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ABSTRACT 
 

A maritime domain or region contains a number w of nonhostile W (White) vessels of 

interest. Hostile R (Red) vessels enter the domain. The Rs are traveling through the 

domain toward targets. Overhead, friendly (Blue) sensors (S) patrol the domain and 

classify (perhaps incorrectly) detected vessels of interest as R or W. The misclassification 

of a W as an R is a false positive. An overhead sensor follows (or tracks) any vessel it 

classifies as R until it is relieved by another platform, perhaps a destroyer pair (DD). The 

overhead sensor is here assumed unable to detect and classify additional vessels while it 

is following a suspicious vessel; this may well be a somewhat pessimistic assumption, 

very possibly “richer possibilities” based on additional assets (such as unmanned aerial 

vehicles (UAVs)) are available, but loss of track may occur as well as misclassification. 

Deterministic and stochastic models are formulated and studied to evaluate the 

probability that Rs are successfully neutralized before reaching their destination. The 

model results quantify the effect of the resources and time needed to prosecute 

misclassified Ws (false positives) on the probability of successfully neutralizing R. 

The results indicate that the probability of neutralizing an R vessel is very sensitive 

to the false positive rate. Technologies, processes, and procedures that can decrease the 

false positive rate will increase the effectiveness of the Maritime Intercept Operation 

(MIO). 
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0. Background 

The general term Maritime Domain Awareness (MDA) includes a broad range of 

initiatives to enhance both the security of ports and approaches to the United States and 

the force protection of U.S. and/or allied maritime assets (e.g., Japan, Singapore, Bahrain, 

etc.) in ports and choke points throughout the world. An essential requirement is to 

furnish adequate Blue surveillance force size and composition, and resource-assignment-

effective CONOPS to maintain useful knowledge of hostile (Red) elements. 

We consider the following scenario. Hostile Red vessels (Rs) enter a domain or 

region. The Rs are transiting through the region toward targets. There are Blue overhead 

sensors that patrol the domain. Blue wishes to neutralize the Rs before they reach their 

targets.  In addition to the Rs, there are neutral White (W) vessels of interest in the region 

that can be misclassified as Rs. A sensor system classifies vessels of interest as W or R. If 

the sensor misclassifies a W as an R, a false positive occurs. The sensor follows (tracks) 

any vessel classified as an R until it is relieved by another platform. During this following 

time, the sensor is unable to classify any further vessels. The probability of neutralizing 

an R depends on the area of the domain being patrolled, the number of sensors, the 

velocity of the sensors, the time needed to classify a vessel of interest, the ability to 

correctly classify vessels of interest, the time until a sensor following a suspicious vessel 

is relieved, and the false positive rate. The false positive rate is a function of the 

probability of correct classification, which may well be environmentally dependent (see 

Frederickson and Davidson (2003)) and the number of vessels of interest that are Ws. 

We present five models to study Blue force size requirements in this scenario. The 

results of the models highlight the importance of minimizing the false positive rate; a 
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false positive occurs when a friendly (White) vessel is misclassified as hostile (Red) and 

increases as the number of friendly (White) vessels that are subject to surveillance and 

possible classification as hostile (Red) increases. 

Section 1 presents a deterministic model, a so-called “fluid approximation” model, 

consisting of a system of differential equations. Models 2, 3, 4, and 5 are stochastic 

models. All of these provide insights, but are also useful to help validate and verify more 

complex simulations. Sections 2 and 3 present Markovian stochastic models. Section 4 

presents examples comparing the results of the Deterministic and Markovian models. The 

sensitivity of the ability to neutralize Rs to model parameters, such as the size of the 

domain, the speed of the sensor, the ability to correctly classify the vessel type, and the 

rate of false positives, is also discussed in Section 4. Section 5 presents a non-Markovian 

model and approximations for the probability that R is neutralized. The usefulness of the 

approximations is studied by comparing their results to those obtained from more detailed 

Monte Carlo simulations. The approximations give very reasonable results. Numerical 

results using the approximations are presented to illustrate the evaluation of the number 

of overhead sensors that are needed to patrol a domain to achieve a probability of 

neutralizing an R larger than a specified value. 

One technology that is being proposed to reduce the false positive rate is to use the 

Automatic Identification System (AIS) to classify and track vessels in the maritime 

domain. In Section 6, a stochastic model is presented for the ability to detect and classify 

vessels in the maritime domain using AIS; in particular, the model is used to obtain an 

expression for the probability that a vessel with AIS will not be detected by an overhead 

surveillance system that is periodically over the maritime domain; the vessel will not be 
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detected if all of its AIS messages are blocked during one pass of the overhead 

surveillance system. 



1. Model 1: A First Deterministic “Fluid” Model 

1.1. Formulation 

An Area of Interest (AoI), the Domain, D for short, is entered via an upper 

boundary,D , by both Ws and Rs. The Rs aim to transit to the lower boundaryD , cross 

it, and enter Blue Homeland ( ( )HD ) in order to damage/destroy infrastructure and 

population. The Ws transit within and through the Domain, D, with no hostile intent. 

They may be ferries, fishing, and other pleasure boats, or innocuous  

cargo-carrying vessels. 

To protect ( )HD , D is under surveillance by a force of S  surveillance platforms 

(denoted by S) such as helicopters (helos), UAVs, and fixed wing (FW) aircraft  

(e.g., P3s); this is the Overhead Force (OH); their purpose is to detect and (correctly) 

identify Reds/Hostiles in transit from D  to  D  and prevent them from penetrating  D  to 

reach ( )HD . Note that, in the present simplified model, when the number of Ws 

(respectively Rs) equal w (respectively r for Rs), the Ss act independently, coming at 

random with rate , on potential targets for escort off-D by armed and lethal Blue 

(B) vessels (e.g., destroyers (DDs)), but may do so erroneously: a W may, for instance, 

be misidentified as an R and followed by a previously free S until DD escorts appear to 

take it to a segregated Pound/Quarantine (PQ) area. If the followed vessel is indeed an R, 

then the flow of Rs through D is lessened, to the advantage of B; but, if it turns out to 

actually be W, then the 

(w rδ + )

S  force is temporarily reduced, to the clear disadvantage of Blue. 
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Assume that the mean time that an S requires to service/follow-to-escort a detected and 

classified-as-R vessel (could actually be W or R) is 1/φ . Note: We do not here consider 

that the escort fleet (DD numbers) may be limited. 

We now propose a simple deterministic/“fluid approximation” model to describe the 

state of the system, i.e., the numbers of free and followed (misidentified) Ws and Rs in D 

at time t after some initial instant. We assume that once a W is classified as an R it is 

followed (tracked) and removed from further consideration; a sensor that is following a 

vessel classified as an R, while awaiting the surface escort vessel (e.g., DDs), is unable to 

search for Rs. 

Objective (Principle). Characterize/model to reveal the rate of leakage of hostile Rs 

through D as it depends on the magnitude of S  and various operational parameters. Let 

leakage be defined as  

• ( ); ,  parameters and CONOPS rate at which  Rs cross the Homeland Boundary  L S =D D  

The mean time a free R spends in D is 1/ rµ ; the mean time a followed R (number is 

( )fR t  at t) spends in D is *1/ rµ ; in more detailed models, the R may evade or dash to a 

boundary if detected, but such a move may well be to his disadvantage. In the simplest 

case, the leakage rate at time t is  

• . ( ) ( ) ( ) ( ) ( ) ( )* *,  or lim limr r f r r f r
t t

L t R t R t L R t R t r rµ µ µ µ µ µ
→∞ →∞

= + ∞ = + = + *
r f

This assumes that there is a finite long-run steady state value of both ( )R t  and ( )fR t , 

which follows if the (leakage) rates, rµ  and *
rµ  are both positive. 
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1.2. Initial Fluid Model 

Let  

( )W t =number of free, undetected and unfollowed Ws in  at time t; D

( )fW t =same, but now detected and followed until it is induced/directed to meet 

an escort (e.g., DD-pair). Each S so involved—one per fW , is unprofitably employed not 

as an active searcher capable of detecting a “true R”; 

( )R t =number of lethal Rs in  at time t that are undetected and unfollowed; D

( )fR t =number of potentially lethal Rs (to Blue (B) Homeland) that have been 

detected and are being followed, in this case profitably. 

Note: The number of Ss engaged in following, and therefore not free to search/carry 

out detection and (mis) classification, is ( ) ( ) ( )f fS t W t R t= + , provided (as assumed) 

there is one S assigned to each following operation. There is no swarming to verify 

detection/classification, although this is an emerging alternative. 

1.2.1. Example State Transitions in the First Fluid Model 

For  “small” we write (for example) 0h >

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

W arrivals in  W departures
during (t,t+h] from  

during (t,t+h]

detectionfree-to-search
rateOH force
whenelements 

( ) ( )
vessels
in  

w w

f f

W t R t

W t h W t t h W t h

W
S W t R t W t R t

λ µ

δ
+

+

+ = + −

⎡ ⎤− − − +⎣ ⎦

14243 14243

144244314444244443

D
D

D

( )
( ) ( ) ( )

Prob.
detect 
Free W

wr
t

c h o h
W t R t

+
+

1442443

,  (1.2.1) 

where  is the probability that a W is misclassified as an R. wrc
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Note that ( )δ �  is the overall search rate; rate of contact between Free Ss and Free Ws; 

the rate of detection depends on the size of D and the number of Ws and Rs in D; the 

expression above, with the term [ ]+  expresses explicitly the fact that ( ) ( )f fW t R t S+ ≤ ; 

the probability  is that of mistaking a W for an R and thus initiating a 

counterproductive “follow.” 

wrc

Manipulation of (1.2.1) (subtraction of ( )W t , division by h, letting ) yields the 

differential equation 

0h →

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )w w f f wr

dW t W t
t W t S W t R t W t R t c

dt W t R t
λ µ δ

+
⎡ ⎤= − − − − +⎣ ⎦ +

.

 (1.2.2) 

An analogous argument leads to 

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

follow of Ws as (mistakenly) Rs
initiated

*

follow ends with follow ends by
meeting DD followed vessel
escort leaving

domain

f
f f wr

f w w f

dW t W t
S W t R t W t R t c

dt W t R t

W t W t

δ

φ µ

+
⎡ ⎤= − − +⎣ ⎦ +

− −

14444444444244444444443

14243 14243

.  (1.2.3) 

Likewise and analogously for Rs: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )r r f f rr

dR t R t
t R t S W t R t W t R t c

dt W t R t
λ µ δ

+
⎡ ⎤= − − − − +⎣ ⎦ +

 

 (1.2.4) 
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and  

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

follow of R legitimately
and correctly
by S

*

follow ends with follow ends by
meeting DD followed vessel
escort leaving

domain

f
f f rr

f r r f

dR t R t
S W t R t W t R t c

dt W t R t

R t R t

δ

φ µ

+
⎡ ⎤= − − +⎣ ⎦ +

− −

14444444444244444444443

14243 14243

.  (1.2.5) 

1.3. Steady-State or Long-Run ( ) Equations for the Simple Fluid Model t →∞

Assume ( ) ( ),  w w rt t rλ λ λ λ= = . Then ( ) ( ) ( ) ( ), ,W t W w R t R r→ ∞ = → ∞ = etc.; the 

values are obtained by setting 0dR
dt

= , etc. in (1.2.2)-(1.2.5). 

( )0 w w f f wr
ww S w r w r c

w r
λ µ δ

+
⎡ ⎤= − − − − +⎣ ⎦ +

   (1.3.1) 

( )
{

*

follow follow ends byfollow of W as R ends followed vessel
with leaving
meeting domain
DD 
escort

0 f f wr f w w f
wS w r w r c w w

w r
δ φ

+
⎡ ⎤= − − + − −⎣ ⎦ + 123144444424444443

µ    (1.3.2) 

( )0 r r f f rr
rr S w r w r c

w r
λ µ δ

+
⎡ ⎤= − − − − +⎣ ⎦ +

  (1.3.3) 

( )
{ {

*

follow follow ends byfollow of R as R ends followed vessel
with leaving
meeting domain
DD 
escort

0 f f rr f r r f
rS w r w r c r r

w r
δ φ

+
⎡ ⎤= − − + − −⎣ ⎦ +144444424444443

µ   (1.3.4) 
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A Special Case 

Let f fw r
S

ρ
+

= . Assume ( ) [ ]0w r w rδ δ+ = × + , where 0δ  is a constant; w rφ φ= ; 

*
w

*
rµ µ=  and f fw r S+ < . Then 

[ ] 01
w

w w
w

S c r

λ
µ ρ δ

=
+ −

;   

 (1.3.5) 

( ) ( )
( )

0 0
* * 0

1 1
1

wr wr w
f

w ww w w w

S c S c
w w

S c
ρ δ ρ δ λ

µ ρ δφ µ φ µ

⎡ ⎤

r

⎡ ⎤− −
= = ⎢ ⎥ ⎢ ⎥+ −⎢ ⎥+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

;  (1.3.6) 

[ ] 01
r

r r
r

S c r

λ
µ ρ δ

=
+ −

;     (1.3.7) 

( ) ( )
( )

0 0
* * 0

1 1
1

rr rr r
f

r rr r r r

S c S c
r r

S c
ρ δ ρ δ λ

µ ρ δφ µ φ µ

⎡ ⎤

r

⎡ ⎤− −
= = ⎢ ⎥ ⎢ ⎥+ −⎢ ⎥+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

.  (1.3.8) 

Since  

( )
( )

( )
( )

0 0
* *0 0

1 11
1 1

f f

wr rrw r

w wr rw w r r

w r
S

S c S c
S S c S

ρ

ρ δ ρ δλ λ
µ ρ δ µ ρ δφ µ φ µ

+
=

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡− −
⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

+ − + −⎢ ⎥⎢ ⎥ ⎢+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦⎣ ⎦⎣ ⎦rrc
⎤
⎥
⎥⎦

. (1.3.9) 

Note that the RHS of the equation (1.3.9) decreases as ρ  increases. Thus, there is one 

solution. For given S  and parameters one can solve for ρ ; ρ  satisfies  

( ) ( )
0 0

* *0 0

1

1 1
wr w rr r

w wr rw w r r

c c
S c S crr

ρ
ρ

δ λ δ λ
µ ρ δ µ ρ δφ µ φ µ

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

+ − + −⎢ ⎥⎢ ⎥ ⎢+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦⎣ ⎦⎣ ⎦

⎤
⎥
⎥⎦

.         (1.3.10) 

If 0 0δ = , then the solution is 0ρ = ; thus  w

w
w

λ
µ

=  r

r
r λ

µ
= . 
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1.4. Linearization of Dynamic Equations ((1.2.2)-(1.2.5)) via a Steady-State  

