
Building Groupware on THYME

Seth Landsman1 and Richard Alterman2

1 The MITRE Corporation, Bedford MA 01730, USA,
landsman@mitre.org

2 Brandeis University, Waltham MA 02454, USA,
alterman@cs.brandeis.edu

Abstract. The study of collaboration within a community of users, as
it is mediated by a computer application, requires the construction of
groupware applications to mediate the collaboration. It also requires the
capability to analyze the collaboration as it is mediated by the computer
application. As the understanding of collaboration within a group un-
folds, ideally, the application can be quickly adopted to fit the changing
requirements of the group. Whereas existing toolkits for building group-
ware applications provide support for building production-level group-
ware, they do not provide the mechanism for analysis and rapid devel-
opment of new applications, which is necessary for the study of collabo-
ration.
This paper presents an engineering methodology and a set of key re-
quirements for building groupware applications that enable the analy-
sis of collaboration as mediated by these applications. We describe the
THYME framework and show how it can help groupware developers to
build applications rapidly and successfully. We also detail how a one
semester Human Computer Interaction class used the THYME frame-
work to construct synchronous groupware applications in a short amount
of time and with great success.

1 Introduction

Electronic collaboration with remote clients or colleagues is of growing impor-
tance in doing business. Key personnel are often traveling and company offices
are spread throughout the world. Groupware is situated to be a key aspect of
how organizations operate. However, in order for collaboration to become per-
vasive, the tasks that they enable must be understood, as must the needs of the
community of users who will incorporate the groupware applications into their
tasks.

As part of the practice of building groupware applications for study, we have
developed a concise lifecycle that describes how a collaborative is designed, built,
analyzed, redesigned, reconstructed and reanalyzed. This methodology is a revi-
sion of the spiral model [2] of software development, which includes explicit user
testing and analysis as part of the iteration.

The actions involved in the development of a groupware application are illus-
trated in Figure 1. The Designer is given a set of application requirements and

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0688

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Building Groupware on THYME

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MITRE Corporation,202 Burlington Road,Bedford,MA,01730-1420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

produces an application design. In the first round of development, this design is
often very high-level, and can be built with primarily off-the-shelf components.

Application
Design

Deployed
Application

Usage
Transcript

Designer Analyst

Maintenance
Developer

Developer

Requirements

Fig. 1. Lifecycle of a THYME application

From the designer’s requirements the Developer creates a deployable appli-
cation. The deployed application is constructed to generate a usage transcript,
which is analyzable via a set of existing or generated tools. A Maintenance Devel-

oper, who may or may not be the application developer, handles minor changes
to the application such as bug fixes and other discovered issues.

Based on the analysis of the application transcript, the Analyst determines
what changes to the application may need to be made. For groupware applica-
tions, the analysis of the mediated interaction among the users is at least as
important to the redesign of the application as the interface work of the indi-
vidual user. The changes are composed into a new set of requirements. These
requirements are handed to the designer, who continues the cycle through the
next round.

In building our framework, we took into consideration these requirements and
our past experiences in building groupware (an example being the VesselWorld
project [12]). Our goal was to be able to run through several iterations of the
lifecycle, improving the usability and fitness of the application to the users and
the task after each cycle.

To accomplish implement this proposed lifecycle, several capabilities must
exist:

1. Development time must be reduced. Applications need to be constructed and
modified with great velocity. This calls for a technique that reduces errors
and limits interdependency in the code.

2. The application needs to generate a transcript of its use.

3. The transcript needs to have an associated toolset with it in order to analyze
the transcript. These tools, such as tools to playback the transcript or col-
lect aggregate data, must be already built or inexpensive to build; otherwise
too much time will be spent developing these, adding time to each lifecycle
iteration. THYME contains both transcript collection facilities that trans-
parently build a complete transcript of use, and tools and tool generators to
aid in the analysis of the transcript. The details of how a playback tool is
generated is covered in another paper [11].

4. The application should be able to leverage off-the-shelf components wherever
possible for common tasks, both for user-oriented tasks, such as chatting or
using a shared whiteboard, and infrastructure level tasks, such as discov-
ery and messaging. It also needs to provide facilities for reusing existing
components.

