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Introduction

In our previous work (Refs 1, 2, 3) we have been studying the definition, design, and prototyping of
formal methods for the performance evaluation (PE) of Data Fusion systems. That work shows that
there are in any given case alternative PE strategies that could be employed. One rationale for the
down-selection of a preferred approach among such PE candidates would be to choose one which is
most "fair" or equitable in comparison to the others. Since many PE cases involve comparisons among
competing approaches, an equitable approach has an inherent appeal in general. Fair is defined as
something "marked by impartiality and honesty" by Webster's dictionary. In our present scope, we
interpret "fair" to mean equitable and unbiased in respect to the way in which any PE approach
computes the measures of performance (MoPs) and measures of effectiveness (MoEs) that are desired,
based on analysis of mission-level requirements. We seek a philosophy of fairness that is defendable as
a basis for conducting a performance evaluation (PE) process that yields unbiased evaluation of these
MoPs and MoEs. PE systems need to be developed to maximize the probability of satisfying the PE
system requirements. These can be defined by the PE system MoEs. PE Fairness for a system under
test (SUT) and a selected PE MoE is achieved by maximizing the MoE for the PE process itself, which
in many cases is equivalent to minimizing the error in the PE estimate of the SUT MoE (e.g., when the
goal of PE is to assess the SUT operational effectiveness, regardless of the PE complexity). This can
be approximated by defining MoE performance functions such as fusion track accuracy MoE
thresholds, then maximizing the convolution of the MoE with the performance function (e.g.,
maximize the probability that the PE MoE estimate is within an error threshold). In cases where the
performance function is to minimize the SUT MoE error, the PE system design can minimize the SUT
MoE state error (e.g., by striving for an unbiased MoE estimate) and minimize the standard deviation
of the SUT MoE error (or a user defined function of the error moments). It can happen however that
different MoEs may require different PE systems to be designed. In general PE system fairness needs
to consider not only fairness to the evaluation of the SUT, but also to the PE complexity and
development costs (i.e., to balance PE performance and cost just as a fusion system design balances
probability of mission success with complexity/cost).

The key issue for and evaluation (T&E) organization is how to affordably achieve fairness in the
application of its PE systems. Our PE framework provides a methodology to accomplish this; viz., the
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DNN Data Fusion & Resource Management (DF&RM) framework provides the hierarchical PE
components for PE solution space and a methodology for mapping PE solution space into various PE
problem spaces. The scope of this fairness study for performance evaluation of data fusion (DF)
systems is to define a philosophy of fairness that is defendable as a basis for developing a PE system.
Sample PE system MoEs need to be defined to understand the PE problem space, PE solution space
and the PE problem-to-solution space mapping (i.e., the 'rules' to map the alternative PE system
design solutions to the needed "fair" PE capability). Implicitly, we are seeking design guideliens for a
"best" PE that balances affordability with fairness as defined above.

The first technical contribution of this report is in the reusable and extendable PE solution framework
within which all applications-layer approaches to PE known to the authors can be expressed. As such,
this PE framework exposes PE system design alternatives to the PE system developer and provides a
common framework within which alternative PE systems can be compared. That is, our PE design
framework results in nominations of reasonable PE process designs to be chosen from when
considering fairness criteria. The second technical contribution of the report is contained in the
descriptions of "fair" yet affordable mappings of PE solutions to network centric distributed DF system
PE problems.

Since perfect PE fairness as with perfect DF performance is expensive (and often unwarranted), the
objective is to describe the PE engineering guidelines for achieving an optimal balance in PE "fairness
versus complexity" (i.e., "knee-of-the-curve" performance). These PE engineering guidelines are
driven by the PE problem space, which involves:

- DF system concept of operations (CONOPS) (mission objectives, platforms, scenarios,
sensors/sources, response resources)

- DF system test articles being evaluated (DF levels, network, node functions)
- Derived DF system mission EEI metric hierarchy (MME, MSEs, MoPs)

More specifically the DF system PE problem space is organized herein as follows:

" DF mission CONOPS (mission objectives, doctrine, platforms, scenarios, constraints)
- Mission scenarios and objectives to include: red, white, blue, grey platforms, scenario

dynamics, rules of engagement, etc.
- DF driving sources to include: on and off board sensors, IPB data bases, HUMINT, ISR

platform information sharing inputs, user inputs
- DF response resources to include: communications, countermeasures, collection, and

target management plus user interfaces & responses
"* DF system test articles being evaluated

- DF fusion levels (signal, entity, relationships, COA impacts)
- DF network (distributed over time, sources, types),
- DF nodes (data preparation, association, state estimation)
- DF functions (ML, MAP, MHT, JPDA, Lagrangian relaxation, unified)

"* Derived DF system mission EEI metric hierarchy (measures of mission effectiveness (MMEs),
measures of system effectiveness (MSEs), MoPs)

The DF system PE solution space framework is based upon interpreting PE as a fusion function where
PE metrics are estimated based upon the association of SUT fusion outputs with truth or other fusion
outputs (see Refs 2, 3). As such, alternative applications-layer PE solutions can be understood and
described using the data fusion portion of the data fusion and resource management (DF&RM) dual
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node network (DNN) technical architecture. Thus the PE solution space can be organized as a network
of PE functional nodes where each PE node performs fusion track and truth data preparation, data
association, and MoP state estimation. The PE network and node design guidelines strive to achieve
the knee-of-the-curve in PE 'fairness" and complexity.

The PE design objective is to generate fair DF system mission EEI metrics (e.g., MME, MSEs, MoPs)
with minimal cost. As such the PE MoPs need to be computed with sufficient accuracy to differentiate
SUT performance with respect to the scenario MoPs which are driven by the mission objectives,
scenarios, and the SUTs. Thus, engineering guidelines for fair PE are driven more by the scenario and
their MoPs and less by whether the SUT is simple or sophisticated (e.g., deterministic, probabilistic, or
unified association and fusion). For example, a sophisticated SUT may be needed to associate the
sensor reports whereas a simple PE may be sufficient to associate the resultant scenario tracks-to-truth
(although this is not expected). That is, we do not believe there is a one-to-one mapping between the
degree of sophistication in SUT fusion process design and PE fusion process design. Scenarios and
their MoPs are selected based upon the mission needs and not upon the SUT limitations. However,
when competing SUTs are expected to perform equivalently on most of the mission needs, the PE may
be focused on the distinguishing scenarios and their MoPs.

The report is organized as follows. In Section 1, we describe the PE problem space. In Section 2 we
discuss the PE solution space in great detail and finally in Section 3, we describe the candidate PE
network and node design guidelines.

1. PE Problem Space

Traditionally data fusion system performance is evaluated in terms of the probabilities of satisfying the
needs for accuracy, completeness, and timeliness of Essential Elements of Information (EEls) to
support selected missions. The EEI's are derived based upon a flow-down from the mission
operational needs. Sensors and off-board sources provide reports that enable the fused estimate of the
identity, location, track, aggregations, activity relationships, capability, intent, courses of action, and
impact for entities of interest with corresponding errors, deficiencies, and latencies. The DF entities of
interest in fighter mission applications include such elements as aircraft, ships, vehicles, ground sites,
individual terrorists, battery, company-level, and higher level units with corresponding EEls.
Performance evaluations can be for a wide variety of mission applications and extend beyond data
fusion into resource tasking (e.g., data collection, targeting, countermeasures, etc.) to support decisions
to invoke avoid, evade, deceive, degrade, and kill operations by diverse assets. The focus herein will
be for the PE of the contribution of USAF tactical aircraft distributed data fusion avionics to support
EEI satisfaction for tactical missions. The following sections describe the 3 partitions of the PE
problem space defined above.

1.1 DF Mission CONOPS PE Problem Space Drivers

The DF system role is defined by the battlespace missions, doctrines, platforms, and scenarios that
need to be accomplished. The missions that the DF system needs to support include the mission
objectives and the topology of the physical space where the action is taking place, the physical laws,
the involved equipment and the entities' physical attributes. The doctrine includes the rules of
engagement and policies.
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The Data Fusion (DF) system role PE problem space drivers can be decomposed into 2 main

components described in the following subsections.

1.1.1 DF Mission Scenarios and Objectives

The CONOPS with the resulting fusion system design criteria and constraints define the problem for
the fusion system design to be evaluated. The CONOPS for multiple fighters requires netted fusion

processes (e.g., real time prosecution of ground and air targets, mixed conventional/Low Observable
(LO)/UAV operations, real-time bomb damage assessment (BDA), joint operations). This requires
integration of collaborative situation assessment and precise targeting with real-time planning and

coordination of collection management assets. The result is cooperative network-oriented air combat.

The ownship, cooperative, and off-board distributed L1, 2, and 3 fusion test articles are driven by a

variety of mission scenarios. Each scenario vignette is defined within a joint operations mission
context. Missions include:

> Interdiction for non-emitting targets (e.g., airfield complex) and Theater Air Defense (e.g.,

SCUD TEL)
> CAS non-emitting targets (e.g., armor)
> Electronic Combat (EC) -Lethal SEAD for mobile emitting targets (e.g., SAM radar)
> High value asset protection: AWACS, JSTARS, Compass Call, ABCCC, Rivet Joint, E2C,

EP-3E, UAVs, Tankers

Projected fighter mission scenario sequencing include:

I. Establish air superiority
2. Eliminate long range threats
3. Jam enemy radars
4. SEAD
5. Destroy airfields
6. Escort strike forces for CAS and TAD

Sample scenario assumptions include:

I. Use of medium altitude profiles to negate AAA and optimize stand-off munitions
2. Inflight data link (IFDL) high speed data link is available with sub-second latency.
3. A/G weapons include: JDAM, AGM-130, and GBU-15 with terminal seeker and JSOW with

enhanced GPS.
4. A/A weapons include: AMRAAM, AIM-9X
5. Integrated Navigation with GPS

Sample scenario vignettes include:

1. A/G or A/A Distributed fusion and management to achieve orthogonal passive simultaneous
target tracking preceded by surveillance driven by IPB targets for 4 fighters under EMCON
with 2 standoff jammers and 2 CAP.

2. A/G or A/A Distributed fusion and management to shorten time to achieve high confidence ID

on fused tracks.
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3. A/G or A/A Distributed fusion and management for improved large volume surveillance search
especially in front ±30 degrees A/A. Coordinated surveillance search combined with prioritized
updating of existing targets and tracks of interest.

4. Detect & ID SAM launches using coordinated tactics to improve time to ID, range, threat
prediction. Minimize exposure especially of aircraft not launched upon.