Term Replacement 

The analytical intractability and computational awkwardness in solving the  

time-dependent equations (1.2.2)-(1.2.5) owes to the term ( ) ( )fS W t R t
+

⎡ ⎤− −⎣ ⎦  that 

appears in each. Assume ( ) ( )0w r w rδ δ+ = × + . We now investigate the effect of 

substituting the corresponding constant steady-state term for it, and thus solving the 

following linear equations: 

( ) ( )( ( )01w w wr
dW t

S c W
dt

λ µ ρ δ= − + −
%

%) t    (1.4.1) 

( )
( ) ( ) ( ) ( )*

01f
wr w w f

dW t
S c W t W

dt
ρ δ φ µ= − − +

%
% t%   (1.4.2) 

( ) ( )( ( )01r r rr
dR t

S c
dt

λ µ ρ δ= − + −
%

%)R t     (1.4.3) 

( )
( ) ( ) ( ) ( )*

01f
rr r r f

dR t
S c R t R

dt
ρ δ φ µ= − − +

%
% t% .   (1.4.4) 

The solutions to these are elementary. To simplify writing put 

( )
( )

( )
( )

0

0
*

0

0
*

1

1

1

1

w w

wr

w w

r r

rr

r r

A S c

B S c

C

D S c

E S c

F

µ ρ δ

ρ δ

φ µ

µ ρ δ

ρ δ

φ µ

= + −

= −

= +

= + −

= −

= +

r

r
.    (1.4.5) 
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Start by solving (1.4.1) 

( ) ( ) ( )0 1At wW t W e e
A

Atλ−= + −% % − ,   (1.4.6) 

then substitute into (1.4.2): 

( ) ( ) ( ) 10 0
At C t C t

C t w w
f f

e e eW t W e B W
A C A A C
λ λ− − −

− ⎡ ⎤⎛ ⎞− −⎛ ⎞= + − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

% % % . (1.4.7) 

Simply changing parameter values solves (1.4.3) and (1.4.4): 

( ) ( ) ( )0 1Ft DtrR t R e e
D
λ−= + −% % −    (1.4.8) 

( ) ( ) ( ) 10 0
Dt Ft Ft

Ft r r
f f

e e eR t R e E R
D F D D F
λ λ− − −

− ⎡ ⎤⎛ ⎞ ⎡− −⎛ ⎞= + − +⎢ ⎥⎜ ⎟
⎤

⎢ ⎥⎜ ⎟⎜ ⎟−⎝ ⎠⎢ ⎥⎢ ⎥⎝ ⎠ ⎣⎣ ⎦

% % %

⎦
.  (1.4.9) 

These are all simple solutions involving exponentials and constants. They perform 

correctly at  and  (compare to results (1.3.5)-(1.3.8)). 0t = t = ∞

These can be compared to simulation results. 

A fundamental Measure of Effectiveness (actually Defectiveness) is the rate of 

leakage of Rs through D . Note that both ( )R t  and ( )fR t  can reach  D  before arrival of 

DD escorts, so the total leakage over time t is given by  

( ) ( ) ( ) *

0 0

t t

r fL t R s ds R s dsµ µ= +∫ ∫ r

r

           (1.4.10) 

and approximately by  

( ) ( ) ( ) *

0 0

t t

r fL t R s ds R s dsµ µ= +∫ ∫% % .           (1.4.11) 
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In steady-state or long-run, the average rate of leakage is  

( ) ( ) *lim r f
t

L t
L r

t rrµ µ
→∞

∞ = = +              (1.4.12) 

1.5. Generalization to More Awareness States 

Here are some directions that generalizations and approximations with somewhat 

more reality can take. 

1.5.1. Time-Consuming Classification 

Suppose it is acknowledged that when a free-searching Blue surveillance agent, an S, 

detects a potential threat it may spend a nonnegligible time classifying it; let that time 

have mean τ  or rate 1/τ , and the resulting classification accuracy depends on that 

(mean) time: i.e., 

(a) ( )wrc τ  decreases with τ ; 

(b) ( )rrc τ  increases with τ . 

The specific form of the dependence can be established by field experiment, or at 

least (wr wc )α  and ( )rr rc α  can be made plausibly parametric, e.g., the logistic or Weibull 

with parameters (vectors) wα  and rα , respectively. 

One possibility to account for the influence of a nonzero classification time is to add 

the means of the detection times and the classification times; then invert to obtain the 

effective rate of detection and classification: 

( ) ( )

1
1,w
w

δ τ τ
δ

−
⎛ ⎞

= +⎜⎜
⎝ ⎠

⎟⎟ .     (1.5.1) 
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A more physical version of the above is given in Section (4.1). In the fluid 

approximation proposed, with dynamic equations (1.3.1)-(1.3.4) and steady-state 

equations (1.3.5)-(1.3.9) replace 0δ  by ( )0
0

11/δ τ τ
δ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 and  

     
( )
( )

 by ;

 by ;
wr wr w

rr rr r

c c

c c

τ α

τ α
.     (1.5.2) 

Apparently, τ  is a decision variable available for adjustment by S  

(Blue Surveillance) to minimize the rate at which Rs cross D  into ( )HD . See below. 

1.5.2. A Parametric Model for the Probability of Correct Classification as a 

Function of Classification Time 

Assume that the probability of correct classification of a vessel of type j is a function 

of the time spent classifying the vessel. One functional form for the conditional 

probability that a vessel of type j is correctly classified as type j when τ  time units are 

spent classifying it is ( ) ( )
( )

0.5 0.5
1

jjc
α

α
βτ

τ
βτ

= +
+

; the parameter α , a classification time 

0τ ,  and a target value 0
jjc  are specified;  β  is chosen so that ( ) 0

0jjc τ = jjc . More 

rationally, use τ  to optimize an MOE/MOP: e.g., the probability that the Red leaks 

through  is minimized. See Section 4.1, especially Figures 4.5a, 4.5b, 4.6a, 4.6b, and 

4.5ad, 4.5bd, 4.6ad, and 4.6bd, where it is shown that the qualitative effect carries over 

between stochastic and deterministic/fluid models. 

D

1.6. A Partially-Spatial Detection (“Strip Search”) Model 

Suppose domain  is divided spatially into D { }1,2,3,...i∈ I  strips (subdomains) that 

roughly parallel the shoreline. Let  be the ith such strip, with  the furthest toward iD 1D

13 



open sea, and  the closest to (one border being) the shoreline/beach. Any vessel, say a 

hostile Red, that enters  must first enter , proceed from that to , to , etc., and 

finally to . For simplicity, each subdomain  

ID

D 1D 2D 3D

ID iD ( )1,...,i = I  can be rectangular; they 

cover  without overlap. D

The state transition equations must be augmented as follows: Introduce 

( ) ( ) ( ) ( ){ }, ,, , , ; 1,2,...i f i i f iW t W t R t R t i I=  vector(s) of numbers of W and R units occupying 

each subdomain  . Then differential equations can be written that express 

transitions into and out of , following arguments similar to those leading to  

(1.2.2)-(1.2.5). Here are some important special cases. The parameters, as in Section 1.2, 

are now stage dependent, including the number of sensors/level of surveillance associated 

with ; the latter can change in response to need in a particular geographical stage. 

iD 1,...,i = I

iD

iD

Case 1. Ws enter at 1D  migrate to ,… or leave  for outside, all if uninterrupted 

by S and followed; Rs enter at 

2D 1D

1D , migrate to , …eventually leak through 2D ID  if not 

intercepted and followed by S to DDs. Innocuous Ws “leak” downwards and sideways, 

whereas hostile Rs leak purposefully toward ( )I HD , the sea-land Blue Homeland 

barrier. The dynamic equations akin to (1.2.2)-(1.2.5) are now these: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

1
,1 1

1
1 1 1 1 1 1 ,1

1 1

w w

f f wr

dW t
t t W t

dt
W t

S W t R t W t R t c
W t R t

λ µ

δ
+

= −

⎡ ⎤− − − +⎣ ⎦ +

  (1.6.1) 

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( )

,1 1
1 ,1 ,1 1 1 1 ,1

1 1
*

,1 ,1 ,1 ,1

f
f f wr

f w w f

dW t W t
S W t R t W t R t c

dt W t R t

W t W t

δ

φ µ

+
⎡ ⎤= − − +⎣ ⎦ +

− −

 (1.6.2) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

1
,1 1

1
1 ,1 ,1 1 1 1 ,1

1 1

r r

f f rr

dR t
t t R t

dt
R t

S W t R t W t R t c
W t R t

λ µ

δ
+

= −

⎡ ⎤− − − +⎣ ⎦ +

  (1.6.3) 

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( )

,1 1
1 ,1 ,1 1 1 1 ,1

1 1
*

,1 ,1 ,1 ,1

f
f f rr

f r r f

dR t R t
S W t R t W t R t c

dt W t R t

R t R t

δ

φ µ

+
⎡ ⎤= − − +⎣ ⎦ +

− −

. (1.6.4) 

Next, for interstages, simply replace 2,3,..., ;i = I ( )w tλ  by the arrival rate of Ws from 

the previous stage, where ,0 i 1ω< ≤�  is the fraction of platforms of type � that “leak” into 

strip i from strip i-1 (closer to entry strip 1). We do not consider entries at the sides of D, 

although this could be represented. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

, , 1 1 ,

, , ,

i
w i w i i w i i

i
i f i f i i i i wr i

i i

dW t
W t t W t

dt
W t

S W t R t W t R t c
W t R t

ω µ µ

δ

− −

+

= −

⎡ ⎤− − − +⎣ ⎦ +

  (1.6.5) 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

, *
, , 1 , 1

, , ,

*
, , , ,

f i
w i w i f i

i
i f i f i i i i wr i

i i

f i w i w i f i

dW t
t W t

dt
W t

S W t R t W t R t c
W t R t

W t W t

ω µ

δ

φ µ

− −

+

=

⎡ ⎤+ − − +⎣ ⎦ +

− −

 (1.6.6) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

, , 1 1 ,

, , ,

i
r i r i i r i i

i
i f i f i i i i rr i

i i

dR t
R t t R t

dt
R t

S W t R t W t R t c
W t R t

ω µ µ

δ

− −

+

= −

⎡ ⎤− − − +⎣ ⎦ +

  (1.6.7) 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

, *
, , 1 , 1

, , ,

*
, , , ,

f i
r i r i f i

i
i f i f i i i i rr i

i i

f i r i r i f i

dR t
t R t

dt
R t

S W t R t W t R t c
W t R t

R t R t

ω µ

δ

φ µ

− −

+

=

⎡ ⎤+ − − +⎣ ⎦ +

− −

 (1.6.8) 
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Finally, at the strip nearest the beach/Homeland border, evaluate (1.6.7) at  and 

interpret the term 

i I=

( )rI IR tµ  as the instantaneous rate at which hostile Reds that are not 

being followed enter the homeland (i.e., “leak”). 

Case 2. Same as above, but each subdomain  always contains the same number of 

Ws, i.e. 

iD

( )i iw W t= . If a W is erroneously identified as R and escorted to Quarantine, it is 

examined and released after a delay. Assume that replacement by another W  

occurs immediately. 

1.6.1. Steady-State or Long-Run Equations for the Strip Search Model 

Again, as in Section 1.3, assume that all rate parameters are constant. We obtain a 

collection of 4I non-linear equations. If 

( ) ( ) ( ) ( )1 1 ,1 ,1 , ,,..., ,  and ,...,f f i i f iW t w R t r W t w R t r→ → → f i→ , then if as before 

( ) ( )( ) ( )i i i i i iW t R t w rδ δ+ = × + , iδ  a constant, we find 

( )

( )

,1 1 1 ,1 ,1 1 1 ,1

*
1 ,1 ,1 1 1 ,1 ,1 ,1 ,

,1 1 1 ,1 ,1 1 1 ,1

*
1 ,1 ,1 1 1 ,1 ,1 ,1 ,1

0

0

0

0

w w f f wr

f f wr f w w

r r f f rr

f f rr f r r

w S w r w c

S w r w c w

r S w r r c

S w r r c r

λ µ δ

δ φ

λ µ δ

δ φ µ

+

+

+

+

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤= − − − +⎣ ⎦

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤= − − − +⎣ ⎦

1µ
.             (1.6.9a) 

For subsequent slices we get for i=2,3,…,I, 

( )
, , 1 1 , , , ,

* *
, , 1 , 1 , , , , , ,

, , 1 1 , , , ,

*
, , 1 , 1 , ,

0

0

0

0

w i w i i w i i i f i f i i i wr i

w i w i f i i f i f i i i wr i f i w i w i

r i r i i r i i i f i f i i i rr i

r i r i f i i f i f i i

w w S w r w c

w S w r w c w

r r S w r r c

r S w r

ω µ µ δ

ω µ δ φ µ

ω µ µ δ

ω µ δ

+
− −

+
− −

+
− −

+
− −

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤= + − − −⎣ ⎦

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤= + − −⎣ ⎦ ( )*
, , , ,i rr i f i r i r ir c r φ µ− +

+
.          (1.6.9b) 
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Letting ,1 ,1
1

1

f fw r
S

ρ
+

=  

( )

( )

,1 1 1 1 1 1 ,1

1
,1 1 1 1 ,1

1

or

1

w w wr

w

w w

w S w

w
S c

λ µ ρ δ

λ
µ ρ δ

= + −

=
+ − r

c

                 (1.6.7a) 

( )

( )
( )

1 1 1 ,1
,1 1*

,1 ,1

1 1 1 ,1
* ,1 1 1 1 ,1,1 ,1

1

1
1

wr
f

w w

wr w

w ww w

S c
w w

S c
S c

ρ δ

φ µ

ρ δ λ
µ ρ δφ µ

−
=

+

⎡ ⎤

r

⎡ ⎤−
⎢ ⎥= ⎢ ⎥

+ −⎢ ⎥+ ⎢ ⎥⎣ ⎦⎣ ⎦

            (1.6.7b) 

( )1
,1 1 1 1 ,11

r

r r
r

S c r

λ
µ ρ δ

=
+ −

               (1.6.7c) 

( )

( )
( )

1 1 1 ,1
,1 1*

,1 ,1

1 1 1 ,1
* ,1 1 1 1 ,1,1 ,1

1

1
1

rr
f

r r

rr r

r rr r

S c
r r

S c
S c

ρ δ

φ µ

ρ δ λ
µ ρ δφ µ

−
=

+

⎡ ⎤

r

⎡ ⎤−
⎢ ⎥= ⎢ ⎥

+ −⎢ ⎥+ ⎢ ⎥⎣ ⎦⎣ ⎦

,            (1.6.7d) 

where 1ρ  satisfies the equation  

( )
( )

