
ts
 to
g.,
exe-
 to
pro-
ro-
ter-
es-

col
es.
d so
that
ask
e
 are

on
he
an
er

ed
for
ry
].

e
of
as
igh
to

ic
e,

A Joint Power/Performance Optimization Algorithm for
Multiprocessor Systems using a Period Graph Construct

Neal K. Bambha and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park 1
Abstract
A critical challenge in synthesis techniques for itera-

tive applications is the efficient analysis of performance in
the presence of communication resource contention. To
address this challenge, we introduce the concept of the
period graph. The period graph is constructed from the out-
put of a simulation of the system, with idle states included
in the graph, and its maximum cycle mean is used to esti-
mate overall system throughput. As an example of the utility
of the period graph, we demonstrate its use in a joint
power/performance optimization solution that uses either a
nested genetic algorithm, or a simulated annealing algo-
rithm. We analyze the fidelity of this estimator, and quantify
the speedup and optimization accuracy obtained compared
to simulation.

1 Introduction
In many practical multiprocessor systems, there is

contention for one or more shared communication
resources. One example of this is a shared bus. A processor
must first gain access to the bus before it can execute an
interprocessor communication (IPC) operation. One conse-
quence of this contention is that under self-timed, iterative
execution, there is no known method for deriving an analyt-
ical expression for the throughput of the system [14], and
thus, simulation is required to get a clear picture of applica-
tion performance. However, simulation is computationally
very expensive, and it is highly undesirable to perform sim-
ulation inside the innermost optimization loop during syn-
thesis. To avoid such a simulation, an accurate and efficient
estimator for throughput is required. This paper presents an
efficient estimator for the throughput of these systems. Our
work is in the context of self-timed execution of iterative
dataflow specifications, which is an efficient and popular
design methodology in the domain of digital signal process-

ing (DSP) [10]. An iterative dataflow specification consis
of a dataflow representation of the body of a loop that is
be iterated a large or indefinite number of times (e.
across a vast stream of speech samples). In self-timed
cution, the assignment of tasks (dataflow graph nodes)
processors, and the execution ordering of tasks on each
cessor are determined at compile-time, and at run-time, p
cessors synchronize with one another only based on in
processor communication requirements, and do not nec
sarily synchronize at the end of each loop iteration.

In this paper, we assume that a deterministic proto
is used to arbitrate contention for communication resourc
We assume that a schedule has already been compute
the order of the tasks on the processors is known, and
we are adjusting some task parameters that vary the t
execution times in order to perform an optimization of th
system. We assume that reasonably accurate estimates
available for the task execution times, and for the variati
of execution times with parameter changes. Later in t
paper, we specifically address the problem of finding
optimum set of supply voltages for the processors in ord
to reduce power while satisfying a throughput constraint.

2 Previous work
The estimates for task execution times can be obtain

through several methods. The most straightforward is
the programmer to provide them while developing a libra
of primitive blocks, as is done in the Ptolemy system [19
Analytical techniques also exist. Li and Malik [17] hav
proposed algorithms for estimating the execution time
embedded software in an efficient manner. Much work h
been done on scheduling and binding methods for h
level synthesis [12][6][7][5]. These techniques attempt
optimize the schedule makespan, which is a suitable perfor-
mance metric for non-iterative applications or fully-stat
implementations, but is not ideally suited to the iterativ
1 A portion of this research was sponsored by the US National Science Foundation (CAREER, MIP9734273) and the Army
Research Laboratory under contract DAAL01-98-K-0075 and the MICRA program.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
A Joint Power/Performance Optimization Algorithm for Multiprocessor
Systems using a Period Graph Construct

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 is
t.
he

e

tes
e
ion
ion
 a

on
nt-
ng
ntil

as
t is
n-
 is

d
that
ion
ws
at

 in
ent
hat
ns

tes

li-
n-

the

of
ith
are
des
rder
the
 in

(to
s),
al-
em.

t is
self-timed context that we address in this paper. Supply
voltage reduction has been used for some time in memories
and consumer electronics [11]. Chandrakasan et al. [3][4]
have presented a method based on reduced voltage level
operation combined with architectural-level parallelism,
showing that the throughput can be maintained while reduc-
ing power. Tiwari et al. [16] presented a technique for esti-
mating the power given a set of software instructions. This
technique can be used in conjunction with the approaches
proposed in this paper to obtain more accurate or automated
estimates for the power consumption of the tasks in period
graph model.

