
The Aperiodic Multiprocessor Utilization Bound for Liquid Tasks �

Tarek Abdelzaher
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

e-mail:zaher@cs.virginia.edu

Bjorn Andersson and Jan Jonsson
Depertment of Computer Engineering
Chalmers University of Technology

412 96 Gothenburg
e-mail:fba,janjog@ce.chalmers.se

Vivek Sharma, Minh Nguyen
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

e-mail:fviveks,mdn4dg@cs.virginia.edu

Abstract

Real-time scheduling theory has developed powerful tools
for translating conditions on aggregate system utilization
into per-task schedulability guarantees. The main break-
through has been Liu and Layland’s utilization bound for
schedulability of periodic tasks. In 2001 this bound was
generalized by Abdelzaher and Lu to the aperiodic task
case. In this paper, we further generalize the aperiodic
bound to the case of multiprocessors, and present key new
insights into schedulability analysis of aperiodic tasks.

We consider a special task model, called the liquid task
model, representative of high-performance servers with
aperiodic workloads, such as network routers, web servers,
proxies, and real-time databases. For this model, we derive
the optimal multiprocessor utilization bound, defined on a
utilization-like metric we call “synthetic utilization”. This
bound allows developing constant-time admission control
tests that provide utilization-based absolute delay guaran-
tees. We show that the real utilization of admitted tasks can
be close to unity even when synthetic utilization is kept be-
low the bound. Thus, our results lead to multiprocessor sys-
tems which combine constant-time admission control with
high utilization while making no periodicity assumptions re-
garding the task arrival pattern.

Keywords: Real-time scheduling, schedulability analysis,
utilization bounds, aperiodic tasks.

1 Introduction

The attainment of absolute delay guarantees in commer-
cial applications such as e-commerce servers and real-time

�The work reported in this paper was supported in part by DARPA grant
N00014-01-1-0576 and NSF grants CCR-0208769 and ANI-0105873.

databases has been a topic of active research for several
years. Unfortunately, state of the art servers are still best
effort in nature, partly due to the complexity of real-time
scheduling and schedulability analysis techniques in the ab-
sence of a priori load knowledge.

In addition to more complex schedulability tests, sim-
ple utilization bounds have been developed in the real-time
scheduling literature which enable an admission controller
to decide whether an incoming task can meet its deadline
based on utilization-related metrics. While earlier bounds
applied only to variants of periodic tasks, in a recent re-
sult [1], Abdelzaher and Lu generalized the approach to
aperiodic workloads, hence removing all assumptions about
the task arrival pattern. The authors defined in [1] a new no-
tion of utilization that applies to the aperiodic task model
and showed that in single processor systems the utiliza-
tion bound for fixed priority aperiodic task scheduling is

1

1+
p

1=2
. They also showed that aperiodic deadline mono-

tonic scheduling is the optimal fixed-priority policy in the
sense of maximizing the utilization bound. The new bound
can be used for efficient admission control in a wide cate-
gory of applications that operate in unpredictable environ-
ments in which request arrival patterns are not known.

In this paper, we extend the aperiodic bound derived
in [1] to multiprocessors and develop key new insights
into utilization-based schedulability analysis of multipro-
cessor scheduling in an aperiodic environment. The result,
we hope, is a first step towards a theory for constant-time
utilization-based schedulability analysis of aperiodic work-
loads – a parallel to rate-monotonic analysis of periodic
tasks.

The main motivation for our new aperiodic utilization-
based schedulability theory is fast per-task (e.g., per-
request) admission control in high-performance servers.
Per-task admission control aims to ensure that no server
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resources are wasted on tasks which eventually miss their
deadlines. In the absence of admission control, the aggre-
gate amount of resources wasted on eventually abandoned
tasks may be significant even if the individual tasks were
very small. While admission control may save such wasted
resources, its overhead is an important practical consider-
ation in high-performance servers. Schedulability-analysis
algorithms that are polynomial in the number of received
requests may impose undue overhead. Instead, our bound
offers a constant-time schedulability test that enforces ab-
solute delay guarantees simply by maintaining a synthetic
utilization counter updated on task arrivals and departures.
We further show that admission control tests based on syn-
thetic utilization do not underutilize the server. Simulation
results show that real utilization values close to 95% are
achieved when using the synthetic utilization bound for ad-
mission control.

In high performance servers, thousands of requests are
served per second. Individual requests consume a negligi-
ble amount of total server capacity. This condition (which
we formalize later) is called the liquid task model. The con-
dition is true even of single processor servers as was shown
in many prior server profiling results, e.g., [17]. In the re-
mainder of this paper, we focus on the liquid task model
only, and show that the bounds achieved in that case are
higher than those for arbitrarily sized tasks.

We consider a class of scheduling policies, called time-
independent scheduling, which can be implemented using
fixed-priority operating system scheduling support. We
show that, for the liquid task model, the optimal tight
synthetic utilization bound of time-independent scheduling
is independent of the number of processors and equal to

1

1+
p

1=2
. We also show that for the liquid task model, dead-

line monotonic scheduling is an optimal scheduling policy.
The remainder of this paper is organized as follows. Sec-

tion 2 reviews the task model and problem statement. Ele-
ments of a theory for aperiodic multiprocessor utilization-
based schedulability analysis are presented in Section 3.
The tight optimal utilization bound for multiprocessor
scheduling of aperiodic tasks is derived in Section 4. Sec-
tion 5 presents an experimental evaluation of admission
control algorithms based on the derived bound. Section 6
describes related work. Finally, Section 7 presents the con-
clusions of the paper and avenues for future work.

