
No-regret algorithms for structured

prediction problems

Geoffrey J. Gordon

December 21, 2005

CMU-CALD-05-112

School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

No-regret algorithms are a popular class of online learning rules. Unfortunately, most
no-regret algorithms assume that the set Y of allowable hypotheses is small and dis-
crete. We consider instead prediction problems where Y has internal structure: Y
might be the set of strategies in a game like poker, the set of paths in a graph, or the
set of configurations of a data structure like a rebalancing binary search tree; or Y
might be a given convex set (the “online convex programming” problem) or in general
an arbitrary bounded set. We derive a family of no-regret learning rules, called La-
grangian Hedging algorithms, to take advantage of this structure. Our algorithms are
a direct generalization of known no-regret learning rules like weighted majority and
external-regret matching. In addition to proving regret bounds, we demonstrate one
of our algorithms learning to play one-card poker.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 DEC 2005 2. REPORT TYPE

3. DATES COVERED
 00-12-2005 to 00-12-2005

4. TITLE AND SUBTITLE
No-regret algorithms for structured prediction problems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

45

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Lagrangian Hedging algorithms, online learning, multiagent learning, on-
line convex programming, structured prediction problems, extensive-form games, poker,
Blackwell approachability.

1 Introduction

In a sequence of trials we are required to pick hypotheses y1, y2, . . . ∈ Y. After we choose
yt, the correct answer is revealed in the form of a convex expected-loss function `t(yt).

1

Just before seeing the tth example, our total loss is therefore

Lt =
t−1
∑

i=1

`i(yi)

If we had predicted using some fixed hypothesis y instead, then our loss would have been
∑t−1

i=1 `i(y). We say that our total regret at time t for not having used y is the difference
between these two losses:

ρt(y) = Lt −
t−1
∑

i=1

`i(y)

Positive regret means that the loss for y is smaller than our actual loss—that is, we would
rather have used y. Our overall regret is our regret for not having used the best hypothesis
y ∈ Y:

ρt = sup
y∈Y

ρt(y)

No-regret algorithms are a popular class of learning rules which always have small regret no
matter what sequence of examples they see. This no-regret property is a strong guarantee:
it holds for all comparison hypotheses y ∈ Y, even though we are choosing which y to
compare ourselves to after seeing `t for all t. And, it holds even if the loss functions `t are
statistically dependent from trial to trial; such dependence could result from unmeasured
covariates, or from the action of an external agent.

Unfortunately, many no-regret algorithms assume that the predictions yt are proba-
bility distributions over a small, discrete set. This assumption limits their applicability:
in many interesting prediction problems (such as finding the best pruning of a decision
tree, playing poker, balancing an online binary search tree, and planning paths with an
adversary) the predictions have some internal structure. For example, in a game of poker
(see Section 10 below), the prediction must be a valid poker strategy which specifies how
to play during the next hand.

So, we consider prediction problems where Y is a larger set with internal structure, and
derive new learning rules—the Lagrangian Hedging algorithms—which take advantage of
this structure to provide tighter regret bounds and run faster. The LH algorithms are a

1Many problems use loss functions of the form `t(yt) = `(yt, y
true
t), where ` is a fixed function such as

squared error and ytrue
t is a target output. The more general notation allows for problems where there

may be more than one correct prediction.

1

direct generalization of known no-regret learning rules like weighted majority and external-
regret matching, and they reduce to these rules when choosing from a small discrete set
of predictions.

2 Structured prediction problems

2.1 Problem definition

Our algorithm chooses its prediction at each round from a hypothesis set Y. We assume
that Y is a compact subset of R

d that has at least two elements.
In classical no-regret algorithms such as weighted majority, Y is a simplex. The corners

of Y represent pure actions, the interior points of Y represent probability distributions
over pure actions, and the number of corners n is the same as the number of dimensions d.
In a structured prediction problem, on the other hand, Y may have many more extreme
points than dimensions, n� d. For example, Y could be a convex set like

{y | Ay = b, y ≥ 0}

for some matrix A and vector b (in which case the number of extreme points can be
exponential in d), or it could be a sphere (which has infinitely many extreme points), or
it could be a set of discrete points like the corners of a hypercube.

The shape of Y captures the structure in our structured prediction problem. Each
point in Y is a separate hypothesis, but the losses of different hypotheses are related to
each other because they are all embedded in the common representation space R

d. This
relationship gives us the ability to infer the loss of one hypothesis from the losses of others.
For example, consider two Texas Hold’Em strategies which differ only in how aggressively
they bet after seeing a particular sequence of play like “Q3 down, no bets, 557 flopped”:
these strategies will have very similar expected payoffs against any opponent, despite being
distinct hypotheses.

It is important to take advantage of available structure in Y. To see why, imagine
running a standard no-regret algorithm such as weighted majority on a structured Y: to
do so, we must give it hypotheses corresponding to the extreme points c1 . . . cn of Y. Our
running time and regret bounds will then depend on the number of extreme points n. If
n is exponential in d (as for sets of the form {Ay = b, y ≥ 0}), we will have difficulty
keeping track of our past loss functions in a reasonable amount of time and space, and our
regret bounds may be larger than necessary. If n is infinite (as for spheres), the situation
will be even worse: it will be impossible to remember our loss functions at all without
some kind of trick, and our regret bounds will be vacuous.

2

2.2 Reductions which simplify notation

If Y is convex, there will never be any need for our algorithm to randomize: for any convex
loss function `, we have `(E(y)) ≤ E(`(y)) by Jensen’s inequality, so we can replace any
distribution over Y by its expectation without hurting our performance. On the other
hand, if Y is not convex our algorithm may need to randomize to achieve low regret: for
example, if Y = {0, 1}, it is impossible for a deterministic algorithm to guarantee less than
Θ(t) regret in t trials.

To build a randomized algorithm we will allow ourselves to pick hypotheses from the
convex hull of Y. We will interpret a point in convY as a probability distribution over
the elements of Y by decomposing y =

∑

i piyi, where yi ∈ Y, pi ≥ 0, and
∑

i pi = 1.
(In fact, there will usually be several such representations of a given y; different ones may
yield different regrets, but they will all satisfy our regret bounds below.) For convenience
of notation we will take Y to be a convex set in the remainder of this paper, with the
understanding that some elements of Y may be interpreted as randomized actions.

Our algorithms below are stated in terms of linear loss functions, `t(y) = ct · y. If
`t is nonlinear but convex, we have two options: first, we can substitute the derivative
at the current prediction, ∂`t(yt), for ct, and our regret bounds will still hold [1, p. 54].
Or, second, we can apply the standard convex programming trick of adding constraints to
make our objective linear: for example, if our losses are KL-divergences

`t(y) = y ln
y

pt
+ (1− y) ln

1− y

1− pt

we can add a new variable z and a new constraint

z ≥ y ln y + (1− y) ln(1− y)

resulting in a new feasible region Y ′.2 We can then write an equivalent loss function which
is linear over Y ′:

`t(y, z) = z − y ln pt − (1− y) ln(1− pt) (y, z) ∈ Y ′

In either case we will assume in the remainder of this paper that the loss functions are
linear, and we will write C for the set of possible gradient vectors ct.

3 Related work

A large number of researchers have studied online prediction in general and online convex
programming in particular. From the online prediction literature, the closest related work

2Technically, we must also add a vacuous upper bound on z to maintain our assumption of a bounded
feasible region.

3

is that of Cesa-Bianchi and Lugosi [2], which follows in the tradition of an algorithm and
proof by Blackwell [3]. Cesa-Bianchi and Lugosi consider choosing predictions from an
essentially-arbitrary decision space and receiving outcomes from an essentially-arbitrary
outcome space. Together a decision and an outcome determine how a marker Rt ∈ R

d

will move. Given a potential function G, they present algorithms which keep G(Rt) from
growing too quickly. This result is similar in flavor to our Theorem 5, and both Theorem 5
and the results of Cesa-Bianchi and Lugosi are based on Blackwell-like conditions.

The main differences between the Cesa-Bianchi–Lugosi results and ours are the re-
strictions that they place on their potential functions. They write their potential func-
tion as G(u) = f(Φ(u)); they require Φ to be additive (that is, Φ(u) =

∑

i φi(ui) for
one-dimensional functions φi), nonnegative, and twice differentiable, and they require
f : R

+ 7→ R
+ to be increasing, concave, and twice differentiable. These restrictions rule

out many of the potential functions used here. The most restrictive requirement is that
Φ be additive; for example, unless the set Ȳ can be factored as Ȳ1 × Ȳ2 × . . . × ȲN for
one-dimensional sets Ȳ1, Ȳ2, . . . , ȲN , potential functions defined via Equation (7) are gen-
erally not expressible as f(Φ(u)) for additive Φ. The differentiability requirement rules
out potential functions like [x]2+, which is not twice differentiable at x = 0.3

Our more general potential functions are what allow us to define no-regret algorithms
that work on structured hypothesis spaces like the set of paths through a graph or the set
of sequence weights in an extensive-form game. Ours is the first result which allows one
to construct such potential functions easily: combining any of a number of well-studied
hedging functions (such as negentropy, componentwise negentropy, or squared Lp norms)
with an arbitrary compact convex hypothesis set, as described in Section 6, results in a no-
regret algorithm. Previous results such as Cesa-Bianchi and Lugosi’s provide no guidance
in constructing potentials for such hypothesis sets.

In the online convex programming literature, perhaps the best known recent related
papers are those of Kalai and Vempala [4] and Zinkevich [5]. The online convex program-
ming problem has a much longer history, though: the first description of the problem and
the first algorithm of which we are aware were presented by Hannan in 1957 [6], although
Hannan didn’t use the name “online convex programming.” And, the current author’s
Generalized Gradient Descent algorithm [1,7] solves a generalization of the online convex
programming problem, although it was not originally presented in those terms: if each of
GGD’s loss functions `t(y) for t ≥ 1 is of the form ct · y + I(y), where I is 0 inside the
feasible set and∞ outside, then GGD solves online convex programs. If in addition GGD’s
prior loss `0(y) is proportional to ‖y‖22, then GGD acts like Zinkevich’s lazy projection
algorithm with a fixed learning rate [8].

3Cesa-Bianchi and Lugosi claim (p. 243) that their results apply to φ(x) = [x]p+ with p ≥ 2, but this
appears to be a slight error; the Taylor expansion step in the proof on p. 242 requires twice-differentiability
and therefore needs p > 2. My thanks to Amy Greenwald for pointing this fact out to me.

4

Compared to the above online convex programming papers, the most important con-
tributions of the current paper are the flexibility of its algorithm and the simplicity and
generality of its proof. Ours is the first algorithm based on general potential functions
which can solve arbitrary online convex programs.4 And, our proof contains as special
cases most of the common no-regret bounds, including for example those for Hedge and
weighted majority: while our overall algorithm is new, by choosing the appropriate poten-
tial functions one can reduce it to various well-known algorithms, and our bounds reduce
to the corresponding specific bounds.

