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INTRODUCTION 
 
In recent years, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the 

breast has been increasingly used in the diagnosis of radiographically dense breasts, assessment 

of disease extent in the patient with newly diagnosed breast cancer, problem-solving applications 

for difficult diagnostic evaluations, for difficult diagnostic evaluations, for screening high risk 

women for early cancer detection, and on monitoring response to therapy. The promising 

potential of MRI in diagnosis of breast cancer, as a complementary modality to X-ray 

mammography, has been well recognized [1][2][3]. Despite its well-recognized utilities, 

however, the technique has not been introduced to routine clinical breast imaging. One of the 

most important obstacles has been the lack of standardization in terms of interpretation 

guidelines [2][4]. The reproducibility, effectiveness and relative significance of interpretation 

criteria in the literature are far from being well evaluated. 

 

A typical DCE-MRI study acquires a substantial amount of four-dimensional (4D) functional 

data consisting of three spatial dimensions and one temporal dimension. Navigation and 

interpretation of this large amount of multidimensional data is labor-intensive and even 

challenging for radiologists. Automated image analysis aims to extract relevant information from 

4D DCE-MRI data and improve the accuracy and consistency of image interpretation. 

Computerized methods have the potential to reduce the inter- and intra-observer variations, 

reduce the workload of the radiologist, and facilitate the image interpretation; thus, becoming 

increasingly important with the expanding clinical applications of breast MRI. 

   

The purpose of the proposed research is to develop computerized methods to take full advantage 

of the wealth information that dynamic MRI offers to improve methods for the diagnosis and 

interpretation of breast MR images. The research involved investigation of automatic methods 

for image artifacts correction, tumor segmentation, extraction of computerized features that help 

distinguish between benign and malignant lesions, and classification. Our hypothesis was that 

investigation of advanced image analysis algorithms would improve the performance of existing 

conventional methods in the task of distinguishing between malignant and benign lesions and 

characterization of breast MR lesions. 

 



Figure 1 shows our research scheme for the proposed research tasks. We have developed an 

automatic method for correcting intensity inhomogeneity artifacts. We also developed a 

computerized method for assessing tumor extent in 3D. The primary feature used for 3D tumor 

segmentation is the postcontrast enhancement vector. Tumor segmentation is a key procedure in 

computerized interpretation of breast MR images including differential diagnosis and assessment 

of response to therapy. We investigated computerized method for optimal extraction of kinetic 

features from DCE-MR images. We also investigated a volumetric texture analysis method for 

classifying breast lesions on MRI as malignant and benign. Finally, we assessed the relative 

importance of the various features—kinetic, morphological, and texture—in differential 

diagnosis and evaluated using two breast MR databases. We developed a computer workstation 

integrating our image analyses methods with a user-friendly graphical interface. Our research 

could potentially expedite the standardization of guidelines for interpretation of dynamic breast 

MRI of breast. 
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Figure 1. Diagram of our computerized scheme for breast MR image analysis and 
interpretation 
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BODY 
 
Training Accomplishments  
 
Weijie Chen, the recipient of the Predoctoral Traineeship Award has taken all the 22 required 

courses towards the Ph.D. degree in medical physics.    The key courses included Physics of 

medical imaging (I & II), Physics of radiation therapy, Mathematics for medical physicists, 

Image processing, Statistics (I&II), Machine learning, Numerical computation, Topics in 

computer vision, Aanatomy of the body, Radiation biology, Beam physics, Clinical physics in 

PET, and Teaching assistant training. 

     Chen has passed his Ph.D. dissertation proposal last November, which is a critical step 

towards the Ph.D. degree as required by the Committee on Medical Physics, the University of 

Chicago. The Ph.D. dissertation is also under preparation. 

 
Research Accomplishments 
 
1. Database collection 
     The first part of our work has been collecting breast MR data.  We have collected two 

databases. The first database contains dynamic breast MR images from 121 patients.  Images 

were obtained using a T1-weighted 3D spoiled gradient echo sequence.  After the acquisition of 

the precontrast series, Gd-DTPA contrast agent was injected intravenously by power injection 

with a dose of 0.2mmol/kg.  Five postcontrast series were then taken with a time interval of 69 

seconds.  Each series contained 64 coronal slices with a matrix of 128 x 256 pixels and an in-

plane resolution of 1.25mm 1.25mm.  Slice thickness ranged from 2 to 3 mm depending on 　

breast size.  For this database 121 primary mass lesions have been outlined by an experienced 

radiologist, 77 of the lesions are malignant and 44 lesions are benign, as revealed by biopsy. 

 
     We also collected over 200 patients’ images data in the University of Chicago Hospitals. 

We have reviewed the images from the clinical site and excluded problematic cases (severe 

artifacts, missing data, biopsy unavailable). Case-review resulted 160 biopsy-proven lesions (109 

malignant and 51 benign).  These data were from a 1.5T GE scanner [temporal resolution of 

72s; spatial resolution of 1.4 mm by 1.4 mm; slice thickness of 3 mm to 4 mm; Gd-DTPA dose 

of 0.1 mmol/kg]. 

 
2. Development of methods for shading artifacts correction in breast MR images 
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    Most clinical MR images are corrupted by shading artifacts, which is slow intensity 

variations of the same tissue over the image domain. Such artifacts might affect computerized 

analysis such as tissue segmentation. We developed a FCM based approach that simultaneously 

estimates the shading effect while segmenting the image. A full description of the methods is in 

reference [5] which is attached as Appendix A. Further study will be done to investigate the 

influence of the shading artifacts on lesion extent assessment and on the performance of features 

in the task of distinguishing between malignant and benign lesions. 

 

3. Investigation of image features 

     We used Database-I for investigation of features that contribute to the diagnosis of breast 

cancer. The lesions were delineated by an experienced radiologist as well as independently by 

computer using an automatic volume-growing algorithm. Fourteen features that were extracted 

automatically from the lesions could be grouped into three categories based on: (I) morphology; 

(II) enhancement kinetics; and (III) time course of enhancement-variation over the lesion. A 

stepwise feature selection procedure was employed to select an effective subset of features, 

which were then combined by linear discriminant analysis (LDA) into a discriminant score, 

related to the likelihood of malignancy. The classification performances of individual features 

and the combined discriminant score were evaluated with receiver operating characteristic (ROC) 

analysis. With the radiologist-delineated lesion contours, stepwise feature selection yielded 4 

features and an Az value of 0.80 for the LDA in leave-one-out cross-validation testing.  With 

the computer-segmented lesion volumes, it yielded 6 features and an Az value of 0.86 for the 

LDA in the leave-one-out testing.  A full description of this study is given in reference [6] 

which is attached as Appendix B. 

 
4. Investigation of methods for automatic tumor segmentation 

We developed an automatic method for assessing tumor extent in 3D. The primary feature used 

for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a key 

procedure in computerized interpretation of breast MR images including differential diagnosis 

and assessment of response to therapy. This part of our research has been published [7] on 

Academic Radiology 16:63-72 (2006). (Appendix B) 
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Accurate quantification of the shape and extent of breast tumors plays a vital role in nearly all 

applications of breast MR imaging, such as lesion characterization and assessment of tumor 

response to therapy. Specifically, tumor segmentation is a key component in the computerized 

assessment of likelihood of malignancy. However, manual delineation of lesions in 4-D MR 

images is labor intensive and subject to inter- and intra-observer variations. We developed a 

computerized lesion segmentation method that has the advantage of being automatic, efficient, 

and objective. 

 

We developed a fuzzy c-means (FCM) clustering based method for the segmentation of breast 

lesions in 3-D from contrast-enhanced MR images. The proposed lesion segmentation algorithm 

consists of six consecutive stages: region of interest (ROI) selection by a human operator, lesion 

enhancement within the selected ROI, application of FCM on the enhanced ROI, binarization of 

the lesion membership map, connected-component labeling and object selection, and hole-filling 

on the selected object. We applied the algorithm to a clinical MR database consisting of 121 

primary mass lesions. The manual segmentation of the lesions by an expert MR radiologist 

served as a reference in the evaluation of the computerized segmentation method. We also 

compared the proposed algorithm with a previously developed volume-growing (VG) method. 

 

For the 121 mass lesions in our database, at an overlap threshold of 0.4, 97% lesions were 

correctly segmented by the proposed FCM based method while 84% lesions were correctly 

segmented by the VG method. 

 

Our proposed algorithm for breast lesion segmentation in DCE-MRI was shown to be effective 

and efficient. 

 

5. Automatic identification and classification of characteristic kinetic curves in breast MR 

lesions (published [8] on Medical Physics 33: 2878-2887 (2006), Appendix C.) 

 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast is being 

increasingly used in the detection and diagnosis of breast cancer as a complementary modality to 

mammography and sonography. Although the potential diagnostic value of kinetic curves in 

DCE-MRI is established, the method for generating kinetic curves is not standardized. The 
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inherent reason that curve identification is needed is that the uptake of contrast agent in a breast 

lesion is often heterogeneous, especially in malignant lesions. It is accepted that manual ROI 

selection in 4D breast MR images to generate the kinetic curve is a time-consuming process and 

suffers from significant inter- and intra- observer variability. We investigated and developed a 

fuzzy c-means (FCM) clustering based technique for automatically identifying characteristic 

kinetic curves from breast lesions in DCE-MRI of the breast. Dynamic contrast-enhanced MR 

images were obtained using a T1-weighted 3D spoiled gradient echo sequence with Gd-DTPA 

dose of 0.2 mmol/kg and temporal resolution of 69 s. FCM clustering was applied to 

automatically partition the signal-time curves in a segmented 3D breast lesion into a number of 

classes (ie, prototypic curves). The prototypic curve with the highest initial enhancement was 

selected as the representative characteristic kinetic curve (CKC) of the lesion. Four features were 

then extracted from each characteristic kinetic curve to depict the maximum contrast 

enhancement, time to peak, uptake rate and washout rate of the lesion kinetics. The performance 

of the kinetic features in the task of distinguishing between benign and malignant lesions was 

assessed by ROC analysis. With a database of 121 breast lesions (77 malignant and 44 benign 

cases), the classification performance of the FCM-identified CKCs was found to be better than 

that from the curves obtained by averaging over the entire lesion and similar to kinetic curves 

generated from regions drawn within the lesion by a radiologist experienced in breast MRI.  

 

6. Volumetric texture analysis of DCE-MR images of the breast (presented [9] in ISMRM 

2006) 

 

Texture analysis using 2D-image-based gray level co-occurrence matrix method has been 

demonstrated to be useful in distinguishing between malignant and benign breast lesions in 

contrast-enhanced MR images. 2D texture analysis does not take advantage of the 3D data in 

breast MR images and requires extremely high signal-to-noise ratio, which may not be available 

in dynamic studies. We hypothesize that an overall assessment of texture on the accurately 

segmented 3D breast lesion would yield improved differentiation performance than 2D analysis. 

We extend the conventional 2D texture analysis technique to 3D in the framework of gray-level 

co-occurrence matrix method, and assess the performance of textural features in the task of 

distinguishing between malignant and benign breast lesions. For the 11 texture features under 

investigation, 7 features yielded statistically significant higher Az values when 3D analyses were 
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used than when 2D analyses were used. We failed to find significant difference between 3D and 

2D for the other four feautres Overall, texture analysis based on accurately segmented 3D lesions 

has improved diagnostic accuracy than that based on 2D ROIs. 

 

7. Investigation of the computerized interpretation methods to expedite the standardization 

of guidelines for dynamic breast MRI of breast and evaluation of the relative importance of 

the various computer-extracted features. (Submitted to RSNA 2006) 

 

Clinical breast MRI yields 4D datasets that are difficult in practice to manage and interpret. Our 

purpose is to develop a computerized system to aid the radiologist to better visualize and 

interpret breast MR images with automatic extraction of useful diagnostic information obtained 

in an effective and efficient manner. 

  

Our analysis involved two breast MR databases totaling 281 biopsy-proven lesions. For each 

case, a T1-weighted SPGR sequence was used to acquire one precontrast and 5 postcontrast 

series. The first database (77 malignant and 44 benign) was obtained with a 1.5T Siemens 

scanner [temporal resolution of 69s; spatial resolution of 1.25 mm by 1.25 mm; slice thickness of 

2 mm to 3 mm; Gd-DTPA dose of 0.2 mmol/km]. The second database (109 malignant and 51 

benign) was from a 1.5T GE scanner [temporal resolution of 72s; spatial resolution of 1.4 mm by 

1.4 mm; slice thickness of 3 mm to 4 mm; Gd-DTPA dose of 0.1 mmol/kg]. In our automatic 

method, the breast lesions initially undergo 3D segmentation by the computer. Then, the 

characteristic kinetic curves and the corresponding most-enhancing regions within the lesions are 

automatically identified. Lesion features are then automatically extracted and merged with a 

trained classifier to obtain the likelihood of malignancy. Such lesion features include (1) kinetic 

features that quantify the uptake and washout characteristics; (2) 3D texture features that 

quantify the uptake inhomogeneity; and (3) 3D shape descriptors that quantify the irregularity of 

the tumor. 

 

The online computation time was approximately 15 seconds per case. Computer-segmentation 

agreed well with lesion outlines delineated by an experienced radiologist. In round-robin 

analysis, areas under the ROC curve of 0.88 and 0.82 were obtained for the first and second 

database, respectively, in the task of distinguishing between malignant and benign lesions.  
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The automatic computerized analyses of breast MR images yielded high interpretation 

performances for differential diagnosis, performance levels were similar across different MR 

scanners, and computation times were extremely short. 

 

Our MRI-CAD system has potential to improve both the efficiency and effectiveness of breast 

MRI interpretation. 