2 Task Model and Problem Statement

Consider an aperiodic task model in which independent
aperiodic tasks arrive at a multiprocessor-based real-time
system at random without prior knowledge from the sched-
uler. The multiprocessor schedules the arrived tasks by ar-
ranging them in a single queue and dequeuing them in pri-
ority order as soon as a processor becomes available. In
a system of m processors, up to m tasks can be executing

concurrently at any given time.
Each task Ti, constitutes a single invocation, described

by an arrival time Ai, an execution time Ci > 0, and a
relative deadline Di � Ci. The absolute deadline of the
task is Ai+Di. The tasks are to be scheduled preemptively.
Upon preemption, tasks can be resumed on any processor
without penalty.1

We are especially interested in the case were the order
of task computation times is much smaller than the order of
task deadlines, i.e., 8i; j : Ci << Dj . We call it the liq-
uid task model. The model is representative of high perfor-
mance servers which handle many thousands of requests per
second. For example, in the case of web servers, a typical
response time (i.e., relative deadline) would be of the order
of seconds to tens of seconds, whereas a typical computa-
tion time would be of the order of hundreds of microsec-
onds to single milliseconds. The liquid task model repre-
sents the limiting case in which the relative deadlines are
generally finite, yet the computation times are infinitesimal.
More formally, in the liquid task model, 8i : Ci ! 0, and
8i : Ci=Di ! 0. While this model is an idealization, we
show that results based on this model hold well in systems
exhibiting a large number of small tasks. In other words,
while applying utilization bounds for liquid tasks to sys-
tems in which computation times are finite does not strictly
guarantee meeting all deadlines, these bounds present a very
good practical heuristic for admission control as long as rare
misses can be tolerated.

2.1 Synthetic Utilization

To compute the utilization of an aperiodic workload, we
use a generalized notion of Liu and Layland’s utilization
factor [13], called synthetic utilization, which we describe
next. At any given time instant, t, let V (t) be the set of
aperiodic tasks that have arrived but whose deadlines have
not expired, i.e., V (t) = fTijAi � t < Ai + Dig. The
set V (t) at some time t is illustrated by the shaded tasks in
Figure 1. We call V (t) the set of current tasks. Note that
V (t) is independent of the task-to-processor assignment. It
is also independent of the scheduling policy used because it
is independent of actual task completion times.
We define a quantity called global multiprocessor utiliza-
tion, Uglobal(t), as the utilization contributed by the current
tasks at time t. It is given by the expression:

Uglobal(t) =
X

Ti2V (t)

Ci=Di (1)

The normalized synthetic utilization, or simply synthetic
utilization, is defined as:

1In later work, we shall extend this model to account for task-to-
processor assignment constraints, processor heterogeneity, and task mi-
gration costs.
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t

Figure 1. V (t): Current tasks at t

U(t) =
Uglobal(t)

m
(2)

where m is the number of processors. Note that synthetic
utilization is a natural generalization of the widely-used no-
tion of “utilization factor” central to periodic task schedula-
bility analysis and utilization-bound literature. This gener-
alization is not a contribution of this paper. Different vari-
ants of aperiodic task utilization definitions have already
been around for many years. The above definition, however,
is what we choose for the derivation of the new multiproces-
sor bound. It is easy to see that synthetic utilization reduces
to the utilization factor when tasks are periodic. Hence, by
relying on synthetic utilization, our bound can be meaning-
fully compared to those for periodic tasks.

2.2 Time-Independent Scheduling

A multiprocessor system queues up arrived tasks for exe-
cution in a priority order defined by its scheduling policy.
Traditionally, scheduling policies are classified into fixed-
priority and dynamic-priority depending on whether or not
different invocations of the same task have the same pri-
ority. In the context of aperiodic tasks, this classification
is inappropriate because each task has only one invocation.
Instead, we classify aperiodic task scheduling policies into
time-independent and non-time-independent. A scheduling
policy is time-independent if the priority assigned to a task
does not depend on the absolute arrival time of this task.
More formally, in the context of non-partitioned multipro-
cessor scheduling of aperiodic tasks, we have the following
definition:

Definition: A time-independent non-partitioned multipro-
cessor scheduling algorithm is a function f(�; t)! P , such
that:

1. f(�; t) ! P maps an infinite set of tasks � whose ar-
rival times are given by vector t into a finite set of val-
ues P , and

2. f(�; t) ! P satisfies f(�; t) = f(�; t`), for any t and
t`.

3. The multiprocessor ready queue is sorted by values P
such that the ready task with the smallest value is re-

sumed on the next available processor. Tasks with the
same value of P are queued in FIFO order.

In the liquid task model, since all Ci ! 0, we further as-
sume that task priorities are independent of task computa-
tion times. For example, in a tiered-services web server,
user requests are often categorized into classes on the ba-
sis of client identity, regardless of the computation time or
arrival time of the request. Such prioritization meets our
definition of a time-independent scheduling policy.

2.3 Statement of Contributions

In this paper, we make the following four contributions:

� We present new important insights into the general
problem of deriving synthetic utilization bounds for
schedulability of aperiodic tasks. The insights are
based on a geometric interpretation of the problem.

� We derive a tight synthetic utilization bound for
deadline-monotonic multiprocessor scheduling for the
liquid task model. We show that the bound is inde-
pendent of the number of processors and approaches

1

1+
p

1=2
(i.e., about 58:6%).

� We prove that deadline monotonic scheduling is the
optimal time-independent multiprocessor scheduling
policy for liquid tasks in the sense of maximizing the
synthetic utilization bound. Hence, the bound derived
in this paper is optimal for liquid aperiodic tasks.

� We dispel the concern that aperiodic bounds may be
overly pessimistic. We show that in the aperiodic case,
by resetting the admission controller’s synthetic uti-
lization counter to zero at appropriate instants (e.g., at
processor idle times) the average synthetic utilization
becomes less than the average real utilization. Thus,
while admission control can enforce the synthetic uti-
lization bound of only 58:6%, real utilization can be
close to unity. Consequently, using the synthetic uti-
lization bound for admission control will not under-
utilize the system. This result has no parallel in the
utilization-bound literature for periodic tasks.