The flexibility of our algorithm comes from our freedom to choose from a wide range
of potential functions; because of this freedom we can design algorithms which force their
average regret to zero in a variety of ways. For example, if we define the safe set S as
in Section 4, we can try to decrease two-norm, max-norm, or one-norm distance from
S as rapidly as possible by choosing hedging functions based on ‖y‖22, negentropy, or
componentwise negentropy respectively. The simplicity of the proof results from our use
of Blackwell-style approachability arguments; our core result, Theorem 5, takes only half
a dozen short equations to prove. This theorem is the first generalization of well-known
online learning results such as Cesa-Bianchi and Lugosi’s to online convex programming,
and it is the most general result of this sort that we know.

More minor contributions include: our bounds are better than those of previous algo-
rithms such as that of Kalai and Vempala, since (unless p = 1 in Theorem 3) we do not
need to adjust a learning rate based on prior knowledge of the number of trials. And, we
are not aware of any prior application of online learning to playing extensive-form games.

In addition to the general papers above, a number of no-regret algorithms for specific
online convex programs have appeared in the literature. These include predicting nearly
as well as the best pruning of a decision tree [9], reorganizing a binary search tree online
so that frequently-accessed items are close to the root [4], and picking paths in a graph
with unknown edge costs [10].

4 Regret vectors and safe sets

Lagrangian Hedging algorithms maintain their state in a regret vector. This vector contains
information about our actual losses and the gradients of our loss functions. Given a loss
function `t(y) = ct · y as described in Section 2, we can define the regret vector st by the
recursion:

st+1 = st + (yt · ct)u− ct (1)

4The current author’s GGD and MAP algorithms [1, 7] can both handle a general class of convex
potential functions and feasible regions, but they depend either on an adjustable learning rate or on the
degree of convexity of the loss functions `t to achieve sublinear regret.

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: A set Y = {y1 + y2 = 1, y ≥ 0}
(thick dark line) and its safe set S (light
shaded region). Note y ·s ≤ 0 for all y ∈ Ȳ
and s ∈ S, where Ȳ is the positive orthant.

s1 ← 0
for t← 1, 2, . . .

ȳt ← f(st) (*)
if ȳt · u > 0 then

yt ← ȳt/(ȳt · u)
else

yt ← arbitrary element of Y
fi
Observe ct, compute st+1 from (1)

end

Figure 2: The gradient form of the La-
grangian Hedging algorithm.

with the base case s1 = 0. Here u is an arbitrary vector which satisfies y · u = 1 for all
y ∈ Y. If necessary we can append a constant element to each y so that such a u exists.

Given st we can compute our regret versus any hypothesis y:

y · st =
t−1
∑

i=1

(yi · ci)y · u−
t−1
∑

i=1

y · ci = Lt −
t−1
∑

i=1

y · ci = ρt(y)

This property justifies the name “regret vector.”
We can define a safe set, in which our regret is guaranteed to be nonpositive:

S = {s | (∀y ∈ Y) y · s ≤ 0} (2)

The goal of the Lagrangian Hedging algorithm will be to keep its regret vector st near the
safe set S.

Figure 1 shows an example of the safe set for a very simple hypothesis space in R
2. As

is true in general, this example demonstrates that S is a convex cone: it is closed under
positive linear combinations of its elements. If we define another convex cone

Ȳ = {λy | y ∈ Y, λ ≥ 0} (3)

then ȳ · s ≤ 0 for all s ∈ S and ȳ ∈ Ȳ. In fact, Ȳ is exactly the set of vectors with negative
dot products with all of S, and vice versa: the two cones are polar to each other, written
S = Ȳ⊥ or S⊥ = Ȳ. See Appendix E for more detail on the properties of polar cones.

6

5 The Lagrangian Hedging algorithm

We will present the general Lagrangian Hedging algorithm first, then show how to im-
plement it efficiently for specific problems. The general form of the LH algorithm is also
called the gradient form, as distinguished from the optimization form, which is slightly
less general but often easier to implement. The optimization form is presented below in
Section 6. The name “Lagrangian Hedging” comes from the fact that the LH algorithm
is a generalization of Freund and Schapire’s Hedge algorithm [11], and that its hypothesis
can be thought of as a Lagrange multiplier for a constraint which keeps its regret from
growing too fast.

At each time step, the LH algorithm chooses its play based on the current regret vector
st, as defined in Equation (1). The LH algorithm depends on one free parameter, a closed
convex potential function F (s) which is defined everywhere in R

d. The potential function
should be small when s is in the safe set, and large when s is far from the safe set.

For example, suppose that Y is the probability simplex in R
d, so that S is the negative

orthant in R
d. (This choice of Y would be appropriate for playing a matrix game or

predicting from expert advice.) For this Y, two possible potential functions are

F1(s) = ln
∑

i

eηsi − ln d

where η is a positive learning rate, and

F2(s) =
∑

i

[si]
2
+/2

where [s]+ is the positive part of s. The potential F1 will lead to the Hedge [11] and
weighted majority [12] algorithms, while the potential F2 will result in an algorithm called
external-regret matching [13, Theorem B]. For a more complicated example of a useful
potential function, see Section 9 below.

In order for the LH algorithm to be well-defined we require

F (s) ≤ 0 ∀s ∈ S (4)

We will impose additional requirements on F later for our regret bounds. We will write
f(s) for an arbitrary subgradient of F ; that is, f(s) ∈ ∂F (s) for all s. (For an introduction
to subgradients and convex analysis, see Appendix E. Such an f is guaranteed to exist
since F is finite everywhere.)

The LH algorithm is shown in Figure 2. On each step, it computes ȳt = f(st), then
renormalizes to get yt. To show that the LH algorithm is well-defined, we need to prove
that yt is always a valid hypothesis; Theorem 1, whose proof is given in Appendix C, does
so. (Recall that, as described in Section 2, we can replace a non-convex Y by convY and
interpret the elements of convY as probability distributions over the original Y.)

7

Theorem 1 The LH algorithm is well-defined: given a closed convex hypothesis set Y
and a vector u with u · y = 1 for all y ∈ Y, define S as in (2) and fix a convex potential
function F which is everywhere finite. If F (s) ≤ 0 for all s ∈ S, then the LH algorithm
with potential F picks hypotheses yt ∈ Y for all t.

We can also define a version of the LH algorithm with an adjustable learning rate: if
we use the potential function F (ηs) instead of F (s), the result is equivalent to updating
st with a learning rate η. Below, the ability to adjust our learning rate will help us obtain
regret bounds for some classes of potential functions.

6 The optimization form

Even if we have a convenient representation of our hypothesis space Y, it may not be easy
to work directly with the safe set S. In particular, it may be difficult to define, evaluate,
and differentiate a potential function F which has the necessary properties.

For example, a typical choice for F is “squared Euclidean distance from S.” If S is
the negative orthant (as it would be for standard experts algorithms), then F is easy to
work with: we can separate F into a sum of d simple terms, one for each dimension. On
the other hand, if S is the safe set for a complicated hypothesis space (such as Y = {y ≥
0 | Ay + b = 0} for some matrix A and vector b), it is not obvious how to compute S,
F (s), or ∂F (s) efficiently: F can have many quadratic pieces with boundaries at many
different orientations, and there is generally no way to break F into the sum of a small
number of simple terms. For the same reason, it may also be difficult to prove that F has
the curvature properties required for the performance analysis of Theorem 3.

To avoid these difficulties, we can work with an alternate form of the Lagrangian
Hedging algorithm. This form, called the optimization form, defines F in terms of a
simpler function W which we will call the hedging function. On each step, it computes F
and ∂F by solving an optimization problem involving W and the hypothesis set Y. In our
example above, where F is squared Euclidean distance from S, the optimization problem
is minimum-Euclidean-distance projection: we split s into two orthogonal components,
one in Ȳ and one in S. This optimization is easy since we have a compact representation
of Ȳ. And, knowing the component of s in S tells us which quadratic piece of F is active,
making it easy to compute F (s) and an element of ∂F (s).

For example, two possible hedging functions are

W1(ȳ) =

{

∑

i ȳi ln ȳi + ln d if ȳ ≥ 0,
∑

i ȳi = 1

∞ otherwise
(5)

and
W2(ȳ) =

∑

i

ȳ2
i /2 (6)

8

If Y is the probability simplex in R
d (so that S is the negative orthant in R

d and we can
choose u = [1, 1, . . . , 1]T), then W1(ȳ/η) and W2(ȳ) correspond to the potential functions
F1 and F2 from Section 5 above. So, these hedging functions result in the weighted
majority and external-regret matching algorithms respectively. In these examples, since
F1 and F2 are already simple, W1 and W2 are not any simpler. For an example where
the hedging function is easy to write analytically but the potential function is much more
complicated, see Section 9 below.

For the optimization form of the LH algorithm to be well-defined, W should be convex,
dom W ∩ Ȳ should be nonempty, W (ȳ) ≥ 0 for all ȳ, and the sets {ȳ | W (ȳ) + s · ȳ ≤ k}
should be compact for all s and k. (The last condition is equivalent to saying that W is
closed and increases strictly faster than linearly in all directions.) Theorem 2 below shows
that, under these assumptions, the two forms of the LH algorithm are equivalent. We will
impose additional requirements on W later for our regret bounds.

We can now describe the optimization problem which allows us to implement the LH
algorithm using W and Y instead of the corresponding potential function F . Define Ȳ as
in (3). Then F is defined to be5

F (s) = sup
ȳ∈Ȳ

(s · ȳ −W (ȳ)) (7)

We can compute F (s) by solving (7), but for the LH algorithm we need ∂F instead. As
Theorem 2 below shows, there is always a ȳ which achieves the maximum in (7):

ȳ ∈ arg max
ȳ∈Ȳ

(s · ȳ −W (ȳ)) (8)

and any such ȳ is an element of ∂F ; so, we can use Equation (8) with s = st to compute
ȳt in line (∗) of the LH algorithm (Figure 2).

To gain an intuition for Equations (7–8), let us look at the example of the external-
regret matching algorithm in more detail. Since Y is the unit simplex in R

d, Ȳ is the
positive orthant in R

d. So, with W2(ȳ) = ‖ȳ‖22/2, the optimization problem (8) will be
equivalent to

ȳ = arg min
ȳ∈R

d
+

1

2
‖s− ȳ‖22

That is, ȳ is the projection of s onto R
d
+ by minimum Euclidean distance. It is not hard

to verify that this projection replaces the negative elements of s with zeros, ȳ = [s]+.

5This definition is similar to the definition of the convex dual W ∗ (see Appendix E), but the supremum
is over ȳ ∈ Ȳ instead of over all ȳ. As a result, F and W ∗ can be very different functions. As pointed out
in Appendix B, F can be expressed as the dual of a function related to W : it is F = (IȲ + W)∗, where
IȲ is 0 within Ȳ and ∞ outside of Ȳ. We state our results in terms of W rather than F ∗ because W will
usually be a simpler function, and so it will generally be easier to verify properties of W .

9

Substituting this value for ȳ back into (7) and using the fact that s · [s]+ = [s]+ · [s]+, the
resulting potential function is

F2(s) = s · [s]+ −
∑

i

[si]
2
+/2 =

∑

i

[si]
2
+/2

as claimed above. This potential function is the standard one for analyzing the external-
regret matching algorithm.