 

8. Development of a prototype workstation for computer-aided diagnosis (CAD) in 

contrast-enhanced MRI (RSNA 2005 InfoRAD Exhibit) 

 

     Computer-aided diagnosis (CAD) is a promising tool for assisting radiologist in 

diagnosing breast cancer on multi-modality breast images. With increasing applications of 

dynamic MRI in clinical breast imaging, CAD tool is expected to play a more significant role 

than it does in conventional modalities, as the amount of data in a typical dynamic study in 

breast MRI is huge and the data is 4-dimensional. We have developed a prototype CAD 

workstation (Figure 2) to aid the radiologist better visualize and interpret breast MR images. The 

workstation implements our state-of-the-art algorithms on lesion segmentation, feature extraction, 

and classification. With a user-friendly graphical-user-interface (GUI), the workstation enables 

visualization of multi-slice multi-series images simultaneously and the kinetic curve at a 

particular voxel can also be displayed. Breast mass lesions are segmented in 3-D automatically 

and efficiently from an operator-selected region of interest with a fuzzy c-means (FCM) based 

algorithm. Compared with careful manual delineation by an experienced radiologist, the 

automatic algorithm correctly segmented 97% of 121 mass lesions at overlap threshold 0.4. 

Characteristic kinetic curves are identified automatically from the segmented lesion with a FCM 

based method. The automatically identified kinetic curves performs significantly better than does 

the curves obtained by averaging over the entire lesion in the task of distinguishing between 

malignant and benign lesions (p<0.00005). Morphological features extracted from the segmented 

lesion and kinetic features extracted from the identified kinetic curves are merged by a classifier 

to estimate the likelihood of malignancy which is used to help radiologist in decision making.  
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Figure 2: Graphical user interface (GUI) we developed for computerized image analysis in breast 

MRI 
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KEY RESEARCH ACCOMPLISHMENTS 

 

· Collection and maintenance of clinical database: dynamic MR images of over 300 

patients have been collected which are well suitable for the proposed research; 

· Developed computerized methods for assessment of tumor extent which outperformed 

the previous region-growing method. 

· Developed automatic methods for shading artifacts correction in breast MR images which 

will increase he performance of lesion features for diagnosis; 

· Automatic identification and classification of characteristic kinetic curves in breast MR 

lesions: outperformed the performance of enhancement kinetics obtained from averaging 

over the entire lesion in the diagnosis of breast cancer and similar to or superior than 

manually drawn ROIs; 

· Volumetric texture analysis of DCE-MR images of the breast: texture analysis based on 

accurately segmented 3D lesions has improved diagnostic accuracy than that based on 2D 

ROIs. 

· Investigation of the computerized interpretation methods to expedite the standardization 

of guidelines for dynamic breast MRI of breast and evaluation of the relative importance 

of the various computer-extracted features; 

· Development of a prototype workstation for computer-aided diagnosis (CAD) in 

contrast-enhanced MRI. 
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REPORTABLE OUTCOMES 

 

Peer reviewed journal papers 

• W. Chen, M. L. Giger, L. Lan, and U. Bick, “Computerized interpretation of breast MRI: 
Investigation of enhancement-variance dynamics,” Medical Physics, 31:1076-1082, 
(2004). 

• W. Chen, M. L. Giger, U. Bick. A fuzzy c-means (FCM) based approach for 

computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. 

Academic Radiology 16:63-72 (2006). 

• W. Chen, M. L. Giger, U. Bick, G. M. Newstead. Automatic identification and 

classification of characteristic kinetic curves of breast lesions on DCE-MRI.  Medical 

Physics. 33:2878-2887 (2006) 

  
Papers in conference proceedings 

• W. Chen, M. L. Giger, and U. Bick, “Automated identification of temporal pattern with 
high initial enhancement in dynamic MR breast lesions using fuzzy c-means algorithm,” 
Proceedings SPIE, 2004. 

 
• W. Chen, M. L. Giger, “A fuzzy c-means (FCM) based algorithm for intensity 

inhomogeneity correction and segmentation of MR images,” Proceedings of IEEE 
International Symposium on Biomedical Imaging, 2004. 

 
• W.Chen, M.L.Giger, G. Newstead, U. Bick, L. Lan, “Computerized assessment of tumor 

extent in contrast-enhanced MR images of the breast,” Proceedings of 18th International 
Congress and Exhibition- Computer Assisted Radiology and Surgery, (CARS 2004), in 
press 

• W. Chen, M. L. Giger. A novel strategy for segmentation of magnetic resonance (MR) 

images corrupted by intensity inhomogeneity artifacts. Proceedings of SPIE, v 6144 I, 

Medical Imaging 2006: Image Processing, 2006, p 61441C 

• W. Chen, M. L. Giger. Volumetric texture analysis of DCE-MRimages of the breast 

using gray-level co-occurrence matrix method. Proc. Intl. Soc. Mag. Reson. Med. (2006) 

p. 2885 

 

Presentations 

• W. Chen, M. L. Giger, and U. Bick, “Automated identification of temporal pattern with 

high initial enhancement in dynamic MR breast lesions using fuzzy c-means algorithm,” 

SPIE-Medical Imaging, San Diego, California, February 2004. 
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• W. Chen, M. L. Giger, G. M. Newstead, U. Bick, L. Lan, “Computerized analysis of 

contrast-enhanced MR images of the breast: automated bias field correction and 

identification of characteristic signal-time curves,”  90th Assembly and Annual Meeting 

of Radiological Society of North America, Chicago, Illinois, USA, December 2004. 

• W. Chen, M. L.Giger, G. Newstead, U. Bick, L. Lan, “Dynamic MRI Explorer: A 

Prototype CAD Workstation for Diagnosis of Breast Cancer in Breast MRI”, infoRAD 

Exhibit, 91th Assembly and Annual Meeting of Radiological Society of North America, 

Chicago, Illinois, USA, December 2005 

• W. Chen, M. L. Giger. A novel strategy for segmentation of magnetic resonance (MR) 

images corrupted by intensity inhomogeneity artifacts. SPIE-Medical Imaging, San 

Diego, California, February 2006 

 

Posters/Education Exhibits 

 

• W.Chen, M.L.Giger, G. Newstead, U. Bick, L. Lan, “Computerized analysis of contrast-

enhanced MR images of the breast: automated identification of signal-time curves,” Era 

of Hope – Department of Defense Breast Cancer Research Program Meeting, 

Philadelphia, Pennsylvania, June 8-11, 2005 

 

• W.Chen, M.L.Giger, G. Newstead, U. Bick, L. Lan, “Dynamic MRI Explorer: A 

Prototype CAD Workstation for Diagnosis of Breast Cancer in Breast MRI”, infoRAD 

Exhibit, 91th Assembly and Annual Meeting of Radiological Society of North America, 

Chicago, Illinois, USA, December 2005 

 

• W. Chen, M. L. Giger. Volumetric texture analysis of DCE-MR images of the breast 

using gray-level co-occurrence matrix method. ISMRM 14th Scientific Meeting, Seattle, 

Washington, USA 2006. 

 

 

Awards 
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2006 Educational Stipend, International Society for Magnetic Resonance in 

Medicine (ISMRM)  

 

2006 Recipient of  Women’s Board Travel Awards in the Division of the 

Biological Sciences for Winter/Spring 2006, the University of Chicago 

Women’s Board 

 

2005    Lawrence H. Lanzl Medical Physics Graduate Student Award, Department 

of Radiology and the Committee on Medical Physics, the University of Chicago  

 

2004    Dolittle-Harrison Fellowship, The University of Chicago 
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CONCLUSIONS 

 

     The recipient of the Predoctoral Traineeship Award has taken all the required core courses 

and many research related elective courses as well. These trainings have proven useful for the 

recipient to achieve the proposed research goals. The goal of this grant was to support the 

recipient for research towards Ph.D. degree. The trainee has made excellent progress in this 

aspect, as he has passed his dissertation proposal, which is a key step to obtain Ph.D. degree in 

medical physics at the University of Chicago. He has finished the proposed research work and 

the dissertation is under preparation. 

 

     We have collected and maintained two dynamic breast MRI databases that are well 

suitable for the proposed research on computerized interpretation of breast MR images.  We 

have developed computerized methods for correction of shading artifacts, tumor segmentation, 

and feature extraction and classification. The results have shown that our computerized analysis 

and interpretation methods have improved the existing methods significantly in the task of 

distinguishing between malignant and benign breast lesions on contrast-enhanced magnetic 

resonance images. The computerized scheme for breast MR image interpretation has great 

promise in increasing the objectivity, efficiency, and accuracy of the diagnosis of breast cancer. 

 

     Overall, we have well achieved the goals of the research proposal for the Predoctoral 

Traineeship Award.
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A fuzzy c-means (FCM) based algorithm for
intensity inhomogeneity correction and

segmentation of MR images
Weijie Chen
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The University of Chicago

Chicago,IL 60637
Email: weijie@uchicago.edu

Maryellen L. Giger
Dept. of Radiology

The University of Chicago
Chicago,IL 60637

Email: m-giger@uchicago.edu

Abstract— Magnetic resonance images are often corrupted by
intensity inhomogeneity, which manifests itself as slow intensity
variations of the same tissue over the image domain. Such
shading artifacts must be corrected before doing computerized
analysis such as intensity-based segmentation and quantitative
analysis. In this paper, we present a fuzzy c-means (FCM)
based algorithm that simultaneously estimates the shading effect
while segmenting the image. A multiplier field term that models
the intensity variation is incorporated into the FCM objective
function which is minimized iteratively. In each iteration, the
bias field is estimated based on the current tissue class centroids
and the membership values of the voxels and then smoothed
by an iterative low-pass filter. The efficacy of the algorithm is
demonstrated on clinical breast MR images.

I. INTRODUCTION

Magnetic resonance imaging (MRI) has many advantages
over other diagnostic imaging modalities, such as high contrast
between soft tissues, high spatial resolution and inherent 3D
nature, thus has gained wide clinical applications. Breast MRI,
for example, has been widely investigated in the past decade in
the detection and diagnosis of breast cancer as a complemen-
tary modality to X-ray mammography[1], in assessment of the
localization and extent of breast lesions[2], and in monitoring
tumor response to therapy[3]. Furthermore, breast MRI can
be used for quantitative assessment of fibroglandular tissue
percentage[4] which is a predictor of breast cancer risk. While
qualitative visual assessment is often used by radiologists in
a clinical environment, computerized quantitative analysis is
increasingly needed to aid the radiologists increase both the
accuracy and the efficiency of the diagnosis.

Magnetic resonance images are often corrupted by inten-
sity inhomogeneity, which manifests itself as slow intensity
variations of the same tissue over the image domain[5].
Such shading artifacts is the major source of difficulty for
computerized analysis such as intensity-based segmentation
and quantitative analysis. A number of algorithms have been
proposed for the correction of spatial intensity inhomogeneity.
Wells et al.[6], Guillemaud and Brady[7] developed a statis-
tical approach based on the expectation-maximization (EM)
algorithm that simultaneously estimates the bias field and

segments the image into different tissue classes. Their methods
yielded impressive results on brain MR images but has the
disadvantage of being computationally intensive and requiring
prior knowledge on intensity distributions of different tissue
classes. Pham and Prince[8] proposed an adaptive fuzzy c-
means (AFCM) algorithm for fuzzy segmentation of images
while compensating for intensity inhomogeneities. AFCM is
robust in convergence because the objective function to be
minimized has regularization terms that ensure the estimated
bias field is smooth and slowly varying. Ahmed et al.[9]
proposed a bias-correction fuzzy c-means (BCFCM) algorithm
in which they incorporated a neighborhood regularizer into
the FCM objective function to allow labeling of a voxel to
be influenced by the labels in its immediate neighborhood,
making the algorithm insensitive to salt and peppernoise. How-
ever, they failed to address that the algorithm may converge to
unwanted results without any constraint on the bias field. Li et
al.[10] combined the AFCM and the neighborhood regularizer
in BCFCM and obtained promising results in images with
high noise level. The AFCM based methods, however, are
computationally intensive and faster algorithm is needed in
real-time clinical applications.

In this paper, we present a fast fuzzy c-means (FCM) based
algorithm that simultaneously estimates the bias field while
segmenting the image. A multiplier field term that models
the intensity variation is incorporated into the FCM objective
function which is minimized iteratively. In each iteration,
the bias field is estimated based on the current tissue class
centroids and the membership values of the voxels and then
smoothed by an iterative low-pass filter. The efficacy of the
algorithm is demonstrated on clinical breast MR images.

II. METHODS

A. Bias field model

The observed MRI signal intensity is modeled as the “true”
signal intensity multiplied by a spatially-varying factor called
gain field, namely,

Yi = XiGi ∀ i ∈ {1, 2, . . . , N} (1)



where Yi, Xi, and Gi are the observed intensity, true intensity,
and gain field at the ith voxel, respectively. N is the total
number of voxels in the MR image. The artifact can be
modeled as an additive bias field by applying a logarithmic
transformation to both sides of (1)[6]

yi = xi + βi ∀ i ∈ {1, 2, . . . , N} (2)

where yi, xi are the observed and true log-transformed intensi-
ties at the ith voxel, respectively, and βi is the bias field at the
ith voxel. By incorporating the bias field model into a fuzzy
c-mean framework, we will be able to iteratively estimate both
the true intensity and the bias field from the observed intensity.

B. Algorithm

In the image segmentation context, the standard FCM
algorithm[11] is an optimization problem for partitioning an
image of N voxels, X = {xi}Ni=1, into c (tissue) classes

min
U,V

{J(U, V ;X) =

c∑

k=1

N∑

i=1

upki‖xi − vk‖2} (3)

subject to:
c∑

k=1

uki = 1 ∀i

0 ≤ uki ≤ 1 ∀k, i

where U is the partition matrix whose element uki is the
membership of the ith voxel for kth class. V is the centroid
vector whose element vk is the centroid (or prototype) of
kth class. The parameter p, called fuzzy index, is a weight-
ing exponent on each fuzzy membership and determines the
amount of “fuziness” of the resulting partition. The norm
operator ‖ · ‖ represents the standard Euclidean distance. The
objective function J is minimized when high membership
values are assigned to the pixels whose intensities are close to
the centroid of its particular class, and low membership values
are assigned to the voxels whose intensities are far from the
centroid.

