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Autonomous Uninhabited (or Unmanned) Air (or Aerial) Vehicles (UAVs) have
grown in significance both in space exploration missions and in military applications
such as surveillance and payload delivery. The tasks that UAVs are expected to perform
are also growing in complexity. One plausible scenario is that of multiple vehicles of
various types, capabilities, and constraints performing a complicated task requiring
coordinated decision making and execution.

UAV task scheduling can be considered a general case of the Capacitated Vehicle
Routing Problem with Time Windows (VRPTW). The basic version of the vehicle
routing problem is the Capacitated Vehicle Routing Problem (CVRP). The CVRP is
described as follows:

n targets must be served from a unique depot. Each target needs a quantity qi of
ammunition (i = 1 ... , n) and a vehicle of capacity Q is available to deliver
ammunition. Since the vehicle capacity is limited, the vehicle has to periodically
return to the depot for reloading. In the CVRP, it is not possible to split goal delivery.
Therefore, a CVRP solution is a collection of tours where each goal is visited only
once and the total tour demand is at most Q. This definition may be extended to m
dissimilar vehicles that are cooperating to serve the targets.

In general, there are two different approaches to solving this problem, exact solution
techniques and approximate solution techniques. Various approaches are considered in
the literature for finding exact solutions. These approaches are

"* Dynamic Programming
"* Lagrange Relaxation-Based Methods
• Column Generation
* Branch and Bound (e.g., CPLEX)

Exact techniques are found inadequate for real-world problems of realistic size due to
computational complexity, and they often are complemented with heuristics. Various
approximate solution techniques have been attempted with various degrees of success.
Among these techniques are

* Directed local search
* Simulated annealing and tabu search

* Evolutionary Algorithms (e.g. Genetic Algorithms)

The problem with these methods is that they require initial feasible solutions
(sophisticated heuristics are often developed just to generate an initial feasible solution)
and have difficulties handling constraints, especially time-windows. These methods
suffer from slow rates of convergence. To treat larger instances, or to compute solutions
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faster, heuristic methods must be used. Among the best heuristic methods are tabu search
and large neighborhood search. These approaches, however, generally suffer from slow
convergence.

Another approach is mathematical programming. In this approach, the problem is
transformed into a Mixed Integer Linear Programming (MILP) formulation. The
resulting MILP problem poses significant challenges to MILP-based solution techniques.
Although much research has been devoted to finding an effective method for solving
MILP problems, a general technique capable of handling online task scheduling has been
elusive due to the potential for exponential explosion in large-scale problems.

Mixed Integer Nonlinear Programming (MINLP) formulations cover a broad class of
problems, including MILP, and, in general, are more difficult to solve than MILP
formulations. A wide variety of optimization problems arising in engineering
applications can be formulated as MINLP problems. Applications of MINLP range from
control of hybrid systems [1] to task scheduling [2] and other closely related
combinatorial optimization problems, such as the traveling salesman problem (TSP) and
path planning [3][4]. All these problems, however, pose significant challenges to
MINLP-based solution techniques. Although much research has been devoted to finding
an effective method for solving MINLP problems, a general technique capable of
handling real-time task scheduling as well as assignment and control problems has been
elusive. This is due again to the potential for combinatorial explosion in large-scale
problems [5][6].

The deficiencies in applying any stand-alone optimization technique have led
researchers to attempt to combine efficient components of the different methods to build
hybrid optimization solutions. Integration of different features of multiple conventional
optimization and heuristic techniques is an area that has sparked considerable interest in
the optimization community. The main motivation behind these endeavors is the fact
that, with the increase in the dimension of the problem, the conventional methods quickly
become computationally intractable. The standard techniques for solving MILP
problems, e.g., branch and bound, experience an exponential rise in convergence time
when the number of variables is increased [6]. This rise in complexity with the increase
in dimension is evident even for a moderate increase in problem size.

