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INTRODUCTION

The central hypothesis of this proposal was that a real-time side-by-side display of sonographic
and elastographic images would significantly improve breast abnormality detection and discrim-
ination. The goal of this study was to develop a real-time ‘palpation imaging’ system to test
that hypothesis. We anticipated that high contrast-to-noise ratio images of mechanical strain
(relative tissue deformation, “palpation images”) could be formed without the use of fixtures
to control motion, and thus hand-held transducers would be sufficient. We also anticipated
that real-time feedback would be essential for creating the appropriate boundary conditions
to obtain high quality data that lacks significant elevational motion. We expected that with
real-time “palpation imaging” it would be possible to detect lesions that are less than 5mm
diameter at any location in the breast regardless of breast composition or size. This project
included a broad spectrum of disciplines including scientists, engineers, and clinicians. Our
research plan involved using tissue-mimicking test objects with known physical properties and
included Phase I clinical trials on approximately 60 patients (funded by this proposal) sup-
plemented with similar trials at two other institutions for a total of 477 human subjects. Our
results demonstrate that elasticity imaging does improve diagnostic confidence in characterizing
benign versus malignant lesions and has great potential for affecting the decision to biopsy.

BODY

A sequence of six specific aim (‘Tasks’) were proposed to accomplish the goal of creating and
testing a real-time elasticity imaging system. The results of this project will be reported for
each task on a year by year basis.

Task 1.

Implement real-time palpation imaging on a commercial sonography system:

1. Program the imaging system digital signal processors to estimate strain from consecutive
image frames.

2. Develop a user interface for controlling the data acquisition and processing parameters.

3. Test the system using existing phantoms and laboratory fixtures with motorized motion
control to determine the penalty for using fixed-point versus floating point calculations.

Task 1.Year 1

One of the Co-Investigators in our effort (Dr. Yanning Zhu) spent three months at Siemens Med-
ical Systems Ultrasound Group (SMSUG) (Issaquah, WA) learning to program their system and
has modified our algorithms to efficiently execute on their SONOLINE Elegra Image Processor
subsystem. We are grateful to SMSUG for their technical assistance in this effort. The software
developed in year-1 was fully functional, but was still under development. Among the major
accomplishments were that the system acquired ultrasound quadrature echo data, processed the
normal ultrasound B-mode image and an image of mechanical strain, and displayed these im-
ages side-by-side at about eight frames per second. We found that frame rate to be sufficiently
fast to provide feedback to the hand-eye coordination system to allow manipulating the con-
ditions of tissue compression to consistently obtain high-quality strain images. We tested that
system throughout its development and found no difference in the variance of time-delay (tissue
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displacement) estimates for either floating-point or integer computations (assuming the integer
computations are implemented to maximize the available bit depth), as reported in year-1. The
algorithm was implemented both on-line using the Siemens SONOLINE Elegra with two Texas
Instruments TMS320C80 MVP (TI C80) processors (integer computation) and off-line using
MATLAB and both integer (an implementation identical to that on the TI C80) and floating
point computation. Most of the development in Task 1 was completed during year-1.

Task 1.Year 2

With additional testing and some minor development we significantly improved the computa-
tional efficiency of the software. The second prototype version of our software produced images
for a 1 cm wide by 2 cm deep region of interest at about eight frames per second (16 cm2/sec).
The final version of the real-time (acquisition) software on the Siemens Elegra displays 3 cm
wide by 3.5 cm deep image pairs at about seven frames per second (73.5 cm2/sec). That frame
rate is sufficiently fast to provide feedback to the hand-eye coordination system to allow manip-
ulating the conditions of tissue compression to consistently obtain high-quality strain images.
These results were published in (1).

Task 2.

Develop data acquisition techniques that provide high-quality palpation images without the use
of fixtures:

1. Implement techniques that mimic those used for phantom imaging including small hand-
held fixtures to restrict motion perpendicular to the image plane.

2. Test those techniques in phantoms and compare target contrast-to-noise ratio for labora-
tory (large motorized fixtures, controlled motion) versus clinical (small hand-held fixtures,
restricted motion) systems.

3. Test the clinical systems (real-time palpation imaging with small fixtures) using anthropo-
morphic breast phantoms.

4. Test the clinical systems on volunteer patients with palpable breast abnormalities.

5. Modify the data acquisition techniques to eliminate the need for fixtures to restrict motion
while maintaining image quality.

6. Measure conspicuity of breast lesions to assess the relative merit of different data acquisi-
tion techniques.

Task 2.Year 1

A great deal of the initial effort on this project was devoted to this Task. As described in
the proposal and in the year-1 report, we began with simple rectangular block phantoms and
compared motorized versus freehand scanning. These tests used fixtures that allowed us to
restrict out-of-plane (elevation) motion of the phantom material as the block was deformed
in the axial direction (parallel to the acoustic beam). We found that the small fixture used
for freehand scanning (hereafter called the “fixture”) minimized elevation motion, just as the
larger fixture used in the laboratory motorized compression system, but it was cumbersome to
use. Freehand scanning of phantoms for strain imaging without fixtures was far easier than we
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had anticipated. We skipped the step of using fixtures on breast-shaped phantoms and went
directly to freehand scanning of these objects and found this to also be trivially easy. The leap
to scanning in vivo breasts was more difficult. In this case, the use of the freehand scanning
fixture for minimizing elevation motion was little, if any, help. We found that breast tissue is so
heterogeneous, particularly with tissue boundaries sliding across each other, that the fixture did
little to limit elevation motion and was more trouble than it was worth. The most significant
improvement in ease of scanning came from modifications to obtain significantly higher elasticity
image frame rate. When the frame rate hit about four frames per second we had sufficiently
frequent frame update to provide the hand-eye coordination system enough information to
control the conditions of tissue compression and obtain high-quality strain images in vivo.
Iterating between what we learned with freehand scanning of phantoms, then in vivo breasts,
and back to phantoms, we found that the key to obtaining sequences of high-quality strain
images (high contrast-to-noise and high similarity from frame to frame) is high frame rate. The
current frame rate is fast enough to allow us to manipulate the compression conditions while
scanning, and this is essential for obtaining low noise strain image data. Results in the year-
1 report show that the variance in our displacement estimates (the fundamental information
in strain images) is comparable for freehand and motorized compression of a uniform block
phantom. Displacement variance for in vivo breast scans were included for comparison and
showed that the variance for in vivo displacement estimates is somewhat higher than that for
homogeneous phantom materials with simple geometry. This shows that the penalty in image
quality due to freehand scanning is small, especially considering the huge benefit in flexibility
in scanning procedure and future clinical acceptability.

The research results from Tasks 1 and 2 during year-1 were summarized in conference
proceedings (2; 3), a peer-reviewed manuscript (1) and a patent (listed below).

Task 2.Year 2

Year-2 efforts on this Task were spent iterating between what we learned with freehand scanning
of phantoms, then in vivo breasts, and back to phantoms, knowing that the key to obtaining
sequences of high-quality strain images (high contrast-to-noise and high similarity from frame
to frame) with freehand scanning is high frame rate. Within that effort we were developing
improved scanning techniques for in vivo breast elasticity imaging. The scanning technique
for breast palpation imaging is nearly identical to that used in typical breast sonography with
compression. The subject lies on her back with her arm behind her head and the ultrasound
transducer is pressed, by hand, toward the chest wall. The real-time image feedback allow
manipulation of the compression conditions while scanning. This manipulation is essential for
obtaining long sequences of low noise strain image data (often 100 image frames).

Task 3.

Implement high-quality palpation imaging algorithm on a commercial sonography system and
perform preliminary tests of image quality:

1. Program the commercial sonography system to calculate a high-resolution, low-noise pal-
pation images as quickly as possible over a large region of interest.

2. Develop a user interface that allows manipulation of the image formation algorithm for
the trade-off between spatial resolution and image noise.
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3. Test the high-quality algorithm on (geometrically) simple and anthropomorphic phantoms
using the modified data acquisition techniques (Task 2.5).

4. Use the real-time palpation imaging technique to locate the desired region of interest and
obtain sonographic data with the appropriate pre- and post-compression for volunteer pa-
tients with palpable breast abnormalities.

Task 3.Year 1

We implemented three displacement and strain algorithms on the Elegra, as described in the
year-1 report. The simplest of these is the algorithm that runs in real-time for data acquisition.
This uses an adaptive search strategy to predict the deformation based on previous displacement
estimates. This adaptive search reduces the computational load for strain estimation by more
than two orders of magnitude. The algorithm also decimates the data, thereby reducing the
number of displacement estimates in a given region of interest. This algorithm is used primarily
for data acquisition during freehand scanning and is a compromise between frame rate and
image quality. To halt data acquisition the system ‘freeze’ button is pressed, just as in normal
sonography, and the echo data are available for on-line post-processing. This same (real-time)
strain imaging algorithm can be used to reprocess that data as the user scrolls through image
memory, or one of the other algorithms can be used. The second algorithm is identical to the first
except that the data is not decimated. Estimating displacement with higher data density reduces
the displacement variance in the adaptive search strategy resulting in a slight improvement in
image quality. The third algorithm operates on the full data field (no decimation) and does not
use the adaptive search strategy, instead using a full 2-D search. This approach is much more
computationally intensive, requiring about one second per strain image frame, but produces
images that lack the displacement error accumulation that can result from the adaptive search
strategy. Several image examples from our current algorithms were included in the year-1
report. There is a significant penalty in the printed version of these images. A CD-ROM was
also included in the year-1 report that provided significantly higher quality images and ‘movie
loops’ of strain image sequences to illustrate what is seen on the monitor of the Elegra.

By the end of year-1 we had scanned 42 volunteers. Among these there were 25 cysts, 18
fibroadenomas, and 6 invasive ductal carcinomas. Some of these patients had multiple lesions,
and some were scanned on repeat occasions. We found that the high negative strain contrast for
most fibroadenomas, with low pre-compression, decreases as the lesion is compressed. This im-
plies that the tissue surrounding the lesion has a stress-strain relationship that is more nonlinear
than that for the fibroadenoma. This behavior appears to be unique to fibroadenomas.

We found, as did Garra, et al., (4), that the width and height of benign lesions tend to be
about the same size in B-mode and strain images and carcinomas are larger in strain images
than B-mode, but the separation between benign and carcinoma is much larger when we use
the lesion area (measurements performed by the PI). Those early results were very encouraging,
and from this work we were confident that we were following a solid research plan. However,
our enthusiasm had to be tempered with the fact that we had relatively small numbers of
samples of each lesion type so far, the data included only one type of carcinoma (invasive
ductal carcinoma), and the carcinomas were ‘highly suspicious’ based on mammography and
sonography. The year-1 report provided images and included a CD-ROM with example images
and ‘movie loops’ demonstrating these observations.
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Task 3.Year 2

The iteration of minor changes in elasticity image formation algorithm, tests in phantoms and
scanning in limited in vivo breast lesions continued in the second year of support. We found,
as described in the year–1 report, we could estimate displacement and strain accurately in
inhomogeneous media (breast tissue) with greater success than originally anticipated. The key
to this success is real-time imaging of strain that guides manipulation of the conditions of
compression.

By the end of year-2 we had scanned 56 volunteers. Some of these patients had multiple
lesions, and some were scanned on repeat occasions (perpendicular image planes, repeat visits,
different transducers, etc.). The result was the experience of over 200 patient-scans. As detailed
in the year–1 report, these images are very reproducible both within an acquisition sequence
and on repeat visits.

Support for the observation that strain image contrast in fibroadenomas changes as the
surface pressure increases, and that behavior appeared unique to fibroadenomas, continued to
build in year-2. The frame-to-frame variability of strain images for cysts, reported in year-
1, shifted our emphasis in data acquisition to solid lesions for year-2 and beyond. We also
provided evidence in the year-1 report describing the frame-to-frame similarity in strain images
of invasive ductal carcinomas and evidence demonstrating that the apparent size of a carcinoma
in strain images is larger than that seen in the B-mode images. Aspects of these results were
reported in a conference proceedings (5) and a peer-reviewed manuscript (6).

To begin designing the experiments for Tasks 4 and 5, we asked five observers (the PI and
four ultrasound clinicians) to view each sequence of side-by-side B-mode and strain images
from the KUMC data. From each sequence, each observer had to choose an image pair that
represented the typical view of the lesion in both B-mode and strain images. That image pair
was then displayed and the observer had to trace the lesion boundary in the B-mode image and
measure the lesion height and width. The image pair was then re-displayed and the observer
traced the lesion in the strain image and measure the lesion height and width. The combined
average results for lesion measurements were shown in the year-2 report. A receiver operating
characteristic (ROC) analysis of those measurements resulted in an overly-optimistic diagnostic
accuracy of 0.983±0.028—nearly perfect performance. Although these were very encouraging
results, they could not be generalized to “average performance” for several reasons including the
small size of the patient pool, correlations among the data (multiple lesions in a single patient
included in the study), and the limited variety of lesion types (invasive ductal carcinomas,
fibroadenomas and cysts). Results of this study were presented as a poster at the Radiological
Society of North America meeting in November 2002.

That work demonstrated that we were following a solid research plan. By increasing the
size of the study population, and comparing the change in diagnostic accuracy when using
standard sonography versus sonography plus palpation imaging, we planned to test the utility
of palpation imaging as a diagnostic tool with ROC analysis and multi-observer measurements.

Task 3.Year 3

A total of 64 volunteer subjects had their breasts scanned with ‘palpation imaging’ at KUMC.
Some of these patients had multiple lesions, and some were scanned on repeat occasions (per-
pendicular image planes, repeat visits, different transducers, etc). As previously reported, the
excitement from the potential for palpation imaging and the delay at KUMC in obtaining a
sufficient number of patients to adequately test this technology resulted in Siemens contracting
with two other institutions to test our technology (Charing Cross Hospital in London, UK and
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Mayo Clinic, Rochester, MN). Those sites were quite productive in their trials. By the end of
year-3 the Charing Cross group had scanned over 200 breast patients and the Mayo group had
scanned over 100 patients. Each found that they became proficient in their scanning technique
within 10–15 patients, and found that palpation imaging adds, on average, about five addi-
tional minutes to the normal breast ultrasound examination. The key to strain imaging, as in
standard sonography, is training. With real-time feedback of the current strain images being
acquired, the key is interpreting the data and making corrections to the technique, if necessary.
In summary, the tools are adequate, the key to success is training.

Our plans at the end of year-3 were unchanged from those in the proposal and initial protocol,
except for the change of institution and the use of data from outside this funded project. We
were well prepared at that point to complete the final two tasks of the study (Tasks 4 and 5).

Task 4.

Acquire sonograms, elastograms, and mammograms on patients with suspicious lesions that are
either palpable or detectable with sonography or mammography.

Task 4.Year 4

As noted in the year-3 report, the research performed in the prior years positioned us well to
begin the Phase I clinical trial of “palpation imaging’. Unfortunately, the errors by adminstra-
tion employees at the University of Kansas in the grant transfer to the University of Wisconsin
resulted in a loss of approximately $64,000 (total funds). Our response was to eliminate the
additional human subject scanning from our work and rely, with IRB and HSRRB approval,
on the data that had been acquired by our colleagues at the Mayo Clinic (Rochester, MN) and
Charing Cross Hospital (London, UK).

More specifically, the human subject population for the observer study (Task 5) came from
the data acquired at Charing Cross Hospital in London, England and the Mayo Clinic in
Rochester, Minnesota. Eligible patients were those women undergoing sonographically guided
percutaneous breast biopsy. We excluded patients who had technically inadequate strain images
or who did not undergo biopsy for pathologic outcome. Charing Cross enrolled 259 female
patients between 2/22/2002 and 4/8/2004 imaging 259 lesions. Eleven lesions were excluded
for technical reasons and 11 were excluded because biopsy was not performed. The Mayo Clinic
enrolled 156 patients between 2/4/2002 to 5/25/2004 imaging 186 lesions of which 17 lesions
were excluded for technical reasons and 3 were excluded because biopsy was not performed
In total, strain imaging was performed prospectively on 445 breast masses of which 42 were
discarded based on our exclusion criteria leaving 403 (157 malignant-39.0%; 246 benign-61.0%)
lesions as candidates for our reader study. Pathologic results determined by percutaneous
or excisional biopsy were considered our reference standard in this study. Imaging-histologic
concordance was documented for each lesion to minimize the chance for sampling error.

Task 5.

Compare diagnosis of breast lesions with and without the use of palpation imaging. (using
images obtained in Task 4).
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Task 5.Year 4

The Mayo group, not directly under this project, performed an observer study based on strain
image data they acquired. They recorded the RF echo signals and created strain images off-line
using an algorithm we developed and provided to them. They tested whether lesion size ratio
results we had observed in data from KUMC and Charing Cross were supported with their data.
A significant limitation of their study was that the most highly trained observers attempted to
perform the study during the normal workflow of a very busy radiology department. Worse, one
of their observers was not trained in breast ultrasound imaging. As a result, the performance of
their observers, as measured by the area under the ROC curve (AUC) for observer’s lesion area
ratios ranged from 0.92 (comparable to our results) down to 0.67 for an untrained observer. A
detailed report of their results was published in a peer-reviewed manuscript (7).

A more careful study with a larger pool of data was performed within this project. Two
parameters were used to select the abnormalities for the reader study: the distribution of patho-
logic diagnoses and image quality. First, in order to optimally represent the entire pathologic
spectrum of solid breast abnormalities seen in clinical breast imaging practice, we determined
the distribution of pathologic diagnoses in our collected cases. Next, we selected the 50 highest-
quality malignant and the 50 highest-quality benign abnormalities on strain images while pre-
serving this same distribution of pathologic diagnoses in the malignant and benign categories
respectively. We also made sure that only one lesion per patient was included in the reader
study to preserve independence of cases for statistical analysis.

Three radiologists were included in this study. All of the radiologists who participated were
board certified (by the American Board of Radiology) and fulfilled the MQSA requirements in
terms of volume of studies read per year and continuing medical education. All three radiologists
are fellowship trained in breast imaging and spend at least 30% of their clinical time in breast
imaging practice (years of experience range from 5 to 13 years).

The three observers (designated A-C) individually completed a training module containing

56 instructional PowerPointr slides and 40 sample cases. The introductory slides provided
didactic instruction on: 1) the physics of strain imaging; 2) characteristic appearance of strain
imaging in benign and malignant masses; 3) the significance of size ratio differences between
B-mode and strain imaging and 4) methods to evaluate the quality of strain imaging using
ten of the 40 sample cases (5 benign, 5 malignant). The additional 30 sample cases contained
14 benign and 16 malignant solid masses shown as unknowns with illustrations of significant
findings and relevant measurements available when desired. Once the training session was
complete to the radiologist’s satisfaction, test cases were presented in random order.

The observers were first presented the B-mode images as a movie clip which the radiologist
assessed with BI-RADS descriptors, BI-RADS categories, and a probability of malignancy. The
radiologist also selected a frame from the cine loop on which to make measurements on the
B-mode image. The radiologist traced the lesion boundary and measured the largest linear
dimension and the largest perpendicular dimension. Strain images were then made available
and were presented as side-by-side B-mode and strain images in a movie clip. The radiolo-
gist first assessed the quality of the strain images on a 10 point scale. Then they selected a
frame on which to trace the lesion boundary and measure the largest linear dimension and the
largest perpendicular dimension on the strain image. Note that the frame used for strain image
measurements was not necessarily the same as that used for B-mode measurements. The radi-
ologist then viewed the ratio of the lesion area in the strain image to that in the B-mode image
prior to re-assessment of the probability of malignancy. Probability assessment correlations
between readers were calculated in a pair-wise fashion. Probability assessments were also used
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to construct ROC curves to measure performance. The AUC without and with strain imaging
were compared. Sensitivity and specificity were measured at a threshold of 2% probability of
malignancy without and with strain and were compared. We also compared difference in AUC,
sensitivity, and specificity between pairs of readers for B-mode and strain imaging.

The AUC values for the three radiologists and the group as a whole without and with strain
images are shown in Table 1. While each radiologist improved in the assessment of the risk
of malignancy when strain imaging was available, only Reader 1 demonstrated a statistically
significant improvement. The improvement of the average AUC with strain imaging for the
group as a whole also was statistically significant (P < 0.012). A detailed report of this work
is nearly complete and should be submitted by late May 2006 for publication in Radiology (8)
(draft attached).

Table 1: Area under the receiver operating characteristic curves for rating the confidence that
a breast lesion is malignant (risk = 0 for absolute confidence the lesion is benign; risk = 100
for absolute confidence the lesion is malignant)

B-mode 95% Confidence B-mode & Strain 95% Confidence P-value

Reader A 0.779 0.691–0.867 0.830 0.752–0.908 0.011

Reader B 0.916 0.859–0.972 0.929 0.878–0.980 0.51

Reader C 0.923 0.872–0.974 0.949 0.912–0.986 0.11

Average 0.872 0.837–0.907 0.903 0.870–0.936 0.021

Task 6.

Investigate the use of novel techniques, such as harmonic imaging and spatial quadrature, for
improved information content in palpation images.

Task 6.Year 2

We continued to improve the image quality in a sequence of strain images. Viewing a sequence
of strain images, instead of a single stationary image, illustrates the frame-to-frame variability in
strain image noise. When attempting to choose a representative frame of data from a sequence
and trace the lesion boundary, strain image noise reduces the observer’s performance. Several
sources of strain image noise were described in our contribution to the 2002 IEEE Ultrasonics
Symposium Proceedings (9). Example images of the same data with and without these noise
reduction strategies were provided in the year-2 report.

Task 6.Year 3

As a result of the continued effort to further improve image quality, described in the year-2
report, it became clear that subjective visual assessment of image ‘quality’ and lesion conspicuity
were not sufficient to quantify differences among motion tracking algorithms. Therefore, we
began working on a quantitative method for measuring the accuracy of motion tracking in
tissues in addition to the estimates of displacement estimate error variance that are commonly
reported. That work was very early in development during year-3. The approach showed
great promise for comparing the relative performance of various motion tracking algorithms

11



and parameter selection for a specific algorithm. Some of the concepts we were investigating
for improving strain image quality were reported in a conference proceedings (10).

Task 6.Year 4

When simulating data or experimentally imaging phantoms it is easy to know when the ‘correct’
image is being formed and displayed. That is not the case when viewing elasticity images of
in vivo tissue. There is a natural bias toward accepting elasticity images as being ‘good’ when
they share features with B-mode images, but this might be misguided. In addition, high-quality
elasticity images can be formed that share none of the features of B-mode images. However, our
experience in real-time elasticity imaging and in viewing numerous versions of post-processed
elasticity image sequences strongly suggested that similarity among consecutive elasticity images
in a long sequence suggests that reasonably high quality images are being displayed. That is,
it is unlikely that significant stochastic errors in elasticity images would appear stable among a
sequence of images since displacement estimate errors are random in nature.

That observation guided the development of a quantitative measure of elasticity image
quality (actually a displacement estimate quality measure or DQM) described initially in the
year-3 report. There are two components to the combined DQM. The first is a measure of the
accuracy of motion tracking. The second is a measure of the similarity of consecutive strain
images.

Recall that elasticity (strain) images are formed by tracking relative motion between the
acquisition of two radiofrequency (RF) data fields (a reference field and a post-deformation
field). The strain image typically displayed is the gradient of that 2-D displacement field in
the direction of the acoustic beam. That same 2-D displacement field can be used to warp the
post-deformation field to compensate for motion. The normalized cross correlation between the
reference and motion-compensated post-deformation RF fields, ρRF , is a quantitative measure
of motion tracking accuracy. If motion tracking is perfect, the warping is perfect and the cross
correlation between the two RF fields is unity.

Similarly, the 2-D displacement field for deformation between the acquisition of two strain
images can be used to warp one strain image into the coordinate system of the other. Then
the normalized cross correlation between these consecutive strain images, ρS , is an objective
measure of their similarity.

The product of these normalized cross correlations, DQM = ρRF ρS , is an objective measure
of the accuracy of motion tracking and the similarity of consecutive strain images. More details
of this measure of strain image quality and the results of an observer study to measure the
correlation between this objective measure of strain image quality and the subjective assessment
of image quality by three trained observers is provided in (11).

Other developments in elasticity image formation included investigations into elastic modu-
lus estimation and image formation. Strain images are images of relative tissue properties—just
as ultrasound B-mode images and mammograms are. Strain images of the same tissue can
change when different “boundary conditions”, such as external forces, are applied. Estimates
and images of absolute properties of tissue are more attractive and likely more specific to tissue
type. Initial work in this area was based on rewriting the typical finite element analysis equa-
tions where the modulus distribution became the unknown instead of the known parameter.
Applying measured displacement estimates from the ‘palpation imaging’ data and additional
measurements of the applied surface force at the ultrasound transducer allowed solving that
equation system for the modulus distribution. If the noise in displacement estimates and force
measurements are sufficiently small, very accurate modulus images can be achieved as reported
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in (12) and (13).
A comparison of our (then) current strain image formation algorithm applied to data ac-

quired with a high-end ultrasound imaging system was compared to images obtained with a
simple strain image formation algorithm applied to data from a lower-end imaging system. An
obvious difference in image quality and target detectability was demonstrated (14).

The experience gained through this research effort led to the realization that many of the
methods for estimating quantitative ultrasound parameters that we had derived and measured
in phantoms and tissue over the years could be programmed into a clinical imaging system for
real-time display. A report describing strategies for accomplishing these goals was reported in
a conference proceedings (15).

KEY RESEARCH ACCOMPLISHMENTS

• The motion tracking algorithm has been implemented on the Siemens SONOLINE Elegra
and displays B-mode and strain images side-by-side at about eight frames per second.

• We found that the key to obtaining high-quality in vivo strain images of the breast is to
form the images in “real-time,” that is, fast enough to provide the hand-eye coordination
system sufficient feedback to control the conditions of tissue deformation. The minimum
frame rate appears to be about four frames per second, but higher frame rates (currently
about eight frames per second) make palpation imaging easier.

• There is no significant difference between the displacement variance (strain image noise)
for freehand scanning versus motorized compression for strain imaging.

• We have found that the frame-to-frame strain patterns from various breast abnormalities
appears to be unique to the abnormality. For example, the fluid within cysts appears to
be ‘stirred’ when deformed in palpation imaging, and that ‘stirring’ causes the RF echo
signal, and therefore the strain image, to decorrelate rapidly with time. We have also
found that the strain contrast for fibroadenomas is not constant with compression; at
very low pre-loading fibroadenomas are stiffer than their surroundings and provide high
negative contrast. With increased compression that contrast is often significantly reduced;
Invasive ductal carcinomas maintain a high negative contrast at all pre-load compressions.

• We have found that by comparing the area of a lesion measured on the standard ultrasound
B-mode image with area measured on a strain image, benign lesions have nearly equal
area on both modalities but most carcinomas are significantly larger on the strain image
than in B-mode.

• The area under the receiver operating characteristic curve (AUC for an ROC curve), which
is a measure of diagnostic accuracy, increased when a group of radiologists interpreted
strain images side-by-side with ultrasound B-mode images over that for B-mode images
alone (0.872 versus 0.902), and the increased performance is statistically significant (P =
0.012)

• Using a threshold of 2% probability of malignancy, as a group, specificity with strain
improved significantly over B-mode alone (0.140 versus 0.191, P < 0.0001) while achieving
high sensitivity (0.986 versus 0.993, P = 0.32)
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• Statistically significant inter-observer variability was observed (p < 0.001) in a multi-
reader study of elasticity imaging (both for B-mode image interpretation and strain image
interpretation)

REPORTABLE OUTCOMES

Peer-reviewed articles in scientific journals—Attached in order as Appendices

1. Zhu Y and Hall TJ. A modified block matching method for real-time freehand strain
imaging, Ultrasonic Imaging 24(3): 161-176, 2002

2. Hall TJ, Zhu Y, and Spalding CS. In vivo real-time freehand palpation imaging, Ultra-
sound Med Biol 29(3): 427-35, 2003

3. Zhu Y, Hall TJ, and Jiang J. A finite element approach for Young’s modulus reconstruc-
tion. IEEE Trans Med Imaging 22(7): 890-901, 2003

4. Hall TJ. AAPM/RSNA physics tutorial for residents: topics in US: Beyond the basics:
elasticity imaging with ultrasound, Radiographics 23(6): 1657-71, 2003

5. Madsen EL, Frank GR, Hobson MA, Shi H, Jiang J, Varghese T, Hall TJ, Spherical
lesion phantoms for testing the performance of elastographic systems, Phys Med Biol
50(24):5983-5995, 2005

6. Regner DM, Hesley GK, Hangiandreou NJ, Morton MJ, Nordland MR, Meixner DD,
Hall TJ, Farrell MA, Mandrekar JN, Harmsen WS, Charboneau JW, Ultrasound Strain
Imaging for the Evaluation of Breast Lesions: Clinical Experience of Multiple Observers,
Radiology 238(2): 425-437, 2006

7. Jiang J, Hall TJ, Sommer AM. A novel performance descriptor for ultrasonic strain imag-
ing: A preliminary study, accepted in IEEE Trans Ultrason, Ferroelec, Freq Contr (UFFC)
2005

8. Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE, Hangiandreou
NJ. Using Ultrasound Strain Imaging to Improve the Decision to Biopsy Solid Breast
Masses, to be submitted to Radiology May 2006.

Conference Proceedings—Attached in order as Appendices

1. Hall TJ, Zhu Y, Spalding CS, Cook LT. In vivo results of real-time freehand elasticity
imaging. 2001 Ultrasonics Symposium Proceedings 01CH37263: 1653-1657, 2001

2. Hall TJ, Zhu Y, Spalding CS, Cook LT. In vivo real-time freehand elasticity imaging.
2002 International Symposium on Biomedical Imaging, CD-ROM 2002

3. Hall TJ, Jaing JF, Zhu Y, Cook LT. Noise Reduction Strategies in Freehand elasticity
Imaging. 2002 Ultrasonics Symposium Proceedings 02CH37388C 1877-1880, 2002

4. Hall TJ, Svensson W, Behren PV, Zhu Y, Malin J, Spalding C, Connors A, Chopra D,
Lowery C. Lesion size ratio for differentiating breast masses. 2003 IEEE Ultrasonics
Symposium Proceedings 1247-1250, 2003
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5. Hall TJ and Jiang J. Motion tracking for palpation imaging, IEEE International Sympo-
sium on Biomedical Imaging: Macro to Nano, 2004, 45-48, 2004

6. Jiang, J and Hall TJ. Computational aspects of Young’s modulus reconstruction from
ultrasonic freehand scanning. 2004 IEEE Ultrasonics Symposium Proceedings 1517-1520,
2004

7. Zagzebski, JA, Gerig A, Chen Q, Tu H, Liu W, Varghese T, Hall TJ. Parametric imaging
using a clinical scanner, 2004 IEEE Ultrasonics Symposium Proceedings 2165 - 2168, 2004

Book Chapters

1. Hall TJ “The Physics of Elasticity Imaging: A New Option on the Latest Ultrasound
Systems.” 2004 RSNA Syllabus in Diagnostic Radiology Physics: Advances in Breast
Imaging

Abstracts

1. Zhu Y, Hall, TJ, Cook LT. A new technique for real-time freehand ultrasonic elasticity
imaging, J Acoust Soc Am 109(5, Pt. 2): 2361-2362, 2001

2. Hall TJ, Zhu Y, Spalding C, Cook LT. Experimental results of real-time freehand elasticity
imaging, J Acoust Soc Am 109(5, Pt. 2): 2362, 2001

3. Zhu Y, Hall TJ. A new system for real-time freehand imaging of tissue elasticity, Radiology
221(P): 692, 2001

4. Hall TJ, Zhu Y, Spalding CS, Von Behren P, Cox GG, Brecheisen MA. Ultrasound pal-
pation imaging as a tool for improved differentiation among breast abnormalities,” , Ra-
diology 221(P): 697, 2001

5. Zhu Y, Hall TJ, Cook LT. Real-time freehand elasticity imaging, Ultrasonic Imaging
23(3): 190-191, 2001

6. Zhu Y, Hall TJ, Cook LT. A new method for Young’s modulus reconstruction, Ultrasonic
Imaging 23(3): 191, 2001

7. Hall TJ, Zhu Y, Cook LT. Results of real-time in vivo elasticity imaging in breasts,
Ultrasonic Imaging 23(3): 191-192, 2001

8. Rosenthal SJ, Hall TJ, Zhu Y, Spalding CS, Brecheisen MA. Real-time palpation breast
imaging, J Ultrasound Med 21(3S): 17-18, 2002

9. Hall TJ, Zhu Y, Cook LT. A new system for real-time freehand imaging of tissue elasticity,
J Ultrasound Med 21(3S): 77-78, 2002

10. Hall TJ ”Phantoms for elasticity imaging. Proceedings of the First International Confer-
ence on the Ultrasonic Measurement and Imaging of Tissue Elasticity 49, 2002

11. Hall TJ and Zhu Y, ”Real-time freehand elasticity imaging,” Proceedings of the First
International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity
60, 2002
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12. Hall TJ, Zhu Y, Spalding C, Von Behren P. Lesion size measurement in palpation imaging,
Radiology 225(P): 185, 2002

13. Cook LT, Zhu Y, Hall TJ. The effect of kernel size on ultrasonic displacement estimation,
Ultrasonic Imaging 25:56-57, 2003

14. Zhu Y, Hall TJ, Cook LT, Jiang J. Young’s modulus reconstruction using ultrasound,
Ultrasonic Imaging 25:64-65, 2003

15. Hangiandreou NJ, Meixner DM, Hesley GK, Farrell MA, Morton MJ, Charboneau JW,
Hall TJ, Zhu Y, Spalding C. Ultrasound strain image data obtained in breast masses:
preliminary quantitative analysis, Ultrasound in Med and Biol 29: S178, 2003

16. Hall TJ, Svensson WA, Von Behren P, Zhu Y, Malin J, Spalding C, Connors A, Chandra
D, Lowery C, ”Lesion size ratio for differentiating among breast lesions. Proceedings
of the Second International Conference on the Ultrasonic Measurement and Imaging of
Tissue Elasticity 44, 2003

17. Hall TJ, Cook LT, Zhu Y. The statistics of motion tracking with large deformation,
Proceedings of the Second International Conference on the Ultrasonic Measurement and
Imaging of Tissue Elasticity 64, 2003

18. DM Regner, Hesley GK, Hangiandreou NJ, Nordland MR, Meixner DD, Morton MJ,
Meixner DD, Hall TJ, Farrell MA, Charboneau JW. Initial clinical experience with ultra-
sound strain imaging for the evaluation of breast masses,” Radiology 229(P): 213, 2003

19. Hesley GK, Nordland MR, Regner DM, Hangiandreou NJ, Morton MJ, Meixner DD. Vi-
sual Interpretation of Strain Images for the Evaluation of Breast Masses, Am J Roentgenol-
ogy 182(S):83-84, 2004

20. Hesley GK, Nordland MR, Hangiandreou NJ, Morton MJ, Meixner DD, Charboneau JW,
Hall TJ, Farrell MA. Subjective visual evaluation of real-time ultrasound strain images
for differentiation of breast lesions, J Ultrasound Med 23:S105, 2004

21. Svensson WE, Hall TJ, Zhu Y, Malin J, Rattansingh A, Lowery C, Shousha S, Chopra D.
Elasticity imaging may improve pre-treatment staging of breast cancers, Proceedings of
the Third International Conference on the Ultrasonic Measurement and Imaging of Tissue
Elasticity 39, 2004

22. Jiang J, Hall TJ, Madsen EL. Absolute modulus imaging using ultrasonic freehand scan-
ning and pressure sensory data, Proceedings of the Third International Conference on the
Ultrasonic Measurement and Imaging of Tissue Elasticity 47, 2004

23. Madsen EL, Frank G, Hobson MA, Shi H, Varghese T, Jiang J, Hall TJ, Krouskop TA,
Ophir J, Weaver J, Doyley MM. Tissue-mimicking spherical lesion phantoms for elastog-
raphy with and without ultrasound refraction effects,” Proceedings of the Third Interna-
tional Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity 102,
2004

24. Madsen EL, Frank G, Hobson MA, Shi H, Varghese T, Jiang J, Hall TJ, Krouskop TA,
Ophir J, Weaver J, Doyley MM. Tissue-mimicking anthropomorphic breast phantoms for
ultrasound and MR elastography, Proceedings of the Third International Conference on
the Ultrasonic Measurement and Imaging of Tissue Elasticity 103, 2004
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25. Zagzebski JA, Brunke S, Pelissier L, Hall TJ, Wilson T. The ultrasound research interface:
A new tool for biomedical investigations, Med Phys 32(6): 2119-2119, 2005

26. Hesley GK, Nordland MR, Morton MJ, Hangiandreou NJ, Meizner DD, Hall TJ, Lucas
JM, McNamara JM, Ryan-O’Neill RF, Higgins RL, Cropp JT, Champa SR. Performance
of visual interpretation of lesion conspicuity in ultrasound strain image sequences for
diagnosis of malignant and benign breast lesions, Am J Roentg 184(4): 27-27 Suppl. S,
2005

27. Jiang J and Hall TJ. Regularization issues in Young’s modulus reconstruction, Ultrasonic
Imaging 26: 261, 2005

28. Hall TJ, Zagzebski JA, Jiang J, Tu H, Varghese T. Parametric imaging on a clinical
imaging system, J Ultrasound Med 24:S37-S38, 2005

Oral Presentations

1. Real-Time Palpation Imaging by Hall TJ, Presented at The Conference for Ultrason-
ics in Biophysics and Bioengineering, Allerton Park, University of Illinois at Urbana-
Champaign, May, 2001. (Invited)

2. A New Technique for Real-Time Freehand Ultrasonic Elasticity Imaging by Zhu Y, Hall,
TJ, Cook LT. Presented at the Annual Meeting of the Acoustical Society of America,
June, 2001

3. Experimental Results of Real-Time Freehand Elasticity Imaging by Hall TJ, Zhu Y, Spald-
ing C, Cook LT. Presented at the Annual Meeting of the Acoustical Society of America,
June, 2001

4. Imaging the Visco-Elastic Properties of Tissues by Hall TJ. Presented at the University
of Wisconsin-Madison Medical Physics Seminar, September, 2001

5. In Vivo Results of Real-Time Freehand Elasticity Imaging by Hall TJ, Zhu Y, Spalding
CS, Cook LT. Presented at the 2001 IEEE Ultrasonics Symposium, Atlanta, Georgia,
October, 2001

6. Imaging the Viscoelastic Properties of Tissue Using Ultrasound by Hall TJ. Presented at
the Mayo Radiology Department, November, 2001

7. Palpation Imaging: Imaging the Viscoelastic Properties of Tissue Using Ultrasound by
Hall TJ. Presented at the Joint Department of Physics, Institute for Cancer Research,
The Royal Marsden Hospital, London, UK, March 2002

8. Real-Time Palpation Breast Imaging by Rosenthal SJ, Hall TJ, Zhu Y, Spalding CS,
Brecheisen MA. Presented at the American Institute of Ultrasound in Medicine Annual
Convention, Nashville Tennessee, March 2002

9. A New System for Real-Time Freehand Imaging of Tissue Elasticity by Hall TJ, Zhu
Y, Cook LT. Presented at the American Institute of Ultrasound in Medicine Annual
Convention, Nashville Tennessee, March 2002
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10. Real-Time Freehand Elasticity Imaging by Zhu Y, Hall TJ, Cook LT. Presented at the 27th
International Symposium on Ultrasonic Imaging and Tissue Characterization, Arlington,
Virginia, June 2002

11. A New Method for Young’s Modulus Reconstruction by Zhu Y, Hall TJ, Cook LT. Pre-
sented at the 27th International Symposium on Ultrasonic Imaging and Tissue Charac-
terization, Arlington, Virginia, June 2002

12. Results of Real-Time In Vivo Elasticity Imaging in Breasts by Hall TJ, Zhu Y, Cook
LT. Presented at the 27th International Symposium on Ultrasonic Imaging and Tissue
Characterization, Arlington, Virginia, June 2002

13. In vivo results of real-time freehand elasticity imaging by Hall TJ, Zhu Y, Spalding CS,
Cook LT. Presented at the First International Symposium on Biomedical Imaging, Wash-
ington, DC, July 2002

14. Noise Reduction Strategies in Freehand elasticity Imaging by Hall TJ, Jaing JF, Zhu
Y, Cook LT. Presented at the 2002 IEEE Ultrasonics Symposium, Munich, Germany,
October 2002

15. Phantoms for elasticity imaging by Hall TJ. Presented at the First International Con-
ference on the Ultrasonic Measurement and Imaging of Tissue Elasticity Niagra Falls,
Ontario CA, October, 2002

16. Real-time freehand elasticity imaging by Hall TJ and Zhu Y. Presented at the First
International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity
Niagra Falls, Ontario CA, October, 2002

17. Lesion size measurement in palpation imaging by Hall TJ, Zhu Y, Spalding C, Von Behren.
Presented at the 88th Scientific Assembly and Annual Meeting of the Radiological Society
of North American, Chicago, Illinois, November 2002

18. The effect of kernel size on ultrasonic displacement estimation by Cook LT, Zhu Y, Hall
TJ. Presented at the 28th International Symposium on Ultrasonic Imaging and Tissue
Characterization, Arlington, Virginia, June 2003

19. Young’s modulus reconstruction using ultrasound by Zhu Y, Hall TJ, Cook LT, Jiang
J. Presented at the 28th International Symposium on Ultrasonic Imaging and Tissue
Characterization, Arlington, Virginia, June 2003

20. Ultrasound strain image data obtained in breast masses: preliminary quantitative analysis
by NJ Hangiandreou, Meixner DM, Hesley GK, Farrell MA, Morton MJ, Charboneau
JW, Hall TJ, Zhu Y, Spalding C. Presented at the American Institute of Ultrasound in
Medicine Annual Convention, Montreal, CA, June 2003

21. Subjective visual evaluation of real-time ultrasound strain images for differentiation of
breast lesions by Hesley GK, Nordland MR, Hangiandreou NJ, Morton MJ, Meixner DD,
Charboneau JW, Hall TJ, Farrell MA. Presented at the American Institute of Ultrasound
in Medicine Annual Convention, Montreal, CA, June 2003

22. Lesion size ratio for differentiating among breast lesions by Hall TJ, Svensson WA, Von
Behren P, Zhu Y, Malin J, Spalding C, Connors A, Chandra D, Lowery C. Presented
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at the Second International Conference on the Ultrasonic Measurement and Imaging of
Tissue Elasticity, Corpus Christi, TX, October, 2003

23. The statistics of motion tracking with large deformation by Hall TJ, Cook LT, Zhu Y.
Presented at the Second International Conference on the Ultrasonic Measurement and
Imaging of Tissue Elasticity, Corpus Christi, TX, October, 2003

24. Palpation Imaging in Ultrasound by Hall TJ. Presented at the Focus on Ultrasound meeit-
ing, Madison, WI October, 2004. (Invited)

25. Elasticity imaging may improve pre-treatment staging of breast cancers by Svensson WE,
Hall TJ, Zhu Y, Malin J, Rattansingh A, Lowery C, Shousha S, Chopra D. Presented at
the Third International Conference on the Ultrasonic Measurement and Imaging of Tissue
Elasticity Lake Windermere, Cumbria UK, October, 2004

26. Absolute modulus imaging using ultrasonic freehand scanning and pressure sensory data
by Jiang J, Hall TJ, Madsen EL. Presented at the Third International Conference on the
Ultrasonic Measurement and Imaging of Tissue Elasticity Lake Windermere, Cumbria
UK, October, 2004

27. Tissue-mimicking spherical lesion phantoms for elastography with and without ultrasound
refraction effects by Madsen EL, Frank G, Hobson MA, Shi H, Varghese T, Jiang J, Hall
TJ, Krouskop TA, Ophir J, Weaver J, Doyley MM. Presented at the Third International
Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity Lake Win-
dermere, Cumbria UK, October, 2004

28. Tissue-mimicking anthropomorphic breast phantoms for ultrasound and MR elastography
by Madsen EL, Frank G, Hobson MA, Shi H, Varghese T, Jiang J, Hall TJ, Krouskop
TA, Ophir J, Weaver J, Doyley MM. Presented at the Third International Conference on
the Ultrasonic Measurement and Imaging of Tissue Elasticity Lake Windermere, Cumbria
UK, October, 2004

29. Development of a Real-Time Elasticity Imaging System by Hall TJ Presented at the
Biomedical Engineering Seminar, UW-Madison, November 2004. (Invited)

30. Young’s modulus reconstruction with freehand scanning - a feasibility study by J. Jiang,
T. J. Hall. Presented at the 3rd International Conference on the Ultrasonic Measurement
and Imaging of Tissue Elasticity, October, 2004, Windermere, UK

31. Tissue-mimicking spherical lesion phantoms for elastography with and without ultrasound
refraction effects by E. Madsen, G. Frank, M. Honson, H. Shi, T. Varghese, J. Jiang, T.
Hall, T. Krouskop, J. Ophir, J. Weaver and M. Doyley. Presented at the 3rd International
Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity , Winder-
mere, UK, October, 2004

32. Tissue-mimicking anthropomorphic breast phantoms for ultrasound and MR elastography
by E. Madsen, G. Frank, M. Honson, H. Shi, T. Varghese, J. Jiang, T. Hall, T. Krouskop,
J. Ophir, J. Weaver and M. Doyley. Presented at the 3rd International Conference on the
Ultrasonic Measurement and Imaging of Tissue Elasticity , Windermere, UK, October,
2004
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33. Physics of Elasticity Imaging: A New Option on the Latest US Systems by Hall TJ.
Presented at the 90th Scientific Assembly and Annual Meeting of the Radiological Society
of North American, Chicago, Illinois, November 2004

34. The ultrasound research interface: A new tool for biomedical investigations by Zagzebski
JA, Brunke S, Pelissier L, Hall TJ, Wilson T., Presented at the Annual Meeting of the
American Association of Physicists in Medicine, Seattle, WA July, 2005

35. Performance of visual interpretation of lesion conspicuity in ultrasound strain image se-
quences for diagnosis of malignant and benign breast lesions by Hesley GK, Nordland MR,
Morton MJ, Hangiandreou NJ, Meizner DD, Hall TJ, Lucas JM, McNamara JM, Ryan-
O’Neill RF, Higgins RL, Cropp JT, Champa SR. Presented at the American Roentgen
Ray Society Meeting New Orleans, LA, May, 2005

36. Regularization issues in Young’s modulus reconstruction Jiang J and Hall TJ. Presented
at the 30th International Symposium on Ultrasonic Imaging and Tissue Characterization,
Arlington, Virginia, May 2005

37. Parametric imaging on a clinical imaging system by Hall TJ, Zagzebski JA, Jiang J, Tu
H, Varghese T. Presented at the American Institute of Ultrasound in Medicine Annual
Convention, Orlando, FL, June 2005

38. Regularization issues in Young’s modulus reconstruction by Jiang J and Hall TJ. Presented
at the Fourth International Conference on the Ultrasonic Measurement and Imaging of
Tissue Elasticity 29, 2005

Poster Presentations

1. A new system for real-time freehand imaging of tissue elasticity by Zhu Y, Hall TJ.
Presented at the 87th Scientific Assembly and Annual Meeting of the Radiological Society
of North America, Chicago, Illinois, November 2001. Certificate of Merit

2. Ultrasound palpation imaging as a tool for improved differentiation among breast ab-
normalities by Hall TJ, Zhu Y, Spalding CS, Von Behren P, Cox GG, Brecheisen MA.
Presented at the 87th Scientific Assembly and Annual Meeting of the Radiological Society
of North America, Chicago, Illinois, November 2001

3. Palpation imaging: Real-time freehand imaging of tissue elasticity by Hall TJ, Zhu Y,
Spalding Cs, Von Berhren P, Chen J-F, Fan L, Rosenthal SJ. Presented at the European
Congress of Radiology, Vienna, Austria, February 2002

4. Lesion size measurement in palpation imaging Hall TJ, Spalding C, Hall M, Von Behren P,
Zhu Y, Mayo M, Cook LT. Presented at the 88th Scientific Assembly and Annual Meeting
of the Radiological Society of North America, Chicago, Illinois, December 2002

5. Initial clinical experience with ultrasound strain imaging for the evaluation of breast
masses by DM Regner, Hesley GK, Hangiandreou NJ, Nordland MR, Meixner DD, Morton
MJ, Meixner DD, Hall TJ, Farrell MA, Charboneau JW. Presented at the 89th Scientific
Assembly and Annual Meeting of the Radiological Society of North America, Chicago,
Illinois, December 2003
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6. Visual Interpretation of Strain Images for the Evaluation of Breast Masses by Hesley GK,
Nordland MR, Regner DM, Hangiandreou NJ, Morton MJ, Meixner DD. Presented at
the 104th Annual Meeting of the American Roentgen Ray Society, 2004

7. Accuracy of Motion Compensation in Elasticity Imaging by A. Sommer, T. J. Hall and
J. Jiang. Presented at the 90th scientific assembly and annual meeting, RSNA, Chicago,
UK, December, 2004

8. A feasibility study of Young’s modulus reconstruction using ultrasonic freehand scanning
by J. Jiang, T. J. Hall. Presented at the 90th scientific assembly and annual meeting,
RSNA,Chicago, UK, December, 2004

9. Surface Pressure-dependant Strain Image Contrast in Breast Tissue by L. Kiessel, T. J.
Hall, J. Jiang and W. Liu. Presented at the 90th scientific assembly and annual meeting,
RSNA,Chicago, UK, December, 2004

Patents and Licenses

1. Ultrasound Elasticity Imaging by Zhu Y and Hall TJ US Patent 6,508,768, Sept 17, 2001

Degrees obtained

1. Jingfeng Jiang, Masters in Electrical an Computer Engineering, University of Kansas

2. Amy M. Sommer, Masters in Physics, University of Wisconsin-Madison

3. Amy M. Sommer, Masters in Medical Physics, University of Wisconsin-Madison (Ph.D.
candidate)

Funding applied for

Table 2: Funding awarded or applied for based, in part, on the successes of this project

Title PI Agency Status

Palpation Imaging TJ Hall NIH/NCI R01CA100373 (active)

Normal and Shear T Varghese NIH/NIBIB R21EB003853 (active)
Strain from Angled
US Acquisition

Palpation Imaging TJ Hall NIH/NCI R01CA100373-S1 (pending)
Supplement

Ultrasound imaging WD O’Brien (UIUC) NIH/NCI R01CA111289 (pending)
technology for cancer TJ Hall (UW)
detection and diagnosis
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Employment or research opportunities

1. The PI for this project was recruited for an Endowed Professorship at the University of
Rochester in the Department of Biomedical Engineering (Rochester, NY)

2. The PI for this project was recruited for and accepted a position as a tenured Professor
of Medical Physics at the University of Wisconsin-Madison (Madison, WI)

Personnel receiving pay from the research effort

1. Timothy J. Hall, Ph.D. (PI, KUMC and UW)

2. Yanning Zhu, Ph.D. (KUMC electrical engineer)

3. Larry T. Cook, Ph.D. (KUMC mathematician)

4. Glendon G. Cox, MD (KUMC radiologist)

5. Lisa Stenho-Bittel, Ph.D. (KUMC physiologist, biomechanics)

6. Carol Fabian, MD (KUMC oncologist)

7. Carol Connor, MD (KUMC breast surgeon)

8. Jingfeng Jiang, Ph.D. (UW mechanical engineer)

9. James A. Zagzebski, Ph.D. (UW medical physicist)

10. Elizabeth S. Burnside Rollins, MD (UW radiologist)

11. Jason Fine, Ph.D. (UW biostatistician)

12. Amy M. Sommer, MS (UW Research Assistant)

CONCLUSION

We find that ultrasound strain imaging has potential to aid radiologists in the differentiation
of malignant and benign solid breast masses and, therefore, has the potential to improve the
decision to perform breast biopsy. Such decisions have a high impact on the efficacy of breast
cancer screening programs in terms of cost and quality. Our work also demonstrates that
further research will be important to understand how image quality and interobserver variability
attenuate the contribution of strain imaging to performance. This work also demonstrates the
need for improvements in strain image quality and better tools to aid radiologists in interpreting
strain images. Prospective trials are now necessary to confirm that strain imaging is a promising
tool for radiologists in the accurate diagnosis of breast cancer.

