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ABSTRACT and present experimental results on the TREC-6 ad hoc text retrieval
) o ) ~ task. Then, in Section 4, we objectively evaluate the system on the
In this paper we present a novel probabilistic information retrievalrREC-7 ad hoc task and report official evaluation results on the 1999

model that scores documents based on the relative change in the dq@REC-8 ad hoc task. Finally, we close with a summary in Section 5.
ument likelihoods, expressed as the ratio of the conditional probabil-

ity of the document given the query and the prior probability of the 2. INFORMATION RETRIEVAL MODEL

document before the query is specified. The document likelihoods Gjyven a collection of, documents{ D, }?_,, each documenb;

are computed using statistical language modeling techniques and thgs a prior likelihood given by(D;). After a queryQ is specified
model parameters are estimated automatically and dynamically fqjy a user, the likelihood of each document changes and becomes that
each query to optimize well-specified (maximum likelihood) objec-given by the conditional probabilitys (D;|Q). Some documents will

tive functions. We derive the basic retrieval model, describe the desecome more likely after the query is specified while others will either
tails of the model, and present some extensions to the model includingmain the same or become less likely. The documents that become
a method to perform automatic feedback. Development experimentgore likely are probably more useful to the user and should score bet-
are performed using the TREC-6 ad hoc text retrieval task and perfoter and be ranked ahead of those that either stay the same or become
mance is measured using the TREC-7 ad hoc task. Official evaluatiqgss likely. As a result, we propose to use the relative change in the
results on the 1999 TREC-8 ad hoc task are also reported. The perfefpcument likelihoods, expressed as the likelihood ratio of the condi-
mance results demonstrate that the model is competitive with curreglbnal and the prior probabilities, as the metric for scoring and ranking

state-of-the-art retrieval approaches. the documents in response to quély
1. INTRODUCTION
p(Di|Q)
S(D;i, Q) = ———+ 1
Probabilistic modeling for information retrieval (IR) has a long (D:,Q) p(Ds) @)

history [3]. Many of these approaches try to evaluate the probabilin(N o . . . )
of a document being relevanizj to a given query®) by estimating e can decompose this likelihood ratio score into more easily esti-
p(R|Q, D;) for every documentD; in the collection. These rele- Mated components using Bayes’ Rule and rewrite (1) as:

vance probabilities are then used to rank order the retrieved docu- . , ,

ments. However, due to the imprecise definition of the concept of S(D;, Q) = P(QID:) p(D:)/p(Q) = p(Q|D:)
relevance and the lack of available relevance training data, reliably p(Di) p(Q)
estimating these probabilities has been a difficult task. Because of

the the nature of the IR task, training data in the form of documentwherep(Qmi) is the probability of querg given documen); and

query pairs labeled with their corresponding relevance judgments i§different language moddl;. We can viewp(Q|D;) as the proba-

not genera_llly avall_abla priori. Previously seen querles,_f(_)r which bility that queryQ is generated by\;, the language model associated
relevance information can be created, can be used for training but their. hd hi h | duri h eval
applicability to new queries is not clear. Some relevance informatior\NIt locumentD;. This means that our goal during the retrieval pro-

. . ; o ; cess is to find those documents in the collection that maximize the
can be obtained in a multi-pass retrieval strategy by using relevan

Yikelihood of the query. These documents should be the ones that are

feedback. However, only a small number of relevance judgments 18105t useful to the user who specified quely

typically generated. Many of these probabilistic methods are better The p(Q) term represents the probability that quedyis gener-

suited for related applications, such as information filtering, where )
more relevance training data is available [6,7]. ated from a document independent (general) language migdetd

Instead of the imprecisely defined notion of relevance, we consorves asa normalization factor. Sing@) is constant for all doc-
. . - ) ' umentsD; given a specific query), it does not affect the rankin
sider the better defined measure of likelihood. In particular, we exal i 9 b query g

. . : ure "5t the d ts and can be safel d from th ing func-
ine the relative change in the likelihood of a document before and aftedron eH gvig\%?ntf“;:( an: ornew ;‘?thi)g;egg:; isrgrsnefule ifs\(I:V(;rlcvganltmc

a query is specified, and use that as the metric for scoring and ranki meaninaful interpretation of th r relative change in th
the documents. The idea is that documents that become more Iiké@ eaningful interpretation of the scores (as a relative change in the

after the query is specified are probably more useful to the user a eIihoo<_:1) and if we want to be a_ble to compare scores across differ-

hould score better and be ranked ahead of those documents wh { queries. In Section 3.3, we illustrate the usefulness(qf) for
ﬁkelihoods either stay the same or decrease. The document likel _ﬁgse purposes. In addition, thé) normalization factor is an im-
hoods are computedyusing statistical Ianguag.]e modeling techniqu ortant part of the automatic feedback extension to the basic model as

; - will see in Section 2.2. For these reasons, we will keeptii®)
and the model parameters are estimated automatically and dynarreé-rm in the scoring function in (2)
cally for each query to optimize well-specified objective functions. '
The paper is organized as follows. In Section 2, we derive th&.1. Model Details

basic retrieval model, describe the details of the model, and present In order to compute the score in (2), we need to be able to es-
some extensions to the model including a method to perform autdimate the quantitiep(Q|D;) andp(Q). To do this, we make the
matic feedback. We also discuss some related modeling approachessumption that the que€y is drawn from a multinomial distribution
Next, in Section 3, we evaluate the performance of the retrieval modalver the set of possible terms in the corpus and docubespecifies

@)

(Q) is the prior probability of quer®. Each documenb; specifies
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the parameters of the multinomial model. This gives us the followingNext, we add in and subtract OEt 0 q(t) log q(t), rearrange terms,

estimates fop(Q|D;) andp(Q): and then collapse terms to get:
t|D; t
p(QID;) = Hp t|D;)" ®3) Su(Di,Q) =Y _q(t) log (p( lt) )) =) a(t) log (%)
Ht 1 ' t=1 teqQ g teQ q
—KL(q(t),p(t| D;)) +KL(q(t),p(t))
p(Q) = H p(t (4) (11)
Ht el i Recall thay(t) can be interpreted ag¢|Q), the probability of termi

