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Introduction

In our previous work (Refs 1, 2, 3) we have been studying the definition, design, and prototyping of
formal methods for the performance evaluation (PE) of Data Fusion systems. That work shows that
there are in any given case alternative PE strategies that could be employed. One rationale for the
down-selection of a preferred approach among such PE candidates would be to choose one which is
most “fair” or equitable in comparison to the others. Since many PE cases involve comparisons among
competing approaches, an equitable approach has an inherent appeal in general. Fair is defined as
something “marked by impartiality and honesty” by Webster’s dictionary. In our present scope, we
interpret “fair” to mean equitable and unbiased in respect to the way in which any PE approach
computes the measures of performance (MoPs) and measures of effectiveness (MoEs) that are desired,
based on analysis of mission-level requirements. We seek a philosophy of fairness that is defendable as
a basis for conducting a performance evaluation (PE) process that yields unbiased evaluation of these
MoPs and MoEs. PE systems need to be developed to maximize the probability of satisfying the PE
system requirements. These can be defined by the PE system MoEs. PE Fairness for a system under
test (SUT) and a selected PE MoE is achieved by maximizing the MoE for the PE process itself, which
in many cases is equivalent to minimizing the error in the PE estimate of the SUT MoE (e.g., when the
goal of PE is to assess the SUT operational effectiveness, regardless of the PE complexity). This can
be approximated by defining MoE performance functions such as fusion track accuracy MoE
thresholds, then maximizing the convolution of the MoE with the performance function (e.g.,
maximize the probability that the PE MoE estimate is within an error threshold). In cases where the
performance function is to minimize the SUT MoE error, the PE system design can minimize the SUT
MOoE state error (e.g., by striving for an unbiased MoE estimate) and minimize the standard deviation
of the SUT MokE error (or a user defined function of the error moments). It can happen however that
different MoEs may require different PE systems to be designed. In general PE system fairness needs
to consider not only fairness to the evaluation of the SUT, but also to the PE complexity and
development costs (i.e., to balance PE performance and cost just as a fusion system design balances
probability of mission success with complexity/cost).

The key issue for and evaluation (T&E) organization is how to affordably achieve fairness in the
application of its PE systems. Our PE framework provides a methodology to accomplish this; viz., the
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DNN Data Fusion & Resource Management (DF&RM) framework provides the hierarchical PE
components for PE solution space and a methodology for mapping PE solution space into various PE
problem spaces. The scope of this fairness study for performance evaluation of data fusion (DF)
systems is to define a philosophy of faimess that is defendable as a basis for developing a PE system.
Sample PE system MoEs need to be defined to understand the PE problem space, PE solution space
and the PE problem-to-solution space mapping (i.e., the ‘rules’ to map the alternative PE system
design solutions to the needed “fair” PE capability). Implicitly, we are seeking design guideliens for a
“best” PE that balances affordability with fairness as defined above.

The first technical contribution of this report is in the reusable and extendable PE solution framework
within which all applications-layer approaches to PE known to the authors can be expressed. As such,
this PE framework exposes PE system design alternatives to the PE system developer and provides a
common framework within which alternative PE systems can be compared. That is, our PE design
framework results in nominations of reasonable PE process designs to be chosen from when
considering fairness criteria. The second technical contribution of the report is contained in the
descriptions of “fair” yet affordable mappings of PE solutions to network centric distributed DF system
PE problems.

Since perfect PE fairness as with perfect DF performance is expensive (and often unwarranted), the
objective is to describe the PE engineering guidelines for achieving an optimal balance in PE “fairness
versus complexity” (i.e., “knee-of-the-curve” performance). These PE engineering guidelines are
driven by the PE problem space, which involves:

— DF system concept of operations (CONOPS) (mission objectives, platforms, scenarios,
sensors/sources, response resources)

~ DF system test articles being evaluated (DF levels, network, node functions)

— Derived DF system mission EEI metric hierarchy (MME, MSEs, MoPs)

More specifically the DF system PE problem space is organized herein as follows:

» DF mission CONOPS (mission objectives, doctrine, platforms, scenarios, constraints)
— Mission scenarios and objectives to include: red, white, blue, grey platforms, scenario
dynamics, rules of engagement, etc.
— DF driving sources to include: on and off board sensors, IPB data bases, HUMINT, ISR
platform information sharing inputs, user inputs
— DF response resources to include: communications, countermeasures, collection, and
target management plus user interfaces & responses
» DF system test articles being evaluated
— DF fusion levels (signal, entity, relationships, COA impacts)
— DF network (distributed over time, sources, types),
~ DF nodes (data preparation, association, state estimation)
— DF functions (ML, MAP, MHT, JPDA, Lagrangian relaxation, unified)
* Derived DF system mission EEI metric hierarchy (measures of mission effectiveness (MMESs),
measures of system effectiveness (MSEs), MoPs)

The DF system PE solution space framework is based upon interpreting PE as a fusion function where
PE metrics are estimated based upon the association of SUT fusion outputs with truth or other fusion
outputs (see Refs 2, 3). As such, alternative applications-layer PE solutions can be understood and
described using the data fusion portion of the data fusion and resource management (DF&RM) dual
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node network (DNN) technical architecture. Thus the PE solution space can be organized as a network
of PE functional nodes where each PE node performs fusion track and truth data preparation, data
association, and MoP state estimation. The PE network and node design guidelines strive to achieve
the knee-of-the-curve in PE ‘fairness” and complexity.

The PE design objective is to generate fair DF system mission EEI metrics (e.g., MME, MSEs, MoPs)
with minimal cost. As such the PE MoPs need to be computed with sufficient accuracy to differentiate
SUT performance with respect to the scenario MoPs which are driven by the mission objectives,
scenarios, and the SUTs. Thus, engineering guidelines for fair PE are driven more by the scenario and
their MoPs and less by whether the SUT is simple or sophisticated (e.g., deterministic, probabilistic, or
unified association and fusion). For example, a sophisticated SUT may be needed to associate the
sensor reports whereas a simple PE may be sufficient to associate the resultant scenario tracks-to-truth
(although this is not expected). That is, we do not believe there is a one-to-one mapping between the
degree of sophistication in SUT fusion process design and PE fusion process design. Scenarios and
their MoPs are selected based upon the mission needs and not upon the SUT limitations. However,
when competing SUTs are expected to perform equivalently on most of the mission needs, the PE may
be focused on the distinguishing scenarios and their MoPs.

The report is organized as follows. In Section 1, we describe the PE problem space. In Section 2 we
discuss the PE solution space in great detail and finally in Section 3, we describe the candidate PE
network and node design guidelines.

1. PE Problem Space

Traditionally data fusion system performance is evaluated in terms of the probabilities of satisfying the
needs for accuracy, completeness, and timeliness of Essential Elements of Information (EEIs) to
support selected missions. The EED’s are derived based upon a flow-down from the mission
operational needs. Sensors and off-board sources provide reports that enable the fused estimate of the
identity, location, track, aggregations, activity relationships, capability, intent, courses of action, and
impact for entities of interest with corresponding errors, deficiencies, and latencies. The DF entities of
interest in fighter mission applications include such elements as aircraft, ships, vehicles, ground sites,
individual terrorists, battery, company-level, and higher level units with corresponding EElIs.
Performance evaluations can be for a wide variety of mission applications and extend beyond data
fusion into resource tasking (e.g., data collection, targeting, countermeasures, etc.) to support decisions
to invoke avoid, evade, deceive, degrade, and kill operations by diverse assets. The focus herein will
be for the PE of the contribution of USAF tactical aircraft distributed data fusion avionics to support
EEI satisfaction for tactical missions. The following sections describe the 3 partitions of the PE
problem space defined above.

1.1 DF Mission CONOPS PE Problem Space Drivers

The DF system role is defined by the battlespace missions, doctrines, platforms, and scenarios that
need to be accomplished. The missions that the DF system needs to support include the mission
objectives and the topology of the physical space where the action is taking place, the physical laws,
the involved equipment and the entities' physical attributes. The doctrine includes the rules of
engagement and policies.
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The Data Fusion (DF) system role PE problem space drivers can be decomposed into 2 main
components described in the following subsections.

1.1.1 DF Mission Scenarios and Objectives

The CONOPS with the resulting fusion system design criteria and constraints define the problem for
the fusion system design to be evaluated. The CONOPS for multiple fighters requires netted fusion
processes (e.g., real time prosecution of ground and air targets, mixed conventional/Low Observable
(LO)YUAV operations, real-time bomb damage assessment (BDA), joint operations). This requires
integration of collaborative situation assessment and precise targeting with real-time planning and
coordination of collection management assets. The result is cooperative network-oriented air combat.

The ownship, cooperative, and off-board distributed L1, 2, and 3 fusion test articles are driven by a
variety of mission scenarios. Each scenario vignette is defined within a joint operations mission
context. Missions include:

> Interdiction for non-emitting targets (e.g., airfield complex) and Theater Air Defense (e.g.,
SCUD TEL)

CAS non-emitting targets (e.g., armor)

Electronic Combat (EC) -Lethal SEAD for mobile emitting targets (e.g., SAM radar)

High value asset protection: AWACS, JSTARS, Compass Call, ABCCC, Rivet Joint, E2C,
EP-3E, UAVs, Tankers

YV VY

Projected fighter mission scenario sequencing include:

Establish air superiority

Eliminate long range threats

Jam enemy radars

SEAD

Destroy airfields

Escort strike forces for CAS and TAD

S b LW =

Sample scenario assumptions include:

1. Use of medium altitude profiles to negate AAA and optimize stand-off munitions

2. Inflight data link (JFDL) high speed data link is available with sub-second latency.

3. A/G weapons include: JDAM, AGM-130, and GBU-15 with terminal seeker and JSOW with
enhanced GPS.

4. A/A weapons include: AMRAAM, AIM-9X

5. Integrated Navigation with GPS

Sample scenario vignettes include:

1. A/G or A/A Distributed fusion and management to achieve orthogonal passive simultaneous
target tracking preceded by surveillance driven by IPB targets for 4 fighters under EMCON
with 2 standoff jammers and 2 CAP.

2. A/G or A/A Distributed fusion and management to shorten time to achieve high confidence ID

on fused tracks.
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3. A/G or A/A Distributed fusion and management for improved large volume surveillance search
especially in front £30 degrees A/A. Coordinated surveillance search combined with prioritized
updating of existing targets and tracks of interest.

4. Detect & ID SAM launches using coordinated tactics to improve time to ID, range, threat
prediction. Minimize exposure especially of aircraft not launched upon.

The distributed Data Fuston (DF) objectives tailored for each mission are include:

* maximize situation awareness quality
* improve system detection performance
» reduce system false alarm rate
* minimize number of false/redundant tracks
* increase probability of correct ID
» extend situation awareness range
* improve target acquisition time and accuracy for weapons quality solution
+ facilitate target handoff from other platforms (e.g. C2)
» facilitate sensor-target cueing (e.g. sensor handoff)
* minimize target location and kinematics errors
» improve combat ID performance
* improve survivability
» decrease time required for target/threat detection
+ decrease time required for target/threat localization
» decrease time required for target/threat ID declaration
» reduce sensitivity to individual sensor faults

The DF design constraints are summarized as follows:

* to minimize risk
— avoiding “nothing works until it all works”
— incremental build plan
» cost versus performance
— modular and maintainable
— existing best algorithms to be exploited
— extendable to expand capability over lifecycle
— versatility to use minimal resources to provide necessary information at the appropriate
time
+ operational considerations
— decouple sensor management generation of system information needs from fusion
processes by eliminating the need for fusion to generate sensor requests
— ability to display individual sensor, ownship, intra-flight, and total composite track
information

1.1.2 The DF Driving Sources
Typical sensors and avionics available on each fighter include:

» Radar Multi-Function Array (MFA): air-to-air all aspect search, multi-target track, high gain
ESM with passive ranging, autonomous search, cued search, weapon data links, and A/G
modes including SAR map and GMTI.
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» EW: multiple band radar warning and forward air-to-surface with precision direction
finding (PDF), emitter ID, distributed passive ranging, and ECM

CNI: IFF, intra-flight data link MADL, SATCOM intelligence broadcast links, voice and
data communications, messaging, GPS, integrated navigation, IRS, TACAN and other
landing aids

Integrated Electro-Optical Tracking System (EOTS): FLIR (air-to-ground), laser ranger,
laser designator, IRST (air-to-air), missile launch detection (MLD), and laser spot tracker
Distributed A/A and A/G Fusion: cooperative and off-board broadcast data fusion track
files,

Aircraft Status: avionics status and environment data

Intelligence Preparation of the Battlespace (IPB): threat laydown, weather, EW data base,
etc.

A\

VV Vv VY

Key sensor driving parameters for each sensor mode are the field of regard, field of view, update rate,
at reference range probability of detection per target type (e.g., 90% detection range), false alarm rate,
(R Az EIy accuracy and resolution, mode switch delay, beam slew rate, IFF/class/type ID classification
accuracy (i.e., confusion matrices) per range and aspect bin, type, and environment condition.

1.1.3 The Fighter Response Resources
Typical avionics resources that use the outputs of fusion on each fighter include:

mission management (power, propulsion, diagnostic),

pilot/crew controls and displays (HUD, HMD/HMS, HOTAS, MFD, audio, controls)
information management (sensors, CN], fusion process),

adjudication management (maintain consistent tactical picture across platforms)
communications management (balance BW with mission communications needs)
threat and target response management (flight, weapons, countermeasures)

stores management: stores control and stores interface

VVVVVVY

Distributed fusion output needs are driven by these response system needs to meet mission objectives.
1.2 DF Test Article PE Problem Space Drivers

PE system design is also driven by the DF SUT to be evaluated. The types of DF SUTs can be
organized using the DNN DF&RM architecture as follows:

» DF fusion levels

» DF network distributed over data fusion levels 0 through 3 (i.e., signal, entity, relationships,
COA impacts), time, sources, and data types

» DF nodes performing data preparation, data association, and state estimation)

» DF functions in each fusion node (e.g., ML, MAP, MHT,Lagrangian relaxation, track filters,
ID combination, JPDA state estimation, and unified (e.g., random set) entity state combination)

Having the DNN framework within which to understand and compare the alternative distributed fusion
SUTs eases the development and expression of the engineering guidelines for PE system design based
upon this portion of the PE problem space.

1.3 DF System Mission Metric Hierarchy PE Problem Space Drivers

Approved for public release; distribution is unlimited 6




Since there are so many EEIs at different aggregations and echelons of interest, it is practical to
organize the EEIs hierarchically with the highest rank being those that define the measures of mission
effectiveness (MME) as depicted in Figure 1-1. Since DF is usually only a contributor to overall
mission success, a comparison of alternative DF systems usually entails a fixing of all the DF source
and response capabilities while alternative DF systems are assessed. Other PE systems can be
developed to evaluate alternative sources or response resources given a fixed DF. For DF systems that
must operate over many missions and scenarios per mission these scenario level metrics can be
combined in many ways (e.g., weighted sums, concurrent requirements, ad hoc).

Since the highest performance metric (i.e., the MME) is too coarse for many DF evaluations and
comparisons, the DF PE system will need to be tailored to compute the appropriate levels in the
hierarchy of EEIs based upon the DF mission CONOPS and the alternative DF SUTs being evaluated.
The tailored DF system mission EEI metric hierarchy (MME, MSEs, MoPs) is derived based upon
these primary PE problem space drivers.

In a data fusion network design, the key metric types include (1) probability, (2) error, and (3)
information. Probability is a normalized ratio of performance over a complete set of possibilities. Error
is associated with uncertainty. Uncertainty is the result of the randomness of situational constraints that
result from Fusion system performance in real-world testing. Such an example of uncertainty is the
typically unpredictable latency associated with incoming data. Information is a quality metric
associated with the value of the data fusion to meet functional needs. To develop any metric for system

level performance, we use probabilities (P), errors (0), or time (f), as contributing to the system
metrics. Information metrics, such as mutual information or entropy describe the fusion information

T 2555 CTe A AT AR

Probability of Achieving
Mission Objectives

MISSION
Measures of
Mission

Pk, Ps, Exchange
Effectiveness Ko 7S &

Program .
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Data Quality,
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Figure 1-1: Hierarchy of EEI Metrics for Each Data Fusion System (Steinberg)

gain [Refs 4,5,6]. Error and probability relate to confidence and accuracy.
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Metrics determine fusion performance and can include (1) an Objective (desired) and (2) Threshold
(minimum acceptable requirement). If we look at the fusion system from top down (satisfy user needs)
or bottom-up (minimize uncertainty), the goal is to define the metrics for the evaluation of fusion
systems in support of the avionics mission. Examples of metrics for each fusion level are as follows:

Level 0: Sub-Object Data Assessment — Positional error

Level 1: Object Assessment - Probability of tracking and ID accuracy
Level 2: Situation Assessment - Relationship accuracy,

Level 3: Impact Assessment - Survivability, Vulnerability

As described above the selection of the fusion MoPs are derived from the MMEs. The MoPs support
the MoEs by providing specific performance insights. Examples of MoPs for distributed fusion
include:

CTP Consistency is the average percentage of non-matching CTP tracks after a suitable time
communications delay (2 sec)

CTP Update Time Delay is the average over all sensor inputs of the difference in the input time
until the update is generated both locally and globally on each platform.

CTP Association Accuracy is the percentage of correct associations per track over time
averaged over CTP tracks to yield overall association accuracy per scenario (a lower level
MOP).

BW Utilization is defined as the peak and average percentage of communications BW load for

each scenario

Examples of single platform level 1 fusion metrics include:

CTP Kinematics Accuracy is defined as the_standard deviation over time of the error in the CTP
averaged over all tracks for each scenario. Averages Over all platforms and scenarios for all
MoPs will also be taken for further condensation of the performance.

CTP Classification Accuracy is the percentage of CTP tracks with conflicting classification
averaged over time for each scenario

CTP Track File Probability of Detection is defined as the number of track to truth associations
at that time divided by the total number of truths existing at that time. These are then averaged
over time for each scenario.

CTP Probability of False Track is be computed as the number of CTP tracks not associated
with any truth at that time divided by the number of CTP tracks at that time. These probabilities
are then averaged over time for each scenario.

Computational Complexity includes processing timing and sizing

Refinements of level 1 fusion metrics are used to provide additional insights into their corresponding

MoPs. Association MoP refinements include:
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Figure 1-2: Contributing Factors for Fusion System Output Performance [Ref X
XX10].

»  Track Purity (Targets/Track): the correlation coefficient of the pairing of elements which the
system assigns to a hypothesized aggregation and elements of the corresponding ground truth
entity

s Track Fragmentation (Tracks/Target). the number of hypotheses to which elements of an
actual aggregation are assigned as elements by the system

*  Hypothesis Proliferation (Tracks/Report): the number of competing (overlapping) tracks per
report

s Assignable Track Ratio: fraction of tracks that are associated with exactly one target

»  Non-Assigned Target Ratio: fraction of targets to which no tracks are assignable

This rest of this Section provides examples of fusion MoPs. Figure 1-2 shows the Cause and Effect
diagram for the Factors influencing the PE Problem Space (from Ref 7). The Performance of a system
is not only affected by System Parameters, i.e. “Solution-space” or “Design-space” independent
variables, but also by Scenario Context variables, those mostly on the lower-half of Figure 1-2, such as
Track Truth Complexity and Environmental Factors; these variables affect DF performance in many

ways [Refs 8, 9].
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Fig. 1-2 Complicating Factors in Tracking and Fusion Performance Evaluation [Ref 9]

Some of these are:

e Target Truth Complexity: Variables such as maneuverability challenge the tracking algorithm’s
ability to handle targets that suddenly change direction; target spacing affects the design and
performance of tracking gates and data association; numbers of targets challenge the computational
efficiency of a tracking algorithm

o Environment: Independent variables such as weather, which affect both target abilities and sensor
abilities, and terrain and vegetation, which affect a ground target’s maneuverability, can have a
wide range of specification, as each of these variables can have sub-variables in turn that, in
combination, affect the status of a variable such as weather (i.e. weather = {temperature, humidity,
precipitation (nature and degree), wind conditions (direction, magnitude), etc.).

o Time Asynchronicity: This problem happens when two sensors (platforms) are asynchronous in
time and the track reports from each of them are not synchronized, thereby resulting in track
association problems.

o Geo-Location Error: The geo-location error is defined as:

1 2 2
cho-crmr = \/ N ZgLu/ +8Lm1g (meters)
C

where: N, = Number of control points,
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£, = (Latitude Reported - Latitude Truth)e, ...,

€. = (Longitude Reported - Longitude Truth)@, >

Conversion: O Larinde = Latitude Error (WGS-84) to meters,
AL ongimde = Longitude Error (WGS-84) to meters.