This paper presents the THYME groupware framework. THYME is a flexible,
component-oriented [20] architecture for building groupware applications from
reusable, tailorable, and analyzable components. With this framework, group-
ware applications can be built, validated, and deployed quickly. The design prin-
ciples behind the framework encourage the construction of reusable components
that can be tailored to fit a specific needs, and, thereby, allows new groupware
interactions to be codified in future groupware applications. A further conse-
quence is that existing groupware components and interactions can be modified,
sometimes subtly and sometimes significantly, to fit the needs of a specific group-
ware application. Groupware components in THYME also produce transcripts
of their interaction with the user, allowing the user’s interaction with the ap-
plication to be later analyzed through, for example, ethnographic and discourse
analysis techniques. These transcripts are used to perform playback-based on
quantitative analysis, as well as other types of quantitative and qualitative anal-
ysis [4].

In this work, we will also discuss how THYME has been used in the classroom,
specifically how a Human-Computer Interaction class made use of THYME to
implement a same-time / different-place [3] groupware application as their term
project. These projects were implemented over the course of a 28-day period, a
feat that twelve out of fourteen groups successfully accomplished. Based on an
analysis of their work, we have drawn conclusions as to the use of THYME and
the adoption of its programming model. This figure is contrasted to a previous
Human Computer Interaction class. This class had 49 days to implement their
projects, and produced fewer complete projects.

2 The THYME Framework

To enable the proposed lifecycle for building groupware applications we con-
structed the THYME framework. THYME is a component-oriented framework
for building groupware applications that are analyzable, rapidly constructed,
and modifiable.

THYME is loosely based on the JavaBeans [6] programming model, similar to
other frameworks such as Wren [15] and FlexiBeans [19]. Similar to FlexiBeans,
THYME applications communicate via a peer-to-peer architecture, although can
emulate a client-server relationship when a groupware application is best suited
for such a design. THYME is designed to be more light-weight than Wren or
FlexiBeans; components are not repository-based, instead they are instantiated
and communicate through a messaging architecture, as described below.

Applications built using THYME are composites based around reusable,
minimally interacting components. This architecture is in contrast to, for ex-
ample, GroupKit [18], which is based around monolithic applications. GroupKit
provides substantial communication primitives and shared information mecha-
nisms, which greatly reduce the initial development of an application and provide
greater development simplicity. However, modifications to the application may
be more expensive.

THYME can also be contrasted to replicated architectures, like DistView
[17] and DISCIPLE [14]. Whereas these frameworks provide a direct and simple
method of collaboration, by creating a replicated task environment for each
member of the collaboration, they trade-off the flexibility required for some types
of complex collaboration. THYME explicitly supports the relaxed what-you-see-
is-what-I-see (WYSIWIS) types of applications, where replicated architectures
generally do not.

To ground the discussion of the framework, take the example of a chat room,
arguably the most pervasive form of collaboration current in use. The THYME
chat room, as depicted in Figure 2, allows the communication of textual infor-
mation between multiple users in an open, symmetric, synchronous fashion. The
basic layout exposes two major areas of interaction: the shared incoming chat
view (top) and the outgoing chat view (bottom).

Fig. 2. The chat room

A set of components form the chat room component collection. Figure 3
shows the minimal set of components that exist in the chat room and the ones
required from the larger THYME infrastructure.

� � � � � � � � � � 	

� � �

� �
 � � � � � � � 	

� � �

� � 	

� � � � � � � � 	
 � � �

� � � � �

� � � � 	 � � � � �
 � �

� � � � � � � �

� � � � � �
 � � �

� � � �

� � � � ! ! " � ! " # ! $ % $ � &

' () * + , $ - . � & � . / 0 � / . %

Fig. 3. Chat room components

The three custom components that form the basis of the chat room are rela-
tively simple. They communicate through a custom message associated with the
component collection called the Chat Communication Message, which contains
the sender of the message, the type of activity the message encodes, and activity-
specific information, such as a chat utterance. The message passing properties
of the components allow reasoning about their interaction. If a THYME com-
ponent has a limited set of messages it reacts to, then its interaction with other
components can be clearly shown. As discussed later in this section, embedding
the chat room component collection in an application is simple, straightforward,
and reliable.

The remainder of this section details the THYME framework, using the chat
room example as the running example.

2.1 Distributed Component Model

Within the THYME component model, there are five types of objects, with
each object in a THYME application being classifiable into one of these types.
Figure 4, based on the chat room system described above, shows the two major
types of functional objects that exist within an application, the component and
the service. Components interact with each other to perform the activity of the
application. Services are components that are part of the underlying THYME
infrastructure and provide resources and basic functionality for the components.

