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Final report on research on instabilities, separation and transition in
three-dimensional boundary layers with emphasis on gas-turbine-blade

flows

Grant F49620-03-1-0043

Oleg S. Ryzhov

Department of Mechanical and Aeronautical Engineering
University of California, Davis

Introduction

Due to very large curvature of both sides of a typical turbine blade, the flow past
each of them has specific features not intrinsic to wing aerodynamics. The Figure below
illustrates this statement, showing a long region of laminar/turbulent transition on the
upper (suction) side and absolutely unstable G6rtler vortices adjacent to the lower
(pressure) side. The streamwise pressure gradient is favourable over most of the suction
side and adverse on the pressure side that provokes turbulent separation. Thus, the types of
instabilities to be expected to develop on each side should be different in nature. Turbulent
separation under the influence of the strong adverse pressure gradient is an additional
poorly understood phenomenon characteristic of turbomachinery flows. Up to recently, all
these topics were beyond the scope of any rigorous mathematical treatment, challenging
theoreticians to develop a pertinent high-Reynolds number asymptotic approach which
would cover, along with instabilities, also late (or deep) transition. Traditionally, transition
is regarded as the most intricate stage of flow on the turbine/compressor blade even as
compared to fully developed turbulence. However, turbulent velocity fields are hardly
amenable to analytical study. Only a few attempts were made to attack the simplest case of
the zero-pressure-gradient flow on a flat plate without introducing special assumptions on
the closure model. Previous theoretical studies of turbulent separation involved crude
errors. Thus, the proposed research is aimed at resolving long-standing difficult problems
of fundamental importance from both scientific and industrial standpoints, especially as
applied to gas-turbine engine aerodynamics.

More specifically, the work done under the grant started on January 1, 2003
encompasses the following topics:

1. G6rtler vortices on the concave pressure side of a blade;
2. Laminar/turbulent transition on the convex side of a blade;
3. Turbulent separation under the action of the strong adverse pressure gradient;
4. Cooling-film aerodynamics.

In fact, the cooling-film flows fall beyond the scope of the proposal, but a shift in priorities
in transition on gas-turbine blades made it timely to extend the contents of the proposed
research so as to cover this new important issue. Note that to simplify notation, a separate
numbering of equations and figures, as well as a separate list of references, is used in each
of the sections below.
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Suction Side
A long region of
laminar/turbulent transition
/(Theory: Ryzhov 2005)

Pressure Side
Absolutely unstable Gbrtler vortices
(Ryzhov & Bogdanova-Ryzhova 2004)

Figure.

Part I: G6rtler vortices

As it has been proposed, the formulation with the vibrating ribbon was chosen for
simulating basic properties occurring in real turbomachinery environment as well as
experimental setups.

1. Receptivity

Within the framework of an asymptotic approach based on the triple-deck theory,
the initial system of Navier-Stokes equations reduces in the viscous near-wall sublayer to a
much simpler set of Prandtl equations ( Stewartson 1974)
au av a wI-+--+----= 0
ax ay az
au au au au ap alu
- + U- + V- + W- - (I a,b,c)
at ax ay az ax a7
Ow aw aw aw ap D2w

+- UI g- + V1'- + W- - - - +at ax ay az az aj

for an incompressible boundary layer, no matter what the Mach number of the oncoming
flow. The pressure p=p(t,x,z) not known in advance from a solution of the Euler
equations is to be determined simultaneously with the velocity field and the instantaneous
displacement thickness -A(t,x,z). Crossflow vortical disturbances obey

__ _ __=_ _ _ _ __ _ _ _ f
2  (2)

[P I - 2-t Iz

whereas unsteady Gbrtler vortices are controlled by ( Ryzhov & Bogdanova-Ryzhova
2003)

2



19- fC4 f /4 + (3)
27 (X _=)2 + (Z-- 1)2

Here ED and E3H are similarity parameters, the wall curvature K is included in H, E -4 0
as the Reynolds number Re-- oo. The size of disturbances is fixed by the pressure

variations which are 6(62) while the amplitude of a perturbing agency is as small as