The promise for this technology is possibly most convincingly demonstrated by the fact that
at least one clinical ultrasound system manufacturer (Hitachi) is marketing elasticity imaging
for breast tumor diagnosis on their latest system. Other manufacturers are actively working
on elasticity imaging systems. Phase II clinical trials will be necessary to determine the merit
of elasticity imaging for any particular clinical application. But, the results of this study are
encouraging and can be used to help design those Phase II clinical trials of breast elasticity
imaging.
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This manuscript reports a technical innovation that has been developed for real-time, freehand strain

imaging. This work is based on a well-known block-matching algorithm with two significant modifica-

tions. First, since displacements are estimated row-by-row, displacement estimates from the previous

row are used to predict the displacement estimates in the current row, thereby drastically reducing the

search-region size and increasing computational efficiency. Second, a displacement error detection and

correction method is developed to overcome the local tracking errors that may be more severe with free-

hand scanning and thereby improve the robustness of the algorithm. This algorithm has been imple-

mented on a clinical ultrasound imaging system, and with real-time imaging feedback, long sequences

of high quality strain images are observed using freehand compression. Displacement estimation errors

with this method are experimentally measured and compared with results from simulation. We report

only a specific implementation, with no comparison to other displacement estimators in the literature

and no optimization of this specific technique. Images of tissue-mimicking phantoms with small spheri-

cal targets are used to test the ability to detect small lesions using the strain imaging technique. In vivo

strain images of breast and thyroid are also shown.

KEY WORDS: Elasticity; elastography; palpation; tissue characterization; ultrasound.

1. INTRODUCTION

Ultrasonic strain imaging
1-9

is expected to have great potential for improving soft tissue di-

agnosis. The vast majority of the strain imaging work in the literature has focused on proof

of concept and algorithm development. However, two major advances need to occur to

make ultrasonic strain imaging a clinically useful tool. First, there is a need to acquire rf (or

equivalent) echo data under clinically acceptable conditions with high patient throughput

and low rescanning rates. Second, there is a need to further develop the clinical interpreta-

tion and significance of these results. In this work, we concentrate our effort on the first is-

sue.

A skilled sonographer can acquire B-mode images with relative ease. Low noise strain

images are more difficult to produce. Deformation of heterogeneous tissue can result in

complex motion and echo signal decorrelation between the pre- and postcompression rf echo

frame pair. Echo signal decorrelation leads to large strain estimation errors. Most strain im-

aging techniques in the literature produce strain images in two steps. First, the rf echo data is

acquired by either digitizing the output from a modified clinical ultrasound system or di-

rectly downloading the rf data from the system if it is available. Second, the stored rf echo

frames are processed off-line to produce strain images. With off-line processing, it is diffi-

cult to know, while scanning, whether the acquired echo frame pairs are coherent enough for

strain estimation. Hence, off-line data processing is not as efficient for clinical utilization as

real-time imaging.
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A more clinically desirable system would be capable of displaying B-mode images and

strain images side-by-side in real-time. Real-time strain imaging can help clinicians deter-

mine whether satisfactory strain images are being acquired and can also help clinicians im-

prove their freehand compression techniques. With real-time feedback, clinicians can adjust

the compression speed and angle to compensate for irregular motion (large-scale rotation or

lateral or elevational translation). Hence, real-time strain imaging increases data acquisition

efficiency.

Another important aspect for clinical utilization of strain imaging is the technique used to

deform the soft tissue. Most phantom experiments in the literature used motorized compres-

sion fixtures. These devices are cumbersome, limit the locations that strain imaging can be

applied, and are time consuming to incorporate.
8

Thus freehand scanning is desirable. Doy-

ley et al have shown that, compared with motorized compression, the penalty for freehand

scanning is small with tissue mimicking phantoms.
6

Hiltawsky et al have shown that strain

imaging of breast tissues with freehand compression is feasible.
7

Lorenz et al have developed a real-time freehand strain imaging system that is external to

the ultrasound imaging platform.
9

Some encouraging results are obtained for prostate appli-

cations using the system. In their system, a modified 1-D cross-correlation algorithm is used

for displacement estimation. It performs well with small strains (much less than 1%) since

the motion is tracked only in one dimension. It is well-known in the literature that the con-

trast-to-noise ratio in strain images increases with the applied strain (below about 5%).
5,10

Hence, larger single step compression is desirable.

In our work, strain-imaging software is implemented within a high-end commercial ultra-

sonic imaging platform (SONOLINE Elegra, Siemens Medical Solutions, Ultrasound

Group). The strain images are displayed in real-time, side-by-side with the regular B-mode

images. For the purpose of estimating displacement with relatively large applied strain

(1~2% for in vivo tissue and up to 5% for tissue mimicking phantoms), a modified 2-D block

matching algorithm was selected. Block matching (template matching) algorithms are

widely used in image processing applications for tracking motion. The most notable appli-

cation is video compression standards such as MPEG. Its utilization in ultrasonic imaging

was first reported by Trahey et al for blood flow estimation.
11

The purpose of this paper is to report our work in developing a real-time freehand strain

imaging technique. We report only a specific implementation with no comparison to other

displacement estimators in the literature and no optimization of this specific technique.

In the next section, we will introduce our displacement and strain estimation algorithms.

In the results section, we provide performance measures of this algorithm in the form of dis-

placement estimation error and spatial resolution with tissue-mimicking phantoms. We also

provide examples of in vivo strain images obtained from this system. The conclusion section

summarizes this work.

METHODS

1. Standard block matching

The 2-D block matching algorithm computes a sum-squared difference (SSD) between

pre- and postcompression rf frames for a rectangular kernel over a search region as follows:
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where r1 and r2 are pre- and postcompression rf echo fields, respectively; I and J are axial and

lateral rf sample indices for the location where the displacement is estimated; u and v define

search locations in a search region; and K1 and K2 are kernel height and width, respectively.

The kernel size is empirically chosen to be 11 axial samples by 5 A-lines (K1 = 11 and K2 = 5)

for a 7.5MHz transducer, or approximately half the area of the pulse-echo point-spread func-

tion. A pictorial illustration of the kernel and search region is shown in figure 1. For each lo-

cation (I,J) at which the displacement is estimated, the SSD function is computed for every rf

sample location that is within the search region (range of kernel centers) defined by

–U1=u=U2 and –V1=v=V2, where U1, U2 , V1 , and V2 represent search up, down, left and right

distances, respectively, as shown in figure 1. The search-region height and width are

U=U1+U2+1 and V=V1+V2+1, respectively. The displacement distribution usually does not

need to be estimated as finely as rf samples. We use k and l as axial and lateral indices of dis-

placement estimates. The location, (umin, vmin)=(d1(k,l), d2(k,l)), at which the minimum SSD is

found is considered to be the displaced position of the kernel. Hence, d1(k,l) and d2(k,l) are

axial and lateral displacement estimates, respectively.

The computational cost of the block-matching algorithm to produce one displacement es-

timate is mainly determined by the kernel and the search-region sizes. In fact, to estimate

one displacement vector, the subtraction-square-accumulation operation defined in Eq. (1)

needs to be performed K
1
K

2
UV times. The computed SSD values are then compared UV

times to find the minimum. Since the kernel size is usually predefined and fixed, the task of

reducing the computational cost of the block matching algorithm is to find a way to minimize

U and V.

It is straightforward to estimate the computational load of the typical implementation of

SSD-based block matching. In this case, U and V are selected to be sufficiently large to guar-

antee that the displacement vector is enclosed by the search region. Assume the size of each

rf echo field is 40 mm by 40 mm (typical in our experiments) and the maximum applied strain

is 5%. The associated axial displacement magnitude is then 0.05 x 40 mm = 2 mm. The axial

sampling frequency for our study is 36 MHz, so the maximum axial displacement magnitude

is about 94 samples. Assuming uniaxial compression of an incompressible medium, the to-

REAL-TIME FREEHAND STRAIN IMAGING 3

FIG. 1 Illustration of a kernel and search region. (a) Illustration of a kernel. (b) The search region defining the
range of locations of kernel centers. Each ‘x’ represents an rf data sample. A kernel is composed of several adjacent
rf A-lines (5 in our implementation) with several rf samples (11 in our implementation) per line in the pre-
compression rf field. The search region defines the range of possible locations of the center of the kernel in the
postcompression rf field.
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tal lateral strain is at most 5% (assuming no elevational expansion). However, it is difficult

to accurately estimate the maximum lateral displacement magnitude since we do not know

the location of the center of the compression (location where lateral displacement is zero). If

we assume the center of the compression occurs at the middle of the data field, the maximum

lateral displacement magnitude is 0.05 x 20 mm = 1 mm. Given that the rf echo field usually

consists of 200 A-lines, the maximum lateral displacement magnitude is about 5 A-lines.

With these assumptions, the search-region size can be chosen as 94x2+1 by 5x2+1 or UV=

189 x 11=2079.

2. Search region reduction

The size of the search region can be minimized by using prior knowledge. The axial and

lateral strain are defined by the following partial differential equations

In the sampled space, the axial and lateral strain can usually be approximated by the fol-

lowing difference equations

where x1(k,l) and x2(k,l) are the axial and lateral coordinates of the location of the displace-

ment estimate (k,l), respectively; k-1and l-1 represent the indices of adjacent displacement

estimates relative to k and l.  The following inequalities can be derived from Eq. (3)

where S1 and S2 are the maximum (allowed) local strain magnitudes in the axial and lateral di-

rections, respectively. The spatial separations of displacement estimates are x1(k,l)-x1(k-1,l)

and x2(k,l)-x2(k,l-1), respectively. For real-time strain imaging, the axial separation is 16

samples and the lateral is 2 A-lines. Experiments in phantoms have demonstrated that dis-

placement can be estimated when the applied strain is greater than 5%. However, strain con-

trast-to-noise ratio decreases rapidly for applied strain in excess of 5%.
10

Our in vivo

experiments have shown that the displacement can be successfully estimated for applied

strain up to about 2%. Noise dominates in the displacement estimates when the applied

strain is more than 2% for in vivo tissues. We can use this as prior knowledge to limit the ex-
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tent of the search region. Note that if the displacement difference between adjacent esti-

mates is 1 sample in the axial direction and 1 A-line in the lateral direction, then Inequalities

(4) give us

The maximum local strain we intend to estimate is less than 6.25%. If we estimate dis-

placement in the order of increasing k and l (row by row and from left to right), then the dis-

placement that is currently being estimated is within a 3 sample by 3 sample block centered

at the location predicted by the previously estimated displacement (one sample in each direc-

tion away from our best guess). In other words, we can reduce the search-region size to 3 by

3 if we use the previous estimates to predict where to search for adjacent estimates. Note that

we allow larger local strain than the total strain since the strain distribution is not uniform.

With the search region reduction, UV=3x3=9. Compared to typical block matching, the new

method reduces the computational load by a factor of 2079/9 = 231.

In implementing the reduced search-region block-matching strategy, we first manually se-

lect a region of interest (ROI) which is a subregion of the field of view. For example, in

breast imaging, we select an ROI that excludes undesired echo regions. The locations at

which the displacement is estimated are determined by grid points with equal spacing start-

ing at the upper-left corner of the ROI, as shown in figure 2. The displacement is then esti-

mated in two stages. In the first stage, the displacement of the first row of grid points, as

shown in figure 2, is estimated using Eq. (1). Since there is no prior knowledge of the dis-

placement distribution, a large search region is used. The size of the search region at this

stage is determined by the following equations.

REAL-TIME FREEHAND STRAIN IMAGING 5

ROI

1st row

2nd row

nth row

FIG. 2 Illustration of an ROI. Grid points (circles) are locations at which the displacement distribution is esti-
mated. Each grid point coincides with an rf sample location, but the displacement distribution is less densely sam-
pled than the rf echo signals. In our real-time implementation, grid point separations are 16 samples in the axial di-
rection and 2 A-lines in the lateral direction.
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where CEIL is the function that rounds to the next larger integer; x1(0,0) is the depth of the top

of the ROI; A is the number of A-lines in the field of view. The search region created by Eq.

(6) is large enough to enclose the true displacements as long as the applied strain does not ex-

ceed S1.

In the second stage, the displacement is estimated from the top of the ROI to the bottom,

row by row. Displacement estimates obtained in the first row are used to predict displace-

ments in lower rows, and the search region in this stage is reduced to 3 rf samples by 3 A-lines

using the equation

In Eq. (7), a search center, (I+d
1
(k-1, l), J+d

2
(k-1, l)), is used to guide the search. In other

words, when we do not have any knowledge of the displacement distribution, the search cen-

ter is (I, J). After a row (or rows) of the displacement distribution is estimated, that informa-

tion can be used to guide the search at neighboring locations and allows the use of a small

search region. Note from Inequalities 4 that it is logical to set the search-region center to be

(I+d
1
(k-1, l), J+d

2
(k, l-1)). However, since the difference between d

2
(k-1, l) and d

2
(k, l-1) is

small, the search-region center is selected as (I+d
1
(k-1, l), J+d

2
(k-1, l)) to simplify the algo-

rithm.

The computational load can be further reduced by performing the 2-D (3 by 3 search re-

gion) search sparsely. Lateral displacement does not need to be estimated as densely as axial

displacement because lateral sample spacing is much greater than axial. For real-time imag-

ing, we can apply 3 by 3 search regions every 5 rows and use the lateral displacement esti-

mates to guide the next 4 rows of displacement estimation. These 4 rows of displacement

estimates are obtained using a 3 by 1 search region (1-D search). An even more aggressive

strategy is to only estimate the lateral displacement for the first row and use this to predict the

lateral displacement for the remaining rows and limit the 2-D search to the first row only.

3. Displacement error detection and correction

Two types of displacement estimation errors can occur. It is common for large errors to

appear in the first row. This is due to the inherent pre- and postcompression rf waveform

decorrelation and periodic ambiguities (‘false-peak errors’) associated with large search re-

gions.  Figure 3 shows an example of this type of error.

The second type of error results from correlations in displacement estimates when using

predicted displacements to reduce the search-region size. Errors in displacement estimates

propagate if they are large enough that the defined search regions do not enclose true dis-

placements. When tissue is compressed, large and irregular local deformation can occur.

This may cause local decorrelation in the recorded rf frame pair. Figure 4 shows an example

of this type of error. The displacement estimation errors tend to accumulate when estimating

displacement near those local regions.

A segmentation method that can detect and correct large errors is needed to overcome

these problems. Each row of the displacement estimates is checked for errors in three steps.

In the first step, from left to right within a row, the displacement estimates are segmented.

Segmentation occurs if the difference between adjacent displacement estimates is larger

than 2 samples. The result of this step for the displacement curve shown in figure 3 (row
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n+4) is shown in figure 5(a) where the displacement estimates are segmented into three

groups. In the second step, groups that are not adjacent are merged if the difference of dis-

placement estimates between two nearest end points of the two groups is smaller than a

threshold (3 samples in this case). For the example displacement curve, group 3 is merged

into group 1. In the last step, the group that has the largest number of displacement estimates

(‘members’, group 1 in this example) is marked as the ‘correct’ group of displacement estimates

and all remaining groups are marked as errors. In the error correction stage, the displacement

values of the error groups are then discarded and replaced by linearly interpolating values

from the correct group.  Figure 5(b) shows the displacement curve after error correction.

REAL-TIME FREEHAND STRAIN IMAGING 7

FIG. 4 Example of errors in consecutive rows with a 3x3 search region.
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FIG. 3 Example of errors in the first row displacement estimates.



Tests with in vivo data have shown that the error detection and correction process does not

need to be applied to every row of displacement estimates. Displacement errors build up

gradually since the small search region prevents large displacement deviations between ad-

jacent rows. Errors are more apparent and easier to detect after the displacement estimation

process progresses several rows. With this observation, we apply the error detection and cor-

rection process once every 5 rows. For each detected error, all 5 displacement estimates are

replaced by the interpolated values.

4. Subsample accuracy displacement estimation

The displacement distribution that is estimated using this modified block matching algo-

rithm has integer sample accuracy. With 36 MHz sampling and the strain estimation method

described below, we find in phantom experiments that when the total applied strain is larger

than 2%, this accuracy is adequate for creating low noise strain images. However, when the

total applied strain is smaller than 2%, obvious strain artifacts can be seen in the image.
12,13

There are two ways of alleviating this problem. One way is to interpolate recorded rf frames

8 ZHU AND HALL

FIG. 5 Demonstration of error detection and correction. (a) Groups that are generated after initial segmentation.
This displacement curve is the same as row n+4 in figure 4. (b) Displacement curve after error correction with the
segmentation method.

FIG. 6 Example of B-mode and strain images displayed side-by-side on an Elegra monitor during patient scan-
ning.
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to higher sampling frequencies. This will increase the computational cost tremendously

since interpolation requires computation and the kernel and search-region sizes must be in-

creased. The alternative method, used in our implementation, is to quadratically interpolate

the SSD values around the minimum to obtain sub-sample accuracy in displacement esti-

mates. With this added processing, the strain artifacts are not severe when the applied strain

is more than 0.2%.

5. Strain estimation

The axial strain is defined as the spatial derivative of the axial displacement, and there are

several methods to estimate this derivative. The simplest methods are forward, backward,

and center differences where only two data points are used. Estimating derivatives using

only two data points requires low noise in displacement estimates. Since a relatively small

kernel is used to estimate displacement, the noise in the displacement is too high to use these

methods. However, axial strain can be estimated using a low order polynomial curve fitting

method,
14

and we have implemented a linear regression strain estimator. In addition, this

method provides the ability to trade off spatial resolution for increased smoothness of strain

images. The strain images have better spatial resolution, but more noise, if shorter segments

of displacement estimates are used in linear regression. The strain images are visually well

balanced in smoothness and spatial resolution if the linear window length is set between 2-3

mm for a 7.5 MHz transducer.

IMPLEMENTATION

We have implemented the modified block matching algorithm on the Siemens Sonoline

Elegra. The strain imaging software is an application that resides in the Elegra. The

real-time beamformed I-Q (analytical representation of the rf signal
15

) frames are passed to a

digital signal processor subsystem. That subsystem houses two Texas Instruments TMS-

320C80 MVP processors that execute the software. An I-Q frame pair is used for displace-

ment and strain estimation. The first frame is also envelope detected and a B-mode image is

formed. Then, both B-mode and strain images are displayed side-by-side on the Elegra’s

monitor as shown in figure 6. The strain image corresponds to a region of interest (ROI)

marked by the white-outlined rectangular subregion on the B-mode image. A user interface

REAL-TIME FREEHAND STRAIN IMAGING 9

FIG. 7 Photograph of a transducer with the compressor plate mounted.



allows the adjustment of the size and location of the ROI, the separation (in the data stream)

between I-Q frames used to estimate strain, and some of the strain visualization parameters

such as strain to gray-scale mapping, etc. This software is capable of displaying the

side-by-side images at about 7 frames/second.

With this system, strain imaging is performed in three stages. In the setup stage, the

sonographer locates the lesion and selects the ROI in which the strain is estimated and dis-

played. Then, by pushing a button, the software enters the real-time side-by-side display

mode. The user starts the compress-release cycle. If the user finds an image sequence that is

of interest, she can freeze the data acquisition. A cine-mode allows the user to browse each

frame or loop through a selected set of frames for a more careful study of the acquired data.

Tissue deformation is generated by cyclic motion of the transducer (i.e., compressing and

releasing the body surface). A small (4.5 cm x 9 cm) compressor plate can be mounted to the

face of the transducer to enlarge the compression surface and produce a more uniform stress

field
16

. A picture of the transducer with a mounted compressor plate is shown in figure 7.

Krouskop et al
17

have shown that if the cyclic motion is approximately 1Hz, then the breast

tissue components behave as elastic materials (i.e., the viscous effects are negligible).

Hence, during data acquisition, cyclic deformation of about 1Hz is attempted.

10 ZHU AND HALL

FIG. 8 Plots of the variance in displacement estimate errors for experimental and simulated data. (a) Motorized
compression. (b) Freehand compression. (c) Curve-fits for experimental data with simulated data. In (c), the solid
and dotted curves represent results obtained from motorized and freehand compression, respectively; circles are
data obtained from simulation.
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Experiments have shown that 7/s frame rate is sufficient for a sonographer to scan free-

hand and control the compression motion of the transducer to compensate for undesirable

lateral and elevational motion. No additional motion restricting device is necessary. How-

ever, successfully acquiring strain image data is not trivial. The sonographer needs to under-

stand that the information being extracted is mechanical in nature and that the major

challenge in strain image scanning is to minimize the rf waveform decorrelation.

Note that most of the parameters involved in the processing that generates strain estimates

have not been optimized. These parameters include the kernel size used in the block-

matching algorithm and the window length used in the moving linear regression algorithm

that estimates strain from the displacement distribution. The optimization will be performed

in our future work.

RESULTS

All data sets shown in this section were acquired using the system described above. A

7.5L40 linear array transducer (pulsed at 7.2MHz) was used in our data acquisition. The

field of view was 40 mm x 40 mm. The system performance is studied in terms of basic im-

age quality parameters. Reported here are representative measurements of noise and resolu-

tion. More detailed investigations into these topics will follow in future work after the

processing parameters are optimized.

1. Displacement estimation error

The variance of the error in the displacement estimates was measured using a uniform gel-

atin phantom to produce a predictable displacement distribution. Both motorized compres-

sion and freehand compression were used in order to compare the variance of displacement

errors with each of these methods. The motorized compression (a laboratory system
10

) used

a large compression plate that covered the entire upper surface of the free-standing gelatin

block (10 cm x 10 cm x 7 cm (WxDxH), no additional fixtures). The motor was programmed

to produce a sinusoidal compression of 20% at 0.4 Hz. Freehand scanning was performed

with the compressor plate shown in figure 7 and the compression was intended to replicate

that of motorized compression. The separation between I-Q frame pairs, called the skip

number and used for strain image formation, was adjusted to achieve a wide range of

frame-average strains from these data sets.

The acquired data sets were processed off-line using an algorithm identical to that pro-

grammed on the Elegra. Since the phantom had uniform stiffness, the displacement curve

along the compression direction should be a straight line (strain is constant over the entire

field of view). Linear regression was applied to the estimated displacement curve along each

A-line in the region of interest to generate the best-fit displacement curve. This line was then

considered to be the true displacement. The displacement error was calculated as the differ-

ence between estimates and the fitted lines. The corresponding strain was calculated by av-

eraging over strain estimates for all A-lines in the ROI.

We also simulated rf frame pairs for the medium with uniform stiffness.
5

The scanning

pulse, sampled at 36 MHz, had 7.2 MHz center frequency, a -6 dB bandwidth of 40% and a

Gaussian lateral profile with -6 dB beam-width of 400 	m and beam spacing of 200 	m.

These parameters closely simulated the beam profile produced by the Elegra 7.5L40 probe.

The simulated compressions resulted in applied strains of 0.2, 0.5, 1, 2, 3, 4 and 5%. For each

compression, 30 rf frame pairs were generated and the modified block-matching algorithm

REAL-TIME FREEHAND STRAIN IMAGING 11



was used for displacement estimation. The displacement estimates were compared with the

known true displacements to calculate the variance of the displacement estimation error.

Figure 8 shows the variance of the displacement estimation error versus the estimated ap-

plied strain. In figure 8(a) and (b) (motorized and freehand compression, respectively) the

first 50 frames in the collected rf data sequences were used as precompression data fields.

The skip number was varied from 1 to 15 for motorized compression and from 1 to 25 for

freehand compression to achieve strains ranging from 0.1% to 5%. There were a total of 725

strain and variance measurements for motorized compression and 1250 measurements for

freehand compression. In figure 8(a), there are 6 measurements with high displacement esti-

mation error at relatively high strain. These are the cases where the error detection and cor-

rection method failed due to excessive noise in the first row displacement estimates.

Displacement error variance estimates for motorized and freehand compression were fit to

a second degree polynomial in log-log space to generate representative curves for each data

set and those curves were plotted in figure 8(c). Note that the 6 measurements for motorized

compression with high error variance were excluded when curve fitting. The circles in fig-

ure 8(c) are displacement error variance measurements obtained from the simulation. The

standard deviations of the error variance measurements for simulation are so small that they

are not plotted (they would not be visible if plotted).

As seen in figure 8(c), the displacement error variance curve is relatively flat for strain less

than 1%. This is likely due to the fixed displacement error produced by the quadratic interpo-

lation.
13

The displacement estimate error variance for experimental data increases with the

applied strain faster than the results obtained from simulation. This is likely due to

elevational motion resulting from compressing the free-standing gel block (plane stress con-

ditions), whereas the simulated data employed plane strain conditions (no elevational mo-

tion). Comparable performance is observed with motorized and freehand compression.

Although motorized compression generally has slightly lower displacement errors, the ben-

efit associated with freehand scanning offsets the small improvement in displacement esti-

mate errors.

2. Small lesion detection

Gelatin phantoms with spherical targets that were three times stiffer than the background
18

were used to test the strain imaging system performance with small targets. The strain image

(acquired with 2.5% compression) shown in figure 9(a) contains three targets (4.0 mm, 3.2

12 ZHU AND HALL

FIG. 9 Strain image (a) of a phantom with spherical targets. The average strain is 2.5%. The size measurements,
shown in (b), are accurate, as detailed in table 1.

(a) (b)



mm and 2.4 mm diameter, respectively). The apparent size of these targets was measured in

the strain image in both axial and lateral directions. Figure 9(b) shows line segments that

correspond to the width and height for each target and table 1 shows the measured sizes.

These results suggest that spherical targets as small as 2.4 mm diameter can be accurately

measured in both the lateral and axial dimensions.

3. In vivo strain images

Real-time freehand strain imaging has also been performed on in vivo tissues. The images,

shown below, demonstrate that these strain images have reasonably low noise and high con-

trast.

Figure 10 shows an in vivo breast cyst that is about 3 mm x 3 mm. The visibility of the cyst

in the strain image confirms our phantom results that lesions of a few millimeters in diameter

can be detected in the strain images. The exact reason that the fluid filled cyst appears stiffer

than the background is unknown. A reasonable hypothesis is that the cyst fluid is bounded by

a distended capsule and appears stiff much like an air-filled balloon feels stiff.

Figure 11 shows an in vivo breast carcinoma. The apparent size of the tumor is much larger

in the strain image (about twice as big) than in the B-mode image. This is consistent with the

findings of Garra et al.
8

Figure 12 shows an in vivo thyroid strain image. There is a nodule inside the thyroid, seen

in both B-mode and strain images. The tissue structures and therefore the boundary condi-

tions around the thyroid are very different from the breast, and in both cases compression in-

duced motion is complex. However, with real-time feedback, the sonographer can manipulate

the compression technique and obtain strain images. A problem in strain imaging of the thy-

roid is that the trachea and major blood vessels are often included in the field of view. Since

REAL-TIME FREEHAND STRAIN IMAGING 13

FIG. 10 Strain image of a 3 mm x 3 mm in vivo cyst in breast.

TABLE 1 Measured target size in miilimeters.

Leftmost target Middle target Rightmost target

Height (axial) 4.1 3.1 2.3

Width (lateral) 4.0 3.4 2.3

Actual diameter 4.0 3.2 2.4



there are no echo signals from the trachea, displacement estimates in this region are at best

misleading. The blood flow in the carotid is perpendicular to the image plane and introduces

elevational motion that causes echo signal decorrelation and motion tracking errors. The ob-

server must consider these factors for correct strain image interpretation in this case.

CONCLUSION

A computationally efficient displacement estimation algorithm has been developed for

real-time, freehand ultrasonic strain imaging. The proposed method is based on a block-

matching algorithm that is widely used for motion detection in digital image processing. Ma-

jor modifications increase the computational efficiency and robustness of the typical block

matching algorithm. The algorithm is implemented on the Siemens SONOLINE Elegra as

an add-on software application.

With real-time feedback of strain images, sonographers can adjust their compression/

scanning technique to consistently form strain images. Strain images with acceptable qual-

ity are observed in both breast and thyroid scanning, which require different scanning tech-

14 ZHU AND HALL

FIG. 12 Strain image of an in vivo thyroid with a nodule. Flow in the carotid and echo noise in the trachea cause
errors in motion tracking and strain estimation.

FIG. 11 Strain image of an in vivo breast carcinoma.



niques and where the motion is much more complex than in phantoms. Since the algorithm is

implemented on a commercially available clinical imaging system, data can be efficiently

acquired from a large number of patients, enabling clinical evaluation of strain imaging in

soft tissue diagnosis.
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IN VIVO REAL-TIME FREEHAND PALPATION IMAGING
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Abstract—Previous experience with laboratory fixtures and off-line processing of elasticity data showed that
problems occurring in data acquisition often resulted in poor elasticity image quality. A system for real-time
estimation and display of tissue elastic properties using a clinical ultrasonic imaging system has been developed.
A brief description of that system and the initial clinical tests of that system are reported. Experience with
real-time freehand elasticity imaging shows that images with high contrast-to-noise ratios are consistently
obtained. Images of breast lesions were acquired with freehand palpation using standard linear-array ultrasound
(US) transducers. Results in volunteer patients show that high-quality elasticity images are easily obtained from
in vivo breast studies. The key element to successful scanning is real-time visual feedback of B-mode and strain
images that guide the patient positioning and compression direction. Results show that individual images of axial
strain in tissues can be quite misleading, and that a “movie loop” of side-by-side B-mode and strain images
provides significantly more information. Our preliminary data suggest that the strain image sequences for
various breast pathologies are unique. For example, strain images of fibroadenomas lose contrast with increasing
precompression, but those of invasive ductal carcinoma have high negative contrast (dark relative to “normal”
tissue) for a wide range of precompression. In addition, a comparison of the lesion area measured in B-mode vs.
strain images, for a representative image from the sequence, appears to be a sensitive criterion for separating
invasive ductal carcinoma from cyst and fibroadenoma. (E-mail: thall@wisc.edu) © 2003 World Federation for
Ultrasound in Medicine & Biology.

Key Words: Ultrasound, Tissue characterization, Elasticity, Palpation, Elastography.

INTRODUCTION

The potential for improving the qualitative nature of
palpation by imaging quantitative measures of tissue
viscoelasticity has generated a great deal of interest
world-wide. Our initial efforts focused on modeling dis-
placement and strain, developing algorithms for dis-
placement and strain estimation, and testing those tech-
niques in phantoms and in kidneys in vitro (see, for
example, Chaturvedi et al. 1998a, 1998b; Hall et al.
1997; Insana et al. 1997; Zhu et al. 1998). Significant
effort was expended on developing high-order motion
estimators for tracking fine-scale motion. However, little
data were available to investigate the need or utility of
the high-order motion-estimation techniques for in vivo
imaging of tissues.

The first report testing the utility of strain imaging in
breast lesion imaging (Garra et al. 1997) clearly demon-
strated that strain imaging had merit in breast lesion

discrimination. The data-acquisition system employed a
modified mammography compression paddle and, there-
fore, was limited in the lesion locations that could be
studied. Also, only (nonreal-time) static strain images
were available. In that report, Garra et al. (1997) de-
scribed a set of criteria applied to evaluate strain imaging
combined with normal B-mode imaging. Among those
criteria were lesion visibility, relative brightness, lesion
margin regularity, lesion margin definition, lesion size
(lateral and axial) and B-mode image measurements rel-
ative to strain image and pathology measurements.
Among their findings, they noted that benign lesions
have about the same width on B-mode and strain images,
but that the height measurement had lower confidence
due to axial blurring in strain image formation and dif-
ficulty in determining lesion boundaries with shadows
due to high attenuation. Fibroadenomas typically had
heterogeneous stiffness; cancers were uniformly stiffer
than their surroundings in all but one case.

The purpose of the present study was to test the
utility of performing strain imaging in real-time on a
commercial ultrasound (US) imaging system and to test
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one of the strain image criteria described by Garra et al.
(1997) with data acquired from this new system. Results
demonstrate the value in real-time side-by-side display
of B-mode and strain images for guiding data acquisition
and data interpretation. Comparisons among various le-
sion types studied in vivo show a significant difference in
the strain image sequence for fibroadenomas, cysts and
carcinoma, and help to explain some of the difficulties in
data interpretation described by Garra et al. (1997). Our
results are generally consistent with those found by
Garra and colleagues, but the differences we found in
carcinoma size in B-mode and strain images are greater,
and all lesions found in sonography or mammography,
whether palpable or not, were visible with our tech-
niques. These results will help to guide future strain-
imaging data acquisition and provide further evidence
for the potential of elasticity imaging in breast lesion
discrimination.

MATERIALS AND METHODS

The motion-tracking algorithm, its implementation
on the commercial clinical US, imaging system and
performance measurements in experiments with phan-
toms are reported elsewhere (Zhu and Hall 2002). The
essential details are included here for the convenience of
the reader.

Strain image formation
A 2-D block-matching algorithm, based on the sum-

squared difference (SSD) method, was used for motion
tracking in our implementation. With this method, mo-
tion is tracked by searching for a kernel of data from the
precompression radio frequency (RF) echo data in a 2-D
search region of the postcompression RF echo field. A
fixed kernel size (five A-lines by 11 RF samples) was
used with both the 7.5L40 (with and without tissue
harmonic imaging, THI) and the VFX13-5 linear arrays
for the system employed (Siemens SONOLINE Elegra,
Issaquah, WA). The data are temporally sampled at 36
MHz with a lateral beam spacing of 200 �m. Therefore,
the kernel size corresponds to about about one half the
area of the 2-D pulse-echo US point spread function for
the 7.5L40 array pulsed at 7.2 MHz. A small kernel was
chosen because the assumption of rigid body motion is
increasingly accurate as the size of the kernel is de-
creased, and because spatial resolution is expected to
improve with smaller kernels. No attempt to optimize the
kernel size was pursued in this study. Kernel size opti-
mization will likely be task-dependent and will be ad-
dressed in future work.

Data were processed on the image processor sub-
system of the Elegra. This subsystem hosts two Texas
Instruments TMS320C80 processors. To reduce the com-

putational load (required to achieve real-time frame
rates), an adaptive search strategy was developed that
reduces the size of the required search region in perform-
ing the SSD block matching. Displacements are esti-
mated (for real-time imaging) with kernels that are sep-
arated by 16 RF samples center-to-center (no spatial
overlap of displacement estimates). Displacements are
estimated row-by-row, and the prior row of estimates are
used to predict displacements in the current row, allow-
ing the search region to be reduced to within one RF
sample in each direction of the predicted displacements.
The use of predicted displacements results in correlated
displacement errors, and an error detection and correc-
tion scheme was also implemented. Strain is estimated
from the displacement data using a linear regression
technique similar to that described by Kallel and Ophir
(1997). For real-time imaging, linear regression is per-
formed with a 24-sample window (about 4 mm) that is
incremented one displacement sample for each strain
estimate. The resulting algorithm displays streaming B-
mode and strain images side-by-side at about seven
frames per second and stores the full sequence of I-Q
(analytic form of the RF) echo data at full system bus
speed. The stored data, which were acquired at a higher
frame rate than the real-time display, can then be online
postprocessed with the same displacement algorithm or
other algorithms (not reported here), the size and location
of the subregion-of-interest (SROI) can be adjusted, the
grey-scale mapping can be modified, etc., and the results
displayed frame-by-frame or as a cine loop.

Although the additional degrees of freedom of mo-
tion allowed with freehand compression, compared with
motorized compression, were expected to result in an
increase in displacement estimate error variance, that
variance is only slightly higher for freehand compression
(Zhu and Hall 2002). Given that the contrast and reso-
lution of the strain-imaging system do not depend on the
method of tissue deformation, displacement estimate er-
ror variance (resulting in strain image noise) is the dom-
inant image quality parameter that will differ with the
two methods of tissue deformation. With equal applied
strain, motorized and freehand compression have com-
parable strain image noise. However, the frame-to-frame
strain is not constant with freehand compression (as
described below). This results in frame-to-frame vari-
ability in strain image quality with freehand scanning.

Small (e.g., 2.4-mm diameter) isoechoic spherical
targets in a phantom are considerably easier to locate and
scan freehand than with motorized compression. The size
of spherical targets measured from the resulting strain
images is very close to their true dimensions (both height
and width, see Zhu and Hall 2002), so both linear and
area measurements in strain images in vivo should be
accurate.
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The grey-scale mapping of these strain images con-
forms with the de facto standard of mapping pixels,
representing small strains dark and large strains bright.
Typically, a sinusoidal (freehand) compress/release cy-
clic deformation was used and the acquired data con-
tained one or more complete cycles. At the top and
bottom of the stroke, there is little motion and, occasion-
ally, there were brief hesitations during the motion. A
consequence of freehand scanning is that the frame-to-
frame strain is not constant. To compensate for that
variability in average strain, the grey-scale for individual
strain images (in the sequence of B-mode and strain
images) was automatically adjusted to minimize bright-
ness flicker. With this scaling, strain images that had an
average strain of less than 0.15% were set to black. These
frames rarely occur, but are most common at the top and
bottom of the cyclic compression. Frames with greater
than 0.15% compression were encoded as follows:

se�k, l � � round �
s�k, l � � smin

smax � 0.05
smax

smin
� , (1)

where se(k, l) is the encoded strain value at position (k, l),
and smax and smin are the maximum and minimum strain
values in the frame, and round() is a function that rounds
to the nearest integer. After scaling, the results are en-
coded into an 8-bit display range. This simple scaling
provides a reasonably constant strain image brightness
through the compression cycle, in the absence of signif-
icant displacement estimation errors. Large displacement
estimation errors sometimes occur and this automatic
grey-scale mapping can be dominated by erroneous dis-
placement estimates.

Patient scanning
All patients provided informed consent consistent

with the protocol approved by the Human Subjects Com-
mittee (Institutional Review Board) at The University of
Kansas Medical Center. Patient scans were performed in
a manner consistent with a normal breast US examina-
tion; the breast was scanned with the patient (typically)
in the supine position with her ipsilateral arm behind her
head. When the breast lesion was located, SROI was
chosen that would avoid inappropriate data (lungs, areas
of lost transducer contact, etc.) and the transducer was
pressed toward the chest wall at a steady rate in an effort
to achieve about 1–1.5% compression frame-to-frame.
Subregion selection also typically excluded the retro-
mammary fat layer and the chest wall. The soft fat, the
stiff muscle and the slipping boundary between these
layers can also dominate the dynamic grey-scale map-
ping. In some cases, for example, when scanning lateral

lesions in large (D-cup) breasts, the patient was rolled
slightly to her contralateral side so that gravity would
flatten the breast tissue in the region to be scanned. A
small plate (approximately 45-mm wide, 90-mm long)
was sometimes attached to the transducer body to extend
the compression surface in an effort to provide a more
uniform stress field and to control motion perpendicular
to the image plane. The compress/release cycle was
repeated for relatively large (� 10%) compression range,
while watching the B-mode image. The compression
motion was adjusted by changing the compression direc-
tion or patient position until there was nearly uniaxial
compression with minimal elevation motion. With this
achieved, the strain-imaging software was enabled to
evaluate the quality of the sequence of strain images. If
a large sequence (� 30 frames) of strain images had
good image quality (relatively high contrast-to-noise ra-
tio) and high frame-to-frame similarity, the data acqui-
sition was frozen, the image sequence stored, and the
cine feature of this software was used to review, post-
process and select images to record. If the compression
rate was too slow, resulting in low frame-average strain,
the interframe skip was adjusted to increase the strain
between frame pairs used in displacement and strain
estimation, as suggested by Lubinski et al. (1999). Rep-
resentative results obtained when scanning a 3-mm cyst
are shown in Fig. 1. The average strain per frame (Fig.
1b) suggests nearly ideal compression rate in this case.
Consecutive frames were paired for displacement esti-
mation when analyzing this sequence of data. The cu-
mulative strain in the sequence (Fig. 1c), obtained by
summing the strain in consecutive frames, demonstrates
that about an 18% compression range was achieved in
this study. The initial value on the ordinate axis in each
plot was set to zero and (the frame-average) strain was
accumulated (Fig. 1c) from that starting point. If, for
example, there was a net compression of the tissue in the
first frame pair, the initial average strain was negative
and the first value on the cumulative frame plot was
negative. Data acquisition was frozen by the operator
when an acceptable image sequence was acquired. The
starting and ending points of that sequence could be at
any point in the cyclic motion. Therefore, the precom-
pression at the starting point is a random value between
the minimum and maximum precompression.

RESULTS

One of the most promising uses of strain imaging is
differentiation among breast lesions. To date, we have
successfully scanned 39 patients with over 175 patient
scans (multiple lesions per patient, repeat visits, perpen-
dicular scan planes, different transducers and THI). Data
from only 29 of these patients are included in this study
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(data from patients with surgical scars or closely spaced
lesions were excluded, as described below). Among
these 29 patients, 19 fibroadenomas, 29 cysts and 7
carcinomas were included in this study. Ten of the fi-
broadenomas, at least five of the cysts and four of the
carcinomas were palpable. All fibroadenomas were ei-
ther pathologically proven or had been stable under ra-
diological investigation for more than 1 year. All carci-
nomas were pathologically proven. Both simple and
complex (hemorrhagic) cysts were included. Fibroade-
nomas, cysts and invasive ductal carcinomas have dis-
tinctive behavior in their strain image under cyclic com-
pression, as detailed below.

One of the key tests was to show that strain images
are reproducible, both within an image sequence and on
repeat acquisitions. The question of reproducibility
within an image sequence is addressed for each lesion
type (fibroadenoma, cyst and invasive ductal carcinoma)
below. Figure 2 shows results of repeating the freehand
in vivo elasticity imaging on the same patient. A skilled
sonographer can acquire a sufficiently similar B-mode
image of an ROI with repeat scanning. However, obtain-
ing a similar strain image requires that the ROI be found,
and the direction of compression/release relative to the
lesion and chest wall be the same in the two studies. No

special effort was used to obtain similar images, but Fig.
2 demonstrates that the strain patterns in these images are
very similar.

Too few independent samples of each lesion type
have been observed to make strong statistical statements
regarding each criterion described by Garra et al. (1997).
The following descriptions state our qualitative observa-
tions to date, in the hope of guiding the scanning and
image-evaluation techniques used by others in future
studies. In particular, the automatic scaling of grey-scale
values precludes quantitative statements of (and homo-
geneity of) relative stiffness.

A total of 37 B-mode and strain image sequences
were acquired from 19 unique fibroadenomas among 9
patients. One of our most significant findings is that there
was an obvious (subjective, visual) loss in strain image
contrast for 14 of these 19 fibroadenomas (27 of 37
image sequences, 6 of 9 patients, average age 44 years).
Fibroadenomas typically have negative contrast (are
more stiff than their surroundings) at low precompres-
sion and lose contrast (stiffness becomes more like their
surroundings) as they are compressed. An example of
this is illustrated in Fig. 3. The largest negative contrast

Fig. 1. Data obtained by freehand scanning of a breast cyst in
vivo. (a) A B-mode and strain image pair obtained for frame 51
in the sequence. The white box in the B-mode image defines the
ROI for strain imaging. (b) The average strain in the ROI; (c)
the cumulative strain in the ROI. The arrows in (b) and (c)
indicate that a sequence of frames was acquired with nearly
equal average strain in each frame but with varying cumulative

strain (precompression).

Fig. 2. Two image pairs from the same patient on repeat visits.
The patient has a palpable fibroadenoma that measures about
16 mm � 11 mm. (a) The strain image acquired with the
VFX13-5 array during the first visit, which is very similar to (b)

that acquired with the 7.5L40 array 2 weeks later.
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occurs with minimal precompression. Figure 3c and e
shows that the transducer is barely in contact with the
skin surface at this precompression. Comparing these
with Fig. 3d and f demonstrates that images of fibroad-
enomas acquired within a sequence at equivalent pre-
compression are very similar. However, as precompres-
sion changes, strain contrast changes (comparing Fig. 3c
or e with d or f.

Both simple and complex cysts were included in this
study, to investigate the possibility that fluid-filled cysts,
regardless of “echogenicity,” have a common behavior in
cyclic strain images. The hope was that strain images
might help to differentiate complex cysts from solid
lesions that lack evidence of blood flow.

The frame-to-frame variability of strain images of
cysts is more complicated than that observed with fibro-
adenomas. A total of 39 B-mode and strain image se-
quences were acquired from 29 unique cysts among 15
patients. A very soft bottom layer in the interior of the
cyst was observed in 7 of 29 cysts (11 of 12 image
sequences of those cysts). That layer might be due to a
sediment inside the cystic fluid. Repositioning the patient

might have allowed us to confirm that conjecture, but
that test was not performed. The interior echoes within
the cysts rapidly decorrelate with compression. As a
result, the apparent strain in the lesions varies with
compression, but that compression-dependent strain im-
age contrast is very different from that observed for
fibroadenomas. If the incremental average strain from
one strain image to the next is small (� 0.5%), the strain
image brightness (on a pixel-by-pixel basis) changes
gradually, regardless of precompression. If the incremen-
tal average strain is not small (� 1%), then the local
brightness within the cyst varies rapidly and (seemingly)
unpredictably. The typical behavior of the strain pattern
in cysts is demonstrated (as well as can be with static
images) in Fig. 4. Unlike the behavior observed with
fibroadenomas, frames with equivalent precompression
might have very different apparent strain within the cyst.
Overall, a cyst can be either relatively stiff, as if it were
a distended balloon, or relatively soft.

A total of 21 B-mode and strain image sequences
were acquired from 7 unique carcinomas among 6 pa-
tients. All carcinomas studied so far were invasive ductal
carcinomas and all but one were highly suspicious of
carcinoma, based on mammogram and sonogram results.
This is by far the most commonly diagnosed breast
cancer. Relatively small lesions (� 2 cm) have high
negative contrast (stiff) in a background of “normal”
breast tissue, regardless of precompression. An example
of this is shown in Fig. 5. The exception to this occurs for

Fig. 3. Data obtained by freehand scanning of a fibroadenoma
in vivo. (a) The average strain in the ROI for each frame
suggests a slow compression rate. The interframe skip was
increased to pair every fourth frame in analyzing this sequence
of data. (b) The cumulative strain in the sequence shows that a
20% compression range was achieved. Images of fibroadeno-
mas acquired with equivalent precompression [equivalent cu-
mulative strain, frames (c) 75 and (e) 90, (d) 52 and (f) 106] are
similar, but, because of the nonlinear stress-strain relationship
of tissue, strain images acquired at different precompression

can have significantly different contrast.

Fig. 4. Data obtained by freehand scanning of two breast cysts
in vivo. (a) The cumulative strain in the sequence shows that a
20% compression range was achieved. Strain images of the
interior of cysts, unlike those of fibroadenomas, are not neces-
sarily similar when acquired with similar precompression (cu-
mulative strain). (b), (c) and (d) Images from frames 8, 25 and
92, respectively, were acquired with similar precompression.
Although strain images can vary smoothly from frame to frame,
decorrelation of the signals within the cysts results in strain

images that vary significantly over the compression cycle.
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very large lesions where little, if any, healthy tissue is
included in the strain image.