3 Period Graph
If contention is resolved deterministically, and execu-

tion times are constant, then self-timed evolution may lead
to an initial transient state, but the execution will eventually
become periodic. This holds because the multiprocessor
may be modeled as a finite-state system, and thus, aperiodic
behavior — which implies the presence of infinitely many
distinct states — cannot hold. In DSP systems, although
execution times are not always constant, or known pre-
cisely, they typically adhere closely to their respective esti-
mates with high frequency. Under such conditions, the
periodic execution pattern obtained from the estimated exe-
cution times provides an estimate of overall system
throughput based on the task-level estimates. Due to the
largely deterministic nature of DSP applications, such sys-
tem-level performance analysis, and optimization based on
task-level estimates is common practice in the DSP design
community [10].

For self-timed systems, when we apply execution time
estimates to estimate overall throughput, it is necessary to
simulate (using the execution time estimates) past the tran-
sient state until a periodic execution pattern (steady state)
emerges. Unfortunately, the duration of the transient may
be exponential in the size of the application specification
[14], and this makes simulation-intensive, iterative synthe-
sis approaches highly unattractive.

The objective in this paper is to greatly reduce the rate
at which simulation must be carried out during iterative
synthesis through the use of a novel period graph model.
Given an assignment of task execution times, and a self-
timed schedule, the associated period graph is constructed
from the periodic, steady-state pattern of the resulting simu-
lation. The maximum cycle mean (MCM) of the period
graph (with certain adjustments) is then used as a computa-
tionally-efficient means of estimating the iteration period
(the reciprocal of the throughput) as changes are explored
within a neighborhood of . In this context, the MCM is
the maximum over all directed cycles of the sum of the task
execution times divided by the sum of the edge delays. The

MCM can be computed in low polynomial time [9].
The first step in the construction of the period graph

the identification of the period from the simulator outpu
This can be performed by tracing backward through t
simulation and searching for the latest intermediate tim
instant at which the system state equals the state

 obtained at the end of the simulation (here, deno
the simulation time limit). If no match is found, then th
end of the first period exceeds , and thus, the simulat
needs to be extended beyond . Otherwise, the reg
(Gantt chart) that spans the interval constitutes
(minimal) period of the simulated steady state.

Here, the system state contains the executi
state of each processor, which is either “idle” or represe
able by an ordered pair , where is the task bei
executed at time , and denotes the time remaining u
the current invocation of is completed. The state
also contains the current buffer sizes of all IPC buffers,
well as any information (e.g., request queue status) tha
used by the protocol for resolution of communication co
tention. Pseudo-code for our method of period extraction
given in [20].

Figure 1(a) illustrates an application graph (a data-
flow specification of an application) along with a self-time
schedule; Figure 1(c) shows the periodic steady state
results from the schedule of Figure 1(a) and the execut
time estimates shown in Figure 1(b); and Figure 1(d) sho
the resulting period graph. The nodes in Figure 1(d) th
contain diagonal stripes correspond to idle time ranges
the period, and solid black circles on edges repres
delays, which model inter-iteration dependencies. Note t
the steady state period may span multiple graph iteratio
(2 in this example), and in the period graph, this transla
to multiple instances of each application graph task.

For clarity in this illustration, we have assumed neg
gible latency associated with IPC. As described below, no
negligible IPC costs can easily be accommodated in
period graph model by introducing send and receive tasks at
appropriate points.

As illustrated in Figure 1, the period graph consists
all the tasks comprising the period that was detected, w
the idle time ranges between tasks (including those that
caused by communication contention) also treated as no
in the graph. The nodes are connected by edges in the o
that they appear in the period. An edge is placed from
last node in the period for each processor to the first node
the period. This edge is given a delay value of one
model the associated transition between period iteration
while all of the other intraprocessor edges have delay v
ues of zero. This is done for all the processors in the syst
Our model utilizes send and receive nodes for IPC. For each
IPC point, a send node is placed on the processor tha

ν

ν

ta S ta()
S tf() tf

tf
tf

ta tf,[]

S t()

A τ,() A
t τ

A S t()

r,
h.
les

 exe-
ted
 is

dle
 a
ld

lity
ion
ing

le.
n
ed
of

For
ne
on
 on
h-

d
-

es

the
ph.
in
ry
nts
sending data, and a corresponding receive node is placed on
the processor that will receive the data. The period graph is
completed by adding an edge from each send node to its
corresponding receive node.