6q65). When dealing with an orderly roughness, we introduce the time-dependence by

means of a factor exp(io0t) for t> 0 and assume the periodic obstacle geometry to be

specified as

y.,(x,z) = CYAx) cos(n-z), t> 0 (4)

In this approach y,#(x,z) = 0 for t < 0. The main focus is on disturbances emitted during

the initial pulse mode at t close to 0 when the generation of highly modulated wave
packets rather than harmonic Tollmien-Schlichting wave trains takes place. This is the
crucial point of the mathematical model since the most amplifying wave packets propagate
with the group velocity as distinct from the phase velocity determining the direction in
which the Tollmien - Schlichting waves sweep downstream of a perturbing source
(Landau & Lifshitz 1959 ). The group and phase velocities are different in general;
accordingly, the modulated wave packets and periodic wave trains can be driven in the
opposite direction.

On the assumption that a parameter G entering (4) tends to 0, a solution to the
receptivity problem based on the linearized equations (l a-c) reads

p= 93(pemizelz) (4a)

. I+ioo
p -- 4 c-e• ( 2 +doeo (4b)

with S standing for either of the two similarity parameters ED or F3H depending on
whether the crossflow or Gbrtler vortices are under consideration. Here D(Q) is a well-

known function expressed through the first derivative dci(Q)/dY and an improper integral

I(Q)= fAi(YJtYof the Airy function Ai(l) by means of

cD(0)= d4i(Q)I(n) (5)
dY

The argument

2 2

K2 = i 3 coK 3 , K= ktx + mo-cz (6a,b)
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comprises the frequency co, both wavenumbers k, nm and the components T•, T, of the

wall shear stress. For wave system on a concave wall, we have T, = 0, k= 1 and the
generalized wavenumber simplifies to K= k. In this case the right-hand side of the
dispersion relation

=(D) = Q(k, m0 ) (6)

takes the form

Q=--3 -e+-O { + 3H (7)

5

having a strong singularity k 3. However the generalized wavenumber K determines an
analogous singularity in the right-hand side

+- 5,kI + F *7 (8)

of the dispersion relation (6) for crossflow vortices governed by the interactive law (2).

2. Residue series expansion

With real k, both positive and negative, the complex frequency plane has no
branch points. Applying residue theorem to the Laplace integral in (4b) yields

f0 2" ) 2)(D0 ) _ ,0 , O(k0
e __ 01-__ _ e__to__/_ _ (9a,b,c)

0(o) - ,o n) (-Qo) - �(k" n)

ý ~ (k)i I _________=1 W°,t 0 a•)

1 2

where E0= i3CooK 3 and, in keeping with above abbreviations,
2 2

(oj (k) = (cj(k;m)= i3KnQ,(/K-1Qn j= 1,2,... are the dispersion relation roots. The first
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term R0 in (9a) is periodic in time and has nothing to do with exponentially growing wave
packets which are of primary concern for our purposes. As is known from the
hydrodynamic stability theory, only the first root o, in (9c) gives rise to unstable

oscillations whereas all the other eigenmodes related to the roots (a (k), j = 2,3,.., damp

out with time both upstream and downstream of the perturbing source. In an asymptotic
representation for Rj we may confine ourselves to the leading-order approximation and
write

__ I eO,1(k), 'DOIL t>> 1 (10)co(k) , .20l/0o

3. Reduction to single integrals

With (10) in hand, an inverse Fourier transform designated by J(x, k;m o, Al., S) in

(4b) reduces to

- K 3 d4i(Qi)/dY k________p, dke" ~P(kIIik) 0 2 [1_________ + FiLi?}

(11)

for crossflow vortical disturbances and

2 2 3
P iC 00 r co,(+),+i k d i( )/dY Q1] 1 [ k 2

P. 27c: ((01 + co :)A/(Q,)[(ID(l,) + n)t k2 + (1 _ At•)-' M02 ] 2

(12)
for unsteady G6rtler vortices. A study of the single integrals obtained presents a
mathematical problem not nearly as complicated as the initial one given in (4b). Rigorous
results based on (11) and (12) are set forth below.