Accuracy modeling —~ KS Statistic, Chi-Square Test, or Wald Test: The Kolmogorov Smimov
(Goodness of Fit) test statistic is defined as:

D = max

1<i<n

F(X-)—ﬁ

where F is the theoretical cumulative distribution being tested, Y; are the ordered set of points from
1 to N, and D is the statistic compared to a table (based on sample size N) to determine if the
observed registration is within the truth registration distribution.

Factors or independent variables can also be related to the “Solution Space”, meaning the Factors
that affect the performance of particular fusion algorithms (e.g., the nature and number of models
in an Interacting Multiple Model tracker). Thirdly, and peculiar to the nature of the overall PE
process, there are Factors involved in the Performance Evaluation approach itself, such as the
choice of technique for Track-to-Truth assignment, or the Factors upon which a specific PE Tree
might be partitioned [Refs 2, 10]. There are three classes of independent variables or Factors
around which the PE process revolves: Problem-space Factors, Solution-space Factors, and PE
process Factors. We analyze the various PE Solution Space factors based on the Dual Node
Network (DNN) architecture.

Detection, ATR, and Identification Metrics: (Level 1)
Target information can be modeled as per the NIIRS rating: detection, recognition, classification,
and identification.

Probability of Detection (Pp) — The ratio of the number of recorded detections (Np) to the
number of detection opportunities (Npg). (Pp. = Np./ Npo).

Note: Pp is applicable to stationary and moving targets, where emitters can be inferred as
detections. A moving target 1s said to be detected if a set of reports corresponding to the target are
associated and a vehicle track is declared. A stationary target group is said to be detected if more
than X % of the targets within the group are detected and associated with one another, where X'is a
parameter. A moving target group is said to be detected if a set of reports corresponding to more
than Y % of the targets comprising the group are associated and a group track is declared, where Y
is a parameter.

Probability of Recognition (P;) — Ratio of correct type declarations (Ng) to opportunities (Ngo).
(Pr=Pr/! Ngro) :

Probability of Classification using Confusion Matrices — A common reporting format for ATR
systems is classification probabilities, including cross target probabilities, associated with a given
population. For example, a Confusion matrix records the probabilities P(i | j) = probability of
declaring a target as type i given that it is really of type j, where i # J,
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An algorithm for Probabilistic Multiple Hypothesis Testing with classification measurements
(PMHT-c) is presented by Davey [Ref 11]. The algorithm was derived under both known (or
assumed) classifier statistics, and unknown classifier statistics. When the classifier confusion
matrix is unknown, the PMHT-c can estimate it. The PMHT-c was shown to simplify to the
standard PMHT when the classification measurements were known to be uninformative, and to
revert to hard association when the classification measurements are known to be perfect.

Probability of Correct Identification (P;p) — Ratio of the number of times a target, emitter, or
group is correctly identified (N;p) to the number of occurrences (N;po). (Pip.= Nyjp !/ Nipo).

For example, we can use shape metrics for ID evaluation, e.g., RMS errors on length and width
target attributes:

1 | . .
Munglh = \/7\/_ Z[LengthTme - LengthEstimmcd ]2’ M\deth = Jﬁ Z[WldthTme - \Nldthl’,stimated]2

Other metrics include a Log-likelihood ATR, Maximum A4 Posteriori (MAP), and maximum
likelthood (ML) [Ref 12]. The ML is based on the measurement information while the MAP is
based on the expectation from the filtering analysis. As described by the Kalman Filter, we see that
ML is used in the association. Estimation and prediction filtering use the MAP which is achieved
from a Bayes analysis. In determining the true target analysis, we also desire to determine the error
of the analysis using a false alarm metric:

False Alarm Rate — Number of false detections per square kilometers (km2).

Track Metrics: (Level 1)

Probability of Track Detection (Ppr) — Ratio of detected tracks (Npr) to true track number (N77).
(Ppr= Npr/ Nrr).

Track False Alarm Fraction (F7) — Ratio of false tracks (Nrr) to total tracks (N77). (Frr = Ngr/
Nrr).

Track Continuity — Average number of tracks formed per trajectory of a single target. Ideally
equal to 1.

Track Purity (Tp) — Ratio of track segments in an integrated track that belongs to same target (or
group of targets (Nrs), to total number of segments in a track (Nrs7). (Tp = Nys/ Nysy).

Track Position Accuracy — Root Mean Square Error between ground truth and tracker target
positional estimates:

1 N-1
RMSE,,(N) = \/7\/- Z[(x,. -a,) +(y, —,8‘.)2] (meters)
i=0
where, x;, y; are sensor estimates of target positions, a;, B; are true target positions, and N is a
specified number of samples defining the observation period.
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Track Heading Accuracy — RMS Error between true target heading and sensor estimates of target
heading:

RMSE,,,, (N) = ’-]1\7 sz (6,—¢) (degrees)

where 8; is sensor estimates of target heading with respect to North, ¢; is true target heading with
respect to North, and N is a specified number of samples.

Track Velocity Estimate Accuracy — RMS Error between truth velocities of targets and sensor
velocity estimates of targets:

N-1
RMSE,,,(N) = /% > (v, V) (meters/sec)
i=0

where v; are sensor velocity estimates of targets, V; are target truth velocities, and N is a specified
number of samples.

Target Flow Rate Accuracy -- Root Mean Square Error between estimated target flow rate and
truth target flow rate:

RMSE(N) = ’% g (&-7 )2 (degrees).

where &; is estimated target flow rate (targets/sec), y; is actual target flow rate, and N is a specified
number of samples.

Situation (Relationship) Assessment Metrics (Level 2):

Situation awareness or assessment is typically evaluated based on mission needs. At higher levels
of fusion, the lower level metrics can aggregated. For instance, individual entity metrics of
accuracy can be aggregated for group metrics such as group spacing, group identity, and relational
aspects of group members (how likely are they to be members of the same group) Situational
metrics are derived from user needs for situational awareness. Metrics include: attention, workload,
trust, and dependability [Ref 13]. Attention and workload correlate to the communications
throughput of the information. While lots of data could be time-consuming, it is assumed that the
fusion system would deliver a parsimonious, reliable set of results to the user. Trust is related to
confidence in presented results. Finally, dependability is related to cost since the situational content
can either take time away from the user (opportunity cost) or minimize the effort needed to explore
alternatives. As an example of situational metrics, we suggest relationship association (matching of
level one entity attributes of tracking and identification to relationships) metrics:

Probability of Correct Association (Pc4) — Ratio of the number of correct needed relationship
correspondences in L2 fusion outputs to the number of truth relationships needed to complete
mission.

(Pca=Nca! Ncao).

Probability of relationship detection (Prc4) — Ratio of the number of correct track entity
correspondences in L2 fusion outputs, (Nr¢), to number of truth relationships needed

(N1co). (Prca = Nrc !/ Nrco).

Approved for public release; distribution is unlimited 13




Percentage of False Relationship Declarations — number of false relationship declarations divided
by the number of truth plus false relationship declarations

Accuracy of Relationship State Update Declaration —percentage error in the needed relationship
declaration reported confidence at or before time needed to complete mission averaged over all
relationships needed.

Impact Assessment Metrics (Level 3):

Impact assessment relates to benefits, costs, and risks. Since a fusion system is employed to reduce
uncertainty, maximize information, or maximize probability of mission success, it is important to
choose metrics that address tradeoffs as a function of risk of mission failure. For example, typical
risk metrics include:

Aircraft Survivability — probability that the platform survives the mission (e.g., jeopardy from
threat) and
Target Vulnerability — vulnerability of prospective target to own ship aggressive action.

Four typical L3 fusion metrics are:

Percentage of correct coarse of action prediction over all threats in time for defensive action -- #
correct COA predictions/total number of COA predictions needed

Percentage of correct coarse of action prediction over all targets in time for offensive action -- #
correct COA predictions/total number of COA predictions needed

Accuracy of the probability of survival, Ps, in time for defensive action: [Ps(computed) —
Ps(truth)]/ Ps(truth)

Accuracy of the probability of vulnerability, Pv, in time for offensive action : [Pv(computed) —
Pv(truth)]/ Pv(truth)

Another Level 3 metric could be an exponential time decay (based on the a priori information) on
the confidence of information generated over time. The longer the delay means the higher the
uncertainty in mission completion and the greater the risk.

To measure interactions between future fusion system designs and users needs, additional metrics
are required. Blasch er al. [Ref 14] discuss a set of fusion metrics to bridge the user-fusion gap.
The metrics chosen include timeliness, accuracy, throughput, confidence, and cost. These metrics
are similar to the standard QOS metrics in communication theory and human factors literature, as
shown in Table 1-1.
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Communication Human Factors | Info Fusion | ATR/ID Track

Delay Reaction Time Timeliness Acqms_mon/ Update Rate
Run Time

Probability of Prob. (Hit), .

Error Confidence Confidence Prob. (FA) Prob. Of Detection

Delay Variation Attention Accuracy Positional Covariance
Accuracy

Throughput Workload Throughput | No. of Images No. of Targets

Cost Cost Cost Collection No. of Assets
platforms

Stallings 2002 Wickens, 1992 | Blasch, 2003 | Blasch, 1999 ?égs(fh’ Hoffman

Table 1-1: Traditional Metrics for Various Disciplines

2. Performance Evaluation Solution Space

DF system PE solution space framework is based upon interpreting PE as a fusion function where PE
metrics are estimated based upon the association of fusion outputs with truth or other fusion outputs.
As such alternative applications-layer PE solutions can be described using the data fusion portion of
the Data Fusion and Resource Management (DF&RM) Dual Node Network (DNN) technical
architecture. Thus the PE solution space is organized as a network of PE functional nodes where each
PE node performs fusion and truth data preparation, data association, and MoP state estimation. The
PE network and node design guidelines strive to achieve the knee-of-the-curve in PE ‘fairness” and
complexity. Descriptions of candidate PE network and node framework are organized in this Section
as follows. Section 2.1 describes the Performance Evaluation System Role Optimization; and Section
2.2 outlines the methods for Performance Evaluation Fusion Network Optimization. Section 2.3
described the PE Fusion Node functional components.

2.1 Performance Evaluation System Role Optimization

The first step in the PE system development process is to define the role for the performance
evaluation software based upon the scenario performance evaluation requirements.

2.1.1 PE System Concept of Operations (CONOPS)

Performance Evaluation of blue and red (friendly and hostile) distributed DF&RM is performed within
the AFFTC Test and Evaluation (T&E) as depicted in Figure 2-1. For this research PE will be
performed within the CMIF Distributed Fusion Performance Evaluation (DFPE) testbed described in
our CY04 final report. The CONOPS within the AFFTC remains to be determined based upon their
distributed fusion environment.
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Figure 2-1: Performance Evaluation Operates within the AFFTC T&E Framework

The PE measure of mission effectiveness (MME) for this research is the fairness of the PE result
achieved within the budget for this effort.

2.1.2 PE Black Box Design

The baseline black box role for Performance Evaluation is shown in Figure 2-2. Namely, PE receives
the tactical picture and response commands output from the test article fusion nodes. PE receives the
best estimate of truth from the scenario generation stimulus. PE is receives sensor status from the
sensor models and other scenario related information from support services. PE outputs its results and
receives commands from the analyst. The PE system can be developed using the DNN architecture to
specify a network of PE nodes. Each PE node estimates the fused track file MoPs based upon the
association of the Consistent Tactical Picture (CTP) tracks with truth or other fusion tracks.

Scenario
Generation

Truth Tracks

y

Sensor

Models Performance

Evaluation - MoPs o

Sensor

Y 3
Reports e
Association
\ 4 Matrix;
Timing/sizing

Fusion [
CTP gack updates
Nodes | s

Figure 2-2: Sample Performance Evaluation Associates the Distributed Fusion System CTP
Tracks with Truth Tracks to Generate MoPs
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2.1.3 PE System Role Optimization

The PE system role evaluation for role optimization is based upon the PE MME and measures of
effectiveness (MoE) and their derived MoPs as described above. The following sections describe how
the PE network and nodes are designed to achieve the knee-of-the-curve in PE system performance
versus cost based upon further breakdown of the MoEs. In general, PE role optimization criteria
include

~ PE faimess (e.g., accuracy especially for those MOPs that distinguish the envisioned

SUTs)
~ PE system cost & complexity (e.g., usually stipulated as a constraint budget)

2.2 Performance Evaluation Fusion Network Optimization

2.2.1 PE Requirements Refinement

Specific PE MoPs will be defined after the distributed fusion system under test (SUT), its
MME/MoE/MoPs, and scenario environment has been determined. Other quality factors such as
reliability, redundancy, maintainability, availability, portability, flexibility, integrity, reserve capacity,
robustness, etc. will be considered later.

2.2.2 PE Fusion Network Design

The PE MoP estimation requires the association of the DF SUT Consistency Tactical Picture (CTP)
output tracks to the truth or other fusion SUT track entity states. To simplify this discussion the track-
to-truth solution approaches will be described in remainder of Section 2 herein. The track-to-track
extensions are similar.

A trade-off of performance versus complexity must be made to design the track-to-truth association
and resulting MoP estimation software. This Section describes how the CTP track data is to be batched
(e.g., over time, scenarios, platforms, sensors, reports, etc.) to be processed by PE nodes. Section 2.3
then specifies how the scoring for each PE fusion node for association with truth is to be accomplished
(e.g., track-to-truth association scoring).

The best performing approach is to take all the data from a scenario in one large batch and then
perform an ‘optimal’ (retrospective) estimation of the MoPs with appropriate consideration of the
association of all the information over all time. Note however that there is still the choice of PE
network design that influences the results for any batching strategy. To reduce the cost and complexity
of the association part of such an approach significantly, the traditional approach is to associate each
CTP track to the truth entity that originated ‘most’ of its associated reports over the scenario. The flaws
in this solution include the following:
o two CTP tracks can have ‘most’ of their associated reports from the same truth track,
e many accurately associated reports may not compensate for a few inaccurately associated
reports,
o forced associations are not indicative of the true performance (e.g., for crossing entities where
the only ambiguity is at the cross, the CTP track may switch truth entities at that point and then
have what appears to be many incorrect associations thereafter).
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o flipped entity associations due to close tracks that do not have ‘most’ of their associated reports
from any one truth entity, and
e PE association solution relies on the association accuracy of the distributed fusion system
nodes that it is trying to evaluate.
Note that one could also select to ‘not decide’ how to associate the CTP tracks to truth for ‘hard to call’
ambiguous cases, thus necessitating another MoP (e.g., ambiguity percentage).

A driving requirement on the PE design is to minimize cost/complexity. In contrast to a batching
approach, the simplest PE tree is one report at a time; however it has the least accurate association.
One simple solution for this tree is to associate the CTP track update with the truth from which the
associated report was generated. However, this solution, as for the one above, relies on the association
accuracy of the fusion nodes. Another approach is to score and select the CTP to truth association
based upon the updated CTP and truth states every time the CTP is updated. This has the benefit that
the PE tree is batched identically as the fusion tree is batched. The fundamental flaw with these one
update at a time fusion trees is that the same CTP track could associate to many different truths over
time and vice versa. Thus, these simple PE trees would not detect that there may be more or fewer CTP
tracks than truths.

What really counts in meeting the requirements is to measure in the PE process how accurately the
CTP reflects the truth. To achieve that with minimum cost, the baseline PE fusion tree will associate
the current CTP to truth at selected time points_and then estimate the MoPs using this association at the
necessary time points (e.g., at updates), as described in Figure 2-3. In this approach, the whole CTP is
associated with the complete truth states using all available information (e.g., kinematics, attributes,
ID/type). However, there are sub-optimality problems with this batching of the track-to-truth
association. These include any situation where taking a larger batch of data would remove ambiguities
(e.g., using an MHT or a Lagrangian Relaxation over multiple time points). However, since the
proposed PE fusion tree is batched using all output CTP tracks, a new association and an updated MoP
estimation is performed for each PE node. This has the advantage of providing local performance
evaluation and avoids the harder problem of determining an association of a CTP track to a truth entity
over all time. For example, for crossing entities where the only ambiguity is at the cross, the CTP track
may switch truth entities at that point and then, for the full time batch approach, would have, what
appears to be many incorrect associations thereafter.

Cumulative PE nodes are added to meet the requirements for the integration of the local evaluations
over time, platforms, data types, and scenarios. The MoPs at each time point are integrated in the
Cumulative PE Node, as shown, to estimate full scenario MoPs. Performance criteria integration issues
will described later. An alternative tree design is to perform the fused track association based upon an
historical PE associations and states (e.g., using confirmed track-to-truth associations) and then to
update the current and cumulative MoPs sequentially. This would be shown in the sample PE network
Figure by removing the Performance Evaluation node and doing both the current and the cumulative
association and MoP state estimation in the “Cumulative PE Node” shown. However, to simplify the
PE node processing for our case study, the baseline tree design is to have a separate Cumulative PE
node.
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Figure 2-3: The PE Fusion Tree Is Partitioned by Time Enabling Full CTP Evaluation Against
Truth.

One of the issues in PE network design is how often to allow track-to-truth associations to switch (e.g.,
from track A associated with truth 1 to track A associated with truth 2). Switching strategies become
important for fusion MoPs where the length of time that a target is in track or tracks on different
platforms are consistent impacts the mission. The track-to-truth association process for each track
batch shown in Figure 2-3 is independent of the processing of the prior time intervals since the PE
nodes do not store and carry ahead any piece of information for its next recursion (or instantiation) as
would be possible in the alternative just described above.

Another PE network would be needed to implement a “No Switch Strategy” that requires solving the
track-to-truth association problem for the whole scenario all at once. This could be done by optimizing
the association hypothesis scores for all feasible multiple time point batches within one fusion node
such as depicted in Figure 2-4. Another approach is to apply this “‘no switch” restriction only over time
windows in the scenario. These can be shifting windows or fixed in front of an engagement time. A
window of size 5 in a single fusion node is shown in Figure 2-5.
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Figure 2-5: Windowed Switch Strategy
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Figure 2-4: No Switch Strategy PE Node.
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The time-batched recursive PE network structure implemented in our initial research is shown in
Figure 2-6. In this PE network there was a PE node for the ownship fused track files generated on each
of 2 fighters and a PE node for the consistency of the ownship track files at each time point. The data
preparation, track association, and MoP state estimation components of each of these PE nodes are
shown. The cumulative PE node which had trivial data preparation and association is represented by
one PE node box for each of the 3 PE nodes at each time point. Note that different track-to-truth
association approaches can be applied in each PE node at each time point (e.g., during ingress, attack,
egress) as necessary.

Time=T Time=T+t
Node-1 Node-2 Node-3

Simulation Data @

Data Preparation 3

Track — Truth I

Association
Loped
Local MOP l%]
Estimation \L

MOP Aggregation

Figure2-6: Case Study PE Node Structure

Figure 2-7 shows a sample PE network (i.e., a tree in this case) for performance evaluation of
distributed platform fusion consistency (a notional case of aircraft, ISR platforms, and UAVs is
shown). This PE network can be used to perform track file consistency evaluations across platform
types. There are numerous PE networks that can be tailored for each distributed fusion SUT, scenario,
fusion MoP, etc.
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Figure 2-7: Sample PE Network (Tree) for Distributed Platform Fusion Consistency

In summary, PE nodes can be batched across DF&RM SUT levels (e.g., signal, entity, relationship,
COA impact), MoPs, scenarios, time, SUT nodes, and entity type (e.g., air, ground, sea, space). PE
nodes may also be tailored to the type of DF nodes being assessed (e.g., for sensor, platform, & DF
level metrics). PE temporal window size may be mission or weapon dependent (e.g., continuous track
fragments for launch). PE nodes perform track-to-truth association to generate accuracy metrics (e.g.,
coverage, kinematics, ID). PE nodes perform track-to-track association to generate distributed fusion
consistency MoPs (e.g., for internetted operations requiring common situation awareness). PE nodes
may need probabilistic track-to-truth association for DF test articles with numerous false tracks.

2.2.3 PE Fusion Network Optimization

The PE MoPs are used to perform PE network evaluation to support feedback PE network optimization
of the design. This is typically done qualitatively for PE network design and can be done quantitatively
for PE node design evaluation to be described in the next Section.

2.3 PE Node Optimization

2.3.1 PE Node Requirements Refinement

In this segment of the PE solution methodology the PE MME/MoE/MoPs from the PE Network
Refinement are further refined for each PE node in the network designed above.

2.3.2 PE Node Design

2.3.2.1 PE Node Common Referencing

This segment of the PE node development methodology contains the data mediation, coordinate
transformations, misalignment compensations, and time propagations as needed to support PE data

association.