( )
( )

,1 ,1
1

1

1 1 1 ,1
*1 1,1 ,1

1 1 1 ,11
*1 ,1 1,1 ,1

11
1

11
1

f f

wr w

w ww w

rr r

r rr r

w r
S

S c
S S

S c
S S

ρ

ρ δ λ
µ ρ δφ µ

ρ δ λ
µ ρ δφ µ

+
=

⎡ ⎤⎡ ⎤

1 1 ,1

1 1 ,1

r

r

c

c

⎡ ⎤−
⎢ ⎥⎢ ⎥= ⎢ ⎥

+ −⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤−
⎢ ⎥+ ⎢ ⎥

+ −⎢ ⎥+ ⎢ ⎥⎣ ⎦⎣ ⎦

.            (1.6.7e) 

For i=2,3,…,I, letting  

, ,f i f
i

i

w r
S

ρ i+
=  

17 



( )
, , 1 1

, ,1
w i w i i

i
w i i i i wr i

w
w

S c
ω µ

µ ρ δ
− −=

+ −
             (1.6.8a) 

( )

( )
( )

*
, , 1 , 1 ,

, * *
, , , ,

*
, , 1 , 1 , , , 1 1

* * , ,, , , ,

1

1
1

w i w i f i i i i wr i
f i i

w i w i w i w i

w i w i f i i i i wr i w i w i i

w i i i i wr iw i w i w i w i

w S c
w w

w S c w
S c

ω µ ρ δ

φ µ φ µ

ω µ ρ δ ω µ
µ ρ δφ µ φ µ

− −

− − − −

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= + ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥+ + ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

                (1.6.8b) 

( )
, , 1 1

, ,1
r i r i i

i
r i i i i rr i

r
r

S c
ω µ

µ ρ δ
− −=

+ −
             (1.6.8c) 

( )

( )
( )

*
, , 1 , 1 ,

, * *
, , , ,

*
, , 1 , 1 , , , 1 1

* * , ,, , , ,

1

1
1

r i r i f i i i i rr i
f i i

r i r i r i r i

r i r i f i i i i rr i r i r i i

r i i i i rr ir i r i r i r i

r S c
r r

r S c w
S c

ω µ ρ δ

φ µ φ µ

ω µ ρ δ ω µ
µ ρ δφ µ φ µ

− −

− − − −

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= + ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥+ + ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

,         (1.6.8d) 

where iρ  satisfies the equation  

( )
( )

( )

, ,

*
, , 1 , 1 , , , 1 1

* * , ,, , , ,

*
, , 1 , 1 ,

* *
, , , ,

11
1

11

f i f i
i

w i w i f i i i i wr i w i w i i

i ww i w i w i w i

r i r i f i i i i rr i

r i r i r i r i

w r
S

w S c w
S S

r S c
S

ρ

ω µ ρ δ ω µ
µ ρ δφ µ φ µ

ω µ ρ δ

φ µ φ µ

− − − −

− −

+
=

⎡ ⎤⎡ ⎤ ⎡ ⎤

i i i i wr ic
⎡ ⎤−⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥

⎢ ⎥+ −⎢ ⎥ ⎢ ⎥+ + ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢+ +
⎢ ⎥ ⎢+ +⎣ ⎦⎣ ⎦ ( )

, , 1 1

, ,1
r i r i i

r i i i i rr i

r
S c

ω µ
µ ρ δ

− −
⎡ ⎤⎡ ⎤
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥+ −⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

.        (1.6.8e) 

2. Model 2: A Stochastic Model with One Red Entering the Domain at Time 0 

2.1. Simple MDA Scenarios 

Start with the number of white vessels (Ws) at time 0, ( )0W w=  in a domain , and 

allow either new W arrivals if a W is wrongly removed, or allow replacements (there are 

several arrivals); there are a constant number of Ws in the domain. At  a single 

hostile/lethal R enters the domain. When in free/search the (single) overhead (OH) sensor 

D

0t =
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(S) encounters any platform W  or R  at time t with probability ( )( )1W t dtδ +  if the R has 

not been identified earlier (time <t), where ( )W t  is the number of White vessels at time t. 

If the W is misidentified as an R, the S follows (tracks) it for a random time until a DD 

(pair) approaches and takes over from the S, and the S returns to searching . D

We will concentrate on the set of cases that become progressively more 

mathematically involved (but also more operationally realistic and significant). 

2.2. The Number of Ws in  is Constant (=w) D

Suppose S searches  at random at rate D ( )wδ  (or ( );wδ τ  (see Section 1.5, where τ  

is the time S spends classifying a vessel) and encounters a W (before an R) with 

probability . If it encounters “something” and it is a W, it classifies it correctly 

with probability 

(/ 1w w + )

( )wwc τ , and releases it and continues searching after the classification 

time τ . 

Note that another case is one in which such a discovery might be followed by tagging 

the particular platform correctly as a W, in which case it is ignored on future encounters; 

the Automatic Identification System (AIS) is a possible way of tagging/identifying a 

(subset of) Ws, but is not infallible, being subject to interference, system failure, and 

conceivably jamming or deception. But if it is the R that is encountered and misclassified 

as a W, then the R may be ignored in future searches, and should make it to the lower 

boundary D  of  and be able to invade the homeland D ( )HD . We analyze this kind of 

situation later. 
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2.2.1. Backward Equation for Time of Capture and Probability of Capture of Single 

Hostile R for Quarantine Before Homeland ( )HD  is Entered 

Let a single R enter  at the upper boundary D D  at t=0. There are  Ws in 

 initially, and this number remains constant, at w, perhaps by replacement if any W 

misidentified as R and followed and escorted to quarantine (Q). Let 

( )0W = w

D

( )rq wT  denote the 

time an R survives being taken to quarantine. 

Assume initially that  (i=1,2,…) are successive times between detection of 

platforms; they are independent identically distributed (iid) random variables (rvs). 

iX

2.2.2. Benchmark Example 

Let the time between detections be . Then a conventional example is that time to 

detection is exponential with rate proportional to the number of targets present:  

iX

( ){ } ( )( )exp 1iP w t wδ> = − +X t .     (2.2.1) 

This need not be assumed, but is convenient. In fact, any sequence of independent 

identically distributed random variables (iid rvs) is possible, and analytically tractable in 

the present situation. Let  be the ith follow (or tracking) period for any platform 

selected to follow (that has been classified correctly or incorrectly, as R). At the end of 

follow periods, the platform is released to the Diverters (e.g., destroyers (DDs)). 

iD

Note: We only study the stages involved in Detection and Follow to the DDs at 

present. We assume that a correct classification is made (almost) as soon as the diverter 

(D) reaches the platform. 
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2.2.3. Backward Equation Logic 

The R is allowed to move into , and the overhead sensor S is in search until a 

platform/(potential quarry) is detected; the platform is then classified for time 

D

τ ; it is 

classified as a W with probability ( )wc τ� , and as an R with probability ( )rc τ� . 

Consider the time until first detection, and the subsequent possibilities: 

(a) If the R is detected first, and correctly classified as an R, it is followed to a 

signaled D; this requires a relatively long random time  (a strong assumption 

that can be relaxed). Assume also that there is always a D available upon request. 

In this case, the R is detected first and is correctly followed to D in time 

D

+X D  

with probability ( )1
1 rrc

w
τ

+
. 

(b) If the R is detected first and misidentified as a W it is released. The time this 

event takes place is at t = X , and its probability is ( )1
1 rwc

w
τ

+
. The  

process restarts. 

(c) If a W is detected first and correctly identified as a W, then it is released and S 

immediately begins to search again. In this case, the first time length is X with 

probability ( )
1 ww

w c
w

τ
+

. The search for the R begins again from scratch. 

(d) If a W is detected first and misclassified as an R, then a D is summoned with 

probability ( )wrc τ . In this case, the time taken by a complete first step/event is 
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+X D  with probability 
1 wr

w c
w+

; at the end of this step, the S begins to search 

again from scratch. 

Note that there are natural exceptions to the behavior described, such as pointed out 

in (a). We address these later. 

Then for this model 

(a’) ( ) ( )1 with probability  
1rq rrw c

w
τ= +

+
T X D  

(b’) ( ) ( ) ( )' 1with probability  
1rq rq rww w c

w
τ′= +

+
T X T  

(c’) ( ) ( ) ( )'' with probability  
1rq rq ww

ww w c
w

τ′′= +
+

T X T  

(d’) ( ) ( ) ( )''' with probability  
1rq rq wr

ww w
w

c τ′′′= + +
+

T X D' T  

the various different apostrophes indicate that the rvs are iid replicas of the basic ,X D  

components, and those on  on the right side indicate that the search process starts over 

“from scratch.” 

rqT

Now compute the Laplace-Stieltjes transform of  ( )rqT w : at least for transform 

variable  and using independence where needed, conditioning as needed gives 0s ≥
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1
1

1
1 1

1
1

1
11

1 1 1

rq

rq

rq

s w s
rr

s ws
rw ww

s ws
wr

s
rr

s s
rw ww wr

E e E e c
w

wE e E e c c
w w

wE e E e c
w

E e c
w

w wE e c c E e c
w w w

τ

τ τ

τ

τ

τ τ τ

− − +

−−

−− +

− +

− −

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ +
⎡ ⎤⎡ ⎤⎡ ⎤+ +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ + +⎣ ⎦

⎡ ⎤⎡ ⎤+ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ +

⎡ ⎤
⎢ ⎥⎣ ⎦ +=

⎡ ⎤⎡ ⎤ ⎡ ⎤− + +⎢ ⎥⎣ ⎦ ⎣ ⎦+ + +⎣ ⎦

T X D

TX

TX D

X D

X D

.  (2.2.2) 

Let ( ;q )p t w  be the probability that R is captured by D in time t given there are w Ws 

in the domain. If , 0s → ( ) ( ;rqs w
q )E e p−⎡ ⎤ → ∞⎢ ⎥⎣ ⎦

T w  the probability that, if the domain  is 

of infinite width, or requires an infinite traversal time, the R is eventually captured by D 

and escorted to Q; then we see from (2.2.2) that 

D

( ); 1qp w∞ = . 

Special Tractable Case: Exponential Red Transit Time 

Let the probability distribution of the time for R to reach the lower boundary D  

starting at any point in the domain  if it has not yet been linked to D be exp(D rµ ),  

i.e., exponential with mean 1/ rµ . Then it can be seen that, conditional on , the 

probability of R capture before leakage is just  

( )qr wT

( )r rq wE e µ−⎡ ⎤
⎢ ⎥⎣ ⎦

T ; the result of setting rs µ=  

in (2.2.2). Notice that this probability is 1 if 0rµ = , so the mean transit time through D of 

R is very large: 1/ rµ = ∞ . Otherwise if R’s mean transit time 1/ 0rµ =  or rµ →∞ , then 

there is no time to detect and follow such a fast-moving target. 

Differentiate ( )rqs wE e−⎡
⎢⎣ ⎦

T ⎤
⎥  with respect to s and change sign to obtain 

( ) ( )rqs w
rqE w e−⎡ ⎤

⎥⎢⎣ ⎦
TT rs. If ; this is the mean time of capture by D in the event that R µ=
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has not yet reached D . The conditional expectation/mean time to capture R for 

quarantine is  

( ) ( )
( ) ( ){ }

( ){ }
exp

|
exp

rq r rq
rq rq

r rq

E w w
E w w

E w

µ

µ

⎡ ⎤−⎣ ⎦⎡ ⎤< ∞ =⎣ ⎦ ⎡ −⎣ ⎦

T T
T T

T ⎤
,   (2.2.3) 

which can be evaluated by evaluating the Laplace transform (2.2.2) and its derivative 

at rs µ= . 

Appendix A presents results for a special case in which X and D are independent and 

exponentially distributed. 

2.3. A Strip-Search Approximation for Gamma (Erlang) Red Transit Times 

It has been initially assumed that a Red’s unopposed transit time of D is exponentially 

distributed with mean rµ . This assumption can conveniently be made more physically 

plausible by dividing D into parallel strips, as in (1.6), and assuming that the times to 

pass through consecutive strips are independently exponential; if there are  strips, say 

, then the mean transit time is 

1I ≥

12I = / rI µ , with variance 2/ rI µ  and coefficient of 

variation , the square root, 1/ I 1/ I , giving an assessment of the variability of transit 

time, expressed as a fraction of its mean. Approximations for the probability that R is 

detected, correctly classified, and escorted in this case are presented in Section 5. 

2.4. W Reduction and Identification 

A hostile R wishing to cross a littoral  is searched-for by an OH facility (e.g., a P3 

a/c), S, but that search is inhibited by the presence of many “false targets,” the Ws. One 

technology that the Blue S, and other Blue assets can exploit to deal with the many Ws or 

D
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single (or multiple) Rs situation is the Automatic Identification System (AIS). This 

system places an RF transponder on friendly Ws (or a subset of all). The transponder 

periodically transmits the identity, location, and properties such as course and speed, to 

the W platforms in line of sight, and there exist plans to transmit this information to a  

Far Overhead Satellite, or the equivalent, from which it is sent to a central database. The 

AIS is not perfect, (e.g., two vessels within a short distance of each other can block each 

other’s signals; there can also be system failures and environmental miseffects). 

However, AIS-equipped Ws (a subset of all) ease the task of S.  A model for assessing 

vessel detection/classification by an overhead AIS receiver appears in Section 6. 

3. Model 3: A Level-Dependent Quasi-Birth and -Death Model: A Markovian Model 

in Which More than One R Travels Through the Region 

3.1. Formulation: MDA Situation and Model 

In this section, more than one Red vessel can be in the Maritime Domain at a time. 

Assume Red vessels arrive at a Maritime Domain D according to a Poisson process with 

rate rλ . Unless intercepted first, Red (R) spends an exponential time in the domain with 

mean 1/ µ . There is one overhead surveillance sensor S. The time until the sensor finds 

and correctly classifies each R in the domain is an exponential random variable with 

mean 01/δ  independent of everything; successive detections are independent. We assume 

the number of White (W) vessels in D is constant; if one moves from D another quickly 

replaces it. Assume the S will become busy following a (misclassified) W after an 

exponential time with mean 1/ wδ ; all times are assumed independent. The S  follows 
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(tracks) any vessels classified as R for an exponential time with mean 1/φ . The vessel 

classified as R is escorted by destroyer pair (DD) after the S following time. 