. . . . in query@, p(t|D;) is the probability of ternt in documentD;, and
wherec; is the .number of.tlmes termoccurs mkquer)Q k is the p(t) is the pr(o‘bab)ility of ternt in the general language (i.e., using
number of distinct terms in the corpus, = >, , c; is the total 5 yocument-independent model). The first term in (11) is the (neg-
number of terms in querg, p(¢|D;) is the probablllty of query term ative) KL divergence between the term distribution of quénand
t occurring in documenD; with the ConStfalmzt:l p(t|D:) =1,  documentD;. If the two term distributions are identical, then the di-
andp(t) is the probability of query termoccurring in the document  vergence will be zero. As the difference between the query and docu-
collection with the constrainEf:1 p(t) = 1. Substituting (3) and ment distributions becomes greater, the divergence increases, and the
(4) into (2) and simplifying (noting that,! = 1 for ¢, = 0), we have:  score decreases (because of the negative sign on the term). The second
. term is the KL divergence between the term distribution of qu@ry
p(t|D;) ct and a general document-independent model. Since this term doesn’t
(D, Q) = H W ®) depend on the document, it has no effect on the rankings of the re-
trieved documents; it only serves as a bias or normalization factor. It
is query-dependent and only comes into play if we compare scores
across different queries.
We also note that the scoring function in (8) has the form of the

t=1

Sincez® = 1 for all z, the product over alk terms can be replaced
by a product over only the terms that occur in the query:

p(t| D)\ standard vector space model. It consists of the sum over all terms
S(D;, Q) = H (T) (6)  tin the query of the product of a query dependent faat6r), and
icg N P a document dependent factdog (p(t|D;)/p(t)). It turns out that

To simpli tati dt t numerical underflows. weT2W probabilistic models can be expressed in the standard vector
0 simplify computation and 1o prevent nume . '’ "“space model format [3, 9, 15]. The models differ in what the query
perform the score computation in the log domain:

and document factors are and how they are estimated.
p(t|Dy) Next, we need to estimate the probabilitig$| D;) andp(t). We
S1(Di, Q) =log S(D1,Q) = ) _ e log< ) @

start by considering their maximum likelihood (ML) estimates:

= p(t)
di(t)

We note that since the logarithm is a monotonic transformation, the pui(t[Di) = Zki (12)
rank ordering of the documents using the log score remains the same t=1
as that using the original score. _ Do di(t) 13

In the original multinomial modek;: is the number of times term pmi(f) = Zn Zk (13)
t occurs in query@ and can only take on integral values; = =1 et=t
0,1,...,n. We would like to generalize; so that it can take on non- whered; (t) is the number of occurrences of tetnm documentD;,

negative real values. This will allow more flexible weighting of the £ is the number of distinct terms in the corpus, ani the number
query terms including the use of fractional counts which will be use-of documents in the collection.

ful in our automatic relevance feedback extension (Section 2.2) and  With a large document collection, there is enough datafart)
query section weighting (Section 3.6). To indicate this generalizatiofio be robustly estimated. However, this ML estimate will assign a
in the scoring function, we replaeg in (7) with ¢(¢), which can be  probability of zero to terms that do not occur in the document col-

interpreted as the weight of terin queryQ: lection. To avoid this undesirable property, we can use Good-Turing
(GT) methods to estimate(¢) [10]. GT methods provide probability
(Di, Q) = Z q(t) log (p(t|Di)> (8)  estimates for both observed and unobserved terms with the constraint
p(t) that the total probability of all terms must sum to one. For unob-

reQ served terms, GT methods provide an estimate ofdted probability

This generalization does not affect the ranking of the documents sina& these terms. This total probability can then be divided among the
it is equivalent to adding a query-dependent constant multiplicativ@ossible unobserved terms to provide per term probability estimates.
factor, 1/n, to the score in (7) to convert thg counts to they(t) For observed terms, GT methods provide probability estimates for
numbers. In fact, we can interprett) asp(t|Q), the probability of ~ these terms that are consistent with estimating non-zero probabilities
term¢ occurring in quenyQ, if ¢(t) = ¢:/n wheren =3~ ¢;. for the unobserved terms. This is done by reducing the total probabil-

We note that the scoring function in (8) can be related to thety of the observed terms to be less than one. Good-Turing methods
Kullback-Leibler distance [2], which is an information theoretic mea-work as follows. If a certain term occursr times in the document
sure of the divergence of two probability distributigngz) andp2(z):  collection, the ML estimate gf(¢) is given by:

KL(p1(z) Z pa(z ( (m)) ) Pmi(t) = 7/N (14)

() whereN is the total number of terms observed in the document col-
To show this relationship, we start by rewriting (8) as follows: lection. With GT estimation, the countis replaced by a modified

countr™ which is calculated as:

Su(Di, Q) =Y q(t) logp(t|Ds) = Y q(t) logp(t)  (10) Nri

=(r+1) (15)
teQ teQ N,




where N, is the number of terms that occurs exaetlyimes in the  they are the ones that we are interested in. Ideally, we want the set of
document collection. As a result, the GT estimatp @f for observed  documents to be those thare relevant to queryy. However, since
terms is given by: this information is not available, we need to use an approximation.

pet(t) =pr =7"/N (16)  One approach is to borrow the technique used in automatic relevance
feedback [15] (see Section 2.2). Basically, we perform a preliminary
retrieval run using an initial guess for(e.g.,a = 0.5) and assume
that the topM retrieved documents are relevant to the query. These
M top-scoring documents then become the set we use to estimate the

po = Ni/N 17) « weight for queryQ. M = 5 is a typical value that we use.
Using the approach described above, a separateestimated
This total probability is then divided equally among the possible unfor each query®. If desired, one can pool the query terms across
observed terms to provide per term probability estimates. Using thall the queries and estimate a single query-independerit is im-
observedV, values to calculate* in (15) can become problematic if portant to note that the above procedure estimates the mixture param-
N, = 0 for somer. As aresult, it is necessary to pre-smodthso  eters dynamically using the current query and the current document
that it never equals zero. There are many different possible smoothirgpllection. This is in contrast to the standard approach of determin-
methods and each gives rise to a slightly different GT approach. Wmg static, query-independent, model parameter values by empirically
use the Simple Good-Turing (SGT) approach described in [5]. Basituning on an old development set which typically consists of a differ-
cally NV, is linearly smoothed (in the log domain) and a decision ruleent set of queries and potentially a different collection of documents.
is used to decide when to switch from using the obsetVedralues  In Section 3.4, we explore the effect of different estimatedal-
to the smoothed values. ues on retrieval performance and examine query-specific and query-
Unlike the estimate fop(¢), the quantitypmi(¢|D;) is likely to  independenty’s.