To incorporate the bias field into the FCM framework, we
substitute (2) into (3). Then the fuzzy segmentation with the
presence of bias field becomes a constrained optimization
problem

min
U,V,B

{Jb(U, V,B;Y ) =
c∑

k=1

N∑

i=1

upki‖yi − βi − vk‖2} (4)

subject to:
c∑

k=1

uki = 1 ∀i

0 ≤ uki ≤ 1 ∀k, i

where Y = {yi}Ni=1 is the observed image, B = {βi}Ni=1 is
the bias field image.

To solve (4), we take the first derivatives of Jb with respect
to uki, vk, and βk and setting them equal to zero. We thus
obtain three necessary conditions for Jb to be at a minimum.

u∗ki =
1

∑c
l=1(‖yi−βi−vk‖‖yi−βi−vl‖ )2/(p−1)

(5)

v∗k =

∑N
i=1 u

p
ki(yi − βi)∑N
i=1 u

p
ki

(6)

β∗i = yi −
∑c
k=1 u

p
kivk∑c

k=1 u
p
ki

(7)

From the first eye, an iterative scheme for minimizing the
objective function Jb is straightforward by performing Picard
iteration through the above three necessary conditions for (4)
to be minimized. This is not the whole story, however, because
B obtained from (7) is a “residual” image but not necessarily
be the bias field image. A residual image could always be
found that would set Jb to zero. Pham and Prince’s AFCM
algorithm solved the problem by introducing regularization
terms into the objective function that ensure the resulted bias
field image being smooth. The regularization terms, however,
make the estimation of the bias field a computationally in-
tensive process. Another solution is that we estimate the bias
field by filtering the residual image B in (7) using an iterative
low-pass spatial filter. This filtering strategy is based on the
fact that the bias field is of low spatial frequency and the
assumption that other components in the residual image is
of higher frequency. The steps for our algorithm can then be
described as the following:

1) Initialize class centroid values, {vk}ck=1. Initialize
{βi}Ni=1 with zeros.

2) Update partition matrix U using (5).
3) Update class centroids V using (6).
4) Estimate residual image using (7).
5) Filter the residual image using an iterative low-pass

filter.
6) Go to Step 2 unless the following termination criterion

is satisfied:
‖Vnew − Vold‖ < ε (8)

where ε is a user-chosen threshold.

III. RESULTS

In this section we demonstrate the efficacy of our algorithm
by applying it to clinical breast MR images. The images
were obtained using a General Electric Signa 1.5-Tesla clinical
MR scanner. We set the parameter fuzzy index p = 2, the
termination criterion ε = 0.001. The images were thresholded
before analysis so that only tissues of interest were included
in the computation and the background was excluded. We set
the number of classes c = 2.

Fig.1(a) shows a clinical MR image corrupted by intensity
inhomogeneity. Fig. 1(b) shows the estimated bias field using
our algorithm and Fig.1(c) shows the corrected image using
the bias field in (b). The membership map for dense tissue
class is shown in Fig.1(d). Applying standard FCM algorithm



           (a)

   (b)

 (c)

(d)

(e)

Fig. 1. Application of the proposed algorithm to a clinical breast MR
image: (a)The original image. (b) Estimated bias field. (c) Corrected image.
(d) The membership map for the dense-tissue class. (e) For comparison, the
membership mapping from the standard FCM algorithm.

(a)

(b)

(c)

Fig. 2. Clinical breast MRI example: (a)The orginal image. (b) Corrected
image. (c)The intensity profiles of a fat area as marked by a line in (a), for
both the original and the bias corrected images.

to original image (a) without considering the bias field effect
yielded a membership map shown in Fig.1(e). Apparently,
intensity-based segmentation could not correctly segment the
image without intensity inhomogeneity correction. By visual
evaluation, our algorithm correctly estimated the bias field
and dramatically improved the image quality and segmentation
accuracy.

Fig.2 presents another breast MRI example. Fig.2(a) and
(b) are the original and bias corrected images, respectively.
We selected an area mainly consisting of fat tissue and
plotted the intensity profiles for both the original and the bias
corrected images, as shown in Fig.2(c). From the intensity
profile of the original image, we can see that the intensity
inhomogeneity in our clinical database can be as large as
40%. From the corrected intensity profile, the algorithm has
successfully removed the bias field.

In both examples shown above, the algorithm converged



within 1-2 seconds on a PC AMD Athlon with 1.2 GHz CPU
speed.

IV. DISCUSSION

We are developing a computer-aided diagnosis (CAD) sys-
tem for breast MR imaging. Bias field correction is a necessary
preprocessing step for subsequent computerized quantitative
analysis. And since the CAD system will ultimately be used in
a clinical environment,it must run efficiently. Due to the high
spatial resolution and 3-D nature of MR images, we are also
using MR images to estimate the percentage of dense tissues in
the whole breast, which is an indicator for breast cancer risk.
The risk assessment application requires segmentation of the
images into different tissue classes in the presence of intensity
homogeneity. All these applications motivated us to develop
a reliable, fast, and robust algorithm to solve the bias field
correction problem.

Our preliminary experiences with the proposed algorithm
showed that it is a promising method for intensity inhomo-
geneity correction and fuzzy segmentation of MR images.
Our work in progress includes optimization of the current
implementation and evaluation of the method with more data.
The noise sensitivity of the algorithm will also be investigated
and the neighborhood regularizer as proposed by Ahmed[9]
might be incorporated into the current framework to improve
the segmentation accuracy on noisy images. Finally, the cur-
rent version of algorithm works for 2-D images and it is
straightforward to generalize to 3-D images.

V. CONCLUSION

We have presented a fast algorithm based on FCM for
intensity inhomogeneity correction and segmentation of MR
images. The algorithm was formulated by introducing the
bias field model into the FCM objective function which is
then minimized iteratively. In each iteration step, the bias
field was estimated based on the current tissue class centroids
and the membership values of the voxels and then smoothed
by an iterative mean filter. The efficacy of the algorithm is
demonstrated on clinical breast MR images.
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Computerized interpretation of breast MRI: Investigation of enhancement-
variance dynamics a…
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The advantages of breast MRI using contrast agent Gd-DTPA in the diagnosis of breast cancer have
been well established. The variation of interpretation criteria and absence of interpretation guide-
lines, however, is a major obstacle for applications of MRI in the routine clinical practice of breast
imaging. Our study aims to increase the objectivity and reproducibility of breast MRI interpretation
by developing an automated interpretation approach for ultimate use in computer-aided diagnosis.
The database in this study contains 121 cases: 77 malignant and 44 benign masses as revealed by
biopsy. Images were obtained using a T1-weighted 3D spoiled gradient echo sequence. After the
acquisition of the precontrast series, Gd-DTPA contrast agent was injected intravenously by power
injection with a dose of 0.2 mmol/kg. Five postcontrast series were then taken with a time interval
of 60 s. Each series contained 64 coronal slices with a matrix of 1283256 pixels and an in-plane
resolution of 1.2531.25 mm2. Slice thickness ranged from 2 to 3 mm depending on breast size.
The lesions were delineated by an experienced radiologist as well as independently by computer
using an automatic volume-growing algorithm. Fourteen features that were extracted automatically
from the lesions could be grouped into three categories based on~I! morphology,~II ! enhancement
kinetics, and~III ! time course of enhancement-variation over the lesion. A stepwise feature selec-
tion procedure was employed to select an effective subset of features, which were then combined by
linear discriminant analysis~LDA ! into a discriminant score, related to the likelihood of malig-
nancy. The classification performances of individual features and the combined discriminant score
were evaluated with receiver operating characteristic~ROC! analysis. With the radiologist-
delineated lesion contours, stepwise feature selection yielded four features and anAz value of 0.80
for the LDA in leave-one-out cross-validation testing. With the computer-segmented lesion vol-
umes, it yielded six features and anAz value of 0.86 for the LDA in the leave-one-out
testing. © 2004 American Association of Physicists in Medicine.@DOI: 10.1118/1.1695652#

Key words: breast cancer, contrast-enhanced MRI, Gd-DTPA, computer-aided diagnosis~CAD!,
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I. INTRODUCTION

Breast MRI has emerged as a promising modality for
detection and diagnosis of breast cancer since the intro
tion of gadolinium-diethylenetriamine penta-acetic acid~Gd-
DTPA! as a contrast agent.1–3 Contrast-enhanced MRI~CE-
MRI! allows lesions to be distinguished from normal tissu
due to the increased vascularity and capillary permeability
tumors. CE-MRI offers three-dimensional spatial inform
tion and temporal information of breast cancer, qualifying
as an encouraging complementary modality to conventio
imaging methods, such as x-ray mammography and son
raphy.

Despite its well-recognized advantages, applications
MRI in the routine clinical practice of breast imaging a
limited. One of the most important obstacles is the lack
interpretation guidelines;4,5 very few attempts have bee
made to standardize the interpretation of breast MR ima
Among the few efforts in this regard is the work of the I
ternational Working Group on Breast MRI, which has dev
oped and validated a detailed lexicon for breast M
interpretation.6 Investigators use a large variety of diagnos
1076 Med. Phys. 31 „5…, May 2004 0094-2405Õ2004Õ31„5
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criteria2,3,7–13 that help classify lesions as benign or mali
nant. The interpretation criteria in the current literature f
into two major categories:5,14 morphologic features8,9,13 and
enhancement kinetics,2,3,12 i.e., the time course of signal in
tensity within the suspected lesions. While the studies us
these criteria have shown promising results~sensitivity from
92% to 100%, specificity from 53% to 100%! as reported in
a recent review,15 significant variation does exist. The varia
tion of the results may be due to two reasons from the in
pretation aspect; one is the interobserver variation from
ferent subjective judgments,16–18 and the other is that the
current interpretation schemes might not be sufficiently
bust.

The aim of computerized interpretation of medical imag
is to obtain quantitative indices of malignancy. It has t
advantage of being objective, automatic, and, furthermore
may provide unique information that might be difficult t
assess visually, especially for time-series 3D MR images

This study aims to use computerized methods to inve
gate the potential of enhancement-variance dynamics in
interpretation of contrast-enhanced breast MR images. A
1076…Õ1076Õ7Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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matically extracted features are based on the time cours
enhancement-variance within lesions. Features based on
hancement kinetics and morphology of lesions are studie
well for comparison. Also compared are the performance
features extracted from lesions delineated by experience
diologist and those from lesions segmented by the comp
using a volume-growing algorithm. Finally, different featur
are selected and merged into an estimate of malignancy
ing automated classification.

II. MATERIALS AND METHODS

A. Image database

The database in this study contains 121 cases: 77 m
nant and 44 benign masses as revealed by biopsy. Im
were obtained using a T1-weighted 3D spoiled gradient e
sequence (TR58.1 ms, TE54 ms, flip angle530°). Fat
suppression was not employed. The patients were scann
prone position using a standard double breast coil on a 1
whole-body MRI system~Siemens Vision, Siemens, Erlan
gen, Germany!. After the acquisition of the precontrast s
ries, Gd-DTPA contrast agent was delivered intravenously
power injection with a dose of 0.2 mmol/kg and a flow ra
of 2 ml/s. Injection of contrast was followed by a saline flu
of 20 ml with the same flow rate. Five postcontrast ser
were then taken with a time interval of 60 s. Each ser
contained 64 coronal slices with a matrix of 12
3256 pixels and an in-plane resolution of 1.2531.25 mm2.
Slice thickness ranged from 2 to 3 mm depending on bre
size. The image database had been retrospectively colle
under an IRB-approved protocol.

B. Methods

The computerized interpretation scheme used in this st
begins with the segmentation of the lesion within the ima
The suspect masses were delineated both manually b
experienced radiologist~U.B.! and automatically by the com
puter using a 3D volume-growing algorithm.19 Next, mul-
tiple features that characterize the spatial and kinetic pro
ties of the lesions, and thus would potentially he
differentiate the malignant cases from the benign cases, w
extracted automatically. Stepwise feature selection20 was em-
ployed to select a set of features that perform efficiently
classifying the lesions as malignant or benign. Using lin
discriminant analysis21 ~LDA !, the selected features wer
then merged into a single numerical value that is related
estimated likelihood of malignancy.

We evaluated the classification performance of individ
features and the merged discriminant score in the task
distinguishing between malignant and benign lesions by
ing receiver operating characteristics~ROC! analysis.22 The
areaunder the maximum likelihood-fitted binormal RO
curve,Az , was used as an index of performance.23 We used
the CLABROC24,25algorithm to determine the statistical sig
nificance (p value! of the difference between twoAz values,
associated with two lesion delineation methods. The CL
Medical Physics, Vol. 31, No. 5, May 2004
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BROC algorithm uses a univariatez-score test to test the
difference between areas under two ROC curves.

1. Lesion delineation

For the manual delineation, a radiologist~U.B.!, blinded
to the histological diagnosis, contoured the enhanced tu
area in each slice that intersected the lesion in the subtrac
images~postcontrast minus precontrast!, using the nonsub-
tracted MR images as reference.

For the automatic segmentation by computer, we use
volume-growing based algorithm.19 In this algorithm, the
breast volume is first segmented at a threshold derived f
the global histogram of voxel-values by maximizing the i
terclass variance between breast and background. Then
border of the segmented breast volume is removed by m
phological erosion using a 33333 structuring element.
Next, regions with high contrast uptake are enhanced
voxelwise computation of the variance of the voxel valu
over time. A spherical region of interest~SROI! that encom-
passes the enhanced region is then automatically sele
from a set of spheres expanding outwards from a manu
selected seed point. From the preprocessed volume w
the SROI, a segmentation threshold is then computed
maximizing the interclass variance between enhanced le
and background voxels in the SROI. Finally, 6-poin
connected volume growing is performed to yield the 3D s
mented lesion.

2. Computerized feature extraction

In this study, our primary interest is to investigate t
potential of enhancement variance dynamics features in
classification of suspicious lesions as malignant or ben
Other features are studied as well for comparison. Feat
investigated in this study, as listed in Table I, are group
into three categories:~I! morphological features,~II ! en-
hancement kinetics based features, and~III ! features related
to the time course of enhancement-variance over the les

TABLE I. Features investigated in this study are grouped into three m
categories.