Figure 5, again based on the chat room, shows the three other types of
THYME objects, the message, data, and identifier. Messages are used to com-
municate between components. They package a set of data that is passed between
components, which the component uses to alter its underlying state, replace its
internal state, or interpret as a request. The identifier is used to represent a local
or remote component, being resolved into a component reference at run-time by
a component resolver service.

1 2 3 4 5 6 2 7 8 9 : ;
< 6 = >

? @ ; 7 4 6 2 7 8 9 : ;
< 6 = >

8 9 : ;
8 4 5 5 @ 2 6 3 : ; 6 4 2

A 4 B = C

A = D D : 7 = E 4 @ ; = F

8 4 5 G 4 2 = 2 ;
E = G 4 D 6 ; 4 F H

I J K L M N N O I N O P N Q R Q L S

3 4 5 G 4 2 = 2 ;

D = F T 6 3 =

Fig. 4. Components and services

U V W X Y Z V [\] ^ _
` Z a b

c d _ [X Z V [\] ^ _
` Z a b

\] ^ _
\ X Y Y d V Z W ^ _ Z X V

e X f a g

e a h h ^ [a i X d _ a j

\ X Y k X V a V _
i a k X h Z _ X j l

m n o p q r r s m r s t r u v u p w

x y z z { | y

} { ~ {

} { ~ {

} { ~ {

� � � � � � � � � � � �

Fig. 5. Messages, data, and identifiers

Components may also be grouped into composite components, which inherit
the properties of the union of their constituent parts. A complete groupware ap-
plication is one such example of a composite component. The composite compo-
nent is defined as COMPOSITE = {C1, C2, . . . , Cn}. A composite component
can be part of another composite component. The chat room is often used as a
composite component that consists of the set:

{INCOMING-CHAT -V IEW, OUTGOING-CHAT -V IEW,

CHAT -COMMUNICATION -MODEL}

The interaction between components is restricted by the following rules:

1. Identifiers are long lived, component references are short lived. A caller
should never hold on to a component reference past its immediate use, mean-
ing past sending a message or set of messages. In any case, the component
reference should not be used outside of the current method scope. The gen-
eral pattern for using a component is to dereferencing the component identi-
fier to a component reference, using that reference, and discarding it. When
sending a message to a component, the message is addressed with the iden-
tifier of the receiving component. The mapping of identifier to component
may be updated during run-time, so it is assumed that the mapping between
the identifier and component is transient, and should be treated as such.

2. Components should interact via messages whenever possible. Services can
be interacted with directly or via messages.

3. Components should be able to handle unexpected messages and data. As-
sume that other components can be hostile, compromised or just buggy. In
these cases, the component should not fail or end up with a corrupted state.
Dropping a message because it is incorrect or unexpected is correct behavior.
Similarly, a component should be able to continue to act properly if it does
not receive a timely response from a message sent to another component.

Components interact through messages. There is a mapping between a com-
ponent identifier and a component reference. The component repository service
is used to retrieve the component reference for a given identifier.

A component is altered by the processing of a message. Succinctly, given a
component C and message M , C(M) → C′. C′ is a product of the set of data
contained in the message, the state of the component, and the action contained
in the message. The component processes each data object individually, but how
the data affects the component’s internal state is shaped by each of these factors.

The state of a component is the product of the basis component, C0, and
an ordered list of all messages that have been applied to the component. In the
previous example, C(M) = C′ is also written as Cn(M(n+1)) = C(n+1). The
component C after the third message (C(M3)) is actually C0(M1) → C(M2) →
C(M3).

The state of a composite component is defined as the state of all of its con-
stituent composite components. A message Mn applied to a composite compo-
nent is distributed to all of its constituent components, resulting in COMPOSITE(Mn),
which is also written as {C1(Mn), C2(Mn), . . . , CN (Mn)}.

Orthogonality The property of orthogonality refers to whether or not two
components can directly interact. A component has a set of message types that
it accepts, and a set that it produces. If two components do not have any overlap
in these sets, they are said to be orthogonal to each other. The production and
acceptance sets of a composite component is the union of the production and
acceptance sets from all constituent components, respectively. If two composite
components have production and acceptance sets that do not overlap, they are
also considered orthogonal.