Let  if there are n unescorted R vessels in the domain and the OH is busy 

following (tracking) a misclassified W at time t. Let 

( ) ( , )t n f=R

( ) ( , )t n s=R  if there are n unescorted 

R vessels in the domain and OH is searching for Rs at time t. Let ( ) ( , )t n c=R  if there are 

n unescorted R vessels in the domain and the S is following a R at time t. 

3.2. States and Their Transitions 

( ){ } ( )
( ){ } ( )

( ){ } ( )

( ) ( 1, ) | ( , ) : New R arrival; B following W

( ) ( 1, ) | ( , ) : An R leaves ; B following W

( ) ( , ) | ( , ) : R unchanged; B stops following W ("free")

( )

rP t h n f t n f h o h

P t h n f t n f n h o h

P t h n s t n f h o h

P t h

λ

µ

φ

+ = + = = +

+ = − = = +

+ = = = +

+ =

R R

R R

R R

R

D

( ){ } ( )
( ){ } ( )

( ){ } ( )

( 1, ) | ( , ) : New R arrival; B "free" searching

( ) ( 1, ) | ( , ) : An R leaves ;   B "free" searching

( ) ( , ) | ( , ) :  A W is misclassified as R; B starts to trac

r

w

n s t n s h o h

P t h n s t n s n h o h

P t h n f t n s h o h

λ

µ

δ

+ = = +

+ = − = = +

+ = = = +

R

R R

R R

D�

( ){ } ( )
( ){ } ( )

( ){ } ( )

0

k (follow)

( ) ( 1, ) | ( , ) : An R is classified as R; B starts to follow 

( ) ( , ) | ( , ) : Rs unchanged; B stops following R

( ) ( 1, ) | ( , ) :  An unescorted R 

P t h n c t n s n h o h

P t h n s t n c h o h

P t h n c t n c n h o h

δ

φ

µ

+ = − = = +

+ = = = +

+ = − = = +

R R

R R

R R

( ){ } ( )
leaves ; B following an R 

( ) ( 1, ) | ( , ) : New R arrival; B following an RrP t h n c t n c h o hλ+ = + = = +R R

D

 
The process ( ){ }; 0t t ≥R  is an example of a level-dependent quasi-birth and -death 

process; cf. (Bean et al. (2000), Bright and Taylor (1995), and Gaver et al.(1984) 

3.3. Limiting Distributions 

Let ( ) ( ) ( ){ }, lim ,
t

n i P t n iπ
→∞

= =R . 
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The balance equations are 

[ ] ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( )
[ ] ( ) ( ) ( )0

0, 1, 0, 0,

0, 1, 0,

0, 1, 1,

r w

r w

r

s s f c

f f s

c c s

λ δ π µπ φπ φπ

λ φ π µπ δ π

λ φ π µπ δ π

+ = + +

+ = +

+ = +

.  (3.3.1) 

For n>0 

[ ] ( ) ( ) ( ) ( ) ( ) (
[ ] ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( ) ( )

0

0

, 1 1, , , 1,

, 1 1, , 1,

, 1 1, 1, 1,

r w r

r w r

r r

n n s n n s n f n c n

n n f n n f n s n f

n n c n n c n s n c

λ δ µ δ π µπ φπ φπ λ π

λ φ µ π µπ δ π λ π

λ φ µ π µπ δ π λ π

⎡ ⎤+ + + = + + + + + −⎣ ⎦
+ + = + + + + −

+ + = + + + + + −

)s

. (3.3.2) 

A recursive procedure to compute the limiting distribution for the model appears in 

Appendix B. 

The long run fraction of Rs that exit the area without being escorted by DDs 

(probability of R leakage) is 

{ } ( ) ( ) ( )
0

, , ,
r n

P Leak n n c n s n fµ π π π
λ

∞

=
= ⎡ + + ⎤⎣ ⎦∑ .  (3.3.3) 

The long run fraction of time the OH follows a misclassified W is 

( )
0

follow misclassfied W ,
n

n fπ
∞

=
= ∑ ( )π .  (3.3.4) 
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4. Numerical Examples Comparing the Results Using the Deterministic and the 

Markovian Stochastic Models 

Consider a rectangular domain, D, with width in the x-direction xM = 100 NM and 

length in the y-direction yM  NM for various yM . Assume the OH sensor footprint is a 

square with sides  Assume vessels travel through the domain in the  

y-direction. Assume the parameters in Table 4.1. 

25 NM.f =

Velocity of White vessel wv  15 kts 
Velocity of Red vessel rv  15 kts 
Velocity of OH sensor sv  250 kts 
Velocity of DD (pair) dv  30 kts. 
Arrival rate of Rs rλ  variable 
Arrival rate of Ws wλ  variable 
y-direction length of rectangle yM  variable 
x-direction length of rectangle xM  200 NM 
Side of square of OH sensor footprint f 25 NM 
Mean time to classify detected vessel τ  2/60 hrs 
Number of OH sensors S  1 
Prob. correctly classifying an R rrc  variable 
Prob. correctly classifying a W wwc  variable 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 4.1 Parameter Values for Examples of Section 4.2 

4.1. A Model for the Detection Rate of Vessels 

The total time for the S sensor to cover a one footprint square is / sf v . The mean 

time for the S to cover the domain is 2/x y
s

fM M f
v

⎡ ⎤×⎣ ⎦ . The mean time a W is in the 

domain is 1 /y w
w

M v
µ

= ; the mean time a Red vessel is in the domain is 1 /y r
r

M v
µ

= . If 

no vessels are ever classified as Red, then the limiting mean number of Ws (respectively 
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Rs) in the domain is /w wλ µ  (respectively /r rλ µ ). We assume the constant detection rate 

per vessel is  

( )

1

mean time mean time 
for OH to class.
to cover vessels
domain in

domain

x y w r
d

s w r

M M
p

fv
λ λ

δ τ τ
µ µ

−
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤

= + +⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

14243 1442443

,   (4.1.1) 

which decreases as τ  increases, as it should. The mean time until a searching S detects 

and misclassifies a W is 1/ wδ , where ( )w
w

w
cwr

λ
δ δ τ

µ
= . The mean time until a searching 

S detects and correctly classifies an R is 01/δ , where ( )0 rrcδ δ τ= . The time the S 

follows a vessel classified as R has an exponential distribution with mean 
/ 2

1/ y

d

M
v

φ = . 

4.2. Numerical Examples 

Figures 4.1 and 4.2 display the long run fraction of Rs that leak through defenses, 

(3.3), as a function of the arrival rate of Rs for a fixed number of Ws equal to 0, 100, and 

1,000. The velocity of the DD pair that relieves the following  is 30 kts. In Figure 4.1, 

the probability of correct classification 

S

0.99ww rrc c= = ; in Figure 4.2 it is 0.90. 
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Multi-Dimensional Markov Chain Model (Section 3) 
Fraction of Rs that Leak Through Defenses

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
cww=0.99; crr=0.99
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Multi-Dimensional Markov Model (Section 3)
Fraction of Rs that Leak Through Defenses

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
cww=0.90; crr=0.90
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A deterministic model for this scenario was introduced in Section 1. The model is a 

system of differential equations. Figures 4.1d and 4.2d display the normalized R leakage 

rate (the long run average leakage rate divided by the R arrival rate) from that model. 

Deterministic Model (Section 1)
Fraction of Red Entrants that Leak to Blue HL

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
cww=0.99; crr=0.99
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Deterministic  Model (Section 1)
Fraction of Red Entrants that Leak to Blue HL

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
cww=0.90; crr=0.90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Rate of Rs (per Day)
Figure 4.2d

Fr
ac

tio
n 

of
 R

s 
th

at
 L

ea
k

w=1000
w=100
w=0

 

Discussion: As the arrival rate increases the fraction of Rs leaking through the 

defenses increases. Comparison of Figures 4.1 and 4.2 suggests that the ability to 

correctly classify vessels becomes more important as the number of Ws increases. 

Comparison of Figures 4.1 and 4.1d and Figures 4.2 and 4.2d suggest that the two models 

provide the same qualitative results. The deterministic model is more pessimistic than the 

stochastic model. For the parameter values considered, the stochastic model represents 

the possibility of having 0 Rs in the domain when the arrival rate of Rs is positive; during 

this time there can be no leakage. For the parameters considered, the deterministic model 

is unable to represent this possibility and so there is always R leakage; the pessimistic 

behavior is the result. The number of Ws in the domain greatly influences the  

leakage rate. 
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Figure 4.3 displays the long run fraction of Rs that leak through defenses as the 

probability of correct classification increases. The velocity of the relief platform for the 

following OH is 30 kts. 

Multi-Dimensional Markov Model (Section 3)
Fraction of Rs that Leak Through Defenses

Rectangular Domain: x-direction=100 NM; y-direct=200 NM
lamr=0.5 per day
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Figure 4.3d presents the normalized leakage rate resulting from the deterministic 

model of Section 1. 
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Deterministic Model (Section 1)
Fraction of Red Entrants that Leak to Blue HL

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
lamr=0.5 per day
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In Section 2, a stochastic model is introduced in which there are a constant number of 

Ws in the domain and one R enters the domain at time 0. R leaks through the defenses if 

it transits through the domain before it is detected, correctly classified, and a platform 

arrives to escort it. This model differs from that model of Section 3.2 in that there is only 

one R in the domain. Figure 4.3s displays the probability that one Red leaks through the 

defenses as a function of the probability that a vessel is correctly classified. 
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One Red Enters the Region at Time 0 (Section 2)
Probability the One Red Leaks Through Defenses

Rectangular Domain: x-direction=100 NM; y-direction=200 NM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.7 0.75 0.8 0.85 0.9 0.95 1

Probability of Correct Classification
Figure 4.3s

Pr
ob

ab
ili

ty
 R

ed
 L

ea
ve

s 
R

eg
io

n 
B

ef
or

e 
B

ei
ng

 E
sc

or
te

d

w=1000
w=100
w=0

 

Discussion: If there are 0 Ws, then increasing the probability of correct classification 

does not have much impact. Recall that each classification takes a mean time of 2 

minutes. Thus, even with perfect classification, the presence of Ws increases the fraction 

of Rs that leak through the defenses. The decreased number of Ws from  

1,000 to 100 results in a larger increase in the probability that Red can be neutralized, 

rather than increasing the probability of correct classification to 0.95. Decreasing the 

number of W to 0 results in a larger probability of correct classification than increasing 

the probability of correct classification to 1 when the number of Ws=100. Comparison of 

Figures 4.3, 4.3d, and 4.3s indicates that the three models give very similar quantitative 

results. Once again, the deterministic model is more pessimistic than the model of 

Section 3.2. 
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Figure 4.4 displays the long run fraction of Rs that leak through the defenses as a 

function of the velocity of the platform that relieves a following S. 

Multi-Dimensional Markov Model (Section 3)
Fraction of Rs that Leak Through Defenses

Rectangular Domain: x-direction=100 NM; y-direct=200 NM
lamr=0.5 per day; cww=0.99; crr=0.99
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Figure 4.4d displays the normalized R leakage rates resulting from the deterministic 

model of Section 1. Figure 4.4s displays the probability the one R leaks through the 

defenses for the stochastic model, in which one R enters the domain at time 0 and there 

are a constant number of Ws in the domain from Section 2. 
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Deterministic Model (Section 1)
Fraction of Red Entrants that Leak to Blue HL

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
lamr=0.5 per day; cww=0.99; crr=0.99
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One Red Enters Region at Time 0 (Section 2)
Probability Red Leaks Through Defenses

Rectangular Domain: x-direction=100 NM; y-direction=200 NM
cww=0.99; crr=0.99
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Discussion: The baseline relief platform for a following S is a pair of DDs. The 

assumed velocity of the DD is 30 kts. The use of another air platform to relieve the S so 

that the S can continue to search will decrease the fraction of Rs that leak. The effect is 

greater the larger the number of Ws. Comparison of Figures 4.4, 4.4d, and 4.4s suggests 

that the three models result in very similar qualitative behavior. The deterministic model 

has larger leakage rates than the model of Section 3.2. Thus, while the qualitative results 

are similar, the quantitative results are different. Decreasing the number of Ws (the false 

positive rate) provides more operational benefit than decreasing the time until a sensor 

following a suspicious vessel is relieved. 

4.3. The Probability a Vessel is Classified Correctly is a Function of the Time, τ, that 

the Sensor S  Spends Classifying the Vessel 

Assume that the probability of correct classification of a vessel of type j is a function 

of the time spent classifying the vessel. We use the logistic functional form of  

Section 1.5.2 and the detection rate (4.1.1). 

Table 4.2 displays parameter values used in the following numerical examples. The 

arrival rate of W is chosen so that /w wλ µ  is equal to the specified number of Ws in  

the domain. 
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Number of Ws w variable 
Velocity of White vessel wv  15 kts 
Velocity of Red vessel rv  15 kts 
Velocity of OH sensor sv  250 kts 
Velocity of DD (pair) dv  30 kts 
Arrival rate of Rs rλ  1 per day 
Arrival rate of Ws wλ  variable 
y-direction length of rectangle yM  200 NM 
x-direction length of rectangle xM  100 NM 
Side of square of OH sensor footprint f 25 NM 
Mean time to classify detected vessel τ  variable 
Number of OH sensors S  1 
Prob. correctly classifying an R rrc  variable 
Prob. correctly classifying a W wwc  variable 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 4.2 Parameter Values for Examples in Section 4.3 

Figure 4.5 displays the probabilities of correct classification as a function of time for 

the various values of α  and the specified probability of correct classification at time  

5/60 hours. Figures 4.5a (respectively 4.5b) display the long run fraction of Rs that leak 

for 2α =  and a specified probability of correctly classifying a W equal to 0.99 

(respectively 0.999) for the model of Section 3. Figures 4.6a (respectively 4.6b) display 

the long run fraction of Rs that leak for 3α =  and a specified probability of correctly 

classifying a W equal to 0.99 (respectively 0.999) for the model of Section 3. All of the 

figures have a specified probability of correctly classifying an R equal to 0.7. 
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Probability of Correct Classification as a Function of Time Spent
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Multi-Dimensional Markov Model (Section 3)
Long Run Average Fraction of Rs Leaking Through Defenses

alpha=2;  specified cww=0.99 & specified crr=0.7 at class. time 5/60 hours
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Multi-Dimensional Markov Model (Section 3)
Long Run Average Fraction of Rs Leaking Through Defenses

alpha=2;  specified cww=0.999 & specified crr=0.7 at class. time 5/60 hours
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Multi-Dimensional Markov Model (Section 3)
Long Run Average Fraction of Rs Leaking Through Defenses

alpha=3;  specified cww=0.99 & specified crr=0.7 at class. time 5/60 hours
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Multi-Dimensional Markov Model (Section 3)
Long Run Average Fraction of Rs Leaking Through Defenses

alpha=3;  specified cww=0.999 & specified crr=0.7 at class. time 5/60 hours
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Figures 4.5ad, 4.5bd, 4.6ad, and 4.6bd display the long fraction of Rs that leak 

resulting from the deterministic model of Section 1. 