The distributed Data Fusion (DF) objectives tailored for each mission are include:

"* maximize situation awareness quality
"* improve system detection performance
"* reduce system false alarm rate
"* minimize number of false/redundant tracks
"* increase probability of correct ID
"* extend situation awareness range

"* improve target acquisition time and accuracy for weapons quality solution
"* facilitate target handoff from other platforms (e.g. C2)
"* facilitate sensor-target cueing (e.g. sensor handoff)
"* minimize target location and kinematics errors
"° improve combat ID performance

"° improve survivability
"* decrease time required for target/threat detection
"* decrease time required for target/threat localization
"* decrease time required for target/threat ID declaration

"• reduce sensitivity to individual sensor faults

The DF design constraints are summarized as follows:

"• to minimize risk
- avoiding "nothing works until it all works"
- incremental build plan

"* cost versus performance
- modular and maintainable
- existing best algorithms to be exploited
- extendable to expand capability over lifecycle
- versatility to use minimal resources to provide necessary information at the appropriate

time
"* operational considerations

- decouple sensor management generation of system information needs from fusion
processes by eliminating the need for fusion to generate sensor requests

- ability to display individual sensor, ownship, intra-flight, and total composite track
information

1.1.2 The DF Driving Sources

Typical sensors and avionics available on each fighter include:

> Radar Multi-Function Array (MFA): air-to-air all aspect search, multi-target track, high gain
ESM with passive ranging, autonomous search, cued search, weapon data links, and A/G
modes including SAR map and GMTI.
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> EW: multiple band radar warning and forward air-to-surface with precision direction
finding (PDF), emitter ID, distributed passive ranging, and ECM

> CNI: IFF, intra-flight data link MADL, SATCOM intelligence broadcast links, voice and
data communications, messaging, GPS, integrated navigation, IRS, TACAN and other
landing aids

> Integrated Electro-Optical Tracking System (EOTS): FLIR (air-to-ground), laser ranger,
laser designator, IRST (air-to-air), missile launch detection (MLD), and laser spot tracker

> Distributed A/A and A/G Fusion: cooperative and off-board broadcast data fusion track
files,

> Aircraft Status: avionics status and environment data
> Intelligence Preparation of the Battlespace (IPB): threat laydown, weather, EW data base,

etc.

Key sensor driving parameters for each sensor mode are the field of regard, field of view, update rate,
at reference range probability of detection per target type (e.g., 90% detection range), false alarm rate,
(R Az El) accuracy and resolution, mode switch delay, beam slew rate, IFF/class/type ID classification
accuracy (i.e., confusion matrices) per range and aspect bin, type, and environment condition.

1.1.3 The Fighter Response Resources

Typical avionics resources that use the outputs of fusion on each fighter include:

> mission management (power, propulsion, diagnostic),
> pilot/crew controls and displays (HUD, HMD/HMS, HOTAS, MFD, audio, controls)
> information management (sensors, CNI, fusion process),
> adjudication management (maintain consistent tactical picture across platforms)
> communications management (balance BW with mission communications needs)
> threat and target response management (flight, weapons, countermeasures)
> stores management: stores control and stores interface

Distributed fusion output needs are driven by these response system needs to meet mission objectives.

1.2 DF Test Article PE Problem Space Drivers

PE system design is also driven by the DF SUT to be evaluated. The types of DF SUTs can be
organized using the DNN DF&RM architecture as follows:

> DF fusion levels
> DF network distributed over data fusion levels 0 through 3 (i.e., signal, entity, relationships,

COA impacts), time, sources, and data types
> DF nodes performing data preparation, data association, and state estimation)
> DF functions in each fusion node (e.g., ML, MAP, MHT,Lagrangian relaxation, track filters,

ID combination, JPDA state estimation, and unified (e.g., random set) entity state combination)

Having the DNN framework within which to understand and compare the alternative distributed fusion
SUTs eases the development and expression of the engineering guidelines for PE system design based
upon this portion of the PE problem space.

1.3 DF System Mission Metric Hierarchy PE Problem Space Drivers
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Since there are so many EEls at different aggregations and echelons of interest, it is practical to
organize the EEls hierarchically with the highest rank being those that define the measures of mission
effectiveness (MME) as depicted in Figure 1-1. Since DF is usually only a contributor to overall
mission success, a comparison of alternative DF systems usually entails a fixing of all the DF source
and response capabilities while alternative DF systems are assessed. Other PE systems can be
developed to evaluate alternative sources or response resources given a fixed DF. For DF systems that
must operate over many missions and scenarios per mission these scenario level metrics can be
combined in many ways (e.g., weighted sums, concurrent requirements, ad hoc).

Since the highest performance metric (i.e., the MME) is too coarse for many DF evaluations and
comparisons, the DF PE system will need to be tailored to compute the appropriate levels in the
hierarchy of EEls based upon the DF mission CONOPS and the alternative DF SUTs being evaluated.
The tailored DF system mission EEI metric hierarchy (MME, MSEs, MoPs) is derived based upon
these primary PE problem space drivers.

In a data fusion network design, the key metric types include (1) probability, (2) error, and (3)
information. Probability is a normalized ratio of performance over a complete set of possibilities. Error
is associated with uncertainty. Uncertainty is the result of the randomness of situational constraints that
result from Fusion system performance in real-world testing. Such an example of uncertainty is the
typically unpredictable latency associated with incoming data. Information is a quality metric
associated with the value of the data fusion to meet functional needs. To develop any metric for system

level performance, we use probabilities (P), errors (G), or time (t), as contributing to the system

metrics. Information metrics, such as mutual information or entropy describe the fusion information

MISSION Probability of AchievingMISSON ission Obec'tives-

Measures of
Mission
Effectiveness Program P.K., P.s,.Exchange

Metrics Ratios
.OPERATIONA Data Quality,

LConfidence,' Latenicy,

Measures of Throughput

System

.ENGINEERING
Measures of T 4
Performance

(Data Outputs/ 
T;

Inputs)

Figure 1-1: Hierarchy of EEl Metrics for Each Data Fusion System (Steinberg)

gain [Refs 4,5,6]. Error and probability relate to confidence and accuracy.
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Metrics determine fusion performance and can include (1) an Objective (desired) and (2) Threshold
(minimum acceptable requirement). If we look at the fusion system from top down (satisfy user needs)
or bottom-up (minimize uncertainty), the goal is to define the metrics for the evaluation of fusion
systems in support of the avionics mission. Examples of metrics for each fusion level are as follows:

Level 0: Sub-Object Data Assessment - Positional error
Level 1: Object Assessment - Probability of tracking and ID accuracy

Level 2: Situation Assessment - Relationship accuracy,
Level 3: Impact Assessment - Survivability, Vulnerability

As described above the selection of the fusion MoPs are derived from the MMEs. The MoPs support
the MoEs by providing specific performance insights. Examples of MoPs for distributed fusion
include:

"* CTP Consistency is the average percentage of non-matching CTP tracks after a suitable time

communications delay (2 sec)

"* CTP Update Time Delay is the average over all sensor inputs of the difference in the input time

until the update is generated both locally and globally on each platform.

"• CTP Association Accuracy is the percentage of correct associations per track over time

averaged over CTP tracks to yield overall association accuracy per scenario (a lower level

MOP).

"* BW Utilization is defined as the peak and average percentage of communications BW load for

each scenario

Examples of single platform level 1 fusion metrics include:

"* CTP Kinematics Accuracy is defined as thestandard deviation over time of the error in the CTP

averaged over all tracks for each scenario. Averages Over all platforms and scenarios for all

MoPs will also be taken for further condensation of the performance.

"* CTP Classification Accuracy is the percentage of CTP tracks with conflicting classification

averaged over time for each scenario

"• CTP Track File Probability of Detection is defined as the number of track to truth associations

at that time divided by the total number of truths existing at that time. These are then averaged

over time for each scenario.

"* CTP Probability of False Track is be computed as the number of CTP tracks not associated

with any truth at that time divided by the number of CTP tracks at that time. These probabilities

are then averaged over time for each scenario.

"* Computational Complexity includes processing timing and sizing

Refinements of level 1 fusion metrics are used to provide additional insights into their corresponding

MoPs. Association MoP refinements include:
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Figure 1-2: Contributing Factors for Fusion System Output Performance [Ref X
XXl01.

"* Track Purity (Targets/Track): the correlation coefficient of the pairing of elements which the

system assigns to a hypothesized aggregation and elements of the corresponding ground truth

entity

"* Track Fragmentation (Tracks/Target).: the number of hypotheses to which elements of an

actual aggregation are assigned as elements by the system

"* Hypothesis Proliferation (Tracks/Report): the number of competing (overlapping) tracks per

report

"* Assignable Track Ratio: fraction of tracks that are associated with exactly one target

"* Non-Assigned Target Ratio: fraction of targets to which no tracks are assignable

This rest of this Section provides examples of fusion MoPs. Figure 1-2 shows the Cause and Effect
diagram for the Factors influencing the PE Problem Space (from Ref 7). The Performance of a system
is not only affected by System Parameters, i.e. "Solution-space" or "Design-space" independent
variables, but also by Scenario Context variables, those mostly on the lower-half of Figure 1-2, such as
Track Truth Complexity and Environmental Factors; these variables affect DF performance in many
ways [Refs 8, 9].
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Fig. 1-2 Complicating Factors in Tracking and Fusion Performance Evaluation [Ref 91

Some of these are:

" Target Truth Complexity: Variables such as maneuverability challenge the tracking algorithm's
ability to handle targets that suddenly change direction; target spacing affects the design and
performance of tracking gates and data association; numbers of targets challenge the computational
efficiency of a tracking algorithm

" Environment: Independent variables such as weather, which affect both target abilities and sensor
abilities, and terrain and vegetation, which affect a ground target's maneuverability, can have a
wide range of specification, as each of these variables can have sub-variables in turn that, in
combination, affect the status of a variable such as weather (i.e. weather = (temperature, humidity,
precipitation (nature and degree), wind conditions (direction, magnitude), etc.).

" Time Asynchronicity: This problem happens when two sensors (platforms) are asynchronous in
time and the track reports from each of them are not synchronized, thereby resulting in track
association problems.

" Geo-Location Error: The geo-location error is defined as:

_ _l,.[o, + g (meters)
• Oco-error - •Nc .. CLot •

where: Nc = Number of control points,
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* e,, = (Latitude Reported - Latitude Truth)atfiwe,

"* ,,g = (Longitude Reported - Longitude Truth)aLo,,,g,,d,,

"* Conversion: aLatitude = Latitude Error (WGS-84) to meters,
"* aLongitude= Longitude Error (WGS-84) to meters.

" Accuracy modeling - KS Statistic, Chi-Square Test, or Wald Test: The Kolmogorov Smirnov
(Goodness of Fit) test statistic is defined as:

D =max FY

* where F is the theoretical cumulative distribution being tested, Yi. are the ordered set of points from
1 to N, and D is the statistic compared to a table (based on sample size N) to determine if the
observed registration is within the truth registration distribution.

" Factors or independent variables can also be related to the "Solution Space", meaning the Factors
that affect the performance of particular fusion algorithms (e.g., the nature and number of models
in an Interacting Multiple Model tracker). Thirdly, and peculiar to the nature of the overall PE
process, there are Factors involved in the Performance Evaluation approach itself, such as the
choice of technique for Track-to-Truth assignment, or the Factors upon which a specific PE Tree
might be partitioned [Refs 2, 10]. There are three classes of independent variables or Factors
around which the PE process revolves: Problem-space Factors, Solution-space Factors, and PE
process Factors. We analyze the various PE Solution Space factors based on the Dual Node
Network (DNN) architecture.

"* Detection, ATR, and Identification Metrics: (Level 1)
"* Target information can be modeled as per the NIIRS rating: detection, recognition, classification,

and identification.

" Probability of Detection (PD) - The ratio of the number of recorded detections (ND) to the
number of detection opportunities (NDO). (PD = ND / NDo).

" Note: PD is applicable to stationary and moving targets, where emitters can be inferred as
detections. A moving target is said to be detected if a set of reports corresponding to the target are
associated and a vehicle track is declared. A stationary target group is said to be detected if more
than X % of the targets within the group are detected and associated with one another, where X is a
parameter. A moving target group is said to be detected if a set of reports corresponding to more
than Y% of the targets comprising the group are associated and a group track is declared, where Y
is a parameter.

" Probability of Recognition (PR) - Ratio of correct type declarations (NR) to opportunities (NRo).