Grossman and Jain [7] have presented a hybrid MILP and constraint programming
(CP) techniques to solve problems that are intractable if solved using either of the two
techniques alone. The class of problems they tested was formulated in terms of a hybrid
MILP/CP model that involves some of the MILP constraints, a reduced set of CP
constraints and an equivalence relation between the MILP and CP variables. Fletcher [8]
has presented another approach by outer approximation. The outer approximation scheme
solves MINLP problems by a finite sequence of Nonlinear Programming (NLP) sub-
problems and MINLP master problems. Other interesting attempts at hybrid solutions
combine some conventional methods with heuristic or metahueristic approaches in the
hope of having their strengths complement one another. Salomon [9] has combined
gradient search methods with evolutionary techniques to achieve faster convergence on
continuous-parameter optimization problems.
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In our work, we present a new hybrid method for solving MINLPs for a class of

combinatorial optimization problems formulated as follows:

min,, 3('x)_
subject to: B•_< Cx •_ B

Where x= (I)

X, E Xd E

In the following sections, the Hybrid Projected Gradient-Evolutionary Search (HPGES)
algorithm that was developed to solve this problem is described in detail.

1 Hybrid Projected Gradient-Evolutionary Search Algorithm
The HPGES algorithm uses a specially designed evolutionary-based global search

strategy to efficiently create candidate solutions in the solution space. A local projection-
based gradient search algorithm is then used to improve the candidate solutions at each
generation and to construct new (potentially improved) candidate solutions for the next
generation of the evolutionary search. The search terminates when a certain convergence
criterion is met. The details of different components of the hybrid algorithm are described
in detail in the following sections.

1.1 Discrete Variables Relaxation

The generalized MINLP can be stated as:

{subject to: B < Cx BXd (2)

where x is the decision vector with x, and xd indicating continuous and discrete decision
variables, respectively. _B and B are, respectively, the lower and upper bounds for the
constraint set C. where C is a matrix of appropriate dimensions. We assume that x- (2,

where n2 is a bounded space.

A class of algorithms for solving Eq. (1) is based on penalty function methods.
Among the earliest such methods is the one proposed in [10], where the authors observed
that a binary variable XdJi could be replaced by a continuous unbounded variable if an
appropriate constraint is added. Even though the reformulation in [10] appears attractive,
it suffers from a number of serious drawbacks. Introducing a nonlinear equality
constraint transforms a convex MINLP problem into a non-convex NLP problem, which
in general is not easier to solve. Another approach aimed at relaxing the MINLP problem
into a NLP problem is suggested in [1], where use of a penalty function and a constraint
was advocated:
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min x x)+{lIXXd ZXdj

subject to: B• Cx•<_ B

d'XXd ZXd ij <6 
(3)T 

i=1

O<Xd,i < 1, i= 1,...,m

In Eq. (3), x is the same as in Eq. (2), where Xd =[Xd,1,...,Xd,mI T is the relaxed

binary decision variable, where the Xd,i, I _<i_<m, are expected to converge to 0 or I

(the positive penalty term xdxd -Zxdai will have the minimum value of zero when

XdJ, I •5i <5m, are either 0 or 1) and non-negative a, and U2 are appropriately selected

at each iteration. The algorithm repeatedly solves the optimization problem in Eq. (3)
with an increasing penalty factor a, and tighter tolerance level U. until the difference
between two successive iterations becomes sufficiently small and the elements of the
solution vector approach 0 or 1. If the algorithm converges to a solution whose
components are not 0 or 1, then the procedure is restarted from an alternative initial point.
Other forms of penalty function are also suggested in the literature.