2.3.2.2 PE Node Track Association
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Hypothesis Generation
In this function the PE node will gate out infeasible track-to-truth associations. Standard techniques are
used here.

Hypothesis Evaluation
First a comparison of association hypothesis evaluation scoring schemes extracted from the CMIF
Scoring report is given herein. Then a tailoring to PE is described.

The most widely used rigorous scoring approaches are the max a posteriori (MAP) criteria for data
association and state estimation. The most common of these is the deterministic association. This
standard MAP deterministic data association criterion is used to select the “best” hypothesis that is
then used to generate the MAP estimate of the system state. The second scoring approach updates the
track state confidence for each report based upon its relative association confidence score. This has
been termed probabilistic data association [Ref 15]. The third criterion is the joint optimization over
state and association hypotheses. The three MAP scores are defined as follows:

o Deterministic Data Association, then Target Estimation

max P(H |reports) = max [P(reports | HYP(H )] then max P(@| H, reports)

o Target State Estimation with Probabilistic Data Association
max P(8 | reports) = max [Z P(&|reports, H)P(H | reports)]
H

» Joint Association Decision and Target State Estimation
max P(H ,8|reports) = max [m;ix P(@|reports, H )] P(H |reports)

where H is the association hypothesis and @ is the object state estimate.

The 1% deterministic association strives to decrease the error probability of track estimation by
eliminating data outliers, which are data observations that lie outside a specified confidence interval,
typically 0.95 or 0.99. Two common techniques used to eliminate outliers are establishing a figure of
merit (FOM) and gating. Both of these techniques work by selecting only those data observations that
lie within a predetermined error threshold. One way to measure the distance between an established
track for a target and a single observation in question is the Mahalanobis distance. This is the measured
distance normalized by measurement and track error variances. The Multiple Hypothesis Tracker
(MHT) works with deterministic association to handle multiple sensor types, multiple platforms, out-
of-sequence reports, and both kinematic and attribute-based sensors. The multiple hypothesis method
allows the consideration of lower confidence scenes caused by lower confidence associations. When an
association is ambiguous, multiple models are created and a collection of likely hypotheses are
selected (i.e., creating what is called multiple scenes). When new data arrives the prior scenes
confidence are modified causing pruning of lower confidence scenes, new scenes, and updates of prior
scenes.

The 2™ Probabilistic Data Association (PDA) is an approximation to the optimal recursive Bayesian
data association strategy. The PDA is a single target algorithm, so each track is filtered in isolation,
and it is assumed that any measurements due to other targets can be lumped into the clutter. The PDA
enforces the single measurement assignment constraint, namely each target track is only allowed to
form at most one measurement. There are two forms of the PDA, known as the parametric and
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nonparametric PDA. In the parametric PDA, it is assumed that the rate parameter of the clutter density
(4) is known. In the nonparametric PDA, the rate parameter is unknown and is approximated using
Aapprox = m/V. An alternative nonparametric PDA in [14] uses the approximation Agppror. = n/4 wWhere A
is the area of the entire surveillance region. This has been extended to a multiple target filter termed
the PDAF. The 3™ MAP approach defined above is a hybrid of the above 2.

The deterministic MAP score (i.e., the term “score” is used since it is not necessarily a probability) of
the data association hypothesis, H, given the report data, R, is as follows:

max P(H|R) = max P(R|H) P(H) /P(R) = max P(R|H) P(H) €))
where, ! 5 5

P(R|H) is the probability density of the reports given H
P(H) is the a priori probability of the association hypothesis, H,
P(R) is the a priori probability of the reports which is independent of H.

It is convenient to utilize the independent nature of the operations of most platforms. If one assumes
independent tracks, P(R|H) can be computed as a product. The score can also be computed recursively
over time. This is typically done for time ordered kinematics reports, Y; = {Y;(0), Y;(1), ..., Yi(T)}, as
follows:

T

POGH) = TLPOGOI(0), ., (1), H) @

At any one point, the overall MAP report-to-track score is the product of three MAP individual scores,
which consists of the following three report-to-track score components:

1. Kinematic scoring: P(Y), usually a product of Gaussian density points,

2. Parametric/attribute scoring: P(Z), a sum of class confidences, P(K), times the priors for the
attributes,

3. A priori hypothesis scoring: P(H) as a product of association hypothesis types.

These three scores can be computed as follows:

max P(H|R) = max {P(R|H) P(H)} = max {P(Y|H) P(Z]Y,H) P(H)} 3)
T
= max [II{P(Y(S)|X(T),H) P(Z(S), ZTHY(S), X(T), H)} P(H)] 4
=0
where
¢ The maximization’s are over all association and non-association hypotheses, H,
e H is the set of feasible association or non-association hypotheses,
e R are the central track and sensor report data,
o Y is the set of kinematics from both,
o« 7 is the set of all parameters and attributes from both which are not available,

The product is over all independent labeled track, 7, hypotheses (i.e., of all 5 types),
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o YT are the track kinematics, the P(Y(7)|H) term is dropped as constant with respect to the

maximization,
o YOS are the sensor report kinematics,
s K are the elements of the disjoint class tree,
o Z(D are the parameters and attributes from the track,
s Z(S) are the parameters and attributes from the sensor report,

o P(H) is the a priori confidence in the hypothesis.

These three scores are defined in more detail below.

(i) Kinematics Association Scoring

The association hypothesis kinematic scoring for a new incoming sensor report, Y(S) to an existing
track, Y(T) assumes a multivariate Gaussian distribution [ellipsoid], with a central track covariance P
which models the error in the track location due to possible motion. Then the kinematics score is
computed as follows:

POYSIY(D), H) = {1/ @0)™ [N } exp[-112{7 V" 1}] )
where
o Y(S) are the sensor report Gaussian kinematics with covariance R,

e  Y(7) are the track Gaussian kinematics with covariance P,

» His the hypothesis that the report and track are associated,

o dis the dimension of the Gaussian kinematics state,

e |V]is the determinant of the innovations covariance, V=] ¢P¢’ + Q] + R,

e ¢is state transition matrix, Q is the noise covariance, and the measurement matrix, H, is the
identity,
o [is the innovations vector, / = ¥(S) - X(T).

When all the covariances remain constant then the first term can be dropped. This yields the classic
Mabhalanobis distance measure in the exponent afier taking the log and multiplying by (-2). When
doing so these conversions also need to be applied to the non-commensurate and a priori scores given
below.

(i) Parametric/Attribute Association Scoring

The second term 1s computed as the product of commensurate attributes and non-commensurate. The
commensurate Gaussian parametric data (e.g., both sensors measuring RF, PRI, and/or signature) are
computed similar to the kinematic terms above. The non-commensurate attributes (e.g., radar or IR
signature and emitter parameters) are independent when conditioned upon the class of the object.
Thus, their association compatibility is computed using the probability of the disjoint object classes
that they imply. This, non-commensurate score measures the similarity in the platform classifications
implied by dissimilar source data. This is accomplished using a disjoint class tree breakdown defined a
priori according to the 1D capability of the sources for each fusion node. To use non-commensurate
scoring requires the attributes and parameters, Z, in the report and track data to be independent when
conditioned on the feasible platform ID classes. Namely, information about Z(7) does not help estimate
Z(S) when the platform class K is known for each class K. Under this assumption for each report and
track pair, the second term scores an object track ID tree with a sensor report ID tree as follows:
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P(Z(S), Z(T)Y(S), X(T), H) = P(Z(SHY(S), H) PZ(DINT), H) [Zx{P(KIZ(T),X(T), H) X

P(KIZ(S), Y(S), H) IP(KIV(T),Y(S), )} ] (6)

where:

e The first two terms in front of the sum are constant with respect to the maximization when they
appear in every hypothesis (i.e., as they do in this option, so they are ignored here), also the
kinematics conditioning has been restricted to each report and track, respectively,

o The first term after the sum is the class K element of the object track ID disjoint class tree, since
the conditioning on Y(S) can usually be dropped due to ¥(7),

e The second term after the sum is the class K element of the sensor report ID tree corresponding to
that object since the conditioning on Y(7) can usually be dropped due to ¥(S),

¢ The third term after the sum (i.e., in the denominator) is the a priori probability of that class K
[Note: when denominator is 0 for an 1D class K, then whole term in the equation sum is 0], and

¢ The term components are as described above.

The class tree for each sensor and each report is conditioned on only its own kinematics and attributes.
Thus, it is derivable from each sensor individually. Also, when either the report or track
noncommensurate attributes do not contribute to the ID, these non-commensurate terms in the equation
sum to one (i.e., the class K terms in the tree are disjoint and cover all possibilities). This term only
rigorously applies when the current sensor report attributes are non-commensurate with the track
attributes. If previous report attributes have already been fused (i.e., integrated) with the track
attributes, then these previous attributes would implicate corresponding attributes in the current report
even given the platform class K. Thus the report and the track attributes would be commensurate.
When such attributes are available, it is better to use the commensurate scoring in both the report and
track (e.g., pulse descriptors, IR signatures, etc.).

(iii) A Priori Association Hypothesis Scoring

An association hypothesis is composed of the following types of hypotheses: (1) Assoctation, (2)
Report on pop-up object (i.e., a track initiation), (3) False Alarms, (4) Track Propagation, and (5)
Track Deletions. P(H) is the probability of H computed using the following (as available):

e Probability of detection and false alarm statistics

* Number of reports from each source

¢ Source field-of-view, operating mode, and conditions

o A priori scene descriptors and probability of redetection

¢ Object birth and death statistics

The a priori hypotheses terms, P(H), use the following approximate scoring equations for each sensor
report S and track T hypothesis :

P(association) = [1- P, (S)][1 ~ P (T)]F,(S)P,(T)

P(pop —up) = [(1_PFA(S))(I—PD(T))PD(S)]

P(FA) = [P.(S)P,(5)] 7
P(propagate) = [(1-P.(T))(1-P,(S)) P,(T)]

P(drop) = [PFA(T)PD(T)]

where
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» Pp(S) is the probability of detection of this object reported by the sensor, which is determined by
sensor testing. Its primary use is in scaling the probability of track propagation, since it appears in
all of the report hypotheses. It is estimated as the probability of redetection for the association
hypothesis, and as a result is usually high (e.g., >.9). In the hypothesized case of an initial detection
by a sensor, the term in the pop-up, FA, and propagate hypotheses is the probability of detection of
a new object.

o Pr4(S) is the probability of false alarm (FA) of the sensor for this type of report, which is also
determined by sensor testing. It can be approximated as the expected number of false alarms (i.e.,
under these report conditions) divided by the number of detected objects plus this expected number
of false alarms over the field of view (FOV),

s Pp(T) is the probability of detection of this object in the central track file, which is the combined
probability of detection of this object by any of the sensors contributing to the track file (i.e., as
updated in the last fusion node using the equations in the state update) multiplied by [1- P(new
object appearing during this time interval)]. If the former term is very near one, then this term is
dominated by the [1- P(new object appearing during this time interval)] term. Poisson arrival
statistics, if available, are used here. If the probability of false alarm is low enough that a detection
starts a track, then the value for Pp(7T) from the last fusion node can be used as defined in the state
update.

o Ppry(T) is the probability that this track is a false alarm, which can be estimated by maintaining the
track existence confidences over time plus considering the probability of track death during this
time interval. The former FA probability will usually decrease over time due to increased tracking
confidences. If this resulting track confidence is very near one, then this term is dominated by the
probability of track death (i.e., dying in the field of view (FOV) or moving out of the FOV). This is
where Poisson track death statistics, if available, are be used. The updated value for this term from
the last fusion node is used.

For the non-association report hypotheses (i.e., pop-up initiation, and false alarm) the expected value
of the kinematics score is used. Namely, the kinematics score equation is used except that the chi-
square statistic (i.e., {IT V' 1}) is replaced with its mean . Namely,

e u=.455 for 1 degree of freedom (DOF) (e.g., bearings-only)
u=1.39 for 2 DOF (e.g., x and y)

=237 for 3 DOF (e.g., Cartesian (x, y, z))

u=13.36 for 4 DOF (e.g., 2 dimensions with rates)

u=4.35 for 5 DOF

= 5.35 for 6 DOF (e.g., Cartesian (x, y, z) with rates)

Also, for the non-association report hypotheses the innovations covariance is the report covariance, R,
for which the inverse square root of the determinant is taken for the up-front multiplier in the
kinematics scoring equation. The noncommensurate term for the non-association report hypotheses is
constant with respect to the maximization, since the class tree term sums to one. So it can be ignored.
Thus, the non-association report hypothesis score is the product of their (i.e., pop-up and false alarm) a
priori score given above and their kinematics term with the above two values used in its “V”
innovations terms.

For the non-association track hypotheses (i.e., propagation, and drop track), the kinematics, P(¥(T)),
and noncommensurate terms are all constant with respect to the maximization. Thus, all the non-
association hypothesis scores have just the above a priori terms, except the pop-up and the report false
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alarm which all have only the additional expected value kinematics multiplicative term. Each
association hypothesis has all the three of the terms defined above, where the non-commensurate term
is unity whenever either the report or the track do not provide a platform ID tree.

Max A Posteriori Hypothesis Optimization Summary

The total scene hypothesis score is the product of the individual hypothesis scores for how all the given
batch of reports and tracks are associated (i.e., for each of the 5 types of hypotheses). An example is as
follows:

» Association Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)[Y(S), Y(T), H) P(H) = {{V|"2} exp[-1/2{I" V"1 }] x
{Zx[P(KIZ(T),Y(T), H) P(K|Z(S),Y(S), HYPKIY(T),Y(S), D)1} X [1-Pra (S)] [1- Pra(T)] Po(S) Pp
(M (®)

2. Pop-up (i.e., Track Initiation) Hypotheses

P(\i(SMY(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) (1;()H) = {E(VI"" )}exp[-1/2{p}] X [1-PFa(S)] [1- Pp(T))]
Po(S)

3. False Alarm (FA) Hypotheses
P(Y(S)[Y(T),H) P(Z(S), Z(T)[Y(S), Y(T), H) P(H) = { (V| )} exp[-1/2{n}] X Pra(S) Pp(S)(10)

4. Propagation Hypotheses
P(Y(S)[Y(T),H) P(Z(S), Z(T)[Y(S), Y(T), H) P(H) = [1-Pa (T)] [1- P(S)] Po (T) (11

5. Track Drop Hypotheses
P(Y(S)IY(T),H) P(Z(S), Z(T)[Y(S), Y(T), H) P(H) = Pra(T) Pp(T) (12)

In PE these a priori probability of detection and false alarm values are summarized as follows:

* Pp(S) is the probability of detection of a truth track in the CTP track file (i.e., probability that a
truth will appear in the CTP track file). To begin with we will specify a finite constant
probability of the fusion output CTP track file not containing a truth entity that should have
been detected (e.g., the CTP Pd value). This term will then be multiplied by the [1- P(a truth
should not appear in the CTP track file (e.g., since it is new during the last time interval or not
detectable yet)]. New truth arrival statistics and sensor coverage statistics are used here. When
available the values of this term estimated by the fusion system will be used.

»  Pr4(S) is the probability that this CTP track is a false alarm, which to begin with is estimated to
be the CTP Pfa for track S. This value is then multiplied by the probability of truth track death
(i.e., dying in the field of view (FOV) or moving out of the FOV) before the CTP drops track.
Track death statistics and sensor false alarm statistics are used here. Also, when available the
values of this term estimated by the fusion system will be used.

«  Pp(7) is the probability that a valid CTP track will appear in the truth track file. This is
presumed to be 1.0 to begin with (i.e., the truth file contains all valid entities).

*  Pra(T) is the probability that truth is a false alarm (FA). To begin with this equals 0.0.

The CTP false hypothesis score is the product of its a priori score given above and its kinematics term
with the above value for z. For the non-association truth propagation hypothesis (i.e., fourth line of
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equation), the kinematics, P(¥(T)), and noncommensurate terms are all constant with respect to the
maximization. Thus, all the non-association hypothesis scores have just the above a priori terms,
except the CTP false hypotheses that have the additional expected value kinematics multiplicative
term. A keP' research issue here is what to use for this expected value when it is not constant. For PE,
the E(JVI""?) can be approximated by using the weighted average of all the feasible track to truth
association V’s where the weights are the values in the association hypothesis matrix along the track
row.
In summary, the total scene hypothesis score to begin with is the product of the individual hypothesis
scores for how all the given batch of CTP tracks and truth tracks are associated (i.e., for each of the 5
types of hypotheses). In effort the typing is not significant to begin with, so the equations become as
follows:

> Association Hypotheses

P(Y(T)|Y(S),H) P(H) = {|V|"? } exp[-1/2{1" V' 1 }] x

[1-Pga ()] [1- Pea(T)] X Pp (S) Po (T) (13)

» CTP Pop-up of Non-Truth Hypotheses (for spiral 1, probability = 0) (14)
> CTP False Hypotheses

P(Y(T)[Y(S),H) P(H) = E(}V|"™ ) exp[-1/2{p}] X Pra(S) Pn(S) (15)

» Truth Propagation Hypotheses

P(Y(D)|Y(S),H) P(H) = [1-Pra (T)] [1- Pn(S)] Pp(T) (16)

» Truth False Alarm Hypotheses (for spiral 1, probability = 0) an

Hypothesis Selection

Many fusion problems are solved by first selecting the “desired” association of the data and using this
association to update the state. This deterministic data association then becomes a nonlinear labeled set
covering problem (a subclass of 0-1 integer programming problem).. This deterministic data
association problem formulation using max a posteriori scoring is defined as follows:

LetJ = { j| A/is a labeled feasible track} require the hypothesis H to satisfy H < J and U A’ = {reports}
Assume that for any H in the {lf Ireports} V j € H are independent, then the max P(H lreports)is the

solution to the linear set covering problem.

min j;Pij
where ZA'}XJ 21
jedJ
P =~ log[P(l’ | repons):' >0
1if jeH
X, = nJe . Vje {a]l current feasible tracks}
/10 otherwise
. . j
= bif ie /1' Vi e {all prior feasible tracks and current reports}
0 otherwise

if A7, Vj e H, s required to be disjoint then an equality constraint is used.
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Basically, the hypothesis selection algorithm in data association generates collections of feasible
tracks, called candidate scenes, and then selects the scene(s) to be retained and used in state estimation
to generate the situation assessment estimate for the user. Set covering search algorithms are selected
based upon problem constraints, complexity and performance requirements. Irrevocable decision
heuristics are the simplest but worst performing. Breadth-first approaches require more memory;
however, they have less computational burden for a given performance level as compared to the
depth-first approaches. Many decades of operations research provides a rich heritage of efficient
algorithms from which to select from. All of these depend upon robust and accurate HE scoring
described above which are much less mature.

Deterministic data association is a standard approach for PE. For this approach, the scene with the
“best” (i.e., highest) association score (i.e., product of each of its hypotheses scores), as found in HS, is
selected for use in MoP state estimation. The baseline design is a 2D assignment algorithm (e.g., JVC,
Munkres, etc.) that will be applied to the association matrix of scores computed as described above. To
meet the square matrix requirement for the strict assignment problem solution extra rows or columns
will be added to the association score matrix. To do so an extra ‘missing CTP track’ row will be added
for every truth track over the number of CTP tracks. Scores in these rows will be the CTP false
hypothesis scores above. For the case of more CTP tracks than truth tracks, an extra ‘false alarm truth’
column will be added for every extra CTP track. The scores in these columns will be the truth
propagation hypothesis scores above.

2.3.2.3 MoP State Estimation per Fusion Node

The fusion node refined MoPs are used to ascertain how well the distributed fusion subsystem achieves
its performance goals and as such form the basis for the each PE node state estimation. Typical MoPs
are as follows:
1. Average CTP track position accuracy
Percentage of conflicting CTP track types
CTP sensor coverage preservation
CTP coverage improvement ratio over any one sensor/source
Average CTP probability of false alarm
Percentage of correct fusion system associations
Average time from detection receipt to CTP update

Noawnh W

A traditional CTP kinematics accuracy MoP is the standard deviation over time of the error in the CTP
updates after detection averaged over all tracks for each test case. This traditional measure is the
second moment of the associated CTP location state error density. It is based upon the first moment
(i.e., mean error). The mean error in the track estimate, preferably in independent coordinates for each
warfighter CTP platform and for each associated track entity, T, at each selected time point (e.g., CTP
update times) in each scenario is computed as the average of the individual errors:

Platform j error in entity 7; (time ) = {true location of the entity associated with 7;}(time 7) —

platform j CTP tracker location estimate for T;} (time f) (18)

These errors can be computed at each CTP PE evaluation time for each track, T;. This may require
propagation of the truth track. For evaluation where the CTP track propagation accuracy is also
important the difference above is taken at the current time. For tracks where the current time is not the
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CTP update time, this requires that the CTP updated state be subtracted from the associated truth track
at that time. In both cases for detailed PE, it is useful to plot the mean error over time for each
dimension (e.g., in position and velocity) with the standard deviation of the track error as computed in
the CTP tracker for each track output from each platform in each scenario. Even without Monte Carlo
runs, the number of kinematics error and standard deviation plots over time is very large (e.g., [# P, V
dimensions]x[# tracks]x[# fighter platforms]x[# scenarios]). Thus, it becomes desirable to utilize an
overall performance measure to capture large portions of the kinematics error information.