I. Morphologic
FI ,1 : Maximum std. of RGH value
FI ,2 : Circularity
FI ,3 : Irregularity
FI ,4 : Margin gradient
FI ,5 : Variance of margin gradient

II. Enhancement kinetics
FII ,1 : Maximum uptake
FII ,2 : Peak location
FII ,3 : Uptake rate
FII ,4 : Washout rate

III. Enhancement-variance dynamics
FIII ,1 : Maximum enhancement-variance
FIII ,2 : Peak location
FIII ,3 : Increasing rate
FIII ,4 : Decreasing rate
FIII ,5 : Enhancement-variance at time #1
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FIG. 1. Examples of lesion segmenta
tion and the corresponding enhanc
ment kinetics and enhancemen
variance dynamics curves: ~a!
malignant case and~b! benign case. In
each case, a central slice image of th
volume lesion is shown~upper left!.
Also shown are the radiologist-
outlined lesions and the correspondin
lesion enhancement@Eq. ~1!# at six
time points ~middle left!, the
computer-segmented lesion, and th
corresponding lesion enhancement
six time points~lower left!. The asso-
ciated kinetics curves are show
~right!.
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The features in the first category have been described in
tail in a previous paper from our group12 and are only sum-
marized here.

(i) Morphological features.12 The feature ‘‘maximum
standard deviation „std… of radial gradient histogram
„RGH…’’ ( FI ,1) quantifies how well the image structures in
suspected lesion extend in a spherical pattern origina
from the center of the lesion. The feature ‘‘circularity ’’
(FI ,2) measures conformity of a lesion to a spherical sh
and the feature ‘‘irregularity ’’ ( FI ,3) indicates the roughnes
of the lesion surface. The features ‘‘margin gradient’’ ( FI ,4)
and ‘‘variance of margin gradient’’ ( FI ,5) are related to the
sharpness of the lesion margin by evaluating voxel-va
gradients and their variations along the margin of the sus
lesion.

(ii) Enhancement kinetics based features. Enhancement
kinetics is related to the time course of signal intens
within the lesion. DenoteS(r ,i ) as the voxel value at loca
tion r in the lesion at time framei , i runs from 0~i.e., the
precontrast frame! to 5 ~i.e., the last postcontrast frame!. For
Medical Physics, Vol. 31, No. 5, May 2004
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each voxel in the lesion, the contrast enhancement is c
puted:

C~r ,i !5
S~r ,i !2S~r ,0!

S~r ,0!
, i 50,1,...,5. ~1!

C(r ,i ) is a quantity that has been shown26 to be related to
Gd-DTPA concentration in the extracellular space of bre
tissue at voxelr . In special circumstances this relation a
proaches linearity. Note that ati 50,C(r ,i )50. The enhance-
ment dynamics can be described by the average enha
ment over the lesion at each time point, i.e.,

C̄~ i !5
1

L (
r 51

L

C~r ,i !, i 50,1,...,5, ~2!

whereL is the number of voxels in the segmented lesion
Four features are derived from the enhancement kine

The maximum uptake (FII ,1) is the maximum enhance
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ment, i.e.,FII ,15maxi50,1...,5C̄( i ). The time frame index a
which the maximum enhancement occurs is a feature an
referred to here as ‘‘peak location’’ ( FII ,2).

Theuptake rate (FII ,3) of the contrast agent is defined a

FII ,35FII ,1 /FII ,2 . ~3!

The washout rate (FII ,4) of the contrast agent is define
as

FII ,45H FII ,12C̄~5!

52FII ,2

~FII ,2Þ5!,

0 ~FII ,255!.

~4!

(iii) Enhancement-variance dynamics feature.
Enhancement-variance dynamics describes the time co
of the spatial variance of the enhancement within the les
and is defined by

V~ i !5
1

L21 (
r 51

L

@C~r ,i !2C̄~ i !#2, i 50,1,...,5. ~5!

Five features are derived from the enhancement-varia
dynamics. The maximum variation of enhancement
(FIII ,1) is the maximum spatial variance of enhanceme
i.e., FIII ,15maxi50,1...,5V( i ). The time frame index at which
the maximum variance occurs is a feature and is referre
here as ‘‘peak location’’ ( FIII ,2) of the enhancement
variance dynamics.

The enhancement-variance increasing rate(FIII ,3) de-
scribes how fast the enhancement-variation within the les
reaches maximum, defined by

FIII ,35FIII ,1 /FIII ,2 . ~6!
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The enhancement-variance decreasing rate(FIII ,4) in-
dicates how fast the enhancement-variance decreases
the maximum, defined by

FIII ,45H FIII ,12V~5!

52FIII ,2
~FIII ,2Þ5!,

0 ~FIII ,255!.

~7!

FIG. 2. Performance of the computer segmentation as compared to rad
gist segmentation. Curve indicates the fraction of lesions correctly s
mented as a function of the overlap criterion.
breast

e

TABLE II. Performance of 14 computer-extracted features in distinguishing between malignant and benign
lesions that are delineated by both radiologist~column 2! and computer~column 3!. The value after ‘‘6’’ is the
standard deviation~s.d.! associated with eachAz value. The two tailedp-value was calculated using th
univariatez-score test.

Feature

Az61 s.d.:
Radiologist

outlined

Az61 s.d:
Computer
segmented p-value

I. Morphologic
FI ,1 : Maximum std. of RGH value 0.5960.05 0.5660.05 0.33
FI ,2 : Circularity 0.5760.06 0.6560.05 0.42
FI ,3 : Irregularity 0.6660.05 0.5460.06 0.19
FI ,4 : Margin gradient 0.5860.06 0.6060.06 0.57
FI ,5 : Variance of margin gradient 0.6060.05 0.5160.06 0.03

II. Enhancement kinetics
FII ,1 : Maximum uptake 0.5560.06 0.5160.06 0.25
FII ,2 : Peak location 0.7560.05 0.7960.05 0.15
FII ,3 : Uptake rate 0.6860.05 0.6660.05 0.50
FII ,4 : Washout rate 0.7360.05 0.7860.05 0.09

III. Enhancement-variance dynamics
FIII ,1 : Maximum variation of enhancement 0.5060.06 0.5260.06 0.86
FIII ,2 : Peak location 0.7460.05 0.7760.05 0.08
FIII ,3 : Increasing rate 0.5860.06 0.5860.06 0.96
FIII ,4 : Decreasing rate 0.7460.05 0.7360.05 0.90
FIII ,5 : Enhancement-variance at time #1 0.6560.06 0.6360.06 0.31
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The enhancement-variance at the first postcontrast
frame (FIII ,5), V(1), reveals the uptake inhomogeneity
the early phase of uptake.

Figure 1 shows two examples~one malignant and one
benign! of lesion segmentation and the corresponding
hancement kinetics curves and enhancement-variance cu
Note that the lesion sizes in the two examples are differ
so in the figure the pixels of the smaller lesion@Fig. 1~b!#
look larger.

III. RESULTS

Performance of the computer segmentation is shown
Fig. 2. Here overlap is defined as the volume of intersec
of the radiologist-delineated lesion and the comput
segmented lesion divided by the volume of their union.
this database with 121 mass lesions, 84% of the lesions w
correctly segmented at an overlap threshold of 0.4. The
segmentation examples shown in Fig. 1 had overlaps of~a!
0.77 and~b! 0.17, respectively.

Table II and Fig. 3 show theAz values and the associate
standard deviations indicating individual performance lev
of the 14 features in the task of distinguishing between m
lignant and benign breast lesions that were delineated
either radiologist or computer. The results indicate that
three categories of features show potential for the classifi
tion task.

As also demonstrated in Table II and Fig. 3, at the sign
cance levelp50.05, we failed to show a statistically signifi

FIG. 3. Performance of the 14 computer-extracted features in distinguis
between malignant and benign breast lesions that are delineated by
radiologist~solid! and computer~dash!.
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re
o

s
-
y
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cant difference between the performance~i.e.,Az) of features
obtained using the radiologist-outlined lesions and the p
formance of those obtained with the computer-segmenta
~except for featureFI ,5) in the task of distinguishing betwee
malignant and benign breast lesions.

Stepwise feature selection20 selected two sets o
features—one set for each of the two methods of lesion
lineation ~Table III!. The selected feature-set from featur
based on the radiologist-outlined lesions~set 1! includes four
features: peak location of enhancement-variance dynam
(FIII ,2), irregularity (FI ,3), washout rate of enhancement k
netics (FII ,4), and peak location of enhancement kineti
(FII ,2). The leave-one-out cross-validation using linear d
criminant analysis to merge the selected features yields aAz

value of 0.80 in the task of distinguishing between malign
and benign lesions. The selected feature-set from feat
based on the computer-segmented lesions~set 2! includes six
features: peak location of enhancement-variance dynam
(FIII ,2), enhancement-variance increasing rate (FIII ,3), peak
location of enhancement kinetics (FII ,2), margin gradient
(FI ,4), variance of margin gradient (FI ,5), and maximum
standard deviation of RGH value (FI ,1). The leave-one-out
cross-validation using linear discriminant analysis to me
the selected features yields anAz value of 0.86.

IV. DISCUSSION

Enhancement kinetic analysis evaluates how the cont
enhancement within the lesion changes in a period of tim
and reveals the uptake and washout characteristics of
intravenous contrast within a lesion. Studies have shown
malignant cases tend to have rapid uptake and washo12

Our results are consistent with such published results. In
analysis, 64% of the benign lesions showed no washout o
the six acquisition frames, i.e., their enhancement-cur
keep increasing. For malignant lesions only 24% dem
strated no washout. It is worth noting that all the features
calculated based on the average enhancement of the e
lesion. In clinical practice, however, radiologists can choo
any region with which to assess the enhancement kine
Our future work of interest is to develop automatic metho
to extract region of maximum enhancement. T
enhancement-kinetics based features on such ‘‘hot areas
expected to perform better in differential diagnosis.

Enhancement-variance dynamics reveals how the sp
distribution of contrast enhancement in the lesion reg
changes in a period of time. Our results showed that
spatial variance of enhancement peaks earlier in malign
lesions ~Fig. 4!. The enhancement-variance in a particu

g
oth
t cross-
TABLE III. Stepwise feature selection and the performance of the merged features using leave-one-ou
validation. The value after ‘‘6’’ is the standard deviation~s.d.! associated with eachAz value. The two-tailed
p-value was calculated using the univariatez-score test.

Radiologist outlined lesions Computer segmented lesions

Feature Set 1 Az61 s.d. Feature Set 2 Az61 s.d. p-value
FIII ,2FI ,3FII ,4FII ,2 0.8060.04 FIII ,2FIII ,3FII ,2FI ,4FI ,5FI ,1 0.8660.04 0.07
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time frame reveals the degree of inhomogeneity of the
hancement. Our results show that malignant lesions ten
be less homogenous at the first postcontrast time fra
(FIII ,5). However, malignant and benign lesions show
similar results for the maximum inhomogeneity (FIII ,1), as
determined over all time frames.

The relative performance of the morphological and
netic features depends on the MR imaging protocol involv
Basically, morphologic features perform better in high spa
resolution images and enhancement kinetics features per
better in high temporal resolution images.27 Intuitively, mor-
phological features might be more sensitive to lesion de
eation methods. With the imaging protocol and lesion s
mentation methods used in this study, overall, the kine
features appeared to perform better than did the morphol
cal features in the task of distinguishing between malign
and benign lesions.

At present, protocols used in breast MR imaging wor
wide are far from reaching a consensus and optimal imag
parameters are still under investigation. The imaging te
nique used in our study is similar to that launched by Kai
et al.,2 which was called ‘‘the archetype of dynamic brea
MRI’’ by Kuhl et al.:5 acquisition of one precontrast and
series of postcontrast images including both breasts at a
poral resolution of 60 s. A potential limitation of the tec
nique is that the data were acquired over only 5 min a
contrast injection, as there is probably some useful inform
tion beyond 5 min.28 The choice of the parameters is a trad
off to allow for a shorter exam time, which is better accep
by patients and is less costly. This limited acquisition tim
problem might have some influence on the performance
washout related features (FII ,4 ,FII ,4). The influence on the
performance of other temporal features should be much
severe as, in most cases, the signal reaches plateau wit
min. We regard as an interesting research question the e
of acquisition time on the performance of compute
extracted features in distinguishing between malignant
benign lesions.

FIG. 4. Histogram of peak location of enhancement-variance dynamics
the computer-segmented lesions.
Medical Physics, Vol. 31, No. 5, May 2004
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V. CONCLUSION

Our investigation with automated feature extraction a
classification indicates that spatial-variance dynamics i
promising family of features in the task of distinguishin
between malignant and benign MR breast lesions. Com
ing the morphological features of contrast enhancements,
hancement kinetics features, and the enhancement-vari
dynamics features using computerized methods has the
tential to complement the interpretation of radiologists in
consistent, objective, and accurate way.
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A Fuzzy C-Means (FCM)-Based Approach for
Computerized Segmentation of Breast Lesions

in Dynamic Contrast-Enhanced MR Images1

Weijie Chen, MSc, Maryellen L. Giger, PhD, Ulrich Bick, MD

Rationale and Objectives. Accurate quantification of the shape and extent of breast tumors has a vital role in nearly all
applications of breast magnetic resonance (MR) imaging (MRI). Specifically, tumor segmentation is a key component in
the computerized assessment of likelihood of malignancy. However, manual delineation of lesions in four-dimensional
MR images is labor intensive and subject to interobserver and intraobserver variations. We developed a computerized
lesion segmentation method that has the advantage of being automatic, efficient, and objective.

Materials and Methods. We present a fuzzy c-means (FCM) clustering-based method for the segmentation of breast lesions in
three dimensions from contrast-enhanced MR images. The proposed lesion segmentation algorithm consists of six consecutive
stages: region of interest (ROI) selection by a human operator, lesion enhancement within the selected ROI, application of FCM
on the enhanced ROI, binarization of the lesion membership map, connected-component labeling and object selection, and hole-
filling on the selected object. We applied the algorithm to a clinical MR database consisting of 121 primary mass lesions. Man-
ual segmentation of the lesions by an expert MR radiologist served as a reference in the evaluation of the computerized segmen-
tation method. We also compared the proposed algorithm with a previously developed volume-growing (VG) method.

