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Introduction 
 
 Radiotherapy has become a standard treatment for breast cancer however, few studies have 
examined individual susceptibilities to risks from radiation exposure.  Lung cancer following breast 
cancer has been associated with radiation exposure and this increased lung cancer risk has been shown to 
be even higher with tobacco exposure.  Identification of molecular markers of radiation exposure may 
allow the distinction of groups of women susceptible to secondary lung cancer or multiple cancers and of 
women more significantly affected by smoking.  Additionally, identification of molecular markers in 
breast and lung tumor tissue may suggest a common etiology for breast cancer and secondary lung cancer.  
To study the risks associated with radiotherapy for breast cancer, we are using samples from the Swedish 
Cancer Registry, which contains information on approximately 95% of all cancer cases in Sweden.   
 

We are looking at breast and lung tumor tissue for mutations in p53, which is involved in a 
radiation response pathway and is strongly associated with DNA damage from smoking.  We are also 
comparing p53 mutations between women who did or did not receive radiotherapy and between smokers 
and nonsmokers with or without radiotherapy.  Methylation of DNA is a key factor in the regulation of 
gene transcription and has been shown to contribute to carcinogenesis by blocking transcription of tumor 
suppressor genes.  Based on this knowledge, we will be assessing the methylation of several genes known 
to be involved in cancer progression.  Additionally, we are performing immunohistochemical assays to 
describe Estrogen Receptor Alpha (ERA) expression in breast and lung tumors.  This project may have 
significant clinical impact by providing additional information on risk levels to women choosing a breast 
cancer therapy.  Additionally, this research may provide new data on the susceptibilities of women with 
multiple primary cancers and on hormone related gender differences in cancer risk 
 
Body 
 
Background 
 

Radiation exposure is indicated as a risk factor for several cancers, but the study of radiation risks 
has been limited because of difficulties in measuring individual exposures and subsequent susceptibilities.  
Occupational studies have demonstrated that uranium and plutonium workers have an increased risk of 
lung cancer (1-3) as well as Japanese atomic bomb survivors, but individual exposures are difficult to 
precisely quantify.  Studies of secondary cancer risk after radiotherapy are better able to establish 
radiation doses and link them to risk.  Women with a history of breast cancer treated with radiotherapy in 
these studies had a secondary lung cancer risk that increased 2-3 fold for nonsmokers and 30 fold in 
smokers who receive radiation therapy (4,5).  Overall, radiotherapy causes about 7-9 additional cases of 
lung cancer per 1000 women over a 10-year period (4,6).  While the data is consistent, studies have been 
small and lacking in reliable information on radiation and smoking dose (7) and none have explored the 
effects of radiation and smoking in women with breast cancer at a molecular level. 
 
 
 
p53  
 

The p53 gene is an appropriate subject for the study of cancer etiology, exposure, and 
susceptibility because of its many roles in cellular processes, including maintenance of genomic stability, 
apoptosis, DNA repair, and cell cycle control (8-12).  p53 is upregulated in response to DNA damage by 
radiation (13-15), and cell lines with mutated p53 are hypersensitive to point mutations following 
radiation therapy (16).  Examples of specific carcinogen exposures linked to cancers via p53 mutation 
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mechanisms include ultraviolet (UV) light exposure and skin cancer (17-19) and dietary aflatoxin B1 
exposure and liver cancer (20,21). The p53 tumor suppressor gene is the most commonly mutated gene in 
cancer; it is mutated in 40% of breast tumors (22,23) and 50% of lung tumors (24,25).  p53 mutation 
frequency varies by tumor site and histological type (14), indicating that cancers occur through different 
pathways and due to different exposures at the cellular level. In breast cancer, studies indicate that the p53 
mutation spectrum differs by race and geography (26,27) suggesting differences in etiology that might be 
environmental or genetic (28-30).  In lung cancer, the type and frequency of p53 mutations have been 
correlated with smoking, and a study of uranium workers found a p53 mutational spectra in the workers’ 
lung tumors that differed from the lung tumors of smokers (31).  Studies in other populations, however, 
have not found differences in mutational spectra (54-58).  Although there is conflicting data, significant 
evidence suggests that there may be a difference in the mutational spectra of women who develop 
secondary lung cancer with smoking and radiation in contrast to smoking alone (31,59).    
 