One of the criteria that Garra et al. (1997) found to
be most useful in differentiating between benign and
malignant lesions was the relative size of the lesion in
B-mode vs. strain images. To compare lesion size in the
two imaging modalities, we transferred the I-Q echo data
to an off-line computer for further analysis. The strain
images were reprocessed using the same displacement
estimation algorithm as that implemented on the Elegra.
Off-line processing used a 16-sample (� 3 mm) window
for strain estimation instead of the 24-sample window
used on the Elegra (higher axial resolution). Movie loops
of the side-by-side B-mode and strain image pairs (avi
files) were created to view the motion of the lesion in the
B-mode image and the resulting strain image. A repre-
sentative frame was selected that showed the “typical”
strain image for that lesion and the B-mode image was
displayed, allowing the lesion boundary to be traced. The
boundary in the B-mode image excluded the capsule of
the lesion. The lesion width (and height) were estimated,
based on the traced lesion perimeter, as the maximum
dimension perpendicular (and parallel) to the acoustic
beam. The tracing and measurement process was then
repeated with the strain image from that same frame. The
boundary traced in the strain image was the location of
the steepest (visual) gradient in strain. High negative-
contrast images were chosen for fibroadenomas. All trac-
ings were performed by the first author, and most bound-
aries were very easily identified. In some cases, for
example, in the atypical fibroadenoma shown in Fig. 3,

an experienced clinician assisted in tracing the boundary.
Example images for a fibroadenoma, cysts and an inva-
sive ductal carcinoma are shown in Figs. 6, 7 and 8.

It is intriguing to examine the relative size of these
lesions, comparing their width, height and area as mea-
sured in B-mode and strain images. Figure 9a and b
shows plots of the width and height of these three lesion
types as measured in B-mode and strain images. Figure
9c shows plots of a similar comparison of the total area

Fig. 5. Data obtained by freehand scanning of invasive ductal
carcinoma in vivo. (a) The cumulative strain in the sequence
shows that a 8% compression range was achieved. (b) Images
in frame 4 acquired at low precompression, are very similar to
(c) those in frame 18 acquired at much higher precompression.
Some differences in the strain in “normal” surrounding tissue

are seen, but vary smoothly from frame to frame.

Fig. 6. B-mode and strain images of fibroadenomas with their
perimeter traced in the B-mode image; that tracing also in the
strain image for comparison. A fibroadenoma measuring (a)
71.4 mm2 in B-mode and 75.0 mm2 in strain, (b) 88.7 mm2 in
B-mode and 102 mm2 in strain, (c) 27.2 mm2 and 21.5 mm2 in
B-mode and 26.8 mm2 and 21.7 mm2 in strain, respectively.
The B-mode tracing is a reasonably good approximation to that

on the strain image.

Fig. 7. B-mode and strain images of cysts with their perimeter
traced in the B-mode image; that tracing also in the strain
image for comparison. A cyst measuring (a) 139 mm2 in
B-mode and 145 mm2 in strain, (b) 102 mm2 in B-mode and
84.1 mm2 in strain, (c) 30.3 mm2 in B-mode and 32.5 mm2 in
strain. The B-mode tracing is a good approximation to that on
the strain image, if the soft region at the bottom of the cyst, (a)

and (b), were included.
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of the lesion in the two imaging modes. Table 1 shows
that the width and height of benign lesions tend to be
about the same size in B-mode and strain images and
carcinomas are larger in strain images than in B-mode, as

observed by Garra et al. (1997), but the separation be-
tween benign lesion and carcinoma is larger when we use
the lesion area.

In each of these examples, the study was performed
on an isolated lesion. Although some data sets contained
more than one lesion, those lesions were separated by at
least one diameter of the largest lesion in the image.
Measurements of individual lesions in clusters of lesions,
most frequently observed in clusters of breast cysts,
proved problematic in obtaining high-quality strain im-
age sequences and in interpreting the motion. An exam-
ple of this, shown in Fig. 10, shows that it might be more
reasonable to study the cluster as a group instead of as
individual lesions. When lesions are closely spaced, par-
ticularly when they share a common boundary, the mo-
tion due to compression can be quite complex, as ob-
served in the B-mode image sequence, and the block-
matching algorithm fails to track motion adequately. The
block-matching algorithm assumes rigid body motion
and does not accurately track significant rotation or shear
motion. Further, our current system acquires data (effec-
tively) in a plane, and significant motion perpendicular to
the image plane is lost. A 3-D acquisition system would
be required to track significant elevation motion. A high-
er-order algorithm, such as the deformable mesh (Zhu et
al., 1998), would be required to track rotation and shear
motion accurately. At this stage of strain image process-
ing and interpretation, it is likely best to restrict the study
to individual isolated lesions.

DISCUSSION

Real-time display of side-by-side B-mode and strain
images is essential for guiding the manipulation of
boundary conditions for the mechanics experiment that is
strain imaging. Real-time feedback to the hand-eye co-
ordination system allows the sonographer to manipulate
the compression direction, force and rate to obtain high-
quality sequences of strain images. The system employs
standard linear-array transducers and requires no addi-
tional fixtures or remote data-acquisition or signal-pro-
cessing hardware. It is fully integrated into the Elegra
system. A small plate 9 cm � 4.5 cm is sometimes
attached to the face of the transducer to extend the
compression surface. This was most useful when scan-
ning benign lesions that tended to move in elevation
when compressed.

Our results show significantly different strain-image
sequences for each lesion type studied. Although the
three lesion types reported here do not include all those
found in breasts, they represent the most common clin-
ically observed breast lesions. It was found that, to ap-
preciate the differences among lesion types, and to de-
termine the “typical” strain image for a given lesion, it

Fig. 8. B-mode and strain images of invasive ductal carcinomas
with their perimeter traced in the B-mode image; that tracing
also in the strain image for comparison. An invasive ductal
carcinoma measuring (a) 96.1 mm2 in B-mode and 170 mm2 in
strain, (b) 22.8 mm2 in B-mode and 319 mm2 in strain, (c) 48.7
mm2 in B-mode and 170 mm2 in strain, (d) 465 mm2 in B-mode
and at least 768 mm2 in strain. The B-mode tracing is not
representative of what would likely have been drawn on any of

these strain images.

Fig. 9. Plots comparing the size of a lesion traced in the
B-mode image vs. the same lesion traced in a representative
strain image for (E) cysts, (�) fibroadenomas and (x) invasive
ductal carcinomas. (a) The width and (b) height comparisons.
(c) The areas for lesions less than 20-mm wide (in B-mode) are
compared, and (d) the area ratio. The dashed line in (a)–(c)

represents equal size measurement in both images.
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was necessary to observe a sequence of B-mode and
strain images displayed side-by-side. With that sequence,
a very reproducible determination of the lesion boundary
could be obtained. Measurements of lesion dimension
were then made and the results for lesion width are

consistent with those reported by Garra et al. (1997).
That report stated a lack of confidence in their measure-
ments of lesion height. Our results with spherical targets
in phantoms show that we can accurately measure lesion
dimension in both height and width (Zhu and Hall 2002)
and, therefore, we use lesion area as the criterion for
comparing lesion size in B-mode and strain images.

The significant, but monotonic, change in strain
contrast as a function of precompression appears to be
unique to fibroadenomas so far in our experience. This
contrast variation suggests that the stress-strain relation-
ship for fibroadenoma does not parallel that of the sur-
rounding tissue. Fibroadenomas that vary in strain con-
trast appear dark (stiffer) at low precompression and lose
contrast (become relatively softer) at higher precompres-
sion. One possible explanation is that the stress-strain
relationship for the surrounding tissue is more nonlinear
than that of the fibroadenoma over the range that each are
compressed in this technique. The average age of the
women with fibroadenomas in this study was 44 years,
and their dominant breast tissue type was subjectively
judged to be fibroglandular from B-mode images. The
data reported by Krouskop et al. (1998), demonstrate that
both glandular tissue and (primarily) fibrous tissue, such
as fibroadenoma, have nonlinear stress-strain relation-
ships. When preloaded to 5% strain, fibrous tissue is
about 3 times more stiff than glandular tissue. However,
the appropriate comparison for our application is when
both tissues have minimal preload and when glandular
tissue is preloaded about 15% and fibrous tissue is pre-
loaded some small fraction of that (because the less stiff
tissues strain more when they are treated as a composite),
and that composite is strained an average of about 1% for

Table 1. Results of measurements of the size of lesions in B-mode and strain images and the
ratio of their size (strain/B-mode)

Lesion type

Cyst Fibroadenoma IDC

B-mode
Width (mm) 9.8 � 5.3 11.8 � 4.1 11.7 � 7.2
Height (mm) 7.2 � 3.4 8.4 � 2.4 9.2 � 4.8
Area (mm2) 69.3 � 72.2 81.9 � 44.4 104 � 135

Strain
Width (mm) 9.8 � 5.1 11.6 � 4.1 18.6 � 7.3
Height (mm) 7.6 � 3.8 8.8 � 2.7 14.8 � 6.7
rea (mm2) 72.8 � 77.8 81.2 � 44.6 236 � 206

Ratio (strain/B-mode)
Width 1.02 � 0.16 1.00 � 0.18 1.74 � 0.36
Height 1.04 � 0.16 1.07 � 0.21 1.68 � 0.36
Area 1.05 � 0.24 1.00 � 0.17 3.02 � 1.19

Tabulated values are the mean � the SD of the group. The size ratio for benign lesions is near unity, showing
that these lesions typically have the same size in both imaging modalities. However, invasive ductal carcinomas
(IDC) typically are 2 to 3 times as large in strain images than in B-mode images.

Fig. 10. B-mode and strain images of a cluster of breast cysts
with their perimeter traced in the strain image; that tracing also

in the B-mode image for comparison.
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data acquisition. Krouskop and colleagues did not report
those results.

Garra et al. (1997) tested numerous criteria for dis-
criminating benign from malignant breast lesions. The
criterion that provided the greatest discrimination in their
study was the comparison of lesion width measured in
B-mode and strain images. They attributed that size
difference to the desmoplasia that surrounds most ma-
lignant breast tumors (Tavassoli 1999). Desmoplasia is
the excessive growth of fibrous connective tissue in the
stroma surrounding the malignancy. That growth appears
gray-white and feels very hard in gross pathology
(Tavassoli 1999). Our study tested this criterion and
extended the observation to a comparison of lesion area.
The sequence of B-mode and strain image pairs allows
the sonographer to select images representative of the
“typical” strain image for a lesion. This ability, along
with better determination of lesion boundary available by
viewing a sequence of images, has likely improved the
ability to measure true lesion size in strain imaging
compared with the results reported by Garra et al. (1997).
A study to estimate the intraobserver and interobserver
variability in choosing the “typical” strain image and
measuring lesion size is underway. That study is an
essential part of determining the value of the relative size
of lesions in B-mode and strain image pairs as a diag-
nostic criterion. The utility of elasticity imaging in dif-
ferentiating (from benign growths) malignancies that
lack desmoplasia has not been tested.

Garra et al. (1997) also found the brightness of the
lesion in strain images to be a useful parameter, but our
observation of the changing contrast with compression in
fibroadenomas provides an improved description of the
contrast of solid lesions in strain imaging. The change in
strain image contrast with applied compression (e.g., Fig.
3) demonstrates that observing only a single B-mode and
strain image pair at an unknown precompression could
be very misleading in the interpretation of the strain
image data. A sequence of side-by-side B-mode and
strain image pairs greatly adds to the ability to interpret
strain images.

Numerous other criteria were tested by Garra et al.
(1997), but demonstrated limited utility. As with their
study, the current study is limited by the small number of
patients and lesions included, and by the fact only one
observer was involved in each report. A larger cohort of
patients and a larger number of observers are needed to

improve the statistical analysis of this technique. That
effort will be the subject of a future report.

CONCLUSIONS

A new system for real-time imaging of tissue strain
in vivo using freehand scanning is described and some of
the results obtained with this system are reported. The
new system provides real-time feedback, allowing the
user to manipulate the conditions of tissue compression
resulting in the ability to successfully scan all patients for
which the technique was attempted. The strain images
for various lesion types are unique, and the relative size
of the lesions appears to be a useful criterion for dis-
criminating benign from cancerous lesions. However,
further testing will be needed to support this observation.
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A Finite-Element Approach for Young’s Modulus
Reconstruction

Yanning Zhu*, Timothy J. Hall, and Jingfeng Jiang

Abstract—Modulus imaging has great potential in soft-tissue
characterization since it reveals intrinsic mechanical properties.
A novel Young’s modulus reconstruction algorithm that is based
on finite-element analysis is reported here. This new method over-
comes some limitations in other Young’s modulus reconstruction
methods. Specifically, it relaxes the force boundary condition re-
quirements so that only the force distribution at the compression
surface is necessary, thus making the new method more practical.
The validity of the new method is demonstrated and the perfor-
mance of the algorithm with noise in the input data is tested using
numerical simulations. Details of how to apply this method under
clinical conditions is also discussed.

Index Terms—Tissue characterization, tissue elasticity.

I. INTRODUCTION

T HE ELASTIC properties of biological tissues are usually
modified by disease. Surgeons often describe the “ feel”

of excised abnormal tissues. As a result, a quantitative mea-
sure of the elastic properties of tissue should be useful in di-
agnosing abnormalities. The physical quantities that describe
tissue elastic properties are stress, strain, and elastic moduli, and
methods have been developed to estimate each of these. Palpa-
tion, which has been used for more than 4000 years, utilizes
tissue surface stress information to detect tissue abnormalities.
Palpation remains an effective diagnostic tool. In fact, the ma-
jority of breast tumors are discovered with palpation [1]. How-
ever, palpation is qualitative and lacks sensitivity to small deep
abnormalities. Quantitative methods similar to palpation have
been developed to visualize surface pressure [2], [3]. Other re-
cent developments in bioelasticity imaging techniques involve
accurately and noninvasively measuring the tissue strain distri-
bution during external compression. Studies have shown that
these techniques show promise in diagnosing and monitoring
diseases of the breast [4]–[7], kidney [8]–[11], and blood vessels
[12], [13].

Mapping stress or strain distributions provides only relative
information about tissue elasticity. Using either stress or strain
information alone, one can only identify a region of tissue that is
stiff (or soft) relative to its surroundings. Elastic moduli provide
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an absolute measure of tissue elasticity that is intrinsic to the ma-
terial. The stress or strain distributions alone lacks a one-to-one
relationship with the elastic moduli distribution. Images of the
stress or strain distribution may also include misleading arti-
facts that could lead to uncertainties in diagnosing tissue abnor-
malities. Therefore, it is desirable to measure elastic moduli in
bioelasticity imaging techniques. However, measuring the dis-
tribution of elastic moduli is more difficult than either the stress
or strain distribution.

The theory of mechanics shows that to describe the com-
plete elastic properties of a material requires a tensor that has
81 components [14]. Clearly, it is impractical to measure all
these components. Assumptions can be made to simplify the
problem and reduce the number of unique tensor elements. If
a material is assumed to be continuous, incompressible, and
isotropic, then its elasticity can be completely described by one
elastic modulus, either Young’s modulusor shear modulus.
Strictly speaking, none of the above assumptions are valid for
biological tissues, but most biological tissues closely approx-
imate continuous and incompressible materials. Some tissues,
such as muscle, are anisotropic in their structure, function, and
mechanical properties. For this paper, however, we will assume
tissue to be continuous, incompressible, and isotropic as a first
approximation.

Currently, ultrasonic-based techniques for measuring the
elastic modulus of tissue fall into two categories. First, dynamic
compression techniques [15]–[18], such as sonoelasticity, use
a vibrator to propagate low-frequency “ pumping” waves into
tissue. In the most promising of these approaches, shear wave
velocity or wavelength are estimated, and from these the shear
modulus can be estimated. However, problems associated with
this technique are high image noise, low spatial resolution, and
difficulty in propagating the shear wave energy across tissue
boundaries.

The other category is referred to as (quasi)static compres-
sion techniques. In static compression techniques, the tissue
Young’s modulus distribution is estimated from the tissue de-
formation and boundary pressure measurements. The methods
to estimate tissue deformation have been extensively discussed
in ultrasound based elastography [19]–[28]. The tissue is
deformed either by an external force or an internal force. The
RF echo waveforms before and after an incremental deforma-
tion are recorded, and the tissue displacement distribution is
estimated by comparing these RF waveforms. Tissue internal
displacement can be also obtained using magnetic resonance
imaging [29]–[31] and optical elastography [32] techniques.
Young’s modulus estimation can be performed utilizing the
tissue deformation information obtained with the strain imaging
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techniques. In addition to the displacement distribution, some
Young’s modulus estimation methods also require knowledge
of the pressure or force boundary conditions.

There are four methods in the literature for reconstructing the
Young’s modulus distribution based on static compression tech-
niques for displacement estimation. The first method estimates
Young’s modulus by numerically solving a second-order partial
differential equation that describes a linear, isotropic, incom-
pressible medium under static deformation [33]. That method
requires significant spatial smoothing of the displacement esti-
mates to obtain second-order partial differentials that are also
smooth. Hence, with noisy displacement estimates, that method
inherently has low spatial resolution. Another problem asso-
ciated with that method is that for a two-dimensional (2-D)
analysis, the force boundary condition of the medium must be
known on all sides. However, in practice, the force distribution
can only be (easily) measured on one side (the compression sur-
face) of the medium.

The second method uses an iterative technique to reconstruct
the modulus distribution [34], [35]. That method uses finite-
element analysis (FEA) to solve the forward elasticity problem.
The input to the FEA algorithm is the measured displacement
field, the assumed boundary conditions, and an initial guess of
the modulus distribution. The output of the FEA algorithm is
an estimate of the displacement distribution. The difference be-
tween the measured displacement distribution and the FEA pre-
diction is used to adjust the modulus distribution from its initial
guess. By repeating the process multiple times, one can obtain
a modulus distribution that minimizes the displacement distri-
bution difference in a least squares sense. The advantage of that
approach is that it does not require knowledge of the pressure
boundary conditions. However, without knowing the boundary
pressure, only relative modulus estimates can be obtained. In
other words, the ratio of the modulus between different loca-
tions can be determined. Although that method can reduce the
artifacts in strain images, it does not provide absolute measure-
ment of the tissue modulus distribution which can be useful in
tumor discrimination as suggested in [36], and an incorrect ini-
tial modulus guess may result in convergence to an incorrect
modulus distribution. For media, such as tissue, that have a com-
plicated modulus distribution, a good initial guess for the mod-
ulus distribution is difficult to obtain.

In the third modulus reconstruction method, a finite-differ-
ence approach is used to describe the elasticity problem in a
medium [37]. That approach rearranges linear equations that
describe the forward problem so that the modulus distribution
becomes unknown variables in these equations. The modulus
distribution can then be solved. However, that method also re-
quires knowledge of the boundary conditions on all sides of the
object.

The fourth approach uses a variational method to formulate
the forward solution [38]. Then the terms with unknowns are
rearranged to derive a matrix equation similar to ours. However,
the boundary force condition was not utilized in their treatment.
Hence, this method can only reconstruct the ratio between the
Lame constants and tissue mass density.

In our approach, FEA is used to construct a set of linear equa-
tions that describes the elastic behavior of a 2-D object. Similar

to the third method mentioned above, we rewrite the linear equa-
tion set so that the Young’s modulus distribution are explicit
variables which can be solved. The solution does not require
an initial guess or iteration of the modulus distribution solution,
and it provides absolute, not relative, modulus estimates. Unlike
the equation set for solving forward elasticity problems, where
the number of equations equals the number of unknown vari-
ables, the equation set for our inverse solution usually involves
more equations than unknowns. This allows us to simplify the
force boundary conditions so that only one (surface) force dis-
tribution is necessary to solve for the modulus distribution.

The details of our modulus estimation method are described
in Section II. The validity of this method is tested with simu-
lations and results are shown in Section III. The discussion of
how this technique can be implemented for ultrasonic imaging
systems is provided in Section IV.

II. M ETHOD

Three integral parts of the proposed modulus estimation
method are described in this section, one subsection each.
Section II-A provides the information necessary for solving
a forward elasticity problem of 2-D continua using FEA.
Although the content of this subsection is well known in
the literature, it is briefly reviewed here to provide sufficient
background, terminology, and notation for the development
of Section II-B. In Section II-B, the FEA-based modulus
estimation technique (inverse problem) is described in detail.
Section II-C addresses issues of how to apply the proposed
method under practical constraints.

A. The FEA Method for Solving a Forward Problem of 2-D
Continua

The FEA procedure for solving a forward elasticity problem
of 2-D continua can be summarized as follows [39]–[41].

1) Select an element type and derive the element stiffness
matrix.

2) Form a mesh using the selected element to cover the re-
gion of interest (ROI) for which the elasticity problem is
solved.

3) Generate the global stiffness matrix by assembling ele-
ment stiffness matrices.

4) Apply the boundary conditions to solve the global matrix
equations for the solution.

The details of these steps are provided below.
Step 1:For 2-D problems, the common choices for element

type are triangles or quadrilaterals. In other words, each element
has either three or four nodes. The element matrix equations for
elasticity problems have the form

(1)

where , , and are, respectively, the element stiffness
matrix, the element nodal displacement vector, and the element
nodal force vector for element. In this paper, rectangular
elements, as shown in Fig. 1, are used. Details of how to compute
the element stiffness matrix is provided in Appendix I.

Step 2:For problems that can be described by partial differ-
ential equations but do not have closed form solutions, FEA has
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Fig. 1. The rectangular mesh element. Nodal numbers start from the bottom
left corner and increase on the clockwise direction.

been developed to find approximate numerical solutions on dis-
cretized problem domains. These solutions can then be interpo-
lated to form continuous solution spaces using shape functions.
The discretization process is performed by creating a mesh that
covers the ROI in the object.

A mesh is composed of elements that cover a contiguous area
in the problem domain. In this paper, all elements in the ROI are
rectangles of the same size. A nine-element mesh is illustrated
in Fig. 2. The numbers in the center of the rectangular elements
are element numbers and numbers close to nodes (intersection
points) are nodal numbers.

The mesh configuration can be represented by a connectivity
matrix, . The number of rows of equals the number of el-
ements, . For four-node elements (rectangles),has four
columns. The th row of records nodes associated with the
th element. For the mesh shown in Fig. 2, the first two rows of

are

(2)

Step 3:The matrix equation for a meshed system (for ex-
ample, the system described in Fig. 2) has the form

(3)

where is the global stiffness matrix; is the global nodal
displacement vector; andis the global nodal force vector. The
global displacement vector has the form

(4)

where and are the displacements in theand directions
for node 1, and so on. The global nodal force vector has the form

(5)

where and are the net force exerted on node 1 inand
directions, and so on. The global stiffness matrixis assembled
from element stiffness matrices. The assembly process can be
found in Appendix II.

Step 4:Displacement boundary conditions are usually speci-
fied for the elasticity problems in our applications, and a penalty

Fig. 2. A nine-element mesh composed of rectangular elements with uniform
size. Numbers in the center of the rectangular elements are the element numbers
and numbers close to nodes (intersection points) are the global nodal numbers.

approach [41] can be used to solve (3). The details of the penalty
approach is provided in Appendix III.

B. The FEA Approach for Solving an Inverse Problem of 2-D
Continua

Soft tissues can generally be considered as incompressible
media [33]. Hence, the Possion’s ratio can be assumed to be a
constant that is close to 0.5 (0.49, for instance) throughout the
ROI. With this assumption, matrix in (24) is same for every
element if all elements have the same aspect ratio (which is true
in this paper since the mesh is composed of the elements with
same size).

In the element-to-global stiffness matrix assembly procedure
described in Section II-A, each component of (i.e., the
product of the element Young’s modulus and a constant) is ac-
cumulated onto the global stiffness matrix. Hence, each compo-
nent of the global stiffness matrix is a linear combination of the
Young’s modulus of each element. In other words, the global
stiffness matrix can be written as

(6)

(7)

where are constants.
From (3), the left-hand side of the system matrix equation is
. In Young’s modulus reconstruction, the displacement dis-

tribution is estimated with tissue motion tracking techniques.
In other words, is a “known” vector. Performing the matrix-
vector multiplication

...

...

(8)
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Since is a linear combination of [see (7)], each compo-
nent of the resulting vector on the right-hand side of (8) is also
a linear combination of . Or

...

...

(9)

The right-hand side of (9) can be written as a product of a
matrix and a vector. Or

(10)

where is a -by- matrix;
is the Young’s

modulus vector. Now, (3) can be rewritten as

(11)

Recall from the global stiffness matrix assembly procedure,
provided in Section II-B, that the component
of the local stiffness matrix of elementis accumulated to the

th row and th column of the global stiffness matrix, or
. When performing the multiplication of [see (8)],

is multiplied with . The product is then accumu-

lated to the th component of the resulting vector. Hence,
is a summand of the th row and th column com-

ponent of the matrix . Based on this observation, the matrix
can be assembled from the element stiffness matrix using the

following procedure.

1) Initialize a -by- null matrix.
2) For element , generate a local variable number to global

variable number conversion index vector defined in
(26).

3) Accumulate to for and
.

4) Iterate 2 and 3 for all elements.
Similar to solving forward elasticity problems with (3), the

Young’s modulus reconstruction problem can be solved from
(11) were is an -by- matrix. Usually, and (11)
defines an overdetermined set of equations. The common tech-
nique for solving an overdetermined linear equation set is to
convert it to a least-square problem [42]. The conversion can
be done by multiplying both sides of (11) by

(12)

Since ( ) is an -by- matrix, can be solved by the
following equation

(13)

The application of this method under practical constraints is
provided in the next subsection.

C. Practical Concerns

1) Necessary Measurements:Equation (3) implies that
there is an unstressed state to which the object returns when all
external forces are removed from the object. Then, the external

forces (e.g., gravitational force, atmospherical pressure, and
compressional force) are exerted on the object. The displace-
ment is measured between the unstressed state and the state
with external load. In reality, however, the geometrical distri-
bution of the object in the unstressed state is unknown. Hence,
(11) [which is derived from (3)] cannot be used directly to
solve the inverse problem. Fortunately, if the object is assumed
to be a linear elastic body for small incremental deformations,
then this problem can be solved.

Assume there are two loading states of the objectand .
In , the object can be described by

(14)

where is the object displacement between the natural state
and ; is the compressional load measured in. In ,
the object can be described by

(15)

Note that is state independent given the linear elastic body
assumption.

Subtracting (15) from (14), we find

(16)

where and . Replacing
(3) with (16), the derivation introduced in Section II-B still
holds. (16) states that three measurements, namely,, ,
and , are necessary for Young’s modulus reconstruction.

2) Young’s Modulus Reconstruction With Partial Boundary
Conditions: Recall that (11) defines an over-determined set
of linear equations. This means that only a subset of (11) are
needed for inverse solution. Let be a matrix that is formed
from a subset of rows from , and be the force vector
formed from the corresponding subset of. As long as ( )
is invertible, a unique inverse solution can be obtained from

(17)

This property can be used to relax the force boundary conditions
for the inverse problem.

Under typical conditions a subregion of the tissue under study
is observed. A mesh can be created to cover an ROI which
is a subset of the field of view. Only one side (the surface of
the tissue) of the boundary force distribution can be measured
with ease with a force sensor array. With the example shown in
Fig. 2, let us assume that the compressional force can be mea-
sured along the top side (nodes {13, 14, 15, 16}). and
are determined by the following rule:select all equations from
(11) involving all interior nodes of the mesh and all nodes ex-
cept the outer most two for which the force measurements are
made. With the example shown in Fig. 2, the selected nodes are
{6, 7, 10, 11, 14, 15}. The related subset of the matrix equations
include rows {11, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30} of
(11).

It is difficult to mathematically prove that the equation se-
lection rule described above always provides invertible ,
however, it is easy to test whether is invertible given a
mesh configuration. From the variety of mesh configurations
that have been tested, the equation selection rule described
above always provides invertible .
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3) The Size of Matrix: The size of the matrix can be
a problem if it is assembled as a dense matrix. For example,
if the mesh has 100 100 elements, then there are total of

10 201 nodes. The size of is 20 402-by-10 000,
or 204 020 000 components. Representing each component
as double precision floating point numbers and storing this
dense matrix requires about 1.52 GB of computer memory.
With current computer technology, storing such a large matrix
may not be a problem. However, calculating is
impractical.

Fortunately, is a sparse matrix. Recall that each row of (3)
describes the behavior of a node, and there are a maximum of
four elements related to one node. Thus, the maximum nonzero
components of a row in is four.

The number of nonzero components offor a 100-by-100
element mesh is in fact 80 000. Using the sparse matrix features
provided by MATLAB, this can be stored with about 1MB of
memory. Compared with dense matrix storage, this is a 1600:1
reduction in memory requirement. Using a 750-MHz Pentium
III PC, can be computed in about 20 s. Note that
although the discussion is based on, same conclusion can be
drawn for .

III. RESULTS

A. Solving the Forward Problem With Ideal Input

First, we simulated an object for which the forward problem
was solved. The dimension of the simulated object was
40 40 2 ( in millimeters).
Young’s modulus distribution of the object is shown in Fig. 3.
The Young’s modulus of the background was 15 kPa which
approximates the stiffness of normal glandular breast tissue
[36]. There were two 10-mm-diameter targets in the object that
simulate lesions. The upper target was three times stiffer (45
kPa) than the background and the lower target was three times
less stiff (5 kPa) than the background.

A mesh was created for this object with 160 elements in both
horizontal and vertical directions. The total number of elements
was . The size of each element was 0.25 mm

0.25 mm. To produce a realistic estimate of boundary force
values, we assumed plain stress conditions for the compression.
The Possion’s ratio of 0.49 was used (incompressible media).
The displacement boundary conditions were assigned such that
the displacement of bottom side of the object was zero and the
top side of the the object was 0.8 mm simulating a 2% compres-
sion of the object.

Using the forward FEA method introduced in Section II-A,
we calculated the displacement distribution and the force distri-
bution along top and the bottom sides of the object. Using the
displacement distribution, strain in both the horizontal direction
( ) and vertical direction ( ) were calculated and shown in
Fig. 4(a) and (b), respectively. With the plain stress assumption,
the following relationship holds . The force
distribution on the top and bottom sides of the object are shown
in Fig. 5(a) and (b), respectively. Note that the forces on the top
side are all negative since the direction of the applied force is
pointing vertically down. As shown in Fig. 5, the magnitude of
force on the outer most nodes are half of the magnitude of the

Fig. 3. The Young’s modulus distribution for the simulated object. The units
of the color bar are kPa.

(a)

(b)

Fig. 4. Strain images obtained from the forward FEA calculation for the object
illustrated in Fig. 3. (a) Horizontal strains . (b) Vertical strains .

force on their adjacent nodes since the area of support for the
outer most nodes is half that of the inner nodes. With the same
surface pressure, the exerted force is half the magnitude.
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(a)

(b)

Fig. 5. The boundary force distribution obtained from the forward FEA
calculation for the object illustrated in Fig. 3. (a) Force on the top side.
(b) Force on the bottom side.

B. Solving the Inverse Problem With Ideal Input

To test the modulus reconstruction technique we used the re-
sults of the forward problem calculations, but, in effect, dis-
carded nonessential information. The only input to the inverse
(modulus distribution) computation were the ideal displacement
distribution over a (sub-)ROI and the force distribution at the
top (compression) surface generated by the forward solution.
The sub-ROI was 30 mm 30 mm and a new mesh was created
to cover that area. An illustration of the meshed areas for the
forward simulation and the inverse reconstruction is shown in
Fig. 6.

Fig. 7 shows the result of the Young’s modulus estimation.
The standard deviation of the relative error in the reconstructed
Young’s modulus distribution is 2.0 —a nearly exact
reconstruction is obtained. This result is encouraging since it
shows that the Young’s modulus estimation method introduced
above is a valid approach and confirms that the “partial force”

Fig. 6. An illustration of the meshed areas for the forward simulation and the
Young’s modulus reconstruction.

Fig. 7. The reconstructed Young’s modulus image using the ideal (noise-free)
displacement and force boundary conditions.

boundary condition is sufficient to estimate the modulus
distribution.

In the above modulus estimation simulation, the size of the
elements was the same as that used in the forward simulation.
The small elements provide high spatial resolution. However, it
is not likely that such high spatial resolution can be achieved
under all practical conditions. In the next simulation, we in-
creased the size of the elements to 1 mm1 mm. In other
words, we blurred the spatial sampling by a factor of 4. Fig. 8(a)
shows the “true” modulus image of the same object. The “true”
modulus value of each element were calculated by averaging the
16 modulus values in the corresponding area of the finer meshed
object. The inverse problem was solved using the exact displace-
ment and force from the forward simulation results produced by
the finer mesh. The result of the modulus estimation is shown
in Fig. 8(b). The relative difference between Fig. 8(a) and (b)
is shown in Fig. 8(c). The mean and standard deviation of the
image shown in Fig. 8(c) are and 17.8%, respectively.
The small mean value suggests that the modulus estimates are
unbiased. However, the standard deviation value shows that the
reconstructed modulus image using larger element size can be
noisy. Since the modulus estimates are unbiased, a simple spa-
tial averaging can improve the visual effect of the reconstructed
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(a) (b)

(c)

Fig. 8. Simulation results using the larger element size. (a) The ideal decimated modulus image. (b) The reconstructed modulus image using the largerelement
size. (c) The relative difference between (a) and (b) measured in percentage,mean = �1:25%, std = 17:8%.

modulus images at the expense of further reducing the spatial
resolution.

C. Modulus Estimation With Noisy Displacement and
Boundary Force Estimates

Inevitably, there is noise in the displacement and boundary
force estimates that are used in modulus estimation. Hence,
it is necessary to study the effect of noise in the input data
on the resulting modulus estimates. To avoid the difficulty
of analytically deriving the noise relationship between input
data and final outcome, we rely on numerical simulation.
The forward solution shown in Figs. 4 and 5 was used as
the ideal displacement and boundary force distributions. The
inverse simulation was based on the mesh configuration that
produced the result shown in Fig. 8. Noise, modeled as zero
mean white Gaussian random processes [43],1 was added to

1Bilgen et al have shown through simulation that the noise in displacement
estimates is Gaussian distributed. However, the spectrum of the noise is
not shown in their work. The spectrum of noise is assumed to be white
as an approximation.

both the ideal displacement and boundary force distributions. A
range of the standard deviations (noise) were used to study the
relationship between noise power and the modulus estimation
error. For each predetermined level of noise, 100 realizations
of (noisy) displacement and force distributions were generated
and the object modulus distributions were reconstructed.

The modulus estimation error is defined as the difference be-
tween the “true” modulus distribution [Fig. 8(a)] and the esti-
mated modulus distribution with noise present in the input data
(force boundary condition and displacement distribution). The
relative mean and the relative standard deviation of the error
were calculated from the outcome of all 100 realizations of noise
fields. The simulation results are shown in Fig. 9. The standard
deviation of the noise added to the boundary force distribution
is 5% of the mean ideal force in Fig. 9(a) and (b) and 10% in
Fig. 9(c) and (d). Fig. 9(a) and (c) shows the relationship be-
tween the standard deviation of the displacement error and the
mean relative modulus estimation error. Fig. 9(b) and (d) shows
the relationship between the standard deviation of the displace-
ment error and the standard deviation of the relative modulus
estimation error.
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(a) (b)

(a) (b)

Fig. 9. Modulus estimation performance curves. (a) Standard deviation of the error in displacement versus the mean relative error in modulus estimates resulting
from a 5% standard deviation in the “measured” force. (b) Standard deviation of the error in displacement versus standard deviation of the relative error in modulus
estimates resulting from a 5% standard deviation in the “measured” force. (c) Standard deviation of the error in displacement versus the mean relative error in
modulus estimates resulting from a 10% standard deviation in the “measured” force. (d) Standard deviation of the error in displacement versus standard deviation
of the relative error in modulus estimates resulting from a 10% standard deviation in the “measured” force.

Comparing Fig. 9(a) with Fig. 9(c) and (d), we found that the
modulus estimation error is not very sensitive to the errors in
the boundary force measurements. However, it is very sensitive
to errors in the displacement measurements. When the standard
deviation of the displacement error exceeds , the
modulus estimation becomes biased, as shown in Fig. 9(a)
and (b), and the noise in modulus estimation starts to increase
rapidly. Note that the units in the horizontal axis of all plots
in Fig. 9 are mm. To make the results independent of the
actual object dimension, we re-plotted results in Fig. 10. In
Fig. 10 the horizontal axis is changed to standard deviation of
relative strain error. From the plots shown in Fig. 10, we can
see that when the noise in the displacement estimates causes
more than 1% strain error, the quality of modulus estimates
starts to degrade rapidly.

IV. DISCUSSION

The derivation in Section II-C2, shows that the boundary
conditions for the inverse problem with the proposed method
are less restrictive than those of the forward problem. In
the forward simulation, boundary conditions that describe all
sides of the meshed object are required to solve (3) for the
displacement distribution and the boundary force distribution.
In modulus reconstruction, however, only the sub-ROI of the
object needs to be meshed, and only partial boundary force
conditions need to be specified. This makes our approach more
practical and far easier to implement (experimentally) than
other methods.

In our method, the medium is assumed to be elastic. Possible
tissue viscous behavior is not accounted for in our model. With
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(a) (b)

(a) (b)

Fig. 10. Modulus estimation performance curves. (a) Standard deviation of the error in strain versus the mean relative error in modulus estimates resulting from
a 5% standard deviation in the “measured” force. (b) Standard deviation of the error in strain versus standard deviation of the relative error in modulus estimates
resulting from a 5% standard deviation in the “measured” force. (c) Standard deviation of the error in strain versus the mean relative error in modulusestimates
resulting from a 10% standard deviation in the “measured” force. (d) Standard deviation of the error in strain versus standard deviation of the relative error in
modulus estimates resulting from a 10% standard deviation in the “measured” force.

carefully designed methods for data acquisition, the viscous re-
sponse to the external compression can be negligible [36].

In Section II-C1 we also assume the elastic behavior of the
medium to be linear. This assumption only needs to be true be-
tween two states, and . Most human tissues have a non-
linear stress-strain relationship. Although the tissue can have
significant nonlinear behavior, we can restrict our analysis to
incremental deformations and forces as described in (16). Since
the incremental deformation betweenand is usually small
(less than 2%), the assumption of linear elasticity is reasonable.

For high accuracy FEA solutions to the forward elasticity
problem, the object is usually meshed with nonuniform size
and shape elements. The mesh has higher element density
near curved interfaces where the modulus changes value, but

this requires knowledge of the object geometry. In modulus
reconstruction, the internal geometry is unknown, so rectan-
gular elements are used. One may argue that it is possible
to first obtain a rough modulus reconstruction using uniform
elements, then re-mesh the object with nonuniform elements
and reconstruct modulus again for higher accuracy. To do so
requires higher accuracy displacement estimates in the regions
with higher element density. Since the displacement field is
usually estimated with uniform accuracy, this approach is likely
to fail.

To understand the effect of the noise in the measured dis-
placement and force distribution, we conducted a number of nu-
merical simulations. The results of these simulations, shown in
Figs. 9 and 10, provide an estimate of the required accuracy in
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input displacement and force data. We found that the method is
less sensitive to noise in the force measurements than to noise
in the displacement estimates. The size of mesh elements can
be adjusted to change the sensitivity to displacement estimation
errors. For a given displacement error, larger mesh elements re-
sult in smaller the strain error.

From Figs. 10(b) and (d), we observed that the modulus es-
timates obtained from noisy displacement and force estimates
are also noisy (22% relative errors). However, since the modulus
contrast between normal and cancerous tissues is usually large
(greater than 100%) [36], the modulus image contrast-to-noise
ratio for cancerous lesions will still be high.

We cannot prove that the inverse problem has a unique solu-
tion from physical principles. However, our method provides a
unique solution algebraically. For the simulations that we have
conducted, when there is no noise in the input data, the solution
that we obtained is the same (within the numerical processing
errors) as the Young’s modulus distribution that we specified for
the object (see Fig. 7 and Section III-B). With the added noise
(to both surface force and the displacement distribution), our
method generates solutions that are close to the true Young’s
modulus distribution(see Fig. 9 and Section III-C). This sug-
gests that our method is stable and robust. Since we lack the
necessary equipment to simultaneously measure surface force
and the displacement distribution and, therefore, cannot test our
method experimentally. This will be the subject of future effort.

FEA treats 2-D elasticity problems as special cases of a gen-
eral three-dimensional (3-D) problem. The choice of these spe-
cial cases are either plain strain (elevational strain is zero) or
plain stress (elevational stress is zero). With the plain strain
assumption, the external force is assumed to be exerted on a
one–dimensional boundary, and it is difficult to relate such a
load condition to reality. With the plain stress assumption, the
object has finite thickness, and the calculated boundary force
can be more easily related to actual measurements obtained on
a 2-D surface.

Tissue deformation is 3-D in nature. However, we have found
that in vivo breast, for example, can be deformed such that the
motion perpendicular to the image plane is small. Thus, a 2-D
description of motion provides a reasonable approximation to
the plane strain condition. However, force measurements are
more easily related to the plane stress condition, and with this
assumption the resulting modulus estimates will have limited
accuracy. To overcome this limitation, we need to extend our
approach to 3-D. Extending 2-D modeling to 3-D is relatively
straightforward with FEA methods.

The examples and discussion of displacement estimation
techniques relate to our work in using ultrasound to track tissue
motion. There is also a growing body of work where magnetic
resonance techniques are used for estimating tissue elasticity
[44], [45]. The modulus reconstruction technique should be
applicable in that work as well.

V. CONCLUSION

A new approach for estimating the modulus distribution from
noninvasively determined force and displacement estimates is

reported. Simulations demonstrate that the modulus distribution
for an ROI can be determined from force measurements on a
single surface and displacement estimates within that ROI. The
accuracy in force and displacement estimates required with this
approach are also estimated with simulations. These results sug-
gest that moduli ofin vivo tissues can be estimated with rea-
sonable accuracy with minor modification to current clinical
imaging systems.

APPENDIX I

In Fig. 1, nodes are locally numbered.2 The element nodal
displacement vector for the rectangular element has eight com-
ponents and can be written as

(18)
where and are the displacement components in the
and directions of the first node, and so on for the rest of the
components; is the matrix or vector transpose operator. The
element nodal force vector also has eight components and can
be written as

(19)
The element stiffness matrix can be computed as [40]

(20)

where is the element thickness, is the material property ma-
trix, and is the displacement to strain mapping matrix. For ex-
ample, with linear elasticity problems and assuming plain stress

(21)

where and are the Young’s modulus and Possion’s
ratio of element , and and are the element width and height.
For rectangular elements, the displacement to strain mapping
matrix is

(22)

2The number starts from the lower left corner of the element and increases in
the clockwise direction. Note that other numbering methods can also be selected
as long as the connectivity matrix (introduced in Step 2) is created with the same
numbering scheme for all elements.
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where , are shape functions. The shape functions
are usually selected to perform bilinear interpolations that have
the form

(23)

The representation of the element stiffness matrix (24) can
be obtained by substituting (21)–(23) into (20) and performing
the double definite integration. For convenience in deriving the
inverse (modulus estimation) problem, the element stiffness ma-
trix can be written as

(24)

where is an 8-by-8 matrix in which each component is a func-
tion of the aspect ratio ( ) and Possion’s ratio of the rectan-
gular element.

APPENDIX II

Following is a description of the global stiffness matrix as-
sembling process.

1) Initialize a -by- null matrix (all zero entries), where
equals the total degrees of freedom of the system or

(25)
For the mesh shown in Fig. 2, .

2) For element , generate a local (element) variable number
to global (system) variable number conversion index
vector

(26)

where is the row and first column entry of the
connectivity matrix , and so on. For the system shown
in Fig. 2, the index vector for the first element is

(27)

3) Accumulate to for and

( is the th row th column component of

matrix ; is the row column com-

ponent of matrix ; is the th component of the index
matrix).

4) Iterate 2 and 3 for all elements.

APPENDIX III

The displacement boundary condition can be defined as
, where is a vector that is composed of a subset

of the components of the global nodal displacement vector;
is a known constant vector that specifies the nodal boundary

displacement. For example, a common displacement boundary
condition for the object meshed by our 9-node example shown
in Fig. 2 is to compress the top side downward 1% of the
total height of the object while the bottom is fixed vertically.
This example displacement boundary condition can be defined
as and

,
where is the height of the object. The penalty approach can
be expressed as the following seven steps.

1) Initialize the global force vector as a null vector.
2) Select a large number(a choice for is

as suggested by Chandrupatla [41].
3) According to , set the corresponding to

( for
the given example).

4) According to , add to the corresponding diagonal
component of (for our example, these diagonal compo-
nents are , , , , , , ,
and ).

5) Solve for .
6) Calculate reaction force .
7) Replace with .
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the near future,
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and timely.
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A new mode of imaging with ultrasonography (US) is under develop-
ment in several laboratories around the world. This technique allows
estimation of some measure of the viscoelastic properties of tissue. The
information displayed in the images is a surrogate for that obtained
with manual palpation. Fundamental concepts in elasticity imaging
include stress, strain, and the elastic modulus; strain imaging has re-
ceived the most attention from researchers. A system for elasticity im-
aging is under development that produces images of mechanical strain
in real time by means of a freehand scanning technique. This system is
integrated into a clinical US system without any external equipment
and involves software changes only. Data obtained with this system
demonstrate that the relative stiffness of many fibroadenomas changes
as they and the surrounding tissue are deformed. At elasticity imaging
of in vivo breast lesions, invasive ductal carcinomas appear, on average,
more than twice as large on the elasticity image than on the B-mode
image, but fibroadenomas and cysts are nearly equal in size on the two
image types. The usefulness of this technology and the new informa-
tion it provides suggest that it might soon be available on commercial
US systems.
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Introduction
It is the experience of many that palpation, press-
ing on the surface of soft tissue in an effort to
“feel” abnormalities, is a commonly used diag-
nostic tool. This tool has been used for thousands
of years and is the primary diagnostic tool for
some diseases. Examples include breast self-ex-
amination for sensing breast “lumps” and digital
rectal examination for prostate cancer. Palpation
is known to be subjective, and it lacks sensitivity
to small abnormalities that are deep beneath the
skin surface.

Improving sensitivity and reducing the subjec-
tivity of palpation could have a significant impact
on breast cancer prognosis. Breast cancer is the
second-leading cause of cancer deaths in women.
Over 200,000 new cases of invasive breast cancer
are expected in the United States this year alone.
It is anticipated that approximately 40,000 wom-
en in the United States will die of breast cancer in
2003. The prognosis for breast cancer patients is
best when the disease is detected at an early stage.
Specifically, 5- and 10-year survival statistics are
best when cancer is noninvasive (1) and is less
than 1 cm in diameter (2). Improvements in
mammography have resulted in improved detec-
tion of breast lesions, and mammography can al-
low detection of smaller tumors in young women
than either breast self-examination or clinical
breast examination (3). However, mammography
is not infallible. Approximately 15% of palpable
breast cancers are not detectable with mammog-
raphy, and this number is likely higher in younger
women (4). A combination of clinical palpation
with either mammography or ultrasonography
(US) has been shown to significantly increase the
sensitivity and specificity of breast cancer detec-
tion (5).

One of the greatest difficulties in mammogra-
phy is imaging the radiographically dense breast.
Unfortunately, women with mammographically
dense breasts have a risk of breast cancer that is

1.8–6.0 times greater than that of women the
same age with little or no mammographic density
(6). Small lesions become much more difficult to
detect when obscured by dense connective tissues
and ducts. Several recent studies have demon-
strated that US has higher sensitivity for breast
cancer detection than mammography alone (7),
mammography combined with physical examina-
tion (7,8), or mammoscintigraphy (9). Further-
more, the sensitivity of mammography decreases
significantly with increasing mammographic den-
sity (7,10). Hormone replacement therapy re-
duces the sensitivity of x-ray mammography (11)
and increases the need for alternate diagnostic
tools.

In an effort to improve the sensitivity of palpa-
tion and provide quantitative measures of “pal-
pable,” research groups around the world are ac-
tively working toward imaging technologies that
display quantitative maps of “tissue stiffness.”
This article reviews the physics of palpation and
uses that information to describe the limitations
of palpation. That basic physical understanding is
then used to describe the various approaches to
these imaging technologies. The emphasis then
turns to elasticity imaging systems and the devel-
opment of an elasticity imaging system that is
implemented on a commercial US system and
displays real-time elasticity images with freehand
scanning. Results of preliminary tests of the use-
fulness of that system for diagnosing breast ab-
normalities are then described.

Previous reviews of elasticity imaging with US
are available (12,13). This article updates those
prior reviews and emphasizes a specific real-time
elasticity imaging system and results obtained
with that system.

Physics of Palpation
An understanding of how palpation works can be
obtained by examining the basic physics of apply-
ing an external deformation to an object. Begin
with a simple model of forces and deformation. A
standard concept presented in introductory phys-
ics is the elastic deformation of a simple spring (a
one-dimensional [1D] object) due to a known
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applied force. Figure 1 illustrates the typical
simple experiment to study elasticity. A known
mass suspended from a simple spring results in a
measurable elongation of that spring. Suspending
a different known mass results in a different elon-
gation of the spring. Each mass in the standard
gravitational field of the earth places a known
force on the spring. The difference in these forces
and the difference in the elongations of the spring
due to those forces can be combined by using
Hooke’s law to estimate the spring constant, k,
which is characteristic of the spring and quantifies
its “stiffness.”

To extend the concept of force and deforma-
tion to a three-dimensional (3D) object, consider
separately the forces and resulting displacements.
The analysis will be simplified by assuming
that the material is homogeneous and isotropic
(meaning that the material properties are uniform
in composition without any directional depen-
dence in elasticity). Ignore the class of forces,
called body forces, that act on all volume elements
of the material (such as gravity and inertia). The
class of forces to consider are called surface forces
because they have units of force per unit area and
can be viewed as acting on a surface element of

the object. That surface element is not necessarily
on the exterior boundary of the object, but can be
a surface of an arbitrary interior volume element.