3 Towards Aperiodic Schedulability Theory
Based on Synthetic Utilization

In this section, we present a collection of results, insights,
and a methodology for using synthetic utilization to analyze
the schedulability of liquid aperiodic tasks on multiproces-
sors. We hope these results and insights will constitute a
first step towards a general theory on constant-time schedu-
lability analysis of aperiodic tasks. Section 3.1 demon-
strates the conceptual flow of the derivation of the schedu-
lable multiprocessor utilization bound for aperiodic tasks.
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In Section 3.2 we define useful properties of “worst-case”
aperiodic task arrival patterns that lead to the multiproces-
sor bound. Finally, Section 3.3 presents new bounds for
utilization-based schedulability analysis of aperiodic tasks
on multiprocessor systems. They have the property that they
never overestimate the tight utilization bound. Hence, they
are both simple to derive and safe to use from an admission
control and schedulability perspective.

3.1 Considerations in Aperiodic Tasks

Let a critically schedulable task arrival pattern be one in
which some task has zero slack. Conceptually, the deriva-
tion of the multiprocessor utilization bound amounts to the
following steps:

1. Consider an arbitrary critically-schedulable task ar-
rival pattern � and an arbitrary critically-schedulable
task Tn in that arrival pattern. We call this choice, a
scenario s = (�; Tn).

2. For each scenario s = (�; Tn), find the maximum uti-
lization U �

max(s) = maxt U
�(t) that occurs between

the end of the last multiprocessor idle time (defined as
an interval of time where all processors were idle) and
the absolute deadline of Tn, as shown in Figure 2. By
definition of U �

max(s), there exists at least one point
(prior to the deadline of Tn) in the pattern � where the
utilization U �(t) = U�

max(s).

3. Compute the minimum such utilization Ubound =
minsfU�

max(s)g across all possible scenarios. Thus,
in every task arrival pattern � there exists at least one
point prior to the deadline of each critically schedula-
ble invocation where the utilization U(t) � Ubound.

B A A  + Dnnn

U(t)
U      max

Arrival of critically schedulable task Tn Deadline of Tn

Figure 2. The Maximum Utilization

The value Ubound, above, is the utilization bound. If the
synthetic utilization is always maintained below Ubound,
there cannot be any critically schedulable tasks in the pat-
tern.

It is easy to show that if 8t : U �(t) < Ubound, there
cannot be any unschedulable tasks either. To see that, con-
sider an unschedulable pattern �un. A critically schedula-
ble pattern �cr of lower utilization2 is obtained by reduc-
ing the execution time of the invocations that miss their
deadlines in �un by the amount left unfinished at the in-
stant when the deadline is reached. (It is assumed that the

2By lower utilization we mean that 8t : U�cr (t) � U�un(t)

remainder of the task is otherwise dropped when the dead-
line is reached.) Note that we assumed that in the liquid
task model, task priorities are independent of task computa-
tion times. Thus, the above transformation does not alter the
schedule. Since reducing execution time reduces utilization,
it follows that U �cr

max � U�un
max. However, Ubound � U�cr

max.
Thus, Ubound � U�un

max for any arbitrary unschedulable task
pattern �un. In other words, there are no unschedulable pat-
terns under Ubound.

In the following, we derive the bound by finding a sce-
nario, s, that minimizes synthetic utilization, i.e., for which
U�
max(s) = Ubound. We call it a worst case scenario. The

notion of a worst case scenario, defined above, plays a cen-
tral role in this paper, and will be used repeatedly in the
following sections. Note that the worst-case scenario might
not be unique. We need to find only one such scenario to
determine the bound.

3.2 Properties of the Worst-Case Scenario

To find a worst-case scenario on a multiprocessor, we first
establish some properties to guide the search, summarized
by Theorem 1:

Theorem 1: There exists a worst-case scenario (�; Tn) with
the following properties:

� The critically schedulable task, Tn, has the lowest pri-
ority.

� No tasks arrive at or after the absolute deadline of Tn.

� All processors are busy since the last multiprocessor
idle time and until the arrival of Tn.

� The area under the synthetic utilization curve is equal
to the sum of the execution times in the pattern normal-
ized by the number of processors.

Note that the theorem does not imply that all worst case
scenarios have the above properties. It only implies that at
least one such scenario does. Thus, the search for a worst
case scenario needs only to consider those cases that share
the properties above.

Proof: The following lemmas prove the aforementioned
properties respectively.

Lemma 1: To find a worst case scenario it is enough to con-
sider only those patterns in which the critically schedulable
task is the lowest priority task.
Proof: Let us consider a critically schedulable aperiodic
task arrival pattern. By definition, some task in this
pattern must have zero slack. Let us call this task Tm.
Consider the interval of time Am � t < Am +Dm during
which Tm is current. At any time t within that interval,
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mU(t) = Cm=Dm +
P

Ti>Tm
Ci=Di +

P
Ti<Tm

Ci=Di,
where Cm=Dm is the utilization of task Tm,P

Ti>Tm
Ci=Di is the utilization of higher priority

tasks that are current at time t, and
P

Ti<Tm
Ci=Di is the

utilization of lower priority tasks that are current at time t.
Since lower priority tasks do not affect the schedulability
of Tm, U(t) is minimized when

P
Ti<Tm

Ci=Di = 0. In
other words, one can always reduce the utilization of a
critically schedulable task pattern (in which task Tm has
zero slack) by removing all tasks of priority lower than Tm.
Thus, to arrive at a minimum utilization bound, Tm must
be the lowest priority task of all those that are current in the
interval Am � t < Am +Dm. In the following, we shall
denote the lowest priority task by Tn, i.e., set m = n.