Relaxing binary variables through a combination of augmented penalty functions and
additional constraints has been found to suffer from two major setbacks. First, in general,
extraneous local optima will be introduced to the optimization surface within the feasible
region, and hence the true optimal solution could be compromised. Second, the solution
for the relaxed binary variable will converge to 0 or 1 only when the penalty factor, a0- in
Eq. (3) for instance, approaches infinity. For the quadratic cost function in Eq. (3),

however, the use of U(Xd - 0 .5 )T (Xd - 0.5) (where 0.5 is the vector all of whose

elements are 0.5) as the augmented penalty function, and the addition of 0_< Xd, <_I,
1 .5i nin, as the additional constraint, is found to be adequate even with moderate values
of a. This is the relaxation strategy adopted in the solution to the generalized MINLP
with the graph partitioning application that is studied in this work, transforming a MINLP
problem into a constrained NLP problem to be solved with the HPGES algorithm.

1.2 Projected Variable Metric Method

Unconstrained NLP problems have been studied extensively in the past, and a host of
well-known techniques, including conjugate direction methods, restricted step methods,
Newton-like methods, and secant methods, is reported in the literature (see [8], [11] and
[12] for instance). The convergence rate of these methods is super-linear, and global
convergence is guaranteed for convex and smooth functions. The solution to constrained
NLP problems, however, becomes prohibitively expensive for large-scale problems. This
work advocates a projection technique that has demonstrated favorable numerical
properties in the solution to the generalized MINLPs. [13].
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1.3 Hybrid Evolutionary-Gradient Algorithm

In this section, a hybrid evolutionary-gradient based method for MINLP problems
with inequality constraints is introduced. In this approach, the evolutionary algorithm is
used as an engine for global search, while the projected variable metric method is used
for efficient and swift local search.

A local search algorithm starts with an initial solution and seeks better solutions in the
existing candidate solution's neighborhood. The quality of the solutions obtained by a
search method is directly influenced by the definition of the neighborhood space in the
search process. Efficient generation of superior neighborhoods is important in order to
have an effective search. Being trapped in local optima is the other factor affecting the
quality of solutions generated using local search methods. Combinations of local search
techniques with global search strategies such as genetic algorithms were devised to
overcome such problems. These search strategies are classified as metahueristics since
they act as guidance strategies for their respective local search procedures.

Genetic algorithms (GAs) are a class of guided search heuristics for the optimization
process based on the gradual evolution of genes in a population of solutions represented
as chromosomes. Candidate solutions, or chromosomes, are usually fixed-length integer-,
real- or binary-valued strings. A selection mechanism chooses parent chromosomes to go
through recombination and mutation procedures possibly to produce better candidate
solutions. Improved solutions may replace some unfit members of the old population.

The steps involved in combining the two aforementioned methods to form the Hybrid
Projected Gradient-Evolutionary Search (HPGES) algorithm are as follows (see Figure
1):

I. Create a random initial population. Use a Linear-programming solver (e.g.,
CPLEX) to ensure that at least some of the individuals in the initial population are
feasible. (This would not be the case for a totally random initialization.)

2. Create new individuals by using the local improvement scheme (gradient
projection) on the population of the candidate solutions. Infeasible individuals are
also made feasible through the projection process.

3. Select individuals from the pool of improved feasible candidate solutions for
crossover.

4. Apply convex crossover, create new candidate solutions, and update the
corresponding search direction matrix for each newly created individual.

5. Select the individuals in the population pool for the next iteration.

6. Stop if convergence criterion is met. Otherwise, go to step 2.
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Figure 1: Hybrid Projected Gradient-Evolutionary Search Algorithms for MINLPs

To create the initial population with random feasible solutions, we use the LP solver

of CPLEXR and solve the following LP problem repeatedly with a random vector Li:

J minx Lix

subject to : B < Cx < Bf (4)

The main idea in the improvement stage (see Figure 1) is to use the local search
algorithm in order to swiftly improve the candidate solutions in the population pool. The
improved feasible solutions are then presented to a selection and diversification operator
(in this case, the convex crossover of the selected individuals in the population) in order
to explore the solution space. A variety of GA operators can be used at each stage (see
[14] for details).

