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Abstract: We investigate nonlinear optical properties of coup led GaN/AlGaN quantum
wells and show that one can engineer the response time and nonlinear phase shift within
wide limits and thus achieve optimised performance for a given symbol rate.
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The progress in optical communications in the last decade was nothing short of
spectacular - the data rates have increased from hundreds ofMB/s to tens of GB/s and the
number of channels has grown to hundreds. Further progress in the Teed and complexity
of optical networks is impeded by the necessity of optical-to-electrical conversion for
switching and regeneration, thus the future networks must be all-optical ones. The crucial
enabling elements of all-optical networking are the nonlinear optical devices used in
switching, wavelength conversion, regeneration, etc.

Currently, all the nonlinear devices used in optical communications are based either on
fiber nonlinearity [1] or nonlinearity of semiconductor optical amplifiers (SOA) [2]. Fiber
nonlinearity is based on generation of virtual carriers and has a response time of less than
a few fs, but the magnitude of the nonlinear refractive index is also very small
(<1016cm2/W). The nonlinearity in the SOA is much stronger, but the response time is
relatively slow (-1OOps) which makes it inapplicable to rates faster than 1OGB/s. The
relation between the strength and the speed of the nonlinearity is rather obvious for the
materials in which the nonlinearity has absorption saturation as its origin. For this type of
nonlinear medium material, one can define a figure of merit as the power intensity
required to produce 180 degrees of nonlinear phase shift in one absorption length,

I'r = -p n2 , where a is the absorption coefficient, A is the wavelength in vacuum and n2

is nonlinear refractive index. If the transition is broadened by F, the power intensity at a
n Fphoton energy that is detuned from resonance by F, is given as I,: = n , where n is the
ao z Tr

refractive index, ca0 is the fine structure constant, z is the matrix element of the transition
dipole, and X is the response time that determines the maximum operational bandwidth. In
this relation, t can be used to minimize I,. To maximize the nonlinearity for a given signal
bandwidth Bs,ig one should ideally set the response time in such a way that r - B-.For
the data rates of 40-160GB/s that means response times in the range of 5-20ps.
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Unfortunately, there do not exist many nonlinear media wherein the relaxation rates can
be easily adjusted in this range with the exception of intersubband transitions (IST) in
quantum wells (QWs) where the intersubband relaxation rates are determined by the LO
phonon scattering and strongly depend on the overlap of the wavefunctions that can be
engineered within wide limits. For the last two decades, the IST could be observed only in
the far-IR range, but more recently we have seen development of nitride-based
semiconductors with large band offsets (deep wells) in which IST within the
telecommunication window (1550nm) has been attained. Recently Iizuka et al [3] have
measured intersubband absorption in GaN/AIN QWs in the 1.3-2.2gm range with
relaxation times of 400fs, but this time is too short for the 40-160GB/s rates. An obvious
way to increase the relaxation time is to use coupled QWs with reduced overlap of
wavefunctions involved in the transition. Unfortunately the reduction in overlap also
decreases the transition matrix element and thus does not improve figure of merit.
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Fig. 1. A three-level system consisting of Al07Gao,3N barriers confining two coupled GaN QWs (15A) separated
by a AlI.55Gao.45N barrier (20A). The there levels are located at El,-0.588eV, =2-0.313eV, and E3=0.216eV.

In order to optimize the relaxation rate and the IST strength separately we propose to
use a three-level coupled QW system as shown in Fig. 1. IST takes place between the
ground state 1 and excited state 3 while the state 2 serves as a trap delaying relaxation to
the ground state. Solving balance equations one can obtain the expression for the effective

relaxation time, T= '(2r32+'21) For v31r32l v21 we obtain r0.52 The
-r31 -tr32

effective relaxation time can be varied within wide limits by changing the central coupling
AlGaN barrier width, while the IST strength and wavelength are maintained by small
changes in the barrier Al composition. In Fig.2 we show the results of calculations of the
response time and nonlinear switching power. As the bartier width changes in the range of
1-2 nm, one can see that the effective relaxation time changes from 0.4 to 5 ps. For a
typical RZ signal these values correspond to the bit rates range of 40-640 GB/s. The
nonlinear switching power densities of <108 W/cm2 correspond to switching instant
powers in the <1W range in a typical waveguide - substantially less than in a fiber loop.
With the doping density of 5x1017/cm3 the switching length would be only l400gm
compared to the meters required in a fiber loop.
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Fig.2. 2-1 Scattering lifetime (c21),effective relaxation time (r), and nonlinear switching intensity as a function
of coupling barrier width

In conclusion, we have shown that GaN/AlGaN coupled QWs with a trap state provide
unique opportunity for engineering bandwidth-optimized all optical devices with low
switching power.
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