The orientation of that surface is described by
a vector that is perpendicular to the surface ele-
ment (a normal vector); thus, a 3D coordinate
system (xi, i � 1, 2, 3 or x1, x2, x3) is required to
describe the normal vector. A force acting on that
surface element has a magnitude and direction
(force is a vector quantity), and the direction of
that force is not necessarily perpendicular to the
surface element. Thus, to describe the direction
of the force vector also requires a 3D coordinate
system (yj, j � 1, 2, 3). To maintain generality
and simplicity (to obtain principle components)
in the description of the surface force, two sepa-
rate 3D coordinate systems are used (xi and yj).
Collapsing the arbitrary surface element to a
point, we obtain a “stress tensor.” A tensor is a
generalization of the concept of a vector; tensor
calculus is used to study the derivatives of vector
fields. The stress tensor, �ij, is a 3 � 3 matrix cor-
responding to the nine combinations available by
combining the two independent 3D coordinate
systems of the force and the surface element on
which it acts.

Similarly, consider the displacement of a vol-
ume element acted on by an external force. If the
motion does not involve a change of volume or
shape of the object, the motion is termed rigid
body motion. On the other hand, if the object is
deformed (changes shape or volume) as a result of
the external force, the description of motion is
again more complex. A 3D coordinate system is
required to describe the motion in space. To
maintain generality and simplicity (to obtain prin-
ciple components) in the description of the gradi-
ents (spatial rate of change) of that deformation
(strain is the spatial rate of change of displace-
ment), another 3D coordinate system is required.
The strain tensor, �kl, is thus another 3 � 3 matrix
corresponding to the nine combinations available
by combining these two independent 3D coordi-
nate systems.

An equation to relate the nine-component
stress tensor to the nine-component strain tensor
is called a constitutive equation. The form of the
constitutive equation depends on whether a mate-
rial is a fluid (an ideal fluid with no viscosity or a

Figure 1. Introductory mechanics describes
the behavior of a spring supporting different
masses. Diagram shows how one spring would be
stretched to two different lengths by two different
masses. Hooke’s law describes this behavior and
can be used to characterize the spring under
small deformations. Newton’s second law
equates a force, F, with a mass, m, and an accel-
eration, a. A known mass suspended from a
spring exerts a known force due to the accelera-
tion of gravity. Hooke’s law relates the difference
in the stretch of the spring, �x, due to the change
of force, �F, resulting from suspending different
masses. The proportionality constant, k, charac-
terizes the stiffness of the spring.
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Newtonian viscous fluid), purely elastic (eg, an
idealized solid), or viscoelastic (neither purely
viscous nor purely elastic). In a purely elastic
(lossless) deformation, the stress is dependent
only on the strain: �ij � Cijkl �kl. This equation is
analogous to Hooke’s law for the 1D spring, but it
accounts for forces and deformations in all three
directions.

The quantity Cijkl is the “modulus tensor” of
elastic coefficients and is the equivalent of the
spring constant, k, used to describe the deforma-
tion of a spring. The four subscripts indicate that
four sets of 3D coordinate systems are required
for a general description of the relationship be-
tween the stress and strain tensors, and thus, Cijkl

has (34) 81 components. The stress and strain
tensors are symmetric and therefore each contains
at most six independent components. Therefore,
the modulus tensor for infinitesimal elastic defor-
mations is also symmetric and contains at most
36 independent components. By assuming a ma-
terial to be completely isotropic, it can be shown
(14) that the number of independent elastic coef-
ficients is reduced to two (called the Lamé con-
stants). A more detailed description of stress and
strain can be found in any text on continuum me-
chanics (eg, reference 15).

The elastic coefficients that describe the be-
havior of a material are absolute measures of in-
trinsic properties of the material. Estimating these
quantities requires measurements of stresses and
strains under well-characterized experimental
conditions. For example, the viscoelastic proper-
ties of many soft tissues under cyclic uniaxial
loading are found to depend on the strain range,
strain rate, measurement temperature, and so on
(16). It is often easier to simplify the experiment
and measure only components of the surface
stress distribution or the internal strain distribu-
tion. The drawback is that stress or strain alone is
a relative quantity and not intrinsic to the mate-
rial under study.

The basic physics of elasticity (stress and
strain) can be used to understand the limitations
of palpation. Engineers often use a computational
tool called finite element analysis to study the be-
havior of objects under external forces or defor-
mations. Finite element analysis was used to
simulate the stress and strain involved when de-
forming a uniform block containing a spherical
inclusion (Fig 2). The upper surface of the block
is uniformly displaced by 1% of the total height.
The lower surface is allowed to move freely later-
ally, and the sides have unrestricted motion. Fig-
ure 2 shows the distribution of stress and profiles
of that stress distribution. In palpation, the fingers
press on the tissue to deform it and then sense the

Figure 2. Palpation can be approximated with a simulation tool (finite element analysis). Left: Drawing
shows uniform displacement of the top surface of a block containing a spherical object. Center: Image shows
the axial stress distribution resulting from the displacement. Right: Plot shows profiles of the stress distribution
across the lines in the center image. A large variation in the stress profile is seen for the profile close to the
spherical object. This situation simulates location of the sphere near the surface of the block. As the profile
moves further away from the sphere, the variation in stress across the profile decreases, suggesting that the
sphere would be more difficult to palpate as it is placed deeper in the block.
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stress distribution that results. The simulation
shows that as the sphere moves further away from
the surface (profile further from the sphere), the
variation in stress across the profile decreases,
suggesting that the sphere would be more difficult
to palpate (less stress contrast available to the fin-
gers to sense) as it is placed deeper in the block.

In Vitro Tissue Studies
The most common approach to studying the vis-
coelastic properties of soft tissues is to sinusoi-
dally deform in vitro samples of tissue, measure
the force required to induce the deformation, and
study the phase relationship between force and
displacement. In vitro studies of the viscoelastic
properties of breast tissue (13,17) have demon-
strated several findings that are significant to elas-
ticity imaging (Table). First, for cyclic load-un-
load experiments, there is little phase delay be-
tween the sinusoidal deformation and response
(strain and stress) for compression frequencies
near 1 Hz. This shows that the energy required to
deform the tissue is nearly completely recovered
when the deforming force is released (nearly loss-
less deformation). Thus, in vitro breast tissue be-
haves as a nearly completely elastic medium at
these strain rates, and the viscous component can
be ignored. These deformation motion frequen-
cies are typical of that used in clinical US breast
examinations with compression.

Second, the stress-strain relationship for most
breast tissues is nonlinear, and the degree of non-
linearity varies with tissue type. (Materials with
linear stress-strain relationships exhibit stress that
is directly proportional to strain; that is, they ex-
hibit constant stiffness. Materials with nonlinear

stress-strain relationships change stiffness, most
commonly getting stiffer, as they are deformed.)
Third, the elastic moduli of breast tissue, ob-
tained from the slope of the stress-strain curves,
vary significantly among breast tissue types and
strain range. In summary, breast tissue is mostly
elastic for the strain rates likely encountered with
freehand scanning, object contrast is likely high in
strain and modulus images, contrast will likely be
different for different lesion types, and contrast
will likely change with increasing compression.

Imaging the Elas-
tic Properties of Tissue

Approaches to elasticity imaging can be classified
by the modality of the signal source (primarily US
or magnetic resonance [MR] imaging), the me-
chanical parameter estimated (eg, stress, strain, or
modulus), or a descriptor of the experimental
procedure (“dynamic” or “[quasi-]static” tech-
niques). The mechanical properties estimated
with these techniques are related. As described
earlier, stress and strain are mutually responsive
quantities, but they are not intrinsic material
properties. Images of stress and strain are maps of
a parameter relative to its surroundings (as a
mammogram maps the relative x-ray attenuation,
for example). Elastic moduli are intrinsic material
properties generally described with a matrix (as
described earlier), but for practicality experimen-
tal conditions are manipulated and material prop-
erties (such as incompressibility, homogeneity,

Elastic Moduli of in Vitro Breast Tissue at Two Different Strain Ranges
and Strain Rates

Type of Breast Tissue

Elastic Moduli by Strain Range and Strain Rate

5% Precompression,
10%/sec Strain Rate

20% Precompression,
20%/sec Strain Rate

Normal fat 19 � 7 20 � 6
Normal glandular tissue 33 � 11 57 � 19
Fibrous tissue 107 � 32 233 � 59
Ductal carcinoma in situ 25 � 4 301 � 58
Invasive ductal carcinoma 93 � 33 490 � 112

Note.—Ductal carcinoma demonstrates the largest difference between modulus
measurements under these two conditions. This result suggests that it has the
most nonlinear stress-strain relationship among the tissues studied.
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and isotropy) are assumed so that the size of this
matrix is reduced to one or two parameters.

Several research groups are developing tech-
niques for imaging the stress distribution. Most
notable among the stress imaging techniques is
the work from Wellman et al (18), who use a
piezoresistive sensor array (Tekscan, Boston,
Mass) coupled to a position-tracking system. This
system closely mimics the mechanics of palpation
and demonstrates a strong correlation between
the size of the lesion measured with the tactile
system and the lesion size measured following
resection. The performance for small lesions
(�10 mm) that are relatively deep (�10 mm)
remains to be seen. Also noteworthy is the work
of Sarvazyan (19), in which he attempts to solve
the inverse problem of determining the 3D modu-
lus distribution that causes the measured surface
pressure distribution.

Strain imaging has received the most attention
in elasticity imaging. The earliest implementa-
tions used M-mode acquisition and cross-correla-
tion to track tissue motion and study tissue elas-
ticity (20,21). In later studies, Doppler processing
techniques were used to track differences in mo-
tion (22,23), and “sonoelasticity imaging” soon
followed (24). The Doppler processing tech-
niques were the first “dynamic techniques” and
derived their data from US. “Static compression
elastography” is the most common approach to
strain imaging. Numerous groups are pursuing
US-based strain imaging, with efforts in algo-
rithm development (25–29), performance evalua-
tion (30–32), and clinical testing (33,34) (repre-
sentative citations).

The basic information derived in strain imag-
ing techniques is the relative tissue displacement.
An imaging system (typically US or MR imaging)
acquires (predeformation) data corresponding to
a map of tissue anatomy. A small deformation is
applied, either through an external compressor or
physiologic function (breathing, cardiac pressure
variations, etc), and another (postdeformation)
map of the anatomy is acquired. The displace-
ment field in the deformed tissue is estimated by
comparing these two maps of anatomy. Mechani-
cal strain is estimated by calculating the gradient
(the spatial rate of change) of the displacement
field. In US, the displacement along the acoustic
beam propagation (axial) direction can be esti-
mated far more accurately and with higher preci-
sion than that in the lateral or elevational direc-
tion (32).

An important aspect for clinical acceptance of
US strain imaging is the technique for deforming
the soft tissue between image pairs. Most phan-
tom experiments in the literature used motorized
compression devices and extensive fixtures. These
devices are not likely to gain clinical acceptance
because they either limit the locations where
strain imaging can be applied or are time-con-
suming to incorporate. Freehand scanning, in
which tissue is deformed with the surface of the
transducer, is desirable (33–35).

Developing a real-time strain imaging system
that allows freehand scanning is essential for clini-
cal usability. The strain imaging algorithm must
be computationally efficient, be insensitive to mo-
tion irregularities, and track tissue motion in two
dimensions (eventually three and four dimen-
sions). Block-matching (template-matching) al-
gorithms are widely used in image processing ap-
plications for tracking motion. The most notable
application is movie image compression algo-
rithms such as the Moving Picture Experts Group
(MPEG) format. The use of block matching in
US was initially reported by Trahey et al (36) for
blood flow estimation. Block matching is a good
candidate since it is simple in principle and is ca-
pable of tracking motion in two dimensions.
However, for strain imaging, the algorithm needs
to be modified to increase its computational effi-
ciency and insensitivity to decorrelation noise
(29). (Decorrelation is a measure of how similar
two signals are. That similarity is measured with
cross-correlation or surrogate measures of corre-
lation. Echo signals decorrelate when there is high
electronic noise or when there is large deforma-
tion of the tissue.)

There has been less attention focused toward
strain imaging systems than toward strain imaging
algorithms, data simulation, and performance
testing. Doyley et al (35) have reported their
progress in freehand elasticity imaging. Their sys-
tem lacked real-time feedback in the data acquisi-
tion process; nevertheless, they found that it is
possible to obtain good elasticity data with free-
hand scanning. Their rate of success was rela-
tively low, and significant pre- and postprocessing
were necessary to obtain accurate displacement
estimates.

The system reported by Garra et al (33) used a
modified mammography paddle with a hole cut
out to provide an acoustic window. This allowed
(relatively) easy correlation with the mammo-
gram. However, the acoustic data acquisition sys-
tem was crude. The system allowed scanning with
only a 5-MHz transducer—lower than the stan-
dard of its day (7.5 MHz)—and had significantly
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poorer performance than current systems. In ad-
dition, the digitization was external to the US
scanner, resulting in reduced electronic signal-to-
noise ratio and increased timing jitter in the ac-
quired echo signals. The increased jitter signifi-
cantly reduces the performance of displacement
estimates in strain imaging. The current system
used by that group incorporates a midrange US
scanner with a five-axis motor controlled com-
pression system (37). The first real-time elasticity
imaging system was developed for prostate imag-
ing (38). Data were acquired in a sector-shaped
scan from an endocavity transducer, and a 1D
tracking method was used. As a result, elasticity
image frame rates were quite high at the expense
of image quality.

The in vivo studies of strain imaging reported
by Garra et al (33) demonstrated that strain imag-
ing has merit in differentiating among solid tu-
mors in breasts. Their most significant finding
was that invasive ductal carcinomas are signifi-
cantly wider in strain images than in the corre-
sponding B-mode image. This difference is likely
due to the desmoplastic reaction that surrounds
this tumor type.

Modulus imaging has also been investigated,
and there are three primary approaches in the lit-
erature. The first approach estimates the shear
wavelength in tissue and from this directly esti-
mates the shear modulus of the tissue (39–41).
The other techniques require simultaneous mea-
surements of stress and strain and require as-
sumptions regarding the boundary conditions of
the experiment (42–46). Compared with strain

imaging, modulus imaging has lower spatial reso-
lution and higher noise, and the assumptions re-
garding boundary conditions can result in biased
estimates. However, estimating an intrinsic tissue
parameter, instead of the relative parameters esti-
mated in stress or strain images, makes this an
attractive approach.

There are also methods under development
that use acoustic radiation force to deform tissue
and study tissue viscoelasticity (47–49) with
promising results. Other novel approaches to de-
scribing the viscoelastic behavior of tissues, such
as those reported by Fatemi et al (50,51), are also
under investigation.

Early work in strain imaging demonstrated the
limitations of tracking motion in one dimension
and motivated the development of two-dimen-
sional (2D) and 3D motion-tracking algorithms
for elasticity imaging (27,28,52). Those studies
demonstrated that 1D tracking failed to correctly
track motion in a 3-cm-wide field of view with as
little as 0.6% compression, and motion-tracking
errors became increasingly worse with increased
compression. However, by using 2D tracking al-
gorithms that appropriately compensate for lat-
eral motion, high contrast-to-noise images of me-
chanical strain could be obtained with compres-
sions of more than 5% in phantoms (Fig 3). The
basic approach, called companding, was to use 2D
motion tracking to align (warp) either the pre- or
postdeformation data field prior to 1D cross-cor-
relation.

Figure 3. Images of the mechanical strain in the axial direction for a gelatin phantom with three cylinders
that are three times stiffer than the background. Top row: Strain images obtained with 1D tracking by using
cross-correlation. Bottom row: Strain images obtained with 2D companding (2D motion tracking). The ap-
plied deformation (top and bottom rows) from left to right is 0.6%, 1.2%, 2.4%, 3.6%, 4.8%, and 6.0% strain.
With 1D tracking (top row), lateral expansion (bulging) occurring with axial compression causes the echo A-
lines to not match and the echo signals to decorrelate. Two-dimensional tracking (bottom row) is able to track
the lateral as well as axial motion to allow acquisition of strain images with a higher contrast-to-noise ratio.
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Other early work also demonstrated the need
to control motion during elasticity imaging ex-
periments. The images in Figure 4 demonstrate
that it is essential to control the motion during
deformation, especially with regard to elevation
motion. A typical clinical US system acquires
echo data, nominally, from a plane of tissue. Any
out-of-plane motion of tissue will result in echo
signal decorrelation and reduced elasticity image
quality.

The key to obtaining high-quality elasticity
images is the quality of the motion-tracking algo-
rithm. Ultrasound radiofrequency (RF) echo sig-
nals, the same data used to form a B-mode image,
are used as a map of anatomy. Those same signals
are used to track the deformation of the anatomy.
The task is to accurately track the anatomic de-
formation with minimal uncertainty (displace-
ment estimate variance or covariance). A review

of many of the techniques used for tracking tissue
motion with ultrasound can be found in reference
53. A tutorial on the general topic of waveform
coherence and time-delay estimation can be
found in reference 54.

A review of the assumptions used in signal cor-
relation analysis can help one appreciate the dif-
ference between many motion-tracking algo-
rithms. A typical assumption in motion tracking
based on the time delay of ultrasound echo sig-
nals is that the deformation of the tissue is mini-
mal (or recoverable) within the echo signal seg-
ment being tracked. Another common assump-
tion is that the observation window (data segment
length) is large compared to the time delay. Thus,
a relatively long data segment is needed to avoid
ambiguous displacement estimates (referred to as
peak hopping). The plot in Figure 5 demonstrates
that with an RF echo segment as short as 3 mm
and with only 1.5% axial strain, there is obvious
echo signal decorrelation between the pre- and
postdeformation A-lines. However, the single

Figure 4. Images of a gelatin phantom with varying deformation (from left to right, 0.6%,
1.2%, and 2.4% axial strain). Top row: Images acquired with the top and bottom surfaces
slipping freely and with minimal elevational motion, as in Figure 3. Bottom row: Images ac-
quired near the edge (in elevation, perpendicular to the image plane) of the phantom, which
was bound in elevation at the bottom and slid freely at the top. As the phantom was de-
formed, the top slid out of the image plane in elevation, resulting in decorrelation of the echo
signals. Increasing the deformation caused greater decorrelation.
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large peak in the cross-correlation function plot-
ted in Figure 5 demonstrates that there is little
ambiguity in the time delay required to match
pre- and postdeformation signals.

Use of shorter RF echo segments in motion
tracking reduces the decorrelation within the echo

signal segment and increases the waveform coher-
ence (Fig 6). However, short data segments in-
crease the likelihood of time-delay ambiguity (eg,

Figure 5. (a) Plot of the predeformation (red dashed line) and postdeformation (solid blue line) data for a 3-mm
segment (140 RF samples) of the echo signals from the center of a gelatin phantom under 1.5% axial strain. The
postdeformation signal has been shifted in time to match the predeformation signal as closely as possible. The defor-
mation has caused decorrelation in the echo signals, which reduces coherence (cross-correlation coefficient � 0.87).
(b) Plot of the cross-correlation function comparing the predeformation and time-delayed postdeformation RF echo
signals. The single large positive peak suggests that there is little ambiguity in the correct delay required to match
these signals.

Figure 6. (a) Plot of the predeformation (red dashed line) and postdeformation (solid blue line) data for a 0.24-
mm segment (11 RF samples) of the echo signals from the center of a gelatin phantom under 1.5% axial strain. The
postdeformation signal has been shifted in time to match the predeformation signal as closely as possible. Little decor-
relation in the echo signals within this short echo segment results in high coherence (cross-correlation coefficient �
0.96). (b) Plot of the cross-correlation function comparing the predeformation and time-delayed postdeformation
RF echo signals.
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a one-wavelength segment of RF looks very much
like many other one-wavelength segments). Use
of multiple (usually adjacent) A-line segments
reduces the likelihood of ambiguity (Fig 7). Short
data segments also demonstrate the benefit of
interpolating (up-sampling) the RF echo signal.
The waveforms shown in Figure 6 illustrate that
waveform coherence would improve if time delays
of less than one sample were available. An alter-
native is to interpolate the correlation function,
but this requires a model for the functional form

of the cross-correlation function. If up-sampling
the RF echo signal can be justified, it reduces the
need for an accurate model of the cross-correla-
tion function when interpolating subsample dis-
placement estimates (Fig 8).

Figure 7. Plots of the predeformation (solid blue
line) and time-shifted postdeformation (dashed red
line) RF echo signals from five adjacent A-lines
(a–e) obtained near the center of a gelatin phantom
under 1.5% strain. Use of multiple short line segments
reduces decorrelation within the data segment and si-
multaneously reduces the ambiguity in time-delay
estimation.
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Development of a Real-
Time Strain Imaging System

Experience in developing motion-tracking algo-
rithms and experiments with phantoms and in
vitro tissues suggest criteria for a clinically viable
elasticity imaging system. First, the system must
track tissue motion in two dimensions (or three
dimensions, if available) for high contrast-to-
noise images (27,28). Second, the system should
use short 2D data segments (kernels) for motion
tracking to minimize decorrelation within the
data segments and to minimize time-delay ambi-
guity. Third, the system should provide real-time

elasticity images, as well as normal B-mode im-
ages, to allow the user to monitor the images be-
ing acquired and manipulate the transducer array
with freehand scanning, thus ensuring that the
tissue motion is suitable for forming high-quality
elasticity images. In addition, the data acquisition
technique should be similar to that currently used
in US to increase the likelihood of clinical accep-
tance. A large deviation from standard clinical
practice would likely receive a more skeptical as-
sessment by potential users than a subtle modifi-
cation to current practice.

Figure 8. Plots of the predeformation (red dashed line in a and c) and postdeformation (solid blue line in a and c)
data for a 0.24-mm segment of the echo signals at 1.5% axial strain acquired at a 36-MHz sampling frequency up-
sampled to 72 MHz (a, b) and 144 MHz (c, d). The postdeformation signal has been shifted in time to match the
predeformation signal as closely as possible. As the effective sampling interval is reduced, the integer time-delay error
is also reduced, allowing greater waveform coherence. (Correlation coefficients of 0.965 [Fig 6], 0.978, and 0.998
were obtained with 36-MHz, 72-MHz, and 144-MHz sampling, respectively.)
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A novel motion-tracking algorithm has been
developed and implemented on a clinical US sys-
tem (Sonoline Elegra; Siemens Medical Solu-
tions, Issaquah, Wash) (29). Phase-sensitive
(I-Q) echo data are processed internally in real
time on this system to estimate displacement and
strain. The system can use any of the linear-array
transducers available on the Elegra and is com-
patible with tissue harmonic imaging on that sys-
tem. The system displays B-mode and strain im-
ages side by side on the normal system display at
about seven frames per second. A region of inter-
est (ROI) is displayed in the B-mode image, and
displacement and strain are estimated for tissue
within that ROI. The size and location of the ROI
can be manipulated with front panel controls.
When scanning, the normal freeze and cine capa-
bilities of the system are available. When a se-
quence of data is acquired and stored (frozen),
online postprocessing capabilities allow the ROI
location and size to be modified, and other com-
mon tools such as modifying the gray-scale map-
ping are available. Initial tests of the elasticity im-
age noise and spatial resolution are found in refer-
ence 29. Spherical lesions as small as 2.4 mm in

diameter that are three times stiffer than the back-
ground were easily displayed. The protocol for
clinical testing of this system was approved by the
Humans Subjects Committee at the University of
Kansas Medical Center, where that initial work
was performed.

A critical issue in the development and use of
any imaging system is the achievable spatial reso-
lution for a given task. The ability to image a
3-mm-diameter sphere in a phantom is encourag-
ing. More important, those encouraging results
are corroborated by the ability to image small
structures in vivo. For example, images of an in
vivo 3-mm cyst are shown in Figure 9. Although
the ability to image small structures in vivo is
clearly demonstrated, the required contrast to
view objects of a specific size is unknown. Investi-
gations are under way to evaluate this through
contrast-detail analysis (55).

The ability to acquire and view long sequences
of elasticity images has provided the opportunity
to observe nonlinear elastic behavior of in vivo
tissues. Nonlinearity in the stress-strain relation-
ship of tissue was observed with in vitro breast
tissues (17) and was therefore expected with in
vivo tissues, but it was only recently observed
with the availability of a real-time elasticity imag-
ing system (34). Figure 10 shows an example of

Figure 9. B-mode (left) and elas-
ticity (mechanical strain) (right) im-
ages of an in vivo breast cyst 3 mm
in diameter show that small in vivo
structures are resolvable on strain
images.

Figure 10. B-mode (left) and strain (right) images of a typical fibroadenoma under different amounts of pre-
load (deformation): low preload (a) and increased preload (b). For both elasticity images, the average strain is
about 1.2%. The images obtained at low preload (a) were acquired with the US transducer just barely in con-
tact with the skin surface. At low preload, fibroadenomas are typically stiff relative to the surrounding glandular
tissue. As the preload increases (b), the contrast of the fibroadenoma on the strain image decreases and the
stiffness of the lesion appears nearly equal to that of the surrounding tissue.
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the implications of nonlinear elasticity in strain
imaging. At low preload (transducer barely in
contact with the skin surface and minimal pres-
sure applied), the fibroadenoma appears dark in
the strain image. As the preload is increased
(pressure applied with the transducer increasing
deformation), the strain image contrast of the fi-
broadenoma (its stiffness relative to the surround-
ing tissue) decreases. This behavior might explain
why others have found that some fibroadenomas
are not visible in single strain images (33).

One of the significant findings in prior clinical
trials of in vivo elasticity imaging (33) was that
the size of a breast lesion displayed in strain im-
ages, relative to its size in a normal B-mode im-
age, appears to be a significant criterion for differ-
entiating malignant from benign breast lesions.
Figures 11 and 12 show examples of the B-mode

and strain image pairs for a fibroadenoma and an
invasive ductal carcinoma, respectively. In each
case, the lesion is traced in the B-mode image and
that tracing is reproduced in the respective strain
image. The lesion boundary traced for benign
lesions has about the same size and shape in the
two image types. However, the lesion boundary
traced in B-mode images of invasive ductal carci-
nomas is much smaller than the lesion displayed
in the respective strain image. On average, the
area of these carcinomas displayed in strain im-
ages is three times larger than that in B-mode im-
ages (34). It is postulated (33,34) that the in-
creased size of carcinomas in strain images is due
to the desmoplasia that often surrounds invasive
ductal carcinoma.

To test the usefulness of relative lesion size for
differentiating between benign and malignant
breast lesions, five observers individually viewed a
set of image sequences from in vivo breast elastic-
ity imaging. Each observer selected the image pair
from a sequence (movie loop) that was most rep-
resentative of the B-mode and strain image pair
from that sequence. Each observer then traced
the outline of the lesion in each image type and
measured the width and height of the lesion in
each image. This was repeated for data from 97
movie loops of 55 unique lesions in 29 patients. A
plot of the average lesion area for each lesion
measured by the group of observers is shown in
Figure 13. These data are consistent with those
reported by others (33) and suggest that elasticity
imaging may be a helpful tool to improve the use-
fulness of breast US. If the ratio of lesion size in
strain images versus in B-mode images proves to
be a sensitive criterion for increasing confidence
of a benign diagnosis, the fraction of biopsy speci-
mens that prove to be benign tissue will likely be

Figure 13. Plot of lesion area measured on strain im-
ages versus on corresponding B-mode images for cysts,
fibroadenomas, and invasive ductal carcinomas. The
average results of five observers are plotted. Dashed
line � equal area on both image types, error bars �
standard deviations of the measurements.

Figures 11, 12. (11) B-mode (left) and strain (right) images of a fibroadenoma. The lesion is traced on the
B-mode image, and that tracing is displayed on the strain image. The size and shape of the lesion on the two
images are very similar. (12) B-mode (left) and strain (right) images of a scirrhous invasive ductal carcinoma.
The lesion is traced on the B-mode image, and that tracing is displayed on the strain image. The lesion is larger
on the strain image (right) than on the B-mode image (left).
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reduced at significant savings in health care ex-
pense and trauma to patients and their families
and friends.

Conclusions
Elasticity imaging is a relatively new technique for
studying the stiffness of tissue. The information
acquired with these techniques is similar to that
obtained with manual palpation, but elasticity
imaging is more sensitive and less subjective than
palpation. Further, the information is provided in
an image format so that it can be compared with
data from other image modalities and can more
easily be documented and shared with others.

Several interesting approaches to elasticity im-
aging are currently being investigated by research
groups around the world. Different approaches
provide different information about the viscoelas-
tic properties of tissue. Many of these approaches
emphasize the elastic properties of tissue due to
the techniques of data acquisition.

At least one method for elasticity imaging is
under development that produces images of me-
chanical strain in real time by using a freehand
scanning technique very similar to that of stan-
dard breast US examinations. The system is inte-
grated into a clinical US system without any ex-
ternal equipment and involves software changes
only. In vivo tests of this system have demon-
strated the ability to image small breast lesions
with confidence. It has also allowed visualization
of the effects of nonlinear elasticity of in vivo
breast tissues. Further investigations with this
system suggest that benign breast lesions are
about the same size and shape in B-mode and
strain images, but invasive ductal carcinomas
tend to be significantly larger in strain images
than in the corresponding B-mode images. This
fact suggests that elasticity imaging might in-
crease the usefulness of breast US and might be
offered in clinical US systems in the near future.
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Abstract
A set of three cubic one-litre phantoms containing spherical simulated lesions
was produced for use in comparing lesion detection performance of different
elastography systems. The materials employed are known to be stable
in heterogeneous configurations regarding geometry and elastic contrast ≡
(storage modulus of lesion material) ÷ (storage modulus of background
material), and regarding ultrasound and NMR properties. The materials mimic
soft tissues in terms of elastic, ultrasound and NMR properties. Each phantom
has only one value of elastic contrast (3.3, 4.6 or 5.5) and contains arrays of
1.6 mm, 2 mm, 3 mm and 4 mm diameter spherical simulated lesions. All
the spheres of a given diameter are arranged in a regular array with coplanar
centres. Elastograms of an array made with ultrasound allow determination
of the depth range over which lesions of that diameter and elastic contrast can
be detected. Two phantoms are made from agar-plus-gelatin-based materials,
and one is made from oil-in-gelatin dispersions. The methods for producing
the phantoms are described in detail. Lesion detection performances for two
ultrasound systems, both operating at about 7.5 MHz and focused at about
5 cm, were quantified with distinctions between the two systems demonstrated.
Neither system was capable of detecting any of the 1.6 mm lesions. Phantoms
such as these should be useful in research labs that are refining hardware and/or
software for elastography.

1. Introduction

Spherical lesion phantoms for use in testing the performance of ultrasound imagers have been
reported (Kofler and Madsen 2001). The production methods described there for producing
planar arrays of spheres have been adapted to produce the spherical lesion phantoms for
elastography which are the subject of this report.
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Two types of materials have been developed for producing temporally stable phantoms
with inclusions having a Young’s modulus that is different from that of the surrounding
background (Madsen et al 2003, 2005a, 2005b). These materials have been used to produce
a set of three phantoms, each containing arrays of spherical inclusions with diameters 1.6,
2, 3 and 4 mm. The elastic contrast has a single value for each phantom, and spheres of
each diameter are coplanar and arranged in a regular array. (Elastic contrast equals the ratio
of the storage modulus of the inclusion material to the storage modulus of the surrounding
background material. The storage modulus is the real part of the complex Young’s modulus.)
The elastic, ultrasonic and NMR properties simulate soft tissues. The elastic contrasts of
the three phantoms are 3.3, 4.6 and 5.5. These values are in the range of elastic contrasts
determined for in vitro breast tissue specimens. Krouskop et al (1998) found, at 1 Hz and
5% pre-compression, that the elastic contrast of invasive and infiltrating ductal carcinoma
relative to breast fat was 106 kPa/18 kPa ≈ 5.9, while relative to normal glandular tissue was
106 kPa/28 kPa ≈ 3.8; the elastic contrast of breast fibrous tissue relative to breast fat was
96 kPa/18 kPa ≈ 5.3 and relative to normal glandular tissue was 96 kPa/28 kPa ≈ 3.4. The
phantom elastic contrasts are also in the range of elastic contrasts in terms of shear storage
moduli for 85 Hz shear waves in in vivo MR breast elastography (Sinkus et al 2005), where
elastic contrasts (ratio of shear storage modulus of a lesion to that of the surroundings) vary
from about 2 through 5.5.

The primary purpose of this paper is to report the development of a novel type of phantom
useful for assessing the performance of elasticity imaging systems. Production techniques are
detailed and values of relevant physical parameters are given. The utility of the phantoms is
illustrated by comparing the performances of two different ultrasound elastography systems
based on simple human observer detectability of the spheres as a function of their diameter,
elastic contrast and their distance from the transducer (depth). It is reasonable that the utility
of such phantoms—perhaps with larger sphere diameters—could be extended to MR systems.

2. Materials

Two of the phantoms (1 and 2) were formed from mixtures of agar and gelatin, plus additives
to adjust ultrasonic and NMR properties and to prevent bacterial invasion. All dry weight
concentrations of components are uniform throughout each phantom except for the agar
and microscopic glass beads. The latter provide increases in ultrasonic attenuation and
backscatter. The greater the dry weight concentration of agar in the spheres relative to that
in the background, the higher the elastic contrast. Formalin provides for formaldehyde cross-
linking of the gelatin component resulting in thermal stability by raising the melting point to
over 60 ◦C. Preserving is done with Germall-plus R© (International Specialty products, Wayne,
New Jersey, USA).

The compositions of phantoms 1 and 2 are given in detail in table 1. The method of
production of the agar/gelatin materials has been described previously (Madsen et al 2005a).

The other type of material, used to make phantom 3, includes dispersions of different
concentrations of microscopic oil droplets in a gelatin matrix. Preservation and thermal
stability are again accomplished through the presence of Germall-plus R© and formalin.
However, the Young’s modulus is determined by the presence or absence of a dispersion
of microscopic safflower oil droplets (Hollywood brand, The Hain Celestial Group, Inc.,
Melville, New York, USA). The greater the concentration of oil, the lower the storage modulus
(real part of the complex Young’s modulus). The material forming the spherical inclusions
contains no oil droplets, while 50% of the volume of the surrounding background consists
of oil droplets. Also, there is a liquid surfactant (liquid Ultra Ivory R©, Procter and Gamble
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Table 1. Dry-weight per cents of the various components in the agar/gelatin phantoms (1 and
2). The weight per cent of 18 M� cm (doubly de-ionized) water is not shown since it just makes
up the remainder. The gelatin concentrations in the background and spheres are the same in the
agar/gelatin when glass beads are excluded; because of the significant difference in glass bead
concentrations between background and spheres, the weight per cent of gelatin, e.g., gelatin is
higher in the spheres than in the background. The purpose of the CuCl2-2H2O and EDTA tetra-Na
hydrate is to lower the NMR T1 to tissue-like values, and the purpose of the NaCl is to produce
tissue-like coil loading for MR (Rice et al 1998).

CuCl2- EDTA tetra- Germall Glass bead
Material Agar Gelatin 2H2O Na hydrate NaCl HCHO plus scatterers

Phantom 1 1.17 3.60 0.113 0.33 0.77 0.24 1.45 4.6
background
Phantom 1 3.60 3.77 0.119 0.34 0.79 0.25 1.49 0.7
spheres
Phantom 2 1.11 4.80 0.114 0.33 0.77 0.32 1.45 3.4
background
Phantom 2 3.44 4.92 0.116 0.34 0.79 0.33 1.49 0.75
spheres

Table 2. Weight per cents of components in the spheres of phantom 3 and in the gel
matrix surrounding the microscopic safflower oil droplets when oil is present (background of
phantom 3). When oil droplets are present, the volume of liquid surfactant equals approximately
1% of the volume of the gel matrix.

Gelatin Germall plus Formalin Glass beads

12.77 1.24 0.735 0.083

Company, Cincinnati, Ohio, USA) present in the background material having a volume of
surfactant equal to 1% of the volume of the matrix gel. The weight per cent of surfactant is
not shown in table 2 because it is not known how the surfactant is distributed between the
aqueous gel matrix and the oil droplets.

Details of the method of production of these oil-in-gelatin materials have been described
elsewhere (Madsen et al 2003, 2005b).

To minimize changes in mechanical or geometric properties due to osmotic effects in a
heterogeneous phantom such as a spherical lesion phantom, it is important that the composition
of the spheres be the same as that of the gel matrix surrounding the microscopic oil droplets
in the background material. Table 2 shows the composition of sphere and matrix materials.

3. Phantom geometry and production

All three of the phantoms have the geometry depicted in figures 1 and 2. The geometry is
such that each sphere is at least four times its diameter from its nearest neighbour to minimize
mechanical cross-talk1.

The procedure for producing a phantom has four overall steps. First, all spheres are made
from a single batch of molten material. Two-part acrylic moulds with opposing equal diameter

1 The ‘rule of thumb’ that mechanical cross-talk would be minimized when the distance to the nearest neighbour is at
least four times the diameter was suggested to us by Professor Jonathan Ophir of the University of Texas at Houston.
Except for 4 mm—or larger—diameter spheres, earlier elastography spherical lesion phantoms made in our lab also
had nearest neighbour distances greater than four times the diameter of included spheres.
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(a)

(b)

Figure 1. Diagrams showing the planar array of 3 mm and 4 mm diameter spheres (a) and of
1.6 mm and 2 mm diameter spheres in each phantom (b).

VIEW PARALLEL TO PLANES
CONTAINING EQUAL DIAMETER SPHERES

SEPARATION BETWEEN PLANES AT LEAST
4 X SPHERE DIAMETER

Figure 2. View of phantom with planes containing the centres of equal diameter spheres being
perpendicular to the figure. In use, the ultrasound scan planed is superimposed on one of these
planes.
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(a)

(b)

(c)

SIDE VIEW

VIEW FACING HEMISPHERICAL DEPRESSIONS

MOULD WITH TWO PARTS TOGETHER
TO FORM SPHERES

Figure 3. Diagrams of two-part moulds used to form twelve 4 mm diameter spherical inclusions:
(a) side view; (b) view facing hemispherical depressions; (c) two parts of the mould pressed
together to form 4 mm spheres.

hemispherical depressions are brought together after immersion in the molten material. Prior
to immersion, a thin layer of petrolatum is applied to all surfaces to assure release of the
spheres from the mould. One part of the mould has two alignment pegs projecting at opposite
corners on the same side as the hemispherical depressions. The other side has receiving holes
with the same diameter as the pegs. An example of these moulds is shown in figure 3.

The second step is to form sections A and E (figure 2) from one batch of the background
material. The same procedure is used to form both sections A and E. The mould components
for forming section A are depicted in figure 4. An acrylic plate with 3 mm diameter acrylic
hemispheres projecting from one surface is shown in the figure. A frontal view of the plate is
shown in figure 4(a) and a side view is shown in figure 4(b). Figure 4(c) shows the mould for
forming a 3 cm × 10 cm × 10 cm background section of the phantom when the acrylic plate
shown in (b) has been clamped onto its open side. The same clamp presses the constraining
acrylic plate (d) against the 25 µm thick polyvinylidene chloride film (Saran Wrap R©, The
Dow Chemical Company, Midland, Michigan, USA) which has been epoxied to the bottom of
the 3 cm deep square acrylic rim; the rim defines the lateral boundaries of section A. Acrylic
and polyvinylidene chloride film surfaces that will contact the molten background material
are coated with a thin layer of petrolatum. The 35 ◦C molten background material is poured
through the filling syringe barrel, and a syringe piston is inserted without trapping air bubbles.
(Note that the melting point of the petrolatum is about 45 ◦C.) A constant force is applied via
rubber bands to the piston causing the molten material to be under positive gauge pressure
during congealing. Then the clamped unit is rotated at 2 rpm around a horizontal axis until
congealing has been completed. The rotation step assures that gravitational sedimentation of
background components does not occur.
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(a)

(b)

(c)

(d)

Figure 4. Mould parts for forming background section A (figure 2) of the phantom. A frontal view
(a) and side view are shown of an acrylic plate with an array of equal diameter acrylic hemispheres
projecting from one surface. A C-clamp is used to clamp that acrylic plate to the second part of
the mould (c) along with bottom constraining plate (d) to define section A.

After congealing, the acrylic plate shown in figure 4(b) is removed leaving section A with
sockets in the background material into which spherical inclusions can be inserted. To bond a
sphere in a socket, a drop of molten background material is placed in the socket followed by
immediate insertion of the sphere.

Next, background sections B and D are made in a way equivalent to forming sections A
and E except that the polyvinylidene chloride film and constraining plate (figure 4(d)) are
missing leaving the bottom of the mould open. The B and D moulds are temporarily glued
with 5 min epoxy (Araldite 2012, Huntsman Advanced Materials Americas Inc., East Lansing,
Michigan, USA) to the completed sections A and E, respectively. In figure 5 is shown the
situation described for section B.

Then a second batch of molten background material is made and sections B and D are
filled, the syringe is inserted under positive gauge pressure, and the entire mould system is
clamped to a plate rotating at 2 rpm about a horizontal axis to allow congealing without
gravitational sedimentation.
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Figure 5. Moulds for production of background section B. Background section A has been
completed and the 3 mm diameter spheres have been implanted in its sockets (cross-hatching).
The upper bounding acrylic plate has 2 mm diameter acrylic hemispheres projecting downwards
to form sockets for the 2 mm diameter spherical inclusions.

Next, the 2 mm and 1.6 mm diameter spheres are glued into their sockets with molten
background material and background section C is produced. Sections A + B and D + E, in
their respective containers, are 5 min epoxied to a 1 cm thick square acrylic bounding mould
with their exposed background surfaces facing one another. Then a third component of molten
background material is introduced with 2 rpm rotation, etc.

After about 24 h the completed phantom is removed from its final containing vessel as
follows. The polyvinylidene chloride films are removed from sections A and E, and a knife
blade is passed around the boundary of the phantom separating it from the acrylic walls and
cutting the gel material projecting into the syringe barrels. Then the phantom is slid out of the
acrylic walls, submerged in safflower oil in a sufficiently deep container, and the container is
covered. The covering of the container will prevent long-term hardening of the safflower oil.

4. Physical properties of the materials

At the time that each batch of molten gel material was made for a phantom, test samples
were also produced for determination of storage moduli (real part of the complex Young’s
modulus), ultrasound propagation speed and attenuation and NMR relaxation times. Regarding
determination of storage moduli in a phantom, however, the most reliable method is to
employ test samples obtained by excising them from an auxiliary phantom having a cylindrical
inclusion made at the same time and of the same materials as those in the spherical lesion
phantom (Madsen et al 2005a, 2005b). Such cylinder inclusion phantoms were produced in
the case of phantoms 2 and 3, but not in the case of phantom 1.

Complete descriptions of the test samples and methods of measurement of properties have
been given previously (Madsen et al 1999, 2005a). The mechanical, ultrasound and NMR
properties of the components of the phantoms are given in tables 3 and 4.

The reason that an auxiliary cylindrical inclusion was not made in the case of phantom 1
is that at the time phantom 1 was made, we did not expect that the elastic contrast found using
isolated test samples might be different from that found using excised samples. Following is
evidence (not proof) that the value for the elastic contrast of phantom 1 in table 4 is reasonably
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Table 3. Mechanical, ultrasound and NMR properties at 22 ◦C of the materials composing the
spheres and backgrounds of the phantoms. Storage moduli for phantom 1 were measured using
small samples made at the time the phantom was produced. Storage moduli for phantoms 2 and 3
were measured using test samples excised from cylinder phantoms made at the same time and of
the same materials as the corresponding spherical lesion phantom. Storage modulus uncertainties
are standard errors (also called standard deviations of the mean) (Bevington 1969) unless a value is
less than 3% of the mean; in the latter case the uncertainty is taken to be 3% which is approximately
the day-to-day reproducibility for storage modulus determinations. Ultrasound uncertainties are
instrumental and NMR relaxation time ‘uncertainties’ result from curve fitting.

Ultrasound properties
NMR relaxation times

Component Storage modulus ± Propagation Attenuation coeff. ÷
identity standard error (kPa) speed (m s−1) frequency (dB cm−1 MHz−1) T1 (ms) T2 (ms)

Phantom 1 19.6 ± 0.8 1524 ± 1 0.32 ± 0.02 480 ± 1 66 ± 2
background
Phantom 1 107.2 ± 3.2 1528 ± 1 0.32 ± 0.02 443 ± 1 45 ± 1
spheres
Phantom 2 24.4 ± 0.7 1518 ± 1 0.46 ± 0.02 396 ± 1 59 ± 1
background
Phantom 2 112.2 ± 3.4 1518 ± 1 0.18 ± 0.02 488 ± 1 53 ± 1
spheres
Phantom 3 51.0 ± 1.5 1498 ± 1 0.34 ± 0.02 340 ± 20 111 ± 1
background
Phantom 3 170 ± 15 1547 ± 1 0.14 ± 0.02 1350 ± 40 290 ± 3
spheres

Table 4. Elastic contrasts (storage modulus of inclusion material) ÷ (storage modulus of
background material) for the three phantoms using the storage moduli in table 3. Uncertainties are
propagated from uncertainties given in table 3.

Phantom 1 Phantom 2 Phantom 3

5.5 ± 0.3 4.6 ± 0.2 3.3 ± 0.3

accurate. One month before production of phantom 1, a cylindrical inclusion phantom was
made using the same recipe for inclusion and background as in phantom 1 except that the glass
bead concentration in the cylindrical inclusion was eight times that in the spheres of phantom 1.
(The glass bead concentration was reduced in the phantom 1 spheres so that the spheres would
be more easily detected on B-mode images for alignment purposes.) For the cylindrical
inclusion phantom, the elastic contrast determined using isolated test samples differed by only
6% from that using samples excised from the phantom.

5. Apparatus providing for alignment of the ultrasound scan plane on a sphere plane
and for precisely controlled axial compressions

To optimize the alignment of the scan plane (plane of symmetry of the scan slice) on one of
the planes containing spheres of equal diameter and elastic contrast, the apparatus shown in
figure 6 was employed. The phantom is placed on an acoustic absorbing pad in a tank
containing safflower oil, the phantom being completely submerged in oil. A constraining
plate with a 10 cm × 10 cm square opening is attached to the bottom of the tank, and the base
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Figure 6. Apparatus used to align the ultrasound scan plane on a plane of spheres with equal
diameter and equal elastic contrast and also to allow precisely controlled axial compressions for
generating elastograms. See section 5 of the text for a detailed description of its use.

of the phantom is in the square opening, thus fixing the position of the phantom in the tank.
Then the transducer is mounted on a single unit for moving the transducer. The transducer fits
snugly into a slot in a square 1 cm thick horizontal compression plate and can be rotated about
a horizontal axis parallel to the scan plane via a screw and spring-loading apparatus. In the
case of the Aloka system, the compression plate was stainless steel with horizontal dimensions
17 cm × 17 cm; in the case of the Siemens system, the compression plate was acrylic and
13 cm × 13 cm. The oil tank can be rotated by hand about a vertical axis, and that rotational
degree of freedom plus the spring-loaded rotation apparatus allows angular alignment of the
scan plane relative to the plane of spheres. Finally, linear translations of the tank (and phantom)
can be made perpendicular to the plane of spheres. The two rotations plus the linear translation
allow alignment of the scan plane on the plane of spheres. B-mode imaging of the spheres
facilitates the alignment. In the case of the 1.6 or 2 mm diameter spheres, they may not be
detectable on B-mode images; in that case advantage is taken of the known distances between
adjacent sphere planes and the micrometer driven linear translation apparatus.

The two elastography systems existing in our ultrasound laboratory were compared
using the phantoms. Both systems employed linear arrays at comparable nominal frequency
and focus (Siemens Sonoline Antares with a VFX9–4 array and an Aloka SD 2000 with a
7.5 MHz linear array). Precisely controlled axial compression of the phantom is accomplished
by stepper motor or micrometer driven translations of the mount for the transducer holder.
In the case of the Aloka system, elastograms were computed from images at 3.9 mm of
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Figure 7. Depth ranges in which spherical lesions were detected on elastograms by human
observers using phantom 3 with elastic contrast of 3.3. No evidence of 1.6 mm lesions was present
for any scanner. Only the Siemens Antares detected 2 mm lesions. Also, the Siemens system
allowed detection of 3 and 4 mm lesions to slightly greater depths than the Aloka system.

compression and 4.35 mm of compression. The corresponding compressions in the case of
the Siemens system were 3.0 mm and 4.8 mm.

6. Results and discussion

Results illustrating use of the phantoms for ultrasound elastography are presented in
figures 7–9. Depth ranges in which spheres are detectable on elastograms are shown. Note
that the highest nominal frequency available for the Aloka system in our lab is 7.5 MHz, and
the closest frequency to that available for the Siemens in our lab is 7.2 MHz; thus, these were
the frequencies chosen2. Two of the coauthors independently determined all depth ranges in
which lesions were detectable. The two observers agreed regarding all results shown in the
figures.

The Siemens Antares somewhat outperformed the Aloka system for all three phantoms.
However, human observers could not detect the 1.6 mm diameter lesions in any of the
phantoms, either on B-mode images or on elastograms; this lack of detection is probably
due to the fact that the minimum elevational beam full widths at half maximum (FWHM) were
comparable to the sphere diameter with corresponding partial volume effects. For the Siemens
system, that FWHM was 1.1 mm, and for the Aloka system, it was 1.5 mm. As expected,
detection ranges increased with increasing elastic contrast. Note that higher frequency and
broader bandwidth transducers available for the Antares (e.g. VFX13-5) may enhance the
range of detectability.

Typical models for the variance time delay and displacement estimation applied to motion
tracking (Walker and Trahey 1995, Bilgen and Insana 1997) suggest that estimation error is

2 The Siemens system in our lab can operate at higher frequencies, but we have not yet investigated lesion detection
performance for those.
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Figure 8. Depth ranges in which spherical lesions were detected on elastograms by human
observers using phantom 2 with elastic contrast of 4.6. No detection of 1.6 mm lesions occurred.
The Aloka SD 2000 system barely detected 2 mm lesions over a 1 cm depth range. The Siemens
system somewhat outperformed the Aloka regarding detection of 3 mm lesions, particularly
regarding greater depth of detection.