(PR = PR / NRO)

" Probability of Classification using Confusion Matrices - A common reporting format for ATR
systems is classification probabilities, including cross target probabilities, associated with a given
population. For example, a Confusion matrix records the probabilities P(i 1j) = probability of
declaring a target as type i given that it is really of typej, where i :j,
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An algorithm for Probabilistic Multiple Hypothesis Testing with classification measurements
(PMHT-c) is presented by Davey [Ref Il]. The algorithm was derived under both known (or
assumed) classifier statistics, and unknown classifier statistics. When the classifier confusion
matrix is unknown, the PMHT-c can estimate it. The PMHT-c was shown to simplify to the
standard PMHT when the classification measurements were known to be uninformative, and to
revert to hard association when the classification measurements are known to be perfect.

* Probability of Correct Identification (PID) - Ratio of the number of times a target, emitter, or
group is correctly identified (NID) to the number of occurrences (NIDO). (PID. = NJ0 / N1 o).

* For example, we can use shape metrics for ID evaluation, e.g., RMS errors on length and width
target attributes:

RA/Elenh = I1Z[Lengthw.e - LengthEs,,ed]; RMwdh [Width, Tr- Width••]2

" Other metrics include a Log-likelihood ATR, Maximum A Posteriori (MAP), and maximum
likelihood (ML) [Ref 12]. The ML is based on the measurement information while the MAP is
based on the expectation from the filtering analysis. As described by the Kalman Filter, we see that
ML is used in the association. Estimation and prediction filtering use the MAP which is achieved
from a Bayes analysis. In determining the true target analysis, we also desire to determine the error
of the analysis using a false alarm metric:

" False Alarm Rate - Number of false detections per square kilometers (km 2).

" Track Metrics: (Level 1)

" Probability of Track Detection (PDT) - Ratio of detected tracks (NDT) to true track number (NnT).
(PDT = NDT / NTT).

" Track False Alarm Fraction (FT) - Ratio of false tracks (NFT) to total tracks (N.T). (FFT = NFT /
Nr4).

" Track Continuity - Average number of tracks formed per trajectory of a single target. Ideally
equal to 1.

" Track Purity (Tp) - Ratio of track segments in an integrated track that belongs to same target (or
group of targets (Ns), to total number of segments in a track (NrsT). (Tp. = NTs / NTsT).

" Track Position Accuracy - Root Mean Square Error between ground truth and tracker target
positional estimates:

I N-1

RMSETPA(N) i--[(x-a)2 +(YG' _) 2] (meters)
•A i=0

* where, x.i, yi. are sensor estimates of target positions, ai, fli are true target positions, and N is a
specified number of samples defining the observation period.
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Track Heading Accuracy - RMS Error between true target heading and sensor estimates of target
heading:

1 N-I
RMSETHA(N)= -•-(O ,- (degrees)

* where 0, is sensor estimates of target heading with respect to North, qi. is true target heading with
respect to North, and N is a specified number of samples.

Track Velocity Estimate Accuracy - RMS Error between truth velocities of targets and sensor
velocity estimates of targets:

'1 N-I

RMSETVA(N)= ±-IvV)2 (meters/sec)

* where v.. are sensor velocity estimates of targets, V.j are target truth velocities, and Nis a specified
number of samples.

Target Flow Rate Accuracy - Root Mean Square Error between estimated target flow rate and
truth target flow rate:

I1N-I
RMSEFE(N)= -- ( )2 (degrees).

* Ni= 0

* where &j. is estimated target flow rate (targets/sec), y,. is actual target flow rate, and N is a specified
number of samples.

Situation (Relationship) Assessment Metrics (Level 2):

Situation awareness or assessment is typically evaluated based on mission needs. At higher levels
of fusion, the lower level metrics can aggregated. For instance, individual entity metrics of
accuracy can be aggregated for group metrics such as group spacing, group identity, and relational
aspects of group members (how likely are they to be members of the same group) Situational
metrics are derived from user needs for situational awareness. Metrics include: attention, workload,
trust, and dependability [Ref 13]. Attention and workload correlate to the communications
throughput of the information. While lots of data could be time-consuming, it is assumed that the
fusion system would deliver a parsimonious, reliable set of results to the user. Trust is related to
confidence in presented results. Finally, dependability is related to cost since the situational content
can either take time away from the user (opportunity cost) or minimize the effort needed to explore
alternatives. As an example of situational metrics, we suggest relationship association (matching of
level one entity attributes of tracking and identification to relationships) metrics:

"* Probability of Correct Association (P.cA) - Ratio of the number of correct needed relationship
correspondences in L2 fusion outputs to the number of truth relationships needed to complete
mission.

"* (PcA = NcA / NcAO).

"* Probability of relationship detection (PTcA) - Ratio of the number of correct track entity
correspondences in L2 fusion outputs, (Nrc), to number of truth relationships needed

"* (NTco). (PTcA. = NTc / NTco).
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" Percentage of False Relationship Declarations - number of false relationship declarations divided
by the number of truth plus false relationship declarations

" Accuracy of Relationship State Update Declaration -percentage error in the needed relationship
declaration reported confidence at or before time needed to complete mission averaged over all
relationships needed.

"* Impact Assessment Metrics (Level 3):
"* Impact assessment relates to benefits, costs, and risks. Since a fusion system is employed to reduce

uncertainty, maximize information, or maximize probability of mission success, it is important to
choose metrics that address tradeoffs as a function of risk of mission failure. For example, typical
risk metrics include:

"* Aircraft Survivability - probability that the platform survives the mission (e.g., jeopardy from
threat) and

"* Target Vulnerability - vulnerability of prospective target to own ship aggressive action.

"* Four typical L3 fusion metrics are:

"* Percentage of correct coarse of action prediction over all threats in time for defensive action --

correct COA predictions/total number of COA predictions needed
"* Percentage of correct coarse of action prediction over all targets in time for offensive action -- #

correct COA predictions/total number of COA predictions needed
"* Accuracy of the probability of survival, Ps, in time for defensive action: [Ps(computed) -

Ps(truth)]/ Ps(truth)
"* Accuracy of the probability of vulnerability, Pv, in time for offensive action : [Pv(computed) -

Pv(truth)]/ Pv(truth)
"* Another Level 3 metric could be an exponential time decay (based on the a priori information) on

the confidence of information generated over time. The longer the delay means the higher the
uncertainty in mission completion and the greater the risk.

" To measure interactions between future fusion system designs and users needs, additional metrics
are required. Blasch et a[. [Ref 14] discuss a set of fusion metrics to bridge the user-fusion gap.
The metrics chosen include timeliness, accuracy, throughput, confidence, and cost. These metrics
are similar to the standard QOS metrics in communication theory and human factors literature, as
shown in Table 1-1.

Approved for public release; distribution is unlimited 14



Communication Human Factors Info Fusion ATR/ID Track

Delay Reaction Time Timeliness Acquisition/ Update Rate
Run Time

Probability of Confidence Confidence Prob. (Hit), Prob. Of Detection
Error Prob. (FA)

Positional Covariance
Delay Variation Attention Accuracy Accuracy

Throughput Workload Throughput No. of Images No. of Targets

Cost Cost Cost Collection No. of Assets
platforms

Blasch, Hoffman
Stallings 2002 Wickens, 1992 Blasch, 2003 Blasch, 1999 2000

Table 1-1: Traditional Metrics for Various Disciplines

2. Performance Evaluation Solution Space

DF system PE solution space framework is based upon interpreting PE as a fusion function where PE
metrics are estimated based upon the association of fusion outputs with truth or other fusion outputs.
As such alternative applications-layer PE solutions can be described using the data fusion portion of
the Data Fusion and Resource Management (DF&RM) Dual Node Network (DNN) technical
architecture. Thus the PE solution space is organized as a network of PE functional nodes where each
PE node performs fusion and truth data preparation, data association, and MoP state estimation. The
PE network and node design guidelines strive to achieve the knee-of-the-curve in PE 'fairness" and
complexity. Descriptions of candidate PE network and node framework are organized in this Section
as follows. Section 2.1 describes the Performance Evaluation System Role Optimization; and Section
2.2 outlines the methods for Performance Evaluation Fusion Network Optimization. Section 2.3
described the PE Fusion Node functional components.

2.1 Performance Evaluation System Role Optimization

The first step in the PE system development process is to define the role for the performance
evaluation software based upon the scenario performance evaluation requirements.

2.1.1 PE System Concept of Operations (CONOPS)

Performance Evaluation of blue and red (friendly and hostile) distributed DF&RM is performed within
the AFFTC Test and Evaluation (T&E) as depicted in Figure 2-1. For this research PE will be
performed within the CMIF Distributed Fusion Performance Evaluation (DFPE) testbed described in
our CY04 final report. The CONOPS within the AFFTC remains to be determined based upon their
distributed fusion environment.
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Figure 2-1: Performance Evaluation Operates within the AFFTC T&E Framework

The PE measure of mission effectiveness (MME) for this research is the fairness of the PE result
achieved within the budget for this effort.

2.1.2 PE Black Box Design

The baseline black box role for Performance Evaluation is shown in Figure 2-2. Namely, PE receives
the tactical picture and response commands output from the test article fusion nodes. PE receives the
best estimate of truth from the scenario generation stimulus. PE is receives sensor status from the
sensor models and other scenario related information from support services. PE outputs its results and
receives commands from the analyst. The PE system can be developed using the DNN architecture to
specify a network of PE nodes. Each PE node estimates the fused track file MoPs based upon the
association of the Consistent Tactical Picture (CTP) tracks with truth or other fusion tracks.

Generation

TTruth Tracks

Sensor LiimSModels Performance
[ 1 [ Evaluation MOP'S,

SensorI /
Reports I I 1

I / l lAssociation

i " • • • TTiming/sizing
F u sond° C T P i ack up dates

Figure 2-2: Sample Performance Evaluation Associates the Distributed Fusion System CTP

Tracks with Truth Tracks to Generate MoPs
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2.1.3 PE System Role Optimization

The PE system role evaluation for role optimization is based upon the PE MME and measures of
effectiveness (MoE) and their derived MoPs as described above. The following sections describe how
the PE network and nodes are designed to achieve the knee-of-the-curve in PE system performance
versus cost based upon further breakdown of the MoEs. In general, PE role optimization criteria
include

- PE fairness (e.g., accuracy especially for those MOPs that distinguish the envisioned
SUTs)

- PE system cost & complexity (e.g., usually stipulated as a constraint budget)

2.2 Performance Evaluation Fusion Network Optimization

2.2.1 PE Requirements Refinement

Specific PE MoPs will be defined after the distributed fusion system under test (SUT), its
MME/MoE/MoPs, and scenario environment has been determined. Other quality factors such as
reliability, redundancy, maintainability, availability, portability, flexibility, integrity, reserve capacity,
robustness, etc. will be considered later.

2.2.2 PE Fusion Network Design

The PE MoP estimation requires the association of the DF SUT Consistency Tactical Picture (CTP)
output tracks to the truth or other fusion SUT track entity states. To simplify this discussion the track-
to-truth solution approaches will be described in remainder of Section 2 herein. The track-to-track
extensions are similar.

A trade-off of performance versus complexity must be made to design the track-to-truth association
and resulting MoP estimation software. This Section describes how the CTP track data is to be batched
(e.g., over time, scenarios, platforms, sensors, reports, etc.) to be processed by PE nodes. Section 2.3
then specifies how the scoring for each PE fusion node for association with truth is to be accomplished
(e.g., track-to-truth association scoring).