Deterministic Model (Section 1)
Long Run Fraction of Rs Leaking Through Defenses

alpha=2; specified cww=0.99 & specified crr=0.7 at class time 5/60 
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Deterministic Model (Section 1)
Long Run Fraction of Rs Leaking Through Defenses

alpha=2; specified cww=0.999 & specified crr=0.7 at class time 5/60 
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Deterministic Model (Section 1)
Long Run Fraction of Rs Leaking Through Defenses

alpha=3; specified cww=0.99 & specified crr=0.7 at class time 5/60 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Classification Time (hours)
Figure 4.6ad

Fr
ac

tio
n 

of
 R

s 
Le

ak
in

g

w=1000
w=100
w=0

 

44 



Deterministic Model (Section 1)
Long Run Fraction of Rs Leaking Through Defenses

alpha=3; specified cww=0.999 & specified crr=0.7 at class. time 5/60
Domain=200 NM in y-dir & 100 NM in x-dir; sensor speed 250 kts 
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Discussion: For the cases of the number of Ws, w, explored, the minimizing 

classification time increases as the specified correct classification probability at  

5/60 hours decreases. The minimizing classification time increases as α  increases. The 

minimizing classification time increases as the number of Ws decreases.  A comparison 

of the results from the stochastic model and the deterministic model suggests that both 

models give similar qualitative results. The resulting R leakage rate is larger for the 

deterministic model than that for the stochastic model. The classification time that 

minimizes the leakage rate for the deterministic model tends to be smaller than that for 

the stochastic model. Once again, the decreasing the false positive rate (number of Ws) 

results in larger probabilities of neutralizing Rs than increasing the probability of  

correct classification. 
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5. Non-Markovian Models 

A Maritime domain or region contains a number w of nonhostile W vessels. At time 

0, a hostile R vessel enters the domain. An overhead friendly (Blue) sensor (S) patrols the 

domain and classifies (perhaps incorrectly) detected vessels as R or W. The S follows  

(or tracks) any vessel it classifies as R until it is relieved by a DD. The S is here assumed 

unable to detect and classify additional vessels while it is following a vessel. We assume 

an unescorted R will remain in the domain for a positive random time having a 

distribution function F; the sensor’s following times of vessels classified as R are 

independent and identically distributed nonnegative random variables; and the 

distribution of the time until the patrolling sensor detects a vessel is exponential. 

In this section, we present two approximations to the probability that R is detected 

and correctly classified before leaving the domain and the probability that R is detected, 

correctly classified, and escorted before leaving the domain. The first approximation uses 

a terminating renewal process argument. The second approximation uses an alternating 

renewal process approximation. The usefulness of the approximations is assessed by 

comparing the results of the approximations to more detailed simulation models. The 

approximations appear to be good and are used to study the sensitivity of the probability 

of neutralizing the R on model parameters. 

We assume the domain is a rectangle. The parameters of the model appear in  

Table 5.1. 



 

Velocity of Red vessel rv  15 kts 
Velocity of OH sensor S sv  250 kts 

Velocity of DD (pair) dv  30 kts 
Number of White vessels w variable 
y-direction length of rectangle yM  200 NM 
x-direction length of rectangle xM  200 NM 
Side of square of OH sensor footprint f 25 NM 
Mean time to classify detected vessel τ  2/60 hrs 
Prob. correctly classifying an R rrc  variable 
Prob. correctly classifying a W wwc  variable 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 5.1 Parameters for Section 5 

5.1. A Terminating Renewal Process Approximation 

The detection rate of vessels in the entire domain is assumed to be 
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We assume the times between detections are independent and identically distributed, 

having an exponential distribution with mean ( )01/δ τ . Let fT  be the first time a vessel is 

classified as R; the classified vessel could be White (false positive) or Red. 
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Let  be the time until R is correctly classified as R and  be the first time a W is 

classified as an R. 

rT wT
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w r

wr rr

w c
wP pw c c

w w

+< =
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+ +

T T ≡    (5.1.3) 

In what follows, we assume . 0p >

When a vessel is classified as R, the sensor follows (tracks) the vessel until relieved 

by escort vessels (a pair of DDs). Assume the following time, D, has a distribution with 

mean 1/φ  and Laplace transform ( )sE e ζ−⎡ ⎤ =⎣ ⎦
D

D s , where the mean time the overhead 

sensor follows a vessel classified as R is  
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5.1.1. An Approximation to the Time Until R is Detected and Correctly Classified 

The probability that R is detected and correctly classified before time t satisfies  

the equation 
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1
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Thus, the probability that R is not detected and correctly classified before time t 

satisfies the equation 
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Following Feller (1966) p. 322, assume there is a  0 0κ >  that satisfies the equation  
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The key renewal theorem implies  
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Assume an unescorted R is in the domain for a time having a distribution F with 

Laplace transform ( )sζ R . An approximation to the probability that R is not detected and 

correctly classified while in the domain is 
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If F is gamma with scale ϖ  and shape parameter β , then an approximation to the 

probability R is not detected and correctly classified while in the domain is 
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5.1.2. An Approximation to the Probability R is Detected, Correctly Classified, and 

Escorted Before It Leaves the Domain 

Let  be the time until R is escorted.  eT
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Hence, 
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Assume (5.1.7) holds. The key renewal theorem implies that  
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)where (#
0µ κ  is given by (5.1.8) and 
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=               (5.1.18) 

Assume an unescorted and unfollowed R is in the domain for a random time having a 

distribution F with Laplace transform ( )sζ R . An approximation to the probability that R 

is not detected and correctly classified while in the domain is 
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If F is a gamma distribution with scale ϖ  and shape parameter β , then an 

approximation to the probability that R is not detected and correctly classified while in 

the domain is 
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5.2. An Alternating Renewal Process Approximation 

Assume only Whites are in the domain. Let 
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The sensor alternates between looking for suspicious vessels and 

classifying/following vessels. The expected time that the sensor is busy when it detects a 

vessel (busy period) is  



[ ] [ ] .wrE E cτ= +B D     (5.2.2) 

The expected time between busy periods is 1/ wδ , where w is the number of  

White vessels. 

The long run unavailability of the sensor is 
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The long run availability of the sensor is  
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Assume R enters the domain D when the system is in steady state. Let  

* .δ δα=     (5.2.5) 

Approximate the distribution of the time until R is detected and correctly classified 

with an exponential distribution with mean 
( )*

1

rrcδ τ
. 

5.2.1. An Approximation to the Probability that R is Not Detected and Correctly 

Classified Before It Travels Through the Domain 

Assume an unescorted and unfollowed R is in the domain for a random time having a 

distribution F with Laplace transform ( )sζ R . An approximation to the probability that R 

is not detected and correctly classified while in the domain is 

       ( )( )* .rrcζ δ τR      (5.2.6) 
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Suppose the time R travels through the domain has a gamma distribution with shape 

parameter β  and mean ; the scale is m
m
βϖ = . An approximation to the probability that 

R is not detected and correctly classified while traveling through the domain is 
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rrc

β
ϖ

ϖ δ τ
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⎢
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⎥      (5.2.7) 

5.2.2. An Approximation to the Probability that Red is Not Detected, Correctly 

Classified and Escorted Before Traveling Through the Domain 

To obtain an approximation to the probability that R is not escorted before it leaves 

the domain, assume the successive times the sensor follows a vessel classified as R are 

independent, having an exponential distribution with mean (5.1.4). The probability that R 

is not escorted before time t is approximately 
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Assume an unescorted and unfollowed R is in the domain for a random time having a 

distribution F with Laplace transform ( )sζ R . An approximation to the probability that R 

is not detected, correctly classified, and escorted while in the domain is 
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Suppose the time R travels through the domain has a gamma distribution with shape 

parameter β and mean ; the scale is m
m
βϖ = . An approximation to the probability that R 

is not escorted before it leaves the domain is 
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            (5.2.10) 

5.3. Comparison of the Renewal Process Approximations to Results from  

More Detailed Simulations 

5.3.1. Simulation 1 

Sato (2005) presents the results of a simulation. In the simulation, the sensor 

following times and the time an unescorted R travels through the domain are independent 

random variables having gamma distributions with the same shape parameter. The mean 

of the sensor following time is given by (5.1.4). The mean of R’s unescorted travel time 

through the domain is /y rM v . Table 5.2 displays the parameters of the simulation and 

the simulation results; Cf  is the fraction of replications R is detected and correctly 

classified before it leaves the domain; Ef  is the fraction of replications R is detected, 

correctly classified, and escorted before it leaves the domain. Each case has  

10,000 replications. 
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Parameters for and Results from a Simulation with 10,000 Replications 

xM  
(NM) w 

rv  
(kts) 

τ  
(minutes) wwc  rrc  

Shape 
Parameter Cf  Ef  

81 22 11.3 5 0.96 0.96 50 0.9 0.87
81 13 11.3 4.8 0.94 0.86 25 0.9 0.86
144 34 10 5.8 0.99 0.85 42 0.82 0.78
50 9 22.5 7 0.91 0.89 36 0.82 0.74
50 34 22.5 4.8 0.99 0.85 11 0.77 0.68
159 6 15 4.3 0.92 0.88 19 0.74 0.67
97 31 16.3 8 0.96 0.83 39 0.64 0.57
144 41 10 6.8 0.91 0.91 8 0.63 0.56
66 13 27.5 6.3 0.9 0.86 33 0.63 0.54
128 19 26.3 4.3 0.98 0.98 50 0.61 0.53
284 22 12.5 5.3 0.9 0.96 39 0.56 0.5 
97 50 16.3 7.5 0.94 0.99 33 0.55 0.49
238 6 18.8 8 0.97 0.88 47 0.55 0.48
175 25 20 6 0.95 0.9 28 0.52 0.45
175 25 20 6 0.95 0.9 28 0.52 0.44
222 31 13.8 7.8 0.93 0.83 5 0.49 0.42
113 44 21.3 4 0.93 0.93 8 0.48 0.41
300 41 17.5 5 0.99 0.91 19 0.46 0.4 
300 16 17.5 7.3 0.91 0.95 44 0.46 0.4 
253 19 23.8 4 0.94 0.98 16 0.45 0.36
206 9 30 5.3 0.99 0.89 47 0.44 0.36
191 44 25 7.8 0.98 0.93 36 0.42 0.34
128 50 26.3 5.5 0.93 0.99 30 0.4 0.32
206 16 30 6.3 0.91 0.95 13 0.39 0.31
238 47 18.8 4.5 0.93 0.8 42 0.35 0.29
191 47 25 5.5 0.92 0.8 44 0.31 0.25
269 38 28.8 7.3 0.96 0.94 30 0.3 0.24
269 28 28.8 7 0.94 0.84 5 0.29 0.23

Table 5.2 Parameters for and Results of the Simulation of Section 5.1 
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The other parameter values for the simulation are displayed in Table 5.3. 

Other Parameter Values 

Velocity of Red vessel rv  variable 
Velocity of OH sensor S sv  300 kts 

Velocity of DD (pair) dv  30 kts 
Number of White vessels w variable 
y-direction length of rectangle yM  300 NM 
x-direction length of rectangle xM  Variable 
Side of square of OH sensor footprint f 15 NM 
Mean time to classify detected vessel τ  variable 
Number of OH  sensors S  1 
Prob. correctly classifying an R rrc  variable 
Prob. correctly classifying a W wwc  variable 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 5.3 Parameters for Simulation Environment of Section 5.1 

Figure 5.1 displays the results of the two approximations for the probability R is 

detected and correctly classified before it leaves the domain; (5.1.14) and (5.2.7). The 

two approximations assume the sensor following times have an exponential distribution 

with the same mean as the simulation. Apparently the two approximations give very 

similar results. 
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Approximations to the Probability R is Detected and Correctly Classified Before Leaving the 
Domain
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Figure 5.2 displays the results of the two approximations for the probability that R is 

detected, correctly classified, and escorted before it leaves the domain; (5.1.20) and 

(5.2.10). Once again, the two approximations are very similar. The alternating renewal 

process approximation (5.2.10) is easier to compute, and so is preferred. 
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Approximations to Probability R is Detected, Correctly Classified, and Escorted Before 
Leaving Domain
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Figure 5.3 displays the fraction of simulation replications resulting in R being 

detected and correctly classified before leaving the domain and the alternating renewal 

process approximation (5.2.7). The expression (5.2.7) agrees very well with the 

simulation results. 
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 Alternating Renewal Process Approximation 
Probability R is Detected and Correctly Classified Before Leaving Domain
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Figure 5.4 displays the fraction of simulation replications resulting in R being 

detected, correctly classified, and escorted before leaving the region and the alternating 

renewal process approximation (5.2.10). The expression (5.2.10) agrees very well with 

the simulation results. Note that approximations (5.2.7) and (5.2.10) assume that the 

sensor following times have an exponential distribution; in the simulation, the following 

times have a gamma distribution having the same mean. Apparently, the probabilities are 

relatively insensitive to the shape of the distribution of the following times. The figures 

corresponding to Figures 5.3 and 5.4 for the terminating renewal process approximation 

are similar. 
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 Alternating Renewal Approximation 
Probability R is Detected, Correctly Classified and Escorted Before Leaving Domain
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5.3.2. Simulation 2 

Sato (2005) presents results from a simulation experiment. The simulation has the 

following assumptions. There are a constant number of White vessels in the domain, w. 

One Red vessel enters the domain at time 0. If unescorted, the time R is in the domain has 

a gamma distribution. The times until vessel detection have an exponential distribution. 

The sensor’s following times of vessels classified as R are independent and identically 

distributed, having a gamma distribution. Each time a vessel is detected and classified as 

W, the sensor remembers that information for an independent random time having a 

gamma distribution; during this time, the vessel is not subject to detection. Tables 5.4a-b 

display the parameter values for the simulation. Each case has 10,000 replications. 
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x-dir 
(NM) # Whites 

Velocity 
of R 

Time to 
classify 
detected 

vessel 
(min) wwc  rrc  

Shape 
param.

