
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/6790--06-8974

SPARC - A Simulation Model
for Electrical Discharges

September 20, 2006

Approved for public release; distribution is unlimited.

D.F. Gordon 
P. Sprangle 
S. Slinker

Beam Physics Branch
Plasma Physics Division

R. Fernsler

Charged Particle Physics Branch
Plasma Physics Division

M. Lampe

Plasma Physics Division



i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

SPARC - A Simulation Model for Electrical Discharges

D.F. Gordon, P. Sprangle, R. Fernsler, M. Lampe, and S. Slinker

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 41

Daniel F. Gordon

(202) 767-5036

Simulation model
Electrical discharges

20-09-2006 Interim Report

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

     A simulation model for electrical discharges which is capable of modeling streamer and leader propagation over long distances is described. 
The model couples an electrostatic field solver, a chemistry package, and a package for solving the hydrodynamic equations for a multi-species 
plasma. Optionally, an implicit solution of the fluid equations for the electrons can be used to allow for long time steps. Due to the computation-
ally demanding nature of the problem, the code features a semi-adaptive grid based on a sliding re-zone technique. The code is also parallelized 
and has been successfully scaled to hundreds of processors. Sample results are given showing streamer propagation over long distances, the 
streamer to leader transition, and hydrodynamic expansion of the hot gas.

Naval Sea Systems Command
1333 Isaac Hull Avenue, SE
Washington Navy Yard
Washington, DC 20376-5013

August 2005 - August 2006

67-8914-06

NAVSEA

Streamer and leader propagation
Hydrodynamic equations

Fluid equations

NRL/MR/6790--06-8974



iii

Contents

I. Introduction 1

II. Full Electrostatic-Hydrodynamic Model 2

A. Basic Equations 2

B. Chemical Reactions 3

C. Collisions 4

III. Implicit Electron Model 5

IV. Numerical Solution 7

A. Grid Convention 7

B. Second Order Time Advance 8

C. Finite Difference Form of Divergence and Laplacian 8

D. Poisson Solver 10

E. Fluid Advance and Chemistry 11

F. Sliding Rezone 12

G. Boundary Conditions 13

H. Parallelization 14

V. Benchmarking 15

A. Poisson Solver 16

B. Chemistry 16

C. Electrodynamics 17

D. Adaptive Grid 21

E. Implicit Model vs. Explicit Model 21

VI. Sample Results 23

A. Streamer Propagation 25

B. Streamer to Leader Transition 28

VII. Conclusions 32

VIII. Acknowledgements 33



iv

References 34

Appendix: TurboWAVE Normalizations 36



1

I. INTRODUCTION

An electrical discharge is a complex phenomenon involving electrodynamics, hydrody-

namics, radiation processes, and chemistry [1]. Over the years, substantial experimental,

theoretical, and numerical research has been carried out in this area due to interest in natu-

ral lightning, plasma sources, and more recently, electrical discharges guided by femtosecond

lasers [2, 3, 4, 5, 6]. Much of the numerical work has focused on streamer propagation, de-

fined as the propagation of a filamentary ionization wave in a cold gas [7, 8, 9, 10, 11, 12, 13].

The approach typically used is to couple Poisson’s equation to a continuity equation for elec-

tron, positive ion, and negative ion densities, and to solve these equations in two dimensional

axisymmetric geometry. Air chemistry is usually reduced to three reactions: avalanche ion-

ization, attachment, and recombination. A key assumption that is almost universally made

is that the rate coefficients depend only on the parameter E/ng, where E is the electric field

and ng is the neutral gas density. Although this is valid for a cold gas, it precludes accurately

describing the leader phase in which the gas is hot enough to maintain the electron density

even in low field regions. The code described in this report, SPARC (Streamer Propagation

and ARCing), uses a more complete air chemistry model which is appropriate for either the

streamer or leader phase. The code also includes hydrodynamics of the heavy species which

might be important for long propagation distances in which there is enough time for the hot

gas to expand.

Computer modeling of electrical discharges is difficult not only because of the complex

physics involved, but also because of the problem of carrying out the calculation on a practi-

cal timescale. Streamers and leaders are characterized by a very short spatial scale (microns)

at their extremity and a much longer spatial scale (meters) in their body. A similar disparity

can exist in the temporal scales. For example, in the case of a laser induced discharge in

air, the timescale for electrons to lose energy to Nitrogen vibrations is picoseconds, while

the hydrodynamic timescale can be microseconds. For uniformly spaced grid cells and time

levels, this implies that millions of cells and millions of time levels would be needed just to

do a one-dimensional calculation. The solution adopted in this work is three fold. First, an

adaptive grid is used so that tightly packed grid cells are only used where they are needed.

Second, the code is written to take advantage of massively parallel computer architectures.

Third, a heierarchy of models is introduced which allow various approximations to be in-

_______________
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voked optionally at run-time. These approximations are designed to allow longer time steps

to be taken while maintaining numerical stability.

The heierarchy of models contains several levels of approximation. At the highest level,

the full hydrodynamic equations are solved for every species including the electrons. This

requires resolving the plasma period and the electron collision time. At the next level

of approximation, mobility limited flow is assumed. This requires resolving the charge

redistribution time, but not the plasma period or electron collision time. At the next level

of approximation, the electron motion is treated implicitly and quasineutrality is invoked in

certain evaluations. In this case none of the detailed electron motion needs to be resolved.

Instead, the minimum time step is determined by fast chemistry such as electron cooling.

The fast chemistry can also be treated implicitly if desired. In every case, the heavy particles

can be held fixed for further computational savings.

II. FULL ELECTROSTATIC-HYDRODYNAMIC MODEL

A. Basic Equations

For each species, define the density ns, fluid velocity vs, energy density us, mass ms, and

charge qs. It is assumed the translational and rotational modes are in thermal equilibrium,

but the vibrational modes are not. The energy density is therefore written as

us =
1

2
nsmsv

2
s + Θs + Ξs (1)

where Θs accounts for translational and rotational thermal energy, and Ξs accounts for

vibrational energy. Neglecting viscosity and the magnetic field, the evolution of each species

is described by following coupled continuity equations: [14]

∂tns +∇ · (nsvs) = Ns (2)

∂t(nsvs) +∇ · (nsvsvs) = −∇Ps

ms

+
qsns

ms

E + Vs (3)

∂tΘs +∇ · (Θsvs) = −Ps∇ · vs −∇ · hs + Qs (4)

∂tΞs +∇ · (Ξsvs) = Xs (5)
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Here, Ps is the partial pressure of species s, E is the electrostatic field, and hs is the heat

flux. The electrostatic field is computed from

∇2φ = −4π
∑
j

qjnj (6)

E = −∇φ (7)

The pressure is found from

Ps = nsTs (8)

where the temperature Ts is related to Θs by

Ts =
2Θs

(3 + Rs)ns

(9)

Here, Rs is the number of rotational degrees of freedom. The terms Ns, Vs, Qs, and Xs

result from chemical reactions and collisions. The part due to reactions is denoted by the

same symbol primed, while the part due to collisions is denoted by a double-prime. For

example,

Ns = N ′
s + N ′′

s (10)

Ohmic heating, which plays a crucial role in electrical discharges, is contained in Q′′
s .