Orthogonality does not replace due diligence of the developer in verifying
correct behavior of the system. Two components that are orthogonal may still
interact through a common second component. The orthogonality relation does,
however, provide guidance to the developer in determining what interactions are
necessary to test based on the application’s dependency graph.

2.2 Message Routing

Messages are sent between THYME components, similar to Smalltalk [1] or
Objective-C [16], not remote procedure call (RPC)-based, like CORBA [5] or
Java RMI [7]. A THYME message is sent from component to component through
the use of a service called the message router, similar to the CORBA Object
Request Broker (ORB). However, the routers that THYME uses to communicate
between components is lighter-weight and used to handle communication within
a single address space, as well as between components that exist within separate
address spaces. THYME messaging, also like Smalltalk and Objective-C, is blind,
in that a message can be addressed to any component without knowledge of
whether or not the component can accept the message. In the case where a
component receives a message it cannot process, it is dropped silently. RPC
solutions require some knowledge of the methods available on remote objects,
trading off the a priori knowledge of a component in favor of being able to
use the programming language method call syntax to communicate with remote
objects.

Messages are passed between components via message routing. The routing
process ensures that the correct component or set of components receive a mes-
sage and are given the opportunity to apply the message to their state. When
a component sends a message, it is addressed with a set of component identi-
fiers. This message is then passed to the message router. The message router
determines how to route the message to the appropriate set of components. In
the non-network scenario, this process involves resolving the set of component
identifiers into a set of component references. The message is then delivered to
the resulting set of component references.

Network Routing Network routing is an extension to the basic model of com-
ponent routing, and adds the capability for components to communicate across
different process spaces, resulting in inter-process and inter-host message pass-
ing.

In the THYME network model all components are contained within a spe-
cific service, called a node. The node provides the infrastructure for the general
management and communication needs of a component. By default, in a system
that runs on a single host and in a single process space, all objects are contained
within a single, default node. When multiple process spaces are taken into con-
sideration, multiple nodes exist. A node is differentiated from another node via
its component identifier, called its NODE-ID. When messaging spans nodes,
the node identifier is also used in the targeted component’s component identifier.

All components that share direct access to a message router are defined as
local and are grouped inside of a node. When sending a message to a component,
the message router determines if the message is locally addressed. If it is local, the
message is delivered normally via the message router. If the message is not locally
addressed, the message router will establish a connection to the foreign message
router identified in the component identifier. The foreign message router is sent
the message, and goes through the same process, determining locality between
the receiving message router and the receiving component, and delivering or
re-sending as appropriate.

An example of routing between two nodes in the chat room application can be
seen in Figure 6. The node on the bottom of the screen containing a component
that ultimately sends out a new chat message. Within the node, the message is
routed from the outgoing chat view to the chat communication model. The chat
communication model addresses the message to the remote chat communication
model. The local message router realizes that this target is on a remote node
and sends the message to the foreign message router. Once the foreign message
router realizes that the message is targeted to a component local to it, the
message router obtains a component reference and delivers the message to the
model. The model then dispatches a message to the incoming chat view so that
the utterance contained in the original message can be displayed. Again, the
message router obtains a reference to the incoming chat view and delivers the
message.

2.3 THYME Component Library

The THYME framework provides two sets of groupware capabilities, shared
groupware widgets and groupware component collections. Groupware widgets are
shared versions of common user interface components, such as lists and tables.
Groupware component collections are implementations of common groupware
metaphors like shared surfaces, applications, and the chat room.

This section shows an example of both types of capabilities.

The Shared and Co-Present Scroll Pane Widgets The shared scroll pane
is an example of a strict WYSIWIS widget. This widget provides a UI object
that extends javax.swing.JScrollPane. When a widget of this type moves
its scrollbar (technically, when an adjustmentValueChanged() event is fired),
a SharedScrollPaneActionMessage is constructed and sent. This message in-
forms all connected components to change their scrollbar positions, ensuring that