 
Estrogen Receptor 
  

Steroid receptors are required for normal lung maturation and function.  ERA has a well-known 
role in the progression, treatment, and prognosis of breast cancer and may play a role in lung cancer as 
well.  Gender differences in risk of lung cancer suggest that hormones and their receptors may influence 
the biology of lung cancer.  Previous studies of ERA expression and gender in lung cancer present 
varying reports, perhaps due to the lack of standardized techniques at the time (62-64, 69).  A recent study 
found both ERA and Estrogen Receptor beta in normal and tumor tissue in lung, with lower levels of both 
in the tumor samples (68).  Studies conflict on whether ERA has a prognostic value for lung carcinoma 
(51,60,61).  However, there is significant evidence indicating an increased risk of adenocarcinoma of the 
lung with estrogen replacement therapy and an even higher risk in smokers who receive estrogen 
replacement therapy (53).  These findings support the possibility that exogenous hormones play a role in 
the etiology of lung cancer in women.  The significant implications of estrogen acting in the development 
of lung tumors and concerns about prior studies call for an examination of the presence of ERA in women 
with breast and secondary lung tumors.  There may be a shared hormonal etiology for these breast and 
secondary lung tumors and a potentially greater role for ERA expression in the development of secondary 
lung cancer in nonsmoking, radiation treated women.  Additionally, women with two primary cancers 
may represent a phenotype of increased estrogenicity or sensitivity. 
 
 
Methylation 
  

Methylation of DNA is an epigenetic feature of DNA known to contribute to regulation of gene 
expression and to maintaining genome stability.  DNA methyltransferases add methyl groups to the 5’ 
cytosine residues of the dinucleotide CpG (32-34).  Abnormal methyl patterns are consistently found in 
cancer, including hypermethylation of promoter regions and genome-wide and gene-specific 
hypomethylation (35).  Both DNA hypermethlation and hypomethylation occur early in tumorigenesis 
and are thought to contribute to tumor progression, but whether abnormal DNA methylation is a 
consequence or a cause of cancer has not been established (36).   

 
Several genes involved in breast and lung cancer are known to have abnormal methylation 

patterns.  The DNA repair enzyme O6-methylguanine-DNA methyltransferase has been shown to be 
frequently inactivated in lung cancer by aberrant promoter methylation (42,53).  The BRCA1 gene is 
involved in maintenance of genomic integrity and studies have found it to be hypermethylated in 13%-
29% of sporadic breast cancer (43,44).  The tumor suppressor gene p16 is involved in cell cycle control 
and hypermethylation of its promoter has been shown to decrease p16 expression (45).  20%-40% of 
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breast cancers have hypermethylated p16 (46,47).  The estrogen receptor (ER) is downregulated in some 
breast cancers and lack of ER is associated with a poor prognosis.  Hypermethylation of the ER promoter 
region has been detected in 63% of ER negative breast tumors (48) and has also been reported in lung 
tumors (49). E-cadherin is a transmembrane glycoprotein this is involved in cell adhesion.  Aberrant CpG 
island methylation of E-cadherin has been found in breast cancer at a rate of 26-48% (70-72); in lung 
cancer, the rate is 18-33% (67).  The retinoic acid receptor ß (RAR-ß) is a ligand activated transcription 
factor that is known to exert antiproliferative, differentiating, and apoptosis-induced effects on different 
types of tumors (73).  In primary breast cancer specimens, 21-58% of specimens are hypermethylated at 
RAR-ß (74-75) and in nonsmall cell lung cancer, 40% of specimens are hypermethylated RAR-ß (67).  
Specific methylation patterns have been demonstrated to be associated with lung cancer and breast cancer 
and can provide valuable information on pathways in the development and progression of tumors.   
 