Lemma 2: To find a worst case scenario, if Tn is the lowest
priority critically schedulable task, it is enough to consider
only those arrival patterns where no tasks arrive at or after
An +Dn.
Proof: Consider an arbitrary aperiodic invocation arrival
pattern, �, in which Tn is critically schedulable (and, by
Lemma 1, Tn is also the lowest priority task). Since any
invocations that may have arrived at or after the deadline
of Tn do not affect the schedulability of Tn, to find the
minimum utilization bound it is enough to consider patterns
� where no invocations arrive at or after An +Dn.

Lemma 3: To find a worst case scenario, if Tn is the lowest
priority critically schedulable task, and B is the last time
instant at which all processors were idle prior to An, then it
is enough to consider only those task patterns in which all
processors are busy between B and An.
Proof: Consider an arbitrary task arrival pattern �. Let
t < An be the last time instant at which some processor
was idle in � prior to An. At time t, it must be that the
multiprocessor ready queue was empty or else the top ready
task in the queue would have been executed on the idle pro-
cessor. Let Q(t) be the set of tasks that were in execution at
time t. Let us form an arrival pattern �x which consists of
all the tasks in � except that each task in Q(t) is modified
as follows: (i) its arrival time is advanced to time t (ii) its
relative deadline remains the same, and (iii) its computation
time is reduced to the remaining computation time of the
task at time t in �.3 Since the transformation does not alter
the amount of execution load in the system since time t, it
does not affect the schedulability of the lowest priority task
Tn. In the new pattern, however, all processors are idle im-
mediately before t, i.e., B = t. Furthermore, by definition
of t, all processors are busy in the interval [t; An). Finally,
since the modification to the tasks in Q(t) alter synthetic

3Note that since the computation time is reduced while the relative
deadline is kept the same, the utilization of the task is not increased by
the transformation. Hence, it remains infinitesimal.

utilization only infinitesimally, the synthetic utilization of
the new task set at all times remains either identical or in-
finitesimally close to that of the original task pattern. For
the purposes of deriving the utilization bound, it is there-
fore enough to consider pattern �x.

Lemma 4: The area under the multiprocessor synthetic uti-
lization curve, U �(t), is equal to the sum of computation
times of all arrived invocations normalized by the number
of processors

Z
1

0

U�(t)dt =
C�

m
(3)

Proof: To see why Equation (3) is true, observe that the in-
tegral on the left-hand-side is the area under the synthetic
utilization curve, as shown in Figure 2. Each task with
arrival Ai, computation time Ci, and relative deadline Di

contributes to this area a rectangle of hight ui = 1
m

Ci
Di

, for
a duration Di. The area of this rectangle is uiDi = Ci=m.
Hence, the total area under the utilization curve is the sum
of the areas of the individual rectangles over all task invo-
cations i, i.e.,

P
i uiDi =

1
m

P
i Ci = C�=m.

From the four lemmas above, Theorem 1 is proved. The
search for the worst-case scenario can now be restricted to
those defined by Theorem 1.

3.3 A Methodology for “Quick-and-Dirty” Bound
Estimates

In this section, we demonstrate a simple methodology for
deriving approximate bounds, using Theorem 1, that have
the favorable quality of never overestimating the exact tight
bound. We also derive the second theorem of aperiodic mul-
tiprocessor utilization-based schedulability analysis. We
believe that the methodology described in this section will
contribute beyond the scope of this paper to the general the-
ory of utilization-based admission control of aperiodic real-
time tasks. In the following we describe the basic approach.

1. Consider a critically schedulable task pattern that sat-
isfies the properties outlined by Theorem 1. LetBase�

be the interval of time between the arrival of the first
task and the absolute deadline of the last task in the pat-
tern. This is the interval during which the synthetic uti-
lization is non-zero. LetC� be the sum of computation
times of all arrived tasks in the pattern. By Lemma 4,
the area under the synthetic utilization curve is C�=m.
To derive a lower bound on the maximum hight of the
utilization curve, note that the maximum hight of a ge-
ometric shape of area C�=m and base length Base�

cannot be lower than 1
mC�=Base� . Thus, it must be

that:
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Ubound � 1

m
min
�

C�

Base�
(4)

Figure 3 shows the limiting condition on the utilization
curve in which its maximum hight is equal to the area
divided by the base. The area under the curve in this
case forms a perfect rectangle.

A  + DnnAn nnA  + 2 D

U(t)

Minimum Area
Utilization
Bound

L Dn
V

Figure 3. The Approximate Bound

A utilization bound can be derived by minimizing the
right-hand-side in Equation (4), i.e., finding the largest
denominator and the smallest numerator.

2. Find the minimum numerator in Equation (4). To do
so, let us divide the total execution time C� into two
parts; namely, all execution time prior to An and all
execution time since An. Let L be the time elapsed
between the arrival of the first task in the pattern and
An as shown in Figure 3. From Lemma 3 of Theo-
rem 1, the total execution time prior to An must be
mL, since the theorem states that all processors are
busy during that interval. The minimum execution
time needed sinceAn to keep Tn critically schedulable
is Cn +m(Dn � Cn). The first term is the execution
time of Tn. The second term is the minimum execution
time needed to block Tn from all processors for the re-
maining time until its deadline. Hence, the minimum
area areamin under the utilization curve is the sum:

areamin = Cn +m(Dn � Cn) +mL (5)

3. Find the maximum denominator in Equation (4). As-
sume the last task in the pattern has an absolute dead-
line V units afterAn+Dn. Hence, the utilization curve
extends for:

basemax = Dn + L+ V (6)

4. Substituting from Equation (5) and Equation (6) into
Equation (4), after simple algebraic manipulation, we
get:

Ubound � min
1 + L

Dn
� Cn

Dn
(1� 1=m)

1 + L
Dn

+ V
Dn

(7)

It can be easily seen (by inspecting the sign of
dUbound=dL) that the right-hand-side is minimized

when L = 0. This happens to match the well-known
observation by Liu and Layland, that the worst case
occurs when the lowest priority task arrives together
with the higher priority tasks. Substituting for L = 0,
we get:

Ubound � min
1� Cn

Dn
(1� 1=m)

1 + V
Dn

(8)

The above equation suggests that the bound gets lower
when Cn=Dn increases. Thus, the bound for liq-
uid tasks is higher than that for arbitrarily-sized tasks,
which is a desirable property considering that we are
only interested in the liquid task model.