B. Chemical Reactions

Given a list of chemical reactions indexed by the variable i, the reaction rates are

Ri = αi

∏
j

n
ri(j)
j (11)

where αi is a temperature dependent rate coefficient, j varies over the reagents for reaction

i, and ri(j) is the stoichiometric coefficient for reagent j of reaction i. The rates αi are

assumed to be of the form

αi = αi0Ts
βi exp−γi/Ts (12)

where Ts can be the temperature of any species involved in the reaction, and αi0, βi, and γi

are constants. The source terms due to chemical reactions are

N ′
s =

∑
i

Ri [pi(s)− ri(s)] (13)
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msV
′
s =

∑
i

Ri

∑
j

ri(j)fisjmjvj − ri(s)msvs

 (14)

Q′
s =

∑
i

Ri

∑
j

ri(j)fisj

(
Θj

nj

+ X̂s
Ξj

nj

)
− ri(s)

Θs

ns

+ εi(s)

 (15)

X ′
s =

(
1− X̂s

)∑
i

Ri

∑
j

ri(j)fisj
Ξj

nj

− ri(s)
Ξs

ns

 (16)

where pi(s) is the stoichiometric coefficient for product s of reaction i, εi(s) is the partial

heat of reaction for species s, and fisj is the fraction of the energy lost by reagent j that

goes into species s. The operator X̂s simply evaluates to zero for species with vibrational

degrees of freedom, and unity for species without vibrational degrees of freedom. Note that

conservation of energy and momentum requires that
∑

s fisj = 1.

As an example, suppose reaction i = 1 corresponds to three body attachment, which has

the equation e− + O2 + O2 → O−
2 + O2. Let the e− index be j = 1, the O2 index be j = 2,

and the O−
2 index be j = 3. Then r1(1) = 1 and r1(2) = 2, so that R1 = α1n1n

2
2. The

attachment energy is accounted for by ε1(3) = 0.44 eV. The energy and momentum lost by

e− and O2 is gained by O−
2 , so that f131 = f132 = 1.

C. Collisions

The part of the source term for the momentum equation due to collisions is

V′′
s =

∑
j

njnsσsj

(
Ts

ms

+
Tj

mj

)1/2

(vj − vs) (17)

where σsj is the cross section for collisions of species s with species j. For electron-neutral

collisions, the cross section is taken to be constant at 5×10−15 cm2. Momentum is conserved

if the neutral-electron cross section is smaller by the mass ratio. For Coulomb collisions,

σsj =
4
√

2πq2
sq

2
j ln Λ

3ms

(
1

ms

+
1

mj

)(
Ts

ms

+
Tj

mj

)−2

(18)

where ln Λ is the Coulomb logarithm. The heating term due to collisions is

Q′′
s =

∑
j

νsjnjns (Tj − Ts) +
∑
k

msV
′′
s · (vk − vs)−

∑
l

X ′′
l (19)

where νsj is the coefficient of thermal equilibration, the second term accounts for heating

due to friction (including ohmic heating), and the index l varies over species that exchange
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vibrational energy with the thermal energy of species s. The thermal equilibration coefficient

is related to the collision cross section by

νsj =
3σsjms

ms + mj

(
Ts

ms

+
Tj

mj

)1/2

(20)

The vibrational source term is

X ′′
s = nsεv

(
1− e−εv/Ψs

)∑
ν

χνnjν

[
1− exp

(
εvν

Tj

− εvν

Ψs

)]
(21)

where Ψs is the vibrational temperature, ν is the vibrational level, εv is the energy between

adjacent vibrational levels, j indexes the species that excites the vibration, and χν is a

two-body rate coefficient which depends on Tj through

χν = P̂

(
4∑

i=1

ciνT
i
j

)
exp (−c5νTj) (22)

This form was found to give satisfactory fits to the tabulated data of Ref. [15]. The oper-

ator P̂ multiplies by zero if the operand is negative and by unity otherwise (the curve fit

sometimes gives negative values for Tj
<∼ 0.2 eV). The vibrational temperature Ψs is found

from

Ψs =
εv

ln (1 + εvns/Ξs)
(23)

III. IMPLICIT ELECTRON MODEL

The full electrostatic-hydrodynamic model discussed in the last section requires that the

electron motion be explicitly resolved. This is computationally demanding since it requires

that the timestep be small enough to resolve both the electron collision frequency and the

electron plasma frequency. For example, to accurately resolve electron-neutral collisions

requires a timestep of <∼ 100 femtoseconds. In this section we give a model that treats the

heavy species as in the last section, but uses more efficient equations for the electrons.

The need to resolve the electron-neutral collision frequency can be removed by replacing

the electron momentum equation with its equilibrium solution

ve =
qeneE−∇Pe

νemene

(24)

where the subscript e refers to electrons, convection of momentum was neglected, νe is the

aggregate collision frequency for electrons with all heavy particles, and we took

Ve = −νeneve (25)
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Unfortunately, this does not necessarily improve the situation since the charge redistribution

time meνe/4πneq
2
e must still be resolved. For electron densities higher than 1015 cm−3 this

timescale is even shorter than the plasma period or collision time.

The need to resolve the charge redistribution time emerges when Eq. (24), the Poisson

equation, and the continuity equation are combined. Let ρ be the charge density and j be

the current density. Inserting Eq. (24) into j ≈ qeneve gives

j = σ

(
E− ∇P

qene

)
(26)

where σ = q2
ene/meνe is the conductivity. Inserting this into the equation of charge conser-

vation ∂tρ +∇ · j = 0 and using Poisson’s equation ∇2φ = −4πρ gives(
∂t

4π
+ σ

)
∇2φ1 +∇φ1 · ∇σ = E0 · ∇σ −∇ · (µe∇P ) (27)

where φ1 is the space charge potential, E0 is the known external field, and µe = qe/meνe is

the electron mobility. The operator ∂t/4π+σ dictates that in regions of uniform conductivity

relaxation occurs on a 1/4πσ timescale.

Conceptually, the simplest way to avoid resolving the charge redistribution time is to

simply drop the time derivative from Eq. (27) and solve for the equilibrium φ1 every timestep.

