bank,measis a measurement application, and the last
increased, the algorithm progresses more quickly. The sinthree rows correspond to graphs that were generated using
ulated annealing algorithm begins with a ‘melting’ routine, Sih’s algorithm for randomly generating application graphs
where the temperature is increased until a phase change[18]. The numbers in parentheses give the numbers of
detected. The initial flat part of the curves corresponds toodes in these applications. The optimization was per-
the time spent in the melting routine. We have found thaformed for afixed timeof 30 minutes in each case. The
for values above 20%, the period graph is not a goodptimum resimulation threshold was between 2% and 10%
enough estimator and the algorithm does not converge. in all cases. Fol = 0.25 , the period graph is not a good

Table 1 summarizes the power reduction for the simuestimator and none of the results returned during the opti-
lated annealing algorithm for several additional applicamization algorithm satisfied the throughput constraint. For
tions using different values of the resimulation thresholdthe largest graph, the fixed simulation time was not long
At the start of the optimization, all processor voltages werenough to make much improvement, but the best result
set at 5 volts. The throughput at this point was used as tlwecurred forT = 0.1 , where the simulations are less fre-
qguent. Table 2 summarizes the power reduction for the
genetic algorithm with and without using the period graph,
with a fixed compile time of one hour.

Genetic algo. power reduction (fixed throughput constraint) using simulation only

T T
power reduction

9 Conclusion
This paper has explored geriod graphmodel that
enables efficient voltage scaling optimization for self-timed
implementations of iterative applications. The period graph
can be used as a computationally efficient estimator for the
throughput in multiprocessor systems in which communica-
tion contention renders exact analysis too time-consuming.
This model is especially useful in iterative synthesis tech-
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ niques, such as those based on probabilistic search. Our
Heration Number (1000 g (126 minutes paper has demonstrated effective voltage scaling techniques
based on incorporating the period graph into genetic algo-
rithm and simulated annealing formulations. Other optimi-
Figure 5. Plot of 1-(optimized power)/(initial power) vs. zations, such as exploiting memory/speed trade-offs of the
genetic algorithm iteration using simulation only. individual tasks, are also possible. These may be more
appropriate to the genetic algorithm and simulated anneal-
ing framework, as a larger set of independent moves is

power reduction

simulated annealing FFT3 available during optimization. Other useful directions for
=T ‘ resimulaton treshoid % further work include integrating the period graph model
2 S into the scheduling phase, rather than restricting its use to

Lalih

application 0 2% 5% 10% 25%

0%

gl L L \ o fftl (28) 096 095 065 06 1
ul | . | fft2 (28) 097 09 071 097 1
wp |8 ] mus (20) 089 071 067 082 1
e NN meas(12) 077 073 081 08 1

0.5

gmf (14) 084 065 0.67 0.73 1
rand1 (30) 091 0.77 0.53 0.65 1
rand2 (100) 1 0.85 0.77 0.73 1

1

rand3 (200) 1 1 1 0.94
Table 1. power reduction for fixed computation time.

L L I
0 500 1000 1500 2000
time

Figure 6. Plot of (optimized power)/(initial power) vs. time
for simulated annealing algorithm on FFT3 application.
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