Theorem 2 Let W be convex, dom W ∩Ȳ be nonempty, and W (ȳ) ≥ 0 for all ȳ. Suppose
the sets {ȳ | W (ȳ) + s · ȳ ≤ k} are compact for all s and k. Define F as in (7). Then
F is finite and F (s) ≤ 0 for all s ∈ S. And, the optimization form of the LH algorithm
using the hedging function W is equivalent to the gradient form of the LH algorithm with
potential function F .

The proof of Theorem 2 is given in Appendix C.

7 Theoretical results

Our main theoretical results are regret bounds for the LH algorithm. The bounds depend
on the curvature of our potential function F , the size of the hypothesis set Y, and the
possible slopes C of our loss functions. Intuitively, F must be neither too curved nor too
flat on the scale of the updates to st from Equation (1): if F is too curved then ∂F will
change too quickly and our hypothesis yt will jump around a lot, while if F is too flat
then we will not react quickly enough to changes in regret.

7.1 Gradient form

We will need upper and lower bounds on F . We will assume

F (s + ∆) ≤ F (s) + ∆ · f(s) + C‖∆‖2 (9)

for all regret vectors s and increments ∆, and

[F (s) + A]+ ≥ inf
s′∈S

B‖s− s′‖p (10)

for all s. Here ‖·‖ is an arbitrary finite norm, and A ≥ 0, B > 0, C > 0, and 1 ≤ p ≤ 2 are
constants.6 Equation (9), together with the convexity of F , implies that F is differentiable

6The number p has nothing to do with the chosen norm; for example, we could choose p = 1.5 but use
Euclidean distance (the 2-norm) or even a non-Lp norm.

10

and that f is its gradient; the LH algorithm is still applicable if F is not differentiable,
but its regret bounds are weaker.

We will bound the size of Y by assuming that

‖y‖◦ ≤M (11)

for all y in Y. Here, ‖ · ‖◦ is the dual of the norm used in Equation (9). (See Appendix E
for more information about dual norms.)

The size of our update to st (in Equation (1)) depends on the hypothesis set Y, the
cost vector set C, and the vector u. We have already bounded Y; rather than bounding C
and u separately, we will assume that there is a constant D so that

E(‖st+1 − st‖2 | st) ≤ D (12)

Here the expectation is taken with respect to our choice of hypothesis, so the inequality
must hold for all possible values of ct. (The expectation operator is only necessary if
we randomize our choice of hypothesis, as would happen if Y is the convex hull of some
non-convex set. If Y was convex to begin with, we need not randomize, so we can drop
the expectation in (12) and below.)

Our theorem then bounds our regret in terms of the above constants; see Appendix A
for a proof. Since the bounds are sublinear in t, they show that Lagrangian Hedging is a
no-regret algorithm when we choose an appropriate potential F .

Theorem 3 Suppose the potential function F is convex and satisfies Equations (4), (9)
and (10). Suppose that the problem definition is bounded according to (11) and (12). Then
the LH algorithm (Figure 2) achieves expected regret

E(ρt+1(y)) ≤M((tCD + A)/B)1/p = O(t1/p)

versus any hypothesis y ∈ Y.
If p = 1 the above bound is O(t). But, suppose that we know ahead of time the number

of trials t we will see. Define G(s) = F (ηs), where

η =
√

A/(tCD)

Then the LH algorithm with potential G achieves regret

E(ρt+1(y)) ≤ (2M/B)
√

tACD = O(
√

t)

for any hypothesis y ∈ Y.

11

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 3: Given two functions F (dashed line) and G (dash-dot), we can define
conv min(F, G) (solid line) to be the pointwise greatest convex function H such that
H(y) ≤ min(F (y), G(y)) for all y.

7.2 Optimization form

In order to apply Theorem 3 to the optimization form of the LH algorithm, we will show
how to transfer bounds on the hedging function W to the potential function F . An upper
bound on W will lead to a lower bound on F , while a lower bound on W will yield an
upper bound on F . The ability to transfer bounds means that, in order to analyze or
implement the optimization form of the LH algorithm, we never have to evaluate the
potential function F or its derivative explicitly. Since W and related functions may not
be differentiable, we will use the notation of convex analysis to state our bounds; see
Appendix E for definitions.

For our upper bound on F , instead of (9) we will assume that for all unnormalized
hypotheses y0 ∈ Ȳ ∩ dom ∂W , for all s ∈ ∂W (y0), and for all y ∈ Ȳ,

W (y) ≥W (y0) + (y − y0) · s + (1/4C)‖y − y0‖2◦ (13)

Here C is the same constant as in Equation (9) and ‖ · ‖◦ is the dual of the norm
from Equation (9). We will also assume that Ȳ ∩ rel int dom W is nonempty; since
rel int dom W ⊆ dom ∂W , this last assumption guarantees that (13) isn’t vacuous.

For our lower bound on F , instead of (10) we will assume

conv min(W (y)−A + IȲ(y), I0(y)) ≤ B‖y/B‖q◦ ∀y ∈ Ȳ (14)

Here A and B are the same constants as in (10), ‖ · ‖◦ is the dual of the norm from
Equation (10), and IK(y) is 0 when y is in the set K and ∞ otherwise. The operation

12

conv min(F, G) is illustrated in Figure 3. The constant q is defined by 1
p + 1

q = 1 where p
is the constant from (10). Note that, since 1 ≤ p ≤ 2, we have 2 ≤ q ≤ ∞. As is typical,
we will follow the convention

|x|∞ ≡ I[−1,1](x)

So, when p = 1, Equation (14) is equivalent to

conv min(W (y)−A + IȲ(y), I0(y)) ≤ 0 ∀y ∈ Ȳ with ‖y‖◦ ≤ B

Our main theoretical result about the optimization form of the LH algorithm is that the
above bounds on W imply the corresponding bounds on F .

Theorem 4 Suppose that the hedging function W is closed, convex, nonnegative, and
satisfies Equations (13) and (14) with the constants A, B, C, and 2 ≤ q ≤ ∞ and the
finite norm ‖ · ‖◦. Suppose the set Ȳ ∩ rel int dom W is nonempty. Define p so that
1
p + 1

q = 1. Define F as in (7). Then the optimization form of the LH algorithm using
hedging function W is equivalent to the gradient form using potential function F , and F
satisfies the assumptions of Theorem 3 with constants A, B, C, and p and the norm ‖ · ‖.

Theorem 4 follows directly from Theorems 2 and 9 (proven in Appendices B and C).
As an immediate corollary we have that the optimization form satisfies all of the same
regret bounds as the gradient form; for example, if the problem definition is bounded
by (11) and (12) with constants M and D, Theorem 3 shows that our expected regret is
bounded by

E(ρt+1(y)) ≤M((tCD + A)/B)1/p = O(t1/p)

after t steps versus any hypothesis y ∈ Y.
One result which is slightly tricky to carry over is the use of learning rates to achieve

no regret when p = 1. The choice of learning rate and the resulting bound are the same
as in Theorem 3, but the implementation is slightly different: to set a learning rate η > 0,
we want to use the potential

G(s) = F (ηs) = sup
ȳ∈Ȳ

(ηs · ȳ −W (ȳ))

Using the substitution ȳ 7→ ȳ/η, we have

G(s) = sup
ȳ∈Ȳ

(s · ȳ −W (ȳ/η))

since ȳ/η ∈ Ȳ whenever ȳ ∈ Ȳ. So, to achieve a learning rate η, we just need to replace
W (ȳ) with W (ȳ/η).

13

8 Examples

8.1 Matrix games and expert advice

The classical applications of no-regret algorithms are learning from expert advice and
learning to play a repeated matrix game. These two tasks are essentially equivalent, since
they both use the probability simplex

Y = {y | y ≥ 0,
∑

iyi = 1}

for their hypothesis set. This choice of Y has no difficult structure, but we mention it to
point out that it is a special case of our general prediction problem. Standard no-regret
algorithms such as Freund and Schapire’s Hedge [11], Littlestone and Warmuth’s weighted
majority [12], and Hart and Mas-Colell’s external-regret matching [13, Theorem B] are all
special cases of the LH algorithm.

For definiteness, we will consider the case of repeated matrix games. On step t we
choose a probability distribution yt over our possible actions. Our opponent plays a
mixed strategy zt over his possible actions, and we receive payoff `t(yt) = zt

TMyt = ct · yt

where M is our payoff matrix. Our problem is to learn how to play well from experience:
since we do not know our opponent’s payoff matrix, we wish to adjust our own play to
achieve high reward against the actual sequence of plays z1, z2, . . . that we observe.

8.1.1 External-regret matching

Perhaps the simplest no-regret algorithm for matrix games is the one we get by taking
W (y) = ‖y‖22/2, which leads to F (s) = ‖ [s]+‖22/2 as described above. The derivative of
F is

f(s) = [s]+

so at each step we take the positive components of our regret vector, renormalize them to
form a probability distribution, and play according to this probability distribution.

Using the Euclidean norm ‖ · ‖2, it is easy to see that our choice of W satisfies Equa-
tion (13) with C = 1/2 and Equation (14) with A = 0, B = 1/2, and p = q = 2. All
elements of the probability simplex Y are bounded by ‖y‖2 ≤ 1, so M = 1 in Equation (11).
And, if our payoff matrix is bounded so that so that 0 ≤ Mij ≤ 1, then ct ∈ [0, 1]d and
yt · ct ∈ [0, 1] in (1), so our regret updates are in [−1, 1]d. That means that we can take
D = d in Equation (12).

Substituting in the above constants, Theorem 3 tells us that the external-regret match-
ing algorithm has regret

E(ρt+1(y)) ≤
√

td

for any comparison hypothesis y ∈ Y.

14

8.1.2 Hedge

Another well-known no-regret algorithm for matrix games is Hedge [11]. To reproduce
this algorithm, we can use the potential function

F (s) = ln
∑

i

esi − ln d

in the gradient form of the LH algorithm. The gradient of F is

fi(s) = esi/
∑

je
sj

So, at each step we exponentiate the regrets and then renormalize to get a probability
distribution. This is exactly the Hedge algorithm: the usual formulation of Hedge says to
exponentiate the sum of the loss vectors instead of the regret vector, but since the regret
differs from the sum of the losses by a multiple of u = (1, 1, . . . , 1)T, the difference gets
canceled out in the normalizing constant.

For the generalizations of Hedge which we will examine below, it will be helpful to
prove our bounds using the optimization form of the LH algorithm. In the optimization
form, Hedge uses the entropy hedging function shown in Equation (5). This choice of W
is finite only inside Ȳ = R

d
+, so the optimization (7) just computes W ∗(s); it is a standard

result that the F given above is equal to W ∗.
Using the L1 norm ‖ · ‖1, our choice of W satisfies Equation (13) with C = 1/2 and

Equation (14) with A = ln d, B = 1, p = 1, and q = ∞. For a proof, see Lemma 10
in Appendix D. All elements of the probability simplex Y are bounded by ‖y‖1 ≤ 1, so
M = 1 in Equation (11). Finally, our regret updates are in [−1, 1]d and so have max norm
no more than 1; so, we can take D = 1 in Equation (12).