5. In the liquid task model Cn=Dn ! 0. Substituting in
Equation (8), we get:

Ubound � min
1

1 + V
Dn

(9)

From Equation (9), we state the following theorem.

Theorem 2: In the liquid aperiodic task model, all tasks in
an arrival pattern � are schedulable by a time-independent
scheduling policy, S, (regardless of the number of proces-
sors) if the synthetic utilization U �(t) satisfies 8t : U �(t) �
Usched, where:

Usched =
1

1 +max Dhi

Dlo

where Thi is higher priority than Tlo under S.

Proof: The theorem follows from minimizing the right-
hand side of Equation (9), i.e., maximizing V=Dn. In
this equation, Dn, by definition, is Dlo. Similarly, V , by
definition, is the distance by which the synthetic utilization
curve extends past the deadline of Tn (see Figure 3). Since,
by Lemma 2, no tasks arrive after An +Dn, the maximum
V is given by the relative deadline, Dhi, of a higher
priority task that arrives immediately before the absolute
deadline of Tn. Hence, maxV=Dn = maxDhi=Dlo.
Consequently, from Equation (9) Ubound � 1

1+max
Dhi
Dlo

.

If U �(t) � 1

1+max
Dhi
Dlo

, it must be that U �(t) � Ubound.

Hence all tasks are schedulable. This completes the proof.

We show the usefulness of the above theorem by deriving
three simple results on multiprocessor utilization bounds
for liquid aperiodic tasks.

Result 1: Multiprocessor Deadline-Monotonic Bound:
Under deadline monotonic scheduling, any task Thi that
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preempts a lower priority task Tlo will have a relative dead-
line Dhi < Dlo. Using Theorem 2, maxfDhi=Dlog ap-
proaches 1. Hence:

Usched =
1

2
(10)

Result 2: Differentiated Services Bound:
Consider a differentiated services framework where tasks
are divided into classes such that the ratio of the deadline
of class i and class i + 1 is � < 1. Tasks in the same
class are scheduled FIFO. In this case, it is easy to see that
maxfDhi=Dlog = �. Thus:

Usched =
1

1 + �
; � < 1: (11)

Result 3: Arbitrary-Priority Scheduling Bound:
Let task priorities be assigned based on some external met-
ric, independently of task execution parameters. For exam-
ple, in web servers, priorities might be assigned depending
on client importance rather than any real-time properties.
Let the ratio of the largest relative deadline to the smallest
relative deadline be � > 1. Hence, maxfDhi=Dlog = �.
This leads to the bound:

Usched =
1

1 + �
; � > 1: (12)

As seen above, the methodology described in this section,
as well as Theorem 2, present an easy way to quickly de-
rive bounds for different cases of uniprocessor and mul-
tiprocessor scheduling. The geometric insight presented
here greatly simplifies the derivation of utilization bounds.
These bounds can be used for admission control as will be
shown in Section 5. Interestingly, we shall show that be-
cause synthetic utilization can be reset to zero at processor
idle times, the average real utilization of admitted tasks can
be very high even though the synthetic utilization is clipped
to the bound.

The bounds derived above are not tight because they as-
sume that the area, areamin, under the utilization curve
forms a perfect rectangle of base basemax and uniform
hight, as was shown in Figure 3. In reality, no task arrival
pattern exists that generates the shown rectangular utiliza-
tion curve. Instead, the synthetic utilization curve is de-
formed due to the fact that no tasks arrive after An + Dn

causing utilization to drop gradually. The resulting curve
has a higher hight for the same area compared with the rect-
angle shown in Figure 3. This exact hight is derived next.

4 The Optimal Aperiodic Multiprocessor
Utilization Bound

In this section, we derive the optimal multiprocessor uti-
lization bound and policy for time-independent scheduling.

The bound is new in that it considers an aperiodic task
model. As before, we restrict ourselves to liquid tasks and
non-partitioned multiprocessors. We show that the bound
is tight in that there exists an unschedulable task pattern of
utilization infinitesimally above the bound.

The proof of optimality is structured as follows. First,
we derive the utilization bound for deadline monotonic
scheduling. Then, we show that no other policy can achieve
a higher bound, hence demonstrating optimality. The
derivation of the deadline monotonic bound relies on re-
ducing the problem to that of finding a uniprocessor bound.
Since the single processor problem is already solved [1],
we get the multiprocessor utilization bound. The aforemen-
tioned reduction is possible due to symmetry of processor
schedules as we explain next.