Error combining approaches include the standard deviation, the weighted RSS error measure, and the
weighted average performance (i.e., {2« (Jerror (k)| / o(k))}/K). The off-diagonal covariance terms
(i.e., joint moments) can also be estimated, if needed (e.g., if highly range dependent errors off-axis
exist). The standard deviation (the second moment) is then the square root of the following:

Variance of the error = {3; (measured error (j) - mean error (/)) 2.}/J (19)

where the sum is over updated CTP tracks and over time for each test case. If the CTP track
covariance, P, is trusted, then the additional measure below provides the covariance weighted RSS
erTor:

Weighted RSS Performance = {(Z; (error () */P(£)()))} (20)

where the sum is over the true entities, j, and P(t) is the updated covariance of the CTP track states.
This latter measure is used when sensors have different errors that need to be weighted accordingly
(e.g., errors are of equal importance).

In all the above approaches the weighting of the error parameters (e.g., over dimensions, time, entities,
platforms, or scenarios) is ad hoc (e.g., uniform or by standard deviation). Similar problems occur with
integrating the error standard deviations. This leads to replacing the standard deviation weightings on
the errors with a constant required sigma for each k and as necessary specifying the requirements on
the error standard deviations. In fact once requirements are brought into the performance measure, a
generally recommended approach is to identify tracking accuracy requirements for each entity, time,
etc. For example one can establish a weapons requirements basket or surveillance window that the
track estimate is required to be within (e.g., being 10 times more accurate than a given window is not
10 times more valuable). In this case the performance can be computed based upon one (or a few) runs
by integrating the CTP output track density (i.e., estimated mean and covariance) over this window
(e.g., centered at the true entity location) to yield the probability of satisfying the user track accuracy
requirements. These probabilities can then be combined rigorously over all entities, time, platforms,
and (if desired) scenarios. If Monte Carlo testing is used (e.g., thousands of runs per scenario) then the
average of the above probability of satisfying user requirements can be computed and compared to the
count over the Monte Carlo runs of the percentage of times that the requirements are met. However,
this approach requires that the kinematics accuracy requirements be specified. What is needed in many
cases is a summary PE measure that can be recursively updated on-line during the distributed fusion
system evaluation.

2.3.3 PE Node Optimization
This segment of the PE node development methodology applies the refined measures to assess the

current point design. The results of this assessment are feedback for improved PE node design or
possibly improved needs refinement.
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3. Mapping Guidelines of PE Solutions to Problem Space

Problem-to-solution mappings provide a segmentation of the problem and solution spaces and rules of
thumb for which areas of problem space are most applicable to each area of solution space. As such,
the problem-to-solution space mappings help the PE designer to decide which PE solution is most
useful for each PE problem. For example, these mappings help the user decide when to batch PE inputs
over time and SUTs; or when to use deterministic, MHT, and probabilistic, track-to-truth and track-to-
track association. In the following subsections we provide tabular representations of problem-to-
solution space mappings for the Hypothesis Generation, Hypothesis Evaluation and Hypothesis
Selection subfunctions of the central Data Association function in a PE node portion of the PE
framework solution space described in Section 2. Further work is recommended to extend these
problem-to-solution mappings and possibly provide an automated tool for more affordable PE system
design especially for novice PE designers.

Also further work is needed to determine problem-to-solution mappings for the PE network and the
other areas of PE node solution space defined in Section 2. For example,the joint probabilistic data
association (JPDA) approach, is best applied where the associations are usually not clear such as when
there is significant clutter and false tracks. In a situation where a platform’s radar is generating a lot of
radar clutter (e.g., in an urban environment or with significant countermeasures), JPDA can be used to
estimate the tracking error to the truth. A deterministic association might not give a fair representation
of the error since it may choose false tracks to associated to the truth entities. Another strategy would
be to use multiple scans and use the Lagrangian relaxation approach. Extensions to N-D Lagrangian
Relaxation for many-to-one associations can be used to handle the low resolution radar cases versus truth entity
separations. Track-to-truth bias misalignment estimation based upon confirmed track-to-truth associations can
be applied to provide better track accuracy MoPs. The track ID pedigree can be used to remove significant error
correlations and thus improve track-to-track associations for consistency MoPs.

3.1 Association Hypothesis Generation Problem-to-Solution Space Mappings

A sample problem-to-solution mapping for hypothesis generation is shown in Figure 3-1.
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Figure 3-1: Hypothesis Generation Problem-to-Solution Space Mapping

3.2 Association Hypothesis Evaluation Problem-to-Solution Space Mappings

The performance verses cost/complexity trade for data association has yielded sundry solutions

including the following:

» Simple high confidence only association (e.g., score gating)
¢ Deterministic association using assignment or set covering algorithms to search for the “best”

association confidence scores

e Probabilistic association which updates the track state confidence for each report based upon its
relative association confidence score

All these techniques require a methodology (i.e., from simple heuristics to rigorous probabilities) for
considering alternative track associations. Popular probabilistic scoring schemes include max
likelihood (ML), max a posteriori (MAP), Neyman-Pearson, generalized max likelihood, and chi-

square tests, sece Figure 3-2.

One major probabilistic scoring trade is between MAP and chi-square scoring. The former is a point on
a Gaussian PDF whereas the later just uses the chi-square-square distributed exponent of the Gaussian.
The payoff for chi-square is its ability to compare data with differing dimensions. Whereas MAP
requires ad hoc a priori assumptions on the probability of receiving the extra dimension (e.g., range)
data given the association hypothesis, P(RiH). However, chi-square scoring does not enable rigorous
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comparisons with non-Gaussian data such as non-commensurate attributes and a priori data. Also the
chi-square tends to give to much weight to lower confidence far away tracks as shown in Figure 3-3.
The MAP scoring scheme provides for rigorous comparison of multi-spectral data.

Max A4 Posteriori (MAP) and Min Probability of Error:

max P(R|H)P(H; )~ min P(ds|H2YP(H2) + P(d\|[H))P(H))
H i

Max Likelihood (ML):

P(RH dy R = Sensor Reports X and ¥

3~ QE] '2 > H, = Association Hvpothesis

max PR 1)) P(RIH < Hy = X and ¥ Not Associated
d

2

Neyman-Pearson (NP):
Fix P(d,lH,) = o Then max P(d ,|H,) ~ min P(d ; |H ;)

(NP is a Uniformly Most Powerful (UMP) Test a is a level-of-significance
B = 1-P(d ,IH,), the power-of-test, is maximized.)

d,
W PRI > 5 where o= [PRIF)R and D,={RIARIH) - 2R IH,) <0
P(R|H2) < b
d, 2
Generalized ML: (Not Necessarilly a UMP Test)

d

1
. B max P(R|H1) >
Fix P(d,JH,) = a Then max P(R|H) ;
2

1

~ (X-YFVYX-Y) -2 In(}) ( For Gaussian Errors) where } is defined by

LAV

2

Area Taily?= «

-2in (W)

Chi-Square Tail Test:
Fix P(d)JH,)=a  Then Test for Rejection of H,: Mean of (X-Y) =0

-

"0 d
- IXZ (s)ds z o where ¢ = (X-1) TV-1(X-Y)
‘ d

N

Figure 3-2: Comparison of Data Association Decision Criteria
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+ Chi-square (Mahalanobis) Scoring:
> IVAI=[R,-T )0 2+04,2] = 22/[1+1]=2
> WH=[R,-T,)/[0g2+01,2=42/[1+16]=16/17 }
> R associated to further away less accurate | T, [

+ Max. a Posteriori (Bayesian):
> [21V]S e(-.51V-11) =[6.28*2]5
e(-5[R,-T,J/[02+0;,2]) ~ 28 e~ .10

> [2nV]'S (- 5IV-l) =[6.28*17)-5 e(-5[R,-
T P/[0p2+0752]) ~ .097 e-47~ 060

Ry=0 T2 T4

Figure 3-3: MAP Scoring Provides a Better Balance of Nearby High Confidence Data Versus
Less Accurate Further Away Tracks

Differences in association scores as report-to-track separation increases for MAP, chi-square
(Mahalanobis), and the chi-square integral of the tail approaches in Figure 3-4 shows the penalty for
using CHI related versus MAP scores. MAP is especially favored whenever ID and a priori data need
to be considered rigorously in the association scores.

Report-Track Brror}  Gaussian MAR i Integra of Taill CHI(Vhhal anolis

0o 1.0 1.0 o}

1o .995 .92 .01
320 .95 .75 .1

40 .92 7 .16

6715 C .796 .5 .455
1o .6 .32 I

L150 .5 .25 1.32
L6 0 .275 12 26
20 13 .04 4,

Figure 3-4: Comparison of Alternative Gaussian-Based Association Scoring Techniques

The following provides the conditions where the alternative association hypothesis evaluation
techniques should be applied.

» Probabilistic: Preferred if statistics known
> Chi-Square Distance
— Doesn’t require prior densities
— Useful for comparing multi-dimensional Gaussian data
-~ However, no natural way to incorporate attribute and a priori data
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> Likelihood
— Doesn’t require unconditional prior densities, p(x)
— Does require conditional priors, p(Z|x)
> Bayesian Maximum a Posteriori (MAP)
— Naturally combines kinematics, attribute, and a priori data
— Provides natural track association confidence measure
— However, requires prior probability (e.g. kinematics and class) densities;
difficult to specify

» Non-Probabilistic: Useful if high uncertainty in the uncertainty
> Evidential (Dempster-Shafer)
— Non-statistical: User specifies evidence “mass” values (support and plausibility
numbers)
— Essentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple
knowledge combination rules)
> Fuzzy Sets
— User specifies membership functions to represent the uncertainty-in-the-
uncertainty
— User specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min)
which are much easier compute than second-order Bayesian
— More complex to develop, maintain, and extend
> Confidence Factors and Other ad hoc Methods
— Explicit derivation of logical relationships
— Generally ad hoc weightings to relate significance of factors
— Can include information theoretic and utility weightings

Figure 3-5 shows a sample problem-to-solution mapping for hypothesis evaluation.
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Figure 3-5:Hypothesis Evaluation Problem to Solution Space Mapping

KEY
Ad Hoc
Likelihood
Bayesian
Non-
parametric
Chi-Squared
Conditioned
Event Algebra
Information
Theoretic
Dempster-
Shafer

Fuzzy Logic
Scripts/
Frames
Semantic
Distance
Expert
Systems
Case-Based
Reasoning
Unsupervised
Leaming
Feed-Forward
Recurrent
Supervised
Learning
Random Set

Based on the table above, some of the sample decision flow charts that can be constructed to utilize the
problem-to-solution space mapping for PE designers are as follows:

Example 1: Top-Level Hypothesis Evaluation Technique Selection
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Example 2: Probabilistic Hypothesis Evaluation Technique Selection
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Example 3: Possibilistic, Non-Parametric and other Rigorous Hypothesis Evaluation Technique
Selection
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OF RANDCOM SETS

NON-PARAMETRIC
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SUFFICIENTLY?
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Example 4: Neural Network Hypothesis Evaluation Technique Selection
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Example 5: Logical, Symbolic and ad hoc Hypothesis Evaluation Technique
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J
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3.3 Association Hypothesis Selection Problem-to-Solution Space Mappings

Figure 3-6 shows a sample problem-to-solution mapping for hypothesis selection.
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Figure 3-6: Hypothesis Selection Problem-to-Solution Space Mapping

Some examples of decision flow charts for Hypothesis Selection techniques are as follows:
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Example 1: Top-Level Hypothesis Selection Technique Selection
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Example 2: 2D Hypothesis Selection Technique Selection
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Abstract - Network centric warfare poses new
challenges and opportunities to the fusion community.
In a network centric environment, fusion technology
impacts the ability to consume, create or act on
information through proper allocation and utilization of
available resources, and supports awareness, impact
assessment, and action. While technological advances
continue to take place in multisource data fusion (DF),
a proper performance evaluation (PE) methodology is
required to evaluate performance of alternative DF
process designs that are being developed to handle the
increasing complexity of modern day applications. PE
processes need to be technically fair yet affordable to
evaluate various data fusion (DF) measures of
performance (MOP). This paper addresses the
distributed fusion problem and gives quantitative
insights into the interdependencies of fusion processes
and the consistency measures between distributed fusion
products.  Building on our prior works, our
recommended PE methodology is based upon the Dual
Node Network (DNN) DF & Resource Management
(DF&RM) architecture. Our case studies involve track
picture consistency across multiple platforms and
sensors for what we label as Tier 1, Tier 2 and Tier 3
Level 1 fusion (ie. entity or object assessment). The
highlight of the paper is a design of experiments (DOE)
Jframework from which we identify the effects and
interactions of various MOPs (factors). We also
propose a response optimization method to adjust the
Jactor parameters for best possible track picture
consistency. This research focuses on distributed Level
1 DF PE applications for the Air Force Flight Test
Center (AFFTC), in support of new test and evaluation
procedures that will be required for advanced, fusion-
capable tactical aircraft.

Keywords: Performance Evaluation, Distributed Data
Fusion, Dual Node Network Architecture, Measures of
Performance, Design of Experiments.

1 Introduction

Linn, Hall and Llinas [8] describe over 50 prototypical
systems for multi-sensor data fusion systems that have
been developed for Department of Defense (DoD)

Christopher Bowman
Data Fusion & Neural Networks
1643 Hemlock Way,
Broomfield, CO - 80020, U.S.A.
cbowmanphd@msn.com.

applications some ten years ago. Such systems have
become ever more sophisticated. Many of the
prototypical systems summarized by Linn er al {8]
utilize advanced target identification techniques. While
much research is being performed in the data fusion
community to develop and apply new algorithms and
techniques, much less work has been done to determine
how well such methods work. In the context of target
tracking and estimation, Multi-Sensor Data Fusion
(MSDF) is used to combine data from redundant and/or
complementary sensors, to generate complete and
precise information regarding location and identity of
unknown numbers of unknown targets of different types.
In most cases it is not possible to deduce a
comprehensive picture about the entire target scenario
from each of the pieces of evidence alone, due to the
inherent limitations of technical features characterizing
each sensor. Judicious trade-offs between computational
complexity, computational time and numerical accuracy
have to be made for selection of an algorithm for
practical applications; such tradeoffs can imply large
economic impact if the evaluation is associated with a
contract competition, or more seriously can affect life-
and-death decisions if the fusion products are used for
decision support.

The employment of rigorous, consistent, and equitable
Performance Evaluation (PE) methods for data fusion
processes contribute to the probability of success when
that system is employed on an operational mission. An
extendable framework for PE of distributed fusion and
response management software is needed to (i) stop
building one-of-a-kind PE systems, (ii) expose
alternative PE designs to handle the increasing
complexity of the test articles, and (iii) provide an
affordable, yet equitable, evaluation of alternative Data
Fusion and Response Management (DF&RM) systems.
There is a need for an extensible framework for PE that
encapsulates all known approaches for the variety of PE
problems.

2 Objectives

This paper describes the PE research and the related
software development that was done as a part of the
ongoing research for the Air Force Flight Test Center




(AFFTC), conducted under support from the Air Force
Office of Scientific Research (AFOSR). The previous
work by Ghosh Dastidar, Sambhoos, Bowman and
Llinas [5] extended the formalized PE methodology
developed for Level | tracking-based MSDF systems (in
[2] and [4]). We included a summary of the proposed PE
methodology herein, although our focus in the current
work is on the issue of PE for inter-platform track
picture consistency, as part of our efforts to begin
extending the proposed PE framework to the case of
distributed MSDF. In all of our efforts, because of the
special interests of AFFTC, we have focused on MSDF
applications typical of tactical aircraft systems.

The earlier paper [5] gave quantitative insights into the
interdependencies between distributed fusion measures
of performance (MoPs) and (i) track-to-truth association
for accuracy, and (ii) track-to-track association for
consistency. The goal of this paper is to extend the PE
software capability to simulate and evaluate performance
metrics for distributed fusion test articles combining
distributed data from network centric type
communication with different types of sensors (Radar,
ESM, IRST) with different data fusion management
(ownship, cooperative) nodes. Figure 1 illustrates such a
network centric communication architecture. A
simulation-based, case-study approach along with a
statistically-rigorous Design of Experiments (DOE)
framework is employed as the basis to explore our
methodological ideas for PE as applied to Level 1

Intemct-like
Scrvices

Network Centric Communication

Machinc-to-

Protecte

Privatc Networks

Optical for Warfighting
(100’s GBps Users

RF (KBps -

10 GBps)

Receiver

’ Bandwidth on Demand ]

Figure 1 : Network Centric Warfare Communication.

MSDF.

The remainder of the paper is organized as follows.
Section 3 discusses the PE framework methodology.
Section 4 introduces and discusses the various PE
metrics. Section 5 describes the PE software
requirements and Section 6 describes the case study
simulator for the associated PE network architecture in
the context of the requirements of AFFTC. Section 7
explains the Tier based PE node design. Section 8
discusses the experimental results from the case study
and Section 9 describes the DOE framework and results.

machinc Interface

Allocable, Sccure,

Finally Section 10 presents a summary of this research
and the future directions to this research.

3 PE Framework' Development

A central issue in evaluating any prototype data fusion
process (here, fusion-based tracking) is the problem of
determining which fused estimate output by the
prototype fusion test article should be compared with
which “truth” state (here, truth track or other fused track
providing the basis of the assessment)’. The
importance of addressing this issue is based on the
assumption that errors in fusion-produced state estimates
will be computed by comparing estimates to truth states.
Thus, to compute estimates for metrics of interest, the
association between the estimates and truth must be
established.

According to Roy and Bosse [11], there are three
broad issues that lead to the ambiguities in Track-to-
Truth. These are (i) Mis-association Issues, (ii) Track
Management Issues, and (iii) Tactical Picture Issues.
The “Track-to-Truth” association problem is one
inherent difficulty in evaluating any MSDF process. In
our prior works, we have employed Drummond’s ideas
on a couple of ways that the PE process could account
for this issue (see [9] and [10]).

3.1 Need for a PE Framework

A typical data fusion process that shows the role of
runtime performance assessment/performance evaluation
is shown in Figure 2. An effective PE network is needed
to expose the differences between altermative approaches
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Evaluation (T&E) software design patterns The U.S. Air
Force needs effective PE systems for their Systems
Under Test (SUTs) at AFFTC to evaluate
cost/complexity versus PE performance relationships
between PE methodological choices and their effects on
metric computation.

The PE system cost/complexity versus PE
performance relationships between PE methodological
choices and their effects on metric computation cannot
be fully developed without this framework. The PE
framework needs to be applicable to multi-level
DF&RM software T&E. Our recommended approach is
that, because of the need to associate estimates-to-truth,
design of the PE process entails the design of a new data
Jfusion process specific to the satisfaction of PE
requirements. Thus, PE is treated herein as a fusion
process as defined in Steinberg and Bowman [12]; while
there is a challenge in designing a PE process as a fusion
process, this situation does allow the exploitation of the
existing data fusion technology knowledge base in
understanding PE problem solutions. By treating PE as a
fusion process the DF&RM DNN architecture [12]
provides a baseline for the PE framework. This enables
all the techniques that exist for all the levels of fusion to
be considered for each corresponding PE function.
Steinberg and Bowman [12] approach PE as a Level 4
fusion function as shown in Figure 2.

3.2 Criteria for a PE Framework

The PE framework needs to provide standard
components, interfaces, and guidelines that enable
software reuse and extendibility to achieve affordability
objectives. The PE framework needs to expose
alternative  solutions with established component
interfaces to permit comparison, integration, and
interoperability objectives. The PE framework should
help achieve reduced cost of development by promoting
expandability, modularity, and reusability of its PE
solutions. PE system design criteria include mission
measures of effectiveness (MME), measures of
effectiveness (MoE), and measures of performance
(MoP) accuracies, especially for those measures that
distinguish the performance of candidate SUTs.