 
Research Accomplishments 
 
Pathology Review 
 
Pathology review was anticipated as part of the tissue processing for this project, but after initial review, it 
was determined that a more thorough review of cases in this study was necessary to establish the primary 
status of case lung tumors.  All case lung tumors included in the study were recorded with the Swedish 
Cancer Registry as primary tumors.  In an effort to insure validity of the study, a review of cases was 
conducted by a pathologist at GU.  This review utilized H&E stains from the breast and lung tumors of 
each case and they were examined in pairs to compare tumor morphology.  After this review, 51 cases 
were deemed questionable as primary tumors and required supplemental information and additional 
review.  To conduct this review, the GU pathologist traveled to the KI to meet with the pathologist 
involved with the study in Stockholm.  An additional review was conducted with a multi-head microscope 
to facilitate coordinated viewing and supplemental immunohistochemistry stains were reviewed when 
available, including ERA and Thyroid Transcription Factor 1 (TTF-1).  Reports have demonstrated that 
TTF-1 is an excellent marker for lung cancer (76% staining of adenocarcinomas) and does not stain breast 
cancer (77-82).  We are using the 8G7G3/1 clone (83), a monoclonal antibody from Zymed Laboratories 
(San Francisco, CA).  The TTF1 antibody was optimized for antigen retrieval and dilution of the antibody 
at 1:300 for staining at room temperature for 1 hour.  11 tumors in this review had positive TTF-1 staining 
(additional TTF-1 staining was done on other cases, but the other lung tumors were considered primary 
based on morphology alone and did not require the additional review).  Each case was discussed and a 
consensus was reached on assignment of a score from 1-5, depending on confidence of the tumor status 
(Table 1).  48% of these reviewed cases were included in the study (scores of 4 or 5) and 52% were 
excluded as undetermined (score of 3) or metastatic (score of 2 or 1).  Tumors in both the undetermined 
and metastatic categories without TTF-1 staining could move to the primary category if a positive stain 
were provided in the future.  77% of the original study set of 115 cases were considered to have primary 
lung tumors and were included in analysis.  Data was generated for undetermined or metastatic cases, but 
they will not be included in the statistical analysis.  26% of primary lung tumors were squamous cell 
carcinoma, 21% were adenocarcinoma, 21% were small cell carcinoma, 15% were mixed 
adenocarcinoma/squamous cell carcinoma and 17% were other histologies.  73% of the undetermined 
lung tumors and 81% of metastases were adenocarcinoma  (Table 2).  Assay data is presented for the 
categories of “All Cases”, which includes cases with any pathology review score, “Scores 4 and 5”, 
“Score 3”, and “Scores 1 and 2”.   
 
Task 1: To determine the mutational spectra of the p53 tumor suppressor gene in paired, non-
synchronous breast and secondary lung tumors in women.  (Months 1-12) 
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a. Extract DNA from slides of breast and lung tumor tissue from 220 case and 123 control 
tumors from the Swedish Cancer Registry. 

b. Sequence DNA extracted from samples using PCR amplification and the Affymetrix 
microarray system, including 20% repeated for quality control. 

c. Analysis of sequence data based on radiotherapy and smoking status. 
 

The first task for this project is to extract DNA from breast and lung tumor tissue and to use 
extracted DNA in the Affymetrix microarray system to detect mutations in the p53 gene.  We received 
110 cases and 123 controls from our collaborators at the Karolinska Institute in Stockholm, Sweden.  
Samples were logged in to the labortatory tissue repository database system, given a numerical identifier, 
and each slide was labeled with significant identifying information.  DNA was extracted using a phenol-
chloroform protocol.  After extraction, samples were analyzed with a spectrophotometer to establish the 
concentration of DNA, normalized to 25ng/ul, and aliquoted to tubes for working stock and storage.   
 