This approach turns out to be ineffective, however, because the global equilibration rate is

not always fast compared to other rates of interest. Another approach [16] is to solve

Eq. (27) using an implicit differencing scheme (this drives the equation toward its equilibrium

solution no matter how large the timestep). This results in an elliptical equation for φ1

with coefficients that not only vary in time, but also have a spatial variation that is not

generally separable. This is undesirable because the direct elliptical solver to be described

below cannot be used on such equations. Furthermore, it is preferable from a programming

point of view to use the same field solver for both the implicit electron model and the full

electrostatic-hydrodynamic model.

Accordingly, the approach adopted here is to obtain φ from the usual Poisson equation,

but obtain ρ from Eq. (27) re-written as follows:

(∂t + 4πσ) ρ = −E · ∇σ +∇ · (µe∇P ) (28)

This equation can be solved stably for timesteps � 1/4πσ by treating the left hand side

implicitly and the right hand side explicitly. This results in an equation that is very easy to
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solve. Further simplification can be obtained by replacing the continuity equation (2) with

the quasineutrality condition

qene = −
∑
s 6=e

qsns (29)

and the energy equation (4) with

∂tΘe = Qe (30)

Note that these replacement equations apply only to the electrons. Heavy particle motion

is still computed using Eqs. (2)-(5).

IV. NUMERICAL SOLUTION

A. Grid Convention

Consider a two-dimensional grid with cells indexed by i and j, and coordinate axes

denoted by z and r. The interior grid cells are labeled by the set i ∈ (1, 2, ..., Nz) × j ∈

(1, 2, ..., Nr). The interior is surrounded by a single layer of ghost cells. All quantities

are considered known at the cell centers. For example, φ1(i, j) refers to the space charge

potential at the center of cell (i, j).

The particular geometry of the grid does not have to be specified in formulating the

problem. Instead, finite difference equations can be derived that depend on the volumes of

the cells and the areas of the cell walls. These areas and volumes can be specified when the

code is started, and can even be changed while the code is running. This allows a single

algorithm to work on either a cartesian or cylindrical grid, and also allows the grid to change

as the simulation runs. The volume of cell (i, j) is written V (i, j). The area of the cell wall

bounding cell (i, j) on the negative z-side is Az(i, j). The area of the cell wall bounding cell

(i, j) on the negative r-side is Ar(i, j). The position of the center of cell (i, j) is (zi, rj). It is

assumed that the i-position of any cell is independent of j, and vice-versa. This is equivalent

to the statement that the grid lines must be orthogonal.
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B. Second Order Time Advance

The differential equations describing the evolution of all the quantities considered in the

SPARC model can be put in the form

∂tf = T̂ f (31)

where f is the vector of all quantities to be advanced and T̂ is an operator that does not

depend explicitly on time. Let the value of f at time level n be denoted fn. To compute

fn+1 with second order accuracy, a variant of the midpoint method is used. In the usual

midpoint method, a provisional value fn+1/2 is computed using

fn+1/2 = fn +
∆t

2
T̂ fn (32)

and the value at the new time level is computed using

fn+1 = fn + ∆tT̂ fn+1/2 (33)

This description is not quite adequate for SPARC because of the subtleties involved in

evaluating certain equations. However, the midpoint method can be easily generalized as

follows. Suppose we have an operator F̂ (∆t,g) that advances fn by a time interval ∆t using

g as the vector of quantities to be used in evaluating the right hand side of Eq. (31). Suppose

further that if g = fn, the advance is first order accurate:

fn+1 = F̂ (∆t, fn)fn + O(∆t) (34)

Then, second order accuracy is achieved by using

fn+1/2 = F̂
(

∆t

2
, fn

)
fn + O(∆t) (35)

fn+1 = F̂ (∆t, fn+1/2)fn + O(∆t2) (36)

It remains only to identify the components of F̂ with the first order algorithms that are used

to advance the quantities of interest.

C. Finite Difference Form of Divergence and Laplacian

The finite difference form of the divergence of a discrete vector field E(i, j) defined on

any grid where the geometry is specified as above is

∇ · E = −D1Ez(i− 1/2, j) + D2Ez(i + 1/2, j)−D3Er(i, j − 1/2) + D4Er(i, j + 1/2) (37)
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where the subscripts on E select a vector component, and

D1(i, j) = Az(i, j)/V (i, j) (38)

D2(i, j) = Az(i + 1, j)/V (i, j) (39)

D3(i, j) = Ar(i, j)/V (i, j) (40)

D4(i, j) = Ar(i, j + 1)/V (i, j) (41)

Note that the arguments of D1 . . . D4 were suppressed in Eq. (37). Also, fractional indices

indicate that an average is to be taken over the values corresponding to the two nearest

integral indices. For example,

Ez(i− 1/2, j) = Ez(i− 1, j)/2 + Ez(i, j)/2 (42)

The form of the Laplacian consistent with this definition of the divergence is found by

substituting

Ez(i− 1/2, j) = (φ(i− 1, j)− φ(i, j))/∆i−1/2 (43)

Ez(i + 1/2, j) = (φ(i, j)− φ(i + 1, j))/∆i+1/2 (44)

Er(i, j − 1/2) = (φ(i, j − 1)− φ(i, j))/∆j−1/2 (45)

Er(i, j + 1/2) = (φ(i, j)− φ(i, j + 1))/∆j+1/2 (46)

into the formula for the divergence. Here we have defined

∆i+1/2 = zi+1 − zi (47)

∆j+1/2 = rj+1 − rj (48)

This gives for the Laplacian

∇2φ =
D1φ(i− 1, j)

∆i−1/2

+
D2φ(i + 1, j)

∆i+1/2

+
D3φ(i, j − 1)

∆j−1/2

+
D4φ(i, j + 1)

∆j+1/2

+ D5φ(i, j) (49)

where

D5 = −
(

D1

∆i−1/2

+
D2

∆i+1/2

+
D3

∆j−1/2

+
D4

∆j+1/2

)
(50)
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D. Poisson Solver

The Poisson solver used in SPARC takes advantage of the fact that for the problem of

interest, Nz � Nr, where we now associate z with the axial direction and r with the radial.

Even with an adaptive grid, the number of axial cells is still much greater than the number of

radial cells because the cell size has to be changed gradually to maintain accuracy. SPARC

takes advantage of Nz � Nr by solving the Poisson equation using a technique that requires

O(NzN
2
r ) operations. Since Nr is not too large (≈ 100), the technique works well. In fact,

it turns out that the Poisson solver does not dominate the computation time in most cases.

Unlike iterative methods, the approach developed here gives the solution to within machine

precision in a fixed number of operations. It also parallelizes well via domain decomposition

in the axial direction.