Figure 9. Depth ranges in which spherical lesions were detected on elastograms by human
observers using phantom 1 with elastic contrast of 5.5. Again, no detection of 1.6 mm lesions
occurred for either system. The Siemens and Aloka systems performed comparably for this
phantom which has the highest elastic contrast of the three phantoms. The 4 mm lesions were
detected by the Siemens system for the entire depth range where lesions existed, and the Aloka
detected the 4 mm lesions over the entire depth except for the most distal cm (8 to 9 cm depth).
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Figure 10. Power spectra of the RF data obtained for the Aloka and Antares system. Both spectra
are normalized to their maximum values.

reduced as the radiofrequency (RF) echo signal centre frequency, absolute signal bandwidth
and electronic signal-to-noise ratio (SNR) increase. Differences in the performance of the two
elasticity imaging systems may partly relate to different estimation errors.

The Siemens Antares Axius Direct Ultrasound Research Interface provides digital signals
sampled at 40 MHz and encoded in 16 bits whereas the Aloka system uses external digitization
of the RF signals with a GAGE digitization board (Gage Applied Technologies, Inc., Lachine,
Quebec, Canada) sampling at 50 MHz and 12 bits. The power spectra of the RF echo data
obtained from these systems are shown in figure 10. The power spectra were obtained from
Phantom 2 using 1 cm long data segments, centred at 5 cm (approximately their focal depths),
from 40 independent A-lines. The centre frequency of the Aloka system (5.2 MHz) is slightly
greater than for the Antares (5.0 MHz), while the –6 dB bandwidths obtained using a Gaussian
fit are slightly higher for the Aloka (3.4 MHz) than for the Antares (3.2 MHz). The Antares
system has a significantly higher signal-to-noise ratio (SNR) at 25 dB compared to the Aloka at
10 dB; the lower SNR of the Aloka may result from external digitization of the RF signals
from the Aloka. Note also the presence of a second harmonic in the power spectrum obtained
from the Aloka suggesting that the lower SNR for the Aloka is not due to lower transmit
pressure.

Another factor that could influence strain image performance involves the method of data
processing. A 2D block matching algorithm (Zhu and Hall 2002) was used in the case of
the Antares whereas a 1D cross-correlation method was used for the Aloka. The 2D block
matching algorithm computes the sum-squared difference (SSD) or sum-absolute difference
(SAD) between pre- and post-compression RF frames for a rectangular kernel. The kernel
size corresponds to approximately 2/3 the length of the axial point spread function (PSF) and
about the same width as the lateral PSF. Linear regression with a sliding 1.5 mm window is
used to estimate axial strain from these displacement estimates.

In the 1D cross-correlation method differential displacements in localized regions are
detected using standard time-delay estimation techniques (Knapp and Carter 1976, Quazi
1981). A window length of 1.5 mm with a 75% overlap is used to obtain the tissue
displacements, and then the axial strain is computed using a 5-point linear least-squares
fit on the estimates of tissue displacement (Kallel and Ophir 1997). A 5 × 5 median filter was
used to reduce strain outliers in the strain image.

7. Summary and conclusions

A complete description of the procedure for manufacturing spherical lesion phantoms for
elastography with sphere diameters from 1.6 mm through 4 mm has been provided. The
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elastic contrasts range from 3.3 through 5.5. Lower elastic contrasts can be produced in
the agar/gelatin type phantom by making the dry-weight agar concentration in the spheres
closer to that in the background material. Similarly, lower contrasts can be generated in the
oil-in-gelatin type phantom by making the spheres from a safflower oil dispersion; the closer
the per cent oil in the spheres is to that in the background, the lower the elastic contrast.

It should be noted that the phantoms are durable. About one month after production,
bonding between layers of a phantom and between spheres and background is sufficiently firm
for at least a 10% compression.

The phantoms brought out differences in performance of the two systems used. A phantom
such as described in this work should be useful as a stable performance test tool in labs that
are refining hardware and/or software for elastography systems.
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Purpose: To prospectively determine the accuracy of using an ultra-
sonographic (US) strain imaging technique known as le-
sion size comparison to differentiate benign from malig-
nant breast lesions.

Materials and
Methods:

Institutional Review Board approval and patient informed
consent were obtained for this HIPPA-compliant study. US
strain imaging was performed prospectively for 89 breast
lesions in 88 patients. Lesions were imaged by using free-
hand compression and a real-time strain imaging algo-
rithm. Five observers obtained manual measurements of
lesion height, width, and area from B-mode and strain
images. By using these size measurements, individual ob-
server and group performances were assessed by using the
area under the receiver operating characteristic curve
(Az). The performance of a single size parameter versus
that of a combination of size parameters was evaluated by
using univariate and multivariate logistic regression.

Results: Group Az values showed that width ratio and area ratio
yielded the best results for differentiating benign and ma-
lignant breast lesions, and they were not statistically differ-
ent from one another (P � .499). For the group, the
performance of area and width, which was superior to that
of height and aspect ratio, was statistically significant for
all cases (P � .011) except for those that compared area
with aspect ratio (P � .118). By using a group threshold of
1.04 for width ratio and 1.13 for area ratio, the sensitivity
and specificity of the technique were 96% and 21%, re-
spectively, for width and 96% and 24%, respectively, for
area. The best observer achieved a sensitivity of 96% and
a specificity of 61% by using the area ratio. For all but one
observer, combined size parameters did not improve ob-
server performance (P � .258). Significant interobserver
performance variability was observed (P � .001).

Conclusion: Results suggest that US strain imaging has the potential to
aid diagnosis of breast lesions. However, manually tracing
lesion boundaries for size ratio differentiation in a busy
clinical setting did not match the diagnostic performance
levels previously reported. Focusing on measurements of
lesion width, along with additional observer training or
automated processes, may yield a suitable method for
routine clinical application.
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The observation that benign and
malignant breast lesions have in-
herently different firmness has

long been used by clinicians during pal-
pation of the breast; harder and less
mobile lesions are considered more
likely to be malignant (1). Several dif-
ferent imaging methods, including ul-
trasonographic (US) strain imaging
(also known as US elastography), have
been developed to measure the rela-
tive stiffness of lesions in contrast to
the surrounding tissue (2–17). US
strain imaging may allow the differen-
tiation of benign from malignant solid
masses on the basis of differences in
stiffness.

US strain images are produced by
comparing the US echo data obtained
prior to and after slight axial compres-
sion of the breast. These data are used
to determine the tissue displacement at
each location in the breast as a result of
compression. Strain is computed as
the rate of change in axial tissue dis-
placement as a function of depth.
Strain images are produced when the
relative differences in tissue motion at
each location in the breast are calcu-
lated and displayed. Harder areas of
the breast (ie, areas with less tissue
displacement during compression) ap-
pear darker on strain images, and
softer areas of the breast (ie, areas
with more tissue displacement during
compression) appear brighter. Pre-
liminary work does not support the
use of direct quantification of lesion
strain as an accurate means of differ-
entiating benign from malignant solid
lesions (6,11,14,17,18).

Peer-reviewed work by Garra et al
(6) and others has shown that discrep-
ancies between the size of breast lesions
on B-mode and strain images may be a
promising way to distinguish benign
from malignant lesions; this method is
known as the lesion size comparison
technique. Researchers have found
that malignant lesions tend to be
larger on strain images than on corre-
sponding B-mode images, potentially be-
cause of the surrounding desmoplastic re-
action that accompanies most malignan-
cies (6,11,17,19). Thus, the purpose of
our study was to prospectively determine

the accuracy of using a US strain imaging
technique known as lesion size compari-
son to differentiate benign from malig-
nant breast lesions.

Materials and Methods

Siemens Medical Solutions, Ultrasound
Division, Issaquah, Washington, pro-
vided equipment and financial support
for this study. The authors had control
of the data and information submitted
for publication.

Patient Population
Approval for this study was obtained
from the Institutional Review Board,
and informed consent was obtained
from the enrolled patients. The study
was compliant with the Health Insur-
ance Portability and Accountability Act.
From February 6, 2002, to August 6,
2003, US strain imaging was performed
prospectively for 102 consecutive
breast masses in 101 patients (mean
age, 58 years; median age, 58.5 years;
age range, 20–85 years). Candidates
were recruited from a clinical pool of
patients who were known to have le-
sions that were visible at US and that
warranted biopsy. The first four re-
cruited patients were excluded as train-
ing patients, seven recruited patients
were excluded because of technical dif-
ficulties with radiofrequency echo data
transfer, and two patients were ex-
cluded because biopsy results showed
both benign and malignant histologic
features in the same biopsy sample.
Thus, 89 lesions in 88 women were
included in the final data analysis. Le-
sion diameters ranged from 0.3 to 3.0
cm, with a mean lesion diameter of 1.3
cm. For 73 of 88 lesions, biopsy was
performed after strain imaging on the
same day (mean, 41.5 minutes; range,
3–245 minutes). For 12 of 88 lesions,
biopsy was performed at a later date
(mean, 17 days; range, 1–112 days).
For three of 88 lesions, biopsy was
performed at a previous date (1, 2,
and 6 years previously). For these
three lesions, the five observers were
blinded to the fact that a previous bi-
opsy had been performed, as well as to
the previous biopsy results.

US Strain Imaging Technique
A mammography technologist with 10
years of experience in breast US imaged
all lesions at 7.3 MHz by using a real-
time strain imaging algorithm that was
developed by Hall et al (17); this algo-
rithm was implemented by using a stan-
dard commercial US system (Elegra
scanner and 7.5L40 linear array trans-
ducer; Siemens Medical Solutions). By
using a freehand compression tech-
nique, the technologist manually applied
slight axial compression to the lesions
with the US probe. B-mode and strain
images were reconstructed off line by
using the same radiofrequency echo
data that were acquired during the US
examination. Images were displayed in
a side-by-side format within the individ-
ual frames that were contained within a
cine-loop sequence of approximately
100 frames. Off-line processing of the
stored radiofrequency data was per-
formed by using custom software which
utilized the same algorithm that exists
on the US scanner, except a smaller cor-
relation window was used (16 samples
instead of 24 samples) resulting in supe-
rior strain image spatial resolution.
Also, radiofrequency data were stored
at a greater frame rate than were those
displayed in real time with the US scan-
ner; thus, off-line temporal resolution

Published online
10.1148/radiol.2381041336

Radiology 2006; 238:425–437

Abbreviation:
Az � area under the receiver operating characteristic

curve

Author contributions:
Guarantors of integrity of entire study, D.M.R., G.K.H.,
N.J.H., M.A.F.; study concepts/study design or data ac-
quisition or data analysis/interpretation, all authors;
manuscript drafting or manuscript revision for important
intellectual content, all authors; approval of final version
of submitted manuscript, all authors; literature research,
D.M.R., G.K.H., N.J.H., T.J.H., M.A.F.; clinical studies,
D.M.R., M.J.M., M.R.N., D.D.M.; statistical analysis,
D.M.R., N.J.H., J.N.M., W.S.H.; and manuscript editing,
D.M.R., G.K.H., N.J.H., M.J.M., D.D.M., T.J.H., M.A.F.,
W.S.H., J.W.C.

Address correspondence to D.M.R.
(e-mail: regner.dawn@mayo.edu).

See Materials and Methods for pertinent disclosures.

BREAST IMAGING: Breast Lesions: Evaluation with US Strain Imaging Regner et al

426 Radiology: Volume 238: Number 2—February 2006



was superior to that displayed in real
time with the scanner (17).

B-Mode and Strain Image Evaluation
Five observers (designated as observers
A–E) with different characteristics (Ta-
ble 1) individually produced measure-
ments of lesion size, including height
and width, and traced the area of the
lesion off line on reconstructed B-mode
and corresponding strain images by us-
ing a mouse. Observers made their
measurements on a single representa-
tive image frame that was personally
chosen as best (designated as “own im-
age”) from the cine-loop sequence of
about 100 frames. At a later date, the
measurements, including height, width,
and traced area, were repeated by each
observer on the unmarked standardized
image frames (designated as “reference
image”) that were chosen as best by the
technologist who performed the exami-
nations (observer D). Prior to obtaining
study measurements, all of the observ-
ers met two to three times to receive
specific training both in choosing the
optimal strain image from the cine-loop
sequence and in making consistent le-
sion size measurements. All observers
practiced breast lesion measurements on
multiple sample B-mode and strain im-
ages during these training sessions. All
observers were comfortable with the
technique at the end of the training ses-
sions. During the study, observers were
asked to report any concerns they had
regarding difficulties in producing mea-
surements, as well as any anecdotal ob-
servations they believed to be important.

Data and Statistical Analysis
Size ratios were computed for each of
the four size parameters (ie, height,
width, area, and aspect [width-to-
height] ratio) by dividing the strain im-
age measurements by the B-mode im-
age measurements. Ratios were calcu-
lated for each individual observer and
for the group as a whole. Group ratios
were obtained by averaging the individ-
ual observer B-mode and strain image
measurements and by calculating ratios
from these averaged measurements.
The own image size ratios were ana-
lyzed by using receiver operating char-
acteristic methods for each observer
and for the group. Because images from
the same patient were used multiple
times, the correlated areas under the
receiver operating characteristic curve
(Az values) were compared to deter-
mine which size ratio was best suited
for differentiating benign from malig-
nant lesions; comparisons between these
values were made by using a method pro-
posed by DeLong et al (20). The ratio
threshold value that achieved at least
95% sensitivity in differentiating malig-
nant from benign lesions while optimizing
specificity was then determined for each
individual observer and for the group.
This 95% sensitivity threshold is likely the
most valuable parameter for breast imag-
ing because the desire is to minimize the
chances of missing a malignancy.

Univariate and multivariate logistic
regression analyses (21) were per-
formed, and a comparison of the c sta-
tistic values that were generated from
these analyses was performed by using

the method proposed by DeLong et al
(20) to determine if the combined size
parameters were superior to any one
size parameter alone in predicting be-
nignity or malignancy. The Az value,
threshold, and sensitivity and specificity
values for own image observer data were
compared to see if there was significant
interobserver performance variation.
Own image and reference image Az val-
ues for width and area were compared
by using the method proposed by De-
Long et al (20), and the ranges of own
image and reference image sensitivity
and specificity were compared in an at-
tempt to isolate the most important
sources of any interobserver perfor-
mance variation. A subset analysis was
performed by using receiver operating
characteristic methods of only those le-
sions that were judged by observer A to
have well-defined borders on conven-
tional B-mode US images to determine if
the performance of the lesion size com-
parison technique was dependent on
the conspicuity of lesion borders at B-
mode imaging.

Finally, a comparison was made be-
tween the results presented by Hall et al
(22) and those obtained in the current
study by using the same US strain imag-
ing algorithm and analysis approach. A
P value of less than .05 was considered
to indicate a statistically significant dif-
ference for all analyses. All of the statistical
analyses were performed by using a com-
mercially available software program (SAS,
version 8.0; SAS Institute, Cary, NC).

Observers A, B, and C participated
in a preliminary study (19) (performed

Table 1

Observer Characteristics

Observer Degree Title
Clinical Experience in
Breast US

Experience in US
Strain Imaging Measurement Environment*

A MD Radiology resident 1 mo Yes Laboratory
B RDMS Ultrasonographer None Yes Laboratory
C MD Board-certified radiologist 5 yrs Yes Clinical
D RTRM Breast US technologist 10 yrs No Clinical
E MD Board-certified radiologist 15 yrs No Clinical

* The laboratory measurement environment refers an environment in which observers made measurements in a laboratory, with fewer distractions and much more time available to dedicate to lesion
measurements. The clinical measurement environment refers to a more hectic environment in which observers made measurements under considerable time constraints owing to concomitant
clinical duties.
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4–6 months earlier) during which mea-
surements were made of the first 50 of
89 lesions that were included in the cur-
rent study. Although the three observ-
ers involved in the preliminary study

remeasured the first 50 lesions for the
current study, none of the observers be-
lieved that the initial analysis provided
any advantage or bias other than in-
creased practice. To support this, an
analysis was performed to compare the
Az values of the first 50 lesions of the
current study (ie, those that were previ-
ously measured as part of the prelimi-
nary study) with those of the last 39
lesions of the current study (ie, those
that were not previously measured) for
observers A, B, and C.

Results

All lesions were grouped as benign (n �
38) or malignant (n � 51) according to
surgical or needle biopsy results (Table
2). Figures 1–3 show examples of the
appearance of benign and malignant le-
sions, as well as the size measurements
made by each of the observers. Figures
4–9 show additional examples of vari-
ous benign and malignant lesions that
were observed during the study.

Az Value, Threshold, Sensitivity, and
Specificity
Own image Az values for the five observ-
ers and for the group as a whole are

shown in Table 3. For four of five ob-
servers and for the entire group, width
and area ratios yielded the best results
(ie, the largest Az values) for differenti-
ating benign from malignant breast le-
sions. Observer E was the exception in
that, for this observer, width and aspect
ratios yielded the best results. For the
entire group, the superior performance
of width and area measurements when
compared with height and aspect ratio
was statistically significant for all
cases (P � .011), except for the com-
parison of area and aspect ratio,
which was not significant (P � .118).
For the five individual observers, the
Az values for width and area, when
compared with those of height and as-
pect ratio in every combination, re-
sulted in 13 of 20 comparisons in
which width and area yielded signifi-
cantly better performance (P � .032).
In six of 20 comparisons, width and
area were superior to height and as-
pect ratio, but the differences were
not statistically significant (P � .054).
In one of 20 comparisons (ie, for ob-
server E), aspect ratio was superior to
area, but the difference was not signif-
icant (P � .311). Width and area were
statistically equivalent to one another

Figure 1

Figure 1: Side-by-side paired displays of B-mode (left image of each pair) and strain (right image of each pair) US images of benign fibroadenoma. Unmarked refer-
ence images (upper left pair) along with images showing measurements of height (green line), width (yellow line), and traced area (blue line) are displayed for each ob-
server (A–E). The resulting size ratios for width (WR) and area (AR) are noted. By using the group area and width threshold ratios presented in Table 4, strain imaging was
used to correctly predict lesion benignity (true-negative finding).

Table 2

Histologic Characteristics of Breast
Lesions

Characteristic No. of Lesions

Benign (n � 38)
Fibroadenoma 16
Fibrocystic change 6
Stromal fibrosis 6
Abscess 2
Intraductal papilloma 2
Fat necrosis 2
Pseudoangiomatous

stromal hyperplasia 1
Hematoma 1
Radial scar 1
Complex cyst 1

Malignant (n � 51)
Invasive ductal carcinoma 39
Invasive lobular carcinoma 6
Mixed ductal and lobular

carcinoma 3
Invasive tubular carcinoma 2
Ductal carcinoma in situ 1
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(P � .499 for the group, P � .421 for
observers A–D, and P � .069 for ob-
server E).

Table 4 shows the own image
threshold data that was computed for
each observer (designated as “observer
threshold”) and for the entire group
(designated as “group threshold”) for
both width and area ratios. The optimal
group ratio threshold was 1.04 for
width and 1.13 for area. These thresh-
olds yielded a sensitivity and specificity
of 96% and 21%, respectively, for width
and of 96% and 24%, respectively, for
area. Figures 10 and 11 show individual
case-by-case data in graphic format.

To determine if a combination of
multiple size parameters was superior
to any single size parameter in predict-
ing if a lesion was benign or malignant,
univariate and multivariate logistic re-
gression analyses were performed (Ta-
ble 5). Several size parameter models
(ie, single size parameters and com-
bined size parameters) were assessed

on the basis of the c statistic, which is
equivalent to Az value (21), and were
compared by using the method pro-
posed by DeLong et al (20). Models with
a larger c statistic represent enhanced
observer performance in differentiating
benign from malignant breast lesions. In
Table 5, either traced area or width
alone was an important discriminating
factor of malignancy for four of five ob-
servers by using univariate logistic mod-
els. Also in Table 5, only a few combina-
tions of size parameters yielded slightly
higher Az values than width or area
alone; however, for four of five observ-
ers, the differences were not statisti-
cally significant (P � .258). Observer E
was the exception in that, for two of
eight comparisons, a significant advan-
tage was seen when combined parame-
ters were used (P � .027). Overall, this
analysis demonstrates that there is no
overall improvement in the discriminat-
ing capabilities of multivariate models,
as is shown in Table 5.

Assessment of Interobserver Variation
As seen in Table 3, individual observer
Az values ranged from 0.74 to 0.90 for
width ratios and from 0.67 to 0.92 for
area ratios. As seen in Table 4, individ-
ual observer thresholds for own image
measurements ranged from 0.28 to 1.04
for width and from 0.90 to 1.24 for
area. Applying the group threshold to
each observer’s own image width data
resulted in observer sensitivities rang-
ing from 86% to 96% and specificities
ranging from 21% to 61%. Applying the
group threshold to each observer’s own
image area data resulted in observer sen-
sitivities ranging from 82% to 98% and
specificities ranging from 16% to 71%.
Testing all pairs of individual observers
against one another showed some sta-
tistically significant differences between
observers at the 95% confidence level
(P � .001 for the group) (Table 6). Spe-
cifically, observer A performed signifi-
cantly better than all other observers
when the area parameter was used (P �

Figure 2

Figure 2: Side-by-side paired displays of B-mode (left image of each pair) and strain (right image of each pair) US images of invasive ductal carcinoma. Unmarked
reference images (upper left pair) along with images showing measurements of height (green line), width (yellow line), and traced area (blue line) are displayed for each
observer (A–E). The resulting size ratios for width (WR) and area (AR) are noted. Lesion has somewhat indistinct borders on B-mode images and demonstrates that
marked interobserver measurement variability can result with this technique. By using the group width and area threshold ratios (Table 4), strain imaging was used to
correctly predict lesion malignancy (true-positive finding).
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.01) and significantly better than all but
one other observer when the width pa-
rameter was used (P � .01 for the re-
maining observers). Observers B and C

performed significantly better than ob-
server E when the area parameter was
used (P � .01). In addition, observers B
and C tended to perform better than

observer D for both width and area and
better than observer E for width; this
difference, however, was not statisti-
cally significant (P � .07).

Figure 3

Figure 3: Side-by-side paired displays of B-mode (left image of each pair) and strain (right image of each pair) US images of benign fat necrosis. Unmarked reference
images (upper left pair) along with images showing measurements of height (green line), width (yellow line), and traced area (blue line) are displayed for each observer
(A–E). The resulting size ratios for width (WR) and area (AR) are noted. Images illustrate one of the potential problems with this technique in that, for some lesions, the
lesion is difficult, if not impossible, to distinguish from the surrounding breast tissue on B-mode images. This likely makes measurements of lesion size on B-mode im-
ages inaccurate, and as shown here, different observers will vary widely in their interpretation of border and size measurements. In this example, only the size ratios for
observer A correctly predicted lesion benignity. This lesion also demonstrates how strain imaging can confirm the presence of subtle lesions, which are much more con-
spicuous at strain imaging.

Figures 4, 5

Figure 4: Side-by-side paired display of B-mode (left) and strain (right) US images
of fibrocystic change. By using the group width and area thresholds presented in Table
4, strain imaging was used to incorrectly predict lesion malignancy (false-positive
finding).

Figure 5: Side-by-side paired display of B-mode (left) and strain (right) US
images of invasive ductal carcinoma. Lesion appears much bigger on strain
image than on corresponding B-mode image. By using the group area and
width threshold ratios presented in Table 4, strain imaging was used to cor-
rectly predict lesion malignancy (true-positive finding).

BREAST IMAGING: Breast Lesions: Evaluation with US Strain Imaging Regner et al

430 Radiology: Volume 238: Number 2—February 2006



Analysis of Interobserver Variation
After the US data are acquired, there
are at least two potential sources of in-
terobserver variation when the lesion
size comparison technique is used–that
is, variation in choosing the optimal
strain image from the cine-loop se-

quence and variation in measuring the
lesion size parameter on the strain and
corresponding B-mode images within
the chosen frame. To determine which
of these sources contributed most to
our significant observer variation, all
observers made measurements on un-

marked standard images. To remove
the potential interobserver variation
that is inherent in choosing the image,
these unmarked images were chosen by
the same technologist who performed
the examinations and were designated
as the reference images. Applying the

Figures 6, 7

Figure 6: Side-by-side paired display of B-mode (left) and strain (right) US
images of invasive ductal carcinoma. By using the group width and area threshold
ratios presented in Table 4, strain imaging was used to correctly predict lesion
malignancy (true-positive finding).

Figure 7: Side-by-side paired display of B-mode (left) and strain (right) US
images of invasive lobular carcinoma. By using the group width and area thresh-
old ratios presented in Table 4, strain imaging was used to correctly predict lesion
malignancy (true-positive finding).

Figures 8, 9

Figure 8: Side-by-side paired display of B-mode (left) and strain (right) US
images of invasive ductal carcinoma. Lesion width and area are similar on strain
and B-mode images. By using the group width and area threshold ratios presented
in Table 4, strain imaging was used to incorrectly predict lesion benignity (false-
negative finding).

Figure 9: Side-by-side paired display of B-mode (left) and strain (right) US
images of benign stromal fibrosis in patient with a history of breast cancer. Anec-
dotally, strain images that show little or no contrast between the lesion and the
surrounding breast tissue, as is seen in this patient, seem to be a reliable indicator
of benignity.

Table 3

Az Values for Complete Data Set and Subset of Lesions with Well-defined Borders

Parameter
Complete Data Set for Own Image

Complete Data Set for
Reference Image

Well-defined Subset for
Own Image*

Height Width Area Aspect Ratio Width Area Width Area

Entire group 0.71 0.85 0.83 0.74 0.77 0.73 0.81 0.81
Observer A 0.72 0.90 0.92 0.72 0.87 0.85 0.90 0.92
Observer B 0.73 0.83 0.82 0.70 0.73 0.72 0.80 0.81
Observer C 0.71 0.79 0.79 0.63† 0.75 0.67 0.76 0.74
Observer D 0.62† 0.75† 0.77 0.68† 0.75 0.77 0.68 0.72
Observer E 0.47† 0.74 0.67 0.74 0.71 0.66 0.75 0.71

Note.—Standard errors for all Az values ranged from 0.03 to 0.06.

* Subset includes data generated for lesions with well-defined borders at B-mode imaging only.
† Values were not found to be statistically significant at the 5% level.
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group threshold to each observer’s ref-
erence image width data resulted in ob-
server sensitivities ranging from 90% to
100% and specificities ranging from
11% to 42% (Table 4). Applying the
group threshold to each observer’s ref-

erence image area data resulted in ob-
server sensitivities ranging from 90% to
98% and specificities ranging from 16%
to 50% (Table 4). For width, individual
reference image Az values ranged from
0.71 to 0.87 (Table 3), and for area,

individual observer reference image Az

values ranged from 0.66 to 0.85 (Table
3). By definition, the own image and
reference image Az values for observer
D were equivalent. For the remaining
four observers, comparison of own im-

Table 4

Ratio Thresholds with Sensitivities and Specificities for Each Observer and the Entire Group

Parameter
Width Area

Ratio Threshold Value Sensitivity (%) Specificity (%) Ratio Threshold Value Sensitivity (%) Specificity (%)

Entire group
Own image

Group threshold 1.04 96 (87, 100)* 21 (10, 37)* 1.13 96 (87, 100)* 24 (11, 40)*
Reference image

Group threshold 1.03 96 (87, 100)* 18 (8, 34)* 1.17 96 (87, 100)* 21 (10, 37)*
Observer A

Own image
Observer threshold 0.98 96 42 1.01 96 61
Group threshold 1.04 92 61 1.13 88 71

Reference image
Observer threshold 1.13 96 68 1.05 96 40
Group threshold 1.03 100 42 1.17 90 50

Observer B
Own image

Observer threshold 0.90 96 24 0.90 96 22
Group threshold 1.04 86 46 1.13 82 51

Reference image
Observer threshold 1.01 96 37 1.06 96 18
Group threshold 1.03 94 37 1.17 94 24

Observer C
Own image

Observer threshold 1.04 96 29 1.08 96 21
Group threshold 1.04 96 29 1.13 94 21

Reference image
Observer threshold 0.98 96 16 1.33 96 29
Group threshold 1.03 94 21 1.17 96 16

Observer D
Own image

Observer threshold 0.28 96 3 1.24 96 29
Group threshold 1.04 90 21 1.13 98 16

Reference image
Observer threshold 0.28 96 3 1.24 96 29
Group threshold 1.03 90 16 1.17 98 18

Observer E
Own image

Observer threshold 0.97 96 29 0.96 96 18
Group threshold 1.04 88 34 1.13 86 32

Reference image
Observer threshold 0.96 96 11 1.01 96 13
Group threshold 1.03 90 11 1.17 90 21

Note.—The optimal group and observer ratio thresholds for width and area were determined by obtaining a sensitivity of at least 95% while maximizing specificity for own image and reference
image data. The group threshold was then applied to each observer’s own image and reference image data to obtain a second set of sensitivities and specificities, which allowed for comparison
of individual observer performance.

* Numbers in parentheses are 95% confidence intervals.
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age and reference image Az values for
width and area demonstrated a statisti-
cal reduction in observer performance
in only one of eight comparisons (P �
.025 for area, observer C). In three
other instances, however, marginal P
values were obtained (.057 � P �

.084).

Subset Analysis of Breast Lesions with
Well-defined Borders at B-Mode US
During the analysis, several observers
reported that, in certain cases, measur-
ing lesions on the conventional B-mode
display was particularly difficult (Fig 3).
This might lead to a decrease in mea-
surement accuracy and an increase in

interobserver (and possibly intraob-
server) variability. Observer A re-
viewed the cases and determined that a
total of 60 of 89 lesions had well-defined
borders on B-mode images. A subset
analysis was performed for measure-
ments obtained in these 60 lesions (31
malignant and 29 benign). Group Az val-

Figures 10, 11

Figure 10: Graph of own image group width ratios plotted for each lesion in the
study. Horizontal line represents optimal group threshold ratio of 1.04. Above this
threshold, malignant lesions were classified as true-positive findings, and below
this threshold, benign lesions were classified as true-negative findings. Although
malignant lesions tend to have larger width ratios, one can see that there is consid-
erable overlap near the threshold line, which is reflected in low specificity values.

Figure 11: Graph of own image group area ratios plotted for each lesion in the
study. Horizontal line represents optimal group threshold ratio of 1.13. Above
this threshold, malignant lesions were classified as true-positive findings, and
below this threshold, benign lesions were classified as true-negative findings.
Although malignant lesions tend to have larger area ratios, as is the case with
width, one can see that there is considerable overlap near the threshold line,
which is reflected in low specificity values.

Table 5

Univariate and Multivariate Logistic Regression Analyses

Observer

Univariate c Statistic* Multivariate c Statistic

Height Width Area Aspect Ratio
Height and
Aspect Ratio

Width and
Aspect Ratio

Height and
Aspect Ratio

Area and
Aspect Ratio

A 0.72 0.90 0.92 0.72 0.90 0.92 0.92 0.92
B 0.73 0.83 0.82 0.70 0.84 0.83 0.84 0.85
C 0.71 0.79 0.79 0.63 0.75 0.79 0.80 0.79
D 0.62 0.75 0.77 0.68 0.70 0.74 0.79 0.78
E 0.47 0.74 0.67 0.74 0.76 0.76 0.78 0.92

Note.—For all c statistics, standard errors ranged from 0.03 to 0.06.

* Univariate c statistics are equivalent to Az values, which appear in Table 3.
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ues for this subset were 0.81 for both
width and area (Table 3). These Az val-
ues were slightly lower than the group
Az values for the complete data set,
which were 0.85 and 0.83 for width and
area, respectively (Table 3). In only one
case did the subset produce a somewhat
superior Az value (observer E, area).
Also, for the group and for all but one
observer, the sensitivity and specificity
of width and area ratio thresholds were
not substantially improved when only
the subset of lesions with well-defined
borders at B-mode imaging was consid-
ered.

Comparison with Previous Results
In a previous study by Hall et al (22), a
series of 169 breast lesions were evalu-
ated by using the same strain imaging
technique as was used in our study. A
single observer who had extensive expe-
rience with the lesion size comparison
technique picked the optimal strain im-
age from the cine-loop sequence and
obtained area measurements. By using
area as the size parameter and 1.2 as
the optimal area ratio threshold, a sen-
sitivity of 100% and a specificity of
75.4% in characterizing breast lesions
were obtained in this series of 169 le-
sions. When this 1.2 threshold for area
ratio was applied to the own image ratio

data obtained in our current study, our
group sensitivities and specificities were
94% and 29%, respectively. When the
1.2 threshold for area ratio was applied
to the own image ratio data of observer
A (our best performer), sensitivity and
specificity were 86% and 82%, respec-
tively.

Analysis of the First 50 Lesions
To show that the preliminary study did
not provide observers A, B, and C with
any advantage or bias other than in-
creased practice, an analysis was per-
formed to compare Az values of the first
50 lesions of the current study (ie, those
that were previously measured as part
of the preliminary study) with those of
the last 39 lesions of the current study
(ie, those that were not previously mea-
sured). This analysis showed that, in
general, the Az values were not signifi-
cantly different between the first 50 le-
sions and the last 39 lesions for observ-
ers A, B, and C.

Observations Reported by Observers
All observers reported that choosing
the optimal frame from the cine-loop
sequence and making size measure-
ments took much more time than ex-
pected and more time than might be
available in a typical busy breast imag-

ing practice. Particularly, observers
thought that choosing the optimal image
was the most time-consuming step.
Also, it was a consensus observation
that observers A and B had much more
time available in a laboratory environ-
ment to make measurements than did
the other observers, who performed
measurements under considerable time
constraints during the course of a busy
clinical day.

Several important anecdotal obser-
vations that were unrelated to lesion
size comparison were reported by the
observers during the study. The lesion
was sometimes much more conspicuous
on strain images than on B-mode im-
ages, which aided in determining that a
lesion was, in fact, real (Fig 3). In many
cases, there was little contrast between
the breast lesion and surrounding tissue
on the strain images, thereby making
the lesion inconspicuous. This finding
seemed to correlate with benignity (Fig
9). These observations are consistent
with those obtained by Garra et al (6).
We also observed that repetitive con-
spicuity of lesions on US strain images
throughout the course of the cine-loop
sequence was correlated with increased
probability of malignancy. Finally, in at
least two patients, strain imaging aided
in localizing the optimal site of biopsy.
For example, in one patient, the initial
biopsy passes, which were made by us-
ing only the B-mode image as a guide,
yielded a suboptimal sample. US strain
imaging was subsequently performed on
the lesion, and the firmest area of the
lesion was identified as superior to the
initial biopsy site. Multiple biopsies that
were performed through the area that
was identified at strain imaging as being
the firmest yielded several good core
biopsy results that proved to be ade-
quate for histologic diagnosis. These ob-
servations suggest that the use of strain
imaging with means of interpretation
other than the comparison of lesion di-
mensions may have clinical utility.

Discussion

In our study, low specificity values were
obtained when using the lesion size
comparison technique along with our

Table 6

Comparison of Az Values and P Values for Pairs of Observers

Observer Az Value*
P Value

Observer B Observer C Observer D Observer E

Width

A 0.90 (0.04) .08 .01 �.01 �.001
B 0.83 (0.03) . . . .39 .24 .08
C 0.79 (0.04) . . . .58 .32
D 0.75 (0.05) . . . . . . . . . .74
E 0.74 (0.05) . . . . . . . . . . . .

Area

A 0.92 (0.03) .01 �.01 .01 �.001
B 0.82 (0.04) . . . .58 .41 �.01
C 0.79 (0.04) . . . . . . .68 .01
D 0.77 (0.04) . . . . . . . . . .07
E 0.67 (0.05) . . . . . . . . . . . .

Note.—For any given pair, a P value of less than .05 represents a statistically significant difference in observer performance
at the 95% confidence level. The overall P value for the entire group of observers was less than .001 for both width and area.

* Numbers in parentheses represent standard errors.
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best parameters (ie, width and area)
and an optimal ratio threshold to char-
acterize breast lesions. For each ob-
server and for the group as a whole
(except for observer E), width and area
yielded similar results. A combination
of size parameters did not produce bet-
ter results than either width or area
alone. The use of width measurements
may be beneficial in a busy breast imag-
ing practice because width is an easier
and quicker measurement to obtain
than traced area.

One of the main limitations that we
found was the statistically significant
performance differences between ob-
servers. On the basis of Az values, dif-
ferences in performance were most di-
rectly related to the amount of time
available to make the lesion size mea-
surements (laboratory vs clinical envi-
ronment) and, to a lesser extent, the
amount of prior experience that each
observer had with the lesion size com-
parison technique; differences in per-
formance were not correlated with gen-
eral clinical breast imaging experience.
For example, although no formal time
data were collected, all observers
agreed that, compared with the other
three observers, observers A and B had
much more available time in a labora-
tory setting to make the measurements.
This conferred a performance advan-
tage (ie, a larger Az value) for observers
A and B. This suggests that manually
selecting a frame from the cine-loop se-
quence, tracing the lesion boundaries,
and measuring the lesion width and
height may require more time than is
routinely available in typical clinical
practice; this supports the consensus
impression that the current technique
required too much time. Development
of an automated version of the tech-
nique that could choose the optimal
frame from the cine-loop sequence and
make measurements of the lesion bor-
der could improve the speed of the tech-
nique.

Even though observers D and E
have the most clinical breast imaging
experience, observers A, B, and C per-
formed better (in some cases signifi-
cantly better). We believe this is in part
because of their prior experience with

and training in the lesion size compari-
son technique as part of a prior prelimi-
nary study. A comparison between Az

values for the first 50 lesions and those
for the second 38 lesions showed that
the enhanced performance of observers
A, B, and C was not the result of previ-
ous experience in specifically measuring
the first 50 lesions. Rather, the en-
hanced performance of observers A, B,
and C was a function of increased gen-
eral experience and practice with the
lesion size comparison technique that
was derived from the preliminary study.
This suggests that even highly experi-
enced mammographers and breast US
technologists (eg, observers E and D)
who have specific training in the tech-
nique will potentially need more exten-
sive training than that which was of-
fered prior to this study, as well as more
practice and experience in the current
lesion size comparison technique in or-
der to use the technique effectively.

Having proved that significant inter-
observer variability exists with this
technique, an attempt to isolate the
main source of this variability was made
by comparing the group and observer
own image and reference image data.
After US data have been acquired, the
two potential sources of variability in-
clude choosing the optimal frame from
the cine-loop sequence and making
measurements of the lesion in that cho-
sen frame. If a reduction in the perfor-
mance range was observed for the ref-
erence image data when compared with
the wide performance range for the own
image data, this would suggest that
most of the variation was introduced
during the choosing of the optimal
frame. Likewise, if no reduction was
seen, this would indicate that little or no
variation was introduced during the
choosing of the frame, and thus, the
bulk of variability occurred during mea-
suring. Results showed that there was
only a slight decrease in the perfor-
mance range of reference images (and
thus in interobserver variability) com-
pared with the observer performance
range of own images (particularly for
area) when comparing observer sensi-
tivity and specificity data.

When comparing observer own im-

age Az values with reference image Az

values, a statistically significant reduc-
tion in performance occurred for only
one of eight comparisons; in three
cases, however, the P values were mar-
ginal. This demonstrates that most of
the interobserver variability resulted
from the measurement of lesion size,
although frame selection was still im-
portant.

Finally, subjectively, one can see
from Figures 2 and 3 that the five differ-
ent observers sometimes had different
interpretations of lesion borders, and
thus, different size ratios were ob-
tained. Identifying that the differences
in lesion measurement contributed
most to observer variability is helpful. It
suggests that the most concentrated
training for breast imagers who are
learning to use the lesion size compari-
son technique should be on the actual
measuring of lesion size on B-mode and
strain images. It also suggests that auto-
mated border detection and measure-
ment may decrease variability and
hopefully lead to higher sensitivity and
specificity values.

Several observers reported that
some of the lesions were difficult to
measure on the B-mode display because
of ill-defined borders. This may, in part,
be the result of the relatively low-fre-
quency US probe (7.3 MHz) that was
used in the study. To determine if B-
mode lesion border conspicuity affected
the performance of the technique, a
subset analysis of only those lesions that
had well-defined margins on B-mode im-
ages was performed. On the basis of the
results of the analysis, which included
lower Az values for the subset, it ap-
pears that the conspicuity of lesions on
B-mode images is not a complicating
factor when performing these measure-
ments and analysis. This was unex-
pected because it was believed that le-
sions with ill-defined borders on
B-mode images might have more inac-
curate measurements (and thus more
inaccurate ratios) than the well-defined
lesions owing to the difficulty in perceiv-
ing lesion borders. It was postulated
that including only those lesions with
well-defined borders in the analysis
would increase the performance of the
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technique. The results, however, are
contrary to this postulation.

One potential explanation for this
unexpected finding is that most of the
ill-defined lesions (20 of the 29 lesions)
had malignant histologic characteris-
tics. In looking at these malignant le-
sions, such lesions tended to be obvi-
ously larger on the US strain images
than they were on the corresponding
B-mode images. Thus, an inaccurate
measurement obtained from B-mode
images potentially becomes unimpor-
tant because the resultant size ratio
would still be well above the threshold
ratio for determining malignancy, and
thus, the technique would still be able to
accurately characterize most of these
lesions as malignant. Taking these le-
sions that are accurately characterized
by the technique out of the complete
data set would actually result in lower
Az values and no improvement in the
sensitivity and specificity values. This
analysis may also suggest that the low-
frequency US probe that was used in the
study probably did not contribute to the
low specificity values that were ob-
tained.

In the previous presentation by Hall
et al (22), an optimal area ratio thresh-
old of 1.2, a sensitivity of 100%, and a
specificity of 75.4% in characterizing
breast lesions were obtained in a series
of 169 lesions. This threshold is similar
to our group area threshold of 1.13, but
our group sensitivity was 96% and spec-
ificity was only 24%. Also, when the
threshold of 1.2 for area ratio was ap-
plied to our own image ratio data, our
group sensitivities and specificities were
94% and 29%, respectively. Our best
performer (observer A) obtained a sen-
sitivity of 96% and a specificity of 61%
by using an area ratio threshold of 1.01,
which is closer to the sensitivity and
specificity values obtained by Hall et al
(22).

When using the area threshold of
1.2, however, we found that the sensi-
tivity and specificity for observer A
were only 86% and 82%, respectively.
This shows that “tuning” a ratio thresh-
old to an individual observer can pro-
duce good results but that finding a sin-
gle generalizable threshold may be diffi-

cult. The differences in our group
performance compared with the results
of Hall et al are likely related to the fact
that, in the study by Hall et al, the re-
sults were obtained by a single observer
who had both extensive experience with
this technique and more time available
to make the measurements, which were
performed in the laboratory as opposed
to a typical busy clinical environment.
This conclusion is supported by the fact
that the results of observer A, who had
prior experience with the technique and
who had more available time to make
measurements, better approached the
results of Hall et al (although not with
the same area threshold) than did the
results of the group as a whole. Again,
this supports the conclusion that more
extensive training and experience with
the technique are vital to use the lesion
size comparison technique in an accept-
able way. Most importantly, this sug-
gests that the sensitivity and specificity
of the technique are directly related to
the time available to perform the mea-
surements and that fitting the technique
into a typical busy clinical practice may
pose problems.

We identified two main limitations
in our study. First, strain images were
generated by a single technologist, and
thus, variation that was introduced dur-
ing the acquisition of the strain images
was not tested. Second, although all ob-
servers agreed that the observers who
obtained measurements in the clinical
environment had much less time and
that the technique took much more time
than anticipated, formal time records of
how long each observer took to pick the
optimal image and to generate the size
measurements were not documented.
Future studies could address these is-
sues.

In conclusion, US strain imaging has
the potential to aid in diagnosis of
breast lesions; however, manually
traced lesion borders for size ratio dif-
ferentiation did not result in acceptable
performance, though improvements
were noted. The main limitations we
identified with this technique include
low specificity for some observers and
marked interobserver variation (mainly
in lesion size measurement). The con-

sensus of the participants was that the
extensive time required in choosing the
optimal frame from the cine-loop se-
quence and in tracing the lesion bound-
aries in both B-mode and strain images
could make the routine application of
this technique in a typical busy clinical
breast imaging practice difficult. These
findings, however, do not preclude the
possibility that alternative approaches
to using this general method would be
more successful. For example, manual
measurements of lesion width alone
might be performed in an acceptably
short time, and this simpler measure-
ment, coupled with more extensive user
training and experience, may result in
better observer performance and im-
proved observer agreement. The devel-
opment of an automated process that
could choose the optimal frame from
the cine-loop and obtain lesion size
measurements might also decrease vari-
ability and increase the ease and speed
with which the technique can be ap-
plied.
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ABSTRACT:  Ultrasonic strain imaging that utilizes signals from conventional diagnostic 

ultrasound systems is capable of showing the contrast of tissue elasticity, which provides 

new diagnostically valuable information. To assess and improve the diagnostic 

performance of ultrasonic strain imaging, it is essential to have a quantitative measure of 

image quality. Moreover, it is useful if the image quality measure is simple to interpret 

and can be used for visual feedback while scanning and as a training tool for operator 

performance evaluation. 

    This report describes the development of a novel quantitative method for systematic 

performance assessment that is based on the combination of measures of the accuracy of 

motion tracking and consistency among consecutive strain fields. The accuracy of motion 

tracking assesses the reliability of strain images. The consistency among consecutive 

strain images assesses the signal quality in strain images. The clinical implications of the 

proposed method to differentiate ‘good’ or ‘poor’ strain images are discussed. Results of 

experiments with tissue-mimicking phantoms and in vivo breast-tissue data demonstrate 

that the performance measure is a useful method for automatically rating elasticity image 

quality.  

 

Index Terms —  Ultrasonic strain imaging, performance assessment, correlation, elasticity 

imaging, E-mode imaging, elastography 
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I. Introduction 
The onset of many cancers is accompanied by changes in tissue macrostructure and 

microstructure that often result in increased tissue stiffness. Unfortunately, many cancers, 

despite large differences in stiffness, may or may not differ in x-ray attenuation or 

acoustic properties compared to their surroundings. As a result, many carcinomas are 

difficult to visualize with standard imaging techniques. For example, approximately 15% 

of palpable breast cancers are not detectable with mammography, and this number is 

likely higher in younger women [1].  Ultrasonic strain imaging (E-mode imaging, 

elasticity imaging, elastography, etc.) is a technique that emulates manual palpation 

where tissue is pressed to feel the differences in hardness. Ultrasonic strain imaging has 

spanned a broad range of applications, including breast tumor detection and 

differentiation [2, 3], characterization of vascular plaques [4], and assessment of fetal 

lung maturity [5]. These recent advances suggest that strain imaging provides 

diagnostically-valuable information that is not otherwise available in standard imaging 

modalities.  

    Ultrasonic strain imaging utilizes conventional signals (either radiofrequency or 

quadrature echo data) from clinical ultrasound scanners acquired before and after 

deformation is applied and derives ‘relative hardness’ information —  local strains from a 

displacement function that is estimated by comparing the pre- and post-compression echo 

fields. General steps in ultrasonic strain image formation include deforming the imaged 

tissue using an external or internal stimulus, measuring tissue response under deformation, 

and estimating strain from relative tissue motion. Both the complexity and sophistication 

of ultrasonic strain imaging systems have increased dramatically over the past fifteen 

years, as summarized in several survey papers [6-10]. Alongside this development there 

has been a progression in the understanding of strain image quality facilitating the 

development of predictive theories for the design and enhancement of ultrasonic strain 

imaging systems. In early work [11-18], attention was focused on estimating lower 

bounds for displacement estimate error variance, because measuring tissue deformation 

plays a critical role in strain imaging. A number of authors [11-14] have studied the 

displacement estimate error variance, usually in a simplified form using the formalism 

and analysis of time delay estimation (TDE). The general strategy of these approaches 
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has been to seek a closed-form analytical expression, parameterized in terms of 

ultrasound system configuration (i.e. bandwidth, center frequency, etc.) and time delay 

estimation parameters (i.e. window length and window separation).  For instance, Carter 

et al. [11] were among the first to establish the relationship between the Cramer-Rao 

lower bound (CRLB) for TDE variance and signal magnitude-squared coherence (MSC) 

)( fCαβ  between signals )(xα  and )(xβ . They demonstrated that the Cramer-Rao lower 

bound CRLBσ  is a function of )( fCαβ  as well as the estimation window length T in TDE 

[11],   
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where )( fSαβ is the cross-power spectral density, )( fSαα and )( fSββ are the respective 

auto-power spectral densities, and f  is the frequency.   

    The predicted “jitter error” is the minimum error achievable by any unbiased time 

delay estimation algorithm including, but not limited to, correlation-based algorithms. 

Walker and Trahey [12] extended Carter’s theory to include partially de-correlated 

signals. However, the CRLB is only applicable when the sonographic signal-to-noise 

ratio (i.e. the SNR in radiofrequency signals) is high (e.g. > 30 dB); otherwise, the 

Barankin bound or the Ziv-Zakai bound are more appropriate [13, 14]. 