The Affymetrix Gene Chip system was used for mutational sequencing of exons 2-11 of the p53 
gene.  This technique has been used routinely for analysis of p53 mutations in a variety of populations. A 
multiplex PCR reaction amplifies exons 2-11, amplicons are fragmented and fluorescently labeled, and 
finally hybridized to probes on the GeneChip array using the Hybridization Station.  The relative binding 
of template DNA to each probe in the array is determined with a laser scanner and evaluated with 
software that uses algorithmic analysis to give a numerical score for p53 mutations.  The p53 multiplex 
amplification of DNA from tissue in formalin fixed, paraffin embedded blocks is widely accepted as 
problematic, especially for the largest exons.  In this sample set, amplification of 368bp exon 4 was 
achieved only in about 30% of samples, however, the infrequency of published mutations in exon 4 
makes amplification of this exon a low priority.   

 
 297 samples were successfully assayed for p53 mutations, with either a single PCR using the 

primers provided by Affymetrix or a nested strategy if the initial amplification was low, using primers just 
outside the Affymetrix primer sequences.  Validation of the nested strategy was done by using the nested 
protocol to amplify 25 samples that had been originally amplified using the Affymetrix primers.  After 
hybridization of these samples to the p53 GenChip, results were compared and found to be concordant.  
Exons in all study samples with GeneChip scores of 15 or higher were reamplified by PCR and sequenced 
using the MegaBace capillary sequencing system or repeated in the GeneChip assay to confirm the 
mutation.   
 
Of cases with pathology scores of 4 or 5, those considered primary, 4 breast tumors had mutations and 15 
lung tumors had mutations.  Mutations in breast tumors included g>a changes, transition mutations, and 
missense mutations.  Mutations in lung tumors were mostly a>g, t>c, and c>t changes, and missense 
mutations.  4 controls had mutations (Table 3).   
 
Task 2: To determine ERA expression in paired, non-synchronous breast and secondary lung tumors in 
women and to establish primary tumor status of lung tumor tissue.  (Months 13-24) 
  

a. Perform immunohistochemical assays using ERA antibodies on breast and lung tumor tissue 
slides from 110 cases and 123 controls from the Swedish Cancer Registry. 

b. Analysis of slide staining.  
 
The second task for this project is to use immunohistochemistry to determine the ER alpha status 

of the breast and lung tumors and to establish the primary tumor status of the lung samples.  5 micron 
slides obtained from the tumor blocks were stained for ERA expression using ERA monoclonal antibody 
F-10 from Santa Cruz Biotechnology (Santa Cruz, CA), which recognizes the carboxy terminus of the 
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receptor protein.  Citrate acid buffer was used for antigen retrieval, the antibody was used at 1:25 dilution 
for 1 hour at room temperature, followed by the StriAveGen Multilink Kit, staining with 
diaminobenzidine chromogen solution (DAB), and counterstaining with hematoxylin (all reagents from 
Biogenex; San Ramon, CA).  Slides were examined by microscope for the presence of ERA staining and 
compared to the positive and negative control slides for each experiment.  Determination of positive or 
negative expression status was made using the Allred scoring system, where numerical scores from 0-5 
for proportion of tumor stained and 0-3 for intensity of staining are added for a final score; two or higher 
is considered positive for ER expression (76).  All slides were double read by a pathologist and 20% were 
repeated for quality control.   

 
 
Optimization studies were done to establish the correct dilution of the antibody for our protocol 

and to identify positive and negative control tissues.  117 control breast tumors, 110 breast case tumors, 
and 105 case lung tumors were stained for ERA.  81% of controls, 74% of case breast tumors, and 10% of 
case lung tumors were positive for ERA (Table 4).   
 
Task 3: To determine methylation status of GSTP1, p16, BRCA1, ER, 06MGMT, and cyclinD2 in breast 
and secondary lung tumors in women.  (Months 25-36) 
 

a. Perform PCR-based methylation assays on DNA extracted from 110 case and 123 control 
Swedish Cancer Registry samples, including 20% repeats for quality control. 

b. Analysis of methylation patterns between breast and secondary lung tumors. 
 

The third task for this project is to determine the methylation status of a panel of genes in breast 
and lung tumor tissue.  Due to difficulties with quality control, only assays for p16 and Ecad were 
completed within the timeframe of this project.  The other genes proposed will be investigated in this 
study set by other researchers in the lab.  DNA extracted from tumor slides is subjected to bisulfite 
treatment, which results in the deamination of unmethylated cytosines.  Deaminated cytosines become 
uracils, which are recognized as thymines by the Taq polymerase used in PCR.  PCR is then performed 
using primers that differentiate between the methylated sequences and the unmethylated sequences, where 
thymines are substituted for cytosines.   