� � � � � � � � � � � �
� � � �

� � � � � � � � � � � �
� � � �

� � � �
� � � � � � � � � � � � �

� � � � �

� � � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � �

� ¡ ¢

£ ¤ ¥ ¦ § ¨ ¤ ©
ª « ¬ ­ ª ¦ § § ® ¤ ¨ ¥ ¬ ­ ¨ ¦ ¤

¯ ° ± ± ¬ © °

ª « ¬ ­ ª ¦ § § ® ¤ ¨ ¥ ¬ ­ ¨ ¦ ¤
¯ ° ± ± ¬ © °

ª ¦ § ² ¦ ¤ ° ¤ ­ £ ³ ° ¤ ­ ¨ ´ ° µ
¶ ¦ ¦ · ® ²

� � � � � � � � � � � �
� � � �

� � � � � � � � � � � �
� � � �

� � � �
� � � � � � � � � � � � �

� � � � �

� � � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � �

ª « ¬ ­ ª ¦ § § ® ¤ ¨ ¥ ¬ ­ ¨ ¦ ¤
¯ ° ± ± ¬ © °

ª ¦ § ² ¦ ¤ ° ¤ ­ £ ³ ° ¤ ­ ¨ ´ ° µ
¶ ¦ ¦ · ® ²

� ¡ ¢

¸ ¹ º »

¸ ¹ º »

Fig. 6. A non-local routing example in the chat room

all shared scroll panes are showing the same portion of their scroll pane view at
all times.

The co-present scroll pane is a relaxed WYSIWIS form of the shared scroll
pane. Instead of having scroll pane position be replicated in each UI object, the
user is informed of the position of other users’ scroll panes through marks that
are placed on the scrollbar. When a change is made to the co-present scroll pane
widget, the same SharedScrollPaneActionMessage is sent. The co-present and
shared scroll panes can interoperate.

The Shared Whiteboard Component The shared whiteboard presents a
shared surface and set of artifacts that can be placed and altered on the canvas.
The artifacts on the canvas are replicated on all canvases that are attached to
the same room.

The component collection contains two view components, one for the palette
of artifact types and one for the canvas. The palette is populated at run time with
the list of available artifacts and canvas manipulated actions (such as DELETE
and SELECT). The canvas responds to mouse actions, based on where the mouse
is clicked, the status of the palette, and the internal status of the canvas. For
example, if the palette has an oval artifact selected, the canvas has nothing
selected, and the mouse action is a click and drag, an oval will start to be
drawn. However, the palette has the SELECT action selected, the mouse is
clicked within an already drawn oval and the mouse action is a click and drag,
the already drawn oval will be resized on the canvas. The basic shared whiteboard
is shown in Figure 7.

Fig. 7. The shared whiteboard

This component collection is a mostly-strict WYSIWIS groupware applica-
tion. All artifacts that are done being drawn are replicated on every user’s canvas.
When an artifact is being drawn or being changed, it is updated at intervals on
other client’s canvases, while being updated continuously on the canvas of the
client that is updating the artifact.

The whiteboard information is, ultimately, positional. A major externality
that this component is vulnerable to involves the size and shape of the white-
board dimensions. If one user has a much larger display than another, then some
artifacts may be drawn off-screen of the other user.

3 THYME in Use

The THYME framework has been used in a variety of applications [13] [10]. This
section discusses the details of how a class in Human Computer Interaction was
given a term project that required teams of students to implement a same-time
/ different-place groupware application using the THYME framework. The class
was divided into teams of three or four students. There were fourteen teams in
total. At the beginning of the semester, a schedule was given, shown in Figure
8. One feature of this schedule is that the class had only 28 days to implement
their projects. A key point is that the students designed their system without
any knowledge of the THYME framework, sample THYME applications, or any
knowledge of the THYME capabilities.

14 days Description of system, users and tasks. This task required the teams to inter-
view some sample users of their proposed application and design sample scenarios
of the application’s use.

21 days Initial design. In this task the teams designed the interface, presented story
boards of its use, and performed a GOMS [8] analysis of a subset of the proposed
interface. The interface was also presented to sample users to get their comments
and impressions. During this period, the class did not have access to THYME or
its capabilities.

28 days Prototype implementation. At the beginning of this period, the THYME
manual [9], initial instruction, and source code was given out. The THYME source
code included the complete implementation of the THYME framework and im-
plementations of sample applications that showed how the components could be
combined into working groupware applications. The class did not have access to
the THYME framework before this period. In addition to a working prototype,
the teams produced user documentation for their applications. During this time
period, three teaching assistants held approximately six hours per week of office
hours, which were used by some, but not all, teams.

21 days Usability testing and redesign. This task required the teams to have their user
population make use of the application. The teams collected transcripts of these
sessions, which were later analyzed to identify areas of problematic coordination.
This analysis led to a proposal document that described how the application could
be changed to overcome collaboration problems encountered in testing.