The best performing approach is to take all the data from a scenario in one large batch and then
perform an 'optimal' (retrospective) estimation of the MoPs with appropriate consideration of the
association of all the information over all time. Note however that there is still the choice of PE
network design that influences the results for any batching strategy. To reduce the cost and complexity
of the association part of such an approach significantly, the traditional approach is to associate each
CTP track to the truth entity that originated 'most' of its associated reports over the scenario. The flaws
in this solution include the following:

"* two CTP tracks can have 'most' of their associated reports from the same truth track,
"* many accurately associated reports may not compensate for a few inaccurately associated

reports,
"* forced associations are not indicative of the true performance (e.g., for crossing entities where

the only ambiguity is at the cross, the CTP track may switch truth entities at that point and then
have what appears to be many incorrect associations thereafter).

Approved for public release; distribution is unlimited 17



"* flipped entity associations due to close tracks that do not have 'most' of their associated reports
from any one truth entity, and

"* PE association solution relies on the association accuracy of the distributed fusion system
nodes that it is trying to evaluate.

Note that one could also select to 'not decide' how to associate the CTP tracks to truth for 'hard to call'
ambiguous cases, thus necessitating another MoP (e.g., ambiguity percentage).

A driving requirement on the PE design is to minimize cost/complexity. In contrast to a batching
approach, the simplest PE tree is one report at a time; however it has the least accurate association.
One simple solution for this tree is to associate the CTP track update with the truth from which the
associated report was generated. However, this solution, as for the one above, relies on the association
accuracy of the fusion nodes. Another approach is to score and select the CTP to truth association
based upon the updated CTP and truth states every time the CTP is updated. This has the benefit that
the PE tree is batched identically as the fusion tree is batched. The fundamental flaw with these one
update at a time fusion trees is that the same CTP track could associate to many different truths over
time and vice versa. Thus, these simple PE trees would not detect that there may be more or fewer CTP
tracks than truths.

What really counts in meeting the requirements is to measure in the PE process how accurately the
CTP reflects the truth. To achieve that with minimum cost, the baseline PE fusion tree will associate
the current CTP to truth at selected time pointsand then estimate the MoPs using this association at the
necessary time points (e.g., at updates), as described in Figure 2-3. In this approach, the whole CTP is
associated with the complete truth states using all available information (e.g., kinematics, attributes,
ID/type). However, there are sub-optimality problems with this batching of the track-to-truth
association. These include any situation where taking a larger batch of data would remove ambiguities
(e.g., using an MHT or a Lagrangian Relaxation over multiple time points). However, since the
proposed PE fusion tree is batched using all output CTP tracks, a new association and an updated MoP
estimation is performed for each PE node. This has the advantage of providing local performance
evaluation and avoids the harder problem of determining an association of a CTP track to a truth entity
over all time. For example, for crossing entities where the only ambiguity is at the cross, the CTP track
may switch truth entities at that point and then, for the full time batch approach, would have, what
appears to be many incorrect associations thereafter.

Cumulative PE nodes are added to meet the requirements for the integration of the local evaluations
over time, platforms, data types, and scenarios. The MoPs at each time point are integrated in the
Cumulative PE Node, as shown, to estimate full scenario MoPs. Performance criteria integration issues
will described later. An alternative tree design is to perform the fused track association based upon an
historical PE associations and states (e.g., using confirmed track-to-truth associations) and then to
update the current and cumulative MoPs sequentially. This would be shown in the sample PE network
Figure by removing the Performance Evaluation node and doing both the current and the cumulative
association and MoP state estimation in the "Cumulative PE Node" shown. However, to simplify the
PE node processing for our case study, the baseline tree design is to have a separate Cumulative PE
node.
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Figure 2-3: The PE Fusion Tree Is Partitioned by Time Enabling Full CTP Evaluation Against
Truth.

One of the issues in PE network design is how often to allow track-to-truth associations to switch (e.g.,
from track A associated with truth I to track A associated with truth 2). Switching strategies become
important for fusion MoPs where the length of time that a target is in track or tracks on different
platforms are consistent impacts the mission. The track-to-truth association process for each track
batch shown in Figure 2-3 is independent of the processing of the prior time intervals since the PE
nodes do not store and carry ahead any piece of information for its next recursion (or instantiation) as
would be possible in the alternative just described above.

Another PE network would be needed to implement a "No Switch Strategy" that requires solving the
track-to-truth association problem for the whole scenario all at once. This could be done by optimizing
the association hypothesis scores for all feasible multiple time point batches within one fusion node
such as depicted in Figure 2-4. Another approach is to apply this "no switch" restriction only over time
windows in the scenario. These can be shifting windows or fixed in front of an engagement time. A
window of size 5 in a single fusion node is shown in Figure 2-5.

.Batch-I Batch-2 Batch-3 .Batch-4 Batch-N Batch-1 .Batch-2 .Balch-3 .Batch-4 Batch-5

-l1E H E ti

LJLJL ILE ... J EE3HE1tE-4

HE-n

HSI HS

Figure 2-4: No Switch Strategy PE Node. Figure 2-5: Windowed Switch Strategy
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The time-batched recursive PE network structure implemented in our initial research is shown in
Figure 2-6. In this PE network there was a PE node for the ownship fused track files generated on each
of 2 fighters and a PE node for the consistency of the ownship track files at each time point. The data
preparation, track association, and MoP state estimation components of each of these PE nodes are
shown. The cumulative PE node which had trivial data preparation and association is represented by
one PE node box for each of the 3 PE nodes at each time point. Note that different track-to-truth
association approaches can be applied in each PE node at each time point (e.g., during ingress, attack,
egress) as necessary.

Time = T Time= T + t
Node-I Node-2 Node-3

Simulation Data

Data Preparation

Track - Truth
Association

Local MOP L- - L- L--
Estimation ,_ ,

MOP Aggregation

Figure2-6: Case Study PE Node Structure

Figure 2-7 shows a sample PE network (i.e., a tree in this case) for performance evaluation of
distributed platform fusion consistency (a notional case of aircraft, ISR platforms, and UAVs is
shown). This PE network can be used to perform track file consistency evaluations across platform
types. There are numerous PE networks that can be tailored for each distributed fusion SUT, scenario,
fusion MoP, etc.
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Figure 2-7: Sample PE Network (Tree) for Distributed Platform Fusion Consistency

In summary, PE nodes can be batched across DF&RM SUT levels (e.g., signal, entity, relationship,
COA impact), MoPs, scenarios, time, SUT nodes, and entity type (e.g., air, ground, sea, space). PE
nodes may also be tailored to the type of DF nodes being assessed (e.g., for sensor, platform, & DF
level metrics). PE temporal window size may be mission or weapon dependent (e.g., continuous track
fragments for launch). PE nodes perform track-to-truth association to generate accuracy metrics (e.g.,
coverage, kinematics, ID). PE nodes perform track-to-track association to generate distributed fusion
consistency MoPs (e.g., for internetted operations requiring common situation awareness). PE nodes
may need probabilistic track-to-truth association for DF test articles with numerous false tracks.

2.2.3 PE Fusion Network Optimization

The PE MoPs are used to perform PE network evaluation to support feedback PE network optimization
of the design. This is typically done qualitatively for PE network design and can be done quantitatively
for PE node design evaluation to be described in the next Section.

2.3 PE Node Optimization

2.3.1 PE Node Requirements Refinement

In this segment of the PE solution methodology the PE MME/MoE/MoPs from the PE Network
Refinement are further refined for each PE node in the network designed above.

2.3.2 PE Node Design

2.3.2.1 PE Node Common Referencing

This segment of the PE node development methodology contains the data mediation, coordinate
transformations, misalignment compensations, and time propagations as needed to support PE data
association.

2.3.2.2 PE Node Track Association
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Hypothesis Generation
In this function the PE node will gate out infeasible track-to-truth associations. Standard techniques are
used here.

Hypothesis Evaluation
First a comparison of association hypothesis evaluation scoring schemes extracted from the CMIF
Scoring report is given herein. Then a tailoring to PE is described.

The most widely used rigorous scoring approaches are the max a posteriori (MAP) criteria for data
association and state estimation. The most common of these is the deterministic association. This
standard MAP deterministic data association criterion is used to select the "best" hypothesis that is
then used to generate the MAP estimate of the system state. The second scoring approach updates the
track state confidence for each report based upon its relative association confidence score. This has
been termed probabilistic data association [Ref 15]. The third criterion is the joint optimization over
state and association hypotheses. The three MAP scores are defined as follows:
"* Deterministic Data Association, then Target Estimation

max P(H I reports) = max [P(reports I H)P(H)] then max P(O I H, reports)

"* Target State Estimation with Probabilistic Data Association

max P(O I reports) = max [ P(O I reports, H)P(H I reports)]

"* Joint Association Decision and Target State Estimation

max P(H, 01 reports) = max [max P(0 I reports, H)] P(H I reports)

where H is the association hypothesis and 0 is the object state estimate.

The 1 st deterministic association strives to decrease the error probability of track estimation by
eliminating data outliers, which are data observations that lie outside a specified confidence interval,
typically 0.95 or 0.99. Two common techniques used to eliminate outliers are establishing a figure of
merit (FOM) and gating. Both of these techniques work by selecting only those data observations that
lie within a predetermined error threshold. One way to measure the distance between an established
track for a target and a single observation in question is the Mahalanobis distance. This is the measured
distance normalized by measurement and track error variances. The Multiple Hypothesis Tracker
(MHT) works with deterministic association to handle multiple sensor types, multiple platforms, out-
of-sequence reports, and both kinematic and attribute-based sensors. The multiple hypothesis method
allows the consideration of lower confidence scenes caused by lower confidence associations. When an
association is ambiguous, multiple models are created and a collection of likely hypotheses are
selected (i.e., creating what is called multiple scenes). When new data arrives the prior scenes
confidence are modified causing pruning of lower confidence scenes, new scenes, and updates of prior
scenes.

The 2 nd Probabilistic Data Association (PDA) is an approximation to the optimal recursive Bayesian
data association strategy. The PDA is a single target algorithm, so each track is filtered in isolation,
and it is assumed that any measurements due to other targets can be lumped into the clutter. The PDA
enforces the single measurement assignment constraint, namely each target track is only allowed to
form at most one measurement. There are two forms of the PDA, known as the parametric and
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nonparametric PDA. In the parametric PDA, it is assumed that the rate parameter of the clutter density
(2) is known. In the nonparametric PDA, the rate parameter is unknown and is approximated using
A.approx = m/V. An alternative nonparametric PDA in [ 14] uses the approximation )LApprox. = n/A where A
is the area of the entire surveillance region. This has been extended to a multiple target filter termed
the PDAF. The 3 d MAP approach defined above is a hybrid of the above 2.

The deterministic MAP score (i.e., the term "score" is used since it is not necessarily a probability) of

the data association hypothesis, H, given the report data, R, is as follows:

max P(H1R) = max P(RIlt) P(H) /P(R) = max P(RIH) P(H) (1)

H H H

where,

P(RIH) is the probability density of the reports given H
P(H) is the a priori probability of the association hypothesis, H,
P(R) is the a priori probability of the reports which is independent of H.