4. Spectrum

In the Tollmien-Schlichting interval of frequencies and wavenumbers the first
terms in curled brackets on the right-hand sides of (7) and (8) are dominant. The correction
terms become comparable in magnitude to the leading-order terms within two spectral side
bands. A high-frequency side band

2
0) = EL) ( 0! - C1o,. ý 1.2CO c,.

k= (.M-Ekc,. z 1.3kc,. (13)
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3

mo = (n/z-7 n7,,,o , 2 .0mcr,o

specifies the range of unsteady crossflow vortices ( estimates here relate to a transitional
boundary layer with Reynolds number Re- 5.105 ). A low-frequency side-band

CO ( (60)e 0.25co G

k= (C993)7 k; -O.12k; (14)

(~ 3H )-7 ni( , : 2.0m(;'o ;:2.0m,,r°

defines the range of unsteady G~rtler vortices ( estimates are made with the same
transitional Reynolds number ). Notice that the vortices of both types are equally packed in
the spanwise direction and may be hardly discernable from each other if the three-
dimensional (swept) and surface curvature effects simultaneously play an important role in
creating centrifugal forces to balance out the normal-to-wall pressure gradient. Thus, the
disturbance spectrum consists of the two side bands with the Tollmien-Schlichting interval
of eigen frequencies in between.

5. Phase and group velocities

It is obvious from the large-time solution to the receptivity problem posed in (4)
that the overall system of pulsations is determined by the behavior of the first root (0 of

the dispersion relation (6) with the right-hand side prescribed either by (7) or by (8). The
phase velocity

0)c=-- (15)
ik

of the monochromatic Tollmien-Schlichting wave train differs from the group velocity

() = --(16)
-dk

evaluated at the points where 93(0)1) attains its global and local maxima. Since wave

packets propagate at the group velocity, nothing can be said about the direction of their
motion from (15) as it is sometimes done when predicting transition.

6
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Figure 1

Figure 1 exhibits the complex frequency plane for Tollmien-Schlichting waves
(using the G6rtler variables with ný;o = 0). The first dispersion curve co 0, responsible for

inducing unstable disturbances, consists of two branches positioned symmetrically about
the real axis. Each branch involves the only lobe with

o __ ) < 0 (17)

dk(,

at every point. In this simplest case the directions of the phase and group velocities
coincide with each other. The Blasius boundary layer offers an example marked by the
conventional scenario of convective instability.

6. Mechanisms underlying streamwise absolute instability

The key issue is what happens to the boundary-layer stability properties under the
action of centrifugal forces. The steepest descent method is best suited to solving this
problem. The existence of saddle points of the phase function

(P= ý0o (k, m0 ) + iJýk, J', = x/t entering the exponent of the integrand in (11) and (12) is

central to this method; their coordinates kj = kn,(0, J',) come from
ah, (k) +- j, = 0 (18)

dk

A complete set of saddle points is needed to compute the pressure variations along an
arbitrary ray x/t = convt. It should be recognized that a saddle point k = k• contributes to

instability if the original integration path over the real axis can be continuously deformed
into a steepest descent contour through this particular point. However we may put Jý' = 0 in

(18) to settle the most significant issue of absolute instability in the streamwise direction.
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The saddle point of the phase function specified by this condition becomes simultaneously
a saddle point of the complex frequency. In numerous checks executed the original
integration path in the Fourier transforms (11) and (12) was found to be deformable into
the steepest descent contours through, respectively, the saddle points , = o,(k•.,m,.)

and (j0G1 = COGI(kc,m(;o). Thus we are left to conclude that absolute instability in the
streamwise direction of the boundary layer is triggered by the vortical (crossflow or
G6rtler ) disturbances in response to the initial pulse-like motion of the ribbon.