Consider a worst-case scenario (�; Tn) described by
Theorem 1, where Tn is the lowest-priority critically
schedulable task. As mentioned before, in Section 3.3, in
the reasoning leading to Equation (5), the minimum sum of
computation times of the tasks in � is Cn+m(Dn�Cn)+
mL, where L is the length of the interval between the ar-
rival time B of the first task in � and the arrival time of
Tn. Figure 4 depicts such a scenario. The horizontal time-
lines represent individual processor schedules. The black
rectangles represent the execution intervals of the lowest-
priority critically schedulable task, Tn. (These intervals are
magnified for clarity, since in the liquid task model Tn has
an infinitesimal execution time.) The lightly shaded rect-
angles represent the execution intervals of higher-priority
tasks. The figure illustrates two important properties of this
worst-case scenario:

B A A   + Dn n n

Processor 1

Processor 2

Processor 3

Processor 4

t

t

t

t

Figure 4. Symmetry in Processor Execution

� When the lowest-priority task Tn is not running, all
processors are busy running higher priority tasks. To
prove this property we divide the interval [B;An+Dn)
into two parts; one prior to the arrival of Tn and one
since the arrival of Tn. By Lemma 3 of Theorem 1, all
processors are busy prior to the arrival of Tn. Since the
arrival of Tn, when Tn is not running, all processors
must be busy (running higher priority tasks) because
otherwise Tn would have a non-zero slack and will not
be critically schedulable.
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� When the lowest-priority task Tn is running on some
processor, all other processors are idle. This is the con-
dition that leads to the minimum area under the uti-
lization curve. If any other task is allowed to run con-
currently with Tn, the area under the utilization curve
would increase beyond Cn +m(Dn �Cn) +mL, re-
sulting in a higher bound.

Next we show that for any scenario (�; Tn) which satis-
fies the above two conditions, there exists another scenario
(�symm; Tn) of the same utilization, with task Tn still criti-
cally schedulable, and in which the schedules of higher pri-
ority tasks are identical on all processors. To obtain �symm,
Let us cut each higher priority task in � into m identical
tasks with the same arrival time and deadline as the origi-
nal task, and with a computation time 1=m of the original
task’s computation time (where m is the number of proces-
sors). The transformation does not affect task priorities in
the liquid task model, since we assumed they are indepen-
dent of task computation times. It is easy to see that the non-
partitioned multiprocessor schedule of high priority tasks in
this modified task set will be identical on each processor.
This is because there are m identical copies of each sin-
gle task, all arriving at the same time. In non-partitioned
multiprocessor scheduling, every such set of m identical
task replicas will be equally load balanced on all proces-
sors. Note that the new task pattern has the same synthetic
utilization. The intervals during which processors are occu-
pied by high priority tasks are identical on each processor
(since all schedules are identical). The lowest priority task
is still critically schedulable since the transformation didn’t
change the amount of time it is preempted.

Since the above transformation didn’t increase utiliza-
tion and didn’t change the slack of Tn, starting with any
worst-case scenario (�; Tn) for which Corollary 1 holds we
obtain another worst case scenario (�symm; Tn) in which
the multiprocessor schedules of high priority tasks are iden-
tical. We can now express the utilization bound as the syn-
thetic utilization of the latter scenario. Thus, Ubound =
U�symm = 1

m (Cn=Dn +mU
�symm

i ), where U �symm
i is the

synthetic utilization of current tasks on processor i. Note
that U �symm

i is identical for all i. In the liquid task model,

Cn=Dn ! 0. Hence, Ubound = U
�symm

i .
In [1], it was proven that under deadline-monotonic

scheduling, the minimum single processor utilization of a
critically schedulable task pattern in which Tn is critically
schedulable occurred when Cn=Dn ! 0, in which case the
utilization bound was 1

1+
p

1

2

. Hence, the multiprocessor

utilization bound for liquid tasks under deadline-monotonic
scheduling is:

Ubound =
1

1 +
q

1
2

(13)

The presented bound is tight in the sense that the utilization
of an actual critically schedulable task pattern can be arbi-
trarily close to the bound. This pattern was described in [1]
for a single processor. The multiprocessor pattern simply
contains m identical replicas of each task in the uniproces-
sor pattern.

Theorem 3: Deadline monotonic scheduling is an optimal
time-independent scheduling policy in the sense of maximiz-
ing the utilization bound.

Proof: The proof comes from two observations: (i) the
multiprocessor utilization bound of deadline-monotonic
scheduling derived above is the same as the optimal single
processor bound derived in [1]. (ii) The optimal multipro-
cessor utilization bound cannot be higher than the optimal
uniprocessor bound. This is because for each unschedula-
ble uniprocessor pattern there exists an unschedulable mul-
tiprocessor pattern, obtained by replicating the former on
each processor. From (i) and (ii) it follows that deadline
monotonic scheduling achieves the maximum possible mul-
tiprocessor utilization bound.

Corollary 2: The optimal utilization bound of time-
independent scheduling of liquid aperiodic tasks on a a mul-
tiprocessor is 1

1+
p

1=2

This corollary follows directly from Theorem 3 and Equa-
tion (13). The significance of the above result lies in its
suitability for run-time admission control. In particular, we
show that it leads to a constant time admission control test
that respects the synthetic utilization bound without under-
utilizing the system.

5 Experimental Evaluation

Perhaps the most significant result of this paper is not that
a multiprocessor utilization bound exists for aperiodic tasks
but that an admission controller based on synthetic utiliza-
tion does not underutilize the system. This seems counter-
intuitive at first, because Lemma 4 of Theorem 1 states
that the long term integral of synthetic utilization is equal
to the (normalized) sum of computation times in the task
set
R
1

0 U�(t)dt = C�=m. Hence, the long-term average
synthetic utilization is equal to the long-term average per-
processor real utilization of the task set (defined as the per-
centage of time a processor is utilized). A synthetic utiliza-
tion bound of only 58:6% therefore does not bode well for
real system utilization.

Note, however, that if tasks finish before their dead-
lines it is possible for computed synthetic utilization to be
nonzero even when all processors are idle. An online admis-
sion controller can easily detect such situations and reset the
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synthetic utilization to zero. This does not affect schedula-
bility, because the tasks that precede the multiprocessor idle
time have no effect on the schedulability of future arrivals.
Hence, without loss of generality, we redefine synthetic uti-
lization as follows:

U(t) =

� 1
m

P
Ti2V (t) Ci=Di 9 busy processor

0 otherwise
(14)

Obviously, the average redefined synthetic utilization is
generally lower than the original defined by Equation (2).
Hence, the average (redefined) synthetic utilization is gen-
erally lower than the average real utilization. In this section
we empirically show that the real utilization is indeed quite
high.