 
A real-time PCR assay was used to detect methylation on the Taqman 7900 (Applied Biosystems), 

according to the method of Jeronimo et al. (84).  Modified DNA is used as template with specific primers 
and probes corresponding to the methylated sequence.  Primers and probes were designed by Applied 
Biosystems Assay-by-Design product.  B-actin PCR was run first as a control to verify the presence of 
DNA after the modification.  PCRs for p16 and Ecad were done in duplicate after b-actin and if all results 
were negative, the sample was re-modified and PCR was repeated.  If results were still negative, the 
sample was excluded from the analysis.  Samples with two positive results for p16 or Ecad were 
immediately called positive, while samples with only one or unclear results were repeated and considered 
positive if two out of three PCR results were positive.   

 
279 samples have been analyzed for methylation of the promoter regions of p16 and Ecad.  2% of 

control tumors, 4% of case breast tumors, and 15% of case lung tumors were methylated for p16.  10% of 
case lung tumors were methylated for Ecad (Table 5).   
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Table 1.  Explanation of pathology review scores. 
 
Pathology 
Review Score Explanation         

1definitely metastatic         
2probably metastatic; could be primary with positive TTF-1 stain 
3undecided; could be primary with positive TTF-1 stain 
4probably primary; different morphology in breast and lung,  

but would be stronger with a positive TTF-1 
5definitely primary; different morphology or positive TTF-1 stain 

 
Table 2.  Breakdown of histology of case lung tumors. 
 
Primary  (scores 4,5)     
  n %
Adenocarcinoma 18 21
Squamous cell carcinoma 23 26
Adeno/squamous cell carcinoma 13 15
Bronchioalveolar carcinoma 10 11
Squamous cell carcinoma/sarcomatoid 1 1 
Mucinous adenocarcinoma 2 2 
Large cell 3 3 
Small cell  18 21
Total 87   
      
Undetermined  (scores 3)     
  n %
Adenocarcinoma 8 73
Squamous cell carcinoma   0 
Adeno/squamous cell carcinoma 3 27
Bronchioalveolar carcinoma   0 
Squamous cell carcinoma/sarcomatoid   0 
Mucinous adenocarcinoma   0 
Large cell   0 
Small cell    0 
Total 11   
      
Metastases  (scores 1,2)     
  n %
Adenocarcinoma 13 81
Squamous cell carcinoma   0 
Adeno/squamous cell carcinoma   0 
Bronchioalveolar 1 6 
Squamous cell carcinoma/sarcomatoid   0 
Mucinous adenocarcinoma 2 13
Large cell   0 
Small cell    0 
Total 16   
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Table 3.  Summary of p53 mutations. 
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  n=99 % n=100 % n=98 % n=73 % n=73 % n=9 % n=11 % n=16 % n=14 %
wild type 95 96 93 93 78 80 69 95 58 79 8 73 9 82 14 88 11 79
any mutation 4 4 7 7 20 20 4 5.5 15 21 1 27 2 18 2 12 3 21
mutation type n % n % n % n % n % n % n % n % n %

ga 0 0 0 0 2 10 0 0 2 13 0 0 0 0 0 0 0 0 
ag 1 25 4 40 5 25 3 75 4 27 1 100 0 0 0 0 1 33
ct 0 0 1 10 4 20 0 0 3 20 0 0 0 0 1 50 1 33

gc 2 50 1 10 3 15 0 0 1 6.7 0 0 1 50 1 50 1 33
tc 1 25 1 10 3 15 1 25 3 20 0 0 0 0 0 0 0 0 

ac 0 0 0 0 1 5 0 0 0 0 0 0 1 50 0 0 0 0 
ca 0 0 0 0 1 5 0 0 1 6.7 0 0 0 0 0 0 0 0 
gt 0 0 0 0 1 5 0 0 1 6.7 0 0 0 0 0 0 0 0 

transition 3 75 7 100 13 65 4 100 8 53 1 100 2 100 2 100 3 100
transversion 1 25 0 0 7 35 0 0 7 47 0 0 0 0 0 0 0 0 