Results. For the 121 mass lesions in our database, 97% of lesions were segmented correctly by means of the proposed FCM-
based method at an overlap threshold of 0.4, whereas 84% of lesions were correctly segmented by means of the VG method.

Conclusion. Our proposed algorithm for breast-lesion segmentation in dynamic contrast-enhanced MRI was shown to be
effective and efficient.

Key Words. Tumor segmentation; dynamic contrast-enhanced magnetic resonance imaging; fuzzy c-means; computer-aided
diagnosis; breast cancer.
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Breast cancer is the most common cancer and the sec-
ond leading cause of cancer death in women in West-
ern countries. Imaging has a crucial role in the workup
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of patients with breast cancer, with contributions to
early detection through screening, diagnosis and associ-
ated image-guided biopsy, treatment planning, and
treatment response monitoring. X-Ray mammography
has shown considerable success in screening for the
early detection of breast cancer; however, some limita-
tions exist, such as low specificity leading to unneces-
sary biopsies, presentation of cancer lesions as radio-
graphically occult in dense breasts, and the inherent
limitations of two-dimensional (2D) projection image
data. Thus, extensive efforts in the past 15 years have
included the use of magnetic resonance (MR) imaging
(MRI) and sonography as complementary imaging modali-

ties to improve breast-imaging interpretation (1).
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Dynamic contrast-enhanced MRI (DCE-MRI) using
gadopentate dimeglumine (Gd-DTPA) as contrast agent
has gained much recognition in breast imaging since the
findings of Heywang et al (2,3) and Kaiser and Zeitler
(4). In a typical dynamic study, three-dimensional (3D)
images of both breasts are acquired before and repeatedly
after injection of the contrast agent Gd-DTPA. In post-
contrast serial images, MR signal intensity over cancerous
lesion areas is enhanced because of increased vascularity
of tumors. Contrast-enhanced MR images of the breast
provide 3D spatial information about the lesions and tem-
poral information about lesion physiology, allowing for
more accurate assessment of lesion extent and better le-
sion characterization. In recent years, breast MRI has be-
come more widely used for difficult diagnostic evalua-
tions, monitoring chemotherapy response, and evaluation
of disease extent (1,5).

Accurate quantification of the shape and extent of
breast tumors has a vital role in nearly all applications of
breast MRI. Specifically, tumor segmentation is a key
component in computerized assessment of the likelihood
of malignancy (6,7). MRI has yielded higher correlation
between measured tumor size and actual tumor size than
mammography and sonography (8–10). In current clinical
settings, MR images typically are examined visually by
radiologists on a slice-by-slice basis. However, visual as-
sessment of lesion extent in three dimensions from 2D
slices may be difficult, especially in irregular masses. For
example, in a typical dynamic MR study, six time series
may be acquired, each containing 60 slices; thus, manual
delineation of lesion margins becomes labor intensive. In
addition, random variations up to 29% have been reported
between true and observed tumor size by using manual
delineation on MRI (8). These variations may be caused
in part by interobserver and intraobserver differences in
analyses.

Computerized techniques may improve the objectivity,
consistency, and efficiency of the segmentation of breast
lesions, as shown in other areas, such as mammography
(11,12) and sonography (13,14). For lesion segmentation
in breast MR images, Lucas-Quesada et al (15) proposed
semiautomated methods based on 2D slice-by-slice analy-
sis of MR images. Gihuijs et al (16) developed a 3D le-
sion segmentation method in which volume growing (VG)
was performed from a user-specified seed point. In previ-
ous studies (6,7), we investigated computerized methods
for assessing the likelihood of malignancy of suspicious

masses, based on both delineation of the lesion by a radi-

64
ologist and segmentation of the lesion with the VG
method (16).

In this study, we present a novel 3D lesion segmenta-
tion method based on the fuzzy c-means (FCM) clustering
algorithm. We evaluate our method by comparing com-
puterized segmentation against radiologists’ outlines on a
clinical database of mass lesions. We also compare the
proposed algorithm with our previously developed VG
approach (16).

MATERIALS AND METHODS

Database
The image database in this study was collected retro-

spectively under an institutional review board–approved
protocol. Images were obtained by using a T1-weighted
3D spoiled gradient echo sequence (repetition time � 8.1
milliseconds, echo time � 4 milliseconds, flip angle �
30°). Patients were scanned while in the prone position
by using a standard double-breast coil on a 1.5-Tesla
whole-body MRI system (Siemens Vision; Siemens,
Erlangen, Germany). After acquisition of the precontrast
series, Gd-DTPA contrast agent was delivered intrave-
nously by power injection with a dose of 0.2 mmol/kg
and flow rate of 2 mL/s. Injection of contrast was fol-
lowed by a 20-mL saline flush with the same flow rate.
Five postcontrast series were obtained, with an interval of
69 seconds. Each series contained 64 coronal slices with
a matrix of 128 � 256 pixels and in-plane resolution of
1.25 � 1.25 mm. Slice thickness ranged from 2.0 to 3.0
mm, depending on breast size.

Our database consists of 121 primary mass lesions
from 121 patients, in which 77 lesions are malignant and
44 lesions are benign, confirmed by biopsy. Lesion size
varies from 0.02 to 94 cm3. Distribution of lesions based
on manually-delineated tumor size is shown in Figure 1.

Review of FCM Algorithm
FCM is an unsupervised learning technique in the pat-

tern-recognition field (17,18). The goal of FCM is to find
the (fuzzy) partition of data set X comprising N data
points (X � �xi,i � 1,2, . . . , N�xi��m�) into c classes
(aka “clusters,” “groups”). The data point xi is an m-dimen-
sional feature vector. The (unknown) class prototypes are
represented by a c by m matrix V, the kth (k � 1, 2, . . . , c)
row, which is an m-dimensional vector and represents the
prototype of the kth class. The partition is represented by

a c by N partition matrix U. The element of matrix U, uki,
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represents the membership of the ith data point to the kth

class. Note that in a crisp partition of data points, the
membership value is binary, ie, a data point is assigned a
value of 1 if it belongs to the kth class, and 0 otherwise.
However, with a fuzzy partition, the membership value
(ie, uki) continuously ranges from 0 to 1 and characterizes
the degree of similarity between the ith data point and kth

class prototype.
The matrix U is found by minimizing the generalized

least squares within-group square error function Jm:

Jm � �
k�1

c

�
i�1

N

uki
b �xi � vk�

2 (1)

with the following constraints:

�
k�1

c

uki � 1, ∀ i;0 � uki � 1, ∀ k, i;�
i�1

N

uki � 0, ∀ k (2)

where b��1,�� is a weighting exponent on each fuzzy
membership, and � � denotes the Euclidean distance. The
necessary conditions for the within-group square error
function to be minimized with the constraints in equation
2 can be derived by LaGrange multipliers:

uki �
1

�l�1
c � �xi � vk�

�xi � vl�
�2⁄(b�1),

Figure 1. Distribution of lesions in our database based on tumor
size, delineated by a radiologist.
k � 1, 2, . . . , c; i � 1, 2, . . . , N (3)
vk �
�i�1

N
uki

b xi

�i�1
N

uki
b

, k � 1, 2, . . . , c (4)

In implementation, matrix V is randomly initialized, and
then U and V are obtained through an iterative process
using equations 3 and 4. FCM and its variants have been
widely used in MR image segmentation (19–21) and
analysis of functional MRI of the human brain (22,23). In
this study, we investigate the use of FCM for segmenta-
tion of breast lesions in DCE-MRI data.

Lesion Segmentation
The proposed lesion segmentation in contrast-enhanced

MRI consists of six consecutive stages: region of interest
(ROI) selection by a human operator, lesion enhancement
within the selected ROI, application of FCM on the en-
hanced ROI, binarization of the lesion membership map,
connected-component labeling and object selection, and

Figure 2. Diagram for the proposed FCM-based lesion segmen-
tation algorithm.
hole-filling on the selected object. Figure 2 shows the
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diagram of the algorithm. Note that operator interaction is
required only at the initial stage to indicate the lesion lo-
cation. We describe the segmentation strategy in a step-
by-step fashion, with an example showing results of each
step (Figures 3–6).

As shown in the section Database, volume data in each
time series consist of multiple slices. In the first stage, a
box-shaped ROI containing the 3D lesion is formed from
three inputs of a human operator: (1) first slice in which
the lesion appears, (2) last slice in which the lesion ap-
pears, and (3) a rectangle bounding the lesion in some

Figure 3. Example of 4D ROI containing a lesion. (To
sion appears; a typical central slice; and the last slice,
ROIs in multiple slices, each row representing a time s
representative middle slice. The rectangle defines the larg-
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est extent within each slice, and the first slice and the last
slice define the cross-slice extent of the lesion. The inter-
action could be performed quickly with a mouse on a
computer’s graphical user interface that displays multiple
slices simultaneously. Figure 3 (top) shows the first slice,
last slice, and a typical central slice that contain the le-
sion, with a rectangle defining the planar extent of the
lesion. Note that only one rectangle is drawn by the hu-
man operator, and it then is duplicated on each slice at
the same planar location from the first to the last slice.
The three slices shown are from the first postcontrast se-

ree slices are shown: the first slice, in which the le-
hich the lesion appears. (Bottom) Time series 3D
and each column representing a slice.
p) Th
in w
ries (t � 1). Figure 3 (bottom) shows the four-dimen-
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sional (4D) ROI, with each row representing a time series
and each column representing a slice.

In the second stage, the postcontrast ROI series is en-

Figure 4. Enhanced postcontrast ROIs: postcontrast R
each voxel by the intensity value at the corresponding

Figure 5. Prototype enhancement curve
sion voxels within the ROI.
hanced by dividing the intensity value at each voxel by the
intensity value at the corresponding precontrast voxel. The
enhanced postcontrast ROI series is shown in Figure 4.
Given N number of voxels in the ROI, then xi(t) (i � 1, 2, . . . ,

eries are enhanced by dividing the intensity value at
ntrast voxel.

nd by FCM for lesion voxels and nonle-
OI s
s fou
N, t � 1, 2, . . . , 5) is the normalized intensity value at voxel i
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of the tth postcontrast series, namely, xi(t) � Ii(t)/Ii(0), where
Ii(t) is the MR intensity value of voxel i at time t.

Next, we apply the FCM algorithm to partition ROI
voxels into two categories (c � 2): lesion and nonlesion,
by using postcontrast-enhanced ROI data, ie, X � �xi,i �

1,2, . . . , N�xi��5�. In this application, partition matrix U
of size 2 � N and prototype matrix V of size 2 � 5 are
obtained by minimizing the objective function defined in
equation 1. Specifically, matrix V is randomly initialized,
then U and V are iteratively updated by using equations 3
and 4 until convergence, ie, the absolute change in objec-
tive function in consecutive iterations is less than a pre-
specified small number � (� � 10�5 in this study). The
parameter b was set to b � 2. Denote the obtained U and
V as U � [U1 U2]T and V � [V1 V2]T, where T denotes
matrix transpose and Uk and Vk (k � 1, 2) are row vec-
tors of length N and 5, respectively. The Euclidean norms
of Vk (k � 1, 2) are used to determine which row repre-
sented the lesion. Denote l � arg maxk(�Vk�), then Vl is
the prototype enhancement curve of the lesion class, Ul is
the lesion membership map because enhancement in the
lesion area is much more significant than that in sur-
rounding tissues. The prototype enhancement curves of
lesion and nonlesion for the ROI in Figure 3 are shown in
Figure 5. The corresponding lesion membership map is

Figure 6. Lesion segmentation using FCM. (a) Lesion
fied threshold, (c) connected component labeling and t
shown in Figure 6a.
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The lesion membership map then is binarized with an
empirically chosen threshold (TH � 0.2) (Figure 6b). As
shown in Figure 6b, surrounding the lesion, there exist
some false-positive voxels that correspond to either ves-
sels or background noise. To reduce these spurious struc-
tures, a 3D connected-component labeling operation (24)
is performed on the binary ROI by using the following
procedure: (1) scan all voxels in the binary ROI and as-
sign preliminary labels to nonzero voxels and record label
equivalences; (2) resolve the equivalence classes; and (3)
relabel the voxels based on the resolved equivalence
classes. After connected-component labeling, the compo-
nent containing the center of the ROI is selected as the
lesion (Figure 6c), and all other labeled components (spu-
rious structures, noise, and so on) are erased (ie, assign
zeros to those components). Finally, a hole-filling opera-
tion based on morphological resonstruction (25) is per-
formed on the 3D lesion because there might be some
necrotic area in the tumor that may have very low en-
hancement and thus initially is partitioned as nonlesion in
the FCM procedure. Figure 6d shows the final segmenta-
tion result after hole filling.

Evaluation
In this study, manual segmentation of the lesions by an

bership map from FCM, (b) binarized with a prespeci-
selection, and (d) hole filling.
mem
expert MR radiologist served as reference (ie, the “true
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outline”) in the evaluation of the computerized segmenta-
tion method. Manual segmentation was performed slice
by slice in the subtracted images (postcontrast image �
precontrast image); the enhanced tumor area in each slice
that intersected the lesion was outlined. All subtraction
images were used for this purpose, and the radiologist
also used the original (nonsubtracted) MR images as addi-
tional information. For each delineated lesion, we deter-
mined tumor volume by voxel counting.

We also defined an overlap measure as a performance
index to quantify agreement between the computerized
segmentation and radiologist delineation. For a given le-
sion, denote C as the set of voxels returned from the
computerized segmentation and R as the set of voxels in
the radiologist’s segmentation. The overlap measure, O, is
defined as the intersection of C and R over the union of C
and R, ie,

O �
C � R

C � R
(5)

The value of O is bounded between zero (no overlap)
and one (exact overlap). Taking the radiologists’ delinea-
tion as “truth,” a lesion is considered to be correctly seg-
mented by the computer when the overlap O between the
computerized segmentation and the radiologist’s segmen-
tation is larger than a predetermined threshold called
overlap threshold.