4 Fidelity of the estimator
We calculate the fidelity of the period graph estimator as

the task execution times are varied. Here, we use the exam-
ple of varying the processor voltages in order to change the
task execution times. When the voltage on a processor is
varied, the execution time of a computational task varies

according to . (1)

where is the supply voltage, is the threshold volt-

age, and is a constant [3]. We use a value of for

the threshold voltage. The execution time of each of

these states in the original (non-scaled) period graph is ref-

erenced to a voltage . The change in execution time of

each computation node is found by taking the derivative.

, (2)

where is the new voltage. It is not obvious, howeve
how one should adjust the idle times in the period grap
We separate the idle nodes into two sets: contention id
and data idles. When a node has the necessary data to
cute, but is idle waiting for access to the bus, the associa
idle node is classified as a contention idle. When a node
idle waiting for its predecessors’ data, the associated i
node is classified as a data idle. By experimenting with
large number of application graphs, we found that we cou
capture the effects of contention and obtain the best fide
by zeroing out the data idles and leaving the content
idles constant as the computation idles are scaled. Us
these rules, the fidelity is calculated as follows:

• Given an application graph, construct a valid schedu
We used the dynamic level scheduling algorithm give
in [18]. Next, construct the period graph as discuss
earlier. Generate voltage vectors (assignments
voltages to the processors in the target architecture).
each voltage vector, perform a simulation to determi
the throughput, with the execution times of the tasks
each processor given by (1) according to the voltage
the processor. Also, obtain an estimate for the throug
put by calculating the MCM of the voltage-scale
period graph, in which the execution times of the com
putation nodes are given by (1), and the execution tim
of the idle nodes are as explained above.

• Calculate the fidelity according to:

, (3)

where

; (4)

; (5)

the s denote the simulated throughput values; and
s are the corresponding estimates from the period gra

Figure 2 plots for a six-processor system
which the voltage on the individual processors can va
between plus or minus five percent. The x-axis represeFigure 1. An illustration of the period graph model.

A

B

E

F

H

I

CG

Proc 1
Proc 4

Proc 3
Proc 2

(a) Execution Times

A, C, H, F

B, E

G, I

: 3
: 4

: 2

A
B F

C G

E A

I H
C
B F

E

G
I H

14

(c)

A E A E

B BF F

C

C

G

G

I

H

I

H

(d)

(b)

delay k
Vdd

Vdd Vt–()2
---------------------------⋅=

Vdd Vt

k 0.8volts

pei

Vref

∆pei pei

Vsc

Vref

1
Vt

Vsc
--------–

1
Vt

Vref

---------–

2

1–

=

Vsc

N

Fidelity
2

N N 1–()
---------------------- fi j

j i 1+=

N

∑
i 1=

N 1–

∑

 =

fi j
1 if sign Si Sj–() sign Mi Mj–()=

0 otherwise

=

sign x()
1–() if x 0<()

0 if x 0=()
1 if x 0>()

=

Si
Mi

Fidelity

a
ly

 of
as
cir-
he

ce,
e
g

ter
e

ch
nt
n-
re,
he
to
gy
 in
ro-

ls its

as
d)
ddi-
ze
lt-
 the
ile
, a
ile
r-

or
ge
 is

ut
rce
u-

h
d it
-
ic
he
the sum of the absolute values of the voltage changes over
all processors. Each point on the graph is a fidelity calcula-
tion for voltage vectors. A value of one is a “per-
fect” fidelity. It can be seen that in the range shown, the
fidelity is always greater than 0.65. It is also important that
the estimator have a small error at each point. Figure 3 plots

. (6)

It can be seen that the error increases as the voltage vector
moves away from the reference point, and that the estimate
is slightly biased. For the range shown in the graphs, where
each processor voltage is changed by a maximum of fifteen
percent, the error is less than four percent.