Mutation effect n % n % n % n % n % n % n % n % n %
missense 2 50 6 86 15 75 3 75 12 80 1 100 1 50 2 100 2 67
nonsense 1 25 1 14 3 15 1 25 2 13 0 0 0 0 0 0 1 33

silent 1 25 0 0 2 10 0 0 1 6.7 0 0 1 50 0 0 0 0 
Mutation region n % n % n % n % n % n % n % n % n %

L2L3 loop 0 0 2 29 8 40 0 0 5 33 0 0 1 50 0 0 2 67
DNA binding 0 0 3 43 3 15 2 50 3 20 0 0 0 0 1 50 0 0 

ECR 4 100 6 86 12 60 3 75 8 53 1 100 1 50 2 100 3 100
Exon n % n % n % n % n % n % n % n % n %
exon 5-9 4 100 7 100 20 100 4 100 15 100 1 100 2 100 2 100 3 100
5 3 75 0 0 7 35 0 0 5 33 0 0 0 0 0 0 2 67
6 0 0 0 0 3 15 0 0 2 13 0 0 1 50 0 0 0 0 
7 0 0 3 43 4 20 1 25 3 20 0 0 0 0 2 100 1 33
8 1 25 3 43 5 25 2 50 4 27 1 100 1 50 0 0 0 0 
9 0 0 1 14 1 1 1 25 1 6.7 0 0 0 0 0 0 0 0 

1- all cases with tissue available idenitifed in the Swedish Cancer Registry.  2- only cases with scores of 4 or 5 in the 
pathology review.  3- only cases with a score of 3 in the pathology review.  4- only cases with scores of 1 or 2 in the 
pathology review. 
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Table 4.  Summary of ERA results. 
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Status n=117 % n=110 % n=105 % n=82 % n=81 % n=10 % n=11 % n=16 % n=13 %
positive 95 81 81 74 10 10 60 73 2 2 7 70 3 27 12 75 5 38

negative 22 19 29 26 95 90 22 27 79 98 3 30 8 73 4 25 8 62
Allred score                                   

0 22 19 29 26 95 90 22 27 79 98 3 30 8 73 4 25 8 62
2 0 0 8 7.3 4 4 6 7 1 1 0 0 1 9 2 13 2 14
3 1 1 4 3.6 0 0 0 0 0 0 2 20 0 0 2 13 0 0 
4 6 5 8 7.3 3 3 6 7 0 0 2 20 2 18 0 0 1 8 
5 12 10 12 11 1 1 10 12 0 0 1 10 0 0 1 6 1 8 
6 14 12 11 10 0 0 8 10 0 0 1 10 0 0 1 6 0 0 
7 18 15 15 14 0 0 13 16 0 0 1 10 0 0 0 0 0 0 
8 44 38 23 21 2 2 17 21 1 1 0 0 0 0 6 37 1 8 

1- all cases with tissue available idenitifed in the Swedish Cancer Registry.  2- only cases with scores of 4 or 5 in 
the pathology review.  3- only cases with a score of 3 in the pathology review.  4- only cases with scores of 1 or 2 
in the pathology review. 
 
Table 5.  Summary of methylation data. 
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methylation n=105 % n=92 % n= 80 % n=70 % n=61 % n=8 % n=9 % n=12 % n=11 %

any 2 2 4 4 17 21 4 6 14 23 0 0 3 33 0 0 0 0
p16 2 2 4 4 12 15 4 6 9 15 0 0 3 33 0 0 0 0

ecad 0 0 0 0 8 10 0 0 7 11 0 0 1 11 0 0 0 0
both 0 0 0 0 3 4 0 0 2 3 0 0 1 11 0 0 0 0

1- all cases with tissue available idenitifed in the Swedish Cancer Registry.  2- only cases with scores of 4 or 5 in the 
pathology review.  3- only cases with a score of 3 in the pathology review.  4- only cases with scores of 1 or 2 in the 
pathology review. 
 