be poorly estimated regardless of the size of the document collection In summary, the final metric used for scoring documéntin
because of the limited size of the individual documents. Many of theesponse to quer§ is obtained by substituting the estimates¢t)
terms in the model will have zero probability. There are many differ-andp(¢|D;) (Equations 16 and 18, respectively) into (8):
ent ways to compensate for this sparse data problem. One approach
is to model the term distributions using parametric distributions such (D, Q) = Z 4(t) log (Oépnll(t|Dz) + (1 — &) pet (t)) 21)

whereN = " rN, is the total number of terms observed in the
document collection. The GT estimate for tto#al probability of
unobserved terms is given by:

as Beta and Dirichlet distributions. A standard statistical language Pet ()
modeling approach, and the one we adopt, is to linearly interpolate
the more detaileg, (| D;) model with a better estimated, but more 5 5 A\ tomatic Relevance Feedback
general model, for exampleg: (¢) [10]:

teQ

Automatic relevance feedback is a proven method for improving
D) = o pa(t|Ds 1_ " 18 |nformat|pn retrleva_l _performan(_:e [6]. The process W0rl_<s in three
(tD:) = apm(tDi) + (1 = @) Pur(t) (18) steps. First, the original query is used to perform a preliminary re-
wherea is the mixture weight. The estimate-maximize (EM) algo- trieval run. Second, information from these retrieved documents are

rithm [4] can be used to estimateto maximize the (log) likelihood —Used to automatically construct a new query. Third, the new query

of queryQ given document);: is used to perform a second retrieval run to generate the final results.
A commonly used query reformulation strategy, the Rocchio algo-
o = arg max log (p(Q|Dx)) (29) rithm [15], starts with the original queryy, then adds terms found

in the top NV, retrieved documents and subtracts terms found in the
= argmax Z ) log (apmi(t|D:) + (1 — @) pes(t)) (20)  bottom NV, retrieved documents to come up with a new quepy,
e Modifying the query in this way adds new terms that occur in docu-
ments that are likely to be relevant to the query and eliminates terms
In the above formulation, there is a differentfor each document that occur in documents that are probably non-relevant. The query
D;. To simplify the model and to provide more data for parameterterms are also reweighted. The goal is to improve the ability of the
estimation, we can “tie” thex weight across the documents so that query to discriminate between relevant and non-relevant documents.

there is only a single, document-independentior each queryQ. We extend our basic retrieval model to include an automatic rele-
The following iterative procedure can then be used to estimate vance feedback processing stage by developing a new query reformu-
1. Initialize o to a random estimate between 0 and 1. lation algorithm that is specific to our probabilistic model. Recall that

in our retrieval model, we score documdnf in response to quer§

2. Updatex using: using the likelihood ratio score (2):

1
o = S ) _ P@QID)
Yo ZieIQ q(t) S(Di, Q) = Q) (22)
Z Z gpml(ﬂDi) Since the documents are ranked based on descending values of this
te icTy ("pml (t1Di) + (1 = a) pet (1) score, we can view the goal of the automatic feedback procedure as

trying to create a new quer@’ (based on the original quety and the
3. If a has converged (i.ele’ — a| < & for some small threshold ~documents retrieved from the preliminary retrieval pass) such that the
§) then stop. Otherwise, sat= o’ and goto step 2. score using the new query is better than the score using the original

. . - uery for those documenis; that are relevant to the query:
In this procedureZ, contains the indices of the set of documents.q y ' query

used to estimate for query@. We need to decide which documents p(Q'|D:) _ p(Q|D;) )
should be in this set. If we usal the documents in the collection p(@Q) = pQ) fori e I (23)
(i.,e.,Zg = {1,...,n}), the query terms will occur so seldomly in

the entire collection that will almost always be set to zero. That Becausé&y, the set of relevant documents for qué€yis not known,
would not be very useful. What we want is a reasonable estimate afie use an approximation and assume that the top scoring documents
« for those documents that are likely to be relevant to the query sinckom a preliminary retrieval run using the original query are relevant.



There are many different ways to decide which of the top scoringhe score. As a result, we will only add those terms frbfthat sat-
documents to select. One approach is to simply select a fixed numbésfy this property. Using this term selection criteria, we maintain the
M, of the top scoring documents. One concern with this approach igequality in (28) with each newly included term. Substituting the es-
that the selected documents can have very disparate scores. There tiarates forp(t) andp(¢|D;) (Equations 16 and 18, respectively), the
be a big score difference between the first and M€ document.  term selection criteria becomes:

Another approach is to use an absolute score thresholslp only

documents with scores abodeare selected. With this approach, it p(t|D") > 1 (29)
is possible to not have any documents that score above the threshold. p(?)
A different approach, and the one we adopt, is to use a relative score apm(t|D') + (1 — @) pgs(t)
threshold,y < 1, so documents that score within a factorodf the et (1) > 1
top scoring document are selected: D)
pmlit > 1 (30)
selectD; if S(D:, Q) (24) Pt (?)

max S(D;, Q) =7 , ,
D Therefore, we can equivalently ug%;(f(‘—f)’) > 1lorlog (%) >

This approach results in a variable number of documents for eaahto perform the term selection.

query, but the selected documents will have similar scores. A typical The only issue that remains is the estimation of appropriate values

threshold value that we useqs= 0.75. for the weightsg’(¢) of the newly included query terms. Since the
Since we want to improve the score for all the documents in thevalue of the score can be increased arbitrarily by using increasingly

setZq simultaneously, we need to deal with the set of documentsarger values of/’(t), we need to constrain the aggregate value of the

jointly. One way to do this is to create a new joint docum&fitby  weights. One reasonable constraint is that the magnitude of the query

pooling together all the documents in the §gf so the number of  weights be unity:

occurrences of termin the joint documenD’ is given by:

d(t)="Y dit) (25) Q' = /tezQ:I ¢(t)? =1 (31)
i€Zg

Another variation is to weight the contribution of each document, Adopting this constraint, we can use the te_chniq,ue of Lagrange mul-
by its preliminary retrieval scor&(D;, Q), so documents that score tiPliers [1] to find the set of query term weightly'(¢)}, that maxi-
better have more of an impact: mizes the score:

It = 3 (D1 Q) dit) (26) S () 1og (p(t'D ')) (32)

t
i€Zg teq p(?)