Substituting in the above constants, Theorems 3 and 4 tell us that the Hedge algorithm
with learning rate η = 1 has

E(ρt+1(y)) ≤ t/2 + ln d

for any comparison hypothesis y. If we pick instead η =
√

(2 ln d)/t, the bound becomes

E(ρt+1(y)) ≤
√

2t ln d

This result is similar to well-known bounds on Hedge such as the one obtained by Freund
and Schapire [11, section 2.2]. Translated to our notation, Freund and Schapire chose a
learning rate of

η = ln(1 +
√

(2 ln d)/t)

which is slightly slower than our learning rate. They used this learning rate to prove a
regret bound of

√

(2 ln d)/t + (ln d)/t

15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Synthetic example of a structured prediction problem. Left: domain of x. Right:
domain of y.

per trial, which is slightly weaker than our bound since it adds a term depending on 1/t.
As t→∞, the difference in learning rates approaches zero and the O(1/t) term becomes
irrelevant, so the two bounds become equivalent.7

8.2 A simple synthetic example

This subsection presents a simple synthetic example of a structured prediction problem
and an LH algorithm which solves it. Unlike the examples in the previous subsection,
there is no obvious way to select a potential function for this problem without either
using the techniques described in this paper or moving to a less efficient representation
(such as the one where each corner of Y has a separate regret). In addition, this example
demonstrates how to apply the LH algorithm to regression or classification problems: in
these problems, each example consists of an input vector xt together with a target output
zt, and our hypothesis space is a set of functions Y which map inputs to outputs.

In our synthetic problem, the input examples xt are drawn from the pentagon X shown
at the left of Figure 4, and the target outputs zt are either +1 or −1. Our predictions are
linear functions which map X into the interval [−1, 1]; the set Y of such functions is the
geometric dual of X , which is the pentagon shown on the right of Figure 4. We will use
the absolute loss

`t(y) =

{

y · xt if zt = −1
−y · xt if zt = +1

or more compactly `t(y) = −ztxt · y.
Specifying Y and `t completely describes our prediction problem. The set Y is not

particularly complicated, but it does not match the hypothesis sets for any of the standard

7The extra term in Freund and Schapire’s bound appears to be due to the fact that they write the
recommended distribution of actions as β−S/Z rather than exp(ηS)/Z, requiring an extra linearization
step ln(1 + β) ≤ β in their proofs.

16

−1.5

−1

−0.5

0

0.5

1

1.5 −1.5

−1

−0.5

0

0.5

1

1.50

0.5

1

y
2

y
1

y 3

Figure 5: Hypothesis space Y after including constant component, together with the cone
Ȳ containing Y.

no-regret algorithms. So, we will design a Lagrangian Hedging algorithm instead.
In order to construct an LH algorithm we need a vector u with u · y = 1 for all y ∈ Y.

Since such a vector doesn’t exist for the Y shown in Figure 4, we will add a dummy
dimension to the problem: we will set the third element of y to be 1 for all y ∈ Y, and add
a corresponding third element of 0 onto each x so that the predictions remain unchanged.
The modified Y is shown in Figure 5 as a horizontal pentagon. Figure 5 also shows the
boundaries of a cone extending from the origin through Y; this cone is Ȳ.

With our modified Y we can take u = (0, 0, 1)T. So, the only thing left to specify in our
LH algorithm is our hedging function W . For simplicity we will pick squared Euclidean
norm, ‖ȳ‖22/2. Having chosen a hedging function we can now apply the optimization form
of the LH algorithm. The algorithm starts with s1 = (0, 0, 0)T, then, for each t, executes
the following steps:

• Project st onto Ȳ by minimum Euclidean distance; call the result ȳ.

• Normalize ȳ to get y = ȳ/(ȳ · u). (If ȳ · u = 0 we can choose y ∈ Y arbitrarily.)

• Predict ẑt = y · xt and then find out the true zt.

• Update st+1 ← st + ztxt − zt(xt · yt)u.

To apply Theorem 3 to our algorithm we need to evaluate the constants in our bounds.
We are using the same hedging function as in external-regret matching, so the constants
A = 0, B = C = 1/2, and p = q = 2 remain the same, as does the choice of the Euclidean
norm. To determine M we need the longest vector in the augmented Y. This vector has
length 1.5: the size of the unaugmented Y is

√
5/2, and adding a constant component of

1 yields vectors of length up to
√

1 + 5/4 = 1.5. For D we need the squared length of the

17

largest possible update to st. Since ztxt has length at most
√

5/2 and zt(xt · yt) ∈ [−1, 1],
the update has length at most 1.5, and we can take D = 2.25. Putting all of these values
together, our final bound is

E(ρt+1) ≤ 2.25
√

t

8.3 Other applications

A large variety of online prediction problems can be cast in our framework. These problems
include online convex programming [1, 4, 5], p-norm perceptrons [2], path planning when
costs are chosen by an adversary [10], planning in a Markov decision process when costs
are chosen by an adversary [14], online pruning of a decision tree [15], and online balancing
of a binary search tree [4]. In each case the bounds provided by the LH algorithm will be
polynomial in the dimensionality of the appropriate hypothesis set and sublinear in the
number of trials. Rather than re-proving all of the above results in our framework, we will
illustrate the flexibility of the LH algorithm by turning now to a learning problem which
has not previously been addressed in the literature: how to learn to play an extensive-form
game.

9 Extensive-form games

Extensive-form games such as poker or bridge are represented by game trees with chance
moves and incomplete information. A behavior strategy for a player in an extensive-form
game is a function which maps an information state (or equivalently a history of actions
and observations) to a distribution over available actions. The number of distinct behavior
strategies can be exponential in the size of the game tree; but, by using the sequence form
representation of a game [16], we can design algorithms which learn behavior strategies
against unknown opponents, achieve O(

√
t) regret over t trials, and run in polynomial

time. The algorithms described below are the first with all of these properties.
The regret bounds for our algorithms imply that, in the long run, our learner will

achieve average cost no worse than its safety value, no matter what strategies our oppo-
nents play and without advance knowledge of the payoffs. (Depending on the motivations
of our opponents, we may of course do much better.) The proof of this property is identical
to the one given for matrix games by Freund and Schapire [11]; our work is the first to
demonstrate this property in general extensive-form games.

We assume that our algorithm finds out, after each trial, both its cost yt · ct and the
gradient of its cost ct. Dealing with reduced feedback would be possible, but is beyond
the scope of this paper. (For more information, see for example [17,18].)

18

9.1 The sequence form

We want to learn how to act in an extensive-form game through repeated play. To phrase
this task as a structured prediction problem, we can set our feasible set Y to be the set
Y i

seq of valid sequence weight vectors for our player. A sequence weight vector y for player
i will contain one sequence weight ysiai for each pair (si, ai), where si is an information
state where it is i’s turn to move and ai is one of i’s available actions at si. All weights
are nonnegative, and the probability of taking action ai in state si is proportional to ysiai .
The set Y is convex, and the payoff for a strategy y ∈ Y is a linear function of y when we
hold the strategies of the other players fixed.

In more detail, we can represent player i’s information state just before her kth move
by a sequence of alternating observations and actions, ending in an observation:

si = (zi
1, a

i
1, z

i
2, a

i
2, . . . , z

i
k)

An edge x in the game tree is uniquely identified by the most recent sequences and actions
for all players, x = (s1, a1, s2, a2, . . .).

Player i’s policy can be represented by a weight ysiai
for each of her state-action pairs

(si, ai), defined as

ysiai

= P (ai
1 | si

1)P (ai
2 | si

2) . . . P (ai
k | si

k) (15)

Here k is the length of si, and si
j is the subsequence of si ending with zi

j , so for example

si
k = si. We have written P (ai

j | si
j) for the probability that player i will choose action ai

j

after having observed si
j .

The valid sequence weight vectors satisfy a set of linear constraints: for any state si,
the weights ysiai

for different actions ai share all terms in the product (15) except for the
last. So, if we sum these weights, we can factor out the first k − 1 terms and use the fact
that probabilities sum to 1 to get rid of the kth term. If k = 1, there was only one term
in the product to begin with, so we have:

∑

ai
1

ysi
1ai

1 = 1 (16)

On the other hand, for k > 1, the first k− 1 terms in (15) are just a sequence weight from
the (k − 1)st move, so we have:

∑

ai
k

ysi
k
ai

k = ysi
k−1

ai
k−1

Together with the requirement of nonnegativity, we will write these constraints as

Y i
seq = {y ≥ 0 | Ai

seqy = bi
seq}

19

for a matrix Ai
seq and vector bi

seq. Note that the total number of nonzero entries in the
matrices Ai

seq and bi
seq for all i is linear in the size of the original game tree. Also note

that any vector y ∈ Y i
seq corresponds to a valid strategy for player i: the probability of

choosing action a given history si is

P (a | si) = ysia

/

∑

ai
k

ysi
k
ai

k

To conclude this subsection we will show that a player’s expected cost is linear in her
sequence weights. Given an edge x in a two-player game tree, determined by the sequence-
action pairs (s1, a1) and (s2, a2) which the players must play to reach x, the probability
of getting to x is just the product of the conditional probabilities of all of the actions
required to reach x:

P (x) = P (a1
1 | s1

1)P (a2
1 | s2

1)P (a1
2 | s1

2)P (a2
2 | s2

2) . . .

If we group together all of the terms for player 1’s actions, we get a sequence weight for
player 1, and similarly for player 2:

P (x) =
[

P (a1
1 | s1

1)P (a1
2 | s1

2) . . .
] [

P (a2
1 | s2

1)P (a1
2 | s2

2) . . .
]

= ys1a1

ys2a2

Similarly, in an n-player game, the probability of reaching the edge

x = (s1, a1, s2, a2, . . . , sn, an)

is
P (x) = ys1a1

ys2a2

. . . ysnan

If the cost to player i for traversing edge x is ci
x, then i’s total expected cost is

∑

x∈edges

ci
x P (x) =

∑

x=(s1,a1,...,sn,an)∈edges

ci
x ys1a1

ys2a2

. . . ysnan

(17)

which is linear in player i’s sequence weights if we hold the weights for the other players
fixed.

9.2 Algorithms

As noted above, if we are controlling player i, our algorithms will choose strategies y ∈ Y =
Y i

seq. They will receive, after each turn, a vector ct which is the gradient with respect to y

20

of the expected total cost to player i. (We can compute ct easily by differentiating (17).)
The algorithms will then update their regret vector

st = u
t−1
∑

i=1

yt · ct −
t−1
∑

i=1

ct (18)

Here u is a vector with u · y = 1 for all y ∈ Y i
seq. For example, u can be zero everywhere

except for 1s in the components s, a corresponding to some initial state s and all actions
a. (Equation (16) guarantees that this choice of u satisfies u · y = 1.)

Given st, our algorithms will choose yt by an optimization involving Y i
seq, st, and a

hedging function W . We can specify different no-regret algorithms by choosing various
hedging functions. Good choices include quadratic and entropy-based hedging functions;
these result in extensive-form versions of the external-regret matching and Hedge algo-
rithms.