4 Comprehensive Performance
Evaluation Metrics

The employment of a comprehensive PE approach
would yield both measures of the effectiveness and
performance of a fusion system. Additionally, the PE
network and its nodes must be designed to achieve
Jairness in  PE  system performance  versus
cost/complexity. The PE design objective is to generate
fair (e.g., accurate) DF system mission EEI metrics (e.g.,
MME, MSEs, MoPs) with minimal cost. As such the PE
MoPs need to be computed with sufficient accuracy to

differentiate SUT performance with respect to the

scenario MoPs which are driven by the mission

objectives, scenarios, and the SUTs. Steinberg and

Bowman [12] mention some different measures and the

associated metrics for a fusion system. The PE measures

fall into three categories: (i) Mission related (MMEs),

(ii) Operational (MoEs) and (iii) Engineering (MoPs).

There should be a traceable interconnectedness among

these measures. The mission measures are the top-level

measures

The canonical MME is the overall probability of
mission success. Classic MoEs for fusion and
management test articles include those that measure, e.g.:
e The nature of enemy behavior more completely,

more efficiently, more accurately, more quickly,
over a wider area, and without being detected.

e The impact of a strike more efficiently, more
accurately, more quickly, over a wider area, and
without being detected.

The MoPs support the MoEs by providing specific
performance insights. . Traditional MoPs are location
and 1D accuracy and probability of detection and false
track. Refinements of Level 1 fusion metrics are used to
provide additional insights into their corresponding
MoPs. Data association MoP refinements may include:

o Track Purity (Targets/Track): — Ratio of track
segments in an integrated track that belongs to same
target (or group of targets (Nrs), to total number of
segments in a track (Nzsr). (Tp.= Nzs/ Nysr)..

e Track Fragmentation (Tracks/Target). the number
of hypotheses to which elements of an actual
aggregation are assigned as elements by the system.

e Hypothesis Proliferation (Tracks/Report): the
number of competing (overlapping) tracks per
report.

e Assignable Track Ratio: Fraction of the tracks that
are associated with exactly one target.

e Non-Assigned Target Ratio: Fraction of the targets
to which no tracks are assignable.

5 Fusion PE Software Development

5.1 Design of the PE Fusion Process

It is imperative to develop good performance
evaluation software to calculate, study, and analyze PE
metrics. Broadly speaking. PE receives the tactical
picture output from the distributed fusion test articles,
(i.e., from the fusion nodes in the DNN of the SUT). PE
receives the truth from the simulation, commands from
the user, and support services as directed by the user. PE
outputs Measures of Performance (MoP) results and
generates displays for the analyst. Performance
evaluation software associates track-to-truth and
estimates the MoPs. Thus PE is type of fusion problem
where truth and the Consistent Track Picture (CTP) track
files are associated and MoP state estimates are




generated based upon this association. Thus PE software
design can be performed with the same architecture as
used for fusion, as noted previously. Rawat et al. [9] and
Bowman [1] discuss the issues of designing the PE
process as a fusion process and discuss the development
of such an architecture from the (i) role optimization
phase, to the (it) network optimization phase, (iii) to the
node optimization phase, and finally into the (iv)
software pattern optimization phase. Figure 3 shows the
entire process with the requirements, design, and
evaluation refinement step for each phase.

Design Phase -
Design

5.2 PE Node Optimization

Figure 4 shows the functions for any performance
evaluation node in PE process architecture. The various
steps involved are as follows:

1. PE Data Preparation: This performs track and truth
common reference transformations. It accounts for
known spatial and temporal misalignments

2. PE Data Association: This performs track-to-truth
or track-to-track association wusing kinematics,
attributes and ID of the distributed track files.

Design Development (each level)

g
1
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Figure 3: Different design phases of the PE fusion process.

In the context of AFFTC test and evaluation (T&E)
framework, PE provides (i) performance evaluation of
the different DF&RM test articles and (ii) utilizes the
test management and support services.

3. PE State Estimation: This estimates the MoPs using
selected associations (e.g., deterministic, MHT,
probabilistic, Wasserstein).
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Figure 4: PE node components according to DF&RM Dual Node Network (DNN) architecture.




6 Case Study: PE Simulator for
AFFTC

In the above, we have summarized some of the
generalized issues when considering the test and
evaluation of a prototype data fusion process (what we
have called the “System Under Test” or SUT). The
current research is focused on the problem of PE and the
“faimess” issue for the distributed data fusion case. In
future AFFTC applications, one type of expected
distributed fusion application will be the case of multiple
aircraft platforms working cooperatively on a common

Study, during data preparation the PE node puts tracks
and truth information in [x, y] co-ordinates and common
time. Data association performs deterministic track-to-
truth association and track-to-track association. During
data association the following three actions are
performed:

(i) Hypothesis Generation,

(i1) Hypothesis Evaluation, and

(iit) Hypothesis Selection.

The PE node uses a Kalman filter for MoP state

estimation. Figure 5 shows the generic PE node network
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Figure 5: Generic PE node network (On or Off Line).

mission, each performing local or platform-specific
fusion while also exchanging data and fused estimates to
each other. A core evaluation issue herein is the
assessment of the degree of consistency in the multiple
track pictures across the platforms. It is also critical to
guarantee that the alternative PE network node outputs
are consistent, in accordance with a consistency
specification pertinent to the application. PE nodes
perform track-to-truth association to support track
accuracy-related or other MoPs, and perform track-to-
track association to support platform track file
consistency-related MoP estimation for two or more
internetted platforms (e.g., Joint Strike Fighters (JSFs),
or the “F-35 aircraft).

6.1 PE Node Design

In the PE framework the PE nodes perform 3
necessary functions: (i) data preparation (ii) data
association and (iii) MoP state estimation. In our Case

for online and offline scenarios.

6.2 Case Study Measures of Performance
for PE

Figure 6 depicts how the two platforms have their
own view of the truth picture based on the on-board
sensors. There are both “common” pictures and “unique”
pictures. Let us assume, for the sake of example, that all
the on-board sensors see the same targets. Let platform 1
sees 3 tracks (based on on-board sensors) which are
common to platform 2 and vice versa. The common
tracks are shown in red. Note that even though both of
the platforms see the same targets, their measurements
about those common targets could be different
depending on how the on-board sensors reports the
measurements. Also there are certain targets that are
uniquely seen by platform 1 and platform 2 ; note that
some of either the common or unique tracks could be




false tracks.
Each of the platforms exchange their track files and
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Figure 6: Track pictures of individual platforms.

data fusion is done upon receipt of this information at
each platform. We will explain further how this
information is exchanged when we discuss Tier 0, Tier 1
and Tier 2 (Section 6.3). We assume that there is no
bandwidth  limitation in  communication. An
improvement from the earlier work is that we have
incorporated more realistic asynchronous (delayed)
communication among the sensors and the platforms.

The baseline distributed fusion output is the
Consistent Tactical Picture (CTP). The sensor track file
“consistency” is computed at each time point as the
percentage of matching CTP tracks in the track files of
each platform. In addition to this measure, the following
four consistency metrics have been computed:

1. Track-to-Track Consistency: The percentage of
matching tracks across all the platforms’ track files
w.r.t. the average number of track files per platform
that are generated over the scenario. For example, if
one platform currently has 7 tracks and the other 9
with 6 associated (i.e., matching within bounds),
then the average consistency is 6/ {[7+9)/2} = 0.75=
75%.

2. Track-to-Truth Consistency: The percentage of
average number of matching tracks per platform
w.r.t. true number of tracks. For example, suppose
one platform has 7 tracks with 3 associated tracks
and the other has 10 with 4 associated tracks. Let the
number of true tracks be 5. Then the average track
to truth consistency is {3/5 +4/5}/ 2 = 0.7= 70%.

3. The average number of standard deviations of error
in the associated tracks at each time point

Z]FV'/)";
————
and the average is over the scenario where
e | is the Ix2 matrix difference of feasibly

associated track state 2-vectors (i.e., Y(track;) -
Y(track;) in x and y position) between any two
sensors i and J.

® ¥V =P+ P, is the covariance of the error which

here is the sum of the track state error
covariances in x and y positions for each
selected association
e K is the total number of selected associations
used in the consistency score.
4. The average location error standard deviation of
associated tracks at each time point

The above equation is the association score that must
be greater than the non-association threshold given by
Equation (3). PE receives the fused tactical picture
output from the distributed fusion test articles. PE
receives the truth from the simulation, commands from
the user, and support services as directed by the user. PE
generates MoP results and generates displays for the
analyst. After each platform's track file is associated, the
consistency performance measures over the entire
scenario are computed.

6.3 Explanation of Level 1 Fusion Tiers

6.3.1 Tier0

In Tier 0, each of the on-board sensors (Radar, ESM and
IRST) fuse their own reports. The resultant Tier 0 tracks
are then fused together to get the Tier 1 consistent track
picture. Here the information is not yet shared across the
platforms, so the result tends to be less accurate than for
example the fusion of Tier O sensor tracks to the all
source CYP. Generally, batching of larger data sets for
fusion is more accurate; albeit more complex.

6.3.2 Tier1

In Tier 1, each of the on-board sensors (Radar, ESM and
IRST) share their Tier O track files to generate the
ownship consistent track picture. This is typically
done for each sensor track file as it is updated, rather
than all sensors at once. The DNN architecture exposes
these and many other ways to network fusion nodes on a
single platform for Tier 1 fusion or on multiple platforms
for Tier 2 fusion.

6.3.3 Tier2

In a typical Tier 2 fusion the Tier 1 track files are fused
sequentially as each Tier | track file is updated. A
modifed form of a Tier 2 fusion network is for each
platform to share its own sensor measurements with the
other platforms. This can be done one sensor at a time
sequentially as each sensor scan of data is received. This
alternative tends to be more accurate, however at a cost
of more communications bandwidth and fusion
complexity (e.g., due to report propagations for time
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Figure 7: Baseline Level 1 Fusion Network for Tiers 0, 1 and 2.

delays, multiple platform coordinate misalignments,
internetted ghost tracks, etc.).

6.4 Baseline Level 1 SUT Fusion Network

The Level 1 fusion network involves entity state
estimation based upon data shared among the sensors
(Radar, ESM, IRST) and the sources (e.g., aircraft,
satellite, E10A, UAV) on each ownship, cooperatively,
and offboard sources.. The Level I fusion node network
includes Tier O sensor report fusion nodes sequenced
over time batches of reports from each sensor. The Tier 0
associated reports and tracks are fused in a sequence of
Tier 1 ownship fusion nodes over sensors and time. The
ownship fused results from each platform are fused in a
sequence of Tier 2 cooperative fusion nodes. Figure 7
illustrates the network architecture.

7 Tier Based Fusion Node Design

The Tier 0, 1 and 2 fusion node detailed designs are
presented for (i) Tier 0 report-to-track sensor fusion, (ii)
Tier 1 track-to-track ownship fusion, and (iii) Tier 2
track-to-track cooperative fusion

7.1

The spherical co-ordinates. (R, Az, El) from the sensor
reports are converted to (E, N, Up) co-ordinates. The
reports are converted from (R, Az, El), with azimuth
clockwise from the projection of the velocity to level and
elevation up from level, to the (E, N, Up) relative
platform (R, Az, El), with azimuth measured clockwise

Coordinate Conversion

from north and elevation up from local level using a flat
earth. These (R, Az, El) reports are converted to a fixed
centered (E, N, Up) Cartesian coordinate system for use
by the Tier 0 fusion SUTs. In this paper, we only used
the [E, N[ as the [x, y] coordinates. RAE position and
covariance inputs are converted to the ownship centered
E, N, Up (ENU) coordinate system using range, r,
Azimuth from N, Az, and elevation from level, El in the
reports as follows:

E =rsin(Az) cos(ED)

N =r cos(Az) cos(El)

Up =r sin(El)
The range rate conversion to east and north rates is as
follows:

E* = R* sin(Az) cos(El) + R cos(Az) Az* cos(El) -

R sin(Az) sin(EL) EL* = R* sin(Az) cos(El)
N*= R* cos(Az) cos(El)> R sin(Az) Az* -R
cos(Az) sin(El) EI* = R* cos(Az) cos(El)

Up* = R* sin(El) + R cos(El) EI* = R* sin(El)
where

E* is east rate, N* is north rate,

R* is the range rate measurement ,and Az is azimuth

measurement,

Az*=0 and El*=0, since azimuth rate and elevation

rate are not measured and the expected value of zero

is used.

For sensor tracks the 3x3 top left corner of the ENU
error covariance matrix, R(3x3) of the whole R(6x6), is
rotated by the report azimuth and elevation from the
sensor Ry RAE error covariance oriented along north and
level as follows:

R(3x3)= O Ry O




where Ry is the independent measurement error
covariance and its diagonal elements are the sensor
azimuth, range, and elevation error variances in meters
such as for the baseline radar:

(8 mrad*range)> m> 0 0
0 (25) m? 0
0 0 (16 mrad*range)? m?

where ‘range’ is the sensor range measurement.
An example for the ESM in track mode for the baseline
(Az, R, El) error covariance is
(8 mrad*range)’ m? 0 0

0 (0.4*range)> m> 0

0 0 (16mrad*range)? m>
where ‘range’ is twice the sensor range measurement
with a cap at the max detection range and a floor at % the
max detection range.

@ is the 3x3 rotation matrix (i.e., rotation by report
azimuth about up clockwise and then rotation by report
elevation about the axis orthogonal with the azimuth and
up plane) defined as follows:

cos(Az) sin(Az) cos(El) -sin(Az) sin(El)

-sin(Az)cos(Az) cos(El) -cos(Az) sin(El)

0 sin(El) cos(El)

For the radar, the 3x3 lower right corner of the radar
ENU error covariance matrix, R*(3x3) of the whole
radar (E, N, Up) error covariance R(6x6), is computed
by rotating by the sensor R, rate error covariance (where
azimuth rate from north is row 1, range rate is row 2, and
elevation rate from level is row 3), by the ® 3x3 rotation
matrix as follows:

R*(3x3) = d(3x3) R*; (3x3) ®7. (3%3)

In this paper, R*;(3x3) is the independent rate
measurement error covariance with its user specified
diagonal elements as follows:

e  Azimuth rate aircraft dynamics constraints (e.g.,
Gaussian speed variations with a 3 sigma of
about 900 m/sec),

e Sensor range rate measurement variance in
(meters/sec)z, and

e Elevation rate aircraft dynamics constraints
(e.g., Gaussian climb/dive variations with a 3
sigma of about 150 m/sec).

This baseline R, * matrix then becomes

3007 (m/sec)? 0 0
0 12 (meters/sec)’ 0
0 0 50% (m/sec)’

The resulting sensor measurement error covariance

matrix, R, is the 6x6 block diagonal matrix with R(3x3)
in upper left and R*(3x3) in lower right and zeros
elsewhere.
The above results in report state and its error covariance
in fighter centered (E, N, Up) coordinates. To transform
these to fixed coordinates at each time point use the
fighter position as given by its inertial navigation system
(INS) to translate to fixed (E, N, Up) coordinates. Thus
the sensor report is translated using the ENU fighter
coordinates, Cy, at the time, k, of the report as follows:

Y "5 (Te) =Y P (T) + Cy
where Y is the full (E, N, Up) position and velocity
vector for the sensor report. For this design no time
alignment is needed.

7.2 Tier 0 Sensor Fusion Node Design

The sensor report-to-track fusion node processing from
the previous effort [5] was used as the starting point for
each of the 3 sensors. The report and track kinematics
are in earth fixed (E, N) coordinates. Since we chose
constant elevation, we ignored the Up axis.

Data Preparation propagates the previous sensor tracks
to the expected next-measurement time for data
association which then generates, evaluates, and selects
from the alternative report-to-track associations versus
track initiation or deletion hypotheses. State estimation
then updates the sensor track file based upon the
hypothesis selection.

7.2.1 Data Preparation

The primary sensor data preparation design operation is
track file propagation. ANl sensor tracks are propagated
to the current sensor report time. This is done for the
sensor states and their covariance matrices via
multiplication by a time dependent phi matrix and the
addition of noise for the uncertainty in the entity
dynamics and aircraft navigation error over this period of
time. Namely, the sensor track state, x, and its
covariance, P, is propagated (e.g., x seconds forward) to
the current report state time as follows:
Y (T) = o(8t) Yy (T), and
P*r= @(6t) Pyr @7 (81) .+ Q(51).

where,

® Y. (T)is the best estimate at time k-1 of the sensor
track T kinematics state which consists of position
and velocity in (E,N,Up); Y. (T) is actually a 6-d
column 6x1 vector of (x, y, z, V4, Vy, V,) Where x is
East, y is North and z is Up.

e Y *, (T) is the estimate of the ownship track T
kinematics state propagated from time k-1 to time k
and before an update at time k.

e ¢ (8t) is the 6x6 state transition matrix for a change
in time of &t from time k-1 to time k for each
dimension of a sensor kinematics state. This
assumes a constant velocity model in each axis, (i.e.,
¢ is the identity with t’s along the block diagonal
of the upper right 3x3;

e P, is the error covariance for Y., at time k-1. The
functional T dependence is suppressed since it
would appear for all covariances P of sensor tracks,
T.

e P, isthe error covariance for Y *y. at time k before
an update is performed in the sensor track. P *pisa
6x6 matrix.




o Q(bt) is the white noise process uncertainty 6x6
covariance matrix over a time difference of &t for
the kinematics model for each axis, which is an
input depending primarily upon the velocity
uncertainty per entity type. A simple random walk
model for velocity in each axis is used with the
process noise in velocity with a specified variance
(e.g., 0-250 m? /sec? for vehicles, 0-2000 m? /sec?
for helicopters, and 0 — 1000Km? /sec® for fixed
wing aircraft). Q is equal to this velocity variance,
with a default value of (300 m/sec)?, times the
matrix [8t, Bt, 8t, 1] in each axis. Namely, Q is the
6x6 symmetric positive definite matrix containing
four 3x3 blocks. The upper left has 6t* along the
diagonal and the lower right has 1’s along the
diagonal. The other two have 8t’s along their
diagonals.

The resulting P* covariance needs to be increased by
the ownship INS error covariance in the new location at
time k, N, is added to the track position error
covariance, Py, to yield the translated error covariance.
The 6x6 N, matrix is computed based upon the delta
time, 8t, from the last update of this track to the current
report time. We assumed this error covariance, N, (8t), to
be a constant with a baseline of (5 m)? in each position
axis and (0.1 m/sec)” in each velocity axis and is added
to the propagated P*y, viz.,

P’ (Ty) = P74+ Ny (8t

7.2.2 Data Association

The primary sensor track to sensor report data
association design operations are the following:

1. Hypothesis Generation: Find feasibly
associated sensor tracks within gates of each
sensor report [use nearest (in time) last updated
sensor track propagated to each feasible sensor
report time]

2. Hypothesis Evaluation: Compute MAP scores
for all feasible hypotheses

3. Hypothesis Selection: Apply the existing
fusion node SUT Vogel, best first, assignment
algorithm to select the associations.

7.2.3 Hypothesis Generation

The baseline design uses the (E,N,Up) 3-D position-only
chi-square gate as used in the existing SUT to avoid
detrimental affects of inaccurate velocity estimates or
inaccurate entity typing. The kinematics gate is
parameterized (e.g., M=25 for a 5 sigma gate). Namely,
for the report, Y(S), gate out all sensor tracks, Y(T),
such that
'v'i>Mm

where
e 1 isthe 3x1 innovations column vector,

1=Y(S)-HY™(T).

e His the measurement to state conversion matrix that
is the 3x6 conversion matrix to 3-D from track 6-D
with identity in the first 3x3 and remainder zeros

e Vs the innovations covariance,

V=H[P " JH"+R.

e Y(S) is the 3x1 portion of the sensor report
Gaussian kinematics with 3x3 error covariance R,
which is the covariance of the position measurement
error in E, N, Up coordinates.

e Y(T) is the track Gaussian kinematics with
covariance P”, propagated to current time above in
data preparation.

* M is the gate around Y(S), outside of which Y(T) is
infeasible, for simplicity a 3-sigma gate is used.

In this paper, we used a 2-D-only position gating (i.e.,
not using altitude). If all gates are passed then the pair is
marked as a feasible association (we presume that each
sensor and sensor track is a track on a single entity).
Each sensor track passing the gates is included in the
feasibly associated tracks for each sensor report as in the
existing SUT.