The finite difference form of the Poisson equation can be put in the form of a matrix

equation if φ(i, j) and ρ(i, j) are regarded as matrices where i is the axial (column) index

and j is the radial (row) index. The matrix form of the Poisson equation is

Rφ +
(
ZφT

)T
= −4πρ (51)

where R is the radial part of the Laplacian operator written in matrix form and Z is the

axial part. The superscript T indicates that the transpose is to be taken. The matrices R

and Z are

Zim =



D1(i)/∆i−1/2 m = i− 1

−D1(i)/∆i−1/2 −D2(i)/∆i+1/2 m = i

D2(i)/∆i+1/2 m = i + 1

0 otherwise

(52)

Rjm =



D3(j)/∆j−1/2 m = j − 1

−D3(j)/∆j−1/2 −D4(j)/∆j+1/2 m = j

D4(j)/∆j+1/2 m = j + 1

0 otherwise

(53)

Here the requirement emerges that D1 and D2 be independent of j, and D3 and D4 be

independent of i. This requirement will always be met provided the grid lines are orthogonal.

We now arrange the eigenvectors of R in columns to form a matrix denoted by H−1. This

matrix has the property that

HRH−1 = Λ (54)
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where Λ is diagonal. Multiplying the Poisson equation by H on the left hand side causes

the problem to decouple into Nr independent one dimensional problems:

D1

∆i−1/2

φ̂(i− 1, j)−
(

D1

∆i−1/2

+
D2

∆i+1/2

− Λj

)
φ̂(i, j) +

D2

∆i+1/2

φ̂(i + 1, j) = −4πρ̂(i, j) (55)

where φ̂ = Hφ and ρ̂ = Hρ. This equation can be solved by the usual tridiagonal algorithm.

This leads to the following procedure for obtaining φ given ρ:

1. Diagonalize R and store the eigenvalues Λj and the matrices H and H−1. We do this

using the QR algorithm and inverse iteration. Since the radial grid spacings do not

evolve, R stays constant throughout the simulation and this can be done once at the

beginning.

2. Form the transformed charge density ρ̂ = Hρ. This takes O(NzN
2
r ) operations.

3. Solve the tridiagonal system (55) for φ̂. This takes O(NzNr) operations.

4. Form the solution in real space, φ = H−1φ̂. This takes O(NzN
2
r ) operations.

Note that if the bounded discrete space considered here is replaced by an unbounded con-

tinuous space, H becomes the Hankel transform of zero order.

E. Fluid Advance and Chemistry

The fluid equations (2)-(5) are advanced using the well known method of flux corrected

transport (FCT). The particular variant of FCT used is essentially a C++ rewrite of the

LCPFCT (NRL Laboratory for Computational Physics and Fluid Dynamics FCT) routine

[17]. The routine is extended to two dimensions using the operator splitting approach

described in Ref. [17].

The source terms for the fluid equations include terms following directly from the Boltz-

mann equation, such as the heat flux term, as well as terms that are put in “by hand” to

account for chemical reactions. These terms can all be found by straightforward differencing.

Of course, the differencing has to account for variations in the grid geometry in the manner

described above.
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F. Sliding Rezone

A streamer generally consists of an elongated region called the “body” in which the axial

derivatives ∂z are small, and a much shorter region at the end of the body (the “tip”) where

∂z is large. The sliding rezone technique minimizes the number of grid cells needed to model

the streamer by using large cells in the body and small cells in the tip. The technique works

by keeping the total number of axial grid cells, Nz, constant, while varying the spacing

between the grid cells as the simulation runs.

The function giving the length of the ith grid cell is

∆zi = ∆z



1 + Af
(

i−1
N−1

)
0 < i ≤ N “Region1”

1 + Bf
(

i−N−1
N−1

)
N < i ≤ 2N “Region2”

1 2N < i ≤ 3N “Region3”

1 + Cf
(

i−3N−1
N−1

)
3N < i ≤ 4N “Region4”

where ∆z is the minimum cell length, N = Nz/4 is the number of cells in each region,

and the function f is a smooth polynomial that ramps from zero to one and back to zero

according to

f(τ) =


10(2τ)3 − 15(2τ)4 + 6(2τ)5 0 ≤ τ ≤ 1/2

1− 10(2τ − 1)3 + 15(2τ − 1)4 − 6(2τ − 1)5 1/2 < τ ≤ 1

0 otherwise

The grid is modified as the simulation runs by varying the parameters A, B, and C. Thus,

the resolution in regions 1, 2, and 4 can be changed, but region 3 is always kept at the

highest resolution.

Region 1 is used to contain the initial streamer. It does not evolve during the course

of the simulation. It contains a high resolution region at both ends. The high resolution

sub-region near the electrode (i = 1) is not currently needed, but can be used in the future

to support a sheath model. The sub-region near i = N is kept at high resolution due to the

fact the streamer tip leaves perturbations at its initial location long after it has propagated

away. The constant characterizing region 1, A, is specified at the beginning of the simulation

and does not have to be changed thereafter. In particular,

A =
1

S

(
L1

∆z
−N

)
(56)
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where

S =
N∑

i=1

f
(

i− 1

N − 1

)
(57)

and L1 is the desired length of region 1.

Region 2 is used to contain the streamer body. Early in the simulation, the tip propagates

through this region, so the highest resolution is needed. Therefore the parameter B is initially

set to zero. Once the tip reaches the center of region 3, however, B is increased such that

the tip stays centered in region 3. In particular, when the code detects that the peak of the

axial electric field has moved more than one grid cell beyond the center of region 3, a new

value of B is calculated using

B =
1

S

(
z0

∆z
− 5N

2
+ 1− AS

)
(58)

where

z0 = ∆z
(

5N

2
+ AS + B′S

)
(59)

and B′ is the old value of B. The new value of B is chosen to shift the cells in region 3 by

an amount ∆z. The parameter z0 is the location of the center of region 3 before the shift.

Region 3 stays at the highest resolution throughout the simulation, and is used to contain

the streamer tip. This is the high resolution region that “slides” forward with the tip as the

parameter B is increased.

Region 4 is used to model the space between the streamer tip and the “ground” electrode.

At the start of the simulation this region is at its largest, and the parameter C is chosen

to make the end of the simulation box coincide with the desired position of the ground. In

particular,

C =
1

S

(
Ltot

∆z
− 4N − AS −BS

)
(60)

where Ltot is the total length of the simulation box. This has to be re-evaluated every time

B changes. That is, in order to keep Ltot constant, C has to be reduced every time B is

increased

G. Boundary Conditions

For the Poisson equation and the hydrodynamic equations boundary conditions are

needed. For the hydrodynamic quantities the normal derivative is taken to vanish at all
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boundaries. For the virtual boundary at r = 0, the normal derivative vanishes for scalars

and the quantity itself vanishes for vectors. These boundary conditions allow fluid to flow

freely into or out out of any boundary. In reality, there would be a sheath near the electrode

which we neglect.