It is convenient to utilize the independent nature of the operations of most platforms. If one assumes
independent tracks, P(RIH) can be computed as a product. The score can also be computed recursively
over time. This is typically done for time ordered kinematics reports, Yj = {Yj.(O), Yj(l), ... , Yj(7)}, as
follows:

T

P(YjIH) = H P(Yj(t)IYj(O), ... , Yj(t-l), H]) (2)
t=0

At any one point, the overall MAP report-to-track score is the product of three MAP individual scores,

which consists of the following three report-to-track score components:

1. Kinematic scoring: P(Y), usually a product of Gaussian density points,

2. Parametric/attribute scoring: P(Z), a sum of class confidences, P(K), times the priors for the
attributes,

3. A priori hypothesis scoring: P(H) as a product of association hypothesis types.

These three scores can be computed as follows:

max P(!1R) = max {P(RIH) P(H)} = max {P(Y1H) P(Z]Y,H) P(HI)} (3)

T

= max [H {P(Y(S)I Y(T),H) P(Z(S), Z(T)1 Y(S), Y(7), H)}P(H)] (4)
t=0

where
"* The maximization's are over all association and non-association hypotheses, H,

"* H is the set of feasible association or non-association hypotheses,

"* R are the central track and sensor report data,

"* Y is the set of kinematics from both,

"* Z is the set of all parameters and attributes from both which are not available,

" The product is over all independent labeled track, T, hypotheses (i.e., of all 5 types),
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" Y(T) are the track kinematics, the P(Y(T)HI-I) term is dropped as constant with respect to the
maximization,

"• Y(S) are the sensor report kinematics,

"* K are the elements of the disjoint class tree,

"* Z(T) are the parameters and attributes from the track,

"* Z(S) are the parameters and attributes from the sensor report,

"* P(H) is the a priori confidence in the hypothesis.

These three scores are defined in more detail below.

(i) Kinematics Association Scoring
The association hypothesis kinematic scoring for a new incoming sensor report, Y(S) to an existing
track, Y(T) assumes a multivariate Gaussian distribution [ellipsoid], with a central track covariance P
which models the error in the track location due to possible motion. Then the kinematics score is
computed as follows:

P(Y(S)I Y(T), H) = { ( 2 r)d/2 I 1/2 exp[-1/2 {iT.V1 I}] (5)
where
"* Y(S) are the sensor report Gaussian kinematics with covariance R,

"* Y(T) are the track Gaussian kinematics with covariance P,

"* H is the hypothesis that the report and track are associated,

"* d is the dimension of the Gaussian kinematics state,

0 IV1P is the determinant of the innovations covariance, V=[ bpqOT+ Q] + R,

0 0 is state transition matrix, Q is the noise covariance, and the measurement matrix, H, is the
identity,

* 1 is the innovations vector, I = Y(S) - Y(T).

When all the covariances remain constant then the first term can be dropped. This yields the classic
Mahalanobis distance measure in the exponent after taking the log and multiplying by (-2). When
doing so these conversions also need to be applied to the non-commensurate and a priori scores given
below.

(ii) Parametric/Attribute Association Scoring

The second term is computed as the product of commensurate attributes and non-commensurate. The
commensurate Gaussian parametric data (e.g., both sensors measuring RF, PRI, and/or signature) are
computed similar to the kinematic terms above. The non-commensurate attributes (e.g., radar or IR
signature and emitter parameters) are independent when conditioned upon the class of the object.
Thus, their association compatibility is computed using the probability of the disjoint object classes
that they imply. This, non-commensurate score measures the similarity in the platform classifications
implied by dissimilar source data. This is accomplished using a disjoint class tree breakdown defined a
priori according to the ID capability of the sources for each fusion node. To use non-commensurate
scoring requires the attributes and parameters, Z, in the report and track data to be independent when
conditioned on the feasible platform ID classes. Namely, information about Z(T) does not help estimate
Z(S) when the platform class K is known for each class K. Under this assumption for each report and
track pair, the second term scores an object track ID tree with a sensor report ID tree as follows:
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P(Z(S), Z(T)IY(S), Y(T), H) = P(Z(S)IY(S), M) P(Z(T)I Y(T), H) [Y2{P(K1Z(T),Y(T), 14) X

P(K1Z(S), Y(S), H)/P(K]Y(T),Y(S), H)}] (6)
where:
"* The first two terms in front of the sum are constant with respect to the maximization when they

appear in every hypothesis (i.e., as they do in this option, so they are ignored here), also the
kinematics conditioning has been restricted to each report and track, respectively,

"* The first term after the sum is the class K element of the object track ID disjoint class tree, since
the conditioning on Y(S) can usually be dropped due to Y(T),

"* The second term after the sum is the class K element of the sensor report ID tree corresponding to
that object since the conditioning on Y(T) can usually be dropped due to Y(S),

"* The third term after the sum (i.e., in the denominator) is the a priori probability of that class K
[Note: when denominator is 0 for an ID class K, then whole term in the equation sum is 0], and

"* The term components are as described above.

The class tree for each sensor and each report is conditioned on only its own kinematics and attributes.
Thus, it is derivable from each sensor individually. Also, when either the report or track
noncommensurate attributes do not contribute to the ID, these non-commensurate terms in the equation
sum to one (i.e., the class K terms in the tree are disjoint and cover all possibilities). This term only
rigorously applies when the current sensor report attributes are non-commensurate with the track
attributes. If previous report attributes have already been fused (i.e., integrated) with the track
attributes, then these previous attributes would implicate corresponding attributes in the current report
even given the platform class K. Thus the report and the track attributes would be commensurate.
When such attributes are available, it is better to use the commensurate scoring in both the report and
track (e.g., pulse descriptors, IR signatures, etc.).

(iii) A Priori Association Hypothesis Scoring
An association hypothesis is composed of the following types of hypotheses: (1) Association, (2)
Report on pop-up object (i.e., a track initiation), (3) False Alarms, (4) Track Propagation, and (5)
Track Deletions. P(H) is the probability of H computed using the following (as available):

"* Probability of detection and false alarm statistics

"* Number of reports from each source

"* Source field-of-view, operating mode, and conditions

"* A priori scene descriptors and probability of redetection
"• Object birth and death statistics
The a priori hypotheses terms, P(H), use the following approximate scoring equations for each sensor
report Sand track Thypothesis :

P(association) = [I- PA (S)][l - PFA(T)]JP(S)PD(T)

P(pop-up) = [(1-PFA(S))(I-P,(T))P,(S)]

P(FA) = [PA(S)P(S)]

P(propagate) = [(I - PFA(T))(I - P,(S))P0 (T)]

P(drop) = [PFA(T)PD(T)]

where
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* PD(S) is the probability of detection of this object reported by the sensor, which is determined by
sensor testing. Its primary use is in scaling the probability of track propagation, since it appears in
all of the report hypotheses. It is estimated as the probability of redetection for the association
hypothesis, and as a result is usually high (e.g., >.9). In the hypothesized case of an initial detection
by a sensor, the term in the pop-up, FA, and propagate hypotheses is the probability of detection of
a new object.

e P.FA(S) is the probability of false alarm (FA) of the sensor for this type of report, which is also
determined by sensor testing. It can be approximated as the expected number of false alarms (i.e.,
under these report conditions) divided by the number of detected objects plus this expected number
of false alarms over the field of view (FOV),

* PD(7) is the probability of detection of this object in the central track file, which is the combined
probability of detection of this object by any of the sensors contributing to the track file (i.e., as
updated in the last fusion node using the equations in the state update) multiplied by [1- P(new
object appearing during this time interval)]. If the former term is very near one, then this term is
dominated by the [1- P(new object appearing during this time interval)] term. Poisson arrival
statistics, if available, are used here. If the probability of false alarm is low enough that a detection
starts a track, then the value for P.0 (T) from the last fusion node can be used as defined in the state
update.

& PFA.(T) is the probability that this track is a false alarm, which can be estimated by maintaining the
track existence confidences over time plus considering the probability of track death during this
time interval. The former FA probability will usually decrease over time due to increased tracking
confidences. If this resulting track confidence is very near one, then this term is dominated by the
probability of track death (i.e., dying in the field of view (FOV) or moving out of the FOV). This is
where Poisson track death statistics, if available, are be used. The updated value for this term from
the last fusion node is used.

For the non-association report hypotheses (i.e., pop-up initiation, and false alarm) the expected value
of the kinematics score is used. Namely, the kinematics score equation is used except that the chi-
square statistic (i.e., {IT V.-1}) is replaced with its mean1 1 . Namely,

" u = .455 for 1 degree of freedom (DOF) (e.g., bearings-only)
"* p = 1.39 for 2 DOF (e.g., x andy)

* ,= 2.37 for 3 DOF (e.g., Cartesian (x, y, z))
• ,= 3.36 for 4 DOF (e.g., 2 dimensions with rates)
S/= 4.35 for 5 DOF

* p• = 5.35 for 6 DOF (e.g., Cartesian (x, y, z) with rates)

Also, for the non-association report hypotheses the innovations covariance is the report covariance, R,
for which the inverse square root of the determinant is taken for the up-front multiplier in the
kinematics scoring equation. The noncommensurate term for the non-association report hypotheses is
constant with respect to the maximization, since the class tree term sums to one. So it can be ignored.
Thus, the non-association report hypothesis score is the product of their (i.e., pop-up and false alarm) a
priori score given above and their kinematics term with the above two values used in its "V"
innovations terms.

For the non-association track hypotheses (i.e., propagation, and drop track), the kinematics, P(Y(T)),
and noncommensurate terms are all constant with respect to the maximization. Thus, all the non-
association hypothesis scores have just the above a priori terms, except the pop-up and the report false
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alarm which all have only the additional expected value kinematics multiplicative term. Each
association hypothesis has all the three of the terms defined above, where the non-commensurate term
is unity whenever either the report or the track do not provide a platform ID tree.

Max A Posteriori Hypothesis Optimization Summary
The total scene hypothesis score is the product of the individual hypothesis scores for how all the given
batch of reports and tracks are associated (i.e., for each of the 5 types of hypotheses). An example is as
follows:

6 Association Hypotheses

P(Y(S)jY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = {[VI•" 2.} exp[-1/2 {IT V .- })] x
{ZK[P(KIZ(T),Y(T), H) P(KjZ(S),Y(S), H)/P(KIY(T),Y(S), H)]} x [I-PFA (S)] [1- P.FA.(T)] P.D (S) PD
.(T) (8)

2. Pop-up (i.e., Track Initiation) Hypotheses

P(Y(S)IY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = {E(IVI1- 2 )}exp[-l/2 {} ] x [I-P.FA.(S)] [1- PD(T)]
PD (S) (9)

3. False Alarm (FA) Hypotheses

P(Y(S)]Y(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = { E(IV[r" 2 )} exp[-1/ 2{ p}] x PFA .(S) PD (S) (10)

4. Propagation Hypotheses

P(Y(S)IY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = [1-P.FA.(T)] [1- PD(S)] PD.(T) (11)

5. Track Drop Hypotheses

P(Y(S)IY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = PFA (T) PD(T) (12)

In PE these a priori probability of detection and false alarm values are summarized as follows:

" PD(S) is the probability of detection of a truth track in the CTP track file (i.e., probability that a
truth will appear in the CTP track file). To begin with we will specify a finite constant
probability of the fusion output CTP track file not containing a truth entity that should have
been detected (e.g., the CTP Pd value). This term will then be multiplied by the [1- P(a truth
should not appear in the CTP track file (e.g., since it is new during the last time interval or not
detectable yet)]. New truth arrival statistics and sensor coverage statistics are used here. When
available the values of this term estimated by the fusion system will be used.

"• P.FA(S) is the probability that this CTP track is a false alarm, which to begin with is estimated to
be the CTP Pfa for track S. This value is then multiplied by the probability of truth track death
(i.e., dying in the field of view (FOV) or moving out of the FOV) before the CTP drops track.
Track death statistics and sensor false alarm statistics are used here. Also, when available the
values of this term estimated by the fusion system will be used.