For example, the EF external-regret matching algorithm runs as follows: given the
regret vector st from (18), solve the optimization problem

ȳ = arg max
ȳ∈Ȳi

seq

(st · ȳ − ‖ȳ‖22/2) (19)

and normalize ȳ to get a feasible sequence weight vector yt ∈ Y i
seq. The set Ȳ i

seq can be
written

Ȳ i
seq = { y ≥ 0 | Ai

seqy = λbi
seq, λ ≥ 0 }

Since Ȳ i
seq can be described by linear equalities and inequalities, the optimization prob-

lem (19) is a convex quadratic program and can be solved in polynomial time [19].
The EF Hedge algorithm solves instead the optimization problem

ȳ = arg max
y∈Ȳi

seq

(st · y −W1(y))

where W1 is defined in Equation (5). Equivalently, we can solve

maximize z

subject to z ≤ st · y −
∑

i yi ln yi
∑

i yi = 1

y ∈ Ȳ i
seq

(20)

Because this optimization problem is convex, with a polynomial number of linear con-
straints and a single simple nonlinear constraint, we can use a number of algorithms
to solve it efficiently starting from a feasible point y0. (We can get such a y0 by, e.g.,
renormalizing the sequence weights for the strategy which chooses actions uniformly at

21

random.) For example, there is a fast separation oracle for the constraints in (20), so we
can find a near-optimal y in polynomial time using the ellipsoid algorithm. Or, for better
practical performance, we could use a log-barrier algorithm such as the one described in
Boyd and Vandenberghe’s text [19].

9.3 Regret bounds

By evaluating the constants in Theorem 3 we can show regret bounds for the extensive-
form algorithms. The bound for extensive-form external-regret matching is

E(ρt+1(y)) ≤ d
√

td (21)

And, the bound for extensive-form Hedge is E(ρt+1(y)) ≤ 2dt + d ln d for η = 1; choosing
η =

√

(ln d)/2t yields regret

E(ρt+1(y)) ≤ 2d
√

2t ln d (22)

So, extensive-form external-regret matching and extensive-form Hedge are both no-regret
algorithms.

In more detail, the only change in regret bounds when we move from the original Hedge
and external-regret matching algorithms to their extensive-form versions is that, since we
have changed the hypothesis space from the probability simplex to the more complicated
set Y i

seq, the constants D and M are different.
For the quadratic hedging function, the constants A = 0, B = C = 1/2, and p = q = 2

remain unchanged from the analysis of the original external-regret matching algorithm.
M is the size of a 2-norm ball enclosing Y i

seq. This constant depends on exactly which
game we are playing, but it is bounded by the dimension d of the sequence weight vector
since each sequence weight is in [0, 1].

The bound D on the size of the regret update depends similarly on exactly which game
we are playing. We will we assume that the individual edge costs are in [0, 1] and that the
total cost along any path is no more than 1. The first assumption means that our cost
vector ct is in [0, 1]d: according to (17), a sequence weight ysiai affects the total cost only
through terms which correspond to the game tree edges that are consistent with player
i playing the actions specified in si and ai. The weight of ysiai in each of these terms is
the product of the cost of the corresponding edge with the conditional probability that we
will reach the edge given that player i plays her prescribed actions and the other players
follow their given policies. Since these conditional probabilities sum to no more than 1
and since the costs are in [0, 1], the gradient with respect to ysiai will be in [0, 1]. Finally,
u is in [0, 1]d and yt · ct ∈ [0, 1], so the regret update is in [−1, 1]d. The 2-norm radius of
[−1, 1]d is d, so we can take D = d. Applying Theorem 3 to the above set of constants
yields the bound in Equation (21).

22

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

Figure 6: Performance in self-play (left) and against a fixed opponent (right).

For the entropy hedging function, M is the size of a 1-norm ball enclosing Y, so we can
take M = d. And, D is the size of a max-norm ball enclosing our regret updates, which
is D = 1. The constants A = ln d, B = 1, C = 1/2, p = 1, and q =∞ remain unchanged
from ordinary Hedge. Applying Theorem 3 to the above set of constants yields the bound
in Equation (22).

10 Experiments

To demonstrate that our theoretical bounds translate to good practical performance, we
implemented the extensive-form external-regret matching algorithm of Section 9 and used
it to learn policies for the game of one-card poker. In one-card poker, two players (called
the gambler and the dealer) each ante $1 and receive one card from a 13-card deck. The
gambler bets first, adding either $0 or $1 to the pot. Then the dealer gets a chance to bet,
again either $0 or $1. Finally, if the gambler bet $0 and the dealer bet $1, the gambler
gets a second chance to bring her bet up to $1. If either player bets $0 when the other has
already bet $1, that player folds and loses her ante. If neither player folds, the higher card
wins the pot, resulting in a net gain of either $1 or $2 (equal to the other player’s ante
plus the bet of $0 or $1). As mentioned earlier, in contrast to the usual practice in poker
we assume that the payoff vector ct is observable after each hand; the partially-observable
extension is beyond the scope of this paper.

One-card poker is a simple game; nonetheless it has many of the elements of more
complicated games, including incomplete information, chance events, and multiple stages.
And, optimal play requires behaviors like randomization and bluffing. The biggest strate-
gic difference between one-card poker and larger variants such as draw, stud, or hold-em

23

2 3 4 5 6 7 8 9 T J Q K A

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 T J Q K A

0

0.2

0.4

0.6

0.8

1

Figure 7: Minimax one-card poker strategies learned by self-play. Left: gambler bet
probabilities holding different cards. First round in blue, second round in green. Right:
dealer bet probabilities. Probability after hearing gambler pass in blue, after hearing
gambler bet in green.

is the idea of hand potential: while 45679 and 24679 are almost equally strong hands in a
showdown (they are both 9-high), holding 45679 early in the game is much more valuable
because replacing the 9 with either a 3 or an 8 turns it into a straight.

Figure 6 shows the results of two typical runs: in both panels the dealer is using our
no-regret algorithm. In the left panel the gambler is also using our no-regret algorithm,
while in the right panel the gambler is playing a fixed policy. The x-axis shows number of
hands played; the y-axis shows the average payoff per hand from the dealer to the gambler.
The value of the game, −$0.064, is indicated with a dotted line. The middle solid curve
shows the actual performance of the dealer (who is trying to minimize the payoff).

The upper curve measures the progress of the dealer’s learning: after every fifth hand
we extracted a strategy yavg

t by taking the average of our algorithm’s predictions so far.
We then plotted the worst-case value of yavg

t . That is, we plotted the payoff for playing
yavg

t against an opponent which knows yavg
t and is optimized to maximize the dealer’s

losses. Similarly, the lower curve measures the progress of the gambler’s learning.
In the right panel, the dealer quickly learns to win against the non-adaptive gambler.

The dealer never plays a minimax strategy, as shown by the fact that the upper curve
does not approach the value of the game. Instead, she plays to take advantage of the
gambler’s weaknesses. In the left panel, the gambler adapts and forces the dealer to play
more conservatively; in this case, the limiting strategies for both players are minimax, as
shown in Figure 7. (Note that there are many minimax strategies for one-card poker, so
these plots are different from the ones reported in, e.g., [16].)

24

The curves in the left panel of Figure 6 show an interesting effect: the small, damping
oscillations result from the dealer and the gambler “chasing” each other around a minimax
strategy. One player will learn to exploit a weakness in the other, but in doing so will open
up a weakness in her own play; then the second player will adapt to try to take advantage
of the first, and the cycle will repeat. Each weakness will be smaller than the last, so the
sequence of strategies will converge to a minimax equilibrium. This cycling behavior is a
common phenomenon when two learning players play against each other. Many learning
algorithms will cycle so strongly that they fail to achieve the value of the game, but our
regret bounds eliminate this possibility.

11 Discussion and related work

We have presented the Lagrangian Hedging algorithms, a family of no-regret algorithms
which can handle complex structure in the set of allowable predictions. We have proved
regret bounds for LH algorithms and demonstrated experimentally that these bounds lead
to good predictive performance in practice. The regret bounds for LH algorithms have
low-order dependences on d, the number of dimensions in the hypothesis set Y. This
low-order dependence means that the LH algorithms can learn well in prediction problems
with complicated hypothesis sets; these problems would otherwise require an impractical
amount of training data and computation time.

Our work builds on previous work in online learning and online convex programming.
Our contributions include a new, deterministic algorithm; a simple, general proof; the
ability to build algorithms from a more general class of potential functions; and a new
way of building good potential functions from simpler hedging functions, which allows us
to construct potential functions for arbitrary convex hypothesis sets. Future work includes
a no-internal-regret version of the LH algorithm, as well as a bandit-style version. The
former will guarantee convergence to a correlated equilibrium in nonzero-sum games, while
the latter will allow us to work from incomplete observations of the cost vector (e.g., as
might happen in an extensive-form game such as poker).

Acknowledgments

Thanks to Amy Greenwald, Martin Zinkevich, and Sebastian Thrun for many helpful
discussions during the course of this work. Thanks also to Yoav Shoham and his re-
search group, who listened to the first presentation of this work in October, 2003 and
provided many helpful comments then and thereafter. This work was supported by NSF
grant EF–0331657, DARPA contract F30602–01–C–0219, and DARPA contract NBCH–
1020014. The opinions and conclusions are the author’s and do not reflect those of the
US government or its agencies.

25

References

[1] Geoffrey J. Gordon. Approximate Solutions to Markov Decision Processes. PhD
thesis, Carnegie Mellon University, 1999.

[2] Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line predic-
tion and game theory. Machine Learning, 51:239–261, 2003.

[3] David Blackwell. An analogue of the minimax theorem for vector payoffs. Pacific
Journal of Mathematics, 6(1):1–8, 1956.

[4] Adam Kalai and Santosh Vempala. Geometric algorithms for online optimization.
Technical Report MIT-LCS-TR-861, MIT, 2002.

[5] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In 20th ICML, 2003.

[6] James F. Hannan. Approximation to Bayes risk in repeated play. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

[7] Geoffrey J. Gordon. Regret bounds for prediction problems. In Proceedings of the
ACM Conference on Computational Learning Theory, 1999.

[8] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. Technical Report CMU-CS-03-110, Carnegie Mellon School of Computer
Science, 2003.

[9] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best
pruning of a decision tree. In Proceedings of COLT, pages 61–68, 1995.

[10] Eiji Takimoto and Manfred Warmuth. Path kernels and multiplicative updates. In
COLT, 2002.

[11] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In EuroCOLT 95, pages 23–37. Springer-
Verlag, 1995.

[12] Nick Littlestone and Manfred Warmuth. The weighted majority algorithm. Technical
Report UCSC-CRL-91-28, University of California Santa Cruz, 1992.

[13] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to corre-
lated equilibrium. Econometrica, 68(5):1127–1150, 2000.

26

[14] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the pres-
ence of cost functions controlled by an adversary. In Proceedings of the Twentieth
International Conference on Machine Learning, 2003.

[15] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best
pruning of a decision tree. In COLT, 1995.

[16] D. Koller, N. Meggido, and B. von Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic Behaviour, 14(2), 1996.

[17] Abraham Flaxman, Adam Kalai, and H. Brendan McMahan. Online convex opti-
mization in the bandit setting: Gradient descent without a gradient. In Symposium
on Discrete Algorithms (SODA), 2005.

[18] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In
Advances in Neural Information Processing Systems, volume 18, 2005.