1.4 Numerical Implementation Results

Although our algorithm provides a general framework for a wide range of problems
formulated as MINLPs, the initial tests were done on sample graph portioning problems,
and the results were compared to best reported results from the literature. Many real-
world problems of interest can be formulated as graph portioning problems, which in turn
can be cast into a formulation suitable for the proposed HPGES algorithm. The results
discussed in the following section outline the utility of the algorithm. These results can
probably be improved for particular applications by incorporating heuristic schemes
suitable for each problem.
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1.5 The Graph Partitioning Problem

The proposed algorithm for MINLP is tested on the multiset min-cut graph
partitioning problem. In this problem, the vertices of a graph are partitioned into sets of
given sizes while minimizing the weighted sum of the cut edges, that is, the edges
connecting vertices in different sets. Let A be an n-by-n weight matrix associated with a
directed graph with vertex set V =1, 2, ... n}. Multiset min-cut graph partitioning can be
represented as follows:

Given mi, 1 <i_<k partition V into k disjoint subsets so that

V = V1 uJV 2 J)V3 ...UVk, JViI=mi, 1 •ik, in a way that the sum of the

weights of the cut edges is minimum. For implementing the algorithm, we used
random graphs with n vertices, where an edge with a random weight between any
two vertices is created with probability p = i/rn. In partitioning, we assumed that
all mi, 1 < i < k, are equal. We also tested the algorithms on graphs from standard
test datasets. The simulation software has been written in MATLAB, and the
coded algorithm has been tested on a Pentium 4, 2.2 GHz CPU with 1 GB RAM.
(For results refer to Table I.)

2 Simulation Results and Discussion
The simulation results for randomly generated and standard benchmark problem

instances are presented in Table 1. In all the instances, the HPGES algorithm was able to
converge to optimal or near optimal solutions within the iteration count specified. The
time taken in convergence for the main hybrid routine is also tabulated in Table 1. The
results indicate that the growth in CPU time is not exponential in the growth in problem
size. The results are also encouraging in the sense that the randomly generated graphs are
generally ill conditioned and do not possess a structure particularly amenable to
numerical implementation. Some heuristic-based methods for graph partitioning could
also be included to improve the results and reduce CPU time. However, the objective of
these examples is to evaluate the utility of the proposed algorithm.

Problem size Problem type Maximum Iterations Number of cuts Elapsed Time (sec)

20 Random 20 100 17.468

40 Random 20 400 43.672

60 Random 20 900 90.077

80 Random 20 1600 166.888

136 Benchmark 20 11 284.965

548 Benchmark 20 47 546.236

Table 1: Simulation Results with Running Times for the Graph Partitioning Problem
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3 Conclusion and Future Work
To solve the online scheduling problem of cooperating UAVs, we developed a new

Hybrid Evolutionary Gradient Projection algorithm for mixed integer nonlinear
optimization problems with linear inequality constraints. The core engine of tile
algorithm is a novel local improvement scheme based on projected-gradient search. The
evolutionary mechanism, on the other hand, guides the solution search out of local
optima, towards regions closer to global optima. The projection algorithm enables
simultaneous addition or removal of multiple constraints to or from the active constraint
set, increasing the speed of convergence. The penalty function used to relax the integer
variables is shown not to introduce any additional local optima inside the feasible region,
hence avoiding one of the main deficiencies of the similar relaxation attempts in the past.
The modified cost function and the appropriately constructed projection mechanism
guarantee a feasible solution. The evolutionary component of the hybrid algorithm
maintains diversity of the search regions, hence improving the possibility of finding a
solution at or near a global optimum in a reasonable time. The gradient search
component, on the other hand, significantly speeds up the convergence of the hybrid
algorithm, compensating for the slow convergence of the evolutionary search. The
hybrid algorithm also requires a smaller population as compared to conventional, pure
evolutionary algorithms. Efforts to compare thoroughly tile numerical properties of this
new algorithm with those of other available MINLP solvers are currently underway.
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