"• PD.(T) is the probability that a valid CTP track will appear in the truth track file. This is
presumed to be 1.0 to begin with (i.e., the truth file contains all valid entities).

"* P.FA.(7) is the probability that truth is a false alarm (FA). To begin with this equals 0.0.

The CTP false hypothesis score is the product of its a priori score given above and its kinematics term
with the above value for p. For the non-association truth propagation hypothesis (i.e., fourth line of
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equation), the kinematics, P(Y(T)), and noncommensurate terms are all constant with respect to the
maximization. Thus, all the non-association hypothesis scores have just the above a priori terms,
except the CTP false hypotheses that have the additional expected value kinematics multiplicative
term. A key research issue here is what to use for this expected value when it is not constant. For PE,
the E(IVr"' 2) can be approximated by using the weighted average of all the feasible track to truth
association V's where the weights are the values in the association hypothesis matrix along the track
row.
In summary, the total scene hypothesis score to begin with is the product of the individual hypothesis
scores for how all the given batch of CTP tracks and truth tracks are associated (i.e., for each of the 5
types of hypotheses). In effort the typing is not significant to begin with, so the equations become as
follows:

> Association Hypotheses
P(Y(T)IY(S),H) P(H) = {IV[-"2 } exp[-1/2{ImVl I }] X
[1-PFA (S)] [I- PFA.(T)] X PD.(S) P.D.(T) (13)

> CTP Pop-up of Non-Truth Hypotheses (for spiral 1, probability = 0) (14)

> CTP False Hypotheses
P(Y(T)IY(S),H) P(H) = E(IV" 2.) exp[-l/2{fp}] X P.FA.(S) PD(S) (15)

> Truth Propagation Hypotheses
P(Y(T)IY(S),H) P(H) = [l -PFA.(T)] [I- PD(S)] PD (T) (16)

>' Truth False Alarm Hypotheses (for spiral 1, probability = 0) (17)

Hypothesis Selection

Many fusion problems are solved by first selecting the "desired" association of the data and using this
association to update the state. This deterministic data association then becomes a nonlinear labeled set
covering problem (a subclass of 0-1 integer programming problem).. This deterministic data
association problem formulation using max a posteriori scoring is defined as follows:

Let J = {j I AJis a labeled feasible track) require the hypothesis H to satisfy H c J and U2A = {reports}

Assume that for any H in the {I.A I reports) V j c H are independent, then the max P(H I reports) is the

solution to the linear set covering problem.
mixn I PiXi

jJJ

where I AXj >I 1
jEJ

Pj = - log[P(A' I reports)] Ž 0

Xj  {0 °therwisE Vj e {all current feasible tracks)

AY {ý if E Vi e {all prior feasible tracks and current reports)0otherwise

if A', Vj c H, is required to be disjoint then an equality constraint is used.
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Basically, the hypothesis selection algorithm in data association generates collections of feasible
tracks, called candidate scenes, and then selects the scene(s) to be retained and used in state estimation
to generate the situation assessment estimate for the user. Set covering search algorithms are selected
based upon problem constraints, complexity and performance requirements. Irrevocable decision
heuristics are the simplest but worst performing. Breadth-first approaches require more memory;
however, they have less computational burden for a given performance level as compared to the
depth-first approaches. Many decades of operations research provides a rich heritage of efficient
algorithms from which to select from. All of these depend upon robust and accurate HE scoring
described above which are much less mature.

Deterministic data association is a standard approach for PE. For this approach, the scene with the
"best" (i.e., highest) association score (i.e., product of each of its hypotheses scores), as found in HS, is
selected for use in MoP state estimation. The baseline design is a 2D assignment algorithm (e.g., JVC,
Munkres, etc.) that will be applied to the association matrix of scores computed as described above. To
meet the square matrix requirement for the strict assignment problem solution extra rows or columns
will be added to the association score matrix. To do so an extra 'missing CTP track' row will be added
for every truth track over the number of CTP tracks. Scores in these rows will be the CTP false
hypothesis scores above. For the case of more CTP tracks than truth tracks, an extra 'false alarm truth'
column will be added for every extra CTP track. The scores in these columns will be the truth
propagation hypothesis scores above.

2.3.2.3 MoP State Estimation per Fusion Node

The fusion node refined MoPs are used to ascertain how well the distributed fusion subsystem achieves
its performance goals and as such form the basis for the each PE node state estimation. Typical MoPs
are as follows:

1. Average CTP track position accuracy
2. Percentage of conflicting CTP track types
3. CTP sensor coverage preservation
4. CTP coverage improvement ratio over any one sensor/source
5. Average CTP probability of false alarm
6. Percentage of correct fusion system associations
7. Average time from detection receipt to CTP update

A traditional CTP kinematics accuracy MoP is the standard deviation over time of the error in the CTP
updates after detection averaged over all tracks for each test case. This traditional measure is the
second moment of the associated CTP location state error density. It is based upon the first moment
(i.e., mean error). The mean error in the track estimate, preferably in independent coordinates for each
warfighter CTP platform and for each associated track entity, Ti., at each selected time point (e.g., CTP
update times) in each scenario is computed as the average of the individual errors:

Platformj error in entity Ti (time t) = (true location of the entity associated with T1}(time t) -

platformnj CTP tracker location estimate for Ti} (time t) (18)

These errors can be computed at each CTP PE evaluation time for each track, T"i. This may require
propagation of the truth track. For evaluation where the CTP track propagation accuracy is also
important the difference above is taken at the current time. For tracks where the current time is not the
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CTP update time, this requires that the CTP updated state be subtracted from the associated truth track
at that time. In both cases for detailed PE, it is useful to plot the mean error over time for each
dimension (e.g., in position and velocity) with the standard deviation of the track error as computed in
the CTP tracker for each track output from each platform in each scenario. Even without Monte Carlo
runs, the number of kinematics error and standard deviation plots over time is very large (e.g., [# P, V
dimensions]x[# tracks]x[# fighter platforms]x[# scenarios]). Thus, it becomes desirable to utilize an
overall performance measure to capture large portions of the kinematics error information.

Error combining approaches include the standard deviation, the weighted RSS error measure, and the
weighted average performance (i.e., {ZYk. (lerror (k)I / o(k))}/K). The off-diagonal covariance terms
(i.e., joint moments) can also be estimated, if needed (e.g., if highly range dependent errors off-axis
exist). The standard deviation (the second moment) is then the square root of the following:

Variance of the error = {fj. (measured error (j) - mean error (j)) 2 }/j (19)

where the sum is over updated CTP tracks and over time for each test case. If the CTP track
covariance, P, is trusted, then the additional measure below provides the covariance weighted RSS
error:
Weighted RSS Performance = {(Z1. (error (j) 2 p(t)(j))} 1/2 (20)

where the sum is over the true entities, j, and P(t) is the updated covariance of the CTP track states.
This latter measure is used when sensors have different errors that need to be weighted accordingly
(e.g., errors are of equal importance).

In all the above approaches the weighting of the error parameters (e.g., over dimensions, time, entities,
platforms, or scenarios) is ad hoc (e.g., uniform or by standard deviation). Similar problems occur with
integrating the error standard deviations. This leads to replacing the standard deviation weightings on
the errors with a constant required sigma for each k and as necessary specifying the requirements on
the error standard deviations. In fact once requirements are brought into the performance measure, a
generally recommended approach is to identify tracking accuracy requirements for each entity, time,
etc. For example one can establish a weapons requirements basket or surveillance window that the
track estimate is required to be within (e.g., being 10 times more accurate than a given window is not
10 times more valuable). In this case the performance can be computed based upon one (or a few) runs
by integrating the CTP output track density (i.e., estimated mean and covariance) over this window
(e.g., centered at the true entity location) to yield the probability of satisfying the user track accuracy
requirements. These probabilities can then be combined rigorously over all entities, time, platforms,
and (if desired) scenarios. If Monte Carlo testing is used (e.g., thousands of runs per scenario) then the
average of the above probability of satisfying user requirements can be computed and compared to the
count over the Monte Carlo runs of the percentage of times that the requirements are met. However,
this approach requires that the kinematics accuracy requirements be specified. What is needed in many
cases is a summary PE measure that can be recursively updated on-line during the distributed fusion
system evaluation.

2.3.3 PE Node Optimization

This segment of the PE node development methodology applies the refined measures to assess the
current point design. The results of this assessment are feedback for improved PE node design or
possibly improved needs refinement.
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3. Mapping Guidelines of PE Solutions to Problem Space

Problem-to-solution mappings provide a segmentation of the problem and solution spaces and rules of
thumb for which areas of problem space are most applicable to each area of solution space. As such,
the problem-to-solution space mappings help the PE designer to decide which PE solution is most
useful for each PE problem. For example, these mappings help the user decide when to batch PE inputs
over time and SUTs; or when to use deterministic, MHT, and probabilistic, track-to-truth and track-to-
track association. In the following subsections we provide tabular representations of problem-to-
solution space mappings for the Hypothesis Generation, Hypothesis Evaluation and Hypothesis
Selection subfunctions of the central Data Association function in a PE node portion of the PE
framework solution space described in Section 2. Further work is recommended to extend these
problem-to-solution mappings and possibly provide an automated tool for more affordable PE system
design especially for novice PE designers.

Also further work is needed to determine problem-to-solution mappings for the PE network and the
other areas of PE node solution space defined in Section 2. For example,the joint probabilistic data
association (JPDA) approach, is best applied where the associations are usually not clear such as when
there is significant clutter and false tracks. In a situation where a platform's radar is generating a lot of
radar clutter (e.g., in an urban environment or with significant countermeasures), JPDA can be used to
estimate the tracking error to the truth. A deterministic association might not give a fair representation
of the error since it may choose false tracks to associated to the truth entities. Another strategy would
be to use multiple scans and use the Lagrangian relaxation approach. Extensions to N-D Lagrangian
Relaxation for many-to-one associations can be used to handle the low resolution radar cases versus truth entity
separations. Track-to-truth bias misalignment estimation based upon confirmed track-to-truth associations can
be applied to provide better track accuracy MoPs. The track ID pedigree can be used to remove significant error
correlations and thus improve track-to-track associations for consistency MoPs.

3.1 Association Hypothesis Generation Problem-to-Solution Space Mappings

A sample problem-to-solution mapping for hypothesis generation is shown in Figure 3-1.
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SOLUTION SPACE 10 E • e 0 • -

i75 M 05m cn : 1 5I <Z< OC0 S5 < 0..0e I<~
PROBLEM SPACE No. of Scans Hypotheses Assignment Evaluation Metric Gating Strategy

Uniqueness

NATURE OF INPUT DATA

*Location Data Y Y Y Y Y Y Y Y Y Y Y Y

*Attribute Parameters Y Y Y Y Y N Y Y Y Y Y

*Taraet Class/ID Y Y Y Y Y N Y N Y Y Y

* Hiah Observation Rate Y Y Y Y

TARGET CHARACTERISTICS

* Location Predictabilitv Y Y Y Y N Y Y Y

* Identitv Attributes Y Y Y Y Y Y Y Y

•Maneuverabilitv N Y Y N Y Y

TARGET DENSITY

Hioh Densitv N Y Y N Y fY
*LowDensitv v Y Y Y NN I IN

SENSOR CHARACTER

*Hioh PFA N Y Y N Y Y Y Y

* Known Obs. Statistics Y Y Y Y Y Y Y

Comolex Sional Prooaoation N Y Y N Y Y Y

Low S:soatial Resolution Y Y N Y N Y Y Y

AVAIL PROCESSSIING/DECISION

*HiahProcessina/LonaTime IYYIYIY YIYI YIYI I I I
*Low Processino/Short Time Y N N N N Y Y v Y N Y

Figure 3-1: Hypothesis Generation Problem-to-Solution Space Mapping

3.2 Association Hypothesis Evaluation Problem-to-Solution Space Mappings

The performance verses cost/complexity trade for data association has yielded sundry solutions
including the following:

"* Simple high confidence only association (e.g., score gating)
"• Deterministic association using assignment or set covering algorithms to search for the "best"

association confidence scores
"* Probabilistic association which updates the track state confidence for each report based upon its

relative association confidence score

All these techniques require a methodology (i.e., from simple heuristics to rigorous probabilities) for
considering alternative track associations. Popular probabilistic scoring schemes include max
likelihood (ML), max a posteriori (MAP), Neyman-Pearson, generalized max likelihood, and chi-
square tests, see Figure 3-2.