5 Using the Period Graph in a Joint Power/
Performance Algorithm

An effective way to reduce power consumption of
processor core in CMOS technology is to lower the supp
voltage level, which exploits the quadratic dependence
power on voltage [3]. Reducing the supply voltage also h
the effect of decreasing the clock speed and increasing
cuit delay. The circuit delay can be modeled by (1). T
power consumption is given by

, (7)

where is the clock frequency, is the load capacitan
and is the switching activity [3]. To accommodate th
possibility of putting processors in states of lower switchin
activity during idle periods, our model includes a parame

 for the idle states, and a parameter for th
computational tasks, where . A more
detailed power analysis could assign a different for ea
computational task if that data were available. A differe
power optimization technique, which can be used in co
junction with the voltage scaling technique presented he
utilizes a nearly complete processor shutdown during t
idle periods [8][15]. In our model, this would correspond

. Our model for the power is the average ener
consumption per graph iteration period. This corresponds
a typical DSP system to the average energy required to p
cess one sample. Here, the energy of each node equa
power times its execution time.

In a system consisting of multiple processors, one h
the ability to choose, within a certain range, the (fixe
operating voltage on each processor. This opens up an a
tional degree of freedom that can be exploited to minimi
the system power consumption. By choosing a lower vo
age of a processor that is executing tasks that are not on
critical path, the throughput can remain unchanged wh
the overall power consumption is reduced. In general
combination of raising voltages on some processors wh
lowering others can yield the most attractive power/perfo
mance solution.

When applying voltage scaling to a multiprocess
system, the valid solution space is typically much too lar
to search by brute-force methods. In addition, since there
no general analytical formula for calculating the throughp
of these systems in the presence of communication resou
contention, each candidate solution must either be sim
lated or estimated using some heuristic.

6 Genetic algorithm formulation
To demonstrate the general utility of the period grap

based performance estimation approach, we incorporate
into two significantly different probabilistic search tech
niques to derive two different algorithms for systemat
voltage scaling. The first algorithm presented utilizes t

Figure 2. Plot of fidelity (equation 3) for six processor sys-
tem vs. magnitude of voltage change on all processors

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

F
id

el
ity

Sum of Absolute Value of % Change in Voltage on all Processors

Fidelity - 6 processors each changing at most 15%

N 100=

Figure 3. Plot of average error vs. voltage change on
processors.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50

M
ea

n
E

rr
or

Sum of Absolute Value of % Change in Voltage on all Processors

6 processors each changing by at most 15%

Si Mi–() Si⁄[]
i 1=

N

∑

P αCLVdd
2 f=

f CL
α

αidle αnon idle–
αidle αnon idle–≤

α

αidle 0=

 is

o
ften
a-
,
t-
d
al

of

er
e
re

ng
ed
ng
n-
i-

iod
nd
al
op
ut.
on.
nd
framework of genetic algorithms (GAs) [1]. The specific
GA explored here consists of an inner GA nested within an
outer GA. The inner GA performs a local search around a
point from the population of the outer GA, using the MCM
of the period graph in its objective function as an estimate
for the throughput. A period constraint is given
as an input to the optimization problem, where the period is
the reciprocal of the throughput. The objective function cal-
culates the power consumption associated with each solu-
tion by calculating the total energy per period, as discussed
earlier. If the period associated with a solution violates the
period constraint , the power con-
sumption is multiplied by a large penalty factor

. The GA attempts to mini-
mize this objective function.

In the outer loop, a population of voltage vec-
tors is generated. A simulation is run and a period graph
constructed for each of these outer loop voltage vectors. For
each of the outer loop voltage vectors, a new inner loop
population is generated such that
for , where is the number of processors,

 is the voltage on processor in the outer popula-
tion, is the voltage on processor in the inner pop-
ulation, and is a user-defined threshold. The inner
population size is . The inner GA then performs a
local search using this population for a number of genera-
tions in an attempt to find a locally opti-
mal voltage vector. The inner GA uses the MCM of the
period graph in its objective function. After an invocation
of the inner GA is finished, one simulation is performed
using the resulting voltage vector, and the actual throughput
for this point is used to compute its fitness. The outer loop
voltage vector is then replaced with this locally-optimized
voltage vector for use in the next outer loop generation. The
outer loop is run for a number of generations

.

7 Simulated annealing algorithm
Simulated annealing is another well-known method

for searching large design spaces. Using a standard simu-
lated annealing package [2], we have implemented an alter-
native version of period-graph-based voltage scaling
optimization. The objective function here is the same as for
the genetic algorithm. The system is first simulated with an
initial voltage vector , and the period graph is
built. In order to insure that the period graph will be a good
enough estimator, a resimulation threshold is main-
tained. The difference between the current input to the
objective function, and the voltage vector corre-
sponding to the simulation used to compute the current
period graph, is calculated. If

, (8)

the graph is resimulated using . The period graph
rebuilt, and . For , the graph will be
resimulated every time, and the period graph will offer n
speed advantage. The larger the value of , the less o
the graph will be resimulated, and the faster the optimiz
tion algorithm will perform. However, when is too large
the fidelity of the period graph estimate will be unaccep
ably low and the quality of the final result will suffer. Base
on our experiments with a number of graphs, the optim
value of is highly application-dependent, but a value

 (10%) generally gives good results.