7.2.4 Hypothesis Evaluation

The baseline scoring equations with entity type
classification network confidences are based upon the
standard Max a Posteriori (MAP) hypothesis evaluation
scoring defined as follows:

max P(H|R) = max {P(R[H) P(H)}

=max {P(Y[H) P(Z|Y,H) P(H)}
= max [Tl {P(Y(S)[Y(T),H) P(Z(S),
Z(M)Y(S), Y(T), H) P(H)}]
where

e the maximization’s are over all association and
non-association hypotheses, H,

e H is the set of feasible association or non-
association hypotheses,

¢ R represents both the sensor track, T, and sensor
report, S, data,

e Y is the set of kinematics from both,

Z is the set of all parameters & entity attributes
measured in both

e the product is over all independent track, T,
hypotheses (i.e., of all 5 types),

e  Y(T) are the track kinematics, the P(Y(T)|H) term
is dropped as constant with respect to the
maximization,

e Y(S) are the sensor report kinematics,

e  Z(T) are the parameters and entity attributes from
the track,

e Z(S) are the parameters and entity attributes from
the sensor report,

e P(H) is the a priori confidence in the hypothesis.

These 3 scores in the product of MAP score are

defined in more detail below.




7.2.4.1 Kinematics Association Scoring

The association hypothesis kinematics scoring for a new
incoming sensor report, Y(S) to an existing track, Y(T)
assumes a Gaussian distribution [ellipsoid], with a sensor
track covariance P which models the error in the track
location due to possible motion. The baseline uses a
position-only 3x3 scoring due to the uncertainty-in-the-
uncertainty in the track velocity error as in the existing
SUT. Thus, the kinematics score is computed as follows:

PY(S)Y(T), H) = {1/ 2m)*? |V|""} exp[-4(1T V' )]

where

e  Y(S) are the sensor report Gaussian kinematics
with covariance R which for (E,N,Up) position
only is a 3x3,

e Y(T) are the track Gaussian kinematics with
covariance P’y

e H on the left side of the equation is the hypothesis
that the report and track are associated,

e d is the dimension of the Gaussian kinematics
state,

e |V| is the determinant of the innovations
covariance, V. = H[P"JH" + R. H is the
measurement to state conversion matrix. For
position only reports H is the 3x6 conversion
matrix to 3-D from track 6-D with identity in the
first 3x3 and remainder zeros.

e lis the innovations vector, I = Y(S) - H Y(T)

7.24.2 Noncommensurate Attributes (Entity
Type) Association Scoring

The measured sensor attributes are typically
commensurate (e.g., for ESM RF, PRI, scan rate, PW)
and can be included using commensurate scoring which
is similar to the kinematics scoring above, for the
Gaussian error models. The use of the reported entity ID
confidence vector helps to track through crossing entities
of different types. However, the errors in these reported
entity ID confidence vectors are highly correlated with
unknown correlations. The default entity attribute
scoring assumes that these errors are uncorrelated given
the entity class (i.e., noncommensurate ID confidence
vector) to aid in report-to-track association for differing
entity types. The fact that this is not the case for one
sensor will cause the expected value for this term to not
be 1 and will thus increase the association score over the
non-association score. This penalty is not severe here
due to the inaccuracies in the a priori Pp and Py, sensor
information. Even though noncommensurate scoring is
assumed to be sufficient, noncommensurate 1D updating
is not used for the ID confidence vector output to Tier 1
fusion. The score for noncommensurate entity type

report inputs is as follows:
P(Z(S), Z(MIY(S), Y(T), H) = {Z«[P(K]Z(T),Y(T),

H)
P(K|Z(S),Y(S),
H)}

H)/P(K|Y(T),Y(S),

where

* Y(S) is the sensor report Gaussian kinematics with
covariance R,

o Y(T) is the track Gaussian kinematics with
covariance Py,

e H is the hypothesis that the report and track are
associated,

¢ K are the elements of the disjoint ID classes (e.g.,
friend, foe, neutral)

e Z(T) are the parameters and attributes for the
reports associated with the track,

o Z(S) are the parameters and attributes from the
sensor report,

* P(K|Z(T),Y(T), H) are the elements of the sensor
track classification confidence vector,

o P(K|Z(S8),Y(S), H) are the elements of the sensor
report classification confidence vector, and

e P(K|Y(T),Y(S), H) are the elements of the a priori
(unclassified) confidence vector which is a user
input with default to uniform (i.e., all .2 values
having 5 classes).

7.2.43 A priori Association Hypothesis Scoring

For the a priori hypotheses terms, P(H), the following is
the Oth-order approximate scoring equation for each
sensor report S and track T hypothesis as in the existing
SUT, viz.,
P(association) [1-P,A (S)][1-P, (T)] P, (S)P, (T)
P(pop-up) IERONIENOAS)
P(false alarm) = P, (S)P,(S)

1

P(propagate) = [1-Pyy (D)][1-P,(S)]Po(T)
P(drop) = P (TP,(T)
where

e Py(S) is the probability of detection given in the
sensor, S, report (i.e., an approximation to the
probability that the sensor detects a current sensor
track),

e P;A(S) is the probability of this sensor report being
false alarm (FA) as given in the sensor report (e.g.,
expected number of false reports divided by total
expected number of reports),

e Pp(T) is the probability that the sensor file will have
the reported entity as a track (i.e., probability sensor
will have had a prior track initiation of this object).
The default is the Pp (S) for the last associated
report.

e  Pia (T) is the probability that this track is a false
alarm (e.g., expected number of false tracks divided
by total expected number of tracks). The is the Py,
(8) for the last associated report.

7.24.4  Hypothesis Evaluation Summary

The total scene hypothesis score is the product of the
individual hypothesis scores for how all the given batch
of reports and the sensor tracks are associated (i.e., for




each of the 5 types of hypotheses). These five

association type scores for each report or track using the

sensor classification and a priori confidences are as
follows:
1. Association Hypotheses
P(Y(S)Y(T),H)P(Z(S), Z(T)[Y(S), Y(T), H)P(H)
= {[V]"} exp[-{I" V' 1.}/2] {Zk[P(K|Z(T),Y(T),
H) P(K|Z(S),Y(S), HYP(K|Y(T),Y(S), H)]}[1-
Pea (SY [1- Pra(T)] Pp (S) Po (T)

2. Pop-up Hypotheses
P(Y(SYH)P(Z(S)[Y(S),H)P(H) =
E(IV) "exp[-w2][1-Pea (S)[1- Po(T)] Po (S)

3. False Alarm Hypotheses
P(Y(S)H)P(Z(S)Y(S),H)P(H) =
E(IV]) "exp[-w/2]Psa (S) Po (S)

4. Propagation Hypotheses
P(H) = [1-Pa (T)] [1- Po(S)] Pp(T)

5. Track Drop Hypotheses
P(H) = Pea{T) Pp(T)

where

e Y(S) are the sensor report Gaussian kinematics with
covariance R,

e Y(T) are the track Gaussian kinematics with
covariance Py,

e H in the overall equations is the hypothesis that the
report and track are associated,

»  |V]is the determinant of the innovations covariance,

V= H[PJH  +R,

e H in the innovations covariance equation is the
measurement to state conversion matrix,

e Eis the expectation operation,

e ]is the innovations vector,

I=Y(S)-HY(T)

e K are the elements of the disjoint class network,
Z(T) are the parameters and attributes from the
track,

e Z(S) are the parameters and attributes from the
sensor report,

e Pp (S) is the probability of detection by the sensor,
S, of the hypothesized associated object,

e P:a (S) is the probability of false alarm (FA) of the
sensor for this type of report,

e P (T) is the probability of detection of this object in
the sensor track file,

e Pg, (T) is the probability that this track is a false
alarm.

For the non-association report hypotheses (i.e., pop-up
initiation, and false alarm) the expected value of the
kinematics score is used as in the existing SUT. Namely,
the kinematics score equation is used except that the chi-
square statistic (i.e., [I" V' 1)) is replaced with its mean,
p. Namely,

1. u = 0455 for 1 degree of freedom (DOF) (e.g.,
bearings-only)

2. p=1.39 for 2 DOF (e.g., x and y only)

3. p=2.37 for 3 DOF (e.g., Cartesian (x, y, z))

4. p=3.36 for 4 DOF (e.g., 2 dimensions with rates)

5. p=4.35 for 5 DOF
6. p = 5.35 for 6 DOF (e.g., Cartesian (x, y, z) with
rates)

The expected innovations covariance multiplier is the
expected value of the report to track innovations
covariance in the determinant term of the kinematics
score. Namely, it is the expected value of [V for the
given report as in the existing SUT. For the non-
association track hypotheses (i.e., propagation, and drop
track), the kinematics, P(Y(T)), and noncommensurate
terms are all constant with respect to the maximization
so are ignored as in the existing SUT.

7.2.5 Hypothesis Selection

The objective of this function is to select the association
(and non-association) hypotheses that are used for state
estimation based upon hypothesis evaluations. The
Vogel, best association score selected first, search
algorithm is used.

For report-to-track  hypothesis  selection, all
unassociated reports initialize a new track and a sensor
track is dropped after it has not been updated for a
sufficient period of time. The sensor hypothesis selection
function declares a sensor track to be deleted based upon
the elapse of time without an association when one is
expected. The sensor tracks are maintained unti} they are
unassociated for longer than the user-specified length of
time (e.g., 20 seconds) as in the existing SUT. When a
sensor track is dropped, a delete track number message is
sent to the ownship fusion node.

7.2.6 State Estimation

The primary sensor state estimation design operations
are the following:

1. Use the report and the associated last updated
sensor track, propagated to the current report
time, to update the sensor track kinematics

2. Use the new sensor report classification
confidences to replace the last ID confidence
vector.

3. Update the Py and Pgr. for each track using the
Py and P, for the associated report.

7.2.6.1

Given a sensor report and its associated sensor track, the
track kinematics state and its covariance is updated using
a Kalman filter as in the existing SUT. One difference is
that the radar report is a 5 vector with a 5x5 error
covariance, R, used in the Kalman filter update instead
of a 3x3. Namely, for a 3-D report update

Yi(T) = Y5 (T) + K[Yi(S) - HY "(T)]

Py =[1-KH]P"y
where
e Y, (T) is the updated sensor track T state at time

increment k.

Kinematics State Estimation



*  Y,(S) are the sensor report, S, Gaussian kinematics
with 3x3 error covariance, R, at time increment k.

¢ Kis the 6x3 Kalman gain matrix,

K=P'HT'[HP" HT +R]"

e lis the identity matrix.

* Y., (T) is the best estimate at time k-1 of the sensor
track T kinematics state which consists of position
and velocity inx and y.

e Y', (T) is the propagated estimate of the sensor
track T kinematics state and before an update at time
k.

e P, i the error covariance for Y, at time k. The
functional sensor T dependence is suppressed since
it would appear for all covariances P of ownship
tracks, T.

e P’ is the error covariance for Y, at time k before
an update.

e His the measurement to state conversion matrix that
is the 3x6 conversion matrix to 3-D from track 6-D
with identity in the first 3x3 and remainder zeros.

The positive definiteness of the covariance is essential
for the filter. To avoid such a problem with minimum
computational cost, it is recommended that the matrices

be made symmetric by placing the lower left part of P

into the upper right each update (i.e., since the lower left

is less sensitive to round-off errors). For the ownship

tracks that are not updated, the propagated state, Y "4 (T)

and its covariance, P*,, are used as the current state,

Y (T), and its covariance, P, .The initial state error

covariance is the report error covariance R in the 3x3

position and a parameter specified error covariance in
velocity based upon entity type velocity uncertainties.

The baseline is 300 m/sec one sigma in E and N and 50

m/sec when Up is added. The current report and the

updated track state are included in the sensor track file to
be passed to the ownship fusion node..

7.2.6.2  Entity Type State Estimation

The sensor report classification confidence vector is used
to replace the last ID confidence vector.

7.2.6.3  Sensor Track Confidence Estimation

The current associated report P and Pg, (ice., as used in
the hypothesis evaluation) is attached to each updated
track as the track Pp and Pyy. The propagated tracks
retain their Pp and Pyr.

7.3 Tier 1 Ownship Fusion Node Detailed
Design

7.3.1 Data Preparation

The ownship tracks are propagated to the current sensor
track file time. All the current sensor and ownship tracks
have a common time. This is done for the ownship states
and their covariance matrices via multiplication by a
time dependent phi matrix and the addition of noise for

the uncertainty in the entity dynamics over this time
period.

7.3.2 Data Association

The primary ownship to sensor data association design
operations are the following:

1. Hypothesis Generation: Determine  which
confirmed track-to-track associations are within
confirmed track gates, then remove from both lists
and pass to hypothesis selection. For the remainder
find feasibly associated ownship tracks within
gates of each sensor track using the most current
ownship tracks propagated to the sensor track time.

2. Hypothesis Evaluation: Compute MAP scores for
all feasible (unconfirmed) track-to-track
association hypotheses.

3. Hypothesis Selection: Associate confirmed
associations that are within confirmed track gates.
Apply assignment algorithm to find best track-to-
track associations and make ownship track
initiation and deletion. Make confirmed association
decisions.

7.3.3 Hypothesis Generation
7.3.3.1  Confirmation Gating

The current sensor track is gated with the ownship track
to which the sensor track number has been confirmed to
insure that the ownship track has not been pulled off by
other source reports/tracks since the last sensor update.

The baseline design uses the 3-D position-only chi-

square gate to avoid detrimental affects of inaccurate

velocity estimates especially over long revisit times or
uncertain ID estimates. The kinematics gate is user
defined (e.g., M=49 for a 7 sigma gate). Namely, for the
sensor track position-only, Y(S), gate out all ownship
tracks, Y(T), such that
I'v'i >M

where
e [ is the 3x1 innovations column vector,

I=Y(S)-HYXT).

e H is the measurement to state conversion matrix that
is the 3x6 conversion matrix to 3-D from track 6-D
with identity in the first 3x3 and remainder zeros.

e Vs the innovations covariance,

V=H[P' JHT+R.

¢ Y(S) is the 3x1 sensor report Gaussian kinematics
with 3x3 error covariance R, which is the
covariance of the measurement error in E, N, Up
coordinates

e  Y(T) is the 6x1 track Gaussian kinematics with
covariance P* propagated to current time above in
data preparation.

e M is the gate around Y(S), outside of which Y(T) is
no longer confirmed, for the baseline a 7-sigma gate
is used.




2-D-only position gating is used. If all gates are passed
then the pair is marked as the only feasible associations
for each other (i.e., removed for consideration for further
association). This presumes that each sensor and
ownship track is a track on a single entity. If the gates
are not passed, the confirmation is removed, and the pair
is passed along for data association and specifically
passed next to the rest of hypothesis generation for
feasible association gating.

7.3.3.2  Gating for New Sensor Tracks

The next step is to find remaining unconfirmed ownship
tracks (i.e., ownship tracks whose association is not
confirmed with any ownship track) within 3-D gates of
each unconfirmed sensor track. 2-D gates are used.
Gating is performed for each unconfirmed sensor track
against all unconfirmed ownship tracks Each ownship
track passing the gates is included in the feasibly
associated tracks for each unconfirmed sensor input.

7.3.4 Hypothesis Evaluation

The baseline scoring equations with entity type

classification network confidences are based upon the

standard Max a Posteriori (MAP) hypothesis evaluation

scoring defined as follows:
max P(H[R) = max {P(R|H) P(H)}

= max {P(Y[H) P(Z|Y,H) P(H)}
= max[I{P(Y(S)|Y(T),H)P(Z(S),
Z(MIY(S), Y(T), H) P(H)}]

where

e The maximization’s are over all association and
non-association hypotheses, H,

e H is the set of feasible association or non-
association hypotheses,

e R represents both the ownship track, T, and sensor
track, S, data,

e Y is the set of kinematics from both,

e Z is the set of all parameters & entity attributes
measured in both

e the product is over all independent track, T,
hypotheses (i.e., of all 5 types),

¢  Y(T) are the track kinematics, the P(Y(T)[H) term is
dropped as constant with respect to the
maximization,

e Y(S) are the sensor track kinematics,

e Z(T) are the parameters and entity attributes from
the ownship track,

e  Z(S) are the parameters and entity attributes from
the sensor track,

e P(H) is the a priori confidence in the hypothesis.

These 3 scores in the product of MAP score are
defined in more detail below.

7.3.4.1  Kinematics Association Scoring

The association hypothesis kinematics scoring for a new
incoming sensor track, Y(S) to an existing ownship
track, Y(T) assumes a Gaussian distribution (ellipsoid),
with a ownship track covariance P which models the
error in the track location due to possible motion. Then
the kinematics score is computed as follows:

PY(S)[Y(T), H) = {1/ [2m)*? |V|"]} exp[-%{1" V' 1}]

where

e Y(S) are the sensor track Gaussian position
kinematics with covariance R,

e Y(T) are the ownship track Gaussian kinematics
with covariance P*y ,

o H on the left side of the equation is the hypothesis
that the sensor track and ownship track are
associated,

¢ d is the dimension of the Gaussian kinematics state
which here is a constant = 3 since only position is
used for association hypothesis evaluation,

e |V|is the determinant of the innovations covariance,
V =H [P*«] H' + R. H is the sensor track position
to ownship state conversion matrix that is the 3x6
conversion matrix to 3-D from track 6-D with
identity in the first 3x3 and remainder zeros. Note
that H is 3x3 identity when P is the position-only
covariance of the track state in xyz.

e 1is the innovations vector,

I=Y(S)-HY(T)

7.3.4.2  Noncommensurate Attributes (Entity
Type) Association Scoring

The noncommensurate ID confidence vector scoring
used in the Tier 0 fusion nodes are used here except that
the pedigree of the ownship track ID confidence is
maintained. The current sensor ID confidence vector is
combined with the noncommensurate portion of the track
ID confidence vector. For example, when radar is being
fused with the ownship track file containing ESM and
IRST ID contributions, then the ESM and IRST updated
track ID confidence vector maintained in the track ID
pedigree is used for the track ID confidence vector
instead of the all sensor ownship track ID confidence
vector. The score for noncommensurate entity type track
inputs is the same as above, viz,,
P(Z(S), Z(T)|Y(S), Y(T), H) = {Zk[P(K|Z(T),Y(T),
H) P(K|Z(S),Y(S), H)YPK|Y(T),Y(S),
H)l}
where only terms for which the a priori (ie.,
P(unclassified)) P(K|Y(T),Y(S), H)#0 are used
e Y(S) are the sensor track Gaussian kinematics with
covariance R,
e Y(T) are the ownship track Gaussian kinematics
with covariance P"y
e H is the hypothesis that the sensor track and
ownship track are associated,
» K are the elements of the disjoint class network,




e Z(T) are the parameters and attributes for the sensor
track associated with the ownship track,

e Z(S) are the parameters and attributes from the
sensor track,

e  P(K|Z(T),Y(T), H) are the elements of the
noncommensurate portion of the ownship track
classification confidence vector,

e PXIY(T),Y(S), H) are the elements of the a priori
(unclassified) confidence vector,

o P(K|Z(S),Y(S), H) are the elements of the sensor
track classification confidence vector.

7.3.4.3 A priori Asseciation Hypothesis Scoring

For the a priori hypotheses terms, P(H), the same Oth-

order approximate scoring equation for each sensor track

S and ownship track T hypothesis is used, viz.,
P(association) = [1-P;, (S)][1-P;A(T)] P, (S)P,(T)

Ppopup) = [1-P, (S)][I-Po(D]P,(S)
P(false alarm) = P, (S)P,(S)
P(propagate) = [1-P,,(T)][I-P,(S)]P,(T)
P(drop) = P (T)P,(T)

where

e P;(S) is the sensor track probability of detection
passed by the sensor fusion node. This term is the
probability of detection for the report last associated
with the track.

o Pa(S) is the probability of this sensor track being
false (e.g., expected number of false tracks divided
by total expected number of tracks). This term is
approximated by the track Pgr. passed from the
sensor fusion node which is the Pga of the last
associated report.

e  Py(T) is the probability that the ownship file
contains a track that represents the sensor track. This
is approximated by the last updated ownship track
P-D-

e PrA(T) is the probability that this ownship track is a
false alarm (e.g., expected number of false ownship
tracks divided by total expected number of ownship
tracks). This is approximated by the last updated
ownship track Pgr.