A close inspection of the shapes of the first dispersion curve in the crossflow and
G6rtler complex frequency planes reveals the mechanism of the streamwise absolute
instability. Figure 2 shows that the first dispersion curve of crossflow oscillations falls
apart into two branches located asymmetrically about the real axis. Each branch consists of
two lobes. Both right-hand lobes having

D(G) 'cr) < 0 (19)

are at the bottom of the conventional scenario of convective instability whereas the two
left-hand lobes form a new crossflow eigenmode with

--3Qr) > 0 (20)
dk,,.

at any point.

i • : : : : ..! ; ' r .. . ..... .. .. . . . . . . . . . . . . . ... .. ...

Figure 2

This vortical eigenmode controls oscillations in front of a site where they are given
birth. What is more, the new eigenmode is endowed with a local peak dof 93(or) at the
tip of the loop that connects the right-hand and the left-hand lobes of the branch situated in
the lower half-plane of the complex o o,.-plane. This local peak is responsible for emitting
modulated wave-packets upstream, against the oncoming flow ( Landau & Lifshitz 1959).

8
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Figure 3

Figure 3 drawn with k; > 0 on an enlarged scale illustrates the formation of the
loop in the lower branch of the first dispersion curve for G6rtler vortical oscillations in the
high subsonic Mach number regime. The upper branch corresponding to kc; < 0 is a mirror
image of the lower branch. As is obvious from this plot, the phase velocity c(k) defined by

(15) is positive independent of the sign of k. Hence the harmonic wave trains propagate
always downstream triggering convective instability of the boundary layer on a concave
surface. On the contrary, modulated signals driven by the local peakdof 91((0G) and a
similar peak on the upper branch advance upstream with the group velocity VJ < 0

according to (16). Thus it may be reasonably predicted from the curves in Figures 2 and 3
that exponentially amplifying oscillations develop not only in the immediate vicinity of a
perturbing agency but move upstream of it in the form of wave packets consisting of long-
scaled cycles (small k). Upstream advancing signals underlie the mechanism of
streamwise absolute instability provoked by the wave / vortex eigenmodes' interaction.
Mathematically, the two-lobe structure of either of the two branches of the first dispersion

-5

curve is brought about by a singularity k 3 in the right-hand side of the dispersion relation
5

(7) and an analogous singularity K 3 involved in (8).

7. Computed results

In line with the above theoretical predictions, the wave packets are seen in Figures
below to form both downstream and upstream of the vibrating ribbon. No special thermal
source was included in the computations where high frequency cycles were partially
filtered out. The high subsonic Mach number regime brings out the significance of the
streamwise absolute instability caused by the wave / vortex eigenmodes interactions at any
value of At,<I.

9



Figure 4

Figure 4 shows the wave system for the boundary layer with crossflow specified by
= 0.417 and Atj = 0.95. The first dispersion curve in the complex crossflow frequency

plane is depicted in Figure 2 for this case. Figure 5 gives the disturbance pattern for the
boundary layer on a concave surface that corresponds to the first dispersion curve in the
complex G6rtler frequency plane of Figure 3. The downstream moving wave packets
underlie the conventional route to convective instability. The upstream advancing wave
packets are at the heart of streamwise absolute instability developing in front of a
perturbing source. As predicted theoretically, streamwise

. .. ....... ... ........ ..

Figure 5

absolute instability is brought about by the new crossflow and G6rtler-vortex eigennmodes
endowed with positive values of d3(0l)/)1-.
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Part II: Laminar/turbulent transition on the
convex side of a blade

1 Physical reasoning

External perturbing sources operating in the pulse mode generate strongly
modulated wave packets in the Tollmien-Schlicting spectral range which
cause transition to complete long before reaching the upper stability branch.
The continuous filling-up of the wavenumber spectrum by the overlapping
wings of neighbouring peaks gives rise to erratic short-scaled wiggles cor-
rupting the primary long-scaled oscillation cycles. In this regard transi-
tion induced by the time-harmonic agency shows marked distinctions from
the explosive transitioning to turbulence experienced by the wave packets.
This simple preliminary consideration underlies the analysis below where the
triple-deck formalism is exposed in more detail than in section 1. The ex-
tension is aimed at providing the clear understanding of the reasons why the
powerful asymptotic approach that holds for laminar boundary layers, as it
was initially designed, can be extended to transitional regimes.