Using this new joint document)’, the inequality in (23) becomes: ~ The corresponding Lagrangian function is given by:

p(Q'1D) _ p(Q[D)

p /
p@) ° @ @D @ =3 0 1o (%)w IS e -1
teQ’ teQ’

Substituting our models for the conditional and prior probabilities and (33)

working in the log domain (Equation 8), we have Taking the partial derivative of (33) with respectt@nd setting it to
/ zero, we get back the constraint equation:
p(tD )) (28)

, p(t|D")
> do log( 0 ) > "q(t) log( 0|

teQ’ teQ G%L(QZ A =0 (34)
Let us consider the creation of the new quéryin two steps. First, let
us examine which terms should mEmovedfrom the original query Z g2 =1 (35)
Q in order to improve the score. Second, we can then examine which teQ’

terms from the joint documend’ should beaddedto the query to
further improve the score. Taking the partial derivative of (33) with respect to the query term

Starting with the original query), we consider each query term Weightg'(t) and setting it to zero, we get
t and determine whether it should be included or excluded from the

new queryQ’. Since the query term weightgt) are constrained to /8 L@Q,\) = 0 (36)
be greater than zero, the only way that a query teoan decrease the 9q'(t)
score is if% < 1. Therefore, if we exclude such terms from the p(t|D") i q(t) — 0 (37)
new queryQ’ (while keeping the term weights the same, ig&(t) = p(t) > o 7 (t)?

teQ’

q(t)), we can be assured that the inequality in (28) is satisfied. This
selection criteria makes intuitive sense since it basically states tha]Lta
query terms that occur more frequently in the general collection than
in the pooled documenb’ (which is created from assumed relevant 52 , D
documents) should not be used. 8/—(zt)2L(Q A =A(1-4'(1)%) (38)

Next, we consider which terms from the joint documé¥ishould q
be included to the query)” in order to further improve the score. For the score to be maximized, we need this second derivative to be
Following the same arguments as those used above, and noting thaks than zero. Sinde< ¢'(t) < 1, we must have\ < 0 in order for

q'(t) > 0, we see that only termtsfor which %g/) > lcanincrease (38) to be negative.

king the second derivative, we get



Combining equations (35) and (37) and solving dtit), we get Although our retrieval model shares this commonality with these
other approaches, there are some important differences. First, as de-
, 1 p(t|D") scribed above, our model is derived starting from a different theoret-
q(t) = - p(t) (39) ical justification. Second, different modeling assumptions and esti-
mation techniques are used to determine the underlying probabilistic

Since we require\ < 0, we see that the appropriate query Weightsquantities. Although we use the standard technigue of mixture models

simply have to be proportional to their score contribution: to estimate the quantity(Q)| Di), the underlying probabilistic com-
ponents in our mixture model are different from those used in [12]
p(t|D") and [9]. We back-off to the term’s probability of occurrence in the
q'(t) o< 1 — (40)  entire document collection. In [9], the back-off is to the term’s doc-
p(t)

ument frequency while in [12] the back-off is a scaled version of the
term’s mean probability of occurrence in documents that contain the
Cnférm. We also automatically estimate the mixture model parameters
nacpynamically (for each query) to maximize the likelihood of the

%uery given a set of top scoring documeqt®; } from the current

document collection. This is in contrast to the standard approach of

determining static, query-independent, mixture model parameter val-
p(t|D") 2 ues by empirically tuning on an old development set. In addition,

1 p(?) (41)  we attempt to deal with unobserved query terms in a more princi-
pled way by using Good-Turing techniques to smooth the underlying
probability models. Finally, we develop a new automatic relevance

Our description of the automatic relevance feedback procedurkeedback strategy that is specific to our probabilistic model. The pro-
is now complete. We have a procedure that automatically createsc@dure automatically creates a new query (based on the original query
new queryQ’ based on the original quer§ and a set of top-ranked and a set of top-ranked documents from a preliminary retrieval pass)
documents retrieved from a preliminary retrieval pass. The goal of ththat optimizes a well-specified objective function. In particular, the
procedure is to increase the likelihood ratio scores of the top-ranketgrm selection and the term weight estimation procedures are designed
documents by removing certain terms from the original query ando maximize the likelihood ratio scores of the set of documents pre-
adding new terms from the top-ranked documents with appropriateumed to be relevant to the query. Hopefully, improving these scores
term weights. Hopefully improving the scores will lead to improved will lead to improved retrieval performance.
information retrieval performance.

We note that this automatic feedback procedure significantly in- 3. INFORMATION RETRIEVAL EXPERIMENTS
creases the number of terms in the query since many of the terms in  Our information retrieval model is evaluated on the TREC-6, TREC-
the joint documentD’ will satisfy the selection criteria (29). If de- 7, and TREC-8 ad hoc text retrieval tasks [6-8]. The ad hoc task
sired, one can limit the number of additional terms by modifying thisinvolves searching a static set of documents using new queries and
term selection criteria so only terms with scores greater than someturning an ordered list of documents ranked according to their rel-
thresholdy > 1 will be included: evance to the query. The retrieved documents are then evaluated
against relevance assessments created for each query.

Retrieval performance is measured in terms of a tradeoff between
precisionandrecall. Precision is the number of relevant documents
retrieved over the total number of documents retrieved. Recall is the
In Section 3.5, we examine the ability of this automatic relevancenumber of relevant documents retrieved over the total number of rel-
feedback procedure to improve retrieval performance and explore thevant documents in the collection. Because it may be cumbersome to
effects of limiting the number of new query terms by increasing thecompare the performance of different systems using precision-recall
value of¢ in (42). curves, a single number performance measure catiean average

precision(mAP) is commonly used [6]. It is computed by averaging
2.3. Related Work the precision values at the recall points of all relevant documents for