Fig. 8. Term project schedule

During the prototype implementation stage, the class was given access to
the THYME framework, the shared whiteboard, and the chat room. They had

access to both the class library and the source code. They were also given a
template project, a simple THYME application that showed how to embed both
the shared whiteboard and chat room components in a single application.

Of the fourteen teams, twelve teams completed applications that were able to
be tested. A usable application was defined as one that was sufficient to obtain
user feedback regarding its appropriateness to the task and generate a transcript
of use.

As a point of comparison, a similar class was taught in the Fall semester
of 1999, when the THYME framework was not available, but some comparable
sample groupware code was distributed. In this previous class, the teams were
given 49 days to implement their applications, 21 more days than the 2002
class. Nevertheless, the previous class had significantly fewer usable applications,
roughly half of the teams in that class produced usable applications.

3.1 Resulting Projects

Each project implemented by the Fall 2002 class showcases some of the differ-
ent types of applications that can be constructed using THYME. This section
details a subset of the implemented projects and how the framework was used
to implement their groupware design.

ORA The Online Research Assistant is an application that allows a more
experienced researcher (such as a librarian) to help another researcher locate
information on the World Wide Web.

This application was built using the shared whiteboard, chat room, and
shared browser components and made use of the shared scrollpane widget. The
shared whiteboard was modified to be used as a glass pane on top of the browser.
The browser and glass pane were put inside of a shared scrollpane. The chat room
assigned a different color to each user, synchronizing the choice of color with the
shared whiteboard. The chat room was also modified to show “emoticons” in
the incoming chat view. No new messages were added. All these changes were
cosmetic, altering properties of the components, but not altering their interac-
tion.

An example of this application in use can be seen in Figure 9. In this example
interaction, two users are collaboratively working to find a specific reference
using the ORA tool. Through the use of the overlaid shared whiteboard, the
collaborator who found the appropriate reference can direct the other participant
to it.

The ORA client application is defined by the set

{{INCOMING-CHAT -V IEW ′, OUTGOING-CHAT -V IEW, CHAT -
MODEL}, SHARED-WHITEBOARD-COMPONENT -COLLECTION, SHARED-
BROWSER-COMPONENT -COLLECTION}

Where the INCOMING-CHAT -V IEW ′ is a modified version of the origi-
nal INCOMING-CHAT -V IEW that supports user-defined colors and emoti-
cons.

Fig. 9. Screenshot of the online research assistant

SALSA The Supplementary Academic Learning System - Alpha application
provides a way for an instructor to lecture to geographically distributed students
and for those students to interact with the instructor. SALSA added two related
concepts to the THYME framework, floor control [3] and classes of users.

In SALSA there were two different classes of users, the instructor and the
student. The instructor regulates the floor control of the system. He could give
permission for a student to speak, decide who the next student to speak would be,
and revoke permission at any point. During a typical session, the instructor would
lecture and a student would “virtually” raise his hand. When the instructor was
ready to accept questions or comments, he would transfer control to a user of
his choice. Only one person could affect the chat room or shared whiteboard at
a time.

RA Scheduler The RA Scheduler is a groupware application to facilitate the
scheduling of Resident Assistant office hours at a university. The RA Scheduler
team used the chat room in implementing their own shared scheduling calendar
by implementing a series of canned messages, listened for by their chat client
component. When those messages were received, the chat client would parse
them and pass them to another component, a technique we refer to later as
hijacking of the component set. This effect was accomplished by modifying the
IncomingChatView (and only the IncomingChatView) to display their graphical
calendar interface and to send canned messages when the calendar is acted upon.
The message router, acting as a broker for the messages, blindly passes them on
to the other hijacked views, which parse the payload of the message and update
their view of the calendar appropriately.

4 Conclusions

The THYME framework allows developers to quickly build and rebuild group-
ware applications to fit the needs of their task domain and their users. This

paper showed the underlying component model behind the THYME applica-
tion and provided evidence of how a class of novices to the area of groupware
development could quickly adopt THYME for their needs. In addition to the
component model and basic groupware features, such as synchronous communi-
cation and the chat room, THYME also has a rich groupware component library,
which was touched upon here. Additionally, THYME is being used as an active
development platform. The ORA application was adapted for experiments that
took place at the University of Massachusetts School of Management, and other
applications are currently being built and used in experimentation [13].