In the case of the Poisson solver, the boundary conditions are chosen so that in the

absence of space charge, the field is consistent with that produced by a spherical electrode.

However, this can only be done approximately because of the shape of the grid lines. In

particular, the potential in any cell is

φ(i, j) = φ0(i, j) + φ1(i, j) (61)

φ0(i, j) =
Reφ00√

r2
j + (Re + zi)2

(62)

where φ1 is the space charge potential, φ0 is the potential in the absence of space charge,

Re is the radius of the electrode, and φ00 is the potential at the surface of the electrode.

The expression for φ0 is taken to be valid both in the interior and on the boundaries, while

φ1 is assumed to vanish at the boundaries. For the virtual boundary at r = 0, the normal

derivative vanishes. This formulation is valid if rj � Re for all j since then the surface of

the electrode nearly coincides with the planar boundary of the grid.

A real air discharge can often be considered radially unbounded. It is therefore desirable

to move the radial simulation boundary as far from the axis as possible. In order to do

this while keeping the number of radial grid cells small, the cell spacings are increased with

increasing r. In particular, the radial cell size ∆rj is taken to vary as

∆rj =

 ∆r0 0 ≤ j ≤ Nu

∆r0(1 + δr)
j−Nu Nu < j ≤ Nr + 1

(63)

where ∆r0 determines the highest resolution, Nu is the number of cells in the region of

uniform resolution, and δr is a number which determines how fast the cells grow for j > Nu.

Note that the ghost cells j = 0 and j = Nr + 1 are included in the definition. For the

examples in this report we use δr = 0.1.

H. Parallelization

Parallelization of SPARC is accomplished via two-dimensional domain decomposition.

That is, the two-dimensional grid is divided into Np = Npz×Npr subgrids. The total number
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of subgrids Np is usually set equal the number of available processors so that each processor

calculates all the quantities on a single subgrid. On processors that support simultaneous

multi-threading (SMT, sometimes called “hyperthreading”) it is advantageous to to assign

multiple subgrids to each processor.

Since the equations on each subgrid are not independent of one another, information

has to be exchanged between processors. The turboWAVE framework, on which SPARC is

built, supports two communications methods. For shared memory systems, POSIX threads

(“ptrheads”) are used. For distributed memory systems, the Message Passing Interface

(MPI) is used.

The SPARC module most difficult to parallelize via domain decomposition is the Poisson

solver. This is because the potential in any grid cell depends on the charge density in every

other grid cell. In order to divide the domain in the radial direction, the well known transpose

technique is used. To divide the domain in the axial direction, we use the turboWAVE

parallel tridiagonal solver described in Ref. [18].

The hydrodynamics module parallelizes via domain decomposition in a straightforward

way. This is because each grid cell is updated using only information from itself and its

nearest neighbors (in one evaluation the next-nearest neighbor is also needed). Hence, the

cells in the interior of a subgrid can be advanced one time level independently of the other

subgrids. The ghost cells are then obtained by receiving the corresponding interior cell from

the adjacent subgrid. This exchange of information is carried out in a separate sweep for

each direction of the domain decomposition.

Finally, the chemistry module parallelizes trivially. That is, the reaction rate in a cell

depends only on quantities in the same cell. Hence, each subgrid can update itself indepen-

dently of the others.

V. BENCHMARKING

Due to the complexity of SPARC, it is important to benchmark as many of the individual

computational elements of the code as possible. In the following sections we show that the

individual components give the expected results in cases where either an analytical result is

known, a general trend is expected, or a comparison with another code can be made.
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FIG. 1: Comparison of simulated and theoretical radial electric fields due to a long cylinder.

A. Poisson Solver

The simplest test to perform is to verify that the Poisson solver gives the correct elec-

trostatic field in some analytically tractable limiting cases. As an example, Fig. 1 shows

the simulated and theoretical radial electric field due to a uniformly charged cylinder with a

radius small compared to its length. The agreement is satisfactory. We have also compared

the fields calculated by SPARC with those calculated using the Fourier Analysis and Cyclic

Reduction (FACR) technique and found the two results to be nearly indistinguishable. We

further verified that the results obtained on a non-uniform grid are consistent with those

obtained on a uniform grid.

B. Chemistry

Chemical reactions in SPARC are defined in the input file and not by the code itself.

Specifically, when the code starts it reads the input file and creates an instance of the same

C++ object for each reaction defined therein. Chemical species are handled the same way.
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Hence, to benchmark the objects pertaining to chemistry it is sufficient to check just a few

reactions. For example, we checked that the ionization rate was computed correctly for

various values of the field and gas density. A more interesting test was to verify that the

electron cooling rate was consistent with that predicted by CHMAIR II. In the initial testing

it was assumed that nitrogen vibrations were the main sink of electron energy. This turned

out to be a poor assumption when the electron temperature is high, as illustrated in Fig. 2(a).

By accounting for the energy lost to electronic excitations into triplet states, the much

improved agreement shown in Fig. 2(b) was obtained. Most of the remaining disagreement

appears to be due to the use of different coefficients for the vibrational excitations. SPARC

currently uses the tables from Ref. [15], while CHMAIR II uses those from Ref. [19].

C. Electrodynamics

The primary electrodynamic effect relevant to streamer and leader propagation is the de-

velopment of a charged tip which leads to field enhancement. To observe this field enhance-

ment in SPARC, we initialize a plasma filament into the simulation box with all chemical

reactions turned off, and apply a constant external electric field. The density in the plasma

filament is of the form ne(z, r) = nsf(z)g(r) where

f(z) =


1 0 ≤ z ≤ Ls

1− (10ζ3 − 15ζ4 + 6ζ5) Ls < z ≤ Lt

0 otherwise

ζ =
z − Ls

Lt − Ls

g(r) =


1 0 ≤ r ≤ Rs

1− (10ζ3
r − 15ζ4

r + 6ζ5
r ) Rs < r ≤ Rt

0 otherwise

ζr =
r −Rs

Rt −Rs

This represents a uniform cylinder of length Ls and radius Rs, together with axial and radial

transition regions of dimension Lt−Ls and Rt−Rs, respectively. We vary Ls and ns, while

holding fixed Lt−Ls = 25 µm, Rt−Rs = 25 µm, and Rs = 25 µm. The filament is initialized

in contact with the electrode where it is assumed all normal derivatives vanish (we ignore
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FIG. 2: Comparison of electron cooling rate as computed by SPARC and CHMAIR II: (a) before

including electronic excitations (b) with electronic excitations.
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FIG. 3: Field enhancement factor for various aspect ratios and plasma densities.

the sheath). The aspect ratio is defined as a = Ls/Rs. Figure 3 plots the field enhancement

factor as a function of the aspect ratio for three plasma densities. As expected, the field

enhancement factor is of the order of the aspect ratio. It increases with both aspect ratio

and plasma density.