RESULTS

Figure 7a shows a plot of the fraction of correctly seg-
mented lesions at various overlap threshold levels for
both the proposed FCM-based method and our previously
reported VG method (16). The proposed method outper-
formed the VG method, ie, more lesions are segmented
correctly by means of FCM than by means of VG at vari-
ous overlap threshold levels. In particular, 97% of lesions
are segmented correctly by means of the proposed FCM-
based method at the overlap threshold of 0.4, whereas
84% of lesions are segmented correctly by means of the
VG method. Figure 7b shows a plot of the fraction of
correct segmentation versus overlap threshold separately
for benign and malignant lesions. At the overlap threshold
of 0.4, by means of the proposed FCM-based method,
98.7% of malignant lesions and 93.2% of benign lesions

are segmented correctly, whereas 93.5% of malignant le-
sions and 70.5% of benign lesions are segmented cor-
rectly by using the VG method.

Table 1 summarizes the statistical comparison of the
two methods, FCM and VG, by using the overlap mea-
sure and lesion volume. For the 121 mass lesions in our
database, FCM yielded an average overlap value of 0.64
with an SD of 0.12, whereas the VG method yielded an
average overlap value of 0.59 with an SD of 0.20. The
two sets of overlap values of the 121 mass lesions were
compared by using paired t-test, and the improvement in
overlap values with the proposed method was found to be

Figure 7. Performance of the proposed FCM-based lesion seg-
mentation algorithm and the previously developed VG algorithm
on a clinical database of 121 mass lesions. (a) Evaluated on the
entire database and (b) on malignant and benign lesions, respec-
tively.
statistically significant (P � .002).
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The mean volume of lesions delineated by the radi-
ologist was 4.7 cm3, whereas FCM segmentation
yielded a mean volume of 4.1 cm3. Paired t-test was
used to compare mean lesion volume measured by hu-
man delineation and FCM segmentation, and the differ-
ence was not statistically significant (P � .71). The
correlation coefficient between human and FCM vol-
ume measurements was 0.98. The VG method yielded
a mean volume of 3.0 cm3 and a correlation coefficient
of 0.64 with the radiologist’s segmentation. Figure 8 is
a scatter plot showing the distribution of the 121 cases
based on lesion volume measured by using both the
computerized methods and radiologist’s outlining. It is
apparent that the VG method yields more variations in
results than the FCM method.

The algorithm was implemented with Matlab (Math-

Figure 8. Relationship between lesion volumes determined from
computer-segmentation and those from radiologist-outlined tumor
margins for both the new FCM method ( · ) and our prior VG
method (�). Database included 121 mass lesions.

Table 1
Summary of Performance of the Proposed Lesion Segmentatio

Overlap

Method Mean � SD P

FCM 0.64 � 0.12
�.002

VG 0.59 � 0.20

cc, correlation coefficient between two measurements.
P obtained with paired t-test to compare the significance of diffe
works). It takes less than 1 second to segment a typical
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lesion on a personal computer with a 2.2-GHz AMD Ath-
lon processor.

DISCUSSION

Why does the proposed FCM-based approach outper-
form the VG method? One of the key reasons might be
the use of different information. In the proposed FCM-
based method, all postcontrast enhancement values are
used as a feature vector in differentiating between lesion
and nonlesion regions. Conversely, in the VG method,
VG is performed on an enhanced image in which voxel
values correspond to the variance in time-weighted MR
intensity values, vart(I(t)/t). Thus, enhancement values are
projected to a scalar value (ie, variance), and information
loss may occur in this process. In addition, in the VG
method, enhancement values are weighted by the se-
quence number of the acquisition, which is a process that
benefits the malignant lesions because malignant lesions
normally show high uptake of contrast in earlier time se-
quences and thus are assigned a higher value in the en-
hanced image. To appreciate that this time-weighting pro-
cess may not benefit benign lesions, it is important to
note that in a typical benign lesion, signal intensity con-
tinues to increase during the time of acquisition (7,26).
One might imagine an extreme situation in which signal
intensity in the benign lesion increases linearly with time;
then the lesion region would be assigned low values (ie,
zero) in the enhanced image, and segmentation by using
the VG method would be difficult. This explains the re-
sults shown in Figure 7b, in which VG performs much
better in malignant than benign lesions, whereas FCM
performs similarly for both malignant and benign lesions.

Normalization of postcontrast intensity by precontrast
intensity is, at the first-order approximation, proportional

orithm

Volume (cm3)

thod Mean � SD cc P

4.1 � 8.1 0.98 .71

logist 4.7 � 10.0
0.64 .12

3.0 � 4.0

e between two measurements.
n Alg

Me

FCM

Radio

VG
to Gd-DTPA concentration in the extracellular space of
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breast tissue (27). This is the primary reason that we used
“division,” rather than “subtraction,” to enhance the ROIs.
Another important reason is that the division operation
renders the algorithm insensitive to intensity inhomogene-
ity artifacts. Intensity inhomogeneity corresponds to slow
intensity variations of the same tissue over the image do-
main (28) and can be modeled as a time-invariant multi-
plicative gain field (29–31), namely:

Iobserved(x,y,z,t) � Itrue(x,y,z,t) � B(x,y,z)

where Iobserved(x,y,z,t) and Itrue(x,y,z,t) are the observed
and true MR signal intensity at voxel (x,y,z) and time t,
respectively, and B(x,y,z) is the bias field. The intensity in
the enhanced postcontrast ROIs (Figure 4),

x(x,y,z,t) �
Iobserved(x,y,z,t)

Iobserbed(x,y,z,0)
�

Itrue(x,y,z,t)

Itrue(x,y,z,0)

therefore is not influenced by the bias field artifacts.
The only user input for lesion segmentation is a box-

shaped ROI containing the lesion. It should be noted that
the ROI is not necessarily the smallest box circumscribing
the lesion, which is a requirement in some other methods
(32). In practice, we found that a reasonable ROI could
be specified efficiently by using the mouse on a user-
friendly graphical user interface that we developed.

Patient motion during acquisition of the serial MR data
may cause artifacts in enhancement. Although severe mo-
tion was not found in this data set, image registration to
align images obtained at different time frames may fur-
ther improve the accuracy of the segmentation.

Histological measurements of the lesions were not
available for this database. We used human outlining,
which was conducted very carefully by an experienced
radiologist, as the “ground truth” of lesion extent. Use of
the overlap measure as a performance index assumes that
a method is regarded as being better if it agrees more
with the radiologist. Such a philosophy is justified be-
cause tumor size estimate based on MRI interpreted by a
human observer is highly accurate (8)

Automatic tumor delineation is of clinical value, for
example, in surgical planning or follow-up during neoad-
juvant chemotherapy. In addition, it also is important for
lesion characterization, eg, in computer-based image anal-
ysis (6,7). It is expected that contrast-enhancement mea-
sures will be more stable and meaningful when applied to

accurately segmented lesions. Moreover, manual outlining
of the tumor on a 4D MRI data set is time intensive and
impractical (may take 20–30 minutes of the radiologist’s
time).

Lesion segmentation is important for both benign and
malignant lesions to correctly assess morphological fea-
tures used to differentiate between benign and malignant
lesions. Results show that the proposed FCM-based
method improves the segmentation of both benign and
malignant lesions, and the improvement on benign lesions
is more substantial than that on malignant lesions (Figure
7b). Our ongoing research in computer-aided diagnosis of
breast MRI includes extracting features from breast le-
sions segmented with the method presented in this report
and classifying lesions as benign or malignant by merging
the features by using a classifier. We expect that the im-
proved segmentation should yield more reliable feature
calculation and improved classification performance in
determining the probability of malignancy.

In conclusion, we developed an FCM-based method
for consistent computerized segmentation of breast lesions
in three dimensions from DCE-MRI data. Performance of
the proposed method is similar to performance of an ex-
perienced radiologist. The method has the potential for
accurate, efficient, and consistent segmentation of breast
lesions in DCE MR images.
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Dynamic contrast-enhanced magnetic resonance imaging �DCE-MRI� of the breast is being used
increasingly in the detection and diagnosis of breast cancer as a complementary modality to mam-
mography and sonography. Although the potential diagnostic value of kinetic curves in DCE-MRI
is established, the method for generating kinetic curves is not standardized. The inherent reason that
curve identification is needed is that the uptake of contrast agent in a breast lesion is often hetero-
geneous, especially in malignant lesions. It is accepted that manual region of interest selection in
4D breast magnetic resonance �MR� images to generate the kinetic curve is a time-consuming
process and suffers from significant inter- and intraobserver variability. We investigated and devel-
oped a fuzzy c-means �FCM� clustering-based technique for automatically identifying characteristic
kinetic curves from breast lesions in DCE-MRI of the breast. Dynamic contrast-enhanced MR
images were obtained using a T1-weighted 3D spoiled gradient echo sequence with Gd-DTPA dose
of 0.2 mmol/kg and temporal resolution of 69 s. FCM clustering was applied to automatically
partition the signal-time curves in a segmented 3D breast lesion into a number of classes �i.e.,
prototypic curves�. The prototypic curve with the highest initial enhancement was selected as the
representative characteristic kinetic curve �CKC� of the lesion. Four features were then extracted
from each characteristic kinetic curve to depict the maximum contrast enhancement, time to peak,
uptake rate, and washout rate of the lesion kinetics. The performance of the kinetic features in the
task of distinguishing between benign and malignant lesions was assessed by receiver operating
characteristic analysis. With a database of 121 breast lesions �77 malignant and 44 benign cases�,
the classification performance of the FCM-identified CKCs was found to be better than that from
the curves obtained by averaging over the entire lesion and similar to kinetic curves generated from
regions drawn within the lesion by a radiologist experienced in breast MRI. © 2006 American
Association of Physicists in Medicine. �DOI: 10.1118/1.2210568�

Key words: breast MRI, DCE-MRI, kinetic curve, fuzzy c-means, computer-aided diagnosis
I. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging
�DCE-MRI� of the breast is being used increasingly in the
detection and diagnosis of breast cancer as a complementary
modality to mammography and sonography.1,2 DCE-MRI of-
fers three-dimensional spatial information and temporal in-
formation, and has demonstrated extremely high sensitivity
for breast cancer.3 The specificity of DCE-MRI, however, is
varied and thus, there are continued efforts to identify distin-
guishing characteristics of malignant and benign lesions, in-
cluding morphological features,4–6 kinetic features,7,8 and
texture features.9 Our study presents a new method to im-
prove the extraction of kinetic features from DCE-MRI
breast lesions, which potentially will aid radiologists in their

interpretation.

2878 Med. Phys. 33 „8…, August 2006 0094-2405/2006/33„8
Kinetic features are accessible from DCE-MRI
techniques,10–12,7,8 in which serial T1-weighted three-
dimensional �3D� MR images of both breasts are acquired
before and repetitively after the administration of the con-
trast agent gadolinium-diethylenetriamine penta-acetic acid
�Gd-DTPA�. The time course of the signal intensity over the
lesion area is of important diagnostic value as demonstrated
by Kuhl et al.7 In the study by Kuhl et al.,7 a kinetic curve
was formed by calculating the average enhancement over a
human drawn region of interest �ROI� within the lesion at all
time points, where the enhancement �Eh� is defined as the
percentage of signal intensity �St� increase relative to the
precontrast signal intensity �S0�, i.e., Eh= �St−S0� /S0, t
=0,1 , . . . ,T−1, where T is the total number of time points.
The kinetic curves were categorized into three types accord-
ing to their shapes �Fig. 1�: type I �persistent� curve shows

continuous increase in enhancement with measurement time,

2878…/2878/10/$23.00 © 2006 Am. Assoc. Phys. Med.
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type II � plateau� reaches a plateau, and type III �washout�
exhibits a decreasing pattern after an initial increase. In Ku-
hl’s study, the distributions of curve types for 101 malignant
lesions and 165 benign lesions were: type I 8.9%, type II
33.6%, type III 57.4% for malignant and type I 83.0%, type
II 11.5%, type III 5.5% for benign. The distributions proved
to be significantly different and an overall diagnostic accu-
racy of 86% �sensitivity 91%, specificity 83%� was obtained.

Although the diagnostic value of kinetic curves in DCE-
MRI is established, the method for generating kinetic curves
is not standardized and their optimal usage has not been
reached. In current clinical practice, the generation of the
kinetic curves is usually done manually for each lesion in the
DCE-MRI images. Typically, the radiologist or MR tech-
nologist draws a small ROI over the region that appears to be
the most enhancing region in the lesion and the enhancement
values at different time points are calculated over the ROI to
form the kinetic curve. However, substantial interobserver
variability has been reported with the manual selection of
ROIs.13 Semiautomated methods for ROI selection have
been proposed in the literature.13,14 Mussurakis et al.13 com-
pared three ROI selection methods: �a� a large ROI drawn by
the radiologist that includes as much of the enhancing part of
the lesion as possible; �b� a small 12-pixel circular ROI
placed at the most enhancing part of the large ROI; and �c� a
semiautomated ROI generated by searching within the large
ROI �using a 3�3 pixel mask� for the most enhancing re-
gion. The main contribution of their study was the reported
observer variability in the subjective ROI selections, and the
good agreement achieved using the semiautomated ROI.
Thus, semiautomated or automated ROI selection are pre-

14

FIG. 1. Illustration of typical curve types: type I �persistent� curve shows
continuous increase in enhancement with measurement time, type II �pla-
teau� reaches a plateau, and type III �washout� exhibits a decreasing pattern
after an initial increase. Enhancement �Eh� is defined as the percentage of
signal intensity �St� increase relative to the precontrast signal intensity �S0�,
i.e., Eh= �St−S0� /S0, t=0,1 , . . . ,T−1, where T is the total number of time
points.
ferred. Similar findings were reported by Liney et al. Their
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semiautomated method, however, relied on a large ROI
drawn by a human on parametric images obtained from a
compartmental modeling of the dynamic data. Moreover, the
choice of the size of the search mask was arbitrary, and thus
difficult to optimize. In a recent study by Niemeyer et al.,15 a
hierarchical curve search method was proposed, in which a
washout type of curve is preferably selected from curves
obtained using a moving 3�3 window. While the hierarchi-
cal search technique resulted in a higher sensitivity, it was
unclear if the specificity was affected.