R 
Transit
Time 

Shape 
param. 
sensor 

following 
times 

Mean 
time to 
loss of 
vessel 

classify-
cation 
infor-

mation
(hrs) 

Shape 
param. 
of time 
to loss 

of vessel 
classifi-
cation 
infor-

mation
400 9 21.6 4.8 0.98 0.85 26 50 2.8 36 
381 100 16.9 5.5 0.89 0.68 19 46 3 25 
375 44 28.6 4.6 0.81 0.84 6 19 2.9 49 
313 88 30 5.6 0.99 0.66 8 25 3.3 9 
388 3 22 4.9 0.94 0.89 30 8 1.6 11 
394 94 19.7 5.1 0.89 0.69 44 6 0.6 29 
338 47 29.5 5 0.8 0.86 46 44 1.5 5 
306 69 29.1 5.4 0.98 0.7 50 29 0.9 47 
331 25 18.3 6.1 0.94 0.73 13 32 0 32 
350 66 19.2 6.8 0.84 0.81 22 43 0.4 13 
344 22 26.3 7.9 0.87 0.63 12 22 0.5 33 
356 72 24.8 7.8 0.94 0.99 23 15 1.9 12 
319 16 17.8 6.3 0.92 0.65 40 20 3.9 18 
369 59 20.6 7.5 0.83 0.83 37 16 3.8 40 
325 19 27.7 7.6 0.88 0.6 39 37 2.6 20 
363 63 23.9 8 0.96 0.96 35 42 2.3 39 
300 50 22.5 6 0.9 0.8 28 28 2 28 
200 91 23.4 7.3 0.83 0.75 29 5 1.3 19 
225 56 16.4 7.4 0.99 0.76 49 36 1.1 6 
288 13 15 6.4 0.81 0.94 47 30 0.8 46 
213 97 23 7.1 0.86 0.71 25 47 2.4 44 
206 6 25.3 6.9 0.91 0.91 11 49 3.4 26 
294 31 15.9 6.6 0.82 0.9 5 26 3.1 8 
269 75 26.7 5.9 0.86 0.88 42 23 4 23 
250 34 25.8 5.3 0.96 0.79 33 12 3.6 42 
256 78 18.8 4.1 0.93 0.98 43 33 3.5 22 
244 28 20.2 4.3 0.85 0.61 32 40 2.1 43 
281 84 27.2 5.8 0.88 0.95 15 35 0.1 37 
231 41 24.4 4.5 0.97 0.78 18 39 0.3 15 
238 38 21.1 4 0.84 0.64 20 13 1.8 16 

Table 5.4a Parameters for the Simulation of Section 5.3.2 
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x-dir 
(NM) # Whites 

Velocity 
of R 

Time to 
classify 
detected 

vessel 
(min) wwc  rrc  

Shape 
param.

R 
Transit
Time

Shape 
param. 
sensor 

following 

Mean 
time to 
loss of 
vessel 

classifi-
cation 
infor-

mation
times (hrs) 

Shape 
param. 
of time 
to loss 

of 
vessel 

classifi-
cation 
infor-

mation
250 2 17.2 4.4 0.99 0.96 26 50 2.8 36 
245 20 15.6 4.8 0.97 0.92 19 46 3 25 
244 9 19.5 4.3 0.95 0.96 6 19 2.9 49 
247 1 17.3 4.4 0.98 0.97 30 8 1.6 11 
248 19 16.6 4.6 0.97 0.92 44 6 0.6 29 
234 9 19.8 4.5 0.95 0.97 46 44 1.5 5 
233 5 16.1 5.1 0.99 0.93 13 32 0 32 
238 13 16.4 5.4 0.96 0.95 22 43 0.4 13 
236 4 18.8 5.9 0.97 0.91 12 22 0.5 33 
230 3 15.9 5.1 0.98 0.91 40 20 3.9 18 
242 12 16.9 5.8 0.96 0.96 37 16 3.8 40 
231 4 19.2 5.8 0.97 0.9 39 37 2.6 20 
241 13 18 6 0.99 0.99 35 42 2.3 39 
225 10 17.5 5 0.98 0.95 28 28 2 28 
200 18 17.8 5.6 0.96 0.94 29 5 1.3 19 
222 3 15 5.2 0.95 0.98 47 30 0.8 46 
203 19 17.7 5.6 0.97 0.93 25 47 2.4 44 
202 1 18.4 5.4 0.98 0.98 11 49 3.4 26 
223 6 15.3 5.3 0.95 0.98 5 26 3.1 8 
217 15 18.9 4.9 0.96 0.97 42 23 4 23 
213 7 18.6 4.6 0.99 0.95 33 12 3.6 42 
214 16 16.3 4.1 0.98 0.99 43 33 3.5 22 
211 6 16.7 4.1 0.96 0.9 32 40 2.1 43 
220 17 19.1 4.9 0.97 0.99 15 35 0.1 37 
208 8 18.1 4.3 0.99 0.94 18 39 0.3 15 
209 8 17 4 0.96 0.91 20 13 1.8 16 

Table 5.4b Parameters for the Simulation of Section 5.3.2 
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The models for the terminating renewal process approximation and the alternating 

renewal process approximation assume exponential times to vessel detection, and the 

unescorted R transit time through the domain has a gamma distribution; these are the 

same assumptions as the simulation. However, unlike the simulation model, the renewal 
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models assume the sensor’s following times have an exponential distribution and there is 

no memory of previous classifications. 

Figure 5.5 displays the results of both approximations for the probability that R is 

detected and correctly classified before it leaves the domain. The two approximations 

give similar results. The terminating renewal process approximation tends to result in 

somewhat higher probabilities that R is detected and correctly classified before leaving 

the domain, than the alternating renewal process approximation. Figure 5.6 displays the 

terminating renewal process approximation and the simulation results; the approximation 

tends to be systematically a little larger than the simulation results. Figure 5.7 displays 

the alternating renewal process approximation versus the simulation results; there is good 

agreement. The alternating renewal process approximation agrees better with the 

simulation results and is numerically more stable than the terminating renewal process 

approximation. The agreement is satisfying since the simulation model is more complex 

than the alternating renewal process model. 



Terminating Renewal Process Approximation and Alternating Renewal Porcess 
Approximation
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Simulation Results and Terminating Renewal Process Approximation
Probability R is Detected and Correctly Classified Before Leaving the Domain
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Simulation Results vs. Alternating Renewal Process Approximation
Probability R is Detected and Correctly Classified Before Leaving Domain
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5.4. A Spatial Simulation 

Results from a more detailed simulation that includes representation of the spatial 

movement of the overhead sensor and R are used to explore the robustness of the renewal 

process approximations. A description of the simulation is as follows. 

The Search Domain 

The domain is rectangular: xM  NM along the x-axis and yM  NM along the y-axis. 

The footprint of the sensor is a square with sides f NM. The region is tiled with squares 

having sides f NM; we assume both xM  and yM  are multiples of f. Label the upper row, 

row number 1 and column 1 is on the leftmost side. The upper left grid square is labeled 

; the rightmost grid square in row 1 is labeled (1,1) ( )1, xG ; /x xG M f= . The grid square 
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in the lower right hand corner row is labeled ( ),y xG G ; /y yG M f= . We assume there are 

a fixed number of neutral (White (W)) vessels in the domain. 

Initializing the Simulation 

1. One Red (R) vessel enters row 1 at time 0. The column it enters is chosen at 

random; each column is equally likely to be chosen. The R travels down the 

column at a constant velocity . The grid square occupied by R is computed at 

each time the overhead sensor enters a new grid square. 

rv

2. The initial position of the overhead sensor S is chosen randomly from the 

rectangle; each position is equally likely to be chosen. The grid square of the 

initial position is determined; call it ( ),y x . Two independent trials are performed 

to determine the direction of S. The x-direction is right or left; the y-direction is 

up or down. Each x-direction (respectively y-direction) has a probability of 0.5 of 

being chosen. We assume a raster scan sensor path. Assume the midpoint of the 

initial grid square that the sensor is in is (y,x). The path of the sensor is as 

follows: if the sensor’s x-direction is right (respectively left) the sensor travels 

along the row of that square to that grid square with the largest, (say ( ), xy G ) 

(respectively smallest, ( ),1y ) x-value. If the sensor’s y-direction is up, after 

reaching the boundary, S will next travel to square ( )1, xy G− , (respectively 

); it will next travel to ( 1,1y − ) ( )1, 1xy G− −  (respectively ( )1,2y − ); when S 

enters the last grid square along row 1, say ( )1, xG , it then travels to grid square 
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)(2, xG  and continues to ( )2, 1xG −  and so on. If the y-direction is down and S  is 

in grid square ( ), xy G , then it will next travel to square ( )1, xy G+ . The velocity of 

S is sv . The time spent in each grid square is / sf v . 

Detection of R 

Each time S and R are in the same grid square there is a probability  that R will 

be detected and correctly classified as R, where  is the probability that R is detected 

and  is the probability that a detected R is correctly classified as R. 

d rrp c

dp

rrc

Number of White (Neutral) Vessels 

Let w be the mean total number of White vessels in the region. The mean number of 

White vessels in each square, , is the mean total number divided by the number of  

grid squares. Each time the sensor enters a square, a Poisson random variable having 

mean  is drawn; the resulting value is the number of White vessels in that square 

when it is searched. Each vessel in the square takes a time 

Wm

Wm

τ  to be investigated. A White 

vessel is misclassified as an R with probability ( )1d wr d wwp c p c= − . If a White vessel is 

misclassified as an R in grid square (y,x), S follows it for a time ( ) (/y dG y v v)− + , where 

 is the velocity of the DDs, dv rv v vw= =  is the velocity of all the vessels, and  is the 

number of grid squares in the y-direction. After this following time is completed, 

S proceeds instantaneously to the next square in its original search pattern. The total time 

spent in the grid square is the sum of the travel time through the square, plus the time 

yG



spent investigating all vessels in the square plus any following time if applicable. If R is 

detected and correctly classified, it will be escorted. 

5.4.1. Comparing Results from the Spatial Simulation to Those of the  

Renewal Process Approximations 

68 

)

The parameter values appear in Table 5.5. Table 5.6 displays the results of the spatial 

simulation and two approximations (5.1.14) and (5.2.7). In both approximations, the 

sensor’s following time of a vessel classified as Red is exponential with mean 

(/ 2y d rM v v+ ; the exponential distribution is an approximation to the following time 

distribution in the simulation. In the simulation, the time the R spends in the domain is 

constant and equal to /y rM v . In the approximations, the time R spends in the domain is 

assumed to have a gamma distribution with mean /y rM v  and shape parameter equal to 

the number of grid squares in the y-direction, . yG

Velocity of Red vessel rv  15 kts 
Velocity of OH sensor S sv  250 kts 

Velocity of DD (pair) dv  30 kts 
Number of neutral vessels W  variable
y-direction length of rectangle  yM  200 NM
x-direction length of rectangle  xM  200 NM
Side of square of OH sensor footprint f 25 NM 
Mean time to classify detected vessel τ  2/60 hrs
Number of OH sensors S  1 
Prob. correctly classifying an R rrc  variable
Prob. correctly classifying a W wwc  variable
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 5.5 Parameter Values for Simulation Results Displayed in Table 5.6 



 

Spatial 
Simulation 

# Ws rrc  wwc  

(1,000 
Replications)
Fraction of 

Replications 
Red is not 
Correctly 

Class. 
(std error) 

Terminating 
Renewal 
Process 
Approx. 
Prob. R 

is not 
Correctly 

Class. 
 

Alternating 
Renewal 
Process 
Approx. 

Prob. R is 
not 

Correctly 
Class. 

200 0.90 0.90 0.82 
(0.01) 

0.80 0.81 

200 0.90 0.99 0.54 
(0.02) 

0.51 0.52 

200 0.99 0.99 0.49 
(0.02) 

0.48 0.49 

200 0.999 0.999 0.43 
(0.01) 

0.39 0.39 

100 0.90 0.90 0.72 
(0.01) 

0.67 0.69 

100 0.99 0.99 0.39 
(0.01) 

0.35 0.36 

100 0.999 0.999 0.33 
(0.01) 

0.29 0.29 

50 0.90 0.90 0.61 
(0.02) 

0.53 0.55 

50 0.90 0.99 0.34 
(0.02) 

0.30 0.30 

50 0.99 0.99 0.30 
(0.01) 

0.27 0.27 

50 0.999 0.999 0.22 
(0.01) 

0.23 0.23 

Table 5.6 Simulation and Approximation Results 

Table 5.8 displays simulation and approximation results for cases with parameters 

displayed in Table 5.7. 
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Velocity of Red vessel rv  15 kts 
Velocity of OH sensor S sv  200 kts 

Velocity of DD (pair) dv  30 kts 
Number of Ws W variable 
y-direction length of rectangle yM  200 NM 
x-direction length of rectangle xM  400 NM 
Side of square of OH sensor footprint f 25 NM 
Mean time to classify detected vessel τ  2/60 hrs 
Number of OH sensors S  1 
Prob. correctly classifying an R rrc  variable 
Prob. correctly classifying a W wwc  variable 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 5.7 Parameter values for Simulation Results Displayed in Table 5.8 
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Spatial 
Simulation 

# Ws rrc  wwc  

(1,000 
replications)
Fraction of 

Replications 
Red is not 
Correctly 

Class. 
(std error) 

Terminating 
Renewal 
Process 
Approx. 
Prob. R 

is not 
Correctly 

Class. 

Alternating 
Renewal 
Process 
Approx. 

Prob. R is 
not 

Correctly 
Class. 

100 0.7 0.99 0.65 
(0.02) 

0.65 0.66 

100 0.7 0.999 0.58 
(0.02) 

0.63 0.63 

50 0.7 0.99 0.62 
(0.02) 

0.62 0.62 

50 0.7 0.999 0.58 
(0.02) 

0.60 0.60 

100 0.8 0.99 0.58 
(0.02) 

0.62 0.62 

100 0.8 0.999 0.56 
(0.02) 

0.59 0.59 

50 0.8 0.99 0.54 
(0.02) 

0.58 0.58 

50 0.8 0.999 0.56 
(0.02) 

0.56 0.56 

100 0.9 0.9 0.75 
(0.01) 

0.74 0.75 

50 
 

0.9 0.9 0.65 
(0.01) 

0.65 0.67 

Table 5.8 Simulation and Approximation Results 

Figure 5.8 displays the simulation results of Tables 5.6 and 5.8 and the alternating 

renewal process approximation (5.2.7). The approximation gives very useful results. 
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Spatial Simulation and Alternating Renewal Process Approximation
Probability R is Escorted Before Leaving Domain
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5.5 Numerical Examples Using the Alternating Renewal Process Approximation 

The parameter values are those of Table 5.5. Figure 5.9 displays the alternating 

renewal process approximate probability that R is detected and correctly classified for 

various values of the probability of correct classification and number of Ws in  

the domain. 