8 Results
Figure 4 shows an example of the reduction in pow

resulting from the genetic optimization algorithm on th
fft1 application graph. The parameters of the GA we

, ,
. The local search voltages were

constrained to be within five percent of the correspondi
outer loop voltages. The period constraint was calculat
by simulating the system with all six processors operati
at voltage . For this example, the system power co
sumption was reduced by 42%, while maintaining the orig
nal throughput. To evaluate the advantage of the per
graph approach over using brute-force simulation, a seco
nested GA was implemented. This algorithm was identic
to the algorithm discussed above, except that the inner lo
did not use the period graph estimate for the throughp
Instead, each voltage vector was evaluated by simulati
This algorithm consumed 26 times more CPU time, a
produced similar results, as shown in Figure 5.

Tconstraint

Tsolution Tconstraint>()

100 Tsolution Tconstraint–()()exp

Nouter

Vouteri Vinneri– ε<
i Nproc∈ Nproc

Vouteri i
Vinneri i

ε
Ninner

Generationsinner

Generationsouter

V j LSVj=

T
CVj

LSV j

1
N

Vi LSV i–

LSV i

i 1=

N

∑ T>

CV j
CVj LSV j→ T 0=

T

T

T
T 0.1=

Figure 4. Plot of 1-(optimized power)/(initial power)
vs. genetic algorithm iteration using the period graph
estimator.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

po
w

er
 re

du
ct

io
n

Iteration Number (1000 generation/iteration) (6 minutes cputime/iteration)

Genetic algo. power reduction (fixed throughput constraint) using period graph

power reduction

Nouter Ninner 50= = Generationsouter 10=
Generationsinner 20=

Vref

e-

st
sing
s

 of
er-
e
%

od
pti-
or
ng
ult
e-
he
h,

d
ph
the
a-
g.
h-
Our
ues
o-
i-

the
ore
al-
 is
r

el
 to
Figure 6 summarizes the power reduction results for
the simulated annealing algorithm applied to a fast Fourier
transform (FFT) application graph, for different values of
the resimulation threshold . It can be seen that as is
increased, the algorithm progresses more quickly. The sim-
ulated annealing algorithm begins with a ‘melting’ routine,
where the temperature is increased until a phase change is
detected. The initial flat part of the curves corresponds to
the time spent in the melting routine. We have found that
for values above 20%, the period graph is not a good
enough estimator and the algorithm does not converge.

Table 1 summarizes the power reduction for the simu-
lated annealing algorithm for several additional applica-
tions using different values of the resimulation threshold.
At the start of the optimization, all processor voltages were
set at 5 volts. The throughput at this point was used as the

throughput constraint. In the table, the first two rows corr
spond to two different FFT implementations, mus refers to a
music synthesis algorithm, qmf refers to a quadrature mirror
filter bank, meas is a measurement application, and the la
three rows correspond to graphs that were generated u
Sih’s algorithm for randomly generating application graph
[13]. The numbers in parentheses give the numbers
nodes in these applications. The optimization was p
formed for a fixed time of 30 minutes in each case. Th
optimum resimulation threshold was between 2% and 10
in all cases. For , the period graph is not a go
estimator and none of the results returned during the o
mization algorithm satisfied the throughput constraint. F
the largest graph, the fixed simulation time was not lo
enough to make much improvement, but the best res
occurred for , where the simulations are less fr
quent. Table 2 summarizes the power reduction for t
genetic algorithm with and without using the period grap
with a fixed compile time of one hour.