In our retrieval model, we use the relative change in the likeli-each query and then averaging those across all the test set queries.
hood of a documenD; before and after the user quefyis speci- In this section, we briefly describe the data corpus that comprise
fied, expressed as the likelihood ratio of the conditional and the priofhe TREC-6, TREC-7, and TREC-8 tasks, mention the text prepro-
probabilities 2.24<), as the metric for scoring and ranking the docu- cessing that was done, and then present several retrieval experiments
ments. A document that becomes more likely after the query is spetising the TREC-6 task. In these development experiments, we ex-
ified is probably more useful to the user than one that either remainglore the usefulness of the(Q) normalization in the scoring, the
the same or becomes less likely. This score can be equivalently rewrigffect of using different mixture weights in the probability model,
ten as%. Since we need to estimapg¢Q|D;), the probability the use of the automatic relevance feedback processing, and section-

of query Q given documentD;, our model is related to several re- based weighting of the query terms.
cently proposed IR approaches which also make use of this prob&:1. Data Corpus

bilistic quantity [9,11,12]. ) ) _ The document collection in the TREC-6, TREC-7, and TREC-8

In[12] and [9], a language modeling argument is used to directly,q hoc retrieval tasks consists of text stories from various news and
posit thatp(Q|D;) is an appropriate quantity for scoring document jnformation sources. Details of the composition and size of the col-
D; in response to quer§. Mixture models are then used to compute |ections are given in Table 1. The documents in the TREC-7 task
this quantity. In [11], the probability that documef); is relevant  are a subset of those in the TREC-6 task (documents fronGtime
given queryQ, p(D; is R|Q), is used to score the documents. This gressional Recordire excluded from the TREC-7 collection). The
quantity can be rewritten, using Bayes Rule 2582 ‘;Rggg’“”" =f)_ document collection used in the TREC-8 task is identical to that used
A generative hidden Markov model (HMM) is then used to computein TREC-7. Each collection contains approximately 2 gigabytes of
the quantityp(Q|D; is R). text from over half a million documents.

This weighting scheme makes intuitive sense since we want to e
phasize terms that contribute more to the score. If desired, we
determine the exact value of the proportionality factor by substituti
(39) back into (35) and solving fox. Doing this, we find that:

>

teQ’

add term if

> ¢ (42)




Size Avg. # number of relevant documents for the topics in the TREC-6, TREC-7,
Data Set (MB) | #docs | wrds/doc and TREC-8 ad hoc tasks are shown in Table 3. We note that there
Financial TimegFT) 564 | 210,158 | 412.7 is great variability. Some topics have many relevant documents while
Federal Registe(FR) 395 | 55,630 644.7 others have only a few.
Congressional RecorfCR) 235 27,922 1373.5 In our retrieval experiments, we use the TREC-6 task as the “de-
FBIS(FBIS) 470 | 130,471 543.6 velopment” data set for tuning and optimizing our retrieval model.
L.A. TimegqLA) 475 | 131,896 526.5 Most of the contrasting experiments will be done on the TREC-6 task.
[TRECG @lsouces) | 2139 [ 656,077 5419 ] oo Coie 10 (00T i e A ee  evaluaion” i was.
TREC-7 (4 sources: no CR) 1904 | 528,155 497.9 done using the TREC-8 task. Following standard practices, we use the
TREC-8 (same as TREC-7) 1904 | 528,155]| 497.9 entire topic statement (consisting of the title, description, and narra-

tive components) in our retrieval experiments, unless otherwise noted.
Table 1: Statistics for the document collections used in the TREC-6

TREC-7, and TREC-8 ad hoc retrieval tasks. 3.2. Text Preprocessing
Before a document is indexed, it undergoes a relatively standard
# of Words set of text preprocessing steps. First, the text is normalized to remove
Data Set(topic #s) [ Min | Max | Avg. non-alphanumeric qha_rgcters like punctuation and to collapse case.
TREC-6 (301-350) | 47 156 | 88.4 Next, sequences of _|nd|V|duaI char_acters are automatlcglly grouped to
title 1 5 5 7 create single terms inan “automatic acronym aggregation” stage. For
description 5 62 26 4 example, the tt_axt _strlngU‘. S. A. " would be converted to s
narrative 17 142 65:3 a” after normalization and then tai$a ” after acronym aggregation.

Stop words, derived from a list of 600 words, are then removed from
the document. In addition to standard English function words, cer-

TREC-7 (351-400) | 31 114 | 57.6

title o 1 3 2.5 tain words frequently used in past TREC topics such as “document,”
description S 34 | 143 “relevant,” and “irrelevant” are also included in the list. Finally, the
narrative 14 92 40.8

remaining words are conflated to collapse word variants using an im-
TREC-8(401-450) | 23 | 98 | 51.3 plementation of Porter’s stemming algorithm [13]. To maintain con-

title 1 4 2.4 sistency, each topic description also undergoes the exact same text
description 5 32 | 138 preprocessing steps before it is indexed and used to retrieve docu-
narrative 14 | 75 | 351 ments from the collection.

Table 2: Statistics for the test topics used in the TREC-6, TREC§'3' p(Q) Normalization

7, and TREC-8 ad hoc retrieval tasks. There are 50 topics in each AS discussed in Section 2.1, theQ) normalization factor in the
retrieval task. scoring function (2) does not affect the ranking of the documents be-

cause it is constant for all documenty given a specific topi@.
However, we choose to keep this factor because it helps to provide a
There are 50 queries (also called “topics”) for each of the TRECMeaningful interpretation of the scores as a relative change in the like-
6, TREC-7, and TREC-8 ad hoc retrieval tasks. Topic numbers 301hood and allows the document scores to be more comparable across
350 are used in the TREC-6 task, while 351-400 are used in theifferent topics. In addition, as we've seen in Section 2.2,116@)
TREC-7 task, and 401-450 are used in the TREC-8 task. Each topRormalization factor plays an important role in the term selection and
consists of three sections: a title, a description, and a narrative. Stati§ighting stages of the automatic relevance feedback procedure.
tics regarding the size of the topics are shown in Table 2. Toillustrate the difference between the (unnormalized |‘I|l§)eglh00d
In order to evaluate the performance of a retrieval system, rele3core 6(Q|D;)) and the (normalized) likelihood ratio scor€57-),
vance assessments must be provided for each topic. In other wordsgure 1 plots the distribution of these two scores for the subset of
for each topic in the test set, the set of the known relevant document§levant documents for the 50 topics (topics 301-350) in the TREC-
in the collection needs to be determined. Since there are too marytask. The likelihood scores have a very wide distribution across
documents for complete manual inspection, an approximate methoglueries while the likelihood ratio scores are more tightly clustered.
known as the “pooling method,” is used to find the set of relevant docBOoXx plots are used to indicate the score distributions. The center line
uments [7]. For each topic, a pool of possible relevant documents i§ the box indicates the mean value while the lower and upper edges of
first created by taking the top 100 documents retrieved from the varithe box indicate, respectively, the lower and upper quartiles. The ver-
ous participating systems. Next, each document in this pool is mandical lines extending below and above the box show the entire range of
ally assessed to determine its relevance. Finally, those documents tfii scores. We observe that the document likelihood scores can differ
are judged relevant become the “answers” for the topic and are uséiastically depending on the topic. The best score for some topics
to conduct the performance evaluations. Summary statistics for th€.g-, 309 and 316) are worse than the lowest scores for other topics
(e.g., 315 and 339). Scoring the documents using the likelihood ratio
puts the scores for the different topics on a much more comparable