Finally, observe that in the liquid task model, it is as-
sumed that Ci=Di ! 0 for all tasks. Thus, for a finite
utilization to develop, the number of admitted tasks must
be very large. This is intuitively true of high performance
servers which execute a large number of requests concur-
rently. If one of the processors is idle, however, it must be
that the request queue is depleted. The only tasks in the sys-
tem are those currently executing on the remaining proces-
sors. In this paper, we are interested in systems where the
number of processors is finite (e.g., at most 32). The contri-
bution of a finite number of infinitesimal tasks to synthetic
utilization tends to zero. Hence, a more aggressive heuristic
admission controller can be used which resets multiproces-
sor synthetic utilization to zero when any processor is idle.
In other words, for the liquid task model, we can define syn-
thetic utilization as follows:

U(t) =

� 1
m

P
Ti2V (t) Ci=Di all processors busy

0 otherwise
(15)

The average synthetic utilization obtained from Equa-
tion (15) is generally even lower than the one obtained
from Equation (14). Hence, keeping that utilization at
58:6% leads to even higher average real utilization, espe-
cially when the number of processors is large.

To demonstrate the effectiveness of constant-time admis-
sion control algorithms based on synthetic utilization, we
generate a task arrival pattern with exponentially distributed
interarrival times. The tasks are scheduled in a deadline-
monotonic fashion on a multiprocessor of m CPUs. The
number of CPUs is varied from 2 to 32 to explore scal-
ing effects. The deadlines and execution times of tasks are
uniformly distributed such that the average utilization of a
single task is 0:5%. Hence, for most tasks, Ci << Dj .
Tasks that miss their deadlines are dropped. The input load

in our experiments is defined as 1
m �

P
all generated tasks

C

lenght of experiment
.

We vary the load by varying the expected value of the task
inter-arrival times.

We consider two admission policies, reset-all-idle and
reset-one-idle. They use Equation (14) and Equation (15)
respectively as their definition of synthetic utilization. Both
admit input tasks only if the utilization is less than 58:6%.

The resulting real utilization and rejected task ratio are
shown in Figure 5 and Figure 6 respectively. The horizontal
axis represents per-processor input load as a ratio to a pro-
cessor’s maximum capacity. Values above 1 represent over-
load. We can see from Figure 5-a, that reset-one-idle admis-
sion control offers a higher real system utilization of admit-
ted tasks than reset-all-idle (Figure 5-b). When reset-one-
idle is used, the average real utilization of admitted tasks
increases with input load until about 100%, even though the
synthetic utilization is kept below the bound by the admis-
sion controller. Hence, the multiprocessor is not underuti-
lized. The real utilization improves slightly with the number
of processors, because increasing the number of processors
increases the opportunity to exercise our optimization (i.e.,
reset synthetic utilization).
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(b) Admission control: reset-all-idle

Figure 5. The Real Utilization

When reset-all-idle (Figure 5-b) is used for admission
control, real utilization of admitted tasks is similar to the
case of reset-one-idle for a small number of processors.
When the number of processors is large (e.g., 16 or above)
the real utilization saturates at a low value which is close
to the synthetic utilization bound. This is expected because
when the number of processor grows it becomes progres-
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sively more difficult to reset synthetic utilization. Unlike
the case with reset-one-idle, in reset-all-idle, utilization is
reset only when all processors are idle.

Figure 6-a and Figure 6-b show the percentage of re-
jected tasks in the previous set of experiments for the reset-
one-idle and reset-all-idle admission control policies re-
spectively. As expected, the former policy rejects fewer
tasks.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

re
je

ct
io

n 
ra

tio

load

m=2
m=8

m=16
m=32

(a) Admission control: reset-one-idle

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

re
je

ct
io

n 
ra

tio

load

m=2
m=8

m=16
m=32

(b) Admission control: reset-all-idle

Figure 6. The Rejected Tasks

Finally, we note that reset-all-idle does not miss any
deadlines (not shown in figures). In contrast, since reset-
one-idle only approximates synthetic utilization, it is suc-
cessful in preventing deadline misses only when the approx-
imation is good. The approximation breaks down when the
product of average task utilization and number of proces-
sors becomes non-negligible. Hence, as the number of pro-
cessors increases, deadline misses occur among admitted
tasks. Hence, this policy is more appropriate for soft-real-
time applications. Figure 7 shows the number of missed
deadlines of admitted tasks when reset-one-idle is used. It
can be seen that the percentage of missed deadlines is very
small. Hence, the heuristic offers a great compromise be-
tween efficiency and strictness of real-time guarantees.

To test our scheme in a real application, we implemented
reset-one-idle on an Apache web server which uses a FIFO
policy to serve all requests. We generated a workload in
which the minimum deadline is 2 seconds and the maximum
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Figure 7. Miss Ratio of Admitted Tasks

deadline is 4 seconds. Hence, according to Equation (12),
the bound is 1=3. Since Apache is a multiprocess server, we
implemented a shared memory data structure to keep track
of synthetic utilization. The computation time of requests
was approximately derived from the requested URLs using
a formula A + Bx where A and B are constants, and x is
the requested file size.

Figure 8 compares the deadline miss rate of served re-
quests with and without admission control as the request
rate was increased. The top (dark) curve shows that when
the server capacity is exceeded at approximately 200req=s,
the number of requests that miss their deadlines increases
linearly with load. When the admission control scheme is
used these excess requests are rejected. Consequently, most
admitted requests meet their deadlines. The bottom (light)
curve in Figure 8 shows the deadline miss rate in the pres-
ence of utilization-based admission control. It can be seen
that the number of missed deadlines is significantly reduced.
Some misses do occur, however, despite admission control.
We attribute that to inaccurate estimation of request com-
putation times, as well as a non-zero request rejection cost
which is not accounted for in the derivation of the utiliza-
tion bound. This cost is incurred in the kernel primarily due
to protocol stack processing which occurs before a request
can be rejected.