9 Conclusion
This paper has explored a period graph model that

enables efficient voltage scaling optimization for self-time
implementations of iterative applications. The period gra
can be used as a computationally efficient estimator for
throughput in multiprocessor systems in which communic
tion contention renders exact analysis too time-consumin
This model is especially useful in iterative synthesis tec
niques, such as those based on probabilistic search.
paper has demonstrated effective voltage scaling techniq
based on incorporating the period graph into genetic alg
rithm and simulated annealing formulations. Other optim
zations, such as exploiting memory/speed trade-offs of
individual tasks, are also possible. These may be m
appropriate to the genetic algorithm and simulated anne
ing framework, as a larger set of independent moves
available during optimization. Other useful directions fo
further work include integrating the period graph mod
into the scheduling phase, rather than restricting its use

Figure 5. Plot of 1-(optimized power)/(initial power) vs.
genetic algorithm iteration using simulation only.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

po
w

er
 re

du
ct

io
n

Iteration Number (1000 generations/iteration) (126 minutes cputime/iteration)

Genetic algo. power reduction (fixed throughput constraint) using simulation only

power reduction

T T

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000

P
/P

0

time

simulated annealing FFT3

resimulation threshold %
0
2
5
6

10

Figure 6. Plot of (optimized power)/(initial power) vs. time
for simulated annealing algorithm on FFT3 application.

0%
2%

5 %
6%

10 %

application 0 2% 5% 10% 25%

fft1 (28) 0.96 0.95 0.65 0.6 1

fft2 (28) 0.97 0.9 0.71 0.97 1

mus (20) 0.89 0.71 0.67 0.82 1

meas (12) 0.77 0.73 0.81 0.82 1

qmf (14) 0.84 0.65 0.67 0.73 1

rand1 (30) 0.91 0.77 0.53 0.65 1

rand2 (100) 1 0.85 0.77 0.73 1

rand3 (200) 1 1 1 0.94 1

Table 1. power reduction for fixed computation time.

T 0.25=

T 0.1=

ro-

u-
in

sis

r
of

er-
ral
ta-

er

d-

g
us

itt.
t-

s

voltage scaling of fixed schedules, and the investigation of
adaptive methods for dynamically adjusting the frequency
of resimulation.

10 References
[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary
computation: Comments on the history and current state.”
IEEE Transactions on Evolutionary Computation, April,
1997.
[2] Carter, Everett, Taygeta Scientific Inc. http://
www.taygeta.com/annealing/simanneal.html.
[3] A. P. Chandrakasan, S. Sheng, and R. W. Broderson.
“Low-power CMOS digital design.” IEEE Journal of Solid-
State Circuits, 27(4):473—484, 1992.
[4] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey,
and R. Brodersen, “Optimizing power using transforma-
tions,” IEEE Trans. Computer-Aided Design, vol. 14, no. 1,
1995.
[5] J. M. Chang and M. Pedram, “Register allocation and
binding for low power,” Design Automation Conf., June,
1995.
[6] A. Dasgupta and R. Karri, “Simultaneous scheduling and
binding for power minimization during microarchitecture
synthesis,” in Proc. Intl. Symp. Low Power Design, Apr.
1995.
[7] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchi-
tectural synthesis of performance-constrained low-power
VLSI designs,” in Proc. Int. Conf. Computer Design, Oct.
1994.
[8] C. Hwang and A.C.-H. Wu. “A predictive system shut-
down method for energy saving of event-driven computa-
tion.” International Conference on Computer-Aided Design,
1997.
[9] E. L. Lawler. Combinatorial Optimization. Holt, Rine-
hart and Winston. 1976.

[10] E. A. Lee and S. Ha. Scheduling strategies for multip
cessor real time DSP. Global Telecommunications Confer-
ence, November 1989.
[11] P. Macken, M. Degrauwe, M. Van Paemel, and G. Og
ey, “A voltage reduction technique for digital systems,”
Proc. IEEE Intl. Solid-State Circuits Conf., 1990.
[12] A. Raghunathan and N. K. Jha, “Behavioral synthe
for low power,” in Proc. Intl. Conf. Computer Design, Oct.
1994.
[13] G. C. Sih, “Multiprocessor Scheduling to Account fo
Interprocessor Communication”, Ph.D. thesis, Dept.
EECS, U. C. Berkeley, 1991.
[14] S. Sriram, and S. S. Bhattacharyya, Embedded Multi-
processors: Scheduling and Synchronization. Marcel Dek-
ker, Inc., 2000.
[15] M. Srivastava, A. P. Chandrakasan, and R.W. Brod
son. “Predictive system shutdown and other architectu
techniques for energy efficient programmable compu
tion.” IEEE Transactions on VLSI Systems, 4(1): 42—55,
1996.
[16] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software Pow
Minimization”, IEEE Trans. VLSI, December 1994.
[17] Y. S. Li and S. Malik. Performance analysis of embe
ded software using implicit path enumeration. In Proceed-
ings of the Design Automation Conference, 1995.
[18] G. C. Sih and E. A. Lee. A compile-time schedulin
heuristic for interconnection-constrained heterogeneo
processor architectures. IEEE Transactions on Parallel and
Distributed Systems, 4(2):75-87, February 1993.
[19] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschm
Ptolemy: A framework for simulating and prototyping he
erogeneous systems. International Journal of Computer
Simulation, January 1994.
[20] N. K. Bambha and S. S. Bhattacharyya, A Period
Graph Throughput Estimator for Multiprocessor System,
ISR technical report, University of Maryland, July 2000.