[19] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[20] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, New Jersey,
1970.

[21] Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Opti-
mization: Theory and Examples. Springer-Verlag, New York, 2000.

27

A Proof of main results—I

This appendix contains the proof of Theorem 3. The result as given in Section 7 is a
straightforward combination of Theorems 7 and 8, stated and proved below.

Our proof proceeds in three steps: first we will prove a general result about gradient
descent (Theorem 5 below) which uses our upper bound on F , together with the assump-
tion that E(st+1−st) never points in the same direction as the gradient of F , to bound the
rate of increase of F (st). Then we will show that the LH algorithm’s choice of hypothesis
means that st+1 − st satisfies our descent assumption. Finally, we will combine the above
results with our lower bound on F to show that st itself cannot grow too quickly.

A.1 Bounding the growth of F (st)

In order to prove our regret bounds we will need our potential function F to have bounded
curvature. More precisely, we will require that there exist a function f , a seminorm ‖ · ‖,
and a constant C so that Equation (9) on p. 10 holds for all s and ∆.8

We also need a condition on our updates to st: we need them never to point in the
same direction as the gradient of F (st). That is, we need

E((st+1 − st) · f(st) | st) ≤ 0 (23)

We will call Equation (23) the generalized Blackwell condition since it is similar to one
of the conditions of Blackwell’s approachability theorem [3]. Our first theorem proves a
general bound on the growth rate of F (st) using conditions (9) and (23).

Theorem 5 (Gradient descent) Let F (s) and f(s) satisfy Equation (9) using the semi-
norm ‖ · ‖ and the constant C. Let x0, x1, . . . be any sequence of random vectors. Write
st =

∑t−1
i=0 xi, and let E(‖xt‖2 | st) ≤ D for some constant D. Suppose that, for all t,

E(xt · f(st) | st) ≤ 0. Then for all t,

E(F (st+1) | s1)− F (s1) ≤ tCD

Proof: The proof is by induction. For t = 0 we have

F (s1)− F (s1) ≤ 0

For t ≥ 1, assume that

E(F (st) | s1) ≤ F (s1) + (t− 1)CD

8The text around Equation (9) specifies that F is convex and that ‖ · ‖ is a finite norm, but Theorem 5
holds in the more general case when F may be non-convex and ‖s‖ may be ∞ or 0. If ‖ · ‖ is a norm and
F is convex (as will be the case in our application of Theorem 5 below), then Equation (9) implies that F
is differentiable everywhere and that f is its gradient.

28

Then:

F (st+1) = F (st + xt)

≤ F (st) + xt · f(st) + C‖xt‖2

E(F (st+1) | st) ≤ F (st) + CD

E(F (st+1) | s1) ≤ E(F (st) | s1) + CD

E(F (st+1) | s1) ≤ F (s1) + (t− 1)CD + CD

which is the desired result. The first line above follows from the definition of st+1; the
second, from Equation (9); the third, from taking E(· | st) on both sides, then using
the generalized Blackwell condition and our assumption about ‖xt‖ to bound the last
two terms; the fourth, from taking E(· | s1) on both sides and using the law of iterated
expectations; and the last, from the inductive hypothesis. 2

A.2 The expected change in st

We would like to apply Theorem 5 to bound the regret of the Lagrangian Hedging algo-
rithm. To do so, we need to show that the LH algorithm produces a sequence of regret
vectors st that satisfies the necessary assumptions. We have already assumed, in Equa-
tion (12), that E(‖st+1 − st‖2 | st) ≤ D. So, we only need to prove that the sequence st

satisfies the generalized Blackwell condition, Equation (23). The following lemma does so:

Lemma 6 The Lagrangian Hedging algorithm produces a sequence of regret vectors st

which satisfies
E((st+1 − st) · ft | st) ≤ 0

for all t, where ft ∈ ∂F (st).

Proof: We will choose ft to be equal to the variable ȳt from Figure 2. This choice means
that the variable yt from Figure 2 satisfies kyt = ft where k = (ȳt · ut) ≥ 0: in the then
clause of Figure 2 we have ȳt · u > 0 so we can just multiply through. In the else clause,
ȳt · u = 0. This means ȳt = 0: since ȳt ∈ Ȳ, we can write ȳt = λy for some y ∈ Y and
λ ≥ 0. Dotting with u gives us

u · ȳt = λu · y
or

0 = λ

since u · y = 1 for any y ∈ Y by the definition of u. So, ȳt = 0 = kyt.
Now, Equation (1) tells us that the expected change in the regret vector is

E(st+1 − st | st) = (ct · yt)u− ct

29

where ct is chosen by the opponent but must be independent of yt. Taking the dot product
with yt yields

E((st+1 − st) · yt | st) = (ct · yt)(u · yt)− ct · yt = 0

since u · yt = 1. Note that this expected value does not depend on ct: the opponent can’t
influence the expected component of st+1 − st along yt. Multiplying both sides by k and
using the identity kyt = ft inside the expectation, we have

E((st+1 − st) · ft | st) = 0

which proves the desired result. 2

A.3 Bounds on the gradient form

In addition to the upper bounds in Equation (9), we will need a lower bound on the growth
of F (s) as s gets far away from the safe set S: without such a bound, we would be able to
show that F (st) doesn’t grow too fast, but we would not be able to translate that result
to a bound on st itself.

Depending on how strong a lower bound we can prove on F , we will get different results
about the regret of our algorithm. The strongest results (showing that our average regret
decreases as O(1/

√
t)) will hold if we can show a quadratic lower bound on F . The bounds

will get progressively weaker as our bounds on F get looser, until the weakest possible
lower bound on F (a linear growth rate) gives us the weakest possible upper bound on
regret. (Adjusting our learning rate, as described below in Section A.4, will allow us to
improve some of these bounds.)

To collect all of these results into a single theorem, we will parameterize our lower
bound on F by an exponent 1 ≤ p ≤ 2, as shown in Equation (10) on p. 10. To make (10)
be a non-vacuous lower bound, we will require ‖ · ‖ to be a norm rather than a seminorm.
(That is, we will require (‖x‖ = 0) ⇔ (x = 0). Note that ‖ · ‖ must be finite since F is
finite.) With our lower bound we have the following theorem:

Theorem 7 Suppose the potential function F is convex and satisfies Equations (4), (9),
and (10) for constants A, B, C and p and a norm ‖·‖. Suppose that the problem definition
is bounded according to (11) and (12) for constants M and D. Then the LH algorithm
(Figure 2) achieves expected regret

E(ρt+1(y)) ≤M((tCD + A)/B)1/p = O(t1/p)

versus any hypothesis y ∈ Y.

30

Proof: Equations (9) and (12) together with Lemma 6 show that F , f , and the update
st+1 − st satisfy the assumptions of Theorem 5. So,

E(F (st+1) | s1)− F (s1) ≤ tCD

Since s1 is a fixed constant we can discard the conditioning, and since s1 ∈ S we have
F (s1) ≤ 0 by Equation (4). So,

E(F (st+1)) ≤ tCD

Since F is convex, Jensen’s inequality tells us that F (E(st+1)) ≤ E(F (st+1)). So, writing
s̄ = E(st+1), we have

F (s̄) ≤ tCD

Adding A on both sides and using the fact that tCD + A ≥ 0, we also have

[F (s̄) + A]+ ≤ tCD + A

Now, applying (10) shows that

B inf
s∈S
‖s̄− s‖p ≤ tCD + A (24)

The function x1/p is monotone on R
+; so, we can apply it to both sides of Equation (24)

and then move it inside the inf operator on the left-hand side:

B1/p inf
s∈S
‖s̄− s‖ ≤ (tCD + A)1/p (25)

Now pick any y ∈ Y and s ∈ S. Our expected regret versus y is

E(ρt+1(y)) = s̄ · y ≤ (s̄− s) · y

since s · y ≤ 0. So, for any y ∈ Y and s ∈ S,

E(ρt+1(y)) ≤ (s̄− s) · y ≤ ‖s̄− s‖ ‖y‖◦ ≤M‖s̄− s‖ (26)

by Hölder’s inequality and bound (11). Since s ∈ S was arbitrary, we will pick the s which
makes our bound tightest:

E(ρt+1(y)) ≤M inf
s∈S
‖s̄− s‖

Finally, substituting in Equation (25) gives us

E(ρt+1(y)) ≤M((tCD + A)/B)1/p

which is the desired result. 2

31

A.4 Adjusting the learning rate

Theorem 7 shows that the LH algorithm is no-regret so long as p > 1. Some algorithms
(for example, weighted majority) need p = 1 in their analysis; when p = 1, we can use
the standard trick of an adjustable learning rate, together with prior knowledge of the
number of trials, to achieve regret which is sublinear in t. For generality we will calculate
the effect of adjusting the learning rate for 1 ≤ p < 2, although in practice the p = 1 case
is the most important.

As described in Section 5, we can add a learning rate η to the LH algorithm by replacing
F (s) with G(s) = F (ηs). If F satisfies Equations (9) and (10) with constants A, B, C,
and p, then G satisfies them as well but with different constants: since ∂G(s) = η∂F (ηs),

G(s + x) = F (ηs + ηx)

≤ F (ηs) + ηx · f(ηs) + C‖ηx‖2

≤ G(s) + x · g(s) + η2C‖x‖2

And, since ηs′ ∈ S ⇔ s′ ∈ S,

[G(s) + A]+ = [F (ηs) + A]+

≥ inf
s′∈S

B‖ηs− s′‖p

= inf
s′∈S

B‖ηs− ηs′‖p

= inf
s′∈S

ηpB‖s− s′‖p

So, using a learning rate η changes the constants for Equations (9) and (10) according to
A 7→ A, B 7→ ηpB, C 7→ η2C, and p 7→ p. By setting η to optimize these constants we can
now prove the following theorem:

Theorem 8 Suppose that F is convex and satisfies Equations (9) and (10) with constants
A, B, C, and 1 ≤ p < 2 and the norm ‖ · ‖. Suppose our problem definition has constants
M and D in Equations (11) and (12). Let t be the anticipated number of trials, and define
G(s) = F (ηs), where

η =
√

pA/(tCD(2− p))

Then the LH algorithm with potential G achieves regret O(
√

t). In particular, if p = 1, we
have

η =
√

A/tCD

and
E(ρt+1(y)) ≤ (2M/B)

√
tACD

for any hypothesis y ∈ Y.

32

Proof: Theorem 7 shows

E(ρt+1(y)) ≤M((tη2CD + A)/(ηpB))1/p

or equivalently
E(ρt+1(y)) ≤M((tη2−pCD + Aη−p)/B)1/p (27)

Minimizing the above bound with respect to η is equivalent to solving

d
dη

[

tη2−pCD + Aη−p
]

= 0

Since 0 < p < 2, differentiating yields

(2− p)tη1−pCD = pAη−p−1

and therefore
η2 = pA/(tCD(2− p))

which is the learning rate given in the theorem. Substituting this value of η back into our
bound gives

E(ρt+1(y)) ≤ M((tη2CD + A)/B)1/p/η

= M((pA/(2− p) + A)/B)1/p
√

tCD(2− p)/(pA)

= O(
√

t)

as required. When p = 1, the learning rate simplifies to
√

A/(tCD) and the regret bound
simplifies to (2M/B)

√
tACD. 2

Note that in order to achieve sublinear regret for p = 1 we needed advance knowledge of
the number of trials.9 This sort of dependence on p is typical of results in the literature:
when our potential function is superlinear the algorithm can in effect choose its own
learning rate, while if the potential is merely linear in some direction leading away from
S we need to select a learning rate based on external knowledge.