2 Theory

Reasoning from the experimental findings of Gostelow, Hodson & Walker
(1999) and Gostelow & Thomas (2005) that instabilities develop in the
Tollmien-Schlichting spectral range, we begin with the triple-deck scheme
set forth in Stewartson (1974). This approach leans upon asymptotic expan-
sions in a small parameter

1

8 Re-' , (2.1)
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with Re being the characteristic Reynolds number. When considering exper-
imental data, Re is as a rule evaluated with the distance L* counted along
a section from its nose. The empirical correlation by Mayle (1991) gives the
transition length Reynolds number, RefT, for the blade suction side in terms
of the momentum thickness Reynolds number at the end of transition, ReOT,
by

5

ReIT = 7 5 Re'T. (2.2)

Thus, we have three Reynolds numbers: Re enters the asymptotic develop-
ment whereas processing of experimental findings is based on RefT and ReOT.
Some comments are due at this point. Firstly, for a flat plate, the momentum
thickness Reynolds number, Reo, can be expressed through the displacement
thickness Reynolds number, Re6, as

Reo = 0.3859 Re6 . (2.3)

An analogous relationship holds for any airfoil section, with the numerical
factor on the right-hand side depending on its shape. Secondly, within the
framework of the high Reynolds number approach the transition length 1 is
assumed to be much shorter than the characteristic distance L*. Asymptot-
ically, as E tends to zero, (2.2) becomes

5

RelT = 22.81 Re' (2.4)

with the coefficient determined by using (2.3). Insofar as

1
Re6 = 1.7208 Re2

for the Blasius boundary layer on a flat plate, we finally have an expression
5

RefT = 44.96 Re8 (2.5)

defining the transition length l through the characteristic distance L*. An
analogous dependence is typical of an arbitrary blade or wing section. As-
ymptotically, (2.4) and (2.5) are tantamount to (2.2) and can be exploited as
empirical correlations, however the results from wind-tunnel measurements
collapse without appreciable scatter onto a straight line drawn by Mayle
(1991) from (2.2). For this reason the momentum thickness Reynolds num-
ber seems to be preferable when processing experimental data.

13



Let yt* and T* be the viscosity and temperature, respectively. With the
subscript oo labelling the conditions at the upper edge of the boundary layer,
the Chapman-Rubesin linear law frequently used in theory reads

=C C = const.

CL Tlý

The triple-deck time - where U* is the velocity of the oncoming stream,

and spatial coordinates L*, 2! are scaled in terms of Reynolds number
through the small parameter s introduced in (2.1) and include the ratio
TI*,1 of the wall temperature T* to the external temperature Týo as well as
the Mach number M,, and the nondimensional skin friction A = 0.3321, in
the incompressible Blasius flow. For an arbitrary boundary layer, the skin

friction T,- can be expressed through A by means of -- , = AC-2 T*,

The above scaling defines a characteristic Strouhal number for free interac-
tion. According to Stewartson (1974), Smith (1982), and Kluwick (1998),
the independent variables in the viscous near-wall sublayer of the subsonic
boundary layer are

V 4 2~ (M.2 1-14~(") ,(.a

L*

3

U* - C•A-• (M2 - 1)o8 ( x, (2.6b)

3

L* - E C'A-4 (M - 1)•y. (2.6c)

Related to these normalized coordinates, the velocity field

1U*8 4 ck¼( -1- u, (2.7a)

V E 3 (3 -( M . (p ) v, (2.7b)

and the pressure variations
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p* - p.* 2 ý M2P - 2ý (MA -1)- p (2.8)

obey the system of Prandtl equations

Ou O
0- + O = 0, (2.9a)

Ou OU Ou Op 02U-U + U + _ -o +o (2.9b)

at Ox Oy O9X y

for an incompressible fluid, independent of the Mach number. The self-
induced pressure p = p (t, x) comes from viscous/inviscid interaction rather
than being given beforehand by a potential flow solution. In the absence
of perturbing agencies, the pressure rises and drops are connected with the
instantaneous displacement thickness -A (t, x) by the interaction law