    In ultrasonic strain imaging, axial strain ŝ  is often estimated from the difference 

between two displacement estimates 1̂D  and 2̂D  that are measured by a window length Z 

and axially separated by a distance of Z∆ as follows [15],  
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    The covariance )ˆ,ˆ( 21 DDCov  for one-dimensional (1-D) motion tracking can be 

conservatively approximated by the error variance in displacement estimates 2
dσ  as 

follows [15],  
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    From this result the lower bound on error variance in estimated axial strain can be 

obtained by assuming 22
ˆ

2
ˆ 21 dDD

σσσ =≈  for stationary echo signals [15],  
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    Equation (5) demonstrates that the minimum error achievable in axial strain estimates 

is predictable, once the strain processing parameters, i.e. window length Z  and window 

separation distance Z∆ , are known. Bilgen and Insana [16], among others, have shown 

that the error variance of axial strain estimates for small strains (e.g. <0.1%) increases 

monotonically with axial strain. However, it is well recognized that such small axial 

strains result in low contrast strain images [8]. It is also well understood that severe signal 

decorrelation occurs with large deformation (e.g. strain > 10%) resulting in ‘poor’ quality 

strain images [16-18]. There is an intermediate range of deformations from which 

reasonably high quality strain images can be obtained. The error variance bound alone is 

insufficient for selecting an ‘optimal’ strain range and that is why the signal-to-noise ratio 

(SNR), a relative measure, is of greater interest as a general performance measure.  

    Varghese and Ophir [17] made use of these error variance bounds to estimate 

elastographic signal-to-noise ratio ( eSNR ). They defined the elastographic eSNR  as the 

ratio of the mean value of the estimated strain m  and the standard deviation of the 

estimated strain errors sσ  as follows, 
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The behavior of eSNR  as a function of axial strain is similar to a band-pass filter, 

therefore the analysis result was called a ‘strain filter’. Potential performance assessed by 

the strain filter approach offers insight for designing strain- imaging systems, though the 

strain filter approach may only be applicable to homogeneous regions of tissue being 

imaged [17]. For example, the effects of modifying several system parameters, such as 

the center frequency, bandwidth and tissue deformation, on the performance of a strain 

imaging system can be predicted by the strain filter. In general, high center frequency, 

broad echo signal bandwidth and moderately small (~1%) strain are preferred for strain 

imaging. Similar conclusions were drawn by others using a different approach [16, 18-

22].  

    Unfortunately, error variance analysis based on the strain filter approach is inadequate 

for several reasons. First, to achieve a closed form solution, the variance bounds are often 

derived with simplifying assumptions which limit applicability. For example, error 

variance bounds for strain imaging were derived for one-dimensional time delay 

estimation problems. However, ultrasonic speckle tracking algorithms can be multi-

dimensional [23-25] or non-correlation-based [26, 27]. In addition, the effects of 

smoothness constraints, i.e. motion regularization [26, 28], in displacement estimation are 

difficult to model statistically. Secondly, variance bounds assume large displacement 

errors can be detected and corrected so the residual errors in motion tracking are sub-

sample ‘jitter errors’. This is a good assumption for some experiments, such as radiation 

force experiments [29-31], where deformations are small compared to acoustic 

wavelength. But experiments where axial strain is typically 1— 2% commonly involve 

displacements of more than one wavelength. In addition, displacement estimate error 

variance bounds obtained with homogeneous and isotropic phantoms provide overly 

optimistic results for in vivo biological tissues because motion in biological tissues is far 

more complex than that in typical phantoms. Thirdly, error variance bounds are used to 

place a limit on the expected result in any single observation by an unbiased time delay 

estimation algorithm. However, in medical image formation, where accuracy in a single 
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observation is important, variance bounds (descriptions of anticipated image noise) are 

insufficient to describe the performance for a specific deformation field. In other words, 

it is also important to have a method that can assess accuracy in each case individually.  

    Recall that, in ultrasonic strain imaging, the goal of speckle tracking between two 

radiofrequency (RF) echo fields Ar  and Br  is to obtain a transformation T that maximizes 

the similarity between Ar  and ( )BrT . Thus, strain image quality can be judged, in part, by 

assessing the motion tracking accuracy directly, as opposed to statistically. An example 

of this approach is the ‘trashogram’ [32] which displays the local normalized correlation 

coefficients between the pre- and post-deformation RF echo fields as a grayscale image. 

Although this method is attractive due to its simplicity, it can be misleading when 

displacement errors of an integer wavelength occur. A more comprehensive framework is 

based on signal coherence between the pre- and motion-compensated post-deformation 

RF echo signals [33-35]. By comparing the cross-power spectrum between the pre- and 

motion-compensated post-deformation RF echo signals, Insana, et al., [33, 34] derived 

the Fourier cross-talk matrix to assess ultrasonic strain imaging systems. Basically, 

motion tracking can be evaluated in terms of spatial sampling characteristics.  The 

Fourier cross-talk matrix, to some extent, can be regarded as a graphical representation of 

signal coherence. The diagonal elements of the cross-talk matrix represent the 

generalized transfer function, describing the strength of every Fourier coefficient 

representing the signals. The off-diagonal components of the cross-talk matrix represent 

the degree of aliasing between any two Fourier coefficients. If the pre- and motion-

compensated post-deformation RF fields are aligned perfectly, no off-diagonal elements 

will be observed. When motion tracking errors result in signal misalignment, off-diagonal 

elements in the cross-talk matrix increase. Although the graphical representation of signal 

coherence makes this method appealing, this approach is most useful in strain imaging 

system design and is  more difficult to use as a performance tool for strain imaging of 

biological tissues. The trace of the cross-talk matrix was offered as a summary 

performance measure, but it is an unbounded quantity that would be difficult to interpret 

in a clinical setting.  

    We propose a different approach to the performance assessment problem, one that is 

heuristic in nature. The two components of our strain imaging performance measure are 
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an assessment of motion tracking accuracy and consistency among consecutive strain 

fields. The motion tracking accuracy, measured by the normalized correlation coefficient 

between reference and motion-compensated target RF echo fields, describes the fidelity 

of displacement estimates from which the strain images are obtained. The consistency 

among consecutive strain images, measured by the normalized correlation coefficient 

between consecutive motion-compensated strain images, relates directly to the signal-to-

noise ratio in strain images. In the proposed method, both parameters were estimated by a 

single scalar metric, the normalized correlation coefficient, and an empirical equation 

was then used to obtain a single summary measure of the overall quality for strain images. 

Compared to methods available in the literature, the proposed method has several 

advantages: (1) no assumptions are needed regarding the signals, underlying motion, or 

motion tracking algorithms; (2) performance of strain imaging can be assessed for 

individual cases accurately; (3) the final performance descriptor, a scalar value between 

zero and one, is quantitative and easy to interpret. 

    The remainder of this paper is organized as follows. The next section describes 

performance assessment criteria for ultrasonic strain imaging, as well as implementation 

details of the proposed algorithm.  We then present results of tests of the proposed 

method with a tissue-mimicking (TM) phantom and in vivo breast tissue data including 

comparisons with ranking of images by human observers, followed by a discussion 

section and conclusions.   

 

II. Methods and Materials 
It is well accepted that local strains correlate strongly with tissue modulus distribution 

under certain boundary conditions (e.g. uniaxial compression) [36, 37]. When full 

knowledge of the ground truth (the modulus distribution and boundary conditions) is 

available (i.e., a numerically-simulated or tissue-mimicking phantom), a comparison of 

an estimated strain field to the ideal strain field provides an ideal basis for error analysis. 

In fact, a number of authors [38] [39] have used this approach to validate new algorithms. 

Unfortunately, “true” modulus maps are unavailable a priori for in vivo biological tissues, 

noting that acoustic scattering and tissue elasticity are uncorrelated [40]. There is a need 
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for a method that would allow the evaluation of strain image quality when the ground 

truth is not available.  

    Two important aspects of ultrasonic strain imaging, namely motion tracking accuracy 

and consistency among consecutive strain images, were used in several papers [2,32] as 

measures of strain image quality. Hall et al. [2] argued that examining tissue motion 

through a relatively long (>10 frames) sequence of B-mode images, together with 

consistency among successive strain images would provide some assessment of 

confidence in strain image accuracy. Kaluzynski et al. [32] used the radiofrequency (RF) 

signal correlation value of 0.985 as a measure for strain rate imaging and stated that 

reliable motion tracking would not be guaranteed if the correlation value fell below 0.985. 

The work presented below combines motion tracking accuracy and the consistency 

among consecutive strain images to create a performance assessment method that 

automatically quantifies strain image quality on a normalized scale.  

    The normalized cross-correlation (NCC) between the two fields is a common measure 

of their similarity.  Since frame-average tissue deformations of 1% strain are easily 

achieved in vivo, and local deformations can approach 5% strain, comparisons are made 

between a reference field, ijα , and the motion-compensated target field, ( )ijT β . Thus, the 

NCC, βαρ , ,  can be written as follows [41], 
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where N and M are the width and height of the frames of data, respectively.  

 

A. Motion tracking accuracy 

As stated above, a goal of ultrasonic strain imaging is to obtain a transformation T that 

maximizes the similarity between two radio-frequency (RF) echo fields 1−nrf  and ( )nrfT . 

Local displacement and strain are estimated from this transformation. Once the local 
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displacements are known, the target field can be re-sampled, e.g., using a cubic spline 

interpolation algorithm, to obtain its corresponding motion-compensated target field. 

Thus, the accuracy of motion tracking can be quantified by the normalized cross 

correlation, rfρ , between the reference RF echo field 1−nrf and the motion-compensated 

target RF echo field, ( )nrfT .  

              

B. Consistency among strain images 

Similarly, the consistency among strain images can be defined by the normalized cross 

correlation, sρ , between the previous strain field 1−ns  in a sequence of consecutive fields 

and the current strain field in the sequence ns  mapped into the spatial coordinate system 

of strain field 1−ns .  

    For small deformations, the strain information in successive images have 

approximately the same underlying signal (i.e., the tissue modulus distribution), but the 

signals are corrupted by noise. Belaid et al. [42] have shown through simulations that 

noise in strain fields estimated from radiofrequency (RF) echo signals is Gaussian 

distributed. Given the assumption that noise in strain images is uncorrelated with its 

underlying signal, a high correlation between two consecutive, motion-compensated 

strain images means relatively low noise in both strain images and thereby suggests better 

strain image quality.  

   

C. Empirical Equation 

Correlation among motion-compensated RF echo fields and strain images are both 

important measures of strain imaging system performance. Combining them to provide a 

single summary performance measure for the overall quality of ultrasonic strain imaging 

is a logical approach, and a simple empirical equation for this combination is 

 

srfp ρρ=                                                                                                                          (8) 
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where p  is the overall performance. It is worth noting that the summary performance 

measure p  ranges from zero to one.  

             

D. Implementation     

We implemented the proposed summary performance measure in our existing strain 

image formation software in MATLAB® (Mathworks Inc., Natick, MA), as schematically 

illustrated in Fig. 1.  The proposed method cons ists of following major steps: 

1. Obtain a pair of RF frames (e,g, the (i-1)th and (i)th frame in Fig. 1 where the 

(i)th frame is the reference frame) and track motion. The displacement field 

contains both lateral and axial displacement components from the (i)th frame to 

the (i-1)th frame. Form a strain image in the coordinate system of (i)th RF echo 

frame (e.g. iS  in Fig. 1). 

2. Use the displacement field obtained in Step 1 to warp the (i)th RF echo frame 

into the (i-1)th coordinate system and calculate the normalized cross correlation 

between the (i-1) and motion-compensated (i)th RF echo field to assess the 

motion tracking accuracy. Note that warping is a process of compensating the 

motion between the (i)th and the (i-1)th strain frames, as described in Section II-

A.   

3. Warp the (i)th strain image into the (i-1)th coordinate system and calculate the 

normalized cross correlation between the (i-1)th and motion-compensated (i)th 

strain images to estimate the consistency between consecutive strain images. 

Note that the (i-1)th strain image is formed at the physical grid of the (i-1)th RF 

echo field.  

4. Calculate the summary performance measure (Eqn. 8) and assign this value to the 

(i)th strain image. 

5. Repeat Step 1— 4  for each pair of RF echo frames in a sequence.  

 

E. Remarks     

The proposed method performs best in a sequence of strain images where the estimated 

performance values are slowly varying. The success of ultrasonic strain imaging relies on 
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the ability to control tissue motion during deformation. For instance, the ideal motion for 

breast scanning is a nearly uniaxial compression, with minimal out-of-plane motion [2]. 

To maintain consistency between two successive strain images, the boundary conditions 

and modulus distribution that is being imaged have to be nearly unaltered during data 

acquisition. Real- time elasticity imaging systems [2, 25] that provide elasticity images 

with a frame rate high enough to control the boundary conditions of freehand 

deformation result in consistently high qua lity elasticity images. To a first approximation, 

the elastic moduli of biological tissue are constant for small deformations [43]. Also, with 

a sufficiently high frame rate between the RF echo frames paired to form strain images, 

the viscosity of biological tissue may be ignored [44]. 

    There are at least two reasonable approaches to estimating consistency among strain 

images that relate to the selection of a reference strain image. One may choose the ‘best’ 

quality strain image among the sequence as the standard for comparison (the ‘reference 

strain image’ approach). A second approach is to use the adjacent strain image as the 

standard for comparison. There are several motivations for using the ‘adjacent strain 

image’ approach over the ‘reference strain image’ approach. First, the selection of the 

‘best strain image’ is likely subjective and not fully automated. The ‘adjacent strain 

image’ approach provides full automation, thereby suggesting an objective assessment. 

Second, the assumptions that the modulus distribution and boundary conditions are 

unaltered may be problematic if a single reference strain image in a long sequence of data 

(typically greater than 60 radiofrequency echo frames) is used. It is easy to argue that 

these assumptions are valid for adjacent strain images where small deformation 

increments (1% strain) under similar boundary conditions are applied to the object being 

imaged.  

    One drawback of using the ‘adjacent strain image’ approach is that comparison of a 

high-quality strain image with a low-quality strain image will result in degraded cross 

correlation. It is possible to re-assign a higher consistency value to the (i)th strain image 

when it correlates poorly to a low-quality (i-1)th frame, but correlates well with the 

(i+1)th strain image. The scheme does not work when a reasonably high quality strain 

image is interleaved between two low quality strain images.  Although the ‘reference 

strain image’ approach might work well in that case, the subjectivity in reference frame 
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selection, the loss of automation, and the potential for violating the assumption regarding 

unaltered boundary conditions make that approach significantly less attractive. 

                

III. Algorithm Evaluation 
The proposed method for quantifying strain image quality was tested with RF echo data 

acquired from a tissue-mimicking (TM) phantom and in vivo breast tissue. The first test 

of the proposed method used a TM phantom with a known elasticity distribution and its 

corresponding strain image under well controlled imaging conditions. The second test 

evaluated algorithm performance using in vivo breast tissue data acquired with freehand 

scanning. Image ratings obtained from three human observers were compared with 

measured performance values to determine whether results from the proposed method 

match well with human perception.  

    A real-time strain imaging system [2, 25] based on the Siemens SONOLINE Elegra 

(Siemens Medical Solutions, Mountain View, CA) with a 7.5 MHz linear array (7.5L40) 

transmitting 7.2 MHz broadband pulses was used to guide I-Q data acquisition. The strain 

images used in this study were processed off- line by first converting the I-Q data to RF 

and then forming strain images using a more numerically demanding algorithm [45] than 

the real-time algorithm on the Elegra [25]. This motion tracking algorithm is a modified 

block matching algorithm and consists of the two-dimensional search for equivalent 

patterns between pre- and post-deformation radiofrequency echo fields delimited by a 

small two-dimensional kernel. The sum-squared-difference (SSD) is employed to 

estimate displacement fields. A small two-dimensional non-overlapping kernel 0.96 ×  

0.40 mm (length by width) was used to track tissue motion. Displacement estimates in a 

small one-dimensional window were then fitted into a line locally and the slope of this 

line was assigned to the center of this window as the estimated local strain value. In this 

study, a relatively large window (2.4 mm) was used to obtain axial strains that were 

displayed as grayscale images. No additional filtering was applied in this study. The 

performance assessment algorithm has been integrated into our off- line strain imaging 

processing program to obtain performance values for all examples shown here.  
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A. Tissue-Mimicking Phantom Experiment  

The tissue-mimicking phantom, shown in Fig. 2, has a uniform background and two 

spherical inclusions, whose diameters are 2.4mm and 3mm, have similar acoustic 

properties but are three times stiffer than the background. The inclusions are barely 

visible in B-mode images. The phantom (Fig. 2) was manufactured as described in [40]. 

Thirty-one I-Q echo frames of data were recorded while freehand scanning the phantom 

with the Elegra. The physical size of B-mode images is roughly 38 mm  ×  40 mm  (W x 

L) and a single transmit focal zone was centered at the depth of 20mm. Note that the 

reference radiofrequency echo frame was paired with frames with different time delays to 

obtain the six frame-average strains shown in Fig. 2.   

 

B. In vivo Breast Tissue Experiment 

Human subjects who, with informed consent, agreed to participate in elasticity imaging 

research were scanned at Charing Cross Hospital, (London, UK) and Mayo Clinic 

(Rochester, MN, United States) using identical Siemens SONOLINE Elegra systems 

equipped with real- time elasticity imaging software [2], including the linear array 

ultrasound transducer. Sixty-five frames of RF echo data were acquired from a 

fibroadenoma and 99 frames of RF echo data were acquired from an invasive ductal 

carcinoma.  

 

 C. Human Observer Study 

Three ultrasound physicists who are actively involved in elasticity imaging research 

participated in this human observer study. The observers learned to rate strain images in 

an initial training session with 100 strain images (ten consecutive strain images from ten 

different data sets) that included both benign and malignant solid tumors (five 

fibroadenoma (FA) and five invasive ductal carcinoma (IDC)). Observers were instructed 

to rate the quality of strain images using the scale and criteria shown in Table I. During 

the training session the computer ratings for each of the 100 images were provided as 

feedback to enable all observers to consistently rate strain image quality.   
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    During the human observer study, 20 different data sets (nine FA, eight IDC, one 

invasive lobular cancer, one unknown cancer and one fat necrosis) of in vivo breast tissue 

data were used and each set consists of at least 60 consecutive strain images. Observers 

first viewed the complete sequence of side-by-side B-mode and strain images in each 

data set and then rated the quality of the pre-determined subset of ten strain images for 

that data set. Computer ratings of these two hundred strain images were unknown to the 

observers. By first viewing the complete data set observers learned the typical appearance 

of the specific lesion in that data set.  Scoring ten successive strain frames reduced the 

number of strain images that must be rated by observers in order to achieve a statistically 

significant result.   

    Specific instructions were given to observers on how to determine image quality. The 

approximate location and contour of the lesion in the sequence of B-mode images was 

used to set expectations of lesion size and location in strain images. Lesion location in 

strain images must correspond to that in B-mode, but size and contrast in the two image 

types can differ significantly. No attempt to compare lesion morpho logy was suggested to 

the observers. The observers may try to identify the ‘best’ strain image in a particular 

sequence, together with adjacent strain images, as the reference image to assess image 

quality. Note that the reference strain image is not necessary within the span of ten pre-

determined strain images. The observers may take complexity of tissue motion into 

consideration. That is, tissue motion may be visually tracked in a sequence of B-mode 

images to determine the degree to which RF echo data decorrelates to subjectively assess 

the complexity in motion tracking.  The image formation algorithm and display grayscale 

mapping was consistent among all data. Also, no ground truth regarding the ‘correct’ 

strain image is available. Therefore, an apparent lack of detail in an image (e.g., image 

smoothness or lesion contrast) should not bias the observer toward ‘good’ or ‘bad’ image 

quality.  

    The observers were also asked to follow the same procedures and score a continuous 

sequence of forty strain images acquired from a patient with a fibroadenoma. Note that 

results of this data set are presented in Figs. 9 and 10, whereas the results from the first 

200 strain images are separately presented in Fig. 8. It is also worth noting that all in vivo 
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data presented in this subsection was acquired us ing the real-time elasticity imaging 

system described above. 

    A viewing software program providing strain images displayed side-by-side with their 

corresponding B-mode images was employed for this study. Observers could view image 

sequences at eight frames per second, or slower, or could step through images frame by 

frame. Image rating was performed only when stepping through the sequence frame by 

frame. All images were displayed on typical flat panel monitors (NEC MultiSync LCD 

1860NX) and viewing time was not limited. Note that monitors were set to the same 

configurations.  

IV. Results 
Representative strain images obtained from the tissue-mimicking phantom experiment 

are displayed in Figs. 2(a)— (f). The frame-average axial strain varies from 0.3% —  4.5%. 

In each plot, the size of the echo field was 38mm ×  40mm (width ×  depth). Note that 

low-frequency banding is apparent in low-strain images (e.g. < 1.0%). This banding is 

due, in part, to a biased interpolation algorithm used for obtaining sub-sample 

displacement estimates [46]. One measure of image content is the contrast-to-noise ratio 

(CNR) defined [47] as 

 

)(
)(2
22

2

bt

bt ss
CNR

σσ +
−

=                                                                                                          (9) 

 

where s  and 2σ  denote signals and variances of signals, and subscripts b  and t  

represent the background and target, respectively. The estimated CNR for the two 

spherical targets ( 4.2CNR for the 2.4mm sphere; 3CNR  for the 3mm sphere) in strain 

images together with their estimated performance values (Eqn. 8) are shown in Table 2. 

The estimated CNR correlates with the performance values obtained by the proposed 

method.  

    The NCC among motion-compensated RF echo fields, rfρ , decreases monotonically 

with the increasing axial deformation, as shown in Fig. 3(a). Note that, given a long 

sequence of RF data, different frame-average axial strains can be achieved by pairing the 
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pre- and post-deformation RF echo frames separated by different time intervals. It is 

significant to note that the estimated rfρ  will change somewhat if different regions of 

interest are used. The consistency of estimated strain images, sρ , versus axial 

compressions is displayed in Fig. 3(b). The horizontal banding artifact shown in Fig. 2 is 

mitigated as the axial deformation increases resulting in strain images with less noise and 

greater consistency from frame to frame. Thus, the estimated consistency among strain 

images correlates with the CNR of strain images. The estimated summary performance 

measure as a function of frame-average strain is shown in Fig. 3(c). The estimated 

performance is consistent with findings reported by Chaturvedi et al. [23] which showed 

that strain image quality (the contrast-to-noise ratio) increases with frame-average strain 

up to about 5% for a tissue-mimicking phantom. The error bars in these plots denote one 

standard error and were obtained from more than 20 pairs of RF and strain fields. 

    Representative strain images obtained from in vivo breast tissue with different axial 

deformations are shown in Figs. 4(a)— (d). The frame-average axial strain in these 

images varies from 0.4% —  3.0%. The strain image contrast increases with deformation 

and the maximum contrast-to-noise ratio is obtained when the frame-average axial strain 

reaches about 2%. Summary performance values correlate with strain image CNR as 

shown in Table 3, and thereby suggest that the estimated performance values are 

reasonable measures of strain image quality, similar to the results obtained from the TM 

phantom experiment.  

    The correlation among motion-compensated RF echo fields, rfρ , is plotted with respect 

to different axial deformation in Fig. 5(a) for the same in vivo breast tissue data set 

represented in Fig. 4. Different frame-average axial strains were again achieved by 

pairing the pre- and post-deformation RF echo frames separated by different time 

intervals. The error bars in Fig. 5 also denote one standard error and were obtained from 

more than 30 independent pairs of RF and strain fields. The correlation among motion-

compensated RF echo fields decreases much faster with increased axial deformation 

compared to that found in the tissue mimicking phantom results. This result implies that 

complex tissue motion is challenging to track with a simple block matching algorithm, 

whereas motion in the TM phantom is relatively uniform and easy to track even under 
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large deformation.  The normalized correlation coefficient among consecutive motion-

compensated strain images versus frame-average axial strain is plotted in Fig. 5(b). The 

peak correlation coefficient occurs near 1.2% axial strain. The maximum correlation and 

the strain at which it is found are much lower than that of the TM phantom experiment. In 

addition, the correlation falls rapidly beyond the peak value. The estimated performance, 

shown in Fig. 5(c), is low for small axial deformation and reaches its peak when the 

frame-average strain is about 0.8% to 1.2%.  

    During freehand scanning, a sinusoidal compress/release cyclic deformation was used 

and the acquired data typically contained one or more cycles. More details regarding data 

acquisition can be found in [2]. Unfortunately, freehand scanning sometimes results in 

non-uniform frame-average strains, as illustrated in Fig. 6(a). Adaptively selecting the RF 

frame pairs in post-processing [45, 48] to obtain nominally 1 —  1.5% absolute frame-

average strain significantly improves the quality of a sequence of strain images, as 

demonstrated in Fig. 6(b).    

    Fig. 7(a) is a typ ical “good” quality strain image of an invasive ductal carcinoma.  The 

normalized cross correlation values for estimating motion tracking accuracy ( rfρ ) and 

strain image consistency ( sρ ) were 0.83 and 0.89, respectively. Thus, this strain image 

was obtained from reasonably accurate displacement estimation and correlated well with 

its adjacent strain images. An atypical strain image obtained from this data set is shown 

in Fig. 7(b). The estimated consistency ( sρ ) was 0.81 and therefore it was fairly 

consistent with it s adjacent strain images. But the estimated motion tracking accuracy 

rfρ  was 0.47 for this particular strain image. The sequence of B-mode images showed 

high decorrelation for relatively small axial strain suggesting extensive elevation (out of 

acoustic imaging plane) motion.  

    Figure 8 shows a plot of the strain image quality rated by human observers (1— 10 

scale) and the summary performance measure (0— 1 scale). Results in Fig. 8 show that 

the rating by observers was generally well described as a linear function of the summary 

performance measure (r = 0.87). The quality rating by human observers has higher 

correlation to those by the summary performance measure when the strain image quality 

is reasonably high. By filtering the data in Fig. 8 to include only those strain images with 
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a summary performance measure in excess of 0.6 the correlation between human rating 

and summary performance measure increased to 0.99.  

    The comparison of average scores of the observers and the summary performance 

measure based on a sequence of containing 40 consecutive strain images of a 

fibroadenoma is shown in Fig. 9(a). The frame-average strains are plotted with respect to 

the frame numbers in Fig. 9(b). All 40 frames of strain data can be seen in Movie 1 (see 

Fig. 10) provided with this manuscript. Note that computer ratings were rescaled from 

1— 10 for comparison with human rating (Table 1). Results in Fig. 9(a) suggest that 

human rating of strain images was well described by the computed performance values 

through most of the sequence.  However, beyond the 26th frame there are discrepancies 

between the human observers and the computed performance measure. Observations 

from the 27th and 28th frames of strain data (see Movie 1 in Fig. 10) show that these two 

strain images were significantly different compared to typical ‘good’ strain images in this 

sequence, therefore human observers rated these frames low. Adjacent strain image 

frames were sufficiently similar for the algorithm to rate them reasonably high. In the last 

ten frames (31— 40) of strain data in Movie 1 (see Fig. 10), there was extensive lateral 

motion, as observed in the B-mode image sequence. Correspondingly, there are signs of 

motion tracking failure in the strain image sequence and the estimated values of the 

motion tracking accuracy are relatively low (see Fig. 9(a)). These ten strain images are 

still fairly consistent with typical ‘good’ strain images in this sequence. It appears that the 

observers weighted ratings toward consistency of strain images in this particular case (the 

solid line marked with triangles in Fig. 9(a)). For these few images the observers’ rating 

scores match better with the measure of consistency among successive strain images than 

with the overall performance assessment. It is worth noting that there are large 

discrepancies between the estimated values of motion tracking accuracy (i.e. rfρ ) and the 

human ranked values, particularly from the 20th frame to 30th frame as shown in Fig. 9(a). 

As illustrated by Fig. 9(b), the frame-average strains are low (within %5.0± ) from the 

20th frame to the 30th frame demonstrating that the motion tracking accuracy is biased 

toward small deformations.  
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V. Discussion 
In this study, motion tracking accuracy and similarity of consecutive strain images were 

shown to contribute to the overall quality of strain images. The implication of Eqn. (8) is 

that we favor strain images that are consistent with their adjacent peers and also are 

computed from reliable motion estimates. In addition, the particular combination clearly 

reflects the following facts. Correlation among consecutive RF echo fields, rfρ , favors 

small deformations (abs(strain) %5.0< ), as illustrated in Figs. 3(a) and 5(a). At the same 

time, small deformation often results in noisy strain images (see Figs. 2(a) and 4(a)) for 

which the correlation between consecutive strain images, sρ , is penalized. As a result, the 

product of rfρ and sρ  is low at small deformation. However, under large deformation 

(abs(strain) %10> ), the performance value is also low. Large deformation produces large 

echo signal decorrelation resulting in low rfρ and sρ . Therefore, there is an intermediate 

range of deformation for which both rfρ  and sρ  are reasonably high and good quality 

strain images can be obtained. 

    It is interesting to note that pairs of consecutive strain images that are reasonably 

consistent were found even when echo signals were severely decorrelated suggesting that 

strain image consistency as a single criterion can be misleading as a measure of image 

content and quality. Data presented in Fig. 7(b) is an example. On the other hand, using 

motion tracking accuracy alone to indicate strain image quality could be misleading too. 

Figs. 3(a) and 5(a) demonstrate that the normalized cross-correlation between a pair of 

motion-compensated RF echo data is highest for small deformation, but this measure 

alone is also insufficient to describe the quality of strain images (see Figs. 2(a) and 4(a)). 

The results presented in Fig. 8 also clearly show that there are large discrepancies 

between the estimated motion tracking accuracy rfρ  and the visual perception of human 

observers (see Movie 3 in Fig. 10). In summary, the combination of motion tracking 

accuracy and consistency between consecutive strain images provides a practical solution 

to objectively rating strain images, though this combination (i.e. Eqn. (8)) is established 

intuitively, and this approach cannot quantify the true task-dependent psychophysical 

strain image quality. In other words, this study showed that the combination of motion 

tracking accuracy and consistency between consecutive strain images is adequate to 
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assess strain image quality in the absence of ‘ground truth’ by applying the proposed 

method to in vivo tissue data where tissue motion is complex.  

    Considerably higher summary performance measures were obtained in TM phantom 

experiments compared to in vivo breast tissues. In addition, summary performance 

measures remained high at large axial strain (e.g. 4.0%) for the TM phantom experiment 

but decreased significantly beyond about 1.5% frame-average strain for in vivo breast 

tissues.  These results suggest that studies involving simulations and phantoms might be 

overly optimistic for predicting the overall performance of an elasticity imaging system 

and might be misleading regarding the desirable strain range for image formation. Our 

algorithm [25] is a modified version of classic block-matching algorithm that assumes 

rigid body motion. The algorithm does not accurately track large deformation (>10% 

strain), small scale tissue rotation or shear. Complex tissue motion (e.g. shearing and 

slipping boundaries in tissue) can cause difficulty in obtaining consistent tissue elasticity 

images and more robust motion tracking algorithms (e.g. [26, 27, 49]) may be beneficial.  

    One of the most promising uses of the proposed performance assessment method is to 

eliminate ‘poor’ quality strain images from a sequence of images. That is, only the strain 

images that are consistent from frame to frame and obtained through accurate motion 

tracking would be included for clinical diagnosis. The visual impression of the tissue 

elasticity is improved by selecting a threshold (0.7 for the sequence containing 40 strain 

images in Fig 9) and including only those strain images whose summary performance 

measure exceeds that threshold. An unedited sequence of 40 frames of strain images is 

available in Movie 1 (see Fig. 10), and the edited version is available in Movie 2 (see Fig. 

10). The contour of the in vivo fibroadenoma is more consistent throughout the sequence, 

after ‘low-quality’ strain images are eliminated. 

    It is also interesting to note that the observers seemed to heavily weight the consistency 

of consecutive strain images. That may suggest that for an algorithm to match the 

performance of human observers, motion tracking accuracy and consistency among 

successive strain images might need to be weighted differently. However, the current 

study is limited by the small number of data sets (10 human subjects) and the 

involvement of only three observers. A larger number of in vivo data sets and observers 

are essential to reach such a conclusion with statistical significance.  
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    Alternatively, it is not clear that matching the performance of human observers is a 

necessary goal. The motivation in this work was to aid the observer in determining which 

images in a sequence could be trusted as displaying accurate elasticity information. 

Accuracy in tracking motion and consistency in consecutive strain images suggest that a 

strain image displays accurate information. The summary performance measure based on 

these parameters is not dependent on what an observer expects or wants to see. 

    Clinically, the quality of strain imaging is evaluated in terms of displayed strain images, 

if human observers (typically radiologists) are involved. That is, the human observer is 

the final arbiter for an elasticity imaging device whose output is intended for clinical 

diagnosis. It is well recognized that human perception is a complex mixture of 

psychology, physiology, and environment. The results shown here demonstrate that the 

summary performance measure correlates well with assessment by human observers, 

particularly for ‘high-quality’ strain images. Given that we are most interested in 

identifying ‘good–quality’ strain images, the proposed method appears very practical.  

    Besides diagnostics, training clinicians is necessary to promote and improve the use of 

ultrasonic elasticity imaging. The proposed summary performance measure can help 

trainees understand the importance of maintaining boundary conditions during patient 

scanning. For instance, the summary performance measure can provide instant feedback 

to trainees through a scoring system to help them master boundary condition control and 

through this improve their elasticity imaging technique and overall image quality.  

    It is worthwhile to note that the normalized cross correlation is mathematically 

restricted to stationary random signals. Strain images directly correlate to intrinsic 

mechanical properties of tissue being imaged and those properties may not be stationary. 

RF echo frames of data may also be non-stationary due, in part, to diffraction and 

frequency-dependent attenuation. In this circumstance, using the normalized cross 

correlation merely measures pattern similarity. Nevertheless, the correlation value, 

primarily used for estimating the similarity between two different signals, may be 

satisfactory as long as this metric provides sufficient differentiability between ‘good’ or 

‘poor’ performance.    
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    The risk of local recurrence of breast cancer is reduced by removing the tumor and a 

tumor-negative margin around it. Once a diagnosis of breast cancer has been made, the 

extent of disease (e.g. lesion boundaries) must be assessed for treatment planning. 

Preliminary studies [2, 50] have demonstrated that the size of a breast tumor is larger in 

strain images than shown in B-mode ultrasound images, and it is a reasonable hypothesis 

that the tumor size in strain images is a more accurate representation of that measured at 

pathology than that available in B-mode images [2,51]. Although real-time ultrasonic 

strain imaging systems [2, 52] are essential for manipulation of boundary conditions to 

achieve ‘good’ quality of strain images, quality fluctuations in strain images still exist, as 

demonstrated by error bars in Fig. 5(c). Objective elimination of ‘low–quality’ strain 

images by the proposed summary performance measure makes a sequence of strain 

images more consistent for tracking lesion boundaries. It is therefore reasonable to 

hypothesize that elasticity imaging and the proposed summary performance measure will 

improve treatment planning.  

    The work reported is only part of the assessment of strain image quality. Other 

parameters (e.g. resolution) must be incorporated to provide a more comprehensive 

measure of elasticity image quality. Research is underway to include more attributes of 

strain imaging systems to provide more comprehensive assessment of ultrasonic strain 

imaging. 

VI. Conclusions 
A quantitative summary performance measure of ultrasonic strain imaging was obtained 

by combining the measures of motion tracking accuracy and consistency among 

consecutive strain images. The proposed method can be used to assess the quality of 

strain images with full automation and the measured performance is consistent with 

visual perception. The descriptor can be used clinically as a method for objectively 

deciding what are ‘good’ and ‘better’ strain images and can be used as a training tool 

providing feedback to the clinician while they scan and learn to obtain high-quality 

elasticity images. This task is important, because the ‘right answer’ is unknown when 

heterogeneous tissues are being imaged. 
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Table 1. Guidelines for rating strain image quality 
 

Scores Description 

1 strain images that appear noisy and apparently contain no tissue 

elasticity information 

2-3 strain images that have low contrast-to-noise ratios but contain no 

obvious motion tracking failures; or strain images that contain a little 

tissue elasticity information and where noise is so distracting that 

little useful information can be effectively extracted 

4 strain images that have some correlation to the reference strain 

images but noise is apparent; or strain images that are reasonably 

consistent from frame to frame but have large motion tracking errors 

which may degrade the ability to extract lesion contours 

5 strain images that are reasonably consistent from frame-to-frame and 

any large motion tracking errors have limited affect on the ability to 

extract consistent lesion contours  

6-7 strain images that are consistent from frame to frame and have no 

significant motion tracking errors 

8-9 strain images that are not only consistent from frame to frame 

coarsely, but also preserve structural details reasonably well 

10 Strain images that consistently preserve structural details at a very 

fine level 
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Table 2. Comparison of estimated contrast-to-noise ratios to the calculated performance 

values in a tissue-mimicking phantom 

              

  Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 2e Fig. 2f 
CNR2.4 1.2 4.1 3.7 5.7 6.9 7.9 
CNR3 3.2 5.4 5.9 8.4 9.3 10.3 

Performance value 0.25 0.45 0.65 0.85 0.92 0.93 
Frame-average strain 0.30% 0.60% 1.10% 2.00% 3.80% 4.50% 
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Table 3. Comparison of estimated contrast-to-noise ratios to the calculated 

performance values for an in vivo fibroadenoma 

 

 

          

  Fig. 4a Fig. 4b Fig. 4c Fig. 4d 

CNR 3.4 12.5 13.5 6.5 
Performance value 0.4 0.76 0.82 0.62 

Frame-average strain 0.40% 1.00% 2.00% 3.00% 
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Figure Captions  

Fig. 1. A schematic illustration of the frame pairing procedure for strain image formation. 

 

Fig. 2. B-mode and strain images obtained under different axial compression: (a) 0.3%; 

(b) 0.6%; (c) 1.1%; (d) 2.0%; (e) 3.8%; (d) 4.5%. The white boxes in the B-mode images 

define the regions of interest (ROI) from which strain images were estimated.  

 

Fig. 3. Estimates of the NCC between pre-deformation and motion-compensated post-

deformation (a) RF echo fields, and (b) consecutive strain images and (c) the summary 

performance values vs. axial deformation using the tissue-mimicking phantom.  Error 

bars denote one standard error.  

 

Fig. 4. B-mode and strain images from an in vivo breast fibroadenomas at (a) 0.4%, (b) 

1%, (c) 2%, and (d) 3% frame-average axial strain. The white boxes in the B-mode 

images define the regions of interest from which strain images were estimated.  

 

Fig. 5. Estimates of normalized cross correlation between pre-deformation and motion-

compensated post-deformation (a) RF echo fields, (b) consecutive strain images and (c) 

performance values vs. axia l deformation using data acquired from a palpable in vivo 

breast fibroadenoma. Error bars denote one standard error.  

 

Fig. 6. Plots of (a) the frame-average strain obtained with freehand scanning of an in vivo 

breast, and (b) the estimated overall performance values. The solid line represents results 

obtained by pairing adjacent RF frames of data for calculating local strains. The dashed 

line represents results obtained by adaptively selecting the RF frame pairs to achieve 

approximately 1— 1.5% frame-average strain. 

 

Fig. 7. B-mode and strain images obtained from an in vivo invasive ductal carcinoma. 

Images in (a) show a typical ‘good-quality’ strain image and in (b) a ‘low-quality’ strain 

image that is consistent with its adjacent strain images and but is not consistent with 

typical ‘good’ quality strain images in the same sequence. The frame-average strains are 
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0.92% in (a) and 1.2% in (b), respectively. The estimated summary measures are 0.74 in 

(a) and 0.38 in (b), respectively.  

 

Fig. 8. A plot of comparing the summary performance values and human rating scores for 

200 strain images. The solid line represents a linear fit between the summary 

performance measure and human rating scores. 

 

Fig. 9. Plots comparing (a) the summary performance measure and human rating scores 

from a sequence of 40 consecutive strain images of a palpable in vivo fibroadenoma, and 

(b) the frame-average strains in the same sequence.  

 

Fig. 10. A sequence of strain images whose performance scores are plotted in Fig. 8. 

Movie 1 is the unedited sequence and Movie 2 is the edited sequence where ‘bad’ quality 

strain images whose estimated performance values are below 0.65 are eliminated. Movie 

3 is obtained by filtering strain images whose estimated values of motion tracking 

accuracy ( rfρ ) are below 0.9.  
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Movies and animations : please click on the movie icons to see movie and animations. 
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Using Ultrasound Strain Imaging to Improve the Decision to Biopsy Solid Breast Masses 
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ABSTRACT 
 

PURPOSE 
 
To retrospectively determine the accuracy of the ultrasound (US) strain imaging to differentiate 

benign and malignant breast masses and thereby improve the decision to biopsy solid breast 

masses. 

MATERIALS AND METHODS 

Approval for the study was obtained from the Institutional Review Board and informed consent 

obtained from patients who participated in image acquisition.  Strain imaging was performed on 

403 breast masses.  Lesions were imaged using free-hand compression and a real-time strain 

imaging algorithm.  The 50 highest quality-malignant and 50 highest-quality benign lesions were 

selected for a reader study.  Three observers blinded to pathologic outcomes first interpreted B-

mode images using BI-RADS descriptors and provided a probability of malignancy. Then the 

readers viewed the strain image appearance and measurements and their updated probability of 

malignancy.  Receiver operating characteristic (ROC) curves were constructed for each observer 

using probabilities assessed first without and then with strain.  The areas under these curves 

(AUC) as well as sensitivity and specificity at several decision thresholds were calculated and 

compared. Inter-observer variability was evaluated.  We also analyzed whether the correlation 

between an automated and a subjective quality assessment predicted reader performance.  

RESULTS 

Each reader’s AUC improved when strain imaging was used to assess the probability of 

malignancy. The average AUC for all three readers after strain imaging was significantly better 

than after B-mode alone (0.872 versus 0.902, P = 0.012). Using a threshold of 2% probability of 

malignancy, as a group, specificity with strain improved significantly over B-mode alone (0.140 

  



versus 0.191, P < 0.0001) while achieving high sensitivity (0.986 versus 0.993, P = 0.32). 

Statistically significant inter-observer variability was observed (p < 0.001). In addition, the 

ability to accurately assess strain image quality appeared to correlate with highest observer 

performance.  

CONCLUSIONS 

We find that US strain imaging has the potential to aid in the discrimination of benign and 

malignant breast masses.  However, inter-observer variability and image quality appear to be 

important considerations in performance optimization.   

Key Words:  Breast, Breast Neoplasms, Ultrasound

  



 

INTRODUCTION 
 

Breast biopsy, the current method used to distinguish between benign and malignant breast 

abnormalities on imaging, actually delivers a benign result in over 75% of cases making it the 

most costly per capita component of a breast cancer screening program.(1) A decade ago, 

physicians found that imaging features on ultrasound can be used to discriminate benign and 

malignant solid breast masses in order to decrease biopsy rates.(2) Unfortunately, their successes 

have not been reliably confirmed and are not widely used. In addition, The Agency for 

Healthcare Research and Quality (AHRQ) recently stated that current ultrasound performance is 

insufficiently sensitive or specific to be used in place of breast biopsy for diagnosis of 

mammographically identified abnormalities.(3) A method to reliably differentiate benign and 

malignant solid masses on ultrasound would indeed be valuable. 

 

Ultrasound strain imaging (also known as elastography) may aid the differentiation of benign 

and malignant solid breast masses.(4-19) This research is based on the fact that benign and 

malignant breast lesions have an inherently different firmness. Strain imaging measures the 

relative stiffness of lesions compared to surrounding tissue. Stiffer areas, which by definition 

deform less easily than their surroundings, are encoded as dark while softer areas, which deform 

more easily than their surroundings, are depicted as light on strain images.   Malignant masses 

typically appear dark and have high contrast with background breast tissue during deformation.  

Benign masses typically appear lighter and have lower contrast with background tissue with 

deformation.  In addition, malignant lesions tend to be larger on strain images than the 

corresponding B-mode images which may be caused by the desmoplasic reaction commonly 

 1 
 



associated with these tumors.(5-7, 13, 18, 20) Figures MALIGNANT and BENIGN show the 

appearance of malignant and benign lesions on B-mode and strain images respectively.  The 

appearance of strain images and lesion size discrepancies between B-mode and strain images 

may be a promising way to distinguish benign from malignant lesions.   

In the past, various characteristics of strain imaging (eg. strain to B-mode size ratio) have 

been used as isolated predictors of benign and malignant breast disease.(5, 6) In contrast, in 

clinical practice strain imaging is much more likely to be used as an adjunct to ultrasound in 

lesion evaluation and management.  In this experiment we wish to add strain images into a 

radiologist’s cohort of evidence that is used to determine the risk of malignancy.  In this manner, 

we aimed to determine if strain imaging might improve the radiologists risk prediction and 

management decisions for solid breast masses.  Thus, the purpose of our study was to 

retrospectively determine the accuracy of the ultrasound strain imaging to differentiate benign 

and malignant breast lesions on ultrasound to thereby improve the decision to biopsy. 

 

 

MATERIALS AND METHODS 

Siemens Medical Solutions, Ultrasound Division, Issaquah, WA provided equipment and partial 

financial support for this study.  The authors had control of the data and information submitted 

for publication. 

  

Patient Population 

Approval for the study was obtained from the appropriate Institutional Review Board and 

informed consent obtained from all enrolled patients. Two institutions participated in patient 
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enrollment and imaging: Charing Cross Hospital in London, England and the Mayo Clinic in 

Rochester, Minnesota.  Eligible patients were those women undergoing sonographically guided 

percutaneous breast biopsy.  We excluded patients who had technically inadequate strain images 

or who did not undergo biopsy for pathologic outcome.  Charing Cross enrolled 259 patients 

between 2/22/2002 and 4/8/2004 imaging 259 lesions.  Eleven lesions were excluded for 

technical reasons and 11 were excluded because biopsy was not performed.  The Mayo Clinic 

enrolled 156 patients between 2/4/2002 to 5/25/2004 imaging 186 lesions of which 17 lesions 

were excluded for technical reasons and 3 were excluded because biopsy was not performed   In 

total, strain imaging was performed prospectively on 445 breast masses of which 42 were 

discarded based on our exclusion criteria leaving 403 (157 malignant—39.0%; 246 benign—

61.0%) lesions as candidates for our reader study.  

Pathologic results determined by percutaneous or excisional biopsy were considered our 

reference standard in this study.  Imaging-histologic concordance was documented for each 

lesion to minimize the chance for sampling error.  

 

Strain Imaging Technique 

The strain imaging technique has been previously published but is repeated here for the 

convenience of the reader.(18)  US strain images are produced by comparing US echo data prior 

to and after a slight axial deformation of the breast to determine the tissue displacement at each 

location in the breast as a result of the deformation.  Strain is computed as the rate of change in 

the axial tissue displacement as a function of depth.  The strain images are produced when the 

relative differences in tissue motion at each location in the breast are calculated and displayed.   

 3 
 



Lesions were imaged at Mayo Clinic by a mammography technologist with 10 years of 

experience in breast ultrasound. Lesions were imaged at Charing Cross by a radiologist with 17 

years of experience in breast ultrasound. Both sites used the Siemens SONOLINE Elegra 

(Siemens Medical Solutions, Ultrasound Division, Issaquah WA) employing either the 7.5L40 

linear array at 7.2 MHz or the VFX13-5 multi-row linear array at 10MHz. A real-time strain 

imaging algorithm developed by Hall, et al. (6), and implemented on a the Siemens Elegra  was 

used to guide strain image acquisition.  A free-hand compression technique was used in which 

slight axial deformation was applied to the lesions manually by the clinician using the US probe.  

B-mode images and strain images for this study were reconstructed off-line from the same RF 

echo data acquired during the US examination and were displayed in a side-by-side format with 

individual frames contained within a cine-loop sequence of approximately 100 frames.  

 

B-mode images were formed off-line from the stored RF by first computing the Hilbert 

transform of the zero-mean RF A-line. The transformed data was then down-sampled axially to 

obtain square pixels. The resulting data were displayed with an 8-bit log-compressed colormap 

where  

colormap value (i) = log10(i*12+1) 

This algorithm is similar to that used in clinical imaging systems, however, manufacturers are 

very protective of their unique B-mode image formation algorithms and a great deal of ‘art’ 

beyond that implemented here provides improvements in B-mode image quality beyond that 

available in this study. Consequently, the B-mode image quality used in this study is less than 

that found in state-of-the-art imaging systems. 
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 Strain images were formed off-line from the stored RF data using custom software similar to 

that described in detail elsewhere.(21, 22) The primary modification to the previously reported 

strain image formation algorithm is that three frames of RF data are used to form two strain 

images in the same physical grid, and those two strain images are averaged to obtain lower noise 

strain images(23), resulting in superior strain image quality compared to that displayed in real-

time on the Siemens Elegra.  Also, RF data were stored at a greater frame rate than real-time 

strain image display on the Siemens Elegra (approximately 20 frames per second instead of 8), 

so the off-line temporal resolution was also superior to that displayed in real-time on the 

scanner.(6)  

Reader Study 

Two parameters were used to select the abnormalities for the reader study: the 

distribution of pathologic diagnoses and image quality. First, in order to optimally represent the 

entire pathologic spectrum of solid breast abnormalities seen in clinical breast imaging practice, 

we determined the distribution of pathologic diagnoses in our collected cases (Table SIMPOP).  

Next, we selected the 50 highest-quality malignant and the 50 highest-quality benign 

abnormalities on strain images while preserving this same distribution of pathologic diagnoses in 

the malignant and benign categories respectively.  We also made sure that only one lesion per 

patient was included in the reader study to preserve independence of cases for statistical analysis. 

 An objective method of quantifying strain image quality, actually a displacement quality 

measure (DQM), was developed (22) to rate individual strain images and images sequences. The 

DQM is obtained by using the measured displacement field to warp the post-deformation radio 

frequency (RF) echo field, and the strain field, back into the coordinate system of the pre-

deformation RF echo field. The correlation between the pre-deformation RF echo field and the 
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motion-compensated post-deformation RF echo field is an objective measure of the accuracy of 

displacement estimation. The correlation between consecutive strain images, mapped into the 

same coordinate system, is an objective measure of the consistency of consecutive strain images. 

