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ABSTRACT 
 

A spectropolarimetric reflectometer is used to measure the monostatic bidirectional reflectance distribution function 
(mBRDF) and the complete Mueller matrix of a number of urban type materials over a broad spectral region.  Derivative 
features from these measurements are computed and stochastic models of each material are constructed.  The models are 
then used to generate data for separability studies by implementation of a kernel-based linear discriminant classification 
technique.  The purpose for this study, selection of materials, measurements process, analysis techniques, and concluding 
results are all presented. 
 
Keywords: polarimetry, spectropolarimetry, Mueller matrix, bidirectional reflectance distribution function, urban 
material, pattern recognition, support vector machine 

 
1. BACKGROUND AND PURPOSE 

 
Remote sensing is a broad and diverse subject.  Sensors exist today that cover the entire electromagnetic spectrum and 
operate at ranges from nanometers to hundreds of kilometers.  As sensor technologies mature, remote sensing 
applications are also growing rapidly. This includes topographical mapping, meteorological (weather and atmospheric) 
monitoring, natural resource surveying, agricultural crop analysis, and environmental assessment resulting from urban 
growth.  In addition, there are many military applications that fall under the general category of surveillance and 
reconnaissance (e.g., battle damage assessment, troop movement monitoring, change detection, object or target 
recognition).  For these and other applications, scientists are benefiting from the recent advancements in hyper-spectral, 
multi-spectral, and multi-channel sensor configurations.   
 
The Advanced Guidance Division of the Air Force Research Laboratory’s Munitions Directorate (AFRL/MN) is 
investigating sensing solutions for the purpose of target recognition from airborne platforms (e.g., aircraft, unmanned 
aerial vehicles, autonomous weapon systems).  This includes studies of sensing modalities, feature selection, and pattern 
recognition methodologies.  Of primary interest is the ability to sense and discriminate between the two broad classes of 
materials: natural and man-made.  Additionally, it is desired to find suitable features that will allow for separating objects 
and materials within each of these classes.  This is a very challenging problem especially when objects of interest are 
obscured.  Also, it is desirable to distinguish among classes of similar objects when they are situated in a densely 
populated or urban environment.  It is the latter problem that this study addresses by investigating the reflective and 
polarimetric signatures of a variety of materials prevalent in the urban environment. 
 
Others have researched the reflective and polarimetric properties of urban materials1 but few studies include a 
measurement of the complete Mueller matrix, and the material database is limited.  A previous AFRL/MN study2 was 
conducted to investigate similar characteristics of natural (e.g., soils, leaves, barks) materials.  This paper extends that 
work to the urban environment.  Additionally, statistical pattern recognition techniques are employed to characterize and 
quantify the separability among the material types.  We call this a "material space" assessment.  The measurements are 
also being used to develop a database for Irma3.  Irma is capable of generating polarimetric synthetic imagery at any 
wavelength.  Scenes can be constructed containing textured objects where the object material properties are drawn from 
the phenomenological measurement database.  These synthetic scenes are used in similar studies at AFRL/MN to assess 
target recognition in the "image space."   



2. MEASUREMENT PROCESS 
 

The instrument used to measure the phenomenological (reflective and polarimetric) properties of materials is a dual 
rotating retarder spectropolarimeter4 and is shown in Fig. 1.  It can be configured to collect measurements in one of two 
modes: transmission or reflection.  For this study we operate in the reflection mode.  The spectropolarimeter is based 
around a commercial Fourier transform spectrometer: the Bio-Rad FTS-6000.  It generates radiation from the ultraviolet 
to the far infrared, and is computer controlled through the Win-IR Pro software package.  A Visual Basic program, 
Spectrotron, operates as an executive to provide control over the spectrometer, motorized rotation stages, and 
spectropolarimetric data processing.  For purposes of the measurements collected here, the spectrometer is used with one 
source, a 150W tungsten-halogen lamp, and two detectors, a silicon detector for the near infrared (NIR) measurements 
(0.7 – 1.1 μm) and a mercury-cadmium-telluride detector for the short-wave infrared (SWIR) measurements (1.1 – 2.3 
μm).  The Bio-Rad spectrometer serves as the radiation source for the polarimetric portion of the instrument and is 
operated in the conventional absorption spectroscopy mode.  The radiation generated by the spectrometer is brought out 
through the spectrometer's external port.   
 