00 0A(t,ý)
= _J_ <d. (2.10)
7=r •x-•

The limit condition

" - y -- A (t,x) as y -- o (2.11)

at the upper reaches of the viscous near-wall sublayer and the no-slip condi-
tion

U = v = 0 (2.12)

at the body surface make the mathematical formulation complete.
In order to extend the above consideration, we may drop the Chapman-

Rubesin viscosity law and introduce the independent variables through

E2=( . t, (2.13a)

L*W 4a• (8• 1)- T;•(/; , (2.13b)
L* csT _ (M .2 1)- T* IL_* ( .1 c
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instead of (2.6a-2.6c). The nondimensional velocity field and the pressure
variations

11

ET 2 ( ]) u, (2.14a)

33
E- 5T- (M4 - 1) () v, (2.14b)

__ _ _ 1 M. 1) 1*'

P'-P* s2 2(M.2 I)-I(• •(f•
p 2 U*( -W\T 4 p (2.14c)

come in place of (2.7a, 2.7b) and (2.8), respectively. Here T" and the ratio
/--- depend on a particular boundary layer in question. The scaling in terms
o as well as M•-dependence remain intact, however the normalization that
accounts for the temperature factor varies with the type of the boundary layer
under consideration. Nonlinear stability of boundary layers for disturbances
of various sizes was discussed by Smith (1979a).

The length 1ý of the nonlinear interaction process governed by the system
of Prandtl equations can be estimated as l - x* with x* defined in equations
(2.6b) and (2.13b). Hence it follows that

17 c. sL* = Re-8 L*

in view of (2.1). The Reynolds number Reli calculated with this characteristic
length is expressed by virtue of

Rei = Re - Re- (2.15)

in terms of the Reynolds number. Thus, the transition length l in (2.4)
exhibits the same scaling as the interaction length 1 in (2.15). In fact, 1
can be identified with 1: because evidently lG < 17. The result obtained
goes far beyond the scope of the triple-deck theory which has been originally
invented as applied to laminar boundary layers. The identity of the two
lengths implies that the asymptotic approach extends to cover the regime of
laminar/turbulent transition (except when the intermittency becomes close
to 1).

16



Simple physical reasoning provides arguments substantiating this infer-
ence. The triple-deck scaling of time and spatial coordinates is typical of vis-
cous/inviscid interaction. On the other hand, the same type of interaction is
known to control the boundary-layer eigenmodes in the Tollmien-Schlichting
spectral range centered about the lower branch of the neutral stability curve
(Smith 1979b; Zhuk & Ryzhov 1980). Thus, the scaling introduced above
spesifies the period and wavelength of oscillation cycles within the Tollmien-
Schlichting wave packets. The zone of transitional flow was recorded in nu-
merous wind-tunnel tests to be filled with vortex spots (wave packets) that
amplify exponentially fast and turn into turbulent spots coalescing with each
other and thereby sharply increasing intermittency at later stages of transi-
tion. Between these spots the flow field remains laminar. So long as there
is enough space between neighbouring spots they develop as if they were
travelling in laminar surroundings. This is the reason why the transition and
free interaction lengths have equal scaling in terms of the Reynolds num-
ber. Vigorous growth of the pulsation amplitudes within the spots does not
change the scaling in (2.15) but can trigger erratic short wavelength wiggles
to destroy the original well-organized vortex structures.

3 Numerical evidence

The last statement needs to be reinforced computationally. To this end, let
us consider two mechanisms of the vortex-spot production.