Another electrodynamics benchmark that was performed was to measure the field re-

laxation time in the body of the plasma filament. We verified that the field varies as

E = E0e
−t/t0 , where E0 is the initial applied field, and t0 ≈ RC is a constant that depends

on the plasma density and geometry. Here, RC is the product of the resistance and capaci-

tance of the plasma filament. The RC constant for a large aspect ratio uniformly conducting

cylinder is

RC ≈ 2tr
a2

ln a
(64)

where tr = 1/4πσ is the charge redistribution time and a is the aspect ratio. Figure 4 shows

that the simulated field decays at this rate to within a factor of two. The factor of two

discrepancy is not surprising given the approximate nature of the theoretical expression.

Figure 5 shows a similar comparison holding the aspect ratio fixed at 10 and varying the

electron density (and hence the conductivity).
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FIG. 4: Field relaxation time vs. aspect ratio for an electron density of 2.5 × 1016 cm−3. The

corresponding charge redistribution time is 0.012 ps.

FIG. 5: Field relaxation time vs. electron density for an aspect ratio of 10.
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D. Adaptive Grid

The sliding rezone algorithm was tested by performing a simulation that can be done both

on a uniform grid and on an adaptive grid and comparing the two results. This simulation

models streamer propagation under the assumption that the ionization rate depends on

E/ng where E is the electric field and ng is the gas density (this assumption is removed

later). Also, a generic molecule M2 is used to represent either oxygen or nitrogen. The

parameters of the simulation are given in Table I. For this simulation and for the rest of this

report, the functional form of the initial plasma density is

ne(z, r) = nsf(z)e−r2/r2
0 + nhe

−r2/r2
h + nb (65)

where

f(z) =


1 0 ≤ z ≤ Ls

1− ns−nf

ns
(10ζ3 − 15ζ4 + 6ζ5) Ls < z ≤ Lt

nf/ns otherwise

ζ =
z − Ls

Lt − Ls

These parameters are interpreted as follows: ns is the plasma density in the streamer, nf

is the density of the pre-ionization ahead of the streamer, nb is a uniform background, Ls

is the length of the streamer body, Lt is the length of the streamer body plus tip, and r0

is the streamer radius. The second term can be used to include a halo due to the radiation

surrounding the streamer, although in this example nh = 0. The result of the benchmark is

shown in Fig. 6. The results from the adaptive grid are nearly identical to those from the

uniform grid. However, the uniform grid used 106 grid cells to model a 5 cm long region,

while the adaptive grid used only 105 grid cells to model a 6.5 cm long region.

E. Implicit Model vs. Explicit Model

The final benchmark considered in this report is a comparison of the implicit electron

model with the full electrostatic-hydrodynamic model. The two models are compared in

terms of their predictions regarding streamer propagation in pure nitrogen. The parameters

of the two simulations are shown in Table II. The simulations include heavy particle motion.

Both calculations were run on 32 processors of the IBM cluster 1600 “Kraken” at the Naval
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TABLE I: Parameters for Adaptive Grid Benchmark

Parameter Value Comment

Electric Field 24 kV/cm Field is uniform

Electron Mobility 1800 cm2/V·s

ns, Streamer Density 2.5× 1016 cm−3 see Eq. (65)

r0, Streamer Radius 100 µm 1/e Definition

Ls, Streamer Length 1 cm Lt − Ls = 100 µm

nf , Preionization Density 2.5× 1015 cm−3 see Eq. (65)

nh, Halo Density 0 see Eq. (65)

nb, Background Density 2.5× 109 cm−3

Ionization Ratea 5× 10−8e−240/E cm3/s e− + M2 → 2e− + M+
2

Attachment Rate 2.2× 10−30 cm6/s e− + 2M2 → M2 + M−
2

Recombination Rate 10−7 cm3/s e− + M+
2 → M2

Nz, Axial Cells 1000 104 for uniform grid

Nr, Radial Cells 100

Nu, Uniform Cells 50 see Eq. (63)

aE is the electric field in kV/cm

Oceanographic Office. The explicit calculation ran for 20 hours while the implicit calculation

ran for 37 minutes. A comparison of the electron temperature after 21 ns is shown in

Fig. 7. The streamer tip can be identified as the hottest region on the axis. Evidently,

the implicit algorithm predicts streamer velocities that are in agreement with the explicit

algorithm to within about 5%. An interesting feature of the explicit result is the discontinuity

that appears near the radial cell index 70 for z > 5 cm. A study of the time evolution

of this discontinuity reveals that it is a thermal shockwave propagating radially outward.

This shockwave can actually be seen in the implicit calculation also, but it is weaker and

appears only at earlier times. This suggests that the implicit algorithm introduces numerical

dissipation into the system.

The subtle differences between the implicitly and explicitly computed electron tempera-

ture could be due to several factors. First, explicit differencing is generally more accurate
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FIG. 6: Comparison of simulations using adaptive and uniform grids. The on-axis electric field at

t = 800 ps is plotted vs. the axial coordinate, z, for both cases.

than implicit differencing. However, it was found that repeating the implicit calculation

with the time-step reduced by a factor of four gave the same result. Second, the explicit

calculation includes convection of electron momentum and energy density. This can occur

in the tip where gradients are large, although simple estimates suggest the effect is not sig-

nificant. Third, the explicit calculation allows for plasma waves since it does not assume the

momentum equation is in equilibrium. Finally, the implicit calculation uses the quasineutral

approximation to evaluate the electron density for use in computing chemical reaction rates.

This could result in large errors in the reaction rates in a small region near the tip.

VI. SAMPLE RESULTS

In this section we give results from three SPARC simulations which use the implicit

electron model. In the first example a streamer is propagated over a distance of 40 cm in

the absence of attachment. In the second, a streamer to leader transition is observed with

attachment included. In the third, the heavy species are allowed to move and hydrodynamic
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TABLE II: Parameters for Implicit vs. Explicit Benchmark

Parameter Value Comment

Electrode Voltage 500 kV constant voltage

Electrode Diameter 40 cm spherical electrode

Electron-Neutral Cross Section 5× 10−15 cm2

Ion-Neutral Cross Section 2× 10−17 cm2

Electron-Ion Cross Section see Eq. (18)

ns, Streamer Density 1016 cm−3 see Eq. (65)

r0, Streamer Radius 40 µm 1/e Definition

Ls, Streamer Length 1 cm Lt − Ls = 100 µm

nf , Preionization Density 1015 cm−3 see Eq. (65)

nh, Halo Density 109 cm−3 see Eq. (65)

rh, Halo Radius 1 cm 1/e Definition

nb, Background Density 200 cm−3

Ionization Ratea 1.6× 10−8T
1/2
e e−17.2/Te cm3/s e− + N2 → 2e− + N+

2

Excitation Rateb 5.4× 10−7T−0.32
e e−9.52/Te cm3/s e− + N2 → e− + N2[∗]