application
using period

graph
no period

graph

fft1 0.54 0.74

fft2 0.69 0.86

mus 0.68 0.90

meas 0.70 0.82

qmf 0.64 0.84

rand1(30) 0.55 0.78

rand2(100) 0.70 1

rand3(200) 0.87 1

Table 2. Genetic algorithm (optimized power)/(initial
power) for fixed compile time

	A Joint Power/Performance Optimization Algorithm for Multiprocessor Systems using a Period Graph ...
	Neal K. Bambha and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park 1
	Abstract
	1 Introduction
	2 Previous work
	3 Period Graph
	Figure 1. An illustration of the period graph model.

	4 Fidelity of the estimator
	We calculate the fidelity of the period graph estimator as the task execution times are varied. H...
	where is the supply voltage, is the threshold voltage, and is a constant [3]. We use a value of f...
	, (3)
	; (4)
	; (5)
	Figure 2. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage change ...
	Figure 3. Plot of average error vs. voltage change on processors.

	. (6)

	5 Using the Period Graph in a Joint Power/ Performance Algorithm
	, (7)

	6 Genetic algorithm formulation
	7 Simulated annealing algorithm
	, (8)

	8 Results
	Figure 4. Plot of power reduction vs. algorithm iteration using period graph estimator.
	Figure 5. Plot of power reduction vs. algorithm iteration using simulation only .
	Figure 6. Plot of (optimized power)/(initial power) vs. time for simulated annealing algorithm on...
	Table 1. power reduction for fixed computation time.

	9 Conclusion
	Table 2. Genetic algorithm (optimized power)/(initial power) for fixed compile time

	10 References
	[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary computation: Comments on the history and c...
	[2] Carter, Everett, Taygeta Scientific Inc. http:// www.taygeta.com/annealing/simanneal.html.
	[3] A. P. Chandrakasan, S. Sheng, and R. W. Broderson. “Low-power CMOS digital design.” IEEE Jour...
	[4] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power us...
	[5] J. M. Chang and M. Pedram, “Register allocation and binding for low power,” Design Automation...
	[6] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization during ...
	[7] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis of performance-constra...
	[8] C. Hwang and A.C.-H. Wu. “A predictive system shutdown method for energy saving of event-driv...
	[9] E. L. Lawler. Combinatorial Optimization. Holt, Rinehart and Winston. 1976.
	[10] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real time DSP. Global Telecomm...
	[11] P. Macken, M. Degrauwe, M. Van Paemel, and G. Oguey, “A voltage reduction technique for digi...
	[12] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Intl. Conf. Com...
	[13] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, Ph.D. th...
	[14] S. Sriram, and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization...
	[15] M. Srivastava, A. P. Chandrakasan, and R.W. Broderson. “Predictive system shutdown and other...
	[16] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Toward...
	[17] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumera...
	[18] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained...
	[19] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating a...
	[20] N. K. Bambha and S. S. Bhattacharyya, A Period Graph Throughput Estimator for Multiprocessor...

	A Joint Power/Performance Optimization Algorithm for Multiprocessor Systems using a Period Graph ...
	University of Maryland, College Park 1
	Abstract
	4 Fidelity of the estimator
	; (5)
	Figure 2. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage change ...
	Figure 3. Plot of average error vs. voltage change on processors.

	8 Results
	Figure 4. Plot of power reduction vs. algorithm iteration using period graph estimator.
	Figure 5. Plot of power reduction vs. algorithm iteration using simulation only .

	Annot: Proc. International Symposium on System Synthesis. Pages 91-97, September 2000, Madrid, Spain.