As A ↓ 0, the recommended learning rate gets smaller and smaller. If A were 0 the
recommendation would be η = 0, which seems like a contradiction. But, it is not possible
to have p < 2 and A = 0: take λ > 0 and ∆ 6∈ S with f(0) ·∆ ≤ 0. (Since f(0) ∈ Ȳ, such
a ∆ always exists: S is contained in any halfspace whose normal is in Ȳ, and since we
have assumed Y has at least two distinct elements the containment must be strict.) Then
Equation (9) at regret vector s = 0 and increment λ∆ requires

F (λ∆) ≤ F (0) + λ∆ · f(0) + C‖λ∆‖2 ≤ C‖λ∆‖2

9At the cost of some complexity we could have used a decreasing sequence of learning rates to sidestep
this requirement.

33

since F (0) ≤ 0 (because 0 ∈ S). And, Equation (10) requires

F (λ∆) ≥ B inf
s′∈S
‖λ∆− s′‖p

These two bounds are inconsistent: combined, they require

λ2 · constant ≥ λp · constant

with both constants strictly positive, which cannot hold as λ ↓ 0 since p < 2.
As p ↑ 2, the recommended learning rate gets larger and larger. If p = 2, the rec-

ommended learning rate will be η = ∞ (unless A = 0, in which case Equation (27) is
independent of η): while the analysis in the proof of Theorem 8 doesn’t apply, it is easy
to see that increasing η doesn’t alter the ratio C/B in Equation (27) and decreases A/B,
thereby improving the bound. In practice, if p is near or equal to 2 and A > 0, we would
recommend setting η as large as is practical.

B Proof of main results—II

Theorems 7 and 8 bound the regret of the gradient form of the LH algorithm in terms
of properties of F . For the optimization form we are not given the potential function
F directly, so we cannot check the conditions of these theorems. Instead we define F in
terms of the hedging function W using Equation 7. Unlike F , there is no need for W to
be differentiable, so long as it satisfies the required assumptions.

In this section we describe how to transfer bounds on the hedging function W to the
potential function F . An upper bound on W leads to a lower bound on F , while a lower
bound on W yields an upper bound on F . The ability to transfer bounds means that,
when we analyze or implement the optimization form of the LH algorithm, we never have
to evaluate the potential function F or its derivative explicitly.

Our bounds on W are detailed above, in Section 7. With these bounds on W , we can
prove the required bounds on the potential function F :

Theorem 9 Suppose that the hedging function W is closed, convex, nonnegative, and
satisfies Equations (13) and (14) with the constants A, B, C, and 2 ≤ q ≤ ∞ and the
finite norm ‖ · ‖◦. Suppose the set Ȳ ∩ rel int dom W is nonempty. Define p so that
1
p + 1

q = 1. Then the function F defined by Equation (7) is closed and convex and satisfies
Equations (4), (9), and (10) with constants A, B, C, and p and norm ‖ · ‖.

Since W and related functions may not be differentiable, we will use the notation of
convex analysis to prove our bounds; see Appendix E for definitions. In this notation
Equation (7) is equivalent to

F = (IȲ + W)∗ (28)

34

0 0.2 0.4 0.6 0.8 1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 8: Illustration of how to transfer bounds between a function and its dual. On the
left, the negentropy function and a quadratic lower bound; on the right, ln(1 + ex) and
the dual quadratic upper bound.

Here IȲ represents the feasible region of the optimization in (7), while W is the nonlinear
part of the objective. (The linear part of the objective corresponds to the argument of F .)
By moving the duality operator inside the parentheses, we can see that Equation (28) is
also equivalent to

F = IS 2 W ∗ (29)

since infimal convolution is dual to addition and IS is dual to IȲ .
Our bounds on F follow from the simple observation that the duality operator reverses

inequalities between functions, as illustrated in Figure 8: for closed convex functions F
and G, if F ∗(y) ≥ G∗(y) for all y, then G(s) ≥ F (s) for all s. This fact is a direct
consequence of the definition of duality:

G(s) = sup
y

[s · y −G∗(y)] ≥ sup
y

[s · y − F ∗(y)] = F (s) (30)

where the inequality holds because substituting F ∗ for G∗ reduces the expression in square
brackets at every value of y, and therefore reduces the supremum.

We can use the inequality (30) almost directly to turn our upper bound on W into a
lower bound on F : all we will need to do in our proof below is add IȲ to both sides of
Equation (14) and take the dual. To prove our upper bound on F , on the other hand,
requires a slightly more complicated argument.

Returning to Figure 8, notice that the bound on the left is tangent to F ∗(y) at the
input y0 = 0.7 with slope s0 ≈ 0.85, while the dual bound on the right is tangent at to
F (s) at the input s0 with slope y0. This sort of correspondence holds in general: the slope

35

of a function translates to the argument of its dual, and vice versa. So, if we start with a
lower bound on F ∗ of the form we could imagine deriving from Equation (13)

F ∗(y) ≥ F ∗
bound(y) = F ∗(y0) + (y − y0) · s0 + L‖y − y0‖2◦/2 (31)

which is tangent at y = y0 with slope s0, we end up with an upper bound on F (s) which
is tangent at s = s0. To prove (9), we need to produce bounds on F which are tangent at
every possible input s0; so, we need to start from bounds on F ∗ which have every possible
slope s0 at their tangent points. The proof below demonstrates how to construct such
bounds from Equation (13).

Proof (of Theorem 9): It is immediate that F is closed and convex, since F is defined
as the dual of another function and the output of the duality operator is always closed
and convex. Equation (4) is also immediate: in (7),

s · ȳ −W (ȳ) ≤ s · ȳ

since W (y) ≥ 0; so, since s · ȳ ≤ 0 for all s ∈ S and ȳ ∈ Ȳ, F (s) ≤ 0 for all s ∈ S.
Let us now prove the lower bound on F , Equation (10). We have assumed (Equa-

tion (14)) that

conv min(W (y)−A + IȲ(y), I0(y)) ≤ B‖y/B‖q◦ ∀y ∈ Ȳ

Adding IȲ to both sides yields

conv min(W (y)−A + IȲ(y), I0(y)) ≤ B‖y/B‖q◦ + IȲ(y) (32)

The left-hand side was already infinite for y 6∈ Ȳ, so adding IȲ had no effect. Note that
we have dropped the qualifier ∀y ∈ Ȳ since (32) is clearly true if y 6∈ Ȳ.

We will next take duals on both sides of (32). For any two functions X and Y , the
dual of conv min(X, Y) is max(X∗, Y ∗) and the dual of X + Y is X∗

2 Y ∗. The dual of
the indicator function for a cone is the indicator function for the dual cone; for example,
the dual of I0 is IRd = 0. So, writing s for the dual variable, we have

max((W (y)−A + IȲ(y))∗(s), 0) ≥ (B‖y/B‖q◦)∗(s) 2 IS(s)

Since F ∗ = W + IȲ , we can simplify the first argument of the max:

max(F (s) + A, 0) ≥ (B‖y/B‖q◦)∗(s) 2 IS(s)

The dual of ‖ · ‖q◦ is ‖ · ‖p, and for any function X the dual of aX(y) is aX∗(s/a), so the
dual of B‖y/B‖q◦ is B‖s‖p. That gives us

max(F (s) + A, 0) ≥ B‖s‖p 2 IS(s)

36

which is equivalent to Equation (10) as desired.
For the upper bound on F , Equation (9), we can use some simple identities to compute

the dual of a function of the form F ∗
bound given in (31): first, the dual of any multiple of

a squared norm is a multiple of the squared dual norm.

(L‖ · ‖2/2)∗ = (1/L)‖ · ‖2◦/2 (33)

Second, adding a linear function to an arbitrary convex function G just shifts the dual of
G without changing its basic shape:

(a · s + b + G(s))∗ = G∗(y − a)− b (34)

Finally, if we have a point (y0, G
∗(y0)) where there is a tangent to G∗ of slope s0, then

the function G∗(y) − y · s0 has a tangent of slope 0 at y = y0. So, y0 is a minimum of
G∗(y)− y · s0, and

G(s0) = sup
y

(y · s0 −G∗(y)) = y0 · s0 −G∗(y0) (35)

Combining the identities (33) and (34), the dual of

L‖y‖2◦/2 + s0 · y + F ∗(y0)

is
(1/L)‖s− s0‖2/2− F ∗(y0)

Using Equation (34) again (in the opposite direction) for the substitution y 7→ (y − y0)
tells us that the dual of F ∗

bound is

Fbound(s) = (1/L)‖s− s0‖2/2− F ∗(y0) + s · y0

Adding and subtracting s0 · y0 and using (35) gives us

Fbound(s) = F (s0) + (s− s0) · y0 + (1/L)‖s− s0‖2/2 (36)

As mentioned above in the main text, Fbound(s0) = F (s0) and by Equation (30) we have
Fbound(s) ≥ F (s) for all s. So, to prove our result we need to be able to construct an
appropriate F ∗

bound from Equation (13) for any desired slope s0.
First we will show that F must be finite everywhere. We have assumed that there

exists a point y0 ∈ Ȳ ∩ rel int dom W ⊆ dom ∂W . Write s0 for an arbitrary element of
∂W (y0). Now Equation (13) tells us that

F (s) = sup
ȳ∈Ȳ

(ȳ · s−W (ȳ))

≤ sup
ȳ∈Ȳ

(ȳ · s−W (y0)− s0 · (ȳ − y0)− (1/4C)‖ȳ − y0‖2◦)

< ∞

37

because the expression inside the supremum is bounded above (along every line through
y0 it is concave and quadratic, with bounded slope at y0).

Since F is finite everywhere, ∂F is nonempty everywhere. So, given a desired s0, pick
y0 ∈ ∂F (s0); we will build an F ∗

bound function of the form given in Equation (31) using
this choice of y0.

By duality we have s0 ∈ ∂F ∗(y0). Since F ∗ = IȲ + W we have s0 = s1 + s2 with
s1 ∈ ∂IȲ(y0) and s2 ∈ ∂W (y0) by Theorem 23.8 of [20, p. 223]. Theorem 23.8 applies
because we have assumed that Ȳ ∩ rel int dom W is nonempty.

The existence of s1 tells us that y0 ∈ Ȳ, and similarly the existence of s2 tells us that
y0 ∈ dom ∂W . So by assumption Equation (13) holds for y0 and s2:

W (y) ≥W (y0) + (y − y0) · s2 + (1/4C)‖y − y0‖2◦ ∀y

And by definition of subgradient,

IȲ(y) ≥ I(y0) + (y − y0) · s1 ∀y

Adding these two inequalities yields

F ∗(y) ≥ F ∗(y0) + (y − y0) · s0 + (1/4C)‖y − y0‖2◦ ∀y (37)

Picking L = 1/2C, we can identify Equation (37) with Equation (31). So, taking the dual
of both sides, we have

F (s) ≤ F (s0) + (s− s0) · y0 + C‖s− s0‖2 ∀s

as we derived in Equation (36). Since s0 was arbitrary, we have now shown that F
satisfies (9), which finishes the proof of our theorem. 2

C Additional proofs

In this section we will prove that the two forms of the LH algorithm are well-defined and
that the optimization form is a special case of the gradient form.