De-excitation Rate 3× 10−9 cm3/s N2[∗] + N2 → 2N2

Recombination Rate 4.3× 10−8T−0.39
e cm3/s e− + N+

2 → N2

Vibrational Excitation see Ref. [15]

Nz, Axial Cells 800

Nr, Radial Cells 150

Nu, Uniform Cells 50 see Eq. (63)

∆t, Time Step 1.42 ps (implicit), 0.07 ps (explicit)

aTemperatures are in eV
bN2[∗] represents any triplet state

expansion is observed. In all the examples in this report, the initial temperature is 0.025 eV

for heavy species, and 1 eV for electrons.
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FIG. 7: Benchmark of implicit algorithm vs. explicit algorithm. Falsecolor map of the electron

temperature at t = 21 ns for (a) explicit algorithm and (b) implicit algorithm. Note that the radial

scale becomes highly nonlinear for cell indices greater than 50, as illustrated in Fig. 8.

A. Streamer Propagation

Effective streamer propagation over long distances relies on field enhancement which

in turn depends on the quality of the streamer as a conductor. One criterion for a good

conductor is that the electrostatic shielding distance should be much shorter than the typical

dimension of the conductor. In our modeling we indeed found that streamers propagated

better if they satisfied this criterion. For this reason, the streamer simulation presented here

uses a radius of 0.7 mm, which is far larger than the radius of the pre-ionization associated

with a femtosecond laser filament [20]. The other parameters for the simulation can be
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FIG. 8: Nonlinear mapping between radial cell index and position for use in interpreting Fig. 7.

found in Table III. The simulation ran for approximately 16 hours on 64 processors of the

Cray XT3 “Sapphire” at the Army Engineer Research and Development Center.

The chemical reactions in Table III are taken from Refs. [15] and [19], with the following

caveats. First, the excitation rate is the aggregate rate for nitrogen triplet states. The actual

de-excitation mechanisms are not modeled. Instead, a fictitious collisional de-excitation

mechanism which puts the excitation energy directly into the gas temperature is used.

The rate associated with this interaction is chosen to give gas heating rates similar to

those observed in CHMAIR simulations. Second, the recombination rates technically apply

to dissociative recombination. However, since dissociated species are not included in the

model, it is assumed that the dissociated species immediately re-associate, and that the

ionization energy goes into heating the gas. Finally, attachment processes have not been

included in this example. This can be partially justified by the fact that in an actual

discharge, photo-detachment will tend to offset attachment. In fact, visible photons are

easily energetic enough to detach an electron from an oxygen anion via a single photon

process (the attachment energy is 0.44 eV). Since a real streamer emits visible photons,

such photo-detachment is indeed expected to occur.

The on-axis electric field is plotted as a function of z for various times in Fig. 9. As
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TABLE III: Parameters for Streamer Propagation Simulation

Parameter Value Comment

Electrode Voltage 500 kV constant voltage

Electrode Diameter 40 cm spherical electrode

Electron-Neutral Cross Section 5× 10−15 cm2

ns, Streamer Density 1014 cm−3 see Eq. (65)

r0, Streamer Radius 700 µm 1/e Definition

Ls, Streamer Length 1 cm Lt − Ls = 100 µm

nf , Preionization Density 1012 cm−3 see Eq. (65)

nh, Halo Density 0

nb, Background Density 109 cm−3

Ionization Ratea 2.2× 10−8e−14.8/Te cm3/s e− + O2 → 2e− + O+
2

Ionization Rate 1.6× 10−8T
1/2
e e−17.2/Te cm3/s e− + N2 → 2e− + N+

2

Excitation Rateb 5.4× 10−7T−0.32
e e−9.52/Te cm3/s e− + N2 → e− + N2[∗]

De-excitation Rate 3× 10−9 cm3/s N2[∗] + N2 → 2N2

Recombination Rate 0.0019T−0.5
e cm3/s e− + O+

2 → O2

Recombination Rate 4.3× 10−8T−0.39
e cm3/s e− + N+

2 → N2

Vibrational Excitation see Ref. [15]

Nz, Axial Cells 3200

Nr, Radial Cells 150

Nu, Uniform Cells 75 see Eq. (63)

∆t, Time Step 3.55 ps

aTemperatures are in eV
bN2[∗] represents any triplet state

expected, strong field enhancement produces a spike in the electric field indicating the tip

location. At 71 ns, this field enhancement produces a field well in excess of the breakdown

field. Later in time, the field enhancement is reduced as the streamer slows down. It

continues to propagate even when the field is less than the breakdown field due to the fact

that attachment was neglected. Fig. 10 shows the electron, vibrational, and gas temperatures
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after 680 ns. The electron temperature tends to follow the electric field, as is expected from

theory provided the vibrational temperature remains low. As shown in the figure, the

vibrational temperature, Tv, is indeed much lower than the electron temperature, Te. Thus,

the leader phase (defined by Tv ≈ Te) is never reached in this simulation.

FIG. 9: Simulation of streamer propagation: on-axis Ez vs. z at various times.

B. Streamer to Leader Transition

To model the streamer to leader transition, the 40 µm radius typical of a femtosecond laser

ionized filament is used as the pre-ionization radius. The voltage on the 40 cm diameter

sphere starts at 500 kV and is ramped up at the rate of 570 V/ns. Other simulation

parameters are given in Table IV. Note that Coulomb collisions and attachment processes

are included.

The on-axis electric field is plotted as a function of z for various times in Fig. 11. The

evolution of the spike in the electric field is markedly different from the case of the streamer

simulation of Fig. 9. The field enhancement early in time is less effective because the

diameter of the plasma is small, and therefore there is less charge available to perturb
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TABLE IV: Parameters for Streamer to Leader Transition

Parameter Value Comment

Electrode Voltage 500 kV 570 V/ns slew rate

Electrode Diameter 40 cm spherical electrode

Electron-Neutral Cross Section 5× 10−15 cm2

Ion-Neutral Cross Section 2× 10−17 cm2

Electron-Ion Cross Section see Eq. (18)

ns, Streamer Density 1016 cm−3 see Eq. (65)

r0, Streamer Radius 40 µm 1/e Definition

Ls, Streamer Length 1 cm Lt − Ls = 100 µm

nf , Preionization Density 1015 cm−3 see Eq. (65)

nh, Halo Density 0

nb, Background Density 109 cm−3

Ionization Ratea 2.2× 10−8e−14.8/Te cm3/s e− + O2 → 2e− + O+
2

Ionization Rate 1.6× 10−8T
1/2
e e−17.2/Te cm3/s e− + N2 → 2e− + N+

2

Excitation Rateb 5.4× 10−7T−0.32
e e−9.52/Te cm3/s e− + N2 → e− + N2[∗]