 

 
Figure 1.  AFRL/MN EO Laboratory Fourier Transform spectropolarimeter. 

 
 

Figure 2 shows the basic optical schematic of the instrument for monostatic reflection measurements.  In this mode, the 
detector is fixed in the position shown and the sample is mounted on a computer-controlled motorized rotational stage.  
The sample can be rotated so that any in-plane incidence angle is obtained.  The optical system that collects light for the 
detector consists of an off-axis parabolic mirror.  This mirror is fixed to look toward the beamsplitter and focus light onto 
the detector that is mounted perpendicularly to the light coming from the beamsplitter.  The parabolic mirror, detector, 
and mounting devices are referred to as the detector assembly.  The sample is mounted vertically so that its surface 
comprises a vertical plane, and it may be rotated to any position around a vertical axis.  Data collection proceeds by 
rotating the sample to a set of desired angles, and spectropolarimetric data are then collected at each sample angle.  The 
instrument may be used for transmissive measurements as well by placing a transmissive sample on the sample rotation 
stage and lining up the detector assembly with the source beam on the far side of the sample.  In order to obtain 
spectropolarimetric measurements, a dual rotating retarder Mueller matrix polarimeter, described by Azzam5, is included 



in the system.  This polarimeter consists of a polarization state generator (PSG) before the sample and a polarization state 
analyzer (PSA) after the sample.  The PSG consists of a linear polarizer followed by a quarter wave retarder.  The PSA 
consists of a quarter wave retarder followed by a linear polarizer and is located on the platter in front of the detector 
assembly.  Although we use retarders that are nominally quarter wave in the spectral region being measured, the exact 
retardance is not critical.  When the retarders are rotated in a five to one ratio, all sixteen elements of the sample Mueller 
matrix are encoded onto twelve harmonics of the detected signal, which can then be Fourier analyzed to recover the 
Mueller matrix elements.  The reflectometer may be used without any modification of the polarization of the source 
radiation by removing the PSA and PSG assemblies.  In this mode, the system is a spectral reflectometer and is the 
configuration used to collect the sample mBRDF measurements.   
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Figure 2.  Spectropolarimeter configured for monostatic measurements. 
 
 

The data reduction algorithm for this polarimeter, as originally presented by Azzam, assumes ideal polarization elements 
and no orientation errors. The data reduction algorithms may be generalized to compensate for systematic errors that 
result when orientation misalignment and non-ideal retarders are used. If the polarization elements are rotationally 
misaligned, or the retarders do not have exactly one-quarter wave of retardance, the changes in Fourier amplitudes and 
phases result in errors in the sample Mueller matrix.  Even small orientation and retardance errors (< 1%) can lead to 
large errors in the measured Mueller matrix (> 10% in some matrix elements).  These errors become especially important 
when the retardance and alignment vary significantly from their nominal values such as in multi-wavelength or spectral 
instruments.  We have incorporated correction terms for orientation and retardance errors into the dual rotating retarder 
data reduction algorithm as described in Chenault6 et al. 

 
3. MATERIAL SELECTION AND MEASUREMENT RESULTS 

 
For this study, we derive discriminant properties based on the reflective and polarimetric characteristics of several urban 
materials.  Six samples were selected for analysis: rubber, shingle, plywood, drywall (sheetrock) front side, brick, and 
concrete.  Photographs of the test samples are shown in Fig. 3.   
 
 



 
                     (a) rubber                                                                         (b) shingle       
 

 
                     (c) plywood                                                                        (d) drywall front side       
 

 
                    (e) brick                                                                              (f) concrete       

Figure 3.  Material selection. 
 