One major probabilistic scoring trade is between MAP and chi-square scoring. The former is a point on
a Gaussian PDF whereas the later just uses the chi-square-square distributed exponent of the Gaussian.
The payoff for chi-square is its ability to compare data with differing dimensions. Whereas MAP
requires ad hoc apriori assumptions on the probability of receiving the extra dimension (e.g., range)
data given the association hypothesis, P(RiI). However, chi-square scoring does not enable rigorous
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comparisons with non-Gaussian data such as non-commensurate attributes and a priori data. Also the
chi-square tends to give to much weight to lower confidence far away tracks as shown in Figure 3-3.
The MAP scoring scheme provides for rigorous comparison of multi-spectral data.

Max A Posteriori (MAP) and Min Probability of Error:

max P(RI H)P (Hi) min P(diIH 2)P(H 2) + P(d1 !H))P( H )
H.,

Max Likelihood (ML): d, R = Sensor Reports X and Y

max P(R1 H1 ) - P(RM Hi) > H1 = Association Hypothesis
P( RI H2) < H2 = X and Y Not Associated

d2

Neyman-Pearson (NP):

Fix P(d2zH1) = a Then max P(d 21H2) - min P(d 2 IH1

(NP is a Uniformly Most Powerful (UMP) Test a is a level-of-sianificance
B = -P(d1 1H2 ), the power-of-test, is maximized.)

P(RIHi) > ? where cX= JP(RIH)dRandD2={RIP(RIH1 )-P(RIH2 )<O}
P(RIH2) < D

d2 2

Generalized ML: (Not Necessarilly a UMP Test)
d1

Fix P(d fl -1,) = Cc, Then .m ax P(RI H i) ' >max P(RI H2) <
d2

di

- (X-YVI(X-Y) < -2 lnW) (For Gaussian Errors) where X is defined by
d2

Area Tail X2 = aX

-2 In (00

Chi-Square Tail Test:

Fix P(d 2IH 1) = a Then Test for Rejection of H1: Mean of(X-Y) = 0

• di

JfX2(s)ds > a wherec=(XY)T Vl(X-Y)
C d 2

Figure 3-2: Comparison of Data Association Decision Criteria
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e(-. 5 [R1-T 21
2
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2
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T312/[0R 2+OT32]) - .097 e-47 - .060

"> R is associated to the closer more accu"rate-T

R, =0 T2 =2 T3=4

Figure 3-3: MAP Scoring Provides a Better Balance of Nearby High Confidence Data Versus
Less Accurate Further Away Tracks

Differences in association scores as report-to-track separation increases for MAP, chi-square
(Mahalanobis), and the chi-square integral of the tail approaches in Figure 3-4 shows the penalty for
using CHI related versus MAP scores. MAP is especially favored whenever ID and a priori data need

to be considered rigorously in the association scores.

RWport-Track i-ror Gaussian CIAl Int(egra of TaiI( CHM (halanolis"

0 o 1.0 1.0 Q

.1 a .995 .92 .01

.32 a .95 .75 .1

.4 ; .92 .7 .16

.675 a .796 .5 .455

Ia .6 .32 1.

1.15 a .5 .25 1.32

16 Y .275 .12 26

2 o.13 .04 4.

Figure 3-4: Comparison of Alternative Gaussian-Based Association Scoring Techniques

The following provides the conditions where the alternative association hypothesis evaluation

techniques should be applied.

Probabilistic: Preferred if statistics known
> Chi-Square Distance

- Doesn't require prior densities
- Useful for comparing multi-dimensional Gaussian data
- However, no natural way to incorporate attribute and a priori data
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"> Likelihood
- Doesn't require unconditional prior densities, p(x)
- Does require conditional priors, p(Zlx)

"> Bayesian Maximum a Posteriori (MAP)
- Naturally combines kinematics, attribute, and a priori data
- Provides natural track association confidence measure
- However, requires prior probability (e.g. kinematics and class) densities;

difficult to specify

Non-Probabilistic: Useful if high uncertainty in the uncertainty
"> Evidential. (Dempster-Shafer)

- Non-statistical: User specifies evidence "mass" values (support and plausibility
numbers)

- Essentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple
knowledge combination rules)

"> Fuzzy Sets
- User specifies membership functions to represent the uncertainty-in-the-

uncertainty
- User specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min)

which are much easier compute than second-order Bayesian
- More complex to develop, maintain, and extend

"> Confidence Factors and Other ad hoc Methods
- Explicit derivation of logical relationships
- Generally ad hoc weightings to relate significance of factors
- Can include information theoretic and utility weightings

Figure 3-5 shows a sample problem-to-solution mapping for hypothesis evaluation.

Approved for public release; distribution is unlimited 36



SOLUTION SPACE Probabilstic Possibilisc LogiclSymbolic Neural Unified

PROBLEM ISPACE AdHk l~yINPI~hOEl S/J I SD I¶S CB USIFFlec RS

INPUT DATA
*Identity/attributes - _ y N -- Y

*Kinematics __ y Y y -y

*Parameter -- y y KEY
AprorsenorN Y N - - -- y AdH Ad Hoc

A_ _ _ _ _ pror seso - Lkl Likelihood
*Linguistic data Y __ Y y Y YY Bay Bayesian
Spatio-tern oral -- YY NP Non-

*High uncertainty I I7 -I - y parametric
I - Chi Chi-Squared

*Unknown structure Y Y Y CEA Conditioned

*Non-parametric y7 y y - Event Algebra
- - - - - --- let Information

*Partial data y Theoretic
Yifrin - D- - - S Dempster-

*Differing y- - - -- - Fuz Fuzzy Logic

*Error PDF known _NY YN N N NN N NN N N N S/F Scripts/
N______ __ N_ N N _ N N - - Frames

SCORE OUTPUT SID Semantic
Yes/no, pa~ yj j Distance

*D~rt scoe - ES Expert

*Numerical scores Y_ __ Y c-B Case-Based

*Multi scores per y I ___ US Unsupervised
*Confidence __ __JY Learning

PERFORM MEAS FF Feed-Forward

*Low Y Y Y Y Y N_ N N N N IN N Y Y YY N Supervised

*Compute N N Y - Learning

*Score accuracy N YY N Y Y Y Y NN N N N N N Y RS anoSe

*User adaptability _N y Y Y Y Y Y
*Training set N N Y Y
*Self-coded/trained - y y y Y y Y Y y y y Y y Y YY

*Robustness to y Y y Y
*Result explanation N y y Y I y Y Y

-High processing N N N _y UY Y_ Y IY IY IY nY

Figure 3-5:Hypothesis Evaluation Problem to Solution Space Mapping

Based on the table above, some of the sample decision flow charts that can be constructed to utilize the
problem-to-solution space mapping for PE designers are as follows:

Example 1: Top-Level Hypothesis Evaluation Technique Selection

ISACRESET UFCOGITIONT KNEEDED? NO LOGSBICSYM OIC & NO -AAD ETROC )
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Example 2: Probabilistic Hypothesis Evaluation Technique Selection

IS CONSIDERATION OF PRIOR ý13AES-AOSTE'RIOR1
PROBABILITIES NEEDED?

JOINT GAUSSIAN DIFFERING
, DIMENSIONAL SCORING NEEDED? YES CNI-SOUARE INTEGRAL OF THE TAIL

•-;i 1 LKELH OOD RATIOS

Example 3: Possibilistic, Non-Parametric and other Rigorous Hypothesis Evaluation Technique
Selection T YES CONDITIONAL EVENT ALGEBRA

OF INFORMATION

CONDITIONED UPON ISUNIFORM

MULTIPLE EVENTS? YESISTRIBUTION J
SFFICIENT? SFUZZY SET THEORY

SWN 

UNE R NTY N NORMS
KNOWN SUFFICIENT?

SUFFICENTLYOF RANDOM SETS}

NOW-PARAMETRIC
CAN JOINT PDF YE DISTRIBUTýION-FREE
ABE ESTIMA TED

NOSUFFICIENTLY?

NO INFORMATION
THEORETIC

Example 4: Neural Network Hypothesis Evaluation Technique Selection

NO, UNSUPERVISED CLUSTERING NN

SCORING TRAINING

SETS AVAILABLE? YES| RECURRENT SUPERVISED

SPATTERN RECOGNITION
YES NEEDED?

NO{ FEED-FORWARD SUPERVISED NN
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Example 5: Logical, Symbolic and ad hoc Hypothesis Evaluation Technique

IS ON-LINE LEARNING
FROM USER NEEDED? YES CASE-BASED REASONING

ONLY LINGUISTIC DATA YE SMATCDTNE
TO BE SCORED? S SEATCDTNE

NO

3.3 Association Hypothesis Selection Problem-to-Solution Space Mappin$!s

Figure 3-6 shows a sample problem-to-solution mapping for hypothesis selection.

Solution Type

SOUTONSPCEProbabilistic Hybrid:
Set Probabilistic/

PROBLEM SPACE Partitioning Deterministic Set-Covering Deterministic, Deterministic, Approximations
Fnn-iWttinns Set Covering Formulations 2D Formulations ND Formulations and Heuristics

BASIC PROBLEM
FORMULATION

True RadomEss*_ of data:_____________________

*Partial ________________

*Target-related ambiguous y
data distributions ________________________

Sensor Resolution: yy
. Uniformly high________________

QUA0VYAN SPEED OF
SOLUTIONS FACTORS
Accuracy, reliability of

*Low accuracy, reliability _______ ______ Yy y
*High accuracy, reliability ______________ y* y*
*High volume data
*Many (est.) true targets _______ ______ _________

*High quality (but local) y
assignments________________________________

*Reasonable quality (but
"global") assignment . ______ _______________________

*Rapidly-comtputed solution _______ _______ -

* Low complexity _____________ ......... y.........
STRUCTURE OF ASSIGNMENT
MATRIX (21))_____ _____ _____ ______________

*Ver sparse _____ ______ _____ ______

*Rectangular ________ ________ l .,

*Real-valued cost y __ _ _ _ _ _ _ _ __ _ _ _ _

Figure 3-6: Hypothesis Selection Problem-to-Solution Space Mapping

Some examples of decision flow charts for Hypothesis Selection techniques are as follows:
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Example 1: Top-Level Hypothesis Selection Technique Selection

DETERMINISTIC c 2-DMENSIONAL

IS 2-DIMENSIONAL
ASSOCIATION SUFFICIENT? N-IENSIONAL

IS DETERMINISTICASSOCIATION C
(i.eI SELECT HYPOTHESIS)

SUFFICIENT? 
I

SIS 2-DIMENSIONAL
ASSOCIATION SUFFICIENT? NON-DIMENSIONAL

Example 2: 2D Hypothesis Selection Technique Selection
S~2-DIMENSIONAL ASSIGNMENT

S .SET PARTITIONING YS(JVC, MUNKRIES, AUCTION)

1 IS AN OPTIMAL HYPOTHESIS

SEARCH WARRANTED? NO SUBOPTIMA HEURISTIC SEARCHEST _(BEST FIRST. VOGEL NEAREST NGH)

SIS 1:1 UNIQUE

ASSOCIATION
SUFFICIENT?