In summary we have demonstrated that very efficient ad-
mission control policies can be implemented, based on our
utilization bound, that work for aperiodic task arrival pat-
terns. These policies keep processor utilization high despite
enforcing the synthetic utilization bound. In real-life ap-
plications, our admission control significantly reduces the
number of deadline misses. Future work must be done to
address extensions of the bound that account for rejection
cost, blocking, and uncertainty in execution times. We hope
that this paper might catalyze and facilitate such future re-
search.
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Figure 8. Testing an Apache Server

6 Related Work

The study of utilization bounds for schedulability of real-
time tasks has been an active research topic in real-time
computing since the publication of the first such bound by
Liu and Layland [13], in 1973. Utilization bounds are the
most efficient form of schedulability analysis in terms of
computational complexity. Unfortunately, to date, this valu-
able tool was confined only to task models with periodicity
constraints. The development of bounds derived for aperi-
odic tasks will enable applying this efficient analysis to a
myriad of new applications in which workloads are random
and do not have periodic behavior on short scales.

The basic utilization bound [13] states that a set of n in-
dependent periodic tasks on a uniprocessor will meet their
deadlines if utilization is kept below n(21=n � 1), which
converges to 69% as n increases. The bound presents a
sufficient (but not necessary) schedulability condition. The
logic of the original derivation of this result has been fine-
tuned in [5]. In [8], it is shown that if the values of task
periods form K harmonic chains, where K < n, then
the bound can be increased to K(21=K � 1). In [3], the
bound is further improved by considering more information
about the task set such as the actual values of task peri-
ods. In [19] a design-time technique is described for com-
puting the run-time bound when only periods (but not the
execution times) are known a priori. The exact task exe-
cution times are plugged-in when the tasks arrive. In [7]
task admissibility is improved using a polynomial-time ad-
mission control algorithm instead of the utilization bound.
The exact characterization of the ability of rate-monotonic
scheduling to meet deadlines of periodic tasks is presented
in [10]. This characterization derives both sufficient and
necessary conditions for schedulability of periodic tasks. A
fault-tolerance extension was presented in [18], whose au-
thors consider the overhead of failure recovery from a single
fault. The authors prove that each task is recoverable un-
der rate-monotonic scheduling (i.e., the backup replica will

complete by the original deadline) if the utilization of the
original task set is less than 0:5. This is less pessimistic than
the trivial bound of 0:69=2 (which trivially allows for any
task to execute twice). A utilization bound for a modified
rate-monotonic algorithm which allows deferred deadlines
is considered in [20].

The basic utilization-based schedulability test has also
been extended to the multiframe periodic task model in
which successive invocations of a task alternate among mul-
tiple frames with different execution times [15]. Improve-
ments of the basic multiframe schedulability test are pro-
posed in [6].

Utilization bounds for multiprocessors have received re-
cent attention. The authors of [16] derive the worst case
achievable utilization of a critically schedulable task set us-
ing rate-monotonic scheduling on a partitioned multiproces-
sor. The authors of [14] derive a multiprocessor utilization
bound for EDF scheduling. Their bound is shown to be
0:5(n + 1), where n is the number of processors. A less
pessimistic (but more computationally involved) schedula-
bility test is proposed in [9].

The above research efforts generally share in common
the assumption that the task set is known a priori and that
tasks are periodic (or have a minimum interarrival time).
Aperiodic tasks were handled in previous literature in one
of two ways. The first approach requires creation of a
high-priority periodic server task for servicing aperiodic re-
quests. Examples include the sporadic server [21], the de-
ferrable server [23], and their variations [12]. The approach
bounds the total load imposed on the system by aperiodic
tasks allowing critical periodic tasks to meet their dead-
lines. It usually assumes that aperiodic tasks are soft, and
attempts to improve their responsiveness rather that guar-
antee their deadlines. The second approach typically re-
lies on algorithms for joint scheduling of both hard periodic
and aperiodic tasks. It uses a polynomial acceptance test
upon the arrival of each aperiodic task to determine whether
or not it can meet its deadline. Examples include, ape-
riodic response-time minimization [11], slack maximiza-
tion [4], slack stealing [24], the reservation-based (RB) al-
gorithm [2], and the guarantee routines introduced most no-
tably in the Spring kernel [22]. The utilization bound de-
scribed in this paper is the first constant-time test that en-
ables us to efficiently determine the schedulability of aperi-
odic workloads on multiprocessors.

7 Conclusions
In this paper, we derived, for the first time, the optimal uti-
lization bound for the schedulability of aperiodic tasks on
a multiprocessor under time-independent scheduling. The
bound results in an O(1) admission test of incoming tasks,
which is faster than the polynomial tests proposed in ear-
lier literature. We also showed that deadline monotonic
scheduling is an optimal policy in the sense of maximizing
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the schedulable utilization bound. This result contributes
towards an aperiodic deadline monotonic scheduling theory
— an analog of rate monotonic scheduling theory for the
case aperiodic tasks. Such a theory may prove to be of sig-
nificant importance to many real-time applications such as
real-time database transactions, online trading servers, and
guaranteed-delay packet scheduling algorithms. In such ap-
plications aperiodic arrivals have deadline requirements and
their schedulability must be maintained. More importantly,
by making a distinction between synthetic and measured
utilization, we can show that the bound can be enforced on
the former without considerably affecting the latter. Hence,
unlike the case with periodic tasks, aperiodic utilization-
based admission control does not underutilize the processor.
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