72 



Probability R is Detected and Correctly Classified Before Leaving Domain
Alternating Renewal Process Approximation 
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P(Correct Class.)=0.999
P(Correct Class.)=0.99
P(Correct Class.)=0.95
P(Correct Class)= 0.90

 

Discussion: The probability of detecting and correctly classifying R before it leaves 

the domain increases as the probability of correctly classifying a vessel increases; the 

increase is larger, the more Ws there are in the domain. Being able to decrease the 

number of Ws from 200 to 100 or from 100 to 50 results in a larger increase in the 

probability of detecting and correctly classifying R before it leaves the region than 

increasing the probability of correctly classifying detected vessel from 0.90 to 0.95. 

Suppose that if s overhead sensors (P3s) are used to patrol a rectangular domain of 

200 NM by 200 NM, then each P3 patrols a domain of length 200/s NM in the x-direction 

and 200 NM in the y-direction. Other CONOPS are possible. If there are w Ws in the 

large domain, then we assume there are 
200

x w  Ws in a domain of size x NM in the  

x-direction by 200 NM in the y-direction. Assume 1 R enters the domain at time 0 and 
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travels straight down the domain in the y-direction. The time the unescorted R spends in 

the domain has a gamma distribution with mean  and shape parameter 200 / rv 200/ f . 

Thus, the R will be in the domain patrolled by one sensor. All of the sensors can 

misclassify Ws as R. We assume there are a sufficient number of escort vessels to escort 

all the vessels classified as R. Table 5.9 displays the parameter values. Figure 5.10 

displays the alternating renewal process approximation for the probability that R is 

detected and correctly classified as a function of the x-distance of the rectangular domain 

patrolled by one sensor and the number of Ws in the total domain of size 200 NM by  

200 NM, w. 

Velocity of Red vessel rv  15 kts 
Velocity of OH sensor S sv  250 kts 

Velocity of DD (pair) dv  30 kts 
Number of neutral vessels w  variable 
y-direction length of rectangle yM  200 NM 
x-direction length of rectangle xM  variable 
Side of square of OH sensor footprint f 10 NM 
Mean time to classify detected vessel τ  2/60 hrs 
Number of OH sensors S  1 
Prob. correctly classifying an R rrc  0.99 
Prob. correctly classifying a W wwc  0.99 
Prob. a vessel in the footprint of the OH sensor is detected dp  1 

Table 5.9 Parameter Values for Figure 5.10 
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Probability R is Detected and Correctly Classified Before Leaving Region
Distance of y-Direction of Domain =200 NM

# Ws in Domain=(x/200)w
Alternating Renewal Process Approximation
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w=25
w=50
w=100

 
Discussion: In order to have an approximate probability of detecting and correctly 

classifying R before it leaves the region of about 0.9, four overhead sensors are needed. 

Each sensor patrols a rectangular domain 50 NM by 200 NM. For the parameter values 

considered, the approximate probability of detecting and correctly classifying R before it 

leaves the region is more sensitive to the size of the domain the sensor patrols than the 

number of Ws in the domain; however, the number of Ws considered are 25, 50, and 100. 

Decreasing the size of the domain that a single sensor patrols also decreases the number 

of Ws in the domain and hence the false positive rate. 

6. Assessing the Performance of the Automatic Identification System (AIS) for 

Vessel Tracking 

The Automatic Identification System (AIS) is a communication system using two 

frequencies in the VHS maritime band by vessels to periodically broadcast information 
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about position, identification, etc. The rate at which a vessel transmits its information 

depends on the speed of the vessel and how it is maneuvering. Each vessel broadcasts its 

information to vessels within its line of sight. At most, 4,500 messages can be transmitted 

per minute when each message takes one time slot. A self-organizing time division 

multiple access (SOTDMA) protocol is used to minimize the chance that two messages 

from different vessels will use the same time slot. The international maritime 

organization and governments are requiring vessels of certain sizes to use the AIS 

system. It is hoped that AIS will decrease the number of vessel collisions and increase 

maritime safety and security. There is also interest in using the AIS messages to track 

vessels. There are land AIS receivers and there is a proposal to put AIS receivers on 

satellites. A receiver on a satellite may have a field of view that extends over a domain in 

which vessels do not have line of sight with each other. In this case vessels may be using 

the same time slots to transmit messages; in which case, all messages using the same time 

slot will not be received by a satellite receiver. 

6.1. Formulation of a Continuous Time Markov Chain Model 

Each vessel is in one of J subdomains.  Assume a vessel uses a time slot for an 

independent random time having an exponential distribution with mean 1/η ; it then 

chooses a new time slot  that is not being used by another vessel in its own subdomain, 

assuming one exists. Each vessel must use s different time slots each minute. Let c be the 

total number of time slots available. Let jb  be the number of vessels in subdomain 

j, ; here 1,...,j = J jc b s> . Let 
1

J

j
j

b b
=

=∑  be the total number of vessels in all  

the subdomains. 
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Consider a particular time slot. Let ( )j tX  be equal to 1 if the time slot is being used 

at time t by a vessel in subdomain j and 0 otherwise. 

( ) ( ){ }
{

( )

( ) ( ){ } ( )

rate
at prob.
which   choose
vessels a 
in particular
region idle
j time slot
change
time slots;
each vessel
uses
s time
slots

11| 0

0 | 1

j j j
j

j j

P t h t b s h o
c sb

P t h t h o h

η

η

+ = = = × +
−

+ = = = +

X X

X X

14243

h

  (6.1.1) 

Thus, the long run proportion of time one time slot is busy with a vessel from 

subdomain j is /j jb s cπ = . The long run proportion of time one particular time slot is not 

being used by any vessel in any sub-domain is 
1

1
J

j

j

b s
c=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∏ . 

Let ( ) ( ) ( )1 ,..., Jt t= ⎡ ⎤⎣X X X t ⎦  a vector indicating those subdomains that have a vessel 

using the particular time slot. Let 1 j  be a J-dimensional row vector that has a 1 in the jth 

column and zeros elsewhere. Since the subdomains are independent 

( ) ( ){ }
1

1
lim 1

jj xxJ
j j

t j

b a b a
x P t x

c c
π

−

→∞ =

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
∏X .   (6.1.2) 

The long run proportion of time a time slot has exactly one vessel using it is 

( )
1 1

1 1
J J

j k
j

j j k j

b a b a
c c

π
= = ≠

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ ∑ ∏ .   (6.1.3) 

Consider a vessel in subdomain d. It uses s time slots during a minute. Let the 

probability that all messages from the vessel are blocked during a minute be 
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( )

no other
subdomain
using
time
slot

1 1

s

j
d

j d

prob

b s
s

c
γ

≠
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤

= − −⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∏
1442443

.     (6.1.4) 

6.2 Numerical Example 

There are 2,250 time slots on each of two frequencies. There are c=4,500 time slots in 

total. Assume each vessel transmits at s=6 times per minute. Each message requires one 

time slot. Suppose there are J=20 subdomains and each subdomain contains the same 

number of vessels. A satellite will be able to receive a message from a vessel in its field 

of view if a vessel transmits the message in a time slot that is not blocked by vessels in 

other subdomains during the observation time, , of the satellite.  We say that a vessel 

is observable if at least one time slot that the vessel uses during an accessible observation 

time is not blocked. Let the probability that a vessel in subdomain d is detected be 

obsT

( ) ( ), 1 obsT
d obs dp s T sγ= − .     (6.2.1) 

If all subdomains contain the same number of vessels, then (6.2.1) is equal to 

expression (3.2) in Ericksen et al. (2004). Ericksen et al. (2004) report that this simple 

formula agrees well with results from a more detailed simulation of the probability that a 

vessel will be detected. 
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Figure 6.1 displays the probability of vessel detection as a function of the total 

number of vessels in all the subdomains. The numbers of vessels in each subdomain are 

assumed to be equal. The observation time, 15obsT =  minutes. 
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7. Conclusions 

We have presented models and results for a maritime domain awareness scenario. In 

the scenario, there are neutral vessels, Whites (W), and hostile vessels, Reds (R), 

traveling within a domain. A patrolling overhead sensor detects vessels in the domain and 

classifies them as W or R. The overhead sensor follows each vessel that is classified 

(perhaps incorrectly) as R until relieved by escorting vessels; during this time it is 

unavailable to detect additional vessels. The ability to detect, correctly classify, and 

escort Rs is influenced by the size of the domain, the number of Ws that are in the 

domain, and the probability of correctly classifying detected vessels. The introduction of 
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technology such as the Automatic Information System (AIS) to track vessels should 

decrease the number of Ws in the domain and thus increase the ability to neutralize Rs. 
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Appendix A: An Exponential Model for the Probability that a Red Vessel will Leak 

Through a Maritime Domain 

A.1. The Probability of Detecting, Classifying, and Escorting a Red Vessel 

Assume there are always w White vessels (Ws) in the domain and there are no  

Red (R) vessels. The time until an overhead sensor (OH) detects a white vessel has an 

exponential distribution with mean ( )1/ wδ . Each time the OH detects a W it classifies it 

as a W with probability . With probability  it misclassifies W as an R. All vessels 

that are classified as R are tracked (followed) for a time having an exponential 

distribution with mean 1/

wwc wrc

φ . During the following time no further vessels are detected. 

The time until detection of a W that is classified as R has an exponential distribution with 

mean . ( )1/ wrw cδ⎡ ⎤⎣ ⎦

Assume a Red vessel (R) enters the domain at time 0. The R will remain in the 

domain for a time having an exponential distribution having mean 1/ µ . The time until 

the R is detected has an exponential distribution with mean ( ) ( )1 / 1w wδ+ +  if the OH is 

searching and there are w Ws in the domain. When the R is detected, it is correctly 

classified as R with probability . The time until the Red is detected and correctly 

classified has an exponential distribution with mean

rrc

( ) ( )1 / 1 rrw w cδ+ ⎡ + ⎤⎣ ⎦ . 

We assume all exponential times are independent. Let ( )p w  be the probability that 

the Red is detected, correctly classified, and escorted before it leaves the domain given 

there are w Ws in the domain. 
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( )
( )

( ) ( ) {

( )

Prob.
DDProb. Red arrivesis detected beforeand correctly R class. before leavesRed leaves regionregion or

a W is misclass.

11
1

11 1
1 1

1
1

rr

rr wr

wr

w c
wp w ww c w c

w w

ww c
w

δ φ
φ µδ δ

δ

δ

⎡ ⎤+⎢ ⎥+= ⎢ ⎥
µ +⎢ ⎥+ + + +

+ +⎣ ⎦

+
++

1444444442444444443

( ) ( )
( )

Prob.
W is misclass.
before Red 
is detected
and correctly
class. or Red
leaves
region 

11 1
1 1rr wr

p www c w c
w w

φ
φ µδ µ

⎡ ⎤
⎢ ⎥
⎢ ⎥ +⎢ ⎥+ + + +

+ +⎣ ⎦1444444442444444443

  (A.1.1) 

Solving 

( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

11
1

11 1
1 1

1
11 11 1

1 1
11

1
11 1

1 1

rr

rr wr

wr

rr wr

rr

rr wr

w c
w

ww c w c
w wp w

ww c
w

ww c w c
w w

w c
w

ww c w c
w w

δ φ
φ µδ δ µ

δ φ
φ µδ δ µ

φδ
φ µ

µδ δ
φ µ

⎡ ⎤+⎢ ⎥+⎢ ⎥ +⎢ ⎥+ + + +
+ +⎣ ⎦=

⎡ ⎤+⎢ ⎥+− ⎢

µ

⎥ +⎢ ⎥+ + + +
+ +⎣ ⎦

+
+ +=

+ + + +
+ + +

.   (A.1.2) 

Let ( )0p w  be the probability the Red is detected and correctly classified before it 

leaves the domain. 
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( )
( )

( ) ( )

( )

( ) ( )

0

Prob. Red
is detected
and correctly
class. before
Red leaves
region or
a W is misclass.
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11
1

11 1
1 1

1
1

11 1
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w c
wp w ww c w c
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δ δ µ

⎡ ⎤+⎢ ⎥+= ⎢ ⎥
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⎢ ⎥+ + + +
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µ

( )0

b.
W is misclass.
before Red 
is detected
and correctly
class. or Red
leaves
region 

p wφ
φ µ+

1444444442444444443

  (A.1.3) 

Solving 

( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

0

11
1

11 1
1 1

1
11 11 1

1 1
11

1
11 1

1 1

rr

rr wr

wr

rr wr

rr

rr wr

w c
w

ww c w c
w wp w

ww c
w

ww c w c
w w

w c
w

ww c w c
w w

δ

δ δ

δ

µ

φ
φ µδ δ µ

δ

µδ δ
φ µ

⎡ ⎤+⎢ ⎥+⎢ ⎥
⎢ ⎥+ + + +

+ +⎣ ⎦=
⎡ ⎤+⎢ ⎥+− ⎢ ⎥

µ

+⎢ ⎥+ + + +
+ +⎣ ⎦

+
+=

+ + + +
+ + +

.  (A.1.4) 

A.2. Misclassified White Vessels are Removed from the Population 

Assume that each time a White vessel is classified as R, it is removed from the 

population. The above equations become systems of equations. For example, the 

conditional probability that Red is escorted before it leaves the domain given there are w 

Whites in the domain satisfies the equation 
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( )
( )

( ) ( )

( )

( ) ( )
( )

11
1

11 1
1 1

1
1 111 1

1 1

rr

rr wr

wr

rr wr

w c
wp w ww c w c

w w
ww c

w p www c w c
w w

δ φ
φ µδ δ µ

δ φ
φ µδ δ µ

⎡ ⎤+⎢ ⎥+= ⎢ ⎥ +⎢ ⎥+ + + +
+ +⎣ ⎦

⎡ ⎤+⎢ ⎥++ −⎢ ⎥ +⎢ ⎥+ + + +
+ +⎣ ⎦

.  (A.2.1) 

The conditional probability that Red is detected and correctly classified before it 

passes through the domain given there are w Ws in the domain is 

( )
( )

( ) ( )

( )

( ) ( )
( )

0

0

11
1

11 1
1 1

1
1 111 1

1 1

rr

rr wr

wr

rr wr

w c
wp w ww c w c

w w
ww c

w p www c w c
w w

δ

δ δ µ

δ φ
φ µδ δ µ

⎡ ⎤+⎢ ⎥+= ⎢ ⎥
⎢ ⎥+ + + +

+ +⎣ ⎦
⎡ ⎤+⎢ ⎥++ −⎢ ⎥ +⎢ ⎥+ + + +

+ +⎣ ⎦

.  (A.2.2) 
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Appendix B: A Recursive Procedure to Find Limiting Probabilities for a Truncated 

Finite State Space Quasi-Birth and -Death Model 

Assume Reds that arrive when there are N Rs in the domain are lost and do not enter 

the domain. The state space is ( ) ( ) ( ), , , , ,  for 0,..., ;n s n f n c n N=  see Section (3.1). 