# of Relevant Docs range. These scores can be interpreted as how much more likely the
Data Set(topic #'s) | Min [ Max | Avg. [ Total document has become after the topic is specified than before.
[TREC-6 (301-350) | 3 | 474 | 92.2 | 4611 | In the computation of the standard information retrieval measures

of recall, precision, and mean average precision (mAP), each topic is

treated independently. Precision-recall curves are generated for each
topic separately using individual thresholds. These separate curves
are then combined to create an aggregate precision-recall curve and
Table 3: Statistics for the number of relevant documents for the tOpiCﬁ]e Sing|e number mAP measure. Since document scores are hot com-
in the TREC-6, TREC-7, and TREC-8 ad hoc retrieval tasks. Thergared across the different topics in the computation of these standard
are 50 topics in each retrieval task. information retrieval measures, they will be identical for both the like-

TREC-7 (351-400) | 7 361 | 93.5| 4674
TREC-8 (401-450) | 6 347 | 94.6 | 4728
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Topic-Dependent (variable) 0.278

Figure 1: Distribution of likelihood and likelihood ratio scores for the

relevant documents for topics 301-350 in the TREC-6 task. . . o
P Table 4: Retrieval performance in mean average precision (mAP) on

the TREC-6 task using different estimates of the mixture weight
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So6 mMAP =0.273 So6l ! (normalized query) In this section, we explore the effect of differenmixture weight
2" 2" o I o e estimates on retrieval performance and examine topic-specific and
994 D4t MAP = 0.049 topic-independent’s. To quantify the sensitivity of the model to the
o & vl mixture weighta, we explore a range of possible weight values and

0.2 0.2 measure the resulting retrieval performance. In Figure 3A, we plot re-

6 0-C B B=a_ trieval performance in mean average precision (mAP) on the TREC-6

00 02 04 06 08 1 00 02 04 06 08 €1 ad hoc task as a fun(_:tlon of the value of the mixture weightWe
Recall Recall see that although retrieval performance does vary with the valag of

there is a relatively large range of stable and good performance.
Figure 2: (A) Precision-Recall curve and mean average precision A scatter plot of mAP versus the normalized average score of the
(mAP) score on the TREC-6 ad hoc task using a mixture weight ofop retrieved documents for each of the differanteights is shown
a = 0.5. (B) Precision-Recall curves resulting from using a sin-in Figure 3B. The plot shows that retrieval performance is well cor-
gle threshold across all topics on the TREC-6 data for three differentelated p = 0.96) with the document scores. This means that we
scoring methods. can use the document scores to find an appropriate valuéhatt can

be expected to give reasonably good retrieval performance. In fact,

the automatiex parameter estimation procedure that we described in
] o . ) _ Section 2.1 tries to maximize the likelihood of togit given docu-
lihood and likelihood ratio scores. In Figure 2A, we plot the resultingment p,, p(Q|D:), which is the numerator of the document score
aggregate precision-recall curve and mean average precision (mA@)_ Since the denominator of the scopg(Q), remains unchanged,
measure on the TREC-6 ad hoc task for the 50 topics (301-350). Thigjs js equivalent to maximizing the entire document score. As shown
is the baseline performance of our retrieval model using the prelimy, Taple 4, running the preliminary retrieval pass using a fixed weight
inary retrieval run and a fixed toplc-lnd_epend_ent mixture weight ofs¢ o, — (.5 results in a retrieval performance of mAP=0.273. Perfor-
a = 0.5. A performance of mAP=0.273 is achieved. mance improves slightly to mAP=0.275 when we use the automati-

There are certain related applications, such as document clusterally estimated topic-independent weightcot= 0.434.
ing and topic detection, where it is important to be able to compare Since topic statements can be very different from one another,
document scores across different “topics.” To quantify how much theve can expect that using the samaveight for every topic is prob-
likelihood ratio score can help in these situations, we can generateadbly suboptimal. This is indeed the case as illustrated in Figure 4,
precision-recall curve that results from usingiagle thresholdcross  which plots retrieval performance in average precision (AP) for three
all the different topics. In this way, we can measure the ability of thedifferent topics (327, 342, and 350) from the TREC-6 ad hoc task
different scoring methods to handle across topic score comparisonas a function of the value of the mixture weight We see that the
In Figure 2B, we show such recall-precision curves and the assocoptimal value ofa for each topic can be very different. To address
ated mAP measure for the 50 topics on the TREC-6 ad hoc data ughis issue, we can estimate topic-dependest as discussed in Sec-
ing three different scoring methods. As expected, the raw likelihoodion 2.1. In Figure 5, we plot the distribution of the automatically esti-
score performs poorly when cross topic score are compared. A nomated topic-dependent mixture weights for the 50 topics (301-350)
malized likelihood score (normalized by the number of the terms irin the TREC-6 task. Many of the weights are centered around the
the topic) gives slightly better results. However, the likelihood ratiotopic-independent estimated value ®£0.434 but there are several
score, which is not only normalized by the number of terms in thetopics that have weights at the extreme ends of the range. Using these
topic but also by the prior likelihoods of the terms, gives even bettetopic-dependenty mixture weights, retrieval performance is further
performance. improved to mAP=0.278 as shown in the last row of Table 4.
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Figure 4: Retrieval performance in average precision (AP) for topicshe TREC-6 ad hoc task using the automatic feedback procedure as

327, 342, and 350 from the TREC-6 task as a function of the value ahe number of terms in the new topi’ is varied. By lowering the

the mixture weightx. thresholdp in the term selection criteria (42), more terms are included
in the new topic.