The use of THYME in this classroom setting was driven by the need to show
that analyzable groupware could be developed quickly given the appropriate
set of tools. The breadth of groupware applications developed, sampled in this
paper, show the potential of the THYME framework and its simple, but not
simplistic, model for developing groupware and component library that can be
adopted quickly. Additionally, as covered elsewhere [11], the complete transcript
of use provides by the THYME components can be used by analysis tools that
enable the detailed understanding a community of users’ practice as mediated
by the groupware application.

Introducing a new framework and component model to Computer Science
students is hard. Component-oriented programming is not usually taught at the
undergraduate level and many of the techniques that make it an effective model
of development take time and effort to perfect. However, by observing how a
component model, such as THYME, is used over the course of the semester, we
can hope to gain some insight as to how to make the transition easier and more
complete, thereby broadening the applicability of new, and potentially better,
models of groupware development.

5 Acknowledgments

The authors wish to thank the students and teaching assistants who participated
in the Human-Computer Interaction class (COSI 125a), on which these results
were based.

The authors also wish to thank Jesse Palma, Alexander Feinman, Heather
Quinn and David Wittenberg for their comments.

This work was supported under ONR grants N00014-00-1-8965 and N00014-
96-1-0440, NSF grant EIA-0082393, and MITRE Innovation Grant 03MSR309-
A6.

References

1. The smalltalk programming language. http://smalltalk.org.
2. Barry Boehm. A spiral model of software development and enhancement. IEEE

Computer, 21(5):61–72, 1988.
3. Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some issues and

experiences. Communications of the ACM, 34(1):39–58, 1991.

4. Alexander Feinman and Richard Alterman. Discourse analysis techniques for mod-
eling group interaction. In Ninth Internation Conference on User Modeling, 2003.

5. Object Management Group. The common object request broker: Architecture and
specification. Technical report, 1995.

6. JavaSoft. The javabeans component architecture, 2003.
http://java.sun.com/products/javabeans/.

7. Javasoft. RMI, 2003. http://java.sun.com/products/jdk/rmi/.
8. Bonnie E. John and David E. Kieras. The GOMS family of user interface analysis

techniques: comparison and contrast. ACM Transactions on Computer-Human

Interaction, 3(4):320–351, 1996.
9. Seth Landsman. The Tiny THYMEr, a manual for using the THYME framework.

Technical Report TR-02-231, Dept of Computer Science, Brandeis University, 2002.
10. Seth Landsman. A Software Lifecycle for Building Groupware Applications: Build-

ing Groupw are On THYME. PhD thesis, Brandeis University, 2006.
11. Seth Landsman and Richard Alterman. Using transcription and replay in analysis

of groupware applications. Technical Report CS-05-259, Brandeis University, 2005.
12. Seth Landsman, Richard Alterman, Alexander Feinman, and Joshua Introne. Ves-

selworld and ADAPTIVE. Technical Report TR-01-213, Dept of Computer Sci-
ence, Brandeis University, 2001. Presented as a demonstration at Computer Sup-

port Cooperative Work 2000.
13. Johann Ari Larusson and Richard Alterman. Integrating collaborative technology

into the interdisciplinary classroom. In Preperation.
14. Wen Li, Weicong Wang, and Ivan Marsic. Collaboration transparency in the dis-

ciple framework. In Proceedings of Group 1999, 1999.
15. Chris Lüer and David S. Rosenblum. WREN - an environment for component-

based development. In Proceedings of the 8th European software engineering con-

ference held jointly with 9th ACM SIGSOFT international symposium on Founda-

tions of software engineering, pages 207–217. ACM Press, 2001.
16. Lewis J. Pinson and Richard S. Wiener. Objective-C: Object-Oriented Programming

Techniques. Addison-Wesley Pub Co, 1991.
17. Atul Prakash and Hyong Sop Shim. Distview: Support for building efficient collab-

orative applications using replicated objects. Proceedings of Computer Supported

Collaborative Work, 1994.
18. Mark Roseman and Saul Greenberg. Groupkit: A groupware toolkit for building

real-time conferencing applications. In Proceedings of CSCW 92, 1992.
19. Oliver Stiemerling, Ralph Hinken, and Armin B. Cremers. Distributed component-

based tailorability for CSCW applications. In ISADS, pages 345–352, 1999.
20. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison Wesley, 1997.