To overcome the limitations of the methods in the litera-
ture, we propose a method based on fuzzy c-means �FCM�
clustering to identify the characteristic kinetic curve �CKC�
of a breast lesion in DCE-MRI images in the task of classi-
fying the lesion as benign or malignant. Instead of searching
on a parametric image using a ROI of fixed size, our method
analyzes directly the signal-time curves of each voxel within
the 3D lesion. FCM clustering is employed to categorize the
signal-time curves into a number of prototypes �i.e., catego-
ries�, and then, the prototype curve with the highest initial
enhancement is automatically selected as the CKC of the
lesion. Conventional kinetic features are extracted from the
identified CKC and the performance of these features in dis-
tinguishing between malignant and benign lesions is evalu-
ated with receiver operating characteristic �ROC� analysis.

II. MATERIALS AND METHODS

A. Image acquisition

In this dynamic contrast-enhanced MR imaging study, im-
ages were obtained using a T1-weighted 3D spoiled gradient
echo sequence with the following parameters: repetition time
�TR�=8.1 ms, echo time �TE�=4 ms, flip angle=30°. Fat
suppression was not employed. The patients were scanned in
prone position using a standard double-breast coil on a 1.5 T
whole-body MRI system �Siemens Vision, Siemens, Erlan-
gen, Germany�. After the acquisition of the precontrast se-
ries, Gd-DTPA contrast was delivered intravenously by
power injection with a dose of 0.2 mmol per kilogram body
weight and a flow rate of 2 ml/s. Injection of contrast was
followed by a saline flush of 20 ml with the same flow rate.
Five postcontrast series were then acquired with a time in-
terval of 69 s. Each series contained 64 coronal slices with a
matrix of 128�256 pixels and an in-plane resolution of
1.25�1.25 mm2. Slice thickness ranged from 2 to 3 mm de-
pending on breast size.

A total of 121 patients �mean age, 51.2 years±12.7 �SD�;
range, 21–85 years� with 121 primary mass lesions �77 ma-
lignant and 44 benign as revealed by biopsy� were included
in this study. This database had been retrospectively col-
lected under an IRB-approved protocol.

B. Lesion segmentation

To identify the characteristic kinetic curve of a breast le-

sion in DCE-MRI images, lesion segmentation must be ini-
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tially performed. We investigated both a manual method and
a computerized technique for the segmentation of breast le-
sions on the DCE-MRI images.

1. Human segmentation

The manual segmentation was performed by an experi-
enced radiologist. This segmentation was performed slice by
slice in the subtracted images �postcontrast minus precon-
trast�. The enhanced tumor region in each slice was visually
assessed and outlined by the radiologist. All subtraction im-
ages were used by the radiologist for assessing the tumor
extent and the original MR images were used as additional
reference.

2. Computerized segmentation

The computerized segmentation uses a fuzzy-c means
�FCM�-based approach, the details of which we have re-
ported elsewhere.16 Briefly, the lesion segmentation algo-
rithm consists of six consecutive stages. First, a box-shaped
region of interest �ROI� containing the suspicious lesion is
selected by a human operator. Then, the postcontrast ROIs
are normalized by the precontrast intensities. Third, FCM
clustering is applied to the normalized postcontrast time-
course data to partition the voxels in the ROI into two
classes: lesion and nonlesion. After binarization of the fuzzy
membership map of the lesion class, a connected-component
labeling operation is performed to erase the spurious struc-
ture and noise. Next, a hole-filling operation is performed on
the lesion object to include the necrotic areas that have been
categorized as nonlesions due to low enhancement. The per-
formance of the computerized segmentation was evaluated
by an overlap measure, which is defined as the volume of the
intersection of the voxel set in radiologist-delineated lesion
and the voxel set in the computer-segmented lesion over the
volume of the union of the two voxel sets. At an overlap
threshold of 0.4, 97% of the 121 mass lesions were correctly
segmented.16

C. Characteristic kinetic curve identification

The inherent reason that curve identification is needed is
that the uptake of contrast agent in a breast lesion is often
heterogeneous, especially in malignant lesions. Figure 2
shows the signal-time curves of some randomly chosen vox-
els in a segmented lesion. It is apparent that all three types of
kinetic curves �Fig. 1� are found in one slice of the lesion.
Our method categorizes the signal-time curves in a 3D lesion
into a number of prototypes and selects the one that best
represents the lesion for diagnosis purpose, i.e., the most
enhancing curve. We propose using this fuzzy c-means
�FCM� clustering17,18 technique to identify the curve proto-
types.

Denote N as the number of voxels in a suspicious lesion.
Each voxel is represented by signal intensity values at all the

time points. Thus, we have data set
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X = �xi,i = 1,2, . . . ,N�xi = �Si0,Si1, . . . ,Si,T−1�� , �1�

where xi is the data vector for the ith voxel, Sit�t
=0,1 , . . . ,T−1� is the signal intensity of the ith voxel at time
point t, and T is the number of time points. In FCM cluster-
ing, we attempt to partition the data set X into c classes,
where c is a parameter to be specified. The prototypic curves
corresponding to the �unknown� classes are represented by a
c�T matrix V; the kth �k=1,2 , . . . ,c� row of V, vk, is a
T-dimensional vector representing the prototypic curve of the
kth class. The �fuzzy� partition of the data set is represented
by a c�N matrix U. The element of U, uki, represents the
membership of the ith data point �xi� to the kth class �vk� and

FIG. 2. Example of a breast MR image illustrating the uptake inhomogene-
ity in the lesion. Top: a slice containing the mass lesion. Middle: Segmented
lesion with contour overlap. Bottom: signal-time curves of some randomly
chosen voxels in the segmented lesion.
characterizes the similarity between the ith data point �xi�
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and the kth class prototype �vk�. The FCM objective function
to be minimized is

J�U,V;X� = �
k=1

c

�
i=1

N

uki
b 	xi − vk	 , �2�

with the following constraints:

�
k=1

c

uki = 1, " i; 0 � uki � 1, " k,i; �
i=1

N

uki � 0, " k ,

�3�

where b� �1,�� is a weighting exponent on each fuzzy
membership, and 	 · 	 denotes the Euclidean distance. The
necessary conditions for the FCM objective function in Eq.
�2� to be minimized with the constraints in �3� can be derived
by LaGrange multipliers,

uki =
1

�l=1

c 
 	xi − vk	
	xi − vl	

�2/�b−1� , k = 1,2, . . . ,c;

i = 1,2, . . . ,N , �4�

vk =
�i=1

N
ukixi

�i=1

N
uki

b
, k = 1,2, . . . ,c . �5�

In implementation, matrix V is randomly initialized, and
then U and V are obtained through an iterative process using
Eq. �4� and Eq. �5�. The convergence criterion of the iteration
is that the Euclidean distance between the current prototype
matrix and the prototype matrix in the previous iteration is
less than some user-specified number �, i.e., 	Vnew−Vold	
��.

Note that the number of classes c in FCM clustering must
be a known parameter. We empirically determined the pa-
rameter c from the number of voxels in a lesion as follows:

c = ��N/80� if N � 160

2 if N � 160,

 �6�

where � � takes the nearest integer. The parameter fuzzy in-
dex b was set to b=2 and the convergence criteria parameter
�=10−5.

After one obtains V, i.e., c prototypic curves, the curve
with the maximum initial enhancement is selected as the
characteristic kinetic curve of the lesion,

k = arg max
j=1,2,. . .,c

v j1 − v j0

v j0
. �7�

Thresholding of the corresponding membership map, i.e., the
kth row of matrix U, can be used to label the most enhancing
regions.

The algorithm is summarized as follows:

�1� Empirically specify the number of classes in a lesion
with Eq. �6�;

�2� Initialize V randomly;

�3� Update U with Eq. �4�;
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�4� Update V with Eq. �5�;
�5� If 	Vnew−Vold	�� go to 3, otherwise go to 6; and
�6� Select curve using Eq. �7�.

Figure 3 illustrates the curve identification procedure. In
Fig. 3�a�, 3D breast MR images �first postcontrast series� are
displayed as multiple slices, with a malignant mass lesion
segmented by a radiologist. Figure 3�b� shows the color-
encoded membership map overlapped on the original lesion,
marking the most enhancing regions in the lesion and �c�
shows all the FCM-detected prototypic curves in the lesion.
The characteristic kinetic curve �CKC� selected using the
criterion in �7� is displayed in �d� �solid line�. Also shown is
the curve obtained by averaging over the entire lesion �dash
line�.

D. Feature extraction

To classify the lesions as malignant or benign, four fea-
tures are extracted from the CKC of each lesion. Note that
each CKC was represented by the signal intensity values at T
time points, �S0 ,S1 , . . . ,ST−1�, where St is the signal intensity
at time point t�t=0,1 , . . . ,T−1�. Denoting S* as the maxi-
mum of the T signal intensity values and p as the time point
of S*, i.e.,

S* = max
t=0,1,. . .,T−1

St, �8�

p = arg max
t=0,1,. . .,T−1

St. �9�

The four features extracted are defined as follows:

�1� Maximum enhancement �Fk1�,

Fk1 = �S* − S0�/S0, �10�

�2� Time to peak �Fk2�,

Fk2 = p , �11�

�3� Uptake rate �Fk3�,

Fk3 =
Fk1

Fk2
, �12�

�4� Washout rate �Fk4�,

Fk4 = � S* − ST−1

S0�T − 1 − p�
if p � T − 1

0 if p = T − 1.
� �13�

E. Evaluation

We assessed the performance of the four kinetic features
�defined above in Sec. II D.� in the task of distinguishing
between malignant and benign lesions using ROC
analysis.19,20 To demonstrate the usefulness of our technique,
we used the ROCKIT ROC software21 to compare the classi-
fication performance of the features extracted from the CKC
identified using our method with: �1�the features extracted

from the kinetic curve obtained by averaging over the entire
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lesion; and �2�the features extracted from the kinetic curve
generated from a manually selected small region within the
lesion. The regions were selected by a radiologist experi-
enced in breast MRI �U.B.� without knowledge of the clini-
cal information or diagnosis. The regions were drawn using a
self-developed software tool allowing the definition of arbi-
trarily shaped regions. While drawing the regions, both pre-
and postcontrast images as well as subtraction images were
available. Regions were placed in a representative area of

FIG. 3. Illustration of the curve identification method. �a� 3D breast MR ima
lesion segmented by a radiologist. �b� Color-encoded membership map overl
Detected prototype curves within the lesion; �d� The characteristic kinetic cu
by averaging over the radiologist-outlined lesion region �dash line�.
strong initial enhancement.
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III. RESULTS

Figures 4 and 5 show examples of curve identification for
malignant and benign cases, respectively. In each plot, the
kinetic curve obtained by averaging over the entire lesion
�dashed line, referred to as “average curve”� and the charac-
teristic kinetic curve identified by our FCM clustering
method �solid line, referred to as “CKC”� are displayed. For
the malignant examples in Fig. 4, the average curves in �a�–

first postcontrast series� displayed as multiple slices, with a malignant mass
to the original lesion marking the most enhancing regions in the lesion. �c�

dentified by our FCM clustering method �solid line� and the curve obtained
ges �
apped
rve i
�c� exhibit a persistent type and the CKCs show plateau or
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FIG. 4. Malignant examples. In each plot, the dashed
line represents the curve obtained by averaging over the
entire lesion, and the solid line represents the character-
istic kinetic curve identified automatically by our FCM
clustering-based method.
FIG. 5. Benign examples. Same convention as Fig. 4.
Medical Physics, Vol. 33, No. 8, August 2006
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washout; the average curves in �d�–�f� exhibit a plateau while
the CKCs show washout. For these examples, the estimated
likelihood of malignancy increased when the FCM method
was employed. However, Figures 4�g� and 4�h� show some
malignant examples whose average curves and CKCs are
similar. Figure 4�i� shows a rare example where the average
curve demonstrates a plateau type while the CKC exhibits a
persistent type. For the benign examples shown in Fig. 5,
both the average curves and the CKCs in �a�–�f� demonstrate
the typical persistent type, and both the average curves and
the CKCs in �g�–�i� show nontypical washout or plateau
types. This suggests that use of the proposed FCM method
will increase, in general, the malignant kinetic appearance of
cancerous lesions while not affecting that of benign lesions.

Figure 6 shows histograms of the kinetic features of the
malignant and benign cases in the database derived from
both the average curve �left column� and the CKCs �right
column�. These histograms demonstrate the changes in the
feature distributions and in the separations between the ma-
lignant and benign groups as the kinetics analysis changes

FIG. 6. Histograms of feature values for the database for the kinetic curves
averaged over the entire lesion �left column� and for the automatically iden-
tified characteristic kinetic curves using our FCM-based method �right
column�.
from the average curves to the CKCs. Overall, the maximum
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enhancement increases for both the benign and malignant
lesions due to the use of CKCs. However, an increase in the
separation between the two groups is not observed �Figs.
6�a-1� and 6�a-2��. For the last three features, CKCs yielded
greater separation between the malignant group and benign
group as compared to that from the corresponding average
curves. CKCs tend to reach the peak earlier than average
curves, especially with the malignant lesions �Figs. 6�b-1�
and 6�b-2��. From Figs. 6�c� and 6�d�, it is evident that more
cases from the malignant group than from the benign group
yield increased uptake rates and washout rates with CKCs as
compared to those from the corresponding average curves.

Quantitative results of the classification performance of
kinetic features, in terms of area under the ROC curve, are
summarized in Tables I–III. In all these comparisons, the Az

values �i.e., area under the ROC curve�, p values for statis-
tical comparison of two methods, and the 95% confidence
interval �CI� of the difference in Az values are given.

Table I shows the comparison of classification perfor-
mance of kinetic features extracted from FCM-identified
CKCs with that from the average curves from the initial ra-
diologist outlined lesions. The feature maximum enhance-
ment is of little discriminatory power for both methods. For
the other three features—time to peak, uptake rate, and
washout rate—the Az values based on the FCM-identified
curves are higher than that based on the average curves. The
difference in Az values for the feature time to peak is statis-
tically significant.