 
 
 
Key Research Accomplishments and Training (2004-2005) 
 

- 343 tumors received, recorded, and labeled  
- 343 tumors extracted for DNA  
- 297 tumors analyzed for p53 mutations by Affymetrix Gene Chip 
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- 235 tumors stained for estrogen receptor alpha 
- 277 tumors examined for p16 and Ecad methylation 
- Attendance at 2005 AACR Lung Pathogenesis meeting 
- Attendance at 2005 ERA of Hope meeting 
- Attendance at weekly Tumor Biology Program Journal Club and Tumor Biology Data meeting 

seminars 
- Attendance at bimonthly lab meetings and weekly student meeting with Dr. Shields 

 
Reportable Outcomes 
 
-Abstract presented at Lombardi Cancer Center Research Fair 2005 

Georgetown University, Washington, DC 
-Data presented at the Tumor Biology Program Data Meeting 2004  
 Georgetown University, Washington, DC 
-Poster presented at 2005 AACR Lung Pathogenesis Meeting, San Diego, CA 
-Scholar-in-Training Award, AACR Lung Pathogenesis Meeting, San Diego, CA 
 
 
 Conclusions 
 

Important questions have risen in the past year of work on this project, namely the verification of 
primary status of the case lung tumors and the quality of the methylation assay results.  Establishment of 
the panel of methylation assays was challenging and only two of the six assays were completed validated 
with quality controls.  However, these two assays alone suggest a role for methylation in radiation-
induced tumors and the additional assays may provide further evidence of this role in the larger study that 
this project is a part of.  The development of alternate methods for multiplex amplification of the p53 
gene from samples with low quality or low quantity DNA, identified by weak PCR results upon 
visualization by gel electrophoresis, has been useful for other studies in our lab and will have a large 
impact on the study of which this project is a subset.  Data generation for this project is complete and 
work has moved on to statistical analysis, which will be done in cooperation with our colleagues at the 
Karolinska Insistutet in Stockholm, Sweden. 

 
There is significant evidence that indicates an increased risk for developing secondary lung cancer 

in women treated with radiotherapy for breast cancer and an additional risk for women who smoke.  It is 
important to determine molecular markers for the susceptibility of breast cancer patients to lung cancer to 
improve information for treatment decisions.  Markers in lung cancer may correlate with cancers that 
develop from radiotherapy alone, in combination with cigarette smoking, or with smoking alone.  It is 
also important to examine the possibility that a particular predisposition, unrelated to any significant 
family history, has made these subjects more susceptible to different exposures, resulting in multiple 
primary tumors.  It may be possible to define a unique subpopulation sensitive to hormonal risk factors 
for breast and/or lung cancer or to an alternate mechanism that could cause susceptibility to breast and 
lung cancer.  Our hypothesis that p53 mutation spectra, methylation status, and ER expression are 
associated with risk of lung cancer following breast cancer could only be partially addressed by this 
project due to low sample size.  Most subset analysis, regarding exposure to radiotherapy and smoking, 
was impossible.  As this study continues, it will accumulate as many as 600 cases and the hypotheses will 
be more confidently assessed, providing information that may be useful in defining subpopulations 
sensitive to radiation therapy. 
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Women receiving radiation therapy following surgical treatment for breast cancer are believed to 
have improved disease free survival.  For overall survival, however, benefits of radiotherapy have been 
more difficult to prove, especially for older women or those with a good prognosis.  With information on 
increased risks based on radiation dose, breast cancer markers, history of smoking, and other factors, 
women can make more informed decisions about their breast cancer treatment.  For women who elect to 
undergo radiotherapy, further screening and prevention methods may be devised.  Women who smoke 
may be compelled by this additional risk information to quit smoking before radiotherapy.  The degree of 
risk examined in this study is already considered to be at a level of importance similar to other risks of 
concern.  The study that this project is a part of will be significant because it is larger than previous 
studies and can provide new data about radiation carcinogenesis and interactions with smoking through 
the use of molecular markers. 
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