Wave-packet excitation by a convected vortex. The first mecha-
nism comes about by virtue of the potential vortex/surface roughness inter-
action. Strong similarities in the transition process between wake-induced
turbulent patches on turbomachinery blades and artificially triggered turbu-
lent spots in the flat plate boundary layer underlie this theoretical model. As
mentioned, these similarities were exploited by Gostelow, Hodson & Walker
(1999) and Gostelow & Thomas (2005) in their wind-tunnel tests to simulate
the transition phenomena. Certainly, natural transition on turbomachinery
blades is three-dimensional. However, in Gostelow & Thomas (2005) wakes
were introduced into the flow by a tapered rod, of average radius 4.5 mm,
contilevered from a disk having axis 0.5 m upstream of the leading edge of
the thin plate. The rod was mounted at a radius of 270 mm on the disk
and was rotated at an angular velocity of 60 rpm, resulting in the introduc-
tion of two dissimilar wakes per second. Centerline phase-averaged velocity

17
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Figure 1: Schematic of vortex/hump interaction.

traces were obtained starting from the aforementioned similarities between
the wake-induced turbulent patches and artificially excited turbulent spots.
In fact, the covected-vortex model relates to conditions typical of the experi-
mental set-ups rather than to the general case for which no wind-tunnel data
are available.

Figure 1 gives an idea of the process and makes clear the triple-deck pat-
tern of the velocity field with pertinent scalings involved. We point out briefly
the most important features associated with the convected vortex. Asymp-
totically, as E --* 0, the flow in the near-wall sublayer obeys the system of
Prandtl equations (2.9a, 2.9b). However an additional term is included in
the expression (2.10) for the excess pressure to take into account the vortex-
induced contribution. The limit condition (2.11) with the instantaneous dis-
placement thickness entering the right-hand side also contains a correction
p, (t) for the vortex-induced pressure. This inhomogeneous limit condition
at the upper edge of the near-wall sublayer should be supplemented with the
inhomogeneous limit condition at the entry, as x --* -o, to the sublayer.
The derivation of the inflow condition rests upon a detailed analysis of the
vortex motion in a region upstream of the local roughness. Matching with
the Stokes sublayer located close to the wall in this region shows that the
instantaneous displacement thickness tends to zero as x --+ -oc, while the

18



vortex-induced velocity

U t Y 3 exp p,(T)dT (3.1)
2 [4 (t--)

provides the time-dependent contribution. In consequence,

as x -- -00. The no-slip condition (2.12) applies at the body surface with a
small hump or dent

y = yw = ag (X) (3.2)

centered around the origin.
Following Burggraf & Duck (1982) and Duck (1987) the boundary-value

problem posed is recast by introducing the shear stress T (t, x, y) as a new
desired function. Computing the Fourier spectral distribution

&a7(t,k,y) 1 fIe_'d
((t, ky) -y - 00 T (t,X,y)e-kx

and then inverting it to the physical space

T(tX,y) = Du(t,x,y) =1 0f (t,k,y) ekxdkay 271- •(, k y .kd

play a dominant role in an iteration procedure devised for an equation

07T OT OT 2 Ta- + U-+ V y=
at 19X ay y

that arises upon differentiating (2.9b) with respect to y. Our main concern is
with the onset of erratic wiggles in -F,, = T (t, x, 0) accompanied with filling up
the spectrum :w = T (t, k, 0) with t increasing. A code with FFT algorithm
has been tested in Ryzhov & Savenkov (1989) and Ryzhov & Timofeev (1995)
when analyzing the short-scaled large-amplitude distortions appearing in a
few central soliton-like cycles of the wave packets which can be identified
with the vortex spots in laminar/turbulent transition. The geometry

9 1
+ x 2' Th= we -I (3.3)
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assumed in the computation specifies a hump mounted on an otherwise flat
plate, accordingly, the height of the obstacle in (3.2) being a = 1.

For better visualization of oscillation properties a quantity

d OU(t, y) (34)
-rd W = T" 1 I 1yd(34

is meant by 4 in what follows. This quantity equals T4 = r - 1 for
the steady flow set in prior to the vortex motion that induces in line with
(3.1) an additional component U (t, y) of velocity. The hump fixed by (3.3)
introduces moderate disturbances in the velocity field of the oncoming steady
stream without separation accompanied by a bubble with reversed flow (for
separation to occur the hight of the hump should be larger). The resulting
boundary-value problem provides the simplest model of gas-turbine-engine
environments where vortical disturbances interact with small imperfections of
the turbine-blade surface (especially covered by the thermal barrier coating).
Recent wind-tunnel tests by Pinson & Wang (2000) lend credence to the
applicability of the transition-length correlation to rough surfaces.