The balance equations for states (N,s), (N,f), and (N,c) are: 

[ ] ( ) ( ) ( ) ( )0 , 1, ,w rN N s N s N ,f N cµ δ δ π λ π φπ φπ⎡ ⎤+ + = − + +⎣ ⎦  

[ ] ( ) ( ) ( ), 1,r w ,N N f N f N sµ φ π λ π δ π+ = − +  

[ ] ( ) (, 1r ),N N c N cµ φ π λ π+ = − . 

An outline of the recursive procedure to find the limiting distribution is as follows; 

see also Gaver et al (1984). For each number of Rs n>0. 

1. Use the balance equation for ( ),n f  to express 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , 1, ,T T Tn f B n s n s B n f n f B n c n cπ π π= + − + ,π  

2. Use the balance equation for ( ),n c  to express 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , 1, ,T T Tn c C n s n s C n f n f C n c n cπ π π π= + − + 1,−  

3. Use the balance equation for ( ),n s  to express 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1, , 1, , 1,n s A n s n s A n f n f A n c n cπ π π π= − + − + −  

4. Use 2 and 3 to express 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1, , 1, , 1,n c C n s n s C n f n f C n c n cπ π π π= − + − + −  

5. Use 1, 3, and 4 to express 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1, , 1, , 1,n f B n s n s B n f n f B n c n cπ π π π= − + − + −  
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6. Use the balance equation for ( )0, f  to express 

( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0,f B s s B c cπ π= + π  

7. Use the balance equation for ( )0,c  to express 

( ) ( ) (0, 0, 0,c C s sπ π= )

)

 

8. Find (0, sπ  so that the sum of the limiting probabilities equals 1. 

Detailed Calculations appear below. 

Balance equation for (N,f): 

( ) ( ) ( ), 1, wr ,N f N f
N N

N sδλπ π
µ φ µ φ

= − +
+ +

π  

Let  ( ) ( ) ( ) ( ) ( ), ; , ; ,
, ,

wr
T TB N f B N s D N f N

D N f D N f
δλ

µ φ= = = +  

( ) ( ) ( ) ( ) ( ), , 1, ,T T ,N f B N f N f B N s N sπ π= − + π . 

Balance equation for (N,c): 

( ) ( ) ( ), ,T 1,N c C N c N cπ π= − , 

where 

( ), r
TC N c

N
λ
µ φ

=
+

. 

Balance equation for (N,s): 

[ ] ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (

0 , 1, 1,

, 1,

1, , 1, , , , 1,

wr
w r

T

r T T T )

,N N s N s N f N s
N N

C N c N c

N s B N f N f B N s N s C N c N

δλ
µ δ δ π λ π φ π π

µ φ µ φ

φ π

λ π φ π π φ π c

⎡ ⎤
⎡ ⎤+ + = − + − +⎢ ⎥⎣ ⎦ + +⎣ ⎦
+ −

= − + ⎡ − + ⎤ + −⎣ ⎦

. 

Let 

( ) [ ] ( )0, ,w TD N s N B N sµ δ δ φ⎡ ⎤= + + −⎣ ⎦  
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( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,
, 1, 1,

, , ,

, 1, , 1, , 1,

T Tr B N f C N c
1,N s N s N f N

D N s D N s D N s

A N s N s A N f N f A N c N c

λ
π π φ π φ π

π π π

= − + − +

≡ − + − + −

c−
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , 1, , ,

, 1, , , 1, , 1, , 1
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T T

T T

N f B N f N f B N s N s

,B N f N f B N s A N s N s A N f N f A N c N c

B N s N s B N f N f B N c N c

π π π

π π π

π π π

= − +

= − + ⎡ − + − + π − ⎤⎣ ⎦
≡ − + − + −

, 

 
where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ; , , ,

, , ,
T T T

T

, ;B N s B N s A N s B N f B N f B N s A N f

B N c B N s A N c

= = +

=
. 

For 1<j<N 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,

, 1, , 1, , 1,
where

, , , , ,

, , , , , ,

, , , , , .

T T

T T T

T T

j f

,B j s j s B j f j f B j c j c

B j s B j s A j s B j c C j s

B j f B j f B j s A j f B j c C j f

B j c B j s A j c B j c C j c

π

π π π≡ − + − + −

= +

= + +

= +

 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

, 1, , 1, , 1,
where

, , ,

, , , ,

, , , , .

T

T T

T T

j c

C j s j s C j f j f C j c j c

C j s C j s A j s

C j f C j s A j f C j f

C j c C j s A j c C j c

π

π π π≡ − + − + −

=

= +

= +
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
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( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )
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( ) [ ]0
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⎡ ⎤ T− ⎡ + + + ⎤ ⎡ + ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
− ⎡ + + + ⎤ − + +⎣ ⎦

 

( ) ( ) ( )
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, 1 1,

1 1,
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, , ,
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T T T
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π π π
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+ +
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

0

0

0

0

, 1 1,

1 1, , 1 1,

, 1,
,

1 1, 1, , 1 1, 1, ,
,

,

1 1, , 1 1, ,
,

,

, 1,

r

T T

r

T T

T T

T

D j c j j A j c

j A j f B j c j C j c

j c j c
D j c

j A j s A j f B j s j C j s C j f B j s
j s

D j c

j A j f B j f j C j f B j f
j f

D j c

C j f j f C

µ φ λ δ

δ µ
λ

π π

δ µ
π

δ µ
π

π

= ⎡ + + − + + ⎤⎣ ⎦
− + + − + +

= −

⎡ ⎤+ ⎡ + + + ⎤ + + ⎡ + + + ⎤⎣ ⎦ ⎣+ ⎢ ⎥
⎢ ⎥⎣ ⎦

+ + + + +
+

≡ − + ( ) ( ) ( ) ( ), , , 1,T Tj s j s C j c j cπ π+ −

⎦
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Finally, the balance equation for j=1 is 

[ ] ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1, 0, 1, 2 2,

0, 1, 2 2, 1, 2, 1, 2, 1,
r r w

w

f f s f

f s B s s B f f B c

µ λ φ π λ π δ π µπ

λπ δ π µ π π π

+ + = + +

= + + ⎡ + + c ⎤⎣ ⎦
. 

Let  

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( )

1, 2 2,

2 2,
1, ; 1,

1, 1,

2 2,
1,

1,

r

wr
T T

T

D f B f

B s
B f B s

D f D f

B c
B c

D f

µ λ φ µ

δ µλ

µ

= ⎡ + + − ⎤⎣ ⎦
+

= =

=

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1, 1, 1, 0, 1, 1,T T Tf B s s B f f B c cπ π π= + + π . 

The balance equation for  is ( )1,cπ

[ ] ( ) ( ) ( ) ( )01, 2 2, 0, 2 2,r rc c cλ µ φ π µπ λ π δ π+ + = + + s  

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )0

1, 2 2, 1, 2, 1, 2, 1, 0,

2 2, 1, 2, 1, 2, 1,
r rc C s s C f f C c c

A s s A f f A c c

λ µ φ π µ π π π λ π

δ π π π

+ + = ⎡ + + ⎤ +⎣ ⎦
+ ⎡ + + ⎤⎣ ⎦

c
 

[ ] ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

1, 2 2, 1, 2, 1, 0,

2 2, 1, 2, 1, 2, 1,

2 2, 1, 1, 1, 0, 1, 1,

2 2, 1, 2, 1, 0,

2 2, 1, 2, 1,

2 2, 1, 1, 1, 0,

r r

T T T

r

T T

c C s s C c c

A s s A f f A c c

C f B s s B f f B c c

C s s C c c c

A s s A c c

A f B s s B f f B

λ µ φ π µ π π λ π

δ π π π

µ π π π

µ π π λ π

δ π π

δ π π

+ + = ⎡ + ⎤ +⎣ ⎦
+ ⎡ + + ⎤⎣ ⎦
+ ⎡ + +⎣ ⎦
= ⎡ + ⎤ +⎣ ⎦
+ ⎡ + ⎤⎣ ⎦
+ + + ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1, 1,

2 2, 1, 1, 1, 0, 1, 1,
T

T T T

c c

C f B s s B f f B c c

π

µ π π π

⎡ ⎤⎣ ⎦
+ ⎡ + +⎣ ⎦

c

⎤

⎤

. 

Let  

( ) [ ] ( ) ( ) ( ) ( )
( ) ( )

0

0

1, 2 2, 2 2, 2 2, 1,

2 2, 1,
r T

T

D c C c A c C f

A f B c

λ µ φ µ δ µ

δ

= + + − − −

−

B c
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1, 1, 1, 0, 1, 0,T T Tc C s s C f f C c cπ π π= + + π , 
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where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

0 0

0

2 2, 2 2, 2 2, 1, 2 2, 1,
1,

1,

2 2, 1, 2 2, 1,
1,

1,

1,
1,

T T
T

T T
T

r
T

C s A s A f B s C f B s
C s

D c

A f B f C f B f
C f

D c

C c
D c

µ δ δ µ

δ µ

λ

+ + +
=

+
=

=

. 

The balance equation for ( )1, sπ  

[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1, 0, 1, 1, 2 2,

0, 1, 1, 1, 0,

1 1, 1, 1, 1, 0, 1, 0,

2 2, 1,

2 2, 1, 1, 1, 0,

2 2, 1, 1, 1, 1, 0, 1,

r w r

T T

T T T T

T T

T T T T

s s f c s

s B s s B f f

B c C s s C f f C s c

A s s

A f B s s B f f

A f B c C s s C f f C c

µ δ λ δ π λ π φπ φπ µπ

λπ φ π π

φ π π π

µ π

µ π π

µ π π

+ + + = + + +

= + ⎡ + ⎤⎣ ⎦
+ ⎡ + ⎤ ⎡ + + ⎤⎣ ⎦ ⎣ ⎦
+ ⎡ ⎤⎣ ⎦
+ ⎡ + ⎤⎣ ⎦
+ + + ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0,

2 2, 1, 1, 1, 0, 1, 0,T T T

c

A c C s s C f f C c cµ π π π

⎡ ⎤⎣ ⎦
+ ⎡ + + ⎤⎣ ⎦

π

. 

Let 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

01, 1, 1 1, 1,

2 2, 2 2, 1,

2 2, 1, 1, 2 2, 1,

r w T T T

T

T T T

D s B s B c C s

A s A f B s

A f B c C s A c C s

µ δ λ δ φ φ

µ µ

µ µ

= + + + − − ⎡ + ⎤⎣ ⎦
− −

− −
. 

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1, 0, 1, 0, 1, 0,s A s s A f f A c cπ π π= + + π , 
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where 

( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1,
1,

1, 1 1, 1, 2 2, 1,
1,

1,

2 2, 1, 1, 2 2, 1,
1,

1 1, 1, 2 2, 1, 1, 2 2, 1,
1,

1,

r

T T T T

T T T

T T T T T

A s
D s

B f B c C f A f B f
A f

D s

A f B c C f A c C f
D s

B c C c A f B c C c A c C c
A c

D s

λ

φ φ µ

µ µ

φ µ µ

=

+ ⎡ + ⎤ +⎣ ⎦=

+
+

⎡ + ⎤ + +⎣ ⎦=

. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1, 1, 1, 1, 0, 1, 0,

1, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0,

T T T

T

T T

c C s s C f f C c c

C s A s s A f f A c c

C f f C c c

π π π

π π π

π π

= + +

= ⎡ + +⎣ ⎦
+ +

π

⎤ . 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1, 1, 0, 1, 0, 1, 0, ,
where

1, 1, 1,

1, 1, 1, 1,

1, 1, 1, 1, .

T

T T

T T

c C s s C f f C c c

C s C s A s

C f C s A f C f

C c C s A c C c

π π π π= + +

=

= +

= +

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1, 1, 1, 1, 0, 1, 1,

1, 1, 0, 1, 0, 1, 0,

1, 0, 1, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, ,
where

1, 1, 1, 1, 1,

1, 1, 1, 1, 1,

T T T

T

T T

T T

T T T

f B s s B f f B c c

B s A s s A f f A c c

B f f B c C s s C f f C c c

B s s B f f B c c

B s B s A s B c C s

B f B s A f B f B c C

π π π π

π π π

π π π

π π π

= + +

= ⎡ + + ⎤⎣ ⎦
+ + ⎡ + + π ⎤⎣ ⎦
≡ + +

= +

= + + ( )
( ) ( ) ( ) ( ) ( )

1,

1, 1, 1, 1, 1, .T T

f

B c B s A c B c C c= +

 

The balance equation for ( )0, fπ  

[ ] ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0, 0, 1,

0, 1, 0, 1, 0, 1, 0,
r w

w

f s f

s B s s B f f B c c

λ φ π δ π µπ

δ π µ π π π

+ = +

= + ⎡ + +⎣ ⎦⎤
. 
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Let 

( ) ( )0, 1,D f Bλ φ µ= + − f  

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1, 1,
0, 0, 0,

0, 0,

0, 0, 0, 0,

w B s B c
f s c

D f D f

B s s B c c

δ µ µ
π π

π π

+
= +

≡ +

π
. 

The balance equation for  ( )0,cπ

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0 0

0, 1, 1,

1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0,

1, 0, 0, 0, 0, 1, 0, 1, 0,

1, 0, 0, 0, 0, 1, 0, 1, 0,

r c c c

C s s C f f C c c

A s s A f f A c c

C f B s s B c c C s s C c c

A f B s s B c c A s s A c c

λ φ π µπ δ π

µ π π π

δ π π π

µ π π µ π π

δ π π δ π

+ = +

= ⎡ + + ⎤⎣ ⎦
+ ⎡ + + ⎤⎣ ⎦

= ⎡ + ⎤ + ⎡ +⎣ ⎦ ⎣
+ ⎡ + ⎤ + ⎡ +⎣ ⎦ ⎣ π

⎤⎦
⎤⎦

. 

Let  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

0

0

0, 1, 1, 0, 1, 1, 0, .

Then
0, 0, 0, ,

where

1, 1, 0, 1, 1, 0,
0, .

0,

rD c C c C f B c A c A f B

c C s s

C s C f B s A s A f B s
C s

D c

λ φ µ δ

π π

µ δ

= + − ⎡ + ⎤ − ⎡ + ⎤⎣ ⎦ ⎣

=

⎡ + ⎤ + ⎡ + ⎤⎣ ⎦ ⎣=

c ⎦

⎦

)

 

(0, sπ  is found using the fact that the limiting probabilities sum to 1. 
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