7.3.4.4  Hypothesis Evaluation Summary

The total scene hypothesis score is the product of the
individual hypothesis scores for how all the given batch
of reports and the ownship tracks are associated (i.e., for
each of the 5 types of hypotheses). These five
association type scores for each sensor track and/or
ownship track using the track kinematics, ID
confidences, and a priori confidences are as follows:
1. Association (i.e., sensor track and ownship track
combine) Hypotheses
PCY(S)IY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) =
(VI exp[-%{1TV 1« [P(KIZ(T), Y (T)H)

P(KIZ(S),Y(S),H)Y/P(K[Y(T),Y(S), M} [1-
Pea(S)] [1- Pea(T)] Pp (S) Pp(T)
2. Pop-up Hypotheses
P(Y(S)H) P(Z(S)[Y(S), H) P(H) = E(IV]) *exp[-w2]
[1-Pea (S)] [1- Pp(T)} Pp (S)
3. False Alarm Hypotheses
PY(S)IH) P(Z(S)Y(S), H) P(H) = E([V|) *exp[-w2]
Pra(S) Pp (S)
4. Propagation Hypotheses
P(H) = [1-Pxa (T)] [1- Pp(S)] Pp (T)
S. Track Drop (i.e., delete ownship track) Hypotheses
P(H)= Pea(T) Pp(T)
where
e Y(S) are the sensor track Gaussian kinematics with
covariance R,
e Y(T) are the ownship track Gaussian kinematics
with covariance P’y
o H in the overall equations is the hypothesis that the
report and track are associated,
e |V]is the determinant of the innovations covariance,
V=H{[P" JHT+R,
e H in the innovations covariance equation is the
measurement to state conversion matrix,
e E is the expectation operation,
e [ is the innovations vector,
I=Y(S)-HY(T)
e K are the elements of the disjoint class network,
e Z(T) are the parameters and attributes from the track
(not used since pedigree used),
e Z(S) are the parameters and attributes from the
sensor track (not used since pedigree used),
* Py (S) is the probability of detection by the sensor,
S, of the hypothesized associated object,
e Pga (S) is the probability of false alarm (FA) of the
sensor for this track,
e Py (T)is the probability of detection of this object in
the ownship track file,
e Pga (T) is the probability that this ownship track is a
false alarm.
e u = 237 for the 3-D kinematics hypothesis
evaluation
For the non-association sensor track hypotheses (i.e.,
ownship track initiation, and sensor false alarm) the
expected value of the kinematics score is used. Namely,
the kinematics score equation is used except that the chi-
square statistic (i.e., IT.V"I) is replaced with its mean, p,
viz.,
1. p = 0.455 for 1 degree of freedom (DOF) (e.g.,
bearings-only)
p=1.39 for 2 DOF (e.g., x and y)
p=2.37 for 3 DOF (e.g., Cartesian (x, y, z))
u = 3.36 for 4 DOF (e.g., 2 dimensions with rates)
p=4.35 for 5 DOF
u = 5.35 for 6 DOF (e.g., Cartesian [x, y, z] with
rates)
The expected innovations covariance multiplier is the
expected value of the sensor track to ownship track

S hwn




innovations covariance in the determinant term of the
kinematics score. Namely, it is the expected value of |V|
“ for the given sensor track. For the non-association
ownship track hypotheses (i.e., ownship track
propagation, and drop track), the kinematics, P(Y(T)),
and noncommensurate terms are all constant with respect
to the maximization, so are ignored.

7.3.5 Hypothesis Selection

The hypothesis selection objective and process is similar
to Tier 0. For ownship track fusion there is an additional
complication when a drop track message is received
from the sensor. The ownship immediately drops the
confirmed ownship track association, if any. When the
sensor track is the only constituent part of the last
associated ownship track, this solitary associated
ownship track is dropped. When there is at least one
other sensor constituent part, the track is retained but the
current sensor constituent part flag is eliminated. The
kinematics and ID pedigree is retained since the sensor
track may have been valid and only dropped due to
sensor mode or FOV changes due to aircraft
maneuvering.

7.3.6 State Estimation

The primary ownship state estimation operations are the

following:

1. Use the report for the newly updated sensor track
(i.e., passed with the sensor track file) and the last
updated ownship track (i.e.,, propagated to the
current report time) to update the ownship track
kinematics using a Kalman filter.

2. Use the sensor track classification confidences to
update the noncommensurate portion of the ownship
track ID pedigree.

3. Update the Pp and Py for each track using the Pp
and Py, for the associated report.

7.3.6.1 Kinematics State Estimation

Given the sensor reports associated with the sensor
tracks, each ownship track kinematics state and its
covariance can be updated using a Kalman filter such as
used in Tier 0 fusion. For track initiation the sensor track
state and covariance is used.

7.3.6.2  Entity Type State Estimation

The ownship track 1D state is updated only when a new
ID state is reported from a Tier O fusion node. The
equation used to update an element C of the track type
vector for each conditionally independent track ID
confidence vector is as follows:
if P(C[Y(S), H)#0

P(class C|T,S,H) =

[P(CIT,H)P(C{S,H)/P(CY(S).H))

Zx[P(K|T,HYP(K|S,H)/P(K|Y(S),H

if P(C|Y(S), H)=0
P(class C|T, S,H) =0

where,
e C is the element of the ownship track class vector
being updated,

» T is the ownship entity track data [both kinematics
and attribute],

e S is the current sensor track data [both kinematics
and attribute],

» P(C|S,H) is the entity ID confidence vector from the
current sensor fusion node,

e P(C|T,H) is the ownship entity ID confidence vector
containing only pedigree from noncommensurate
sensors

o H is the association hypothesis where the associated
sensor 1D pedigree has been updated,

e K is the index of type classes [summed over for
normalization],

e P(C|Y(S), H) is the a priori probability of an entity
of type C having the location and velocity given by
the track kinematics state which is specified a priori
in a table look-up, and each of the probabilities are
the components of the noncommensurate report,
track, and a priori entity type vectors

The most recent ID confidence vector from each
associated noncommensurate sensor is used in the
update. For example, for a radar-to-ownship entity
confidence vector update where the ownship track
already includes a full pedigree (i.e., radar, ESM, and

IRST 1D contributors), the above update is performed

twice. First the ESM confidence vector updates the IRST

ID confidence vector to form a new ownship entity ID

confidence vector using the above equation. Second, the

new radar entity ID confidence vector updates the

resulting ownship ESM and IRST pedigree entity ID

confidence vector using the above equation. The

ownship track file is updated to contain this updated

“best” track ID confidence vector as well as the “best”

track ID confidence vectors from each noncommensurate

sensor (i.e., radar, ESM, and IRST).

7.3.6.3  Ownship Track Confidence Estimation

The current associated track Pp and Pgr. are compared
with the ownship track Pp and Pgr. The higher Py and
lower Pgr are used. The propagated ownship tracks
retain their Pp and Pgy.

7.4 Tier 2 Cooperative Fusion Node
Detailed Design

For the baseline design each fighter shares its
cooperative track file with the other fighters in its flight.
These inputs to each fighter’s cooperative fusion node
are called the ‘flight-cooperative tracks” which are fused




with the ‘ownship-cooperative tracks’ on each fighter in
the Tier 2 cooperative fusion nodes. The Tier 1 ‘ownship
tracks’ are also be fused with the ‘ownship-cooperative
tracks’ in the Tier 2 fusion nodes.

The sharing of cooperative track files provides the best
information in each communications to lessen the impact
of missed communications and potentially reduce the
bandwidth and processing complexity and improve
consistency. However it has the highest error
correlations with the ownship track files and increases
the impact of spoofing. The following sharing of
cooperative track files is chosen as the baseline:

1. Report sharing to avoid cooperative track re-
initialization to remove filtered track error
autocorrelations over time at the cost of
additional bandwidth

2. Ownship _assipned track sharing with
cooperative “track ownership” to avoid track
error correlations by assigning the best source
to provide updates for each track (used in
similar sensor surveillance systems) in the cost
of reduced synergy when each source provides
different parts of the entity information (e.g.,
range, angle, resolution, IFF, type, ID).

3. Ownship track file sharing (e.g., with or
without cooperative track associations) to lessen
track error correlations by sharing separately
derived ownship track files each of which are
used to reinitialize the cooperative track files on
each platform.

7.4.1 Data Preparation

Data Preparation transforms the current batch of input
ownship tracks and the current ownship-cooperative
tracks in preparation for data association which
generates, evaluates, and selects from the alternative
associations between the track files. The primary data
preparation design operations include preprocessing of
inputs to put into the ownship format and propagation to
the most recent time

7.4.2 Data Association

The primary ownship-to-cooperative track association
design operations are the following:

1. Hypothesis  Generation:  Determine  if
confirmed track-to-track associations are within
confirmed track gates. Find feasibly associated
ownship tracks within gates of each cooperative
track using nearest in time last updated
cooperative propagated to each feasible sensor
track time.

2. Hypothesis Evaluation: Associate confirmed
associations that are still within confirmed track
gates. Compute MAP scores for all feasible
(unconfirmed) association hypotheses.

3. Hypothesis Selection: Apply assignment
algorithm to find best associations and make

ownship track initiation and deletion decisions.
Make confirmed association decisions.

7.4.2.1  Hypothesis Generation

This function is performed as described for Tier | except
for ownship-cooperative  confirmed track and
unconfirmed track gating instead of sensor-ownship

gating.

7.4.2.2  Hypothesis Generation

This function is performed as described for Tier 1 except
for using ownship-cooperative tracks instead of using
sensor-ownship tracks for unconfirmed association
hypothesis evaluation using kinematics, ID, and a priori
terms. Specifically, the noncommensurate sensor ID
pedigree (i.e., radar, ESM, and IRST for air-to-air) for
each cooperative track is maintained and shared.

7.4.2.3  Hypothesis Selection

This function is performed as described for Tier 1 except
for using ownship-cooperative tracks instead of using
sensor-ownship tracks for unconfirmed association
hypothesis selection. Namely, the baseline uses
Hungarian algorithm for an optimal 2-D assignment.
Similar drop track logic is used. Namely, when a drop
track number message is received from the ownship or
flight-cooperative fusion node, the cooperative fusion
node immediately drops the corresponding confirmed
cooperative track association, if any. When the dropped
track is the only constituent part of the last associated
cooperative track, this solitary associated cooperative
track is dropped. When there is at least one other
cooperative track constituent part, the track is retained,
but the current cooperative constituent part in the
cooperative track contribution pedigree is eliminated.
The kinematics and ID pedigree is retained since the
cooperative track may have been valid and only dropped
due to source tracking problems.

7.4.3 State Estimation

The primary cooperative track state estimation
operations are the following:

1. The current ownship or cooperative track
kinematics is used to update the associated
ownship-cooperative track using a Covariance
Intersection (CI) filter.

2. The current ownship or cooperative track
classification confidences is used to update the
noncommensurate portion of the associated
ownship-cooperative track ID pedigree.

3. The Pp and Py for each ownship-cooperative
track is updated using the Py and Pg,. for the
associated ownship or cooperative track.




7.4.3.1 Kinematics State Estimation

Since only track data is available for kinematics state
estimation a Kalman filter is not used and a Covariance
Intersection (CI) filter is used. ClI provides provably
consistent estimates that are derived without
independence assumptions.

7.4.3.2  Cooperative Track ID State Update

The cooperative track ID state is updated only when a
new track ID state is input (i.e., updated ownship track
ID confidence vector). The equation used to update an
element C of the cooperative track ID confidence vector
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7.5 Case Study Test Articles: Testbed
Model and Implementation

7.5.1 Case Study PE Fusion Network

Each PE node associates the fused track files to truth to
estimate the track file accuracy of Tier 0, 1 and 2 fusion
nodes in each time period. In addition, PE associates the
track files to each other to estimate the consistency of the
ownship and cooperative fusion tracks over time. Use of
truth for the associated report is not always viable as a
poor accuracy report will not shift track state estimates
sufficiently and truth is not available for AFFTC range
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Figure 8: Ownship Fusion PE Network Nodes

with a noncommensurate 1D pedigree confidence vector
is same as that for Tier 1. The best noncommensurate ID
confidence vector from each source is used for the
update.

For example, for an ownship-cooperative entity
confidence vector update where the ownship and the
ownship-cooperative track both include a full pedigree
(i.e., radar, ESM, and IRST ID contributors), the above
update is performed twice. First the best ESM
confidence vector updates the best IRST ID confidence
vector to form an updated cooperative track entity ID
confidence vector using the noncommensurate update
equation. Second, the best radar entity ID confidence
vector updates the resulting track 1D confidence vector.
The best ID confidence vector from each sensor is the
one with the highest single confidence component.

7.4.3.3

The current associated track Pp and Pgy. are compared
with the ownship-cooperative track Pp and Pgp. The
higher Pp and lower Pgr are chosen. The propagated
ownship tracks retain their P and Pyr.

Cooperative Track Confidence Estimation

operations (i.e., truth is not available in the absolute
sense). Figure 8 shows the ownship PE node network
for the case study.

7.5.2 PE Assignment Algorithm

Based on the MAP score, the association matrix for
hypothesis selection is generated. The MAP scores are
normalized with —log and inserted into the assignment
matrix. The Hungarian algorithm is used for optimizing
the hypothesis selection. Table 1 shows the conversion
of association matrix to 2-D assignment problem for
Hungarian algorithm. “No Track Association” columns
have been added to denote the hypothesis, Hy, of a truth
with no associated track. “False Track” rows have been
added to denote the hypothesis, H,, of a false track for
unassociated tracks. The zeros in lower right box
discourage selection of non-association hypotheses.

Current Tracks No Track Association

Jn[P(R,, | -W[PR,. | -WnfP(R,. - of
Curren § T,JH)P(HY) | THPEH)) | TJHPHE)] | In[P(H,)) n
tTruth FOnpR,, | -In[P(Ra, | -In[P(Rs, f -
TLJHP(H)] | ToHPH)) | TLIHP(H)) In[P(H2)}
Fal -[P(H.)] inf inf 0 0
T inf -in[P(H,)} inf 0 0
inf inf -In[P(H.,)] 0 0




Table 1: Association Matrix for 2D Assignment Problem.

7.5.3 Case Study Environment for SUT

The simulator has been developed in MATLAB 6.5.
It incorporates targets, platforms, on-board sensors,
filters, and run parameters. The current case study
settings were as follows:
1. Targets: 6 targets
2. Platforms: 2 Platforms
3. Sensors: Each platform has 3 on-board sensors

(Radar, ESM and IRST)

4. Scenario:

(i) Air-to-Air ofoffensive sweep of 2 platforms
vs. 6 targets engaging simultaneously in pairs
from left and right 45 degrees and center at the
same ranges.

(i) Sensor models have search and track modes
with separate range limits, probability of
detection (Pd), probability of false alarm/tracks
(Pfa/Pft), measurement accuracies, resolution
limits, and ID uncertainties

5. Internetted Fusion Node Tier 0, 1 and 2 Test

Articles:

() Data Preparation:

[R.Az) converted
ordinates [x, y].
(ii) Data Association: Feasible gating, Max a
Posteriori (MAP) scoring, and Vogel
approximation based hypothesis selection
with 5 consecutive missing scans to drop

Spherical co-ordinates
to Cartesian co-

tracks.
(i1) State Estimation: Extended Kalman filter
kinematics with Pp, Py and 1D

confidence update.

(i)  Probability of Detection: 0.7, 0.4, and 0.8 for
radar, ESM and IRST respectively, at
reference range (i.e., min range+0.75 (max —
min range)).

(i)  False Alarm Rate: 10 per hour (constant).

(i)  Other Parameters: See Table2.

8. Sensor ID: Sensor ID declarations were based
upon entity class confusion matrix per sensor mode.
The entity ID declaration and confidence vector is
the output for each mode change. The
approximation to a posteriori entity class vectors

from the confusion matrix of entity class
declarations is given as:
p(C)s) = PLICPC)

2P, 1O)P(C))]

where C is the entity class and P(D|C) are the
elements in the confusion matrix column (X) for the
given entity class declaration. P(C) is the a priori
entity class confidence before any measurements.
Table 3 shows a sample ID classification for ESM.

P(Foc P(Foc Non- | P(Friendly | P(Fricadly

Truc Entity Type Fighter Fighter Fighter Non-Fighter PN?UM.' Dli::;na‘»;/nn
Deelaration) Peclaration) | Declaration) |Declaration) raniof

Foc Fighter 0.80 0.05 0.m3 a0 0.01 010
Foc Non-Fighter 0n.05 0.80 0.01 0.03 0.01 [AL:]
Fricndly Fighter 0.03 0.0 0.80 0.08 0n.01 0.10
Fricndly Non- 0.01 0.03 0.05 0.80 0.01 010
Fighter

Neutral 0.05 0.05 0.05 0.05 0.70 010

Table 3: Sample Sensor ID Classification.

8 Experimental Results and Analysis
8.1 Baseline Scenario:

0SS Range Az Elev Report | Range | AzZ/El R|RR Angular Report | Report 1D

(min-max) FOV | FOV Ratc R Rate Accuracy | Resolution] Resolution| ID Confidence
Accuracy Rangc

Radar +60 | +30 25m| 816 m| 100m}

Scarch 0.1 - 80 Km deg | deg 4 scc 1 m/scc rad 5 m/scc S0mrad ] N/A N/A

Radar + 40 + 10 0.1 ~ 6] 25m| 8/16 m| 100 m| 75 - 85%

Track 0.1-95Km deg deg scc 1 m/scc rad 5 m/scc S0mrad 35 Km air

ESM 0.} - 100 £120] £60 Passive 50%/{ 24/48 m o

Scarch Kin deg deg 2.5 scc of Range rad Om 0 mrad 100 Km | 80 - 90%

N 0,

ESM Track | &1 - 1001 #80 1 220y | Passive 30%) 2448 m| Omrad | 100Km | 90-95%
Km deg deg of Range rad

IRST 0.1 - 80 Km} £50 | =16 Passive 40% o

Scarch > 20K fi deg deg 4 scc of Range 2/4mrad | N/A 4/8mrad | 20Km | 75-85%
0.1 - 80 Km| %5 +4 Passive 20% o

IRST Track > 20K fi deg deg 0.2 scc of Range I2mrad | N/A 4/8mrad | 40Km | 80-90%

Table 2: Air-to-Air On-Board Sensor Top-Level Model Parameters.
6. PE Process: 7 PE Node Networks The baseline 2 vs. 6 offensive sweep scenario has 6 foe

(1) 3 individual sensor, 2 own-ship, 1 distributed
fusion track-to-truth PE nodes.
(ii) 1 intenetted platforms track-to-track PE node
network.
7. Air-to-Air On-Board Sensor Model Parameters:

fighters (targets) engaging simultaneously in pairs from
left and right 45 degrees and center to achieve a
simultaneous missile launch against the blues
(platforms). The blue 1 launches AMRAAM missiles on
reds (fighters) 1, 2 and 3, 4 respectively. The blue 1
launches AMRAAM for the second time against the



surviving red. Then the other blue turns towards reds 5,
6 and launches missile. All the red fighters are in a pair
staggered formation with the trailing fighter off to the
left or to the right, sufficient to be not resolvable by blue
radar until after the final red turn.

8.2 Tier0

We ran the simulation for Tier O from time periods 1
to 329 with an interval of | time period. The time period
was | second. Figures 9a, 9b and 9c show the typical
simulation output for Radar, ESM and IRST
respectively.

Figure 9b: Tier 0 SUT output for ESM.

[ Tarure trmiomg spsron ties 8 ran QRT3 -5 "2t St SRR v
b ¥ pee pum Jus o o i
DEEE VAP, BB !

Figure 9c¢: Tier 0 SUT output for IRST.

The blue cross trajectory is for Platform 1 and the pink
one is for Platform 2. The baseline 2vs6 offensive sweep
scenario has 6 foe fighters coming towards 2 blue
fighters with the objective of engaging at 10-15 km
simultaneously in pairs from +45 degrees and center.
The blue launch AMRAAM missiles between 20-25 km
on 1,2 and 3,4, respectively. The second launch by blue
I against the surviving red 3 occurs at about 10-15 km.
Then the other blue turns at Sg towards red 5,6 and
launches on 5,6. All fighters are in a pair staggered
formation with the trailing fighter off to right and behind
sufficient to be not resolvable by blue radar until after
the final red turn.

The blue and red fighters are both initially in search
mode for each other. Once the reds detect they turn off
emissions and execute their pre-planned maneuvers to
achieve near simultaneous launch on the projected blues.
The reds all tun on their radars to lock-on to blues just
after their last turn towards the projected blue position.
The reds launch radar guided missiles at their closest
blue targets as soon as possible. Red 5/6 should pull
delaying turns together then tumn towards an intercept
with US 1 (i.e., highest closure rate) once their radar
acquires rather than as shown in the Figure 9).

The blues split and turn towards the outside threats to
take advantage of their longer range AMRAAM shots at
each of outside red pairs. They support their launches
until both outside reds are killed or unti! second shots are
needed. In the baseline scenario shown, US2 achieves 2
kills with its first launches then turns towards reds 5/6
that have engaged US1 while taking its second shot at
the surviving red 4. USI will leave this second
AMRAAM once it has acquired red 4, then pulls
defensive maneuvers and countermeasures against the
reds 5/6 missile launches while US2 completes red 5/6
kills.