 

For each sample, the mBRDFs and Mueller matrices were measured from 0.7 to 2.3 µm at 1290 distinct frequencies, 
each separated by wavenumbers of approximately 16 cm-1.  Each sample is measured at 18 incidence angles (relative to 
the source) from -10° to +60° with finer resolution near normal incidence (-10°, -8°, -6°, -4°, -2°, -1°, 0°, 1°, 2°, 4°, 6°, 
8°, 10°, 15°, 20°, 30°, 45°, 60°).  The mBRDFs for all materials are shown in Fig. 4.  The Mueller matrix data cube for 
one sample (drywall) is shown in Fig. 5.  A wavelength slice into the Mueller matrix data at normal incidence angle for 
all samples is illustrated in Fig. 6. 
 



 
Figure 4.  mBRDFs for all materials. 

 

 
 Figure 5.  Mueller matrices for drywall sample. 

 



    
           (a) rubber                                                                    (b) shingle      
 

    
                                        (c) plywood                                                                              (d) drywall 
 

 

    
                                        (e) brick                                                                                   (f) concrete    

Figure 6.  Mueller matrices at normal incidence in SWIR band. 
 
 

4. FEATURE EXTRACTION AND SEPARABILITY ANALYSIS 
 

Object discrimination falls under the general topic of pattern recognition or pattern classification.  A thorough treatment 
of the subject is covered by Duda, Hart, and Stork7.  One approach to pattern classification is a feature-based technique 
where feature vectors are derived from the experimental measurements and functional mappings are established that will 
transform the vectors for each object into identifiable classes.  These mappings are often called “discriminant functions” 
and they can be constructed in a variety of ways.  For this study we implement a linear learning machine technique based 
on the support vector machine8 (SVM).  Let ),,,( 21 Nffff L

r
=  be an N element feature vector.  Then a linear learning 
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In this new space, linear discriminant optimization can be employed to establish the hyper-planes that best separate the 
data into distinct classes or regions.  SVMs are trained using a supervised learning paradigm where the entire collection 
of measurements is partitioned into two sets: a training set and a test set.  The training set is used to derive the 
coefficients, ),( bw

r
, of the separating hyper-plane.  Once trained, these SVMs are evaluated for classification 

performance, robustness and generalization via the test set.    
 
For any feature-based approach, one of the first questions to be addressed is: What are the best features?  This is a non-
trivial issue and is application dependent.  In our case we derive features based on the mBRDF and Mueller matrix 
measurements.  The mBRDF is the first feature considered and we commonly call this the reflectance (ref).  To derive 
polarimetric features, we start by consider the Lu-Chipman decomposition9 of an experimental Mueller matrix.  This 
method separates a Mueller matrix into three distinct factors: diattenuation, retardance, and depolarization.  The 
diattenuation of a material is a quantifiable representation of changes to the intensity transmittances of the incident 
polarization states.  Retardance is a representation of the phase-changing characteristics the material induces on the 
incident polarization.  These are non-depolarizing descriptors.  For this experiment, we consider retardance (ret) as a 
candidate feature based on the preliminary analysis of the measured data.  Additionally, we have chosen to study these 
materials from a system's perspective.  Two of the most common operational wavelengths are 1.06μm and 1.55μm.   For 
this study, we report on the findings of a vertically polarized transmitter operating at 1.55μm.  Hence, the polarization 
state incident upon the sample can be represented by the Stokes vector SI = I0·[1 -1 0 0]T where I0 is the total intensity of 
the transmit beam or pulse.  We then derive the degree of polarization (dop) from the reflected Stokes vector, SR =    
M(λ, θ )·SI, where M(λ,θ ) is the laboratory measured sample Mueller matrix which is a function of wavelength, λ = 
1.55μm, and incident angle, θ.  A word of caution:  It has been our observation and also previously reported by 
others10,11 that comparing measurement between and among systems must be exercised with care.  The polarization state 
collected by a system appears to be dependent upon the viewing laser-speckle field, sensing geometry, and receiver 
collection aperture size and therefore can not be generalized to other systems without taking these factors into 
consideration. 
 