The product of these correlation coefficients is a summary measure of the accuracy and 

similarity of consecutive strain images. The individual correlation coefficients and their product 

ranges from 0—1 resulting in a metric that is easily interpreted. Need a sentence here saying 

“images that fell below a level of XXX were excluded from both the B-mode and strain image 

loop” (is that right?). Summing the squared product of these correlation coefficients provides a 

measure of the quality of a strain image sequence.  The final DQM used for our analysis was 

calculates after inferior images had been removed. Although the choice of squaring the product 

of correlation coefficients is not rigorous and was empirically chosen, the resulting DQM is 

convenient and correlates well with the visual ranking by researchers actively involved in 

developing and testing strain imaging systems.(22)  

B-mode and Strain Image Evaluation 

Three radiologists were included in this study.  All of the radiologists who participated 

were board certified (by the American Board of Radiology) and fulfilled the MQSA 

requirements in terms of volume of studies read per year and continuing medical education.  All 

three radiologists are fellowship trained in breast imaging and spend at least 30% of their clinical 

time in breast imaging practice (years of experience range from 5 to 13 years).   

The three observers (designated A-C) individually completed a training module containing 56 

instructional Power-point® slides and 40 sample cases.  The introductory slides provided didactic 

instruction on: 1) the physics of strain imaging; 2) characteristic appearance of strain imaging in 

benign and malignant masses; 3) the significance of size ratio differences between B-mode and 
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strain imaging and 4) methods to evaluate the quality of strain imaging using ten of the 40 

sample cases (5 benign, 5 malignant).   The additional 30 sample cases contained 14 benign and 

16 malignant solid masses shown as unknowns with illustrations of significant findings and 

relevant measurements available when desired.   

Once the training session was complete to the radiologist’s satisfaction, test cases were 

presented in random order.  The interface (Figure INTERFACE) first presented the B-mode 

images as a movie clip which the radiologist assessed with BI-RADS descriptors, BI-RADS 

categories, and a probability of malignancy.  The radiologist also selected a frame from the cine 

loop on which to make measurements on the B-mode image. The radiologist traced the lesion 

boundary and measured the largest linear dimension and the largest perpendicular dimension.  

Strain images were then made available and were presented as side-by-side B-mode and strain 

images in a movie clip.  The radiologist first assessed the quality of the strain images on a 10 

point scale.  Then they selected a frame on which to trace the lesion boundary and measure the 

largest linear dimension and the largest perpendicular dimension on the strain image. Note that 

the frame used for strain image measurements was not necessarily the same as that used for B-

mode measurements. The radiologist then viewed the ratio of the lesion area in the strain image 

to that in the B-mode image prior to re-assessment of the probability of malignancy.  

Probability assessment correlations between readers were calculated in a pair-wise 

fashion.  Probability assessments were also used to construct ROC curves to measure 

performance.  The AUC without and with strain imaging were compared. Sensitivity and 

specificity were measured at a threshold of 2% probability of malignancy without and with strain 

and were compared. We also compared difference in AUC, sensitivity, and specificity between 

pairs of readers for B-mode and strain imaging. 
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Finally, the correlation between the DQM and the radiologists’ subjective quality score 

was calculated.  Subset analysis of these correlations was also performed within the malignant 

and benign cases.  In order to determine whether quality influenced overall performance we 

divided the cases into the 50 best and 50 worst images based on the DQM. We dichotomized 

image quality at the median, separately for malignant and benign lesions, to ensure roughly equal 

numbers of "higher quality" and "lower quality" images. For malignant lesions, median image 

quality was 15, with 30 " higher quality " images being >=15, while for benign lesions, median 

was 35, with 26 " higher quality " images being >=35. 

Data and Statistical Analysis 

 All statistical analyses were done using S-PLUS, Version 5.3, MathSoft, Inc, Cambridge, 

MA. We computed correlation coefficients, separately for each pair of readers, and after 

averaging across pairs of readers. When averaging across pairs, we used 1000 bootstrap samples 

to compute the standard errors of the average correlations.(24).  

 We used the Student’s t test to compare of data having a normal distribution and the chi-

square test to compare proportional data.  Standard binormal ROC curve analysis was applied to 

the probability assessments made by the radiologist without and with strain images.(25) To 

combine information across readers, we took an average of the AUCs.   Point estimates and 95% 

confidence intervals for AUCs were calculated and compared using tests for paired data (NEED 

THESE). These analyses were implemented using LABMRMC (http://www-

radiology.uchicago.edu/krl/roc_soft.htm).   

 The Fisher’s exact test was used to calculate the difference between the sensitivity and 

specificity without and with strain images at the level of 2% probability of malignancy.  To 

summarize overall sensitivity and specificity, we averaged across readers, with standard errors of 
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averages accounting for within and across reader correlations in readings. To analyze inter-

observer variability for AUC, sensitivity and specificity, we used McNemar's test.  

 For image quality analysis, we computed correlation coefficients between DQM and 

subjective quality assessment for each reader, first for all abnormalities then for malignant and 

benign lesions separately. Finally, we computed the average AUC, combining information across 

readers, separately for "higher quality" and "lower quality" images. A p value of less than 0.05 

was considered statistically significant. 

RESULTS 

 Patients included in the reader study ranged in ages from 19 to 83 years (mean = 48.6; SD 

= 17.2).  This was which was not statistically different (P = .92) from the total population of 

patients from whom the lesions were initially collected (ranging from 13-92 years; mean = 48.7; 

SD = 17.1). Table SIMPOP illustrates the pathologic diagnoses of all the lesions collected from 

routine clinical practice compared to the lesions included in the reader study.  

Correlation of probability assessments 

The correlation between readers’ probability assessments based on B-mode imaging ranged from 

0.581-0.819 with an average correlation of 0.675.  This correlation improved with strain imaging 

for each reader and on average. (Table IOV1). These correlations were all statistically significant 

(P < .001).  In addition, the correlation of the two superior readers (B and C) was statistically 

significantly better than the correlation of either reader A and B (P < .001) and A and C (P < 

.01).(26) 

ROC Curve Area 

The AUC values for the three radiologists and the group as a whole without and with strain 

images are shown in Table AUC.   While each radiologist improved in the assessment of the risk 
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of malignancy when strain imaging was available, only Reader 1 demonstrated a statistically 

significant improvement.  The improvement of the average AUC with strain imaging for the 

group as a whole also was statistically significant (P < 0.012).  The actual average ROC curves 

achieved without and with strain imaging are shown in Figure ROC.    

Sensitivity and Specificity 

Using probabilities as risk estimates, patients and physicians can decide against biopsy if the 

chance of malignancy is low.  A 2% threshold is commonly used in mammography to forgo 

biopsy in favor of imaging follow-up.(27-29) Table S&S illustrates the sensitivity and specificity 

achieved at a 2% probability of malignancy.  At this level, strain imaging allowed readers to 

improve specificity while maintaining sensitivity.  If the decision to biopsy was based on this 

threshold, each reader could have avoided benign biopsies (Reader A = 1, Reader B = 6, Reader 

C = 11) without missing a breast cancer.   

Assessment of Inter-observer Variation 

As seen in Table IOV, individual observer AUC values ranged from 0.779 to 0.923 without and 

0.830 to 0.949 with strain imaging. The difference in AUCs for readers A and B were 

statistically significant for B-mode (p=.002) and strain (p=.01) as was the difference for readers 

A and C for B-mode (p=.0006) and strain (p=.0005). There was no statistically significant 

difference between the AUCs of Reader B and C. In terms of sensitivity at the 2% threshold 

level, all readers performed at a high level without a statistically significant difference.  

Differences in specificity were significant for readers A and B for B-mode (p=.043) and strain 

(p=.006), and for readers A and C for B-mode (p=.045) and strain (.0001), but not for readers B 

and C. 

Quality measures 
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 The average DQM was 19.9 (SD = 10.6) for malignant lesions and 35.6 (SD = 16.8) for 

benign lesions, which represents a statistically significant difference (P <.0001).  In order to 

determine if quality influenced performance, we assessed the correlation of the DQM with both 

the radiologists’ subjective quality assessment and performance.  Overall, there was a 

statistically significant correlation between the DQM and the radiologists’ quality assessment 

(Table QUALCORR1). Readers B and C appeared to have superior correlations between their 

subjective quality scores and the DQM than Reader A which parallels AUC performance. In 

addition, this correlation appeared to be stronger for benign abnormalities as compared to 

malignant ones. 

 In order to determine whether quality influenced overall performance we divided the 

cases into the 50 best and 50 worst image sequences based on the DQM.  Subset analysis of 

performance for these groups does show that performance was worse in the “lower quality” 

image sets (in both B-mode and strain) but these differences were not statistically significant 

(Table QUALCORR2). 

 Finally, we analyzed whether transducer type made a difference in terms of image quality 

and radiologist performance.  Four cases included in the reader study did not specify the type of 

transducer used.  For the remaining 96 cases, the VFX13-5 transducer demonstrated a 

statistically significantly better DQM (P < .001), average AUC for B-mode (P < .05) and average 

AUC for strain (P < .05) as compared to the 7.5L40 transducer (Table TRANSDUCER).   

DISCUSSION 

Our research demonstrates that incorporation of strain imaging into the radiologists’ 

prediction that a solid breast mass is malignant can improve specificity without sacrificing 

sensitivity and elevate the overall AUC.  The ability of strain imaging to contribute to accurate 
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discrimination of benign and malignant solid breast masses which is consistent with foregoing 

research.(5, 6) But this is the first evidence that strain image quality may influence the 

performance of radiologists using this data for risk predictions as measured by the area under the 

ROC curve. In this study, rather than ask the radiologist for their ultimate management decision 

(which might be determined predominantly by B-mode imaging and a radiologists prior training) 

we used a probability threshold as a surrogate for the decision to biopsy.  The 2% threshold for 

the decision to biopsy has been well accepted in mammography practice.(27, 28) At this 

threshold, incorporation of strain imaging into the radiologists’ prediction that a solid breast 

mass is malignant can improve specificity without sacrificing sensitivity. 

The performance improvement we see in this study occurs in patients drawn from actual 

clinical practice.  Even though we selected the cases for the reader study based on high quality 

and enriched our number of malignant cases for our reader study, we kept the proportion of 

diagnoses within categories (benign, high risk, and malignant) constant. The mean age between 

all cases and cases in the reader study remained the same.  Therefore, we believe our cases are 

generalizeable to routine clinical practice.   The fact that we used clinical cases collected from 

two different institutions reenforces the diversity of our case mix. We believe this is a first step 

to integrating strain imaging into decision-making in clinical practice which will need to be 

further studied in a prospective manner. 

Interobserver variability is a commonly-cited and important shortcoming for ultrasound 

imaging in general which we verified and extended to strain imaging in our study. Specifically, 

two readers performed significantly better than the third on both B-mode and strain imaging 

interpretation despite similarities between the physicians’ training, experience, and accreditation.  

We found moderate correlation between the probability assessments of each combination of 
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reader pairs but the correlation between the two superior performers was statistically different 

than the single reader with inferior performance.  Interestingly this correlation measuring reader 

agreement uniformly improved for each reader with strain imaging.  Though the source of this 

interobserver variability cannot be gleaned from our study due to small sample size, future 

studies will hopefully determine if it can be overcome with training and experience. In fact, it is 

important to remember that the radiologists in our study were virtual novices in the application 

of strain imaging to risk assessment and decision-making. Each reader had only a short 

introduction to the technique before evaluation of performance commenced.  Investigators with 

vast experience with strain imaging have achieved excellent discrimination between benign and 

malignant masses with 100% and specificity of 75.4% in a series of 169 lesions.(30)   

Our ability to quantify the quality of the strain image enriches our data analysis.  By 

using the DQM measurement we were able to remove images where lateral and/or out of plane 

motion degraded the image.  In this way, we were able to present the radiologist with the highest 

quality images that best capture axial deformation for our reader study.  Using this new 

parameter influenced our study in several ways.  First, there were more benign lesions in the total 

number of cases collected (61%) as compared to the reader study (50%).  Therefore, there were 

more high quality images within the benign group to choose from.  That is why the DQM of the 

benign masses was statistically significantly better than the malignant lesions in our reader study.  

Second, using the DQM measurement to remove images that were suboptimal from both the B-

mode and the strain image cine loop may have degraded the B-mode image enough to influence 

B-mode performance.  While this technique is necessary to keep the B-mode and strain images in 

sync, it likely explains why the performance of B-mode discrimination between malignant and 

benign masses degraded in parallel with DQM. Specifically, as overall DQM decreases, more 
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images are excluded from the B-mode and strain cine loop, making the lesion “jump” due to 

missing images. Further optimization of the strain quality and its implications on B-mode will be 

important in the future. 

There was a somewhat poor correlation of radiologist assessed image quality to the 

DQM.  Only Reader C’s quality assessments correlated with the DQM to a statistically 

significant degree for all lesions.  In addition, the correlation between the radiologists’ quality 

assessment and the DQM appeared to be much better for benign masses than for malignant ones.  

In fact, Readers B and C, the superior performers, showed a moderate and statistically significant 

correlation between quality assessments and DQM in benign cases, while no radiologist achieved 

a significant correlation with DQM for malignant masses.  It is possible that radiologists judge 

benign strain images as higher quality because they appear similar to the B-mode images while 

strain images of malignant masses are extremely different in terms of contrast and lesion size.  

While this is only a possible explanation, it is indirect evidence that these readers have a 

somewhat limited understanding of the strain images.  Other investigators more experienced with 

the strain imaging technique have demonstrated a high correlation between subjective quality 

assessments and the DQM (r = 0.87).(30)  It is possible that with continued training and 

experience, radiologist performance may improve to these levels, but further study with larger 

patient and reader populations is necessary to confidently assert the strength and nature of the 

relationship between quality and performance.   

Overall, we did discover that ability of radiologists to recognize the quality of images can 

predict performance, Average AUC was better in the lower-quality images as compared to the 

higher quality images though this did not reach statistical significance. Interestingly, average 

performance improved to almost exactly the same degree with strain images over B-mode in the 
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50 higher-quality and 50 lower-quality images.  Therefore, quality may affect overall AUC but 

may not preclude strain imaging from improving upon this baseline level of performance. 

We were surprised to find that the transducer type made a difference in the radiologists’ 

ability to discriminate between benign and malignant masses.  It is possible that this 

phenomenon relates to the fact that the 7.5L-40 was used earlier in data collection and the 

imagers collecting data were still learning how to acquire high quality strain data.  It is also 

possible that differences in resolution may account for these differences.  Unfortunately, due to 

small sample size, further subset analysis is not possible.  This finding does warrant further 

study. 

Our results mirror the work of other investigators in several ways.  We find that strain 

imaging is able to differentiate between benign and malignant masses and radiologists can assess 

the features of strain imaging such as contrast and size differential. The novel discoveries of this 

research include the fact that integration of strain characteristics actually can improve radiologist 

decision-making.  Radiologists use image features and experience to make a decision to biopsy 

solid breast masses on ultrasound.  Unfortunately, imaging features such as lesion shape, 

margins, echogenicity and posterior acoustic features between malignant and benign masses 

overlap and sometimes simply reiterate similar characteristics on mammography.  Perhaps the 

fact that strain imaging provides an entirely different feature that can be weighed independently 

in these judgments explains why this technique can improve the performance of radiologists 

already diligently weighing conventional imaging features (as encoded in the BI-RADS lexicon.  

Minimizing benign breast biopsies is a goal that has been cited as important despite the inability 

of any imaging modality alone to achieve it.  In our study, strain imaging added patients to those 

that might not be biopsied based on a 2% threshold for biopsy, an accepted level based on 
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mammography.  This improvement in specificity came without a cost in sensitivity which is 

valuable. 

There are limitations to our study.  First, our study is a retrospective analysis with three 

radiologists and a limited number of patients potentially limiting the ability to generalize our 

results to prospectively assessed imaging features and strain images over a diverse group of 

radiologists and patients.  In addition, our retrospective design probably allowed radiologists 

more time to assess findings without and with strain imaging than would be available in actual 

clinical practice.  Previous investigators have demonstrated that evaluations of strain image 

analysis done in the “laboratory” may confer performance advantages over those done in a busy 

clinical environment.(18)  Only a prospective evaluation of these techniques on actual clinical 

patients will resolve this question. Second, it is important to emphasize that our study cases were 

selected based on quality.  This fact limits the ability to generalize our results to other practices 

where a full range of quality was present. It will be important in future studies to determine the 

quality that must be achieved before using strain imaging data for clinical decisions.   

In conclusion, we find that ultrasound strain imaging has potential to aid radiologists in 

the differentiation of malignant and benign solid breast masses and, therefore, has the potential to 

improve the decision to perform breast biopsy. Such decisions have a high impact on the efficacy 

of breast cancer screening programs in terms of cost and quality.  Our work also demonstrates 

that further research will be important to understand how image quality and interobserver 

variability attenuate the contribution of strain imaging to performance. This work also 

demonstrates the need for improvements in strain image quality and better tools to aid 

radiologists in interpreting strain images. Prospective trials are now necessary to confirm that 

strain imaging is a promising tool for radiologists in the accurate diagnosis of breast cancer.
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Table SIMPOP.  Pathologic diagnoses 

Diagnosis All cases Study cases 
 # % # % 

Benign (total) 246 0.61 50 0.5
Fibroadenoma 132 32.8% 27 27.0%
Complex cyst 24 6.0% 5 5.0%
Normal tissue 19 4.7% 2 2.0%
Fibrocystic chang 13 3.2% 3 3.0%
Stromal fibrosis 13 3.2% 3 3.0%
Fat necrosis/scar 8 2.0% 2 2.0%
Inflammation 8 2.0% 2 2.0%
Intraductal papilloma 6 1.5% 1 1.0%
Lymph node (benign) 6 1.5% 1 1.0%
Abcess 3 0.7% 1 1.0%
Phylloides 3 0.7% 1 1.0%
Lipoma 3 0.7% 1 1.0%
Duct ectasia 3 0.7% 1 1.0%
Ductal hyperplasia 1 0.2% 0 0.0%
Hematoma 1 0.2% 0 0.0%
Galactocele 1 0.2% 0 0.0%
Hamartoma 1 0.2% 0 0.0%
Tubular adenoma 1 0.2% 0 0.0%
     
High risk lesions (total) 3 0.007 1 0.01
ADH 1 0.2 1 1.0
LCIS 2 0.5 0 0.0
     
Malignant (total) 154 0.382 49 0.49
IDC 133 33.0% 42 41.2%
ILC 12 3.0% 3 2.9%
Mixed 4 1.0% 2 2.0%
DCIS 5 1.2% 2 2.0%
 403 100.0% 100 100.0%
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Table AUC.  ROC Areas 

 
 B-mode 95% CI B-mode & Strain 95% CI P-value 
Reader 1 0.779  .691, .867 0.830  .752, .908 0.011 
Reader 2 0.916  .859, .972 0.929  .878, .980 0.51 
Reader 3 0.923  .872, .974 0.949  .912, .986 0.11 
Average 0.872  .837, .907 0.903  .870, .936 0.021 
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Table S&S.  Sensitivity and specificity 

 
 Sensitivity Specificity 
 B-mode  95% CI Strain 95% CI P B-mode 95% CI Strain 95% CI P 
Reader 1 50/50  .929, 1.0 50/50  .929, 1.0 1.0 2/50 .005, .137 3/50  .013, .165 1.0 
Reader 2 48/50  .862 , .995 49/50  .894, .999 1.0 10/50 .100, .337 16/50  .195, .467 .07 
Reader 3 50/50  .929, 1.0 50/50 .929, 1.0 1.0 9/50 .086, .314 20/50 .264, .548 <.001 
Average 148/150 .968, 1.00    149/150  .980, 1.00 1.0 21/150 .081, .199    39/150 .124, .258 <.001 
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Table IOV1.  Correlation of reader’s probability assessments 
 Correlation (Std Err) 
 B Mode 95% CI Strain 95% CI 
Reader1/Reader2 0.581 .477, .684 0.614 .498, .730 
Reader1/Reader3 0.625 .486, .764 0.708 .569, .847 
Reader2/Reader3 0.819 .705, .932 0.834 .724, .944 
Average 0.675 .582, .767 0.718 .645, .791 
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Table QUALCORR1. Correlation between radiologist assessed quality and DQM 
 
 All Malignant Benign 
 Correlation P-value Correlation P-value Correlation P-value 
Reader 1 0.07 0.49 0.17 0.24 -0.06 0.69 
Reader 2 0.15 0.13 -0.10 0.50 0.41 0.002 
Reader 3 0.30 0.002 0.09 0.54 0.47 0.0005 
Average 0.26 0.01 0.05 0.73 0.42 0.003 
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Table QUALCORR2. Association between quality and average performance 
 
 AUC 

higher-
quality 

95% CI AUC 
lower-
quality 

95% CI P-value 

B-mode .900 .841, .959 .823 .733, .913 .15 
Strain .932     .887, .977 .857   .776, .937 .11 
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Table TRANSDUCER. Association between quality and average performance 
 
 # cases DQM Average AUC 
7.5L40 (7.2 MHz) 25 18 .860 
VFX13-5 (10 MHz) 71 31 .917 
unknown 4 22 NA 
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Figure INTERFACE 
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Figure MALIGex 
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Figure BENIGNex 
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Figure ROC 

 Will contain 4 ROC curves (1 for each reader and then an average comparing B-mode 

and strain) 

  

Figure 1 

Figure 2 

   

Figure 3 

Figure 4 
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Legends 

Figure INTERFACE. Example of the side-by-side display of the B-mode ultrasound image (left 

image) and ultrasound strain image (right image) of a benign/malignant abnormality as presented 

in the reader study. 

 

Figure MALIGex.  Ultrasound B-mode and strain image of an invasive ductal carcinoma.  

 

Figure BENIGNex.   Ultrasound B-mode and strain image of benign fibroadenoma   

 

Figure ROC.  Graphic representation of the Average ROC curves. 
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List of analysis (must include in M&M, results, and discussion) 

Comparison of study patients and overall population (table) 

Correlation of readers’ probability assessments (table IOV1) 

AUC areas (table AUC) 

Sensitivity and specificity (table S&S) 

Comparing readers AUC, sens, and spec (text)—now it is table IOV2 

Correlation of each reader with DQM (table QUALCORR 1) 

Correlation of Bad and Good images with performance (table QUALCORR 2) 

Differential performance between transducers (TRANSDUCER)
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Abstract— We are developing a system for real-time

estimation and display of tissue elastic properties us-

ing a clinical ultrasonic imaging system. Our hypoth-

esis is that real-time feedback of elasticity images is

essential in obtaining high-quality data. Extensive ex-

perience with laboratory fixtures and off-line process-

ing of elasticity data showed that problems occurring in

data acquisition often resulted in poor elasticity image

quality. Our experience with real-time freehand elas-

ticity imaging shows that images with high contrast-

to-noise can be obtained. Results in volunteer patients

have shown that high quality elasticity images are eas-

ily obtained in vivo in breast and thyroid pathologies.

The key element to successful scanning is real-time vi-

sual feedback which guides the patient positioning and

compression direction. Results show that individual

images of axial strain in tissues can be quite mislead-

ing and that a ‘movie loop’ of strain images provides

significantly more information adding to intuition.

I. INTRODUCTION

The potential for improving the qualitative nature of

palpation by imaging quantitative measures of tissue

viscoelasticity has generated a great deal of research

and commercial interest world-wide. Our initial efforts

focused on modelling displacement and strain, devel-

oping algorithms for displacement and strain estima-

tion, and testing those techniques in phantoms and in

vitro kidneys (see, for example, [1–5]). Significant ef-

fort was expended on developing high-order motion es-

timators for tracking fine-scale motion. However, little
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data were available to investigate the need or utility of

the high-order motion estimation techniques for in vivo

imaging of tissues. The most useful report [6] used rel-

atively crude data acquisition hardware and simple mo-

tion tracking software, but this effort clearly demon-

strated that strain imaging has merit in breast lesion

discrimination.

Our efforts in this study focus on the development

of algorithms with the potential for performing strain

imaging at substantially real-time frame rates, and im-

plementing and testing those algorithms on a state-of-

the-art ultrasound imaging system. Our results demon-

strate the value in real-time side-by-side display of B-

mode and strain images for guiding data acquisition

and data interpretation. Comparisons among different

lesion types studied in vivo show a significant differ-

ence in strain images for cysts, fibroadenoma, and car-

cinoma.

The report by Garra, et al., [6] described a set of

criteria applied to evaluate strain imaging compared to

normal B-mode imaging. Among those criteria were

lesion visibility, relative brightness, lesion margin reg-

ularity, lesion margin definition, lesion size (lateral

and axial), B-mode image measurements relative to

strain image and pathology measurements. Among

their findings, they noted that all benign lesions have

about the same width on B-mode and strain images,

but the height measurement could not be trusted due

to axial blurring in image formation. Fibroadenomas

typically were non-uniform in stiffness; cancers were

uniformly stiffer than their surroundings in all but one

case.

Our results are generally consistent with those found

by Garra, et al., but the differences in carcinoma size

in B-mode and strain images is greater and all lesions

found in sonography or mammography, whether pal-

pable or not, were visible with our techniques. Some

of our findings help to understand the shortcomings of



the results reported by Garra and provide even more

evidence for the utility of this technique for the dis-

crimination of carcinomas from benign conditions.

II. MATERIALS AND METHODS

Strain Image Formation

A 2-D block matching algorithm, based on the sum-

squared difference (SSD) algorithm, is used for mo-

tion tracking in our implementation. With this method,

motion is tracked by searching for a kernel of data

from the pre-compression rf echo data in a search re-

gion of the post-compression rf echo field. The ker-

nel size was selected to approximate the 2-D pulse-

echo ultrasound point spread function for the system

employed (Siemens SONOLINE Elegra with 7.5L40

and VFX13-5 linear arrays). Data were processed on

the Image Processor subsystem of the Elegra. This

subsystem hosts two Texas Instruments TMS320C80

processors. The SSD algorithm exceeds the compu-

tational capacity of the Image Processor subsystem.

To reduce the computational load, an adaptive search

strategy was developed which reduces the size of the

required search region in performing the SSD block

matching. The resulting algorithm displays streaming

B-mode and strain images side-by-side at about eight

frames per second and stores the full sequence of I-Q

echo data at full bus speed for on-line post-processing.

Echo data obtained while scanning phantoms with

motorized and freehand compression result in equiva-

lent strain image contrast and resolution when the aver-

age strain in the image is the same for the two methods.

Displacement variance is slightly higher for freehand

compression, and the frame-to-frame strain is not con-

stant, but this is a small penalty for the ease of freehand

scanning. In fact, small (e.g., 2.4mm diameter) spher-

ical targets are considerably easier to locate and scan

with freehand compared to motorized compression.

Patient Scanning

All patients provided informed consent consistent

with the protocol approved by the Human Subjects

Committee (Institutional Review Board) at Kansas

University Medical Center. Patient scans were per-

formed in a manner consistent with a normal breast

ultrasound exam; the breast was scanned with the pa-

tient (typically) in the supine position with her arm be-

hind her head. When the breast lesion was located,

the transducer was pressed toward the chest wall at a

steady rate in an effort to achieve about 1–1.5% com-

pression frame-to-frame. In some cases, for example

when scanning lateral lesions in large (D-cup) breasts,

the patient was rolled slightly to her contralateral side

so that gravity would flatten the breast tissue in the re-

gion to be scanned. Using this scanning technique, no

patient has experienced any discomfort in our proce-

dures.

The scanning procedure began, following lesion lo-

calization, by repeating the compress/release cycle for

relatively large (>10%) compression while watching

the B-mode image. The compression technique was

adjusted, by changing the compression direction or

patient position, until there was nearly uniaxial com-

pression with minimal elevation motion. With this

achieved, the strain imaging software was enabled to

evaluate the quality of the sequence of strain images.

If a large sequence (<30 frames) of strain images had

good image quality (relatively high contrast-to-noise

ratio) and high frame-to-frame similarity, the data ac-

quisition was frozen, the image sequence stored, and

select images recorded on-line. If the compression

was too slow resulting in low frame-average strain, the

inter-frame skip was adjusted to increase the strain be-

tween frame pairs used in displacement and strain esti-

mation, as suggested by Lubinski, et al., [7]. A repre-

sentative result for a 3mm cyst is shown in figure 1.

A similar scanning technique was used to acquire

data from several thyroids. The scanning technique

began by viewing the thyroid in a B-mode image dur-

ing compress/release cycles to determine the preferred

probe position and compression direction. The goal

for the average strain between adjacent frames and the

total cumulative strain are the same as before. We

have much less experience with Palpation Imaging of

the thyroid (compared with breast), however, figure 2

proves that high quality strain images can be obtained.

III. RESULTS

One of the most promising uses of this technology is

differentiation among breast lesions. To date we have

successfully scanned 42 breast patients. Among these

patients we have acquired data from 25 cysts, 18 fi-

broadenomas, and six carcinomas. Each of these le-

sion types has a distinctive behavior in its strain im-

age under cyclic compression. Cysts have well-defined
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(b) Cumulative strain.

(c) B-mode and strain images as displayed on the Elegra

for frame 40 in the sequence.

Fig. 1. Data obtained by freehand scanning of a breast cyst in

vivo. The average strain per frame (a) suggests nearly ideal com-

pression rate in this case. The adjacent frames were used in ana-

lyzing this sequence of data. The cumulative strain in the sequence

(b) demonstrates that about a 18% compression range was achieved

in this study. A B-mode and strain image pair obtained from this

sequence is shown in (c).

Fig. 2. A B-mode and strain image pair obtained by freehand

scanning of a thyroid in vivo. A small benign lesion is seen in the

lower corner of the thyroid.

boundaries at the top and sides, but sometimes show

a very soft bottom layer. That layer might be due

to a sediment inside the cystic fluid. The interior

echoes within the cysts rapidly decorrelate with com-

pression. Overall a cyst can be either relatively stiff,

as if it were a distended balloon, or relatively soft. Fi-

broadenomas also (typically) have well-defined bound-

aries and often have relatively homogeneous interior

stiffness. However, some fibroadenomas have hetero-

geneous strain patterns. All fibroadenomas are more

comparable in stiffness to the surrounding tissues than

carcinomas. Indeed, fibroadenomas appear to have a

nonlinear stress-strain relationship relative to their sur-

roundings as illustrated in figure 3. All carcinomas

studied so far were invasive ductal carcinomas that

were easily diagnosed from mammogram and sono-

gram results.

In an effort to compare lesion size in the two imag-

ing modalities, we transferred the data to an off-line

computer for further analysis. We reprocessed the

strain images using the exact algorithm implemented

on the Elegra. Movie loops of the side-by-side B-

mode and strain image pairs (avi files) were created

to view the motion of the lesion in the B-mode image

and the resulting strain image. A representative frame

was selected that showed the “typical” strain image

for that lesion, and the B-mode image was displayed

allowing the lesion boarder to be traced. The lesion

width (and height) were estimated as the maximum

dimension parallel (and perpendicular) to the acoustic

beam. The tracing and measurement process was then

repeated with the strain image from that same frame.

Example images for a fibroadenoma and a carcinoma

are shown in figure 4.

It is intriguing to examine the relative size of these

lesions comparing their width, height, and area as mea-

sured in B-mode and strain images. Garra, et al., sug-

gested that the width of a carcinoma in a strain image

is typically larger than that measured in a B-mode im-

age. Our results support that observation, and appar-

ently extend its diagnostic utility. Figure 5(a) shows

plots of the width and height of these three lesion types

as measured in B-mode and strain images. Figure 5(b)

shows plots of a similar comparison of the total area

of the lesion in the two imaging modes. Our results

show that the width and height of benign lesions tend

to be about the same size in B-mode and strain im-

ages and carcinomas are larger in strain images than

B-mode, but the separation between benign and carci-

noma is much larger when we use the lesion area.
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(b) Cumulative strain.

(c) B-mode and strain images for frame 38. A similar

image is found at frame 53.

(d) B-mode and strain images for frame 8. A similar im-

age is found at frame 72.

Fig. 3. Data obtained by freehand scanning of a fibroadenoma in

vivo. The average strain per frame (a) suggests a slow compression

rate in this case. The inter-frame skip was increased to pair every

fourth frame in analyzing this sequence of data. The cumulative

strain in the sequence (b) demonstrates that about a 20% compres-

sion range was achieved in this study.

IV. DISCUSSION

Real-time display of side-by-side B-mode and strain

images is essential for guiding the manipulation of

boundary conditions for the mechanics experiment that

(a) B-mode and strain images of a fibroadenoma.

(b) B-mode and strain images of an invasive ductal car-

cinoma.

Fig. 4. B-mode and strain images of lesions with their perimeter

traced in the B-mode image, and that tracing also appearing in the

strain image for comparison.

is strain imaging. The real-time feedback to the hand-

eye coordination systems allows the sonographer to

manipulate the compression direction, force, and rate

to obtain high-quality sequences of strain images. The

system involves no addition fixtures or remote data ac-

quisition or signal processing hardware. It is fully in-

tegrated into the Elegra system.

Our results show significantly different strain image

sequences for each lesion type studied. Although the

range of lesion types does not include all those found

in breasts, they do include the vast majority of types.

It was found that to appreciate the differences among

lesion types, and to determine the “typical” strain im-

age for a given lesion, it was necessary to observe a

sequence of B-mode and strain images displayed side-

by-side. With that sequence, a very reproducible de-

termination of the lesion boundary could be obtained.

Measurements of lesion dimension were then made
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(b) Plots of lesion area. All lesions are included in left plot.

Only those smaller than about 1cm dia are shown in plot

on the right.

Fig. 5. Plots comparing the size of a lesion traced in the B-mode

image versus the same lesion traced in a representative strain im-

age for cysts (◦), fibroadenomas (�), and invasive ductal carci-

nomas (x). The dashed line in each image represents equal size

measurement in both images. The solid straight line (lower right

plot) suggests that a simple linear discriminant would completely

separate carcinomas from benign lesions based on lesion.

and the results for lesion width are consistent with

those reported by Garra, et al. That report stated a lack

of confidence in their measurements of lesion height.

Our results with cylindrical and spherical targets in

phantoms show that we can accurately measure lesion

dimension in both height and width, and therefore we

use lesion area as the criterion for comparing lesion

size in B-mode and strain images.

The smoothly varying strain contrast appears to be

unique to fibroadenomas so far in our experience.

Smoothly varying contrast suggests that the stress-

strain relationship for the fibroadenoma does not par-

allel that of the surrounding tissue. Fibroadenomas

that vary in strain contrast appear dark (stiffer) at low

precompression and lose contrast (become relatively

softer) at higher precompression. This suggests that

the stress-strain relationship for the surrounding tissue

is likely more nonlinear than that of the fibroadenoma.

The sequence of B-mode and strain image pairs al-

lows the sonographer to select images representative

of the “typical” strain image for a lesion. This abil-

ity, along with better determination of lesion bound-

ary available by viewing a sequence of images, has

likely improved the ability to measure true lesion size

in strain imaging compared with the results reported by

Garra, et al.

V. CONCLUSIONS

A new system for real-time imaging of tissue strain

in vivo using freehand scanning is described and some

of the results obtained with this system are reported.

The new system provides real-time feedback allowing

the user to manipulate the conditions of tissue com-

pression resulting in the ability to successfully scan all

patients for which the technique was attempted. The

strain images for various lesion types are unique, and

the relative size of the lesions appears to be a strong

candidate for discriminating benign from cancerous le-

sions. However, further testing will be needed to sup-

port this observation.
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[6] B. S. Garra, I. Céspedes, J. Ophir, S. R. Spratt, R. A. Zuur-

bier, C. M. Magnant, and M. F. Pennanen, “Elastography of

the breast: Initial clinical results,” Radiology, vol. 202, pp. 79–

86, 1997.

[7] M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Adap-

tive strain estimation using retrospective processing,” IEEE
Trans Ultrason, Ferroelec, Freq Cont, vol. 46, no. 1, pp. 97–

107, 1999.



IN VIVO REAL-TIME FREEHAND ELASTICITY IMAGING

Timothy J. Hall, Yanning Zhu, Candace S. Spalding, and Larry T. Cook

Department of Radiology, University of Kansas Medical Center
3901 Rainbow Boulevard, Kansas City, KS 66160-7234

ABSTRACT

We are developing a system for real-time estimation and

display of tissue elastic properties using a clinical ultra-

sonic imaging system. Results in phantoms are in excellent

agreement with that predicted with finite element analysis.

Results in volunteer patients have shown that high quality

elasticity images are easily obtained in vivo in breast and

thyroid pathologies. The key element to successful scan-

ning is real-time visual feedback which guides the patient

positioning and compression direction. Results show that

the frame-to-frame changes in strain image contrast appear

to be unique to specific lesion types. In addition, the size of

a lesion displayed in a strain image, relative to that in a stan-

dard B-mode image, is about the same for benign lesions but

the size is considerably larger for malignant lesions. The

observations will likely significantly improve the discrimi-

nation of radiologically indeterminant lesions.

1. INTRODUCTION

The potential for improving the qualitative nature of palpa-

tion by imaging quantitative measures of tissue viscoelas-

ticity has generated a great deal of research and commercial

interest world-wide. Our initial efforts focused on mod-

elling displacement and strain, developing algorithms for

displacement and strain estimation, and testing those tech-

niques in phantoms and in vitro kidneys (see, for exam-

ple, [1–5]). Significant effort was expended on developing

high-order motion estimators for tracking fine-scale motion.

However, little data were available to investigate the need or

utility of the high-order motion estimation techniques for in

vivo imaging of tissues. The most useful report [6] used rel-

atively crude data acquisition hardware and simple motion

tracking software, but this effort clearly demonstrated that

strain imaging has merit in breast lesion discrimination.
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Our recent efforts focus on the development of algo-

rithms with the potential for performing strain imaging at

substantially real-time frame rates, and implementing and

testing those algorithms on a state-of-the-art ultrasound imag-

ing system. Our results demonstrate the value in real-time

side-by-side display of B-mode and strain images for guid-

ing data acquisition and data interpretation. Comparisons

among different lesion types studied in vivo show a signifi-

cant difference in strain images for cysts, fibroadenoma, and

carcinoma.

The report by Garra, et al., [6] described a set of crite-

ria applied to evaluate strain imaging compared to normal

B-mode imaging. Among those criteria were lesion visibil-

ity, relative brightness, lesion margin regularity, lesion mar-

gin definition, lesion size (lateral and axial), B-mode image

measurements relative to strain image and pathology mea-

surements. Among their findings, they noted that all benign

lesions have about the same width on B-mode and strain im-

ages, but their height measurement could not be trusted due

to axial blurring in image formation. Fibroadenomas typi-

cally were non-uniform in stiffness; cancers were uniformly

stiffer than their surroundings in all but one case.

Our results are generally consistent with those found

by Garra, et al., but the differences in carcinoma size in

B-mode and strain images is greater and all lesions found

in sonography or mammography, whether palpable or not,

were visible with our techniques. Viewing the sequence of

images, available from our techniques, helps to understand

the shortcomings of the results reported by Garra and pro-

vides even more evidence for the utility of this technique for

the discrimination of carcinomas from benign conditions.

2. MATERIALS AND METHODS

2.1. Strain Image Formation

A 2-D block matching algorithm, based on the sum-squared

difference (SSD) algorithm, is used for motion tracking in

our implementation. With this method, motion is tracked

by searching for a kernel of data from the pre-compression

rf echo data in a search region of the post-compression rf

echo field. The kernel size was selected to approximate the

8050-7803-7584-X/02/$17.00 ©2002 IEEE



2-D pulse-echo ultrasound point spread function for the sys-

tem employed (Siemens SONOLINE Elegra with 7.5L40

and VFX13-5 linear arrays). Data were processed on the

Image Processor subsystem of the Elegra. This subsystem

hosts two Texas Instruments TMS320C80 processors. The

SSD algorithm exceeds the computational capacity of the

Image Processor subsystem. To reduce the computational

load, an adaptive search strategy was developed which re-

duces the size of the required search region in performing

the SSD block matching. The resulting algorithm displays

streaming B-mode and strain images side-by-side at about

eight frames per second and stores the full sequence of I-Q

echo data at full bus speed for on-line post-processing.

Echo data obtained while scanning phantoms with mo-

torized and freehand compression result in equivalent strain

image contrast and resolution when the average strain in

the image is the same for the two methods. Displacement

estimation error variance for freehand compression is also

about the same as with motorized compression, but the frame-

to-frame strain is not constant. This is a small penalty for

the ease of freehand scanning. In fact, small (e.g., 2.4mm

diameter) spherical targets are considerably easier to locate

and scan with freehand compared to motorized compres-

sion.

2.2. Patient Scanning

All patients provided informed consent consistent with the

protocol approved by the Human Subjects Committee (In-

stitutional Review Board) at Kansas University Medical Cen-

ter. Patient scans were performed in a manner consistent

with a normal breast ultrasound exam; the breast was scanned

with the patient (typically) in the supine position with her

arm behind her head. When the breast lesion was located,

the transducer was pressed toward the chest wall at a steady

rate in an effort to achieve about 1–1.5% compression frame-

to-frame. In some cases, for example when scanning lat-

eral lesions in large (D-cup) breasts, the patient was rolled

slightly to her contralateral side so that gravity would flat-

ten the breast tissue in the region to be scanned. Using this

scanning technique, no patient has experienced any discom-

fort in our procedures.

The scanning procedure began, following lesion local-

ization, by repeating the compress/release cycle for rela-

tively large (>10%) compression while watching the B-mode

image. The compression technique was adjusted, by chang-

ing the compression direction or patient position, until there

was nearly uniaxial compression with minimal elevation mo-

tion. With this achieved, the strain imaging software was

enabled to evaluate the quality of the sequence of strain im-

ages. If a large sequence (<30 frames) of strain images

had good image quality (relatively high contrast-to-noise ra-

tio) and high frame-to-frame similarity, the data acquisition

was frozen, the image sequence stored, and select images

recorded on-line. If the compression was too slow result-

ing in low frame-average strain, the inter-frame skip was

adjusted to increase the strain between frame pairs used in

displacement and strain estimation, as suggested by Lubin-

ski, et al., [7].

3. RESULTS

One of the most promising uses of this technology is dif-

ferentiation among breast lesions. To date we have success-

fully scanned 42 breast patients. Among these patients we

have acquired data from 25 cysts, 18 fibroadenomas, and

six carcinomas. Each of these lesion types has a distinc-

tive behavior in its strain image under cyclic compression.

Cysts have well-defined boundaries at the top and sides, but

sometimes show a very soft bottom layer. That layer might

be due to a sediment inside the cystic fluid. The interior

echoes within the cysts rapidly decorrelate with compres-

sion. Overall a cyst can be either relatively stiff, as if it

were a distended balloon, or relatively soft. Fibroadenomas

also (typically) have well-defined boundaries and often have

relatively homogeneous interior stiffness. However, some

fibroadenomas have heterogeneous strain patterns. All fi-

broadenomas are more comparable in stiffness to the sur-

rounding tissues than carcinomas. Indeed, fibroadenomas

appear to have a nonlinear stress-strain relationship relative

to their surroundings as illustrated in figure 1. All carci-

nomas studied so far were invasive ductal carcinomas that

were easily diagnosed from mammogram and sonogram re-

sults.

In an effort to compare lesion size in the two imaging

modalities, we transferred the data to an off-line computer

for further analysis. We reprocessed the strain images us-

ing the exact algorithm implemented on the Elegra. Movie

loops of the side-by-side B-mode and strain image pairs (avi

files) were created to view the motion of the lesion in the B-

mode image and the resulting strain image. A representative

frame was selected that showed the “typical” strain image

for that lesion, and the B-mode image was displayed allow-

ing the lesion boarder to be traced. The lesion width (and

height) were estimated as the maximum dimension perpen-

dicular (and parallel) to the acoustic beam. The tracing and

measurement process was then repeated with the strain im-

age from that same frame. Example images for a fibroade-

noma and a carcinoma are shown in figure 2.

It is intriguing to examine the relative size of these le-

sions comparing their width, height, and area as measured

in B-mode and strain images. Garra, et al., suggested that

the width of a carcinoma in a strain image is typically larger

than that measured in a B-mode image. Our results support

that observation, and apparently extend its diagnostic utility.

Figure 3 shows plots of the total area of three lesion types

as measured in B-mode and strain images. Our results show
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(c) B-mode and strain images for frame 44. A similar image is

found at frame 59.

(d) B-mode and strain images for frame 17. A similar image is

found at frame 77.

Fig. 1. Data obtained by freehand scanning of a fibroade-

noma in vivo. The average strain per frame (a) suggests

a slow compression rate in this case. The inter-frame skip

was increased to pair every fourth frame in analyzing this

sequence of data. The cumulative strain in the sequence

(b) demonstrates that about a 20% compression range was

achieved in this study.

that the size of benign lesions tend to be about the same size

in B-mode and strain images and carcinomas are larger in

strain images than B-mode, but the separation between be-

nign and carcinoma is much larger when we use the lesion

area.

(a) B-mode and strain images of a fibroadenoma.

(b) B-mode and strain images of an invasive ductal carcinoma.

Fig. 2. B-mode and strain images of lesions with their

perimeter traced in the B-mode image, and that tracing also

appearing in the strain image for comparison.
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Fig. 3. Plots comparing the size of a lesion traced in the

B-mode image versus the same lesion traced in a represen-

tative strain image for cysts (◦), fibroadenomas (�), and in-

vasive ductal carcinomas (x). All lesions are included in left

plot. Only those smaller than about 1cm dia are shown in

plot on the right.The dashed line in each image represents

equal size measurement in both images. The solid straight

line (right plot) suggests that a simple linear discriminant

would completely separate carcinomas from benign lesions

based on lesion area.
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4. DISCUSSION

Real-time display of side-by-side B-mode and strain images

is essential for guiding the manipulation of boundary con-

ditions for the mechanics experiment that is strain imaging.

The real-time feedback to the hand-eye coordination sys-

tems allows the sonographer to manipulate the compression

direction, force, and rate to obtain high-quality sequences

of strain images. The system involves no addition fixtures

or remote data acquisition or signal processing hardware. It

is fully integrated into the Elegra system.

Our results show significantly different strain image se-

quences for each lesion type studied. Although the range

of lesion types does not include all those found in breasts,

they do include the vast majority of types. It was found

that to appreciate the differences among lesion types, and

to determine the “typical” strain image for a given lesion, it

was necessary to observe a sequence of B-mode and strain

images displayed side-by-side. With that sequence, a very

reproducible determination of the lesion boundary could be

obtained. Measurements of lesion dimension were then made

and the results for lesion width are consistent with those re-

ported by Garra, et al. That report stated a lack of confi-

dence in their measurements of lesion height. Our results

with cylindrical and spherical targets in phantoms show that

we can accurately measure lesion dimension in both height

and width, and therefore we use lesion area as the criterion

for comparing lesion size in B-mode and strain images.

The smoothly varying strain contrast appears to be unique

to fibroadenomas so far in our experience. Smoothly vary-

ing contrast suggests that the stress-strain relationship for

the fibroadenoma does not parallel that of the surround-

ing tissue. Fibroadenomas that vary in strain contrast ap-

pear dark (stiffer) at low pre-compression and lose contrast

(become relatively softer) at higher pre-compression. This

suggests that the stress-strain relationship for the surround-

ing tissue is likely more nonlinear than that of the fibroade-

noma.

The sequence of B-mode and strain image pairs allows

the sonographer to select images representative of the “typ-

ical” strain image for a lesion. This ability, along with bet-

ter determination of lesion boundary available by viewing a

sequence of images, has likely improved the ability to mea-

sure true lesion size in strain imaging compared with the

results reported by Garra, et al.

This new imaging modality is based on a standard clini-

cal ultrasound imaging system and is simply an added soft-

ware program. It could run on any system with the ap-

propriate architecture and sufficient computational capacity.

This is particularly exciting because that would allow this

technology to propagate inexpensively to existing systems.

In addition, because it is based on standard clinical ultra-

sound, it can be safely used serially on young or pregnant

women. Further, since ultrasound systems are portable and

relatively inexpensive, this technology can easily propagate

to medically-under server areas.

5. CONCLUSIONS

A new system for real-time imaging of tissue strain in vivo

using freehand scanning is described and some of the results

obtained with this system are reported. The new system

provides real-time feedback allowing the user to manipulate

the conditions of tissue compression resulting in the ability

to successfully scan all patients for which the technique was

attempted. The strain images for various lesion types are

unique, and the relative size of the lesions appears to be a

strong candidate for discriminating benign from cancerous

lesions. However, further testing will be needed to support

this observation.
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Abstract— We are developing a clinical ultrasonic
imaging system for real-time estimation and display of
tissue elastic properties. We have demonstrated that
real-time feedback of elasticity images is essential for
obtaining high-quality data (consecutive images with
high spatial coherence). The key element to successful
scanning is real-time visual feedback which guides the
patient positioning and compression direction. One of
our findings, consistent with previous reports, is that
benign breast masses are typically about the same size
in B-mode and mechanical strain images. However, in-
vasive cancers tend to be significantly larger in strain
images than in B-mode images. In this work we con-
tinue testing that hypothesis with an increasingly large
data set with greater diversity of breast mass types. Re-
sults from a single-observer ROC study demonstrate
that the lesion size ratio is a useful criterion for classi-
fying benign versus malignant breast masses.

I. I NTRODUCTION

We are implementing and testing real-time mechan-
ical strain imaging integrated into a clinical ultrasound
imaging system (SONOLINE Elegra, Siemens Medi-
cal Solutions) [1]. Our work was motivated by promis-
ing in vivo results first reported in the peer-reviewed
literature by Garra et al. [2]. In that report they de-
scribed data acquisition based on a modified mammog-
raphy system. The use of that system limited the areas
of the breast from which they could acquire data and
typically only acquired a few frames of echo fields per
patient.