Table II lists the comparison of classification performance
of kinetic features extracted from FCM-identified CKCs with
that from the curves generated from radiologist-drawn re-
gions within the lesions. Again, the feature maximum en-
hancement is of little discriminatory power for both methods.

TABLE I. Comparison of classification performance of kinetic features:
“FCM” means that the features are extracted from FCM-identified charac-
teristic kinetic curves; “Average” means that the features are extracted from
kinetic curves generated by averaging over the entire lesion. The lesions
were initially outlined by an experienced radiologist �U.B�.

Az �FCM� Az �Average� p value 95% CI of �Az

Max. enhancement 0.55±0.06 0.55±0.06 0.98 �−0.22,0.22�
Time to peak 0.85±0.04 0.76±0.05 0.008 �0.02, 0.15�
Uptake rate 0.71±0.05 0.66±0.06 0.19 �−0.02,0.12�

Washout rate 0.80±0.05 0.74±0.05 0.14 �−0.02,0.12�

TABLE II. Comparison of classification performance of kinetic features:
“FCM” means that the features are extracted from FCM-identified charac-
teristic kinetic curves; “MAN” means that the features are extracted from
kinetic curves generated from regions drawn manually by a radiologist ex-
perienced in breast MRI.

Az �FCM� Az �MAN� p value 95% CI of �Az

Max. enhancement 0.57±0.06 0.50±0.06 0.09 �−0.01,0.14�
Time to peak 0.85±0.04 0.79±0.05 0.11 �−0.02,0.14�
Uptake rate 0.71±0.05 0.74±0.05 0.48 �−0.11,0.05�
Washout rate 0.79±0.05 0.71±0.05 0.04 �0.01, 0.15�



2885 Chen et al.: Characteristic kinetic curves of breast lesions on DCE-MRI 2885
The Az values of the features time to peak and uptake rate are
similar for the two methods. The Az value for the feature
washout rate extracted from FCM-identified CKCs is signifi-
cantly higher than that from curves generated from the
radiologist-drawn regions.

It should be noted that the automatic curve identification
using our FCM-based method is performed on breast lesions
segmented either by computer or human. Table III compares
the classification performance of the kinetic features based
on curves obtained from human-outlined breast lesions and
that based on the curves obtained from the computer-
segmented breast lesions. We failed to show a significant
difference between the human outlining and the computer
segmentation for all the four features.

IV. DISCUSSION AND CONCLUSION

We investigated and developed a fuzzy c-means
clustering-based technique for automatically identifying
characteristic kinetic curves of breast lesions in DCE-MRI.
FCM was applied to partition the signal-time curves obtained
for each voxel in a segmented 3D breast lesion, into a num-
ber of prototypic curves, and the curve with the highest ini-
tial enhancement was automatically selected as the charac-
teristic kinetic curve of the lesion. Four features were
extracted from each CKC to depict the maximum enhance-
ment, time to peak, uptake rate, and washout rate of the
lesion kinetics. The classification performance of these fea-
tures in the task of distinguishing between benign and ma-
lignant lesions was assessed by ROC analysis. The area un-
der the ROC curve from the FCM-identified CKCs was
higher than that from the curves obtained by averaging over
the entire lesion, and this improvement was found to be sta-
tistically significant for the feature time to peak.

We also compared the classification performance of the
kinetic features extracted from FCM-identified CKCs with
that from curves generated from radiologist-drawn regions
within the lesion. The Az values are similar for two of the
kinetic features �time to peak and uptake rate� and FCM-
identified CKCs yielded significant higher Az value for the
feature washout rate. It is worth noting that the interpretation
of the kinetic curves is not standardized in the current clini-
cal practice. We basically used our computerized features to
evaluate the classification performance of kinetic curves ob-

TABLE III. Comparison of classification performance of kinetic features:
“Human outline” means that the FCM-based curve identification was per-
formed on radiologist-outlined breast lesions; “computer segmentation”
means that the FCM-based curve identification was performed on the
computer-segmented breast lesions.

Az �Human
outline�

Az �computer
seg.� p value

95% CI
of �Az

Max. enhancement 0.57±0.06 0.56±0.06 0.80 �−0.04,0.05�
Time to peak 0.85±0.04 0.85±0.04 0.76 �−0.04,0.03�
Uptake rate 0.71±0.05 0.71±0.05 0.96 �−0.04,0.03�
Washout rate 0.79±0.05 0.78±0.05 0.51 �−0.02,0.04�
tained with different methods. To best simulate a clinical
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environment, we also compared the performance of a kinetic
feature used by one of the radiologists �U.B.�. Note that each
kinetic curve was represented by the signal intensity values
at T time points �S0 ,S1 , . . . ,ST−1�, where St�t=0,1 , . . . ,T
−1� is the signal intensity at time point t. The empirical
decision variable is based on the ratio between late and early
enhancement, and is defined as

Fk =
ST−1 − S1

S1 − S0
.

This decision variable is negative for kinetic curves with
washout, zero for kinetic curves with a plateau, and positive
for kinetic curves with continuous enhancement. This feature
yielded an Az value of 0.85 �s.e. 0.04� for the FCM-identified
characteristic kinetic curves and an Az value of 0.81 �s.e.
0.05� for the curves generated from radiologist-drawn re-
gions. We failed to observe a significant difference between
the two Az values. However, it is accepted that manual ROI
selection in 4D breast MR images is a time-consuming pro-
cess and suffers from significant inter- and intraobserver
variability.13

One of the significant aspects of the results in Table III is
that computerized segmentation16 yielded essentially the
same Az values as did the human segmentation. This implies
that, once the lesion is located, the characteristic kinetic
curve can be obtained automatically without radiologist’s in-
teraction. There are two advantages associated with this au-
tomated lesion-segmentation process. First, the objectivity of
the analysis is increased since the interobserver variability in
lesion outlining is avoided; and second, the efficiency of the
analysis is increased since the slice-wise human delineation
of 3D breast lesions is time-consuming and impractical in
actual clinical practice.

The number of prototypic curves �c� to be detected in a
lesion must be a known parameter to apply the FCM cluster-
ing technique. Intuitively, when c is too small, the identified
curves will be close to the average curve and less character-
istic. When c is too large, however, curve identification may
be sensitive to noise. We used a rule in Eq. �6� to specify the
parameter c as the number of voxels in the 3D breast lesion
divided by 80. The optimal selection of this parameter re-
quires a larger database and is beyond the scope of this study.

The most enhancing regions associated with the identified
characteristic kinetic curve, as shown in the color map in
Fig. 3�b�, convey interesting information. These most en-
hancing areas might be irregularly shaped and even spatially
disconnected within a 3D breast lesion. This fact may render
it questionable to generate a curve with a regular-shaped
size-fixed window.

It should be noted that there are still no standardized and
generally accepted protocols for breast MR imaging. How-
ever, there is considerable agreement among radiologists
about suitable MR imaging techniques.22–24,1,2 For example,
dedicated double-surface coils are indispensable, and high
magnetic field and strong gradients should be used for im-
proved contrast enhancement. Also, T1-weighted three-

dimensional gradient echo-pulse sequences are used for dy-



2886 Chen et al.: Characteristic kinetic curves of breast lesions on DCE-MRI 2886
namic breast MR imaging for 6 to 10 min following bolus
injection of Gd-DTPA. Typically one precontrast and a series
of postcontrast images of both breasts at a temporal resolu-
tion of 60 to 90 s are acquired. The dost of the contrast agent
is generally between 0.1 and 0.2 mmol per kilogram body
weight. The spatial resolution is approximately 1 mm in all
planes and slice thickness is approximately 2 mm with no
gap. The MRI protocol used in our study is similar to these
protocols. Historically, mainly due to technical limitations,
high temporal resolution protocol was used by sacrificing
spatial resolution and vice versa �the so-called “dynamic
school” and “static school” as summarized in a review by
Kuhl et al.22�. More recently, both high spatial resolution and
high temporal resolution imaging were reported in a multi-
center study.25 In their study, 3D T1-weighted high spatial
resolution images were first acquired before and after the
administration of Gd-DTPA. Then, a progression saturation
data set was obtained to estimate the T1 relaxation time fol-
lowed by an acquisition of 2D high temporal resolution
�15 s� dynamic contrast-enhanced series.

Of interest is the the applicability of our proposed method
to the varying MR imaging protocols. The proposed method
essentially consists of two stages: curve identification and
curve classification. The FCM-based curve identification
method is a data-oriented, model-free approach. The method
is motivated by the within-lesion uptake heterogeneity prop-
erties and does not make any assumptions about the temporal
resolution. Therefore, the curve identification method is in
general applicable to any dynamic study. However, improved
temporal resolution has the potential to improve the classifi-
cation performance. The curve classification method uses
four conventional kinetic features based on the MR signal
enhancement, which is a relative measure of the contrast
uptake. MRI protocols, in which T1 relaxation time measure-
ments are available, can estimate the contrast concentration
at each voxel from the dynamic data using compartmental
modeling.26,27 Features based on contrast concentration ki-
netics and permeability parameters extracted using compart-
mental modeling could potentially improve the classification
performance.

Patient motion during acquisitions of different MR data
series may introduce inaccuracies in kinetic curves; however
nonrigid image registration techniques28–30 can be used to
correct for such motion. In our study, abrupt and large patient
movements between dynamic series were not found, and
only patient respiratory motion was observed. The motion
mostly resulted in additional blurring rather than actual dis-
placement of image structure �e.g., most enhancing regions�.
However, it is important to note that image alignment of
breast volumes at different time frames is expected to im-
prove the accuracy of our analyses.

Overall, the proposed approach for automatically identi-
fying characteristic kinetic curve has the potential to increase
the objectivity and efficiency of breast MR image interpreta-
tion. It is important to note that, while we were focusing on
the kinetic aspect of the breast MRI interpretation in this

study, breast MRI interpretation and diagnostic decision rely
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on a combination of both kinetic and architectural
features.1,2,31 We are investigating a computerized classifica-
tion scheme that combines both kinetic and architectural fea-
tures to distinguish between benign and malignant breast le-
sion in DCE-MRI. We believe that the automatic method
proposed in this study for kinetic curve generation and ki-
netic feature extraction will be a key component in our com-
puterized classification scheme.
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Introduction  
Texture analysis using 2D-image-based gray level co-occurrence matrix method [1] has been demonstrated to be 
useful in distinguishing between malignant and benign breast lesions in contrast-enhanced MR images [2]. 2D texture 
analysis does not take advantage of the 3D data in breast MR images and requires high signal-to-noise ratio, which 
may not be available in dynamic studies. We hypothesize that an overall assessment of texture on the accurately 
segmented 3D breast lesions would yield improved differentiation performance than 2D analysis. We extend the 
conventional 2D texture analysis technique to 3D in the framework of gray-level co-occurrence matrix method, and 
assess the performance of textural features in the task of distinguishing between malignant and benign breast lesions. 
Materials and Methods  
Our database consists of 77 malignant lesions and 44 benign lesions. Dynamic contrast-enhanced magnetic resonance 
(DCE-MR) images were obtained using a T1-weighted 3D spoiled gradient echo sequence (TR = 8.1 ms, TE = 4 ms, 
flip angle = 300). The patients were scanned in the prone position using a standard double breast coil on a 1.5 T 
whole-body MRI system. After the acquisition of the precontrast series, Gd-DTPA contrast agent was delivered 
intravenously by power injection with a dose of 0.2 mmol/kg and a flow rate of 2 ml/s. Five postcontrast series were 
taken with a time interval of 69 s. Each series contained 64 coronal slices with a matrix of 128×256 pixels and an 
in-plane resolution of 1.25 mm × 1.25 mm. Slice thickness ranged from 2.0 mm to 3.0 mm depending on breast size. 
 We extend the conventional concept of 2D-image-based gray level co-occurrence matrix (GLCM) to 3D image. 
The difference of spatial locations of two voxels is described by a displacement vector d = (dx, dy, dz). For an image of 
G gray levels, the G×G gray level co-occurrence matrix Pd for a displacement vector d is defined as follows. The 
entry (i, j) of Pd is the number of occurrence of voxel pair of gray levels i and j whose spatial locations are a vector d 
apart. In 3D, there are 13 independent directions corresponding to 26 displacement vectors (Figure 1). 
 We initially segmented the 3D breast lesions in DCE-MRI using an automatic approach that we previously 
developed [3]. Bilinear interpolation was performed on the first postcontrast image data to make the voxels isotropic. 
The lesion data were then equal-probability quantized into 128 gray levels. For each lesion, 13 gray level 
co-occurrence matrices were calculated from the quantized postcontrast data and added together to get a 
non-directional GLCM. Then 11 features related to second-order statistics [1] were calculated from the GLCM. The 
performance of each feature in the task of distinguishing between malignant and benign lesions was assessed using 
receiver operating characteristic (ROC) analysis [4]. The area under ROC 
curve (Az) was used as a performance index. 
Results and Discussion 
For the 11 texture features under investigation, 7 features yielded 
statistically significant higher Az values when 3D analyses were used than 
when 2D analyses were used (Table 2). We failed to show significant 
differences between 3D and 2D for the other four feautres. In conclusion, 
3D texture analysis based on accurately segmented 3D breast lesions 
improved diagnostic accuracy as compared to 2D texture analyses based on 
2D ROIs. 
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feature contrast correlation DE DV Energy Entropy IDM SA SE SV variance 
Az (2D) .51 .53 .52 .56 .59 .60 .55 .67 .62 .62 .77 
Az (3D) .76 .69 .72 .76 .62 .65 .52 .62 .79 .86 .85 

p 0.006 .0005 .0001 <10-4 .66 .41 .76 .16 .009 .0001 .02 

Figure 1. Illustration of 26 voxel pairs 
(gray and black) in 3D image space. 

Table 1. Comparison of Az values for 11 features in 3D and 2D texture analysis 

 (DE-difference entropy, DV-difference variance, IDM-inverse difference moment, SA-sum average, SE-sum entropy, SV-sum variance) 
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