Figures 2a, b, c show the origin and rapid development of a wave packet
induced by a convected vortex interacting with the hump shaped by (3.2),
(3.3). A value p' = max (1P, ) = 3 determines a fairly strong intensity of
the vortex. At t = 0, the excess shear stress -a is associated predominantly
with the steady perturbations from the hump, the formation of unsteady
oscillations downstream is barely discernible. The explosive character of the
highly modulated wave packet propagation becomes clear at t = 1.5 when a
narrow soliton-like cycle appears in the central part of the signal. Figure 2c
illustrates the onset at t = 2.5 of short-scaled erratic wiggles that distort a
portion of two central cycles of the wave packet with positive 7. The soliton-
like portions of the same cycles with negative T d remain almost intact at this
spiky stage typical of transition.

Figures 3a, b, c display the spectral content of disturbances shown in
Figures 2a, b, c. The first of them presents the wavenumber spectrum of
almost steady perturbations triggered by the hump, with the peak in d I

located approximately at k = k, = 1.19. The second plot exhibits the
spectrum featuring the wave packet at t = 1.5. The local maximum at k = k,
becomes much smaller compared to the local peak at about k = k, = 2.75
that corresponds to the wavenumber of the fastest growing linear eigenmode.
The second local maximum at k - 2k.. = 5.5 forks into two small mounds
divided by a shallow local minimum in 4 . The third local smoothed-out
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maximum arises at k • 3 k, = 8.25. One more local maximum is scarcely
visible close to k P 4k,1 = 11.0. Thus, the filling-up of the wavenumber

spectrum basically follows a weakly nonlinear scenario in spite of the fact

that the signal in Figure 2b is essentially nonlinear. To the contrary, the

filling-up of the distant parts of the spectrum in Figure 3c is at the heart of

the short-scaled wiggles corrupting two central cycles of the signal in Figure
2c. Here the first two peaks in I become almost equal whereas the other

local maxima attain the magnitudes comparable to these peaks. The signal as

a whole nears to transitioning to a turbulent spot. This process embracing all

the vortex spots in the boundary layer eventually brings up the intermittency
close to 1.

Acoustic wave/surface roughness interaction. The second mecha-
nism of the vortex spot production comes about by virtue of sound scattering

into Tollmien-Schlichting eigenmodes by small streamwise variations in sur-

face geometry. This mechanism is even more important as applied to aircraft

wings rather than turbomachinery blades. Time-harmonic oscillations were

studied by Goldstein (1985) and Goldstein & Hultgren (1989). The closest

resemblance to the wave-packet excitation by a convected vortex shows the

propagation of a sound pulse impinging against a local obstacle located on an

otherwise smooth surface (Ryzhov & Timofeev 1995). However there exists

a difference between the two problems because a fluid in the potential flow

domain cannot be regarded anymore to be incompressible even if velocities

are small. The Mach number and temperature ratio dependencies should

be incorporated into a set of similarity parameters in a manner specified in

(2.6a-2.6c), (2.7a, 2.7b) and (2.8), or (2.13a-2.13c) and (2.14a-2.14c). The

system of incompressible Prandtl equations (2.9a, 2.9b) still controls the flow

field in the viscous near-wall sublayer where the excess pressure related to the

instantaneous displacement thickness obeys (2.10) with an additional term

accounting for sound scattering at subsonic velocities. What is more, the form

f (t) of the sound pulse can be defined in such a way as to render it identical

to a function p, (t) that was used above to prescribe the vortex-induced pres-

sure. This analogy enables the wave-packet excitation by a convected vortex

to be experimentally simulated by means of acoustic generators.

Instead of applying this analogy we put in the computation

f = 0 fort<0

f = 0.1wtexp(1-wt) for t > 0
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Figure 2: Wall-shear variations in the wave packet induced by a convected
vortex. (a) t = 0; (b) t = 1.5; (c) t = 2.5.
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