r 1 possibility is to simply setp = 1.0 so all terms that contribute pos-
itively to the score will be included. This corresponds to adding the
maximum number of terms allowed by our procedure. Using this
| i threshold value on the TREC-6 ad hoc task, the average number of
F FH 0 1 unique terms in the new que€y’ grows to 724.2. However, from the
behavior shown in Figure 6, the same or even slightly better perfor-
mance can be achieved by using many fewer terms. We find empiri-
cally that a reasonable threshold to usé is: 0.25 X Smax(Ds, Q),
Figure 5: Distribution of the automatically estimated topic-dependentvhereSmax (D:, Q) is the score of the top retrieved documéhgtfor
o mixture weights for topics 301-350 in the TREC-6 task. The pooledopic Q. This relative threshold value puts us in the stable perfor-
a is 0.434 and the averageis 0.432. mance region without adding too many terms to the new t@pic
We conclude that incorporating the automatic feedback process-
ing stage into the retrieval system significantly improves retrieval per-
3.5. Automatic Feedback formance. Large gains of 0.035 to 0.04 in absolute mean average

In thi . . grecision (from mAP=0.278 to 0.317) are obtained.
n this section, we evaluate the automatic relevance feedback pro-
cedure described in Section 2.2 and examine its ability to improve re3.6. Topic Section Weighting
trieval performance. Recall that during the feedback process, a new as described in Section 3.1, the queries or topics statements for
topic Q" is created by removing certain terms from the original topiCthe retrieval tasks consist of three different sections: a title, a descrip-
@ and adding new terms (with appropriate term weights) from thejon, and a narrative. We can expect that the different sections con-
top scoring documents obtained from a preliminary retrieval run. Theajn different amounts of useful information. To quantify how useful
number of new terms added @ can be controlled by changing the each section is in finding the relevant documents for the topic, we
thresholde in the term selection criteria (42). Lowering the value of can evaluate the retrieval performance resulting from using each topic
¢ adds more terms. Note that new query terms are added in order ggction individually. In Table 5, we show retrieval performance in
decreasing contribution to the total score; terms that contribute moghean average precision (MAP) on the TREC-6 ad hoc task using the
to improving the score are added first. different topic sections. We examine the use of the title, description,
Figure 6 plots retrieval performance, measured in mean averagénd narrative sections individually, the title and description sections
precision (MAP), on the TREC-6 ad hoc task as the number of termsombined (T+D), and all three sections together (T+D+N). Retrieval
in the new topia’ is varied. Running the preliminary retrieval pass performance after the preliminary and feedback retrieval stages are
using the original topics, which average 27 unique terms each, giveshown along with the average number of unique terms in each topic
a performance measure of mAP=0.273. Using automatic feedback tction. We can make several observations. First, the different topic
modify the topic results in significant performance improvements asections vary greatly in their size. The title, description, and narra-
illustrated in Figure 6. As more terms are included in the new topigive sections average 2.5, 8.8, and 21.7 unique terms, respectively.
Q', performance improves sharply, reaches a maximum at aroungecond, even though the title section contains the fewest terms, its
250-300 terms, declines slightly, and then levels off. The retrievapreliminary retrieval performance is better than that of the other two
performance peaks at mAP=0.317 for approximately 250 terms.  sections. This implies that the terms from the title section are more
It is interesting to note that performance is relatively stable ovewuseful than those from the other sections. Third, using multiple topic
a wide range of topic sizes spanning 200 to 700 terms. By signifisections results in better performance. Combining the title and de-
cantly increasing the number of terms in the topic, one may expedcription (T+D) gives performance that is better than any of the in-
that the topic specification may become too broad and, as a result, tidévidual sections, and using all three (T+D+N) gives even better per-
retrieval performance will be adversely affected. However, this doeformance. Fourth, automatic feedback improves performance in all
not happen in our case because the terms added to the new}opic cases but is more effective when there are more terms in the topic
are weighted proportionally to their score contribution as specified irstatement. In particular, the gain for the title section is small com-
(40). As a result, many of the additional terms will only have a smallpared to the gains for the other sections.
effect on the total score. In the above experiments, when we combined the different topic
In terms of determining an appropriagethreshold to use, one sections, we weighted each section equally. This means that in the

Number of Topics
PNWAOIONO0

o

0 01 02 03 04 05 06 0.7 08 09 1
Mixture Weight o




Topic Avg # Unique mAP mAP

Section Topic Terms | Preliminary [ Feedback | Topic Section | Preliminary | Feedback

Title (T) 25 0.225 0.230 T+D 0.212 0.243

Description (D) 8.8 0.178 0.221 T+D+N (All) 0.250 0.284

Narrative (N) 21.7 0.218 0.253

T+D 9.5 0.247 0.296 Table 7: Retrieval performance in mean average precision (mAP)
T+D+N (All) 27.0 0.278 0.317 on the TREC-7 ad hoc task using different topic specifications: ti-

tle and description combined (T+D), and all three sections together

Table 5: Retrieval performance in mean average precision (mAP) 0(1T+_D+N). Performance for the preliminary and automatic feedback
the TREC-6 ad hoc task using different sections of the topics: titlerétrieval stages are shown.

description, and narrative individually, title and description combined

(T+D), and all three sections together (T+D+N). The second column

shows the average number of unique terms in each section. The thifdREC-6 ad hoc task, we get section weights of 4.2 for the title, 1.8 for
and fourth columns show performance after the preliminary and feedhe description, and 1.0 for the narrative. This weighting emphasizes

back retrieval stages, respectively. the title section the most, then the description section, and finally the
narrative section.
mAP Weighting the topic sections in this way results in a small but con-
[ Topic Section Preliminary | Feedback sistent performance improvement over weighting each section equally,
T+D 0.247 0.296 as shown in Table 6. Retrieval performance in mean average preci-
T+D (weighted) 0.260 0.297 s_ion (m_AP)_ on _the TREC-6 ad hqc task With_ and W_ithout' topic sec-
TTDN 578 oL tion weighting is shown for two different topic configurations: title
. . : and description combined (T+D), and all three sections (title, descrip-
T+D+N (weighted) 0.303 0.325 tion, and narrative) together (T+D+N). The effect of the topic section

weighting is greater on the preliminary retrieval pass than on the au-
Table 6: Retrieval performance in mean average precision (mAP) ofbmatic feedback pass. Recall that the feedback process already in-
the TREC-6 ad hoc task with and without topic section weighting.cludes term selection and term weighting. As a result, some of the
Performance is shown for two different topic configurations: title andgains from the section weighting may already be accounted for in the
description combined (T+D), and all three sections (title, descriptionfeedback processing.