The SUT gate multiplication factor was 5 and 15. The
PE gate multiplication factors of 3 and S, PE designs for
Vogel and Hungarian based association, expected
probability of false tracks, expected probability of
detection and confidence ID updates.

8.3 Tierl

Similar to Tier 0, the simulation for Tier 1 was run from
time periods 1 to 329 with an interval of | time period.
Figure 10 shows the simulation output for Platforml
(blue cross) and Platform 2 (pink cross).




Figure 10: Tier 1 SUT output.

8.4 Tier?2

The simulation for Tier 2 was run from time periods 1
through 329 at an interval of 1 time period. Figure 11
shows the SUT simulation output for Tier 2.

Figure 11: Tier 2 SUT output.

9 Design of Experiments

9.1 DOE Plan

We planned a Design of Experiments (DOE) scheme for
the PE MoPs. We conducted these tests on Tier 0, Tier 1
and Tier 2. We decided on the following factors to setup
the DOE:
* Scenario Factors (Fixed):
— Offensive Sweep 2vs6 Air-to-Air
» PE Factors:
— Design (Association)
Vogel Approximation (PE 1), and
Hungarian based association (PE 2)
— Gating Factor: 3and 5
* System under test (SUT) Design Factors:
— Gating Factor: Sand 15
So this yields a 2% or 2* full factorial design. We used
MINITAB to perform the DOE runs. The full factorial
design details are as follows:
Factors: 3
Levels: 2

(A) SUT Design Gating Factor
(B) PE Gating Factor
©) PE Design

Base Design: 3,8
Runs: 80
Replicates: 10
Blocks: 1

Center pts (total): 0

All terms are free from aliasing. The factors and
interactions that are significant for various MoPs are
denoted by *S’. Tables 4, 5and 6 show the summary of
the DOE run results for Tier 0, 1 and 2 respectively.

In addition to these DOE runs, we ran another set of
full factorial runs to see the effect of communication tiers
on the various MoPs. We added another factor, (D) Tier,
with two levels: Tier 1 and Tier 2. Table 7 shows the
significant factors and their interactions for the various
MoPs.

Tier 0:
A |B| C|AB|AC |BC| ABC

Track [Consistency S
Tto [Pftl SIS S
truth  Mean location error| S SiS
radar |Avg. std. deviation | S S S

Jocation error

Avg. std. deviation | S Si S
Track [Consistency S S
2to  Pft S[S]|S S
truth  Mean location error| S
radar |Avg. std. deviation | S S S

location error

Avg. std. deviation | S S
Track [Consistency
1te PPft S S
truth  Mean location error| S
ESM  |Avg. std. deviation | § S

location error

Avg. std. deviation | S SiS
Track [Consistency SI|S|S|S
2to  [Pftl S
truth  Mean location error| § S S
ESM |Avg. std. deviation | S S

ocation error

Avg. std. deviation | §
Track Consistency S S
1to Pft S
truth  Mean location error| S S S
IRST |Avg. std. deviation | S S

location error

Avg. std. deviation | § SIS 1S
Track Consistency SiS
2to  [Pft S




truth  Mean location ertor| S | S S Mean location slslsls S
IRST |Avg. std. deviation | S S lerror
location error lAvg. std. deviation slsls S
Avg. std. deviation | S [S| S| S |S S location error
IAvg. std. deviation [S{S [ S| S
Table 4: Tier 0 DOE run summary. IConsistency SIS[S|S
Pft S{S[S[S]S
10 Conclusions and Future Directions Track lle\/rlrejr" location S S
10.1 Summary to truth |Avg. std. deviation sls
In this and our prior wprks, we ha\{e described a ::\)‘clgl:;‘e:eo‘;aﬁon sisisisls s S
formal and statistically-rigorous, fusion-based PE Consistenc sisTsisls S
process for the evaluation of fusion-based tracking onsisTeney
. . Pft SiS S IS S
processes. In this current work we extended the prior Mean Tocation
accomplishments by adding significant improvements to Track 2 SIS S
the SUT to incorporate multiple and different on-board to truth{S=r —
sensors along with 3 different tiers of data fusion and PE Avg.'std. deviation Si|S
node management. Further we incorporated a systematic location error__
DOE implementation to rigorously analyze the different Avg. std. deviation|S|S | S| SIS |S] S
SUT and PE factors that would affect the MoPs. Among .
other improvements to the SUT, we incorporated . Table 5: Tier | DOE run summary.
asynchronous report and measurement generation along Tier 2:
with more sophisticated data association algorithms for
superior and consistent track pictures. BlC AlAlB ABC
BIC|C
Tier 1: Consistency S
Pftl
Pfi2
A|B| CIABAC g ABC ;rf:;k Mean location error S
Track [Consistency s|s|s|s Avg. std. deviation
to trackPft] sis|s|s location error
P2 sisls Avg. std. deviation S
Inter Tier 1 and 2:
A|B|[C|DAB AD| BC|BD | CD ACB ABD ADC BCD AII;C
Consistency S S S
Pftl S S S
Track Pft2 : S|S S S S
Mean location error S S
to track —
Avg..std. deviation S sls S S S
location error
Avg. std. deviation {S|S[S | S S S
Consistency SIS S S S
P ft S S S S S
Track 1Mean location error S S S
to truth Avg. std. deviation S S
location error
Avg. std. deviation | S|S|S| S S S S S S
Consistency S S S
Pft S S S S S
Track 2Mean location error S S S S S
to truth Avg,.std. deviation sls sls S S S
location error
Avg. std. deviation | S S|S S S S S S

Tahle 7- Inter Tier 1 and 2 DOF min cnnmmary




Consistency

P ft

Track 1Mean location error

to truth Avg. std. deviation
location error

Avg. std. deviation

Consistency S
Pft S
Track 2 Mean location error S

to truth jAvg. std. deviation
ocation error

Avg. std. deviation S

Table 6: Tier 2 DOE run summary.

The PE framework in our research enables reusable
DF&RM avionics PE software developed specifically for
AFFTC. This effort extended a  previous
AFOSR/AFFTC effort on PE methodology for AFFTC
and implemented a PE network performing distributed
fusion track-to-truth association for track file accuracy
and distributed fusion track-to-track association for track
file consistency. The distributed fusion PE software was
also used (leveraged) for a project on warfare modeling
by National Imagery and Mapping Agency (NIMA) at
University at Buffalo.

10.2 Future Work

There are yet numerous other issues that can be
addressed in this research, as PE is an under-researched
topic in the Data Fusion community. For the focal
problem types considered here, involving tactical aircraft
applications, we see various possible future directions
and enhancements, as described below.

10.2.1 Gating

In this paper, we used a 2-D-only position gating (i.e.,
not using altitude). We plan to incorporate user flags for
max speed gates or strict type gating in the future. We
presumed that each sensor and sensor track is a track on
a single entity. Set covering approaches that deal with
poor resolution issues are to be decided in the future.

10.2.2 Sensor attribute measurements

In this paper, the sensor attribute measurements are not
modeled. The user needs to decide if he wants to have
the reported entity confidence vector ID used in the
report-to-track association hypothesis scoring. For this
current work, the user flag was set to select entity typing
confidences to be used for association scoring. In the
future, when the entity type uncertainty-in-the-
uncertainty is high this score will be avoided. Also when
the entity type declaration has very high confidence (i.e.,
to the extent that it is always believed), then this scoring
will be replaced with gating and replacement in state
estimation. If this flag is not set the type confidences can

still be selected for use in state estimation for sensor
track type updating to improve the sensor track type
confidences. The expected value of these terms is one so
not selecting entity type scoring will not affect the
normalization of the kinematics and a priori non-
association scores. The sensor report classification
confidence vector is used to replace the last ID
confidence vector. In the future we plan to consider the
replacement only if the sensor has not changed to a
worse ID mode (i.e., from track back to search).

10.2.3 Report-to-track

For report-to-track  hypothesis  selection, all
unassociated reports initialize a new track and a sensor
track is dropped after it has not been updated for a
sufficient period of time. In future, this track drop logic
depends upon whether the track is tentative or is
declared to be of high confidence (i.e., validated) and the
sensor mode.

10.2.4 Data Preparation

The primary data preparation design operations
include preprocessing of inputs to put into the ownship
format and propagation to the most recent time. In
future, due to possible communications errors (e.g.,
modeled in future spirals) the data preprocessing
functions may include the following:

1. Incomplete data: delete messages with data
missing any vital field to include source, time,
range, azimuth, and elevation.

2. Duplicate messages: delete messages which are
exact duplicates.

3. Too old: delete sensor tracks that are older than
a user specified parameter (e.g., 20 seconds).

4. Coordinate transformation: conversion into a
common Cartesian track file coordinate system
as necessary.

S. Propagation: propagation of the oldest track file
to the most current track file, for example
propagation of the current but delayed flight-
cooperative track file to the ownship-
cooperative track file common time.

The first 3 are straightforward to implement. The 4th is
not needed in the present case since the cooperative track
files are all in the same earth-fixed center Cartesian
coordinates where rotation and curvature of the earth are
ignored for this spiral. The 5th is done via the
propagation equations since all cooperative tracks will be
maintained at a common time in the present case. In
future, if there is no common time for the ownship
cooperative tracks, then the insertion of the propagation
as part of the track unique hypothesis generation will be
assessed to reduce the computational burden.



10.2.5 SUT Track Filters

More sophisticated track filters will be considered if
track accuracy becomes an issue in the future. Examples
include the following:

+ The interacting multiple model (IMM) which
adapts to unknown or changing target motion
— considers a fixed set of target motion

models (differ in noise & structure)

— probabilistically combines estimates of
individual filters matched to these models
to determine the weight for each model.

* Particle filters which use sequential Monte
Carlo generation of track state hypotheses to
overcome nonlinear and  non-Gaussian
dynamics by adapting the necessary linear
models based upon innovations accuracy

»  Unscented Filter which approximates the error
distribution using deterministic sigma points for
cases with significant nonlinearities and/or
nonlinear target dynamics.

Historically much effort has been put into track
estimation technology, so the payoff for additional
research is not expected as high as for less mature DF
technology. Consequently this effort will apply simple
existing filters sufficient to drive the development and
test of the high potential capabilities (e.g., track
confidence estimation, adjudication management,
alternative Tier 2 data sharing strategies, and distributed
level 2 and 3 fusion and sensor management).

10.2.6 Bandwidth Issues

In the future, the PE distribution nodes. will consider
Bandwidth Utilization as another MoP to assess the peak
and average percentage of communications bandwidth
load for distributed fusion and adjudication. In later
efforts the present PE methodology and the software can
be extended to assess (i) Autonomous Aircraft Adaptive
Management, and (i) Information Sharing Strategies
(1SS). Both of the programs are in line with Wirfel’s [13]
long term plans. Autonomous aircraft adaptive

management help aircraft share threat information to’

optimize the probability of mission success with in-flight
re-planning capability. These are done in conjunction
with the time of engagement on target, Emission Control
(EMCON), and limited expendable countermeasures
(CMs), ISSs, and perimeter limits of action. As a part of
PE of ISS, the PE methodology can be applied to
measure the relative ISS performance in the delay in
achieving the weapon handoff kinematics and ID
requirements in multi-aircraft Air-to-Air (A/A) and Air-
to-Ground (A/G) scenarios.
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Appendix

A. Albersheim’s Approximation

Albersheim’s method is an approximation based
upon the estimating the required signal to noise
ratio (SNR) and then computing the SNR at the
desired ranges. The required SNR is computed as
follows:
SNR=A + .12AB + 1.7B
where
A =In {.62/ Pfa)}
B =In {Pd/[1-Pd]}
Pfa is the probability of false alarm (example
value E-6)
Pd is the probability of detection
Given a probability of detection at the baseline range, a
baseline SNR is derived. For example, for Pfa = E-6 and
Pd = .35, A= 13.3, B=-.62, and SNRb = 13.3-99 -1.05
= 11.2. The SNR at a desired range, SNRr, is
SNRr = SNRb {Rb/Rr}”
where
SNRb is the baseline SNR
Rb is the baseline range
Rr is the desired range
n=4 for active sensors and n=2 for passive sensors
Once the SNRr at the desired range is determined the
probability of detection at the desired range can be
generated.

B. MINITAB Response Optimizer

The MINITAB Response Optimizer provides an optimal
solution for the input variable combinations and an
optimization plot over all responses (MOPs).
MINITAB’s Response Optimizer helps to identify the
combination of input variable settings that jointly
optimize a single response or a set of responses. Joint
optimization must satisfy the requirements for all the
responses, i.e. MOPs, in the set, which is measured by
the composite desirability. The overall desirability is a
measure of how well the user has satisfied the combined
goals for all the selected responses. Overall desirability
has a range of zero to one. One represents the ideal case;
zero indicates that one or more responses are outside
their acceptable limits. Composite desirability is the
weighted geometric mean of the individual desirabilities
for the responses.

MINITAB calculates an optimal solution and draws a
plot. It employs a reduced gradient algorithm with

multiple starting points that maximizes the composite
desirability to determine the numerical optimal solution.
The optimal solution serves as the starting point for the
plot. This optimization plot allows the user to
interactively change the input variable settings to
perform sensitivity analyses and possibly improve the
initial solution. As, the optimization plot is interactive,
the user can adjust input variable settings on the plot to
search for more desirable solutions.
The optimization is accomplished by:

e Obtaining the individual desirability for each

response.

e Combining the individual desirability’s to
obtain the combined or composite desirability.




C. Tier 0 DOE Charts

This section provides the Tier 0 DOE charts conducted in Section 9.1. The three factors SUT Design Gating Factor, PE
Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In
Tier 0 we have three sensors on 2 platforms and they do not fuse any data within or across platform. Hence we have to
only analyze track-to-truth associations for each of the MOPs. The summary of the results is shown in Table 4. Here for
each MOP we have the Normal Probability plot and Pareto chart which summarizes the significant factors. Then for the
significant factors we plot the main effects plot which tells us how the change in factor affects the MOP. For the significant
interactions we plot the interaction plot which shows the effect of change in factor level combination on MOP.

After taking a look at the summary Table 4, we can say that SUT Design Gating Factor is comparatively more
significant than PE Gating Factor and PE Design. SUT Design Gating Factor appears to be a significant factor in nearly all

the Tier 0 DOE runs. So at Tier 0 we must be sensitive towards selection of SUT Design Gating Factor.
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Radar track 1 to truth: Percentage of false tracks
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Radar track 1 to truth: Average standard deviation for location error
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Radar track 2 to truth: Average standard deviation of location error
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Radar track 2 to truth: Average standard deviation
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ESM track 1 to truth: Consistency
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ESM track 1 to truth: Mean Location Error




Normal Probability Plot of the Standardized Effects Parcto Chart of the Standardized Effc cts
{recpunse s mean loc error_2. Alpha = 10) {rsponse w mean ke enror 2. Alpha = 10)
w 1.666
Effect Type
" ® Not Sgnificant A
& Signifcant
w
Frant Name %
m A STpaus
- ™ » BC
& M )
i £ s !
o w £ :
& ACH
w B4
I ' i
5 ABCH X
5 o ! 2 3 4 5 & 7
-7 -6 -5 .4 23 Standardized Effect
Standardized Effect
Muin Effects Plot (dats mesns) for mesn Joc crror_2
1a
~
‘E-' 134
H
{n
]
g
5 N
§
f 0
9 T T
Simp Voyel
SUT_Design
ESM track 1 to truth: Average standard deviation of location error
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ESM track | to truth: Average standard deviation
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ESM track 2 to truth: Percentage of false tracks

SUT_Design

Normal P ity Ptot of the Standardized Effects Parcto Chart of the Standurdized Effccts
(respomse is pfi 3. Alpha = _10) (response is pht_3. Alpha = 10)
et Type 1664 __
" ® Not Significant Ad G e
) ® Significant B PE Gatig Facuar]
L © PR Deapr
Frtor Name ABCH I
“ A ST Dengn
4 B PL_Gemg baver I
o € _rtpapm CA
e
E AB I
& w
E) B1
n 8CH
s
ACH
1<r T T T r T T T T T T
-3 -2 -1 4 I 2 3 0.0 0.5 10 15 2.0
Standardincd Effect Standardized Effect
Main Effects Plot (data means) for pht_3 Cube Plot {(data means) for pft_3
SUT_Design PE_Design
133 o) [l
13.0 1
1
12.5 143634 |
-
| s t
£ 20 i
s ]
g us !
« i
=
11.04 PE Cuting mm
T T T Nangrian
10.5 J Vi
s
PE_Design
100 g2701
T v ¥ v N Vogel
Simpk: Vogel Voge! Hungaran Smple Voprl

ESM track 2 to truth: Mean location error
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ESM track 2 to truth: Average standard deviation of location error
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IRST track 1 to truth: Percentage of false tracks
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D. Tier 1 DOE Charts

This section provides the Tier 1 DOE charts conducted in Section 9.1. The three factors SUT Design Gating Factor, PE
Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In
Tier 1 we have three sensors on 2 platforms and they fuse data within platform (not across platform). So we have to
analyze track-to-truth and track-to-track associations for each of the MOPs. The summary of the results is shown in Table
5. Here for each MOP we have the Normal Probability plot and Pareto chart which summarizes the significant factors.
Then for the significant factors we plot the main effects plot which tells us how the change in factor affects the MOP. For
the significant interactions we plot the interaction plot which shows the effect of change in factor level combination on
MOP.

After taking a look at the summary Table 5, we can say that all the three factors SUT Design Gating Factor, PE Gating

Factor and PE Design are very significant. All the three factors appear to be significant in nearly all the Tier 1 DOE runs.
The interaction between SUT Design Gating Factor and PE Gating Factor is mostly significant for all the MOPs.

Track to track: Consistency




Normal Prabability Plot of the Standardized Effects
{responce is Consistency. Alpha - 10)

Parcto Chart of the Standardized Effects
(response is Consistency, Alpha - 10)

Effect Type 1664
o . ;lm iig‘mﬁc:m! cl
v" ot ®» Synificant
Faier Namy B
ST Desgn
" . DR
P AR € i A
b m L]
£ E s
a =
0
0 . BCA
o “a ABCH
s
ACH
tir T T T T T T T T T T T T T T
4 3 2 a9 0 1 2 3 & 5 0 t 2 3 4 H
Standardize d Effect Standurdized Effect
Main Efficcts Plos (data means) for Consistency Tnteraction Plot (data means) for Consistency
SUT_Design PE_Gatng_Faclor s
74.5
7.0 \ / 740 R
5 S 7
E 730 735 ,
5 ns e .
2 v v v S no ’
S Simpk Vogel 3 s b3 L
4 -
PE_De: s
° sign 725 .,
3 745 L
= 0 720 ,
735 .
70 75 v
ns 3 s
Vogel mngrn,-m, PE_Gating_Factor
Track to track: Percentage of false tracks in track 1
Normal Prohability Plot of the Standardized Effects
(response is p1 Alpha = 10} Pareto Chart of the Standurdized Effects
(response i pR1 Alphu = 10}
Hfet Type 1666
o ® Not Sigmificant T
Y ® Significant B+ J
B | aA
[——
B ey P
=M ¢ e A ]
gow § ABA
sw G
w
1 e BCH
wl ep ABCH
s ACH [
I . . v " 0 1 2 3 M H K
=50 25 0o 25 50 Standardized Effect
Standardized Effect
Main Effects Plot (data me ans) for pft] Interaction Plot (duta mesns) for pR1
SUT Desien PE_Gutmg_Factor 28
6
n
N
25 / 7 AN
/ \ A
J ~
- 24 26 AN
2 H N
3 H N
= Sunple Vagel 3 H = No
: BT, Desgn 25 .
> o2 AN
24 e
25
24 \ n , .
3 H

Voye! Thmyarisn

PE_Gating_Factor

Track to track: Percentage of false tracks in track 2
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E. Tier 2 DOE Charts

This section provides the Tier 2 DOE charts conducted in Section 9.1. The three factors SUT Design Gating Factor, PE
Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In
Tier 2 we have three sensors on 2 platforms and they fuse data within and across platforms. So we have to analyze track-to-
truth and track-to-track associations for each of the MOPs. The summary of the results is shown in Table 6. Here for each
MOP we have the Normal Probability plot which summarizes the significant factors. Then for the significant factors we
plot the main effects plot which tells us how the change in factor affects the MOP. For the significant interactions we plot

the interaction plot which shows the effect of change in factor level combination on MOP.

After taking a look at the summary Table 6, we can say that none of the three factors SUT Design Gating Factor, PE Gating
Factor and PE Design are significant. In this case only some of the two way and three way interactions are significant

which suggests that fusing data across platforms reduces the discrepancies in the input data.
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