Freehand scanning has been the dominant method of
clinical sonography for many years. So, freehand scan-
ning will likely more quickly gain clinical acceptance

of elasticity imaging if it can be performed efficiently.
We have argued that real-time feedback to the hand-eye
coordination system allows constant manipulation of
the boundary conditions of deformation and allows the
observer to know when high quality strain image data
are acquired. The small delay between acquiring suc-
cessive frames (tens of milliseconds) and the relatively
slow deformation rate (cyclic freehand deformation at
about 1 Hz) likely results in a mostly elastic response
in tissue (minimal viscous effect) [3].In vivo elasticity
images of breast lesions obtained with our system have
high contrast-to-noise ratios. In fact, relatively long se-
quences (30 sequential frames or more) of high quality
strain images are normally obtained in clinical trials.

Our preliminary tests of this imaging system [1] in-
cluded a relatively small subject population and scan-
ning was performed by only one sonographer. Results
of measurements with five observers making lesion
size measurements on that data were very encourag-
ing and suggested nearly perfect separation of benign
and malignant lesions. Those results are overly opti-
mistic because of correlation among the data (multiple
lesions in the same patients were included), the limited
variety of lesion types included (only invasive ductal
carcinoma, fibroadenoma and cyst), and the small pa-
tient population.

The focus of this study is to further test the hy-
pothesis that the ratio of lesion sizes (strain measure-
ment divided by B-mode measurement) can accurately
classify breast masses as benign or malignant. This
study includes only uncorrelated data from the previ-
ous study (one lesion, and one image sequence, per pa-
tient). It also includes data acquired at an additional
institution with multiple people performing the ultra-



sound scanning. The subject population is consider-
ably larger and there is a wider variety of lesion types
included. It is more limited that the previous study in
that only one observer performed the measurements.

Results demonstrate that the lesion size ratio is a
sensitive criterion for classifying breast masses. This
study also demonstrates that these measurements can
be repeated at other institutions, suggesting that the
technique and measurements are robust.

II. M ATERIALS AND METHODS

Strain Image Formation

Data were acquired with the Siemens SONOLINE
Elegra using either the 7.5L40 or VFX13-5 linear ar-
rays. A 2-D block matching algorithm is used for mo-
tion tracking in our implementation [4]. The algorithm
displays streaming B-mode and strain images side-by-
side at about seven frames per second to ensure ac-
quisition of high-quality data for strain image forma-
tion. Data were processed off-line using a more com-
putationally intensive algorithm than currently pro-
grammed on the Elegra.

Patient Scanning

Patients were referred to sonography with either a
palpable breast lump or indeterminate mammogram,
or as follow-up from a previous sonogram. All patients
provided informed consent consistent with the protocol
approved by the Institutional Review Board at Kansas
University Medical Center or the Charing Cross Hospi-
tal. Patient scans were performed in a manner consis-
tent with a normal breast ultrasound exam; the breast
was scanned with the patient (typically) in the supine
position with her arm behind her head. When the breast
lesion was located, the transducer was pressed toward
the chest wall at a steady rate in an effort to achieve
about 0.5–1.2% compression frame-to-frame while re-
peating the compress/release cycle for relatively large
(>10%) compression. The compression technique was
adjusted, by changing the compression direction or
patient position, until there was nearly uniaxial com-
pression with minimal elevation motion. Real-time B-
mode and strain image display allowed visualization
of the data quality. Using this scanning technique, no
patient has experienced any discomfort in our proce-
dures.

Fig. 1. A B-mode and strain image pair obtained by freehand
scanning of an in vivo breast fibroadenoma.

Fig. 2. Freehand strain imaging of an in vivo breast cyst.

To date over 250 lesions have been scanned. The
average patient age in this group is about 43yrs old. All
lesions included in this study were either biopsied or
surgically excised for identification. Example images
from in vivo breast masses are shown in Figs. 1, 2 and
3. In those figures the lesion is traced in the B-mode
image and that tracing is also displayed in the strain
image.

The relatively large lesion size displayed in strain
images of invasive ductal carcinomas, compared to the
size displayed in the corresponding B-mode image,
suggests that a comparison of these sizes is most ef-
fective when the breast mass is relatively small in both
image modalities. This difficulty is illustrated in Fig.
4.

Other significant difficulties with in vivo elasticity

Fig. 3. Freehand strain imaging of an in vivo invasive ductal
carcinoma.



Fig. 4. Freehand strain imaging of a relatively large invasive
ductal carcinoma.

Fig. 5. Freehand strain imaging of an in vivo breast cyst cluster.

imaging occur when multiple closely spaced lesion are
imaged, as shown in Fig. 5. In these situations, the
boundary conditions for motion of the individual le-
sions is affected by the motion of the other neighboring
lesions. Motion can be quite complex, or the cluster of
lesions can behave as a single large object. In either
case, the strain image can be more difficult to interpret.
In early clinical trials we are avoiding these cases to fo-
cus effort on lesions that are separated by at least twice
their major dimension from any other nearby lesion.

Eliminating lesion clusters, as shown in Fig. 5, mul-
tiple views of the same lesion, multiple lesions in the
same patient, lesions that were not biopsied, etc. we
have 169 unique data sets. Among these are 43 can-
cers (38 invasive ductal carcinoma, 1 ductal carcinoma
in situ, 2 mucinous carcinoma, 1 invasive lobular car-
cinoma, 1 invasive apocine carcinoma) and 126 benign
lesions (69 fibroadenoma, 40 cyst, 5 lymph nodes, 4
inflammation, 2 ductal ectasia, 6 other benign condi-
tions).

Using our system we have demonstrated that fi-
broadenomas often have a surface pressure-dependent
strain image contrast [1]. The strain image contrast for
a fibroadenoma is generally highest with the least sur-
face pressure and contrast decreases as the pressure is
increased. Fibroadenomas tend to be imaged at their
largest size when data are acquired with minimal sur-

face pressure. The nonlinear stress-strain relationship
of many fibroadenomas, compared to their surrounding
tissue, results in the apparent size of those lesion get-
ting smaller as the surface pressure is increased. There-
fore, lesion size measurements are generally made with
the lowest pre-compression (largest lesion size) for
which consistent strain images are obtained.

III. R ESULTS

Plots of lesion size ratio (strain/B-mode) versus le-
sion area measured in the corresponding B-mode im-
age are shown in Figs. 6 and 7. The red line in those
figures represents the lowest possible linear threshold
to separate all cancers in this data set from most be-
nign lesions. Lesions with an area ratio larger than
the threshold value are likely cancer; those below the
threshold are very likely benign and could potentially
avoid being biopsied. ROC analysis for the continuous
lesion area ratio data results in Az = 0.930 ± 0.019.
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Fig. 6. A comparison of lesion area for breast carcinomas and
benign breast masses.

IV. D ISCUSSION

The ability to accurately and reproducibly determine
the boundary of breast masses is greatly increased
when the observer is provided with a movie clip of the
ultrasound scan instead of a single frame B-mode im-
age. Viewing that relative motion is also very helpful
in interpreting strain images of in vivo breast masses.

The performance of this single criterion for classi-
fying breast masses is impressive when compared to
the set of criteria proposed by Stavros et al. [5]. Given
the relatively young average age of this patient group,



0 50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

1.6

Lesion Area in B−mode (mm2)

Le
si

on
 A

re
a 

R
at

io

Invasive Ductal Ca
Other Ca
Fibroadenoma
Cyst
Other Benign

Decision
Threshold 

Fig. 7. A comparison of lesion area for a variety of in vivo breast
masses. This is a subset of the data shown in Fig. 6 with the axes
scaled to highlight lesions below 1cm in effective diameter.

TABLE I
RESULTS OF SETTING A LINEAR DECISION THRESHOLD TO

SEPARATE ALL CANCERS FROM MOST BENIGN BREAST

MASSES, AS SHOWN IN FIGS. 6 AND7. B-MODE SONOGRAPHY

DATA ARE FROM [5], AND FIRST-SCREEN MAMMOGRAPHY

DATA ARE FROM [6].

Area B-mode 1st-Screen
Criterion Ratio Sono Mammo
Sensitivity 100% 98.4% 69%
Specificity 75.4% 67.8% 94%
PPV 56.9% 38% 8.6%
NPV 100% 100% 99.7%

this approach holds great promise for diagnosing breast
masses in young women. Women under 50 years of
age often have mammographically-dense breasts that
significantly reduce the ability to confidently identify
small breast abnormalities.

The performance of the lesion area ratio as a diag-
nostic criterion in broad range of breast mass types is
encouraging. This study was sufficiently large to in-
clude less common types of cancers such as mucinous
and apocine carcinomas. All cancer types, including
ductal carcinoma in situ, were found to have increased
stiffness in the area outside that seen in the correspond-
ing B-mode image. This phenomenon was expected
for invasive ductal carcinoma where collagen, fibrin

and elastin infiltrate the normal tissue surrounding the
lesion. The source of this increased area of stiffness in
these other types of cancers is not yet understood.

V. CONCLUSIONS

The ratio of the lesion area seen in strain images to
that seen in the corresponding B-mode images appears
to be a very useful criterion for separating malignant
from benign breast masses. This parameter integrated
into a broader set of criteria, such as that proposed by
Stavros, et al. [5] would likely further improve the di-
agnostic accuracy of breast sonography.
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ABSTRACT

We are developing a method for imaging the elastic proper-
ties of tissue using unmodified clinical equipment and tech-
niques that are similar to standard clinical exams. Our work
with in vivo data from human subjects suggests that elastic-
ity imaging provides new diagnostically significant infor-
mation. For example, we can observe a nonlinear stress-
strain relationship among tissues. Both the accuracy and
variance of the displacement estimates must be understood
to verify that observation. A significant body of work in
algorithm development, computer simulation and phantom
experiments precedes this effort. Much of that work ad-
dressed the variance in 1-D displacement estimates. The
displacement estimate variance for a two-dimensional (2-
D) search with a 2-D data kernel can be adequately studied
using simulated echo data. The accuracy of displacement
estimates when the true displacement is unknown, as with
biological tissue experiments, is more difficult to mimic and
is studied using data acquired from in vivo breast imaging.
Methods to reduce displacement estimate variance and ver-
ify displacement estimate accuracy are presented.

1. INTRODUCTION

Many diseases cause changes to the tissue macrostructure
and microstructure that result in increased tissue stiffness.
This fact is the basis of the ubiquitous use of palpation.
Elasticity imaging with ultrasound is under rapid develop-
ment as a quantitative surrogate for manual palpation. Nu-
merous research groups around the world are investigating
techniques and fundamental limits on performance as well
as creating specific implementations. Several literature re-
views are available that highlight prior work. [1, 2]

Elasticity imaging is performed using phase-sensitive
echo signals (either radio frequency or quadrature data) as
maps of anatomy and those signals are tracked as the anatomy
is deformed. Thus, displacement (or time delay) estimates
from a motion tracking algorithm are the fundamental data

We gratefully acknowledge the financial support from CDMRP
DAMD17-00-1-0596 and the University of Wisconsin, as well as the tech-
nical support from Siemens Ultrasound.

available for elasticity imaging. The variance of these dis-
placement estimates have been studied by several groups
(see, for example, [3]). The typical assumption in these ap-
proaches to variance estimation is that the displacement es-
timator is unbiased and that any large errors (wavelength or
larger) can easily be detected and corrected. This is a good
assumption for some experiments, such as radiation force
experiments where deformations are small compared to the
acoustic wavelength. Also, most of the previous studies
of displacement variance incorporated 1-D motion tracking
(again appropriate for the very small deformations induced
with radiation force).

Our group implemented a block matching algorithm for
high-speed elasticity imaging [4] on a Siemens SONOLINE
Elegra and have been testing that implementation since early
2001. [5] The system provides real-time side by side B-
mode images (about 20 frames/sec) synchronized with me-
chanical strain images (about 7 frames/sec). That frame
rate provides sufficient feedback to the eye-brain system to
control the boundary conditions of the deformation to al-
ways obtain high-quality elasticity imaging data with free-
hand scanning. The preliminary results of clinical trials
in breast imaging with this system [5, 6], which currently
include over 300 subjects, suggest that elasticity imaging
provides diagnostically-useful information that is not oth-
erwise available. Specifically, the ratio of the lesion size
in a strain image to the lesion size in the corresponding B-
mode image is a sensitive criterion for differentiating be-
nign from malignant lesions. In addition, we have observed
that the elasticity image contrast of many fibroadenomas de-
creases as the deformation surface pressure increases. This
observation is consistent with dynamic mechanical studies
of in vitro breast tissue samples that demonstrated nonlinear
stress-strain relationships for most breast tissues.

From our in vivo work it is clear that long sequences, in-
stead of single images, of combined B-mode and elasticity
images aid in interpreting tissue elasticity. These sequences
of images help to interpret the true boundaries of lesions
in both the B-mode and elasticity image. (B-mode lesion
boundary definition can be particularly difficult.) Efforts are
underway to improve the elasticity image quality to increase
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the ability to define lesion boundaries in elasticity images
and to improve the confidence in observations of chang-
ing lesion contrast. Parallel efforts involve improving the
motion tracking error detection and correction algorithms,
to reduce the displacement estimate error variance (in the
absence of large errors) and to develop methods to judge
the accuracy of the displacement estimates. This report will
provide an overview of these efforts.

2. METHODS

Previous work has demonstrated that tracking motion in 1-
D is insufficient when using ‘quasi-static compression’ elas-
ticity imaging. One approach is to use 2-D ‘speckle track-
ing’ to warp one data field to approximately compensate for
motion prior to 1-D cross correlation [7], however, this ap-
proach is very numerically intensive. In addition, 1-D cross
correlation requires relatively long observation windows to
obtain low variance in displacement estimate errors, and
these long windows lead to poor spatial resolution. An alter-
native is to simply perform high-quality 2-D ‘speckle track-
ing’ (block matching) using 2-D data kernels (templates).
The additional information included in the multiple lines of
a 2-D template allows the use of relatively short data seg-
ments (compared to 1-D cross correlation). We are inves-
tigating the statistics of tracking motion in 2-D using 2-D
data kernels. These techniques can be directly extended to
3-D at a significant computational cost.

With quasi-static compression elasticity imaging, strain
image signal to noise ratio is highest when the deforma-
tion induces about 1–1.5% axial strain. Strain significantly
less than 1% results in low contrast and increases the sig-
nificance of sub-sample displacement interpolation noise.
Strains significantly larger than 1.5%, in tissue, results in
complex motion that is difficult to track. (Axial strain as
large as 4–5% is relatively easy to track in homogeneous
phantoms with simple block matching algorithms.) Con-
sider the example of breast ultrasound imaging where the
typical depth of a region of interest is 4cm. With 1% axial
strain the average displacement a maximum depth is about
0.4mm. Using a 10MHz transducer, typical of current breast
ultrasound, the displacement corresponds to approximately
2.5 wavelenghts. Note also that an image usually has con-
trast, and this implies that the local strain exceeds 1.5% and
often approaches 3–4%. Excessive noise in strain images
results when the algorithm fails to track these large local
strains. Thus, it is not the average strain that sets the crite-
rion for motion tracking, but the maximum strain.

We are investigating several approaches to detect and
correct large motion tracking errors, reduce the error vari-
ance in the absence of large errors, and develop criteria for
judging the accuracy of motion tracking when the true un-
derlying motion cannot be predicted. This discussion will

be limited to measures of displacement estimate error vari-
ance and to motion-compensated echo signal coherence.

2.1. Displacement estimate error variance

The variance in displacement estimate errors was computed
using simulated data. Incompressibility was assumed and
affine deformations included plane strain, and strain com-
bined with axial shear. Simulations were performed under
each condition using a set of 30 rf echo field pairs (pre-
and post-deformation) and kernel widths ranging from one
A-line to about 4mm wide and lengths from about 150µm
to about 2.5mm. Each field contained at least 1000 non-
overlapping displacement estimates. Displacement estimates
were computed with the sum squared difference approach
and those estimates were compared to the known deforma-
tion to calculate the displacement estimate error variance.

2.2. Displacement estimate accuracy

Signal coherence is well recognized as a limiting parame-
ter in displacement (and time-delay) estimation. It has also
been shown to be a central issue in elasticity imaging system
design—motion tracking algorithms are designed to maxi-
mize the similarity between pre- and post-deformation echo
signals.

We propose using signal coherence as one measure of
motion tracking accuracy. This is most significant for the
task of motion tracking in tissue where the true displace-
ment is not known and (due to a lack of sufficient informa-
tion) cannot be computed from first principles.

The typical approach for judging the accuracy of 1-D
cross correlation is to simply estimate the correlation co-
efficient between the pre- and motion-compensated post-
deformation echo signals. When computed for each esti-
mate in an echo field and displayed as an image, this ap-
proach results in the ‘trashogram’ [8]. Although this ap-
proach is attractive due to its simplicity, high correlation
can result from displacements that are in error by an inte-
ger wavelength. In addition, accurate displacements can be
obtained when correlation is relatively low. Therefore, in
addition to testing coherence for the motion-compensated rf
echo fields, we also compute the coherence of consecutive,
motion-compensated, strain fields. (Note that axial strain
is estimated from the axial derivative of the displacement
field.)

Signal coherence γxy(f) measures the similarity, in spa-
tial frequency, of two fields, x(t) and y(t), as follows:

γxy(f1, f2) =
Sxy(f1, f2)√

Sxx(f1, f2)Syy(f1, f2)
(1)

where Sxx(f1, f2) and Syy(f1, f2) are the auto-power spec-
tral densities of x(t) and y(t), respectively, and Sxy(f1, f2)
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is their cross power spectral density. The magnitude squared
coherence (MSC), Cxy(f1, f2) = |γxy(f1, f2)|2 is the fre-
quency indexed correlation coefficient. The normalized cor-
relation coefficient is obtained by integrating the MSC over
frequency. Examples of the MSC for simulated data are
shown in Fig. 1.
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Fig. 1. MSC for simulated echo fields [(a) is bandpass rf
data, (b) is the corresponding baseband strain image data]
with motion compensated using known (input) deformation.

3. RESULTS

3.1. Block-matching kernel size

Typical 1-D cross correlation methods employ relatively long
data segments (often 3mm or more) for correlations analy-
sis. Figure 2 illustrates the problem of echo signal decor-
relation within the data segment for a 3mm window with
1.5% strain in a phantom. The post-deformation waveform
is shifted to match the time delay near the center of the anal-
ysis window. That shift is seen to be incorrect near the ends
of the data segment due to deformation of the phantom, and
that resulted in a correlation coefficient of only 0.91. A
significant advantage of using shorter data segments is the
lack of significant decorrelation within the analysis window.
However, short data segments introduce ambiguity in time
delay estimates, particularly when tracking motion that ex-
ceeds a wavelength. An alternative to using a single long
data segment (a 1-D kernel) for motion tracking is to use
multiple short segments (a 2-D kernel). Even if adjacent
lines of data are highly correlated, multiple lines of data
provide additional electronic noise immunity as well as pro-
viding some new information.

Figure 3 illustrates the dependence of the displacement
estimate error variance on kernel size. The surface plot in
(a) illustrates the typical finding of other studies involving
1-D cross correlation—that the variance decreases with in-
creasing window length. The variance is also shown to de-
crease with increasing kernel width in this case. However,
as noted above, strain within the analysis window limits the
optimal window length, as seen in (b). With 3% uniaxial
strain, the variance increases rapidly for a 1-D kernel longer
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Fig. 2. Echo signal decorrelation within the analysis win-
dow for 1.5% uniaxial strain.

than about 1mm. Again, increasing the width of the kernel
rapidly reduces variance for any given kernel length. The
situation becomes far more complicated when axial shear
is combined with strain, as seen in (c). Small local shear
is unavoidable in complex media with heterogeneous elas-
tic moduli, such as breast tissue. The kernel size used in
our current real-time implementation is approximately 1mm
wide and 220µm long. Clearly, from these surface plots,
lower variance estimates can be obtained with longer ker-
nels, but increasing the kernel width is not likely to signif-
icantly reduce variance. Figure 4 provides an example of
palpation imaging with a longer kernel. The reduced vari-
ance in displacement estimates allowed the linear regression
window (used for gradient estimation) to be reduced for an
improved (apparent) axial resolution.

3.2. Magnitude-squared coherence

Although a somewhat larger kernel and shorter linear re-
gression window resulted in an apparent improvement in
the spatial resolution, it is not clear that the displacement
estimates are more accurate and the strain image is higher
quality. We are investigating measures of similarity between
motion compensated rf echo fields paired for strain image
formation and between consecutive strain fields presented in
a sequence of strain images. Although it is difficult to see in
the grayscale plots in Fig. 5, the MSC is higher throughout
the frequency spectrum with the larger kernel and shorter
linear regression window (b). This suggests that increasing
the kernel size and decreasing the linear regression window
somewhat improved motion tracking accuracy.

4. DISCUSSION

The surface plots of displacement estimate variance demon-
strate that the optimal kernel size is dependent on the defor-
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Fig. 3. Displacement estimate error variance using the SSD
algorithm and varying kernel size. In (a) the simulation in-
volved only 1% plane strain. In (b) plane strain was 3%. In
(c) 1% strain was combined with 1o axial shear.

(a) (b) (c)

Fig. 4. B-mode (a) and strain images of a fibroadenoma ob-
tained with a small (b) and larger (c) block matching kernel.

mation being tracked. Small strain and no shear are accu-
rately estimated with very large 2-D kernels. As the strain
increases the maximum window length for high-quality dis-
placements estimates is reduced. In addition, only a small
amount of axial shear greatly increases displacement esti-
mate error variance and reduces the maximum kernel width
for which low variance displacement estimates are obtained.

Although the MSC is an attractive measure of motion
tracking accuracy, it is not the perfect single criterion. Two
images of equal brightness and no contrast have very high
coherence, but convey very little information. Other image
quality parameters are still needed to judge which ‘system’
is best.
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Abstract— In this paper, we report a method for absolute 
Young’s modulus reconstruction under freehand scanning. The 
absolute modulus, an intrinsic tissue property, can be used to 
quantitatively monitor pathological evolution of certain diseases 
and to evaluate therapeutic treatments. This method could 
iteratively assess the absolute tissue modulus distribution by 
simultaneously measuring the surface pressure and tissue 
deformation. This method could also be used to obtain pressure-
sensitive tissue elasticity through a sequence of phase sensitive 
(either radiofrequency or quadrature) echo signals to study tissue 
nonlinearity. Since the proposed method uses clinical equipment 
and procedures that are similar to the standard clinical exams, 
this approach is likely to gain significant clinical impact if 
successful.  

 Numerical simulations and a phantom experiment are 
reported here as preliminary studies with emphasis on 
computational aspects. The results show that the modulus 
distribution can be accurately reconstructed, though work in 
hardware and algorithm development needs to continue prior to 
clinical trials.   

Keywords- ultrasonic strain imaging, modulus reconstruction, 
inverse problems.  

I.  INTRODUCTION 
The onset of many cancers is accompanied by changes in 

tissue macrostructure and microstructure that often result in an 
increase in stiffness. Ultrasonic strain imaging techniques that 
estimate relative ‘stiffness’ of soft tissues using conventional 
ultrasound scanners are under rapid development [1]. 
Specifically, a real-time ultrasonic strain imaging system [2] 
has demonstrated a sufficient frame rate to allow the human 
eye-brain system to control data acquisition boundary 
conditions and produce a long sequence of high quality strain 
images.  

 For single lesions isolated in relatively uniform 
healthy tissue, strain images have been proven to be good 
approximations of expected tissue elasticity maps [1]. 
However, multiple closely-spaced lesions increase the 
difficulty of interpreting strain images (e.g. Fig. 1b), as shown 
in a numerical phantom in Fig. 1a. A similar situation can 
happen to in vivo breast scanning, as shown in Fig. 1(c).  

More importantly, the absolute modulus, an intrinsic 
parameter that directly links to tissue changes, can be used to 

quantitatively monitor the pathological evolution and 
therapeutic treatments of certain diseases.      

 

   
    (a)                                (b)                                (c)                              

  Figure 1 A relatively simple modulus distribution (a) and the 
complicated axial strain pattern (b) of a numerical phantom. B-
mode and strain images (c) of a cluster of in vivo breast cysts. 
Note that the axial direction is parallel to the ultrasound beam. 

We, among others, have found that the outcome of modulus 
reconstruction is inherently limited by the accuracy of motion 
estimation. Efforts to improve motion tracking algorithms and 
reduce displacement estimate variance are underway. Parallel 
efforts that are essential components of modulus imaging under 
freehand scanning also involve comprehensive assessment of 
strain image quality. However, this report will focus on the 
methodology for modulus reconstruction.   

II. METHOD 
Formally, the elasticity reconstruction problem can be 

considered as follows: given the displacement field ),( yxu  in 
a medium Ω that is governed by certain constitutive equations, 
determine elasticity parameters of the governing constitutive 
equations of the domain Ω . If we assume tissue to be linear 
elastic, isotropic, and incompressible, the inverse problem is 
then simplified to the Young’s (shear) modulus reconstruction. 
The governing equation for elastic modulus reconstruction can 
be recast as follow [3], 

0)()( =∂∂+∂∂+∂− ijjjiji uup µµ                       (1) 

where p  is the hydrostatic part of the stress, µ  is the shear 
modulus, and u  is the displacement field as a function of 
spatial coordinates. Rewriting Eq. (1) in terms of strain and 
eliminating p , we obtain [4],  

0)(2))(( =∂+∂−∂ µεµε xxxyxyxxyy                         (2) 
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where xyε  and xxε  are the shear and axial strain, respectively. 

Note that 
j

j x∂
∂=∂ and 

ji
ij xx ∂∂

∂=∂
2

in shorthand 

notation. 

 Several methods have been proposed to reconstruct 
the modulus distribution based on either the estimated strain 
fields or the intermediate results – displacement estimates.  
These methods can be classified into two main categories. In 
the first category (e.g. [3]), the displacement or strain estimates 
are obtained through motion tracking from the pre- and post-
deformed phase-sensitive echo signals (either radio frequency 
or quadrature data) and then Eq. (1) or its equivalent (for 
instance, Eq. (2)) is solved by a numerical method (for 
instance, finite element method) with known boundary 
conditions.  On the other hand, methods in the second category 
(e.g. [5]) recast the modulus reconstruction problem as a 
nonlinear optimization problem. This approach seeks a 
modulus distribution that iteratively minimizes a cost function 
(e.g. the difference between the measured and predicted 
displacement fields of the proposed elastic distribution).  From 
our previous work, it seems that iterative reconstruction 
methods are more robust to noise.  

A. Formulation 
The proposed method is a combination of Kallel and 

Bertrand’s approach [5] and the Zhu, et al., approach [6]. 
Basically, we use the Zhu, et al., method to obtain an initial 
solution of the modulus reconstruction problem and then 
iteratively vary the predicted modulus distribution to minimize 
the cost function (see Eq. (3)) using the Newton-Raphson 
method in conjunction with Tikhonov regularization.  

 In Kallel and Bertrand’s method the cost function is 
defined as the difference between the measured axial 
displacement estimates U and predicted axial displacement 
solution )(ET  of the elastic medium under certain boundary 
conditions [5], 







 −= 2)(

2
1minargˆ UETE                                 (3) 

The cost function could be expanded to incorporate the 
measured surface force F,  

 






 −+−=

22 )()(
2
1minargˆ FETUETE f    (4) 

where )(ETf  is the predicted force boundary condition of 
the elastic medium.  

 Eq (3) is linearized and then the Newton-Raphson 
method in conjunction with the Tikhonov regularization 
technique was used to minimize the cost function iteratively. 
The incremental update of the modulus distribution at iteration 
k is [5]: 

{ } [ ] { }kk
T
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T
kk UWSQSWSE ∆+=∆ −1ˆ γ               (5) 
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
∂
∂−= −                                                (6) 

where ][K  is the global stiffness matrix in the finite 
element model, γ  is a regularization parameter, and Q  and 
W  are both positive definite square matrices that are used to 
introduce additional constraints. Interested readers are referred 
to [5] for details. The criteria for convergence of the iterative 
procedure can be set with pre-determined thresholds 1ε  and 

2ε  as follows, 

1
ˆ ε<∆ kE  and/or 2

ˆ ε<D                                                (7) 

Nonlinear optimization could be successfully approximated 
by a linearization process, given an initial guess that is 
sufficiently close to the true solution. However, it is generally 
difficult to establish such initial guesses. It is worth noting that 
strain images may be misleading in constructing such initial 
estimates, as shown in Fig. 1.    

On the other hand, the Zhu, et al., approach is a direct 
inversion of the finite element method for rectilinear elements, 
This approach can be extended to other isoparametric elements 
to fit curved geometries better.  This approach rewrites the 
global stiffness matrix so that a linear algebraic system, where 
the modulus distribution is unknown, can be solved explicitly 
[6].  

FDEFKU =⇔=                                                   (8) 

where E is a vector that represents the unknown modulus 
distribution, and D is a re-assembled matrix and a function of 
displacement estimates. It is worth noting that D may be an 
over-determined matrix and its inversion could be ill-posed due 
to errors in displacement estimates. In conjunction with the 
measured surface force distribution, the Zhu, et al., method 
could give a good approximation of the true modulus 
distribution.  

B. A Special Accommodation for Freehand Scanning 
An additional difficulty posed by freehand scanning is that 

the reference coordinate system for motion tracking is mobile. 
The contact surface between the ultrasound transducer and the 
tissues that are being imaged is typically the reference 
coordinate system for motion tracking, as shown in Fig. 2. 
However, FEA simulation programs usually use a fixed 
coordinate that is independent of the physical model.  
Consequently, a conversion is needed to resolve this 
inconsistency. By assuming a free-sliding condition in x 
direction (see Fig. 2) at the top and bottom surfaces, a simple 
conversion consists of two steps as follows: 

According to the basic force equilibrium for the deformed 
ROI, as shown in Fig. 2, the surface pressure acquired from an 
integrated pressure sensor array should equal the reaction 
forces on the bottom of ROI, except that the directions are 
opposite.            

15180-7803-8412-1/04/$20.00 (c)2004 IEEE.0-7803-8412-1/04/$20.00 (c)2004 IEEE.
2004 IEEE International Ultrasonics, Ferroelectrics,

and Frequency Control Joint 50th Anniversary Conference



The displacement around the top of ROI can be measured 
by ‘speckle tracking’ algorithms [2] and then prescribed for the 
FEA mesh to establish displacement boundary conditions. 
(Note that the displacement around the bottom of ROI has 
already been enforced by the imposed reaction force from the 
previous step.) 

 
Figure 2. Illustration of tissue deformation under ultrasonic 
freehand scanning  
 

C. Key Features of the Proposed System 
Our proposed absolute ultrasonic modulus imaging system 

includes a clinical ultrasound scanner as a platform for data 
acquisition, a compression plate mounted to the ultrasound 
transducer array with a pressure sensor array on that plate, and 
an Intel-based workstation for image formation and display. 

 A device of measuring surface force is necessary for 
the reconstruction of the absolute modulus distribution. 
Otherwise, only relative stiffness is assessed. More 
importantly, the absence of surface pressure information may 
lead to a nonunique solution for modulus reconstruction [3]. 
Barbone and Bamber [3] also showed that the solution for 
modulus reconstruction using Eq. (1) or (2) is well posed if the 
object that is being imaged is under pure axial compression in 
the absence of shear stress. In fact, the deformation of a tissue-
mimicking phantom with freehand scanning, as illustrated in 
Fig. 3, may approximate uniaxial compression. Therefore, 
adding the ability to acquire surface pressure could lead to a 
well-posed inverse problem. Unfortunately, real clinical 
procedures with human anatomical structures (e.g. female 
breasts) may violate this assumption. The consequence and 
severity of this violation will be investigated with tissue-
mimicking anthropomorphic phantoms.  

 
Figure 3. Boundary conditions for freehand scanning of a 
breast and a tissue-mimicking phantom  
 

The procedures of the proposed method are summarized in 
Fig. 4.  

 

Figure 4. Flow-chart of the proposed reconstruction 
algorithm.  

III. NUMERICAL SIMULATIONS AND PHANTOM 
EXPERIMENTS 

We simulated a two-dimensional object under plain stress 
conditions with dimension of 20 ×  20 (width ×  height in 
millimeters). The modulus distribution is shown in Fig. 5(a) 
where the background was 15kPa that approximates normal 
glandular breast tissue. An 8mm diameter target whose 
stiffness is 45kPa is embedded into the object. The object is 
meshed coarsely with 4-node elements as shown in Fig. 5(b) 
and the ideal forward solution can be obtained, as well as the 
force boundary conditions.   

                      
     (a)                                              (b)  

Figure 5. Elasticity Map (a) and Mesh (b) generated using 
ANSYS (Ansys Inc., Pittsburgh, PA) 

 
 Usually measured displacement and surface pressure 

are contaminated with errors (noise). The significance of 
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uncertainties in displacement estimates and force 
measurements was investigated assuming a zero mean 
Gaussian process to model the estimation errors and added to 
the ideal solution to simulate different noise levels.  

     RF data were acquired from a gelatin tissue-mimicking 
phantom under freehand scanning and used to validate the 
proposed method. In the tissue-mimicking phantom, the 
background and a spherical inclusion have similar acoustic 
properties, whereas the spherical inclusion is three times stiffer 
than the background. The FEA solution for the predicted force 
(with 10% noise added) was used in the reconstruction process. 
The inclusions can be barely seen in the B-scan images (Figs. 
7(a)) demonstrating that scattering and stiffness are 
uncorrelated properties [7].  

IV. RESULTS 
Fig. 6 illustrates that uncertainties both in displacement 

estimates and surface force measurements degrade the 
performance of the proposed method. Ten realizations of 
displacement and force distributions were generated for each 
predetermined level of noise. However, it is easy to conclude 
that the proposed method is more sensitive to noise in 
displacement estimates than to noise in force measurements.  

    
 

Figure 6. Plots of the statistical analysis of modulus 
reconstruction errors. The dashed and solid lines denote noise-
free and 10% of error in surface pressure acquisition, 
respectively. The vertical lines represent displacement 
estimation variance of our current speckle tracking algorithm.    
 

Fig. 7 shows that the modulus distribution of the tissue-
mimicking phantom under freehand scanning can be accurately 
reconstructed, but the size of the target is overestimated by 
about 15%. 

             
                 (a)                          (b)                       (c)  
Figure 7 B-mode (a), strain (b) and modulus (c) images of the 
tissue-mimicking phantom. Note that the unit used in modulus 
image is 10kPa.  
 

V. DISCUSSIONS AND CONCLUSIONS 
The conversion of the reference coordinate system enables 

the modulus reconstruction along a sequence of acquired data. 
It will likely be able to provide more consistent modulus 
assessment and be used to study tissue nonlinearity under 
typical clinical setting.  

 Adding an array for acquiring surfacing pressure not 
only makes reconstruction of absolute moduli possible, it also 
offers the possibility of recasting the cost function in 
optimization.  

 Many simplifications needed for the analysis, 
including the coordinate system conversion and uniqueness of 
the inversion, are built on the assumption of uniaxial 
compression. However, it is almost impossible to maintain 
uniaxial compression of human organs. Therefore, the limits of 
these simplifications will be further studied with 
anthropomorphic tissue-mimicking phantoms and in vivo 
tissues.  

 A 10% error in surface force measurement is a 
conservative estimate of currently available techniques. 
However, reducing errors in ultrasonic speckle tracking has 
greater significance in modulus reconstruction.   

 Since we chose a gradient-based optimization 
algorithm to reconstruct Young’s modulus, a large 
discontinuity (three to one constrast in Fig. 7) in the elasticity 
map may pose difficulties in recovering the boundary between 
the soft background and hard inclusion. Ideally, a discritization 
of the elastic medium with high order finite elements can 
preserve the discontinuity. 

       The results suggest that the absolute elastic moduli of 
in vivo tissue can be assessed with minor modification to 
current standard clinical sonography systems with freehand 
scanning. Uncertainty in displacement estimates has more 
influence on modulus reconstruction statistics compared to 
uncertainty in the force distribution. 
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Abstract— Ultrasonic scatterer size estimation and imaging has proven 
to be both feasible and useful for monitoring, diagnosis, and study of 
disease. We are implementing scatterer size imaging and attenuation 
coefficient imaging on a clinical scanner equipped with a research 
interface. The interface provides radio frequency echo data over the 
image of a sample, which are then analyzed offline. Echo data from a 
reference phantom, acquired using the same transducer and scanner 
settings used in acquisition from the sample, accounts for system 
dependencies on the data. Backscatter coefficient and attenuation 
coefficients are estimated for small regions. Scatterer size images are 
generated by performing a modified least squares fit of the backscatter 
estimate to a theoretical model, which relates backscatter to scatterer size. 
Tests in well-characterized phantoms have demonstrated the accuracy of 
the method have revealed limitations. Ultrasonic scatterer size estimates 
generally have large variances due to the inherent noise of the spectral 
estimates used to calculate size. Compounding partially correlated size 
estimates associated with the same tissue, but produced with data 
acquired from different angles of incidence, is an effective way to reduce 
the variance without making dramatic sacrifices in spatial resolution. 
Initial compound acquisitions on the clinical system have been done using 
manually generated scripts supported by the research interface. Results 
confirm theoretical expectations of the improvement in signal to noise 
ratio of scatterer size estimations with selected compounding parameters. 
Additional parameters, including the attenuation coefficient may also be 
derived. 

Keywords-Backscatter; Scatterer size; Ultrasound Attenuation; 
Parametric Imaging; Compound Imaging 

I.  INTRODUCTION 
Ultrasonic scatterer size estimation and imaging has 

proven to be both feasible and useful for monitoring, 
diagnosis, and study of disease. The techniques combine 
physically based analytical models for ultrasound scattering 
with backscatter measurements from tissues. For example, 
Hall et al., [1] measured glomerular diameters and found good 
correlation with histology; Garra et al., [2] reported glomerular 
sizes and scatterer spacing were useful for detecting diffuse 
kidney disease. Oelze et al., [3] demonstrated that scatterer 
size measurements and images can differentiate between 
breast carcinoma and fibroadenomas in an animal tumor 
model.  Sommer et al., [4] showed that narrow bandwidth B-
mode images exhibit frequency dependent contrast between 
liver masses and liver parenchyma, suggesting that scatterer 
size images may be useful in this organ as well. 

 
We are implementing scatterer size imaging and attenuation 

coefficient imaging on a clinical scanner equipped with a 
research interface. The interface provides radio frequency echo 
data from a region in a sample; currently data are analyzed 
offline. Echo data from a reference phantom, acquired using 
the same transducer and scanner settings used in acquisition 
from the sample, accounts for system dependencies on the data. 

Backscatter coefficient and attenuation coefficients are 
estimated for small regions. Scatterer size images are generated 
by performing a modified least squares fit of the backscatter 
estimate to a theoretical model, which relates backscatter to 
scatterer size. Attenuation is measured by fitting narrow band, 
log(signal intensity) vs. depth data to a straight line. Extensive 
tests in well-characterized phantoms have demonstrated the 
accuracy of the method, as well as revealed limitations. 

 

II. METHODS 
A “reference phantom” data reduction technique [5] is used 

to determine backscatter coefficients vs. frequency, BSC(ω) 
and attenuation coefficients vs. frequency α(ω), of regions 
within the sample; RF Echo data are acquired from the sample 
(Ss(ω)) and from a calibrated reference (Sr(ω)); The ratio of 
the data from the sample and from the reference effectively 
eliminates system dependencies on the echo data. 

The general approach is to plot log(Ss (ω)/Sr(ω))2 vs. depth. 
Our analysis shows that this ratio may be expressed as: 
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The slope is related to the difference between α(ω) of the 

reference and of the sample. The attenuation coefficient of the 
reference is known; therefore, the slope yields the attenuation 
of the sample. The zero depth intercept yields the ratio of the 
backscatter coefficient, BSC(ω) of the sample to that of the 
reference.  Since the latter is known, BSC (ω) of the sample is 
thus determined. Although this example is for a uniform 
sample, the calculation may also be done over a region starting 
at some depth in the sample. The attenuation coefficient can 
readily be determined using this approach. However, for deeper 
structures, it is necessary to correct for attenuation of overlying 
tissues to get the BSC of the region of interest. Similarly, 
attenuation estimations can be limited by a similar problem, 
namely, attenuation values can be incorrect if the BSC isn’t 
uniform with depth and isn’t properly corrected for. 
 

Size estimation is accomplished by performing a modified 
least squares fit between the measured backscatter coefficient 
from a tissue segment and a theoretical backscatter coefficient, 
which is dependent upon tissue/scattering properties including 
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size.  The scatter size, a, corresponds to the value that 
minimizes the following expression.  
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and BSCt(ω,a) is a model backscatter coefficient dependent on 
scatterer size. The summation is over the usable bandwidth of 
the backscatter coefficient measurement. Unlike the standard 
least squares fitting technique, this method is insensitive to 
differences between measured and theoretical values by a 
multiplicative constant, and therefore requires no knowledge 
of tissue scattering strength for accurate size estimation.   

 
Figure 1 Scatterer size phantom.  Target 1 has scatterers whose average 
radius is 167 µm. Scatterers in target 2 have a 116 µm radius; those in 
target 3 have a 52 µm radius; and those in target 4 average 26 µm in radius.  

Initial tests of the scatterer size imaging method were done 
using an Acuson 128XP10 scanner and V4 transducer. We 
used a special purpose phantom consisting of polystyrene bead 
scatterers in a gel background (figure 1). The attenuation 
coefficient of the contents of the phantom was 0.5 dB/cm-
MHz. The background material in the phantom had beads 
having a mean diameter of 199 µm.  Four cylinders, each with 
a diameter of 2 cm have a different mean scatterer diameter, 
ranging from 335 µm (#1), 232 µm (#2), 103 µm (#3) and 51 
µm (#4).   

The scanner was set to image at a center frequency of 2.5 
MHz. The 6 dB bandwidth was 40%. RF data were digitized 
using a Gage Applied Science 12100 A/D board for offline 
processing. Scan lines were divided into 4 ms x ~2 mm pixel 
elements and spectra were averaged from multiple images in 
parallel planes to reduce noise.   

A typical scatterer size image is shown in figure 2. The 
color bar is the scatterer radius, estimated from the algorithm 
and displayed in the image. There is good agreement between 
image data and the actual scatterer sizes.  

 
Ultrasonic scatterer size estimates generally have large 

variances due to the inherent noise of the spectral estimates 
used to calculate size. A number of groups have analyzed the 
statistical uncertainty of these estimates, including our own. 
[6] Our analysis and experiments show that size estimate 
precision is a function of: gate length, frequency bandwidth, 

wavenumber, and number of RF echo signal A-lines used.  
The image in Figure 2 was obtained by averaging data over 
several parallel planes, which would only be possible if there 
was translational symmetry in the target. 

 

 
Figure 2   Image of the scatterer size phantom. The scale depicts scatterer 
radii in micrometers.  Seen are target 1 (lower left, 167 µm radius), target 2 
(lower right, 116 µm radius), target 3 (upper left, 52 µm), and target 4 
upper right, 26 µm radius). The background has 100 µm radius scatterers. 

III. SPATIAL COMPOUNDING 
One method that can be used to reduce the severity of this 

problem is to spatially compound partially correlated results 
which are associated with the same tissue, but which are 
produced with data that is taken from different angles of 
incidence. [8] The application of spatial compounding to B-
mode imaging has been investigated extensively, and has 
yielded excellent results. [9] As a result, many modern clinical 
scanners include a compounding option to reduce speckle and 
provide the additional benefit of improved specular reflector 
imaging.  Recent work done by our group has been devoted to 
adapting the spatial compounding technique for use in 
elastography and parametric imaging that involves spectral 
analysis, such as scatterer size and attenuation imaging.  For 
the case of parametric imaging, either the necessary spectral 
estimates can be compounded before parameter estimation, or 
parametric estimates can be generated for each angle of 
incidence and then averaged. 
 

Our initial tests to determine the effect of spatial 
compounding on parametric images used a phased array 
transducer translated over the scanning window of the scatterer 
size phantom of figure 1.  A 3.5 MHz probe and an Aloka 
scanner were used. The signal format of the transducer consists 
of 121 A-lines arranged over a 90° sector, with 0.75° 
increments between A-lines. To simulate the effects of angular 
data acquisition of RF echo signals, the phased array transducer 
was linearly translated over the sample using a precision linear 
stage, so that each location in the sample was scanned from 
multiple angles (Fig. 3). The distance between acquisitions was 
1/2 mm. The echo data in these RF sets were then rearranged 
into angled RF data frames, as indicated in the lower part of 
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Fig 3. Each of these regrouped RF frames was analyzed 
separately to generate a scatterer size image at each angle.  

 

Figure 3 Acquiring compound data using a phased array scanner. Data were 
then regrouped into angled RF frames (lower part of diagram). 

The image pair in Fig 4 illustrates the results of spatial 
compounding for the scatterer size phantom. The size 
estimates were done using a 3.5 MHz transducer. Image 
quality is significantly improved with compounding (right 
side) vs. no compounding (left side).  Note all four targets are 
seen in the image on the right. 

  
Figure 4 Non-compounded scatterer size image (left) and compounded 
image (right) of the scatterer size phantom.  

The standard deviation of the scatterer sizes displayed for 
target “1” (mean diameter = 325 mm) is shown in Fig 5 for 
different degrees of compounding, achieved by increasing the 
maximum angle over which size data were compounded at 
each location. The S.D. decreases with number of lines 
compounded, as expected. Notice that one can skip some 
beam lines without significant loss of compounding effect. 
Evidently, the data for beam lines that are only slightly angled 
from one another are highly correlated for this phased array 
transducer. [7]    

IV. ATTENUATION IMAGING 
Another important acoustic parameter in clinical ultrasound 

imaging is the attenuation coefficient. Currently, clinicians 
recognize and use attenuation in making a diagnosis; however, 
measures are qualitative rather than quantitative. For example, 
when describing clinical signs based on attenuation, users 
employ statements such as  “the mass exhibits shadowing” or 
“the mass exhibits good through transmission.”  Our goals are 

to incorporate methods for determining attenuation locally, 
and in the form of images, into ultrasound machines.  

 
Figure 5 Standard deviation of scatterer size measures for cylinder 1 in the 
scatterer size phantom, vs. the maximum compounding angle. Results are 
shown for 4 angular increments between beam lines, ranging from 0.75o 
(using all beams) to 7.5o.  

Attenuation may be measured locally using the reference 
phantom method, as described above.  When applied to a 
small region, statistical fluctuations of echo signal data affect 
the estimates.  Our analysis shows that ασ , the standard 
deviation of an attenuation estimate, is given approximately by 
the following expression: 

'

'52.7
NNZn
NNk +=σ  

 
where k is the inverse of the signal-to-noise ratio, N and N’ are 
the number of independent beam lines over which echo data 
are analyzed for the estimate from the sample and reference 
phantom, n is the number of independent estimates of (Ss 
(ω)/Sr(ω))2 and Z is the length of the analysis region.  
 
 Our approach is to use both spatial and frequency 
compounding to compute attenuation locally and to form 
attenuation images. [10,11] Spatial compounding is done 
analogously to that described for scatterer size images. 
Frequency compounding assumes the attenuation over a 
limited frequency range varies linear with frequency, f.  β=α/f, 
then becomes a useful attenuation metric, where α is the atten-
uation at frequency f. The β estimates from different frequen-
cies can be compounded. 
 
 Attenuation imaging has been implemented on a Siemens 
Antares machine equipped with an Ultrasound Research 
Interface (URI).  In the present implementation, raw, RF data 
are saved and stored for off-line analysis. Users select a region 
of interest, number of frames of echo data to acquire, and the 
acquisition file name by way of front panel controls.  Other 
scanner parameters, such as gain, transmit focus conditions, 
center frequency, and certain pre-processing settings are set in 
the usual way.  A front panel control initiates the RF 
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acquisition sequence, storing echo data to a file on the Antares 
computer system. The file is downloaded to a Windows 
machine, where the data analysis routines are run.   
 
 The Antares machine allows beam steered B-mode 
acquisitions, where a trackball is use steer the parallel 
ultrasound beam lines from the linear array into different 
angles.  This feature was used to acquire RF data from an 
attenuation phantom, consisting of cylindrical inclusions 
whose attenuation coefficient was 0.78 dB/cm-MHz, within a 
uniform background where the attenuation was 0.49 dB/cm-
MHz.  These values had been obtained using lab apparatus 
applied to test samples of the materials manufactured when the 
phantom was poured.  
 

A URI script was written that utilized trackball generated 
angular increments to shift the beam direction by 
approximately 2 degrees, from –9.5o to +11.5o. At each 
location, a frame of RF echo data was acquired.  The offline 
analysis consisted of producing β=α/f images at each 
acquisition angle, then compounding the resultant images.  A 
VFX13-4 linear array transducer was used. 
 

Fig. 6 presents a gray scale image (top) and an attenuation 
image of a region in the attenuation-contrast phantom 
containing a 1-cm diameter inclusion. Slight shadowing can be 
noted distal to the inclusion I the top image. The inclusion is 
clearly seen in the lower, attenuation vs. frequency slope 
image. The depicted value for the attenuation coefficient in the 
inclusion is approximately 0.7 dB/cm-MHz, closely matching 
the results obtained from test samples. 

 
Figure 6 B-mode (top) and attenuation image of a 1-cm diameter inclusion 
(0.8 dB/cm-MHz) in a uniform background. 

V.  CONCLUSIONS  
In this paper, we describe methods for acquiring both 

scatterer size images and attenuation images, and we report 
quantitative tests of the methods. Compounding scatterer size 
estimates following RF echo data acquisition from the same 
location but different beam angles can substantially improve 
statistical uncertainty in scatterer size images. Results confirm 
theoretical expectations of the improvement in signal to noise 
ratio of scatterer size estimations with selected compounding 
parameters. Both spatial and frequency compounding improve 
local attenuation estimations, and facilitate the generation of 
course attenuation images. 
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