and narrative) together (T+D+N). Performance after the preliminary
and feedback retrieval stages are shown. 4. INFORMATION RETRIEVAL PERFORMANCE

All of the above experiments were conducted on the TREC-6 ad
hoc text retrieval task. These development experiments were used to

T+D+N case which combines all three sections, the title section onlgonfigure the system and to tune some system parameters. The final
contributes, on average, 2.5 terms to the combined topic while thgstrieval system has the following configuration:

narrative section contributes 21.7 terms. From the performance of the

individual topic sections in Table 5, itis clear that the terms in the title e Dynamic (for each query) and automatic estimation of the mix-
section are more useful than those in the narrative section. Maybe em- ture parameted using the procedure described in Section 2.1
phasizing terms from some sections (e.g., the title), more than terms with the following parameterd/=5.

from Othel’ SeCtionS (e.g., the narrative) in the formation Of the com- e Use Of the Second pass automatic re|evance feedback proce_
PiHEd topic W”'_feSU't in_bgtt(_ar performance than just equally weight- dure described in Section 2.2 with the following parameters:
ing all the sections. This is indeed the case. In [11], they found that +=0.75 (Equation 24) ang = 0.25 X Smax(D:, Q) (Equa-
weighting the topic terms based on what section they are in improved tion 42), whereSmax (D:, Q) is the score of the top retrieved

retrieval performance. In [14], the output from several retrieval runs documentD; for topic Q.
using the individual topic sections are combined to give improved « Use ofthe query section weighting procedure described in Sec-
performance.

tion 3.6 with the following parametery=0.75 (Equation 24).
The section weights are automatically determined for each new
set of test queries.

We can adopt a similar approach of weighting terms based on
their topic section membership to try to further improve retrieval per-
formance. One method is to weight the terms from each topic section
in proportion to the average score of the top documents retrieved ustow that the system configuration is set, we need to evaluate the per-
ing that section. The idea is that topic sections that give higher dociformance of the final retrieval system on new sets of held-out test data.
ment scores should be emphasized more than those that give lowgfe use the TREC-7 and TREC-8 ad hoc retrieval tasks, described in
scores. We are basically using the document score as a predictgection 3.1, for this purpose.
of retrieval performance which is consistent with our retrieval model .
which ranks documents based on descending values of the documéht- Retrieval Performance on the Test Set
scores. Because the scores are normalized (likelihood ratios), we are In Table 7, we show the performance (in mAP) of our system
able to compare them across different topic statements (consisting ofi the TREC-7 ad hoc task. Retrieval is done using two types of
different topic sections) to determine which topic formulation is bet-topics: one consisting of the title and description sections only (T+D)
ter. Basically, we run three retrieval passes using the title, descriptiomnd the other consisting of all three (title, description, and narrative)
and narrative sections individually, compute the average score of theections (T+D+N). Performance is shown for the preliminary retrieval
top retrieved documents from each run, and then use those scoresgass and the automatic feedback pass. We observe that automatic
weighting the terms from the different topic sections. The proces$eedback significantly improves performance for all conditions and
used to select the set of top scoring documents is the same as ttiat using longer topic statements is better. The performance level of
one used in the automatic feedback procedure (24). For each nawAP=0.284 on this task is competitive with the performance of the
task, this procedure is used to automatically determine the approprstate-of-the-art retrieval systems on the identical task as reported in
ate section weights. Using this topic section weighting scheme on thiae TREC-7 conference [7].



1
0.8 4~ T+D+N mAP=0.323
' -0~ T+D mAP=0.298
c
506
0
®
0.4
0.2
0
0 0.2 04 06 0.8 1

Recall

bilistic model is also developed. The procedure automatically creates
a new query (based on the original query and a set of top-ranked doc-
uments from a preliminary retrieval pass) by selecting and weighting
guery terms so as to maximize the likelihood ratio scores of the set of
documents presumed to be relevant to the query. To benchmark the
performance of the new retrieval model, we use the standard ad hoc
text retrieval tasks from the TREC-6 and TREC-7 text retrieval con-
ferences. Official evaluation results on the 1999 TREC-8 ad hoc text
retrieval task are also reported. Experimental results indicate that the
model is able to achieve performance that is competitive with current
state-of-the-art retrieval approaches.
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4.2. Retrieval Performance on the Evaluation Set
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We patrticipated in the 1999 TREC-8 ad hoc text retrieval evalu-
ation [8]. Performance on the official TREC-8 ad hoc task using our [7
probabilistic retrieval model is shown in Figure 7. Two retrieval runs
were submitted: one consisting of the title and description sections

only (T+D) and the other consisting of all three (title, description, [8]

and narrative) sections (T+D+N). A performance of mAP=0.298 is
achieved using the shorter topics; the full topics gave a mAP=0.323.

Out of the 55 participating systems that used the short topic descripTQ]

tion, our system ranked sixth behind systems that had mAPs of 0.321,
0.317, 0.317, 0.306, and 0.301. Out of the 37 participating systems
that used the entire topic description, our system ranked fourth bes
hind systems that had mAPs of 0.330, 0.324, and 0.324. Differen

in mAP from the median performance for each of the 50 topics for

the full topic run (T+D+N) are shown in Figure 8. Of the 50 topics, (11

40 scored at or above the median level and seven achieved the maxi-
mum score. On this task, we again see that our retrieval model is very
competitive with current state-of-the-art retrieval systems.

(12]

5. SUMMARY

In this paper we present a novel probabilistic information retrieval
model and demonstrate its capability to achieve state-of-the-art per-

formance on large standardized text collections. The retrieval modg¢i 3]

scores documents based on the relative change in the document likeli-

hoods, expressed as the ratio of the conditional probability of the doq 4

ument given the query and the prior probability of the document be-

fore the query is specified. Statistical language modeling techniques
are used to compute the document likelihoods and the model param-
eters are estimated automatically and dynamically for each query
optimize well-specified maximum likelihood objective functions. An
automatic relevance feedback strategy that is specific to the proba-
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