De-excitation Rate 3× 10−9 cm3/s N2[∗] + N2 → 2N2

Recombination Rate 0.0019T−0.5
e cm3/s e− + O+

2 → O2

Recombination Rate 4.3× 10−8T−0.39
e cm3/s e− + N+

2 → N2

Vibrational Excitation see Ref. [15]

Attachment Rate 3.5× 10−31T−1
e e−0.052/Te cm6/s e− + O2 + O2 → O2 + O−

2

Attachment Rate 10−31 cm6/s e− + O2 + N2 → N2 + O−
2

Detachment Rate 4.8× 10−10T 1.5
g e−0.43/Tg cm3/s N2 + O−

2 → O2 + N2 + e−

Nz, Axial Cells 800

Nr, Radial Cells 150

Nu, Uniform Cells 50 see Eq. (63)

∆t, Time Step 2.84 ps

aTemperatures are in eV
bN2[∗] represents any triplet state
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FIG. 10: Simulation of streamer propagation: on-axis temperatures vs. z after 680 nanoseconds.

the applied field. Later in time, the field enhancement increases because of the effects of

attachment. Attachment reduces the electron density ahead of the streamer which leads to

a more extreme gradient in charge density at the tip. This causes the electric field spike to

become narrower and larger in amplitude.

The on-axis electron, vibrational, and gas temperatures after 220 ns are plotted in Fig. 12.

The voltage on the sphere at this time is 625 kV. The vibrational and gas temperature are

approximately 1 eV near the electrode. The vibrational temperature drops to 0.5 eV about

8 cm from the electrode. The streamer tip can be seen as the spike in electron temperature

about 15 cm from the electrode. Since the vibrational temperature is high throughout a

significant portion of the filament body, the transition to a leader can be considered to have

occurred. Figure 13 plots the tip position as a function of time. For the first 100 ns of

propagation, the tip slows down much as in the pure streamer simulation discussed above.

After 100 ns, the tip propagates at a constant speed, and even appears to speed up near the

end of the simulation. This behavior will be investigated further as this work continues.

Although this result is encouraging, it does not illustrate the full leader development.

The missing element is the reduction of the electric field in the leader body. The electric
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FIG. 11: Simulation of streamer to leader transition: on-axis Ez vs. z at various times. Note that

the applied field increases with time.

FIG. 12: Simulation of streamer to leader transition: on-axis temperatures vs. z after 220 ns.
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FIG. 13: Simulation of streamer to leader transition: position of streamer/leader tip vs. time.

field in the body is a constant 15 kV/cm, which is too high to allow for long propagation

distances. This may be due to the small diameter of the leader body which implies a large

resistance. It may be that including hydrodynamic effects, or running the simulation longer,

will allow the leader body to expand radially so that the resistance is reduced.

To illustrate the hydrodynamics capability of SPARC, a short run was made with heavy

particle motion enabled. The parameters are as in the leader simulation above, except that

electron-ion collisions are neglected, attachment processes are neglected, and the voltage

on the sphere is held fixed at +500 kV. In this simulation, heating of the gas results in

hydrodynamic expansion which leads to a noticeable drop in the on-axis nitrogen density

within 70 ns. This is illustrated in Fig. 14.

VII. CONCLUSIONS

A simulation code has been developed which models electrical discharges in air. The code

is capable of modeling streamer propagation over long distances because of an adaptive grid,

fully scalable parallelism, and an implicit model for electron motion. An example in this
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FIG. 14: Simulation with heavy particle motion: on-axis nitrogen density vs. z after 70 nanosec-

onds.

report shows a streamer propagating for 40 cm. The code is also capable of modeling the

vibrational excitation of nitrogen and its interplay with ohmic heating of the electrons.

This allows the leader phase to develop. An example in this report shows the vibrational

temperature reaching about 1 eV in a several centimeter long region. However, a dramatic

reduction in the on-axis electric field was not observed. Finally, a benchmark comparing the

explicit and implicit models showed that the implicit model recovers the important features

of the explicit model in 1/30th of the computer time.
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Appendix: TurboWAVE Normalizations

Although this report is written in cgs units, SPARC is not. SPARC consists of modules

built on the turboWAVE framework. This framework was originally designed to treat colli-

sionless plasmas, and assumes a certain normalization scheme appropriate for such problems.

Although this scheme is not as appropriate for a code like SPARC, it is adopted for the sake

of keeping everything built on the framework consistent.

The unit of time is ω−1
p where ωp = 2.8 × 1014 rad/s is the plasma frequency in fully

ionized air. The unit of length is c/ωp, where c is the speed of light. The unit of mass is the

electronic mass, m, and the unit of charge is the electronic charge, |e|. The unit of density is

np = mω2
p/4πe2. Note that this results in the peculiarity that the unit of particle number is

Np = mc3/4πωpe
2. To determine the value of a normalized quantity in either SI or gaussian

units, multiply the normalized quantity by the value given in Table V. For the case of SI

units, we define the permittivity of free space, ε0 = 8.85 × 10−12 F/m, and the impedance

of free space, η0 = 377 Ω.
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TABLE V: Normalization

Quantity Symbol SI Unit cgs Unit Unit Value

Time ω−1
p ω−1

p 3.55 fs

Length c/ωp c/ωp 1.06 µm

Density np ε0mω2
p/e2 mω2

p/4πe2 2.5× 1019 cm−3

Particle Number ε0mc3/ωpe
2 mc3/4πωpe

2 3× 107

Electric Field Ep mcωp/e mcωp/e 4.81 GV/cm

Electric Potential mc2/e mc2/e 512 kV

Magnetic Field mωp/e mcωp/e 1590 T

Current Density jp npec npec 1.2× 1011 A/cm2

Charge Density npe npe 4 C/cm3

Conductivity jp/Ep jp/Ep 2500 mho/m

2.3× 1013 s−1

2-Body Coefficient ωp/np ωp/np 1.1× 10−5 cm3/s

3-Body Coefficient ωp/n2
p ωp/n2

p 4.5× 10−25 cm6/s

Mobility c/Ep c/Ep 6.2 cm2/V·s

Energy mc2 mc2 8.2× 10−14 J

Energy Density mc2np mc2np 2.1 MJ/cm3

Power mc2ωp mc2ωp 23 W

Power Density mc2ωpnp mc2ωpnp 5.77× 1020 W/cm3

Temperature mc2/kB mc2/kB 512 keV

5.93× 109 K

Fluence E2
p/η0ωp cE2

p/4πωp 220 J/cm2

Intensity Ip E2
p/η0 cE2

p/4π 6.1× 1016 W/cm2

Cross Section ωp/npc ωp/npc 3.76× 10−16 cm2
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