In summary, we have constructed feature vectors containing the following three elements: 
 

1. mBRDF (ref) 
2. Degree of Polarization (dop) 
3. Retardance (ret) 

 
To derive the necessary training and test vectors for our SVM classifiers, we use the 18 angular measurements at 1.55μm 
and create Gaussian statistical models for each feature of each material.  Next, 1000 samples are generated for training 
and testing: 20% for training, 80% for testing.  Fig. 7 illustrates the statistical relationships among the six materials for 
this 3D feature space. 

 



 
Figure 7.  3D feature space [ref, dop, ret]. 

 
Another fundamental issue is the kernel selection for the SVMs.  Commonly used kernels, guidance for selecting kernels, 
and techniques for making kernels are described by Cristianini and Shawe-Taylor8.  Since our data has been modeled as 
Gaussian processes, we selected the radial basis function (RBF).  By this selection, the SVMs become Gaussian-shaped 
mapping functions and should separate well in the kernel mapped space.  The shape of each classifier is controlled 
through a parameter, α, that is related to the variance of the models and the shape of the RBFs.  To compare the relative 
separability of ref, dop, and ret, we tested all six combinations of feature vectors.  Namely, we ran six experiments using 
the following feature vectors: [ref], [dop], [ret], [ref, dop], [ref, ret], [dop, ret], [ref, dop, ret].  SVMs are trained for each 
material as a two-class problem.  Class 1 is the material (object) of interest and Class 0 contains all other materials.  Fig. 
8 shows the resulting classification system used for separability analysis.   
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Figure 8.  Material classification system. 



 
Figure 9 shows the decision boundaries created for each material classifier using the 2D feature vector   [ref, dop].  Table 
1 lists the classifier performance for each material for all six experiments.  Here, PCC is the percent of correct 
classification (feature vectors of this material correctly classified) and PFA is the percent of false alarms (feature vectors 
of other materials classified as this material).  As an example, for the material "shingle" using the feature vector 
containing only [dop], 94% of the shingle measurements were (correctly) classified as shingle and 10% of all other 
material measurements were (incorrectly) classified as shingle.  
 
 

 
                                      (a) rubber                                                                                (b) shingle       
 

 
                                      (c) plywood                                                                            (d) drywall 

 

 
                                      (e) brick                                                                                  (f) concrete    

Figure 9.  Support vector machine class decision boundaries for feature set [ref, dop]. 
 

 



Table 1.  SVM Classifier Results 
 

  Classifier Results 
Feature Vector Rubber Shingle Plywood Drywall Brick Concrete 
ref dop ret PCC PFA PCC PFA PCC PFA PCC PFA PCC PFA PCC PFA

   0.65 0.03 0.52 0.06 0.00 0.00 0.99 0.01 0.08 0.01 0.00 0.00
   1.00 0.00 0.94 0.10 0.41 0.02 0.45 0.02 0.99 0.07 0.98 0.04
   0.96 0.01 0.83 0.05 0.94 0.06 0.09 0.01 0.67 0.05 0.82 0.06
   1.00 0.00 0.99 0.01 0.66 0.01 0.99 0.00 1.00 0.05 0.99 0.02
   0.98 0.00 0.71 0.01 0.96 0.01 1.00 0.01 0.89 0.05 0.92 0.01
   1.00 0.00 1.00 0.02 0.80 0.01 0.91 0.01 1.00 0.00 0.98 0.04
   1.00 0.00 1.00 0.00 0.89 0.00 1.00 0.00 1.00 0.00 0.99 0.02

 
 

5. CONCLUSION 
 

In summary, the reflective and polarimetric properties of six urban materials were measured using a dual rotating 
retarder spectropolarimetric reflectometer.  Feature vectors containing reflectance (mBRDF), retardance, and degree of 
polarization were derived from the measurements and used to construct statistical models of each material.  These 
models were used to generate training and testing data for separability studies through the implementation of support 
vector machines.  The three chosen features provided adequate separability for the materials under study and yielded a 
high probability of correct classification while maintaining a low number of false alarms.  Future work will consider a 
larger database, other features, synthetic polarized imagery generated by Irma, and a more rigorous pattern recognition 
analysis. 
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