Proof (of Theorem 1): Define Ȳ as in Equation (3). If we can show that ȳt ∈ Ȳ then
we are done: if ȳt = λy, then ȳt · u = λ. Either λ > 0, in which case the then clause in
Figure 2 will pick yt = y ∈ Y, or λ = 0, in which case the else clause will pick yt ∈ Y.

By convexity, since ȳt ∈ ∂F (st),

F (s) ≥ F (st) + (s− st) · ȳt

For all s ∈ S we have F (s) ≤ 0, so

0 ≥ F (st) + (s− st) · ȳt ∀s ∈ S

38

or, rearranging terms,
st · ȳt − F (st) ≥ s · ȳt ∀s ∈ S

Since αs ∈ S for all α > 0, we also have

st · ȳt − F (st) ≥ αs · ȳt

(st · ȳt − F (st))/α ≥ s · ȳt

0 ≥ s · ȳt (38)

for all s ∈ S, where the last line follows because we can make α arbitrarily large.
Now, S was defined as Y⊥, or equivalently Ȳ⊥. Ȳ is a closed convex cone, since Y is

closed and convex; so, saying S = Ȳ⊥ is equivalent to saying Ȳ = S⊥. But, S⊥ is exactly
the set of vectors y with s · y ≤ 0 for all s ∈ S; so, inequality (38) shows that ȳt ∈ Ȳ. 2

Proof (of Theorem 2): To show F (s) ≤ 0 for all s ∈ S, recall that s · ȳ ≤ 0 for all s ∈ S
and ȳ ∈ Ȳ. Since W (ȳ) ≥ 0, that means that both terms inside the supremum in (7) are
nonpositive for all feasible ȳ when s ∈ S. Since there is at least one feasible ȳ, the value
of the supremum must also be nonpositive.

To show equivalence, consider any ȳ which achieves the supremum in (7). Such a ȳ
must exist, since W (ȳ) + IȲ(ȳ) − s · ȳ is closed, convex, not everywhere infinite, and has
no directions of recession (see [20, Theorem 27.1(d), p. 265]). For this ȳ,

F (s + ∆) = sup
ȳ′∈Ȳ

((s + ∆) · ȳ′ −W (ȳ′))

≥ (s + ∆) · ȳ −W (ȳ)

= ∆ · ȳ + (s · ȳ −W (ȳ))

= ∆ · ȳ + F (s)

So, ȳ ∈ ∂F (s), which is what was required. 2

D Analysis of the entropy function

This section derives the constants required for using the entropy function in the bounds
of Theorems 3 and 4.

Lemma 10 If Y is the d-dimensional probability simplex and

W (y) = ln d +
∑

i

yi ln yi + IY(y)

then Equation (13) holds using the norm ‖ · ‖1 and C = 1/2. And, Equation (14) holds
with A = ln d, B = 1, p = 1, and q =∞.

39

Proof: We will verify Equation (13) first. Write

W0(y) = ln d +
∑

i

yi ln yi

We have W0 = W inside Y, and since W0 is differentiable in all of R
d
++ it will be easier to

work with. Pick a hypothesis y ∈ rel intY = dom ∂W and a direction ∆ with ‖∆‖1 = 1.
Define

Wy,∆(λ) = W0(y + λ∆)

Assume without loss of generality that
∑

i ∆i = 0 (since Equation (13) holds trivially for
y + λ∆ if

∑

i ∆i 6= 0). Now, Equation (13) with C = 1/2, evaluated at hypothesis y and
increment λ∆, becomes

W (y + λ∆) ≥W (y) + λ∆ · s + λ2/2 ∀s ∈ ∂W (y)

Since
∑

i ∆i = 0, we may without loss of generality take s = W ′
0(y). That means that,

since W ′
y,∆(λ) = ∆ ·W ′

0(y + λ∆), we need to show

Wy,∆(λ) ≥Wy,∆(0) + λW ′
y,∆(0) + λ2/2 (39)

Equation (39) holds if W ′′
y,∆(λ) ≥ 1 for all λ such that y + λ∆ ∈ rel intY. To check this

condition, we can calculate derivatives of Wy,∆ with respect to λ. The first derivative is

d

dλ
Wy,∆(λ) =

∑

i

∆i(1 + ln(yi + λ∆i))

The second derivative is

d2

dλ2
Wy,∆(λ) =

∑

i

∆2
i /(yi + λ∆i)

or, writing x = y + λ∆,
d2

dλ2
Wy,∆(λ) =

∑

i

∆2
i /xi (40)

We want to verify that the second derivative is always at least 1, so we will find the
x ∈ R

d
+ which makes (40) as small as possible. Since (40) is a convex function of x which

approaches ∞ as any component of x approaches 0,10 the second derivative is smallest

10Unless ∆i = 0 for some i, in which case we can fix xi = 0 and apply the rest of our argument to the
remaining components of x. To see why, consider any j such that ∆2

j > 0. To reduce (40) we want to
make xj as large as possible. If xi were positive, we could increase xj by reducing xi; so, xi cannot be
positive at the minimum.

40

0 0.2 0.4 0.6 0.8 1
0

0.5

1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 9: The function W̄ . W − ln d is the negentropy function, shown as the solid curve
extending downward from (0, 1, 0) and (1, 0, 0), while W̄ is the shaded surface. A contour
plot of W̄ is shown projected on the xy plane. W̄ is the greatest convex function which
satisfies the conditions (a) W̄ (0) = 0 and (b) whenever W (y) is finite, W̄ (y) = W (y)−ln d.

when the gradient of (40) with respect to x is orthogonal to the constraint
∑

i xi = 1.
This happens when there is some constant k > 0 such that

∆2
i /x

2
i = k ∀i

or equivalently xi =
√

k |∆i|. Since
∑

i |∆i| = 1 and
∑

i xi = 1, we have k = 1 and
xi = |∆i|. Substituting back into (40), that means

d2

dλ2
Wy,∆(λ) ≥

∑

i

∆2
i /|∆i| =

∑

i

|∆i| = 1

for all λ. Since y and ∆ were arbitrary, we have now verified that W satisfies (13).
For the second part: when Y is the probability simplex, Ȳ is the positive orthant.

Outside the positive orthant, (14) holds trivially. Within the positive orthant, the left-
hand side of (14) is

conv min(W − ln d + IȲ , I0) ≡ W̄

which is plotted in Figure 9. W̄ is negative when
∑

i yi ≤ 1, while the right-hand side
of (14) is I[−1,1](‖y‖1), which is zero when

∑

i yi ≤ 1. Both the left-hand and right-hand
sides are infinite when

∑

i yi > 1. 2

41

Function Dual

I[−1,1](x) |y|
I[0,1](x) [y]+
|x|p/p |y|q/q (1

p + 1
q = 1, p, q ≥ 1)

xp/p + I[0,∞)(x) [y]q+/q (1
p + 1

q = 1, p, q ≥ 1)√
1 + x2 −

√

1− y2 (−1 ≤ y ≤ 1)

− ln x (x > 0) 1− ln(y) (y > 0)

ex y ln y − y (y ≥ 0)

aF (x) aF ∗(y/a) (a 6= 0)

F (ax) F ∗(y/a) (a 6= 0)

F (x) + k F ∗(y)− k

F (x + k) F ∗(y)− ky

F (x) + G(x) (F ∗
2 G∗)(y)

max(F (x), G(x)) conv min(F ∗(y), G∗(y))

Figure 10: Convex functions and their duals (adapted from [20,21]).

E Convex duality

This appendix provides some standard notation and results from convex duality which are
used in the rest of the paper. For more information on convex duality, Rockafellar’s text-
book [20] is a good resource; an introduction with a focus on optimization is in Chapters
2–5 of Boyd and Vandenberghe’s textbook [19].

A set of points is called convex if it contains all weighted averages of its elements, and
it is called closed if it contains all limits of sequences of its elements. Given a function
F (x), define the set

epi(F) = {(x, z) | z ≥ F (x)}
which contains the graph of F and the area above that graph. The set epi(F) is called the
epigraph of F . We will say that the function F is convex iff epi(F) is convex, and closed
iff epi(F) is closed. F (x) is allowed to be infinite, in which case epi(F) has no elements of
the form (x, z) for any z. The set {x | F (x) <∞} is called the domain of F , dom F .

Given a function F (x), its convex dual is defined as

F ∗(y) = sup
x

(x · y − F (x)) (41)

F ∗ is guaranteed to be closed and convex, and if F is closed and convex then F ∗∗ = F .
Any y0 which satisfies

F (x) ≥ F (x0) + (x− x0) · y0 ∀x (42)

42

is called a subgradient of F at x0, written y0 ∈ ∂F (x0). The subgradient exists almost
everywhere that F is defined: for example, if x0 is in the relative interior of dom F , then
∂F (x0) is nonempty. The subgradients of a differentiable convex function are just its
gradients. For any closed convex function F , x0 ∈ ∂F (y0) iff y0 ∈ ∂F ∗(x0); that is, the
subgradients of F and F ∗ are inverses of one another.

Convex duality is related to geometric duality: if F (x) = IC(x) is the indicator function
of a cone C, then the dual of F is F ∗(y) = IC⊥(y), where C⊥ is the dual or polar cone to
C. The indicator function IC of a set C is defined by IC(x) = 0 for x ∈ C and IC(x) =∞
for x 6∈ C.

Convex duality is also related to duality of seminorms. Let ‖ · ‖ and ‖ · ‖◦ be dual
seminorms. Let φ : R 7→ R be a convex function with φ(x) = φ(−x), and suppose φ is
monotone nondecreasing on [0,∞). Then the two functions

φ(‖x‖) φ∗(‖y‖◦)

are dual to each other. (For a proof of the above result, see [20], particularly p. 110 and
Theorem 15.3.) As an example, the norms ‖x‖1 =

∑

i |xi| and ‖x‖∞ = maxi |xi| are dual
to each other, and we could take φ(x) = x2/2. In this case, we would have that ‖x‖21/2
and ‖y‖2∞/2 are duals.

Figure 10 lists some examples of functions and their duals, including some algebraic
rules for computing duals. In the figure, the notation F 2 G means the infimal convolution
of F and G,

(F 2 G)(y) = inf
z

(F (y − z) + G(z))

Infimal convolution is interesting because it is the dual of addition:

(F + G)∗ = F ∗
2 G∗

As an example, if we take F (x) = ‖x‖21 and G(x) = IC(x) for a cone C, then (F + G)∗(y)
is the squared distance of y from C⊥ using the norm ‖ · ‖∞.

A final useful fact is that the convex duality operator reverses inequalities between
functions: for example, if F (x) ≥ G(x) for all x, then F ∗(y) ≤ G∗(y) for all y.

43