.SET COVERING YE

SIS AN OPTIMAL HYPOTHESIS 

MLIASGMN

SEARCH NECESSARY? ýN [SUBOPTIMAL HEURISTIC SEARCHES J
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Abstract - Network centric warfare poses new applications some ten years ago. Such systems have
challenges and opportunities to the fusion community. become ever more sophisticated. Many of the
In a network centric environment, fusion technology prototypical systems summarized by Linn et al. [8]
impacts the ability to consume, create or act on utilize advanced target identification techniques. While
information through proper allocation and utilization of much research is being performed in the data fusion
available resources, and supports awareness, impact community to develop and apply new algorithms and
assessment, and action. While technological advances techniques, much less work has been done to determine
continue to take place in multisource data fusion (DF), how well such methods work. In the context of target
a proper performance evaluation (PE) methodology is tracking and estimation, Multi-Sensor Data Fusion
required to evaluate performance of alternative DF (MSDF) is used to combine data from redundant and/or
process designs that are being developed to handle the complementary sensors, to generate complete and
increasing complexity of modern day applications. PE precise information regarding location and identity of
processes need to be technically fair yet ajfordable to unknown numbers of unknown targets of different types.
evaluate various data fusion (DF) measures of In most cases it is not possible to deduce a
performance (MOP). This paper addresses the comprehensive picture about the entire target scenario
distributed fusion problem and gives quantitative from each of the pieces of evidence alone, due to the
insights into the interdependencies of fusion processes inherent limitations of technical features characterizing
and the consistency measures between distributed fusion each sensor. Judicious trade-offs between computational
products. Building on our prior works, our complexity, computational time and numerical accuracy
recommended PE methodology is based upon the Dual have to be made for selection of an algorithm for
Node Network (DNN) DF & Resource Management practical applications; such tradeoffs can imply large
(DF&RM) architecture. Our case studies involve track economic impact if the evaluation is associated with a
picture consistency across multiple platforms and contract competition, or more seriously can affect life-
sensors.for what we label as Tier 1, Tier 2 and Tier 3 and-death decisions if the fusion products are used for
Level I fusion (i.e. entity or object assessment). The decision support.
highlight of the paper is a design of experiments (DOE) The employment of rigorous, consistent, and equitable
framework from which we identify the effects and Performance Evaluation (PE) methods for data fusion
interactions of various MOPs (factors). We also processes contribute to the probability of success when
propose a response optimization method to adjust the that system is employed on an operational mission. An
factor parameters for best possible track picture extendable framework for PE of distributed fusion and
consistency. This research focuses on distributed Level response management software is needed to (i) stop
1 DF PE applications for the Air Force Flight Test building one-of-a-kind PE systems, (ii) expose
Center (AFFTC), in support of new test and evaluation alternative PE designs to handle the increasing
procedures that will be required for advanced, fusion- complexity of the test articles, and (iii) provide an
capable tactical aircraft. affordable, yet equitable, evaluation of alternative Data

Fusion and Response Management (DF&RM) systems.
Keywords: Performance Evaluation, Distributed Data There is a need for an extensible framework for PE that
Fusion, Dual Node Network Architecture, Measures of encapsulates all known approaches for the variety of PE
Performance, Design of Experiments. problems.

I Introduction 2 Objectives

Linn, Hall and Llinas [8] describe over 50 prototypical This paper describes the PE research and the related
systems for multi-sensor data fusion systems that have software development that was done as a part of the
been developed for Department of Defense (DoD) ongoing research for the Air Force Flight Test Center



(AFFTC), conducted under support from the Air Force Finally Section 10 presents a summary of this research
Office of Scientific Research (AFOSR). The previous and the future directions to this research.
work by Ghosh Dastidar, Sambhoos, Bowman and
Llinas [5] extended the formalized PE methodology 3 PE Framework' Development
developed for Level I tracking-based MSDF systems (in A central issue in evaluating any prototype data fusion
[2] and [4]). We included a summary of the proposed PE process (here, fusion-based tracking) is the problem of
methodology herein, although our focus in the current determining which fused estimate output by the
work is on the issue of PE for inter-platform trackg yprototype fusion test article should be compared with
picture consistency, as part of our efforts to begin which "truth" state (here, truth track or other fused track
extending the proposed PE framework to the case of providing the basis of the assessment).2.. The
distributed MSDF. In all of our efforts, because of the importance of addressing this issue is based on the
special interests of AFFTC, we have focused on MSDF assumption that errors in fusion-produced state estimates
applications typical of tactical aircraft systems. will be computed by comparing estimates to truth states.

The earlier paper [5] gave quantitative insights into the Thus, to compute estimates for metrics of interest, the
interdependencies between distributed fusion measures association between the estimates and truth must be
of performance (MoPs) and (i) track-to-truth association established.
for accuracy, and (ii) track-to-track association for According to Roy and Bosse [II], there are three
consistency. The goal of this paper is to extend the PE broad issues that lead to the ambiguities in Track-to-
software capability to simulate and evaluate performance Truth. These are (i) Mis-association Issues, (ii) Track
metrics for distributed fusion test articles combining Management Issues, and (iii) Tactical Picture Issues.
distributed data from network centric type The "Track-to-Truth" association problem is one
communication with different types of sensors (Radar, inherent difficulty in evaluating any MSDF process. In
ESM, IRST) with different data fusion management our prior works, we have employed Drummond's ideas
(ownship, cooperative) nodes. Figure 1 illustrates such anetwrk entic ommnicaion arcitetur. A on a couple of ways that the PE process could account
network centric communication architecture. A for this issue (see [9] and [ 10]).
simulation-based, case-study approach along with a
statistically-rigorous Design of Experiments (DOE)
framework is employed as the basis to explore our 3.1 Need for a PE Framework
methodological ideas for PE as applied to Level I A typical data fusion process that shows the role of

runtime performance assessment/performance evaluation
lntcmct-likc is shown in Figure 2. An effective PE network is needed

Network Centric Communication • Services to expose the differences between alternative approaches
- Machine-to- I

Prlet Widcband Macin DOtMrAIN

Allocable, Secure, L-d L-1. I L-1 2 hd.
Private Networks INTEL P . P mg

Optical Vanrowbamt) -W SIGNAL/ ENIT SITUATION IMPACT
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Figure 1 : Network Centric Warfare Communication. Figure 2: PE as a Level 4 fusion function.

MSDF.
The remainder of the paper is organized as follows, and to organize the alternative DF&RM Test and

Section 3 discusses the PE framework methodology.
Section 4 introduces and discusses the various PE
metrics. Section 5 describes the PE software . According to IEEE STD 610.12 definition [7] and the DOD

and Section 6 describes the case study Architecture Framework Working Group, a framework or an
requirements aarchitecture is a structure of components, their relationships, and the
simulator for the associated PE network architecture in principles and guidelines governing their design and evolution over
the context of the requirements of AFFTC. Section 7 time.

2explains the Tier based PE node design. Section 8 _. This issue carries over to any fusion state estimate, not only

discusses the experimental results from the case study kinematic tracking. Note too that it is assumed that the truth state is

and Section 9 describes the DOE framework and results. somehow known; in digital simulation-based testing this is typically
straightforward but in other test settings determining the truth state may
not be so easy itself.



Evaluation (T&E) software design patterns The U.S. Air differentiate SUT performance with respect to the
Force needs effective PE systems for their Systems scenario MoPs which are driven by the mission
Under Test (SUTs) at AFFTC to evaluate objectives, scenarios, and the SUTs. Steinberg and
cost/complexity versus PE performance relationships Bowman [12] mention some different measures and the
between PE methodological choices and their effects on associated metrics for a fusion system. The PE measures
metric computation. fall into three categories: (i) Mission related (MMEs),

The PE system cost/complexity versus PE (ii) Operational (MoEs) and (iii) Engineering (MoPs).
performance relationships between PE methodological There should be a traceable interconnectedness among
choices and their effects on metric computation cannot these measures. The mission measures are the top-level
be fully developed without this framework. The PE measures
framework needs to be applicable to multi-level The canonical MME is the overall probability of
DF&RM software T&E. Our recommended approach is mission success. Classic MoEs for fusion and
that, because of the need to associate estimates-to-truth, management test articles include those that measure, e.g.:
design of the PE process entails the design of a new data 0 The nature of enemy behavior more completely,
fiision process specific to the satisfaction of PE more efficiently, more accurately, more quickly,
requirements. Thus, PE is treated herein as a fusion over a wider area, and without being detected.
process as defined in Steinberg and Bowman [12]; while 0 The impact of a strike more efficiently, more
there is a challenge in designing a PE process as a fusion accurately, more quickly, over a wider area, and
process, this situation does allow the exploitation of the without being detected.
existing data fusion technology knowledge base in The MoPs support the MoEs by providing specific
understanding PE problem solutions. By treating PE as a performance insights. . Traditional MoPs are location
fusion process the DF&RM DNN architecture [12] and ID accuracy and probability of detection and false
provides a baseline for the PE framework. This enables track. Refinements of Level I fusion metrics are used to
all the techniques that exist for all the levels of fusion to provide additional insights into their corresponding
be considered for each corresponding PE function. MoPs. Data association MoP refinements may include:
Steinberg and Bowman [12] approach PE as a Level 4 * Track Purity (Targets/Track): - Ratio of track
fusion function as shown in Figure 2. segments in an integrated track that belongs to same

target (or group of targets (NTs), to total number of
3.2 Criteria for a PE Framework segments in a track (Nrs.). (Tp. = NTs / NTsT.)..

The PE framework needs to provide standard * Track Fragmentation (Tracks/Target): the number

components, interfaces, and guidelines that enable of hypotheses to which elements of an actual

software reuse and extendibility to achieve affordability aggregation are assigned as elements by the system.

objectives. The PE framework needs to expose * Hypothesis Proliferation (Tracks/Report): the

alternative solutions with established component number of competing (overlapping) tracks per

interfaces to permit comparison, integration, and report.

interoperability objectives. The PE framework should 0 Assignable Track Ratio: Fraction of the tracks that

help achieve reduced cost of development by promoting are associated with exactly one target.

expandability, modularity, and reusability of its PE 0 Non-Assigned Target Ratio: Fraction of the targets

solutions. PE system design criteria include mission to which no tracks are assignable.

measures of effectiveness (MME), measures of
effectiveness (MoE), and measures of performance 5 Fusion PE Software Development
(MoP) accuracies, especially for those measures that
distinguish the performance of candidate SUTs. 5.1 Design of the PE Fusion Process

It is imperative to develop good performance
4 Comprehensive Performance evaluation software to calculate, study, and analyze PE

Evaluation Metrics metrics. Broadly speaking. PE receives the tactical
picture output from the distributed fusion test articles,

The employment of a comprehensive PE approach (i.e., from the fusion nodes in the DNN of the SUT). PE
would yield both measures of the effectiveness and receives the truth from the simulation, commands from
performance of a fusion system. Additionally, the PE the user, and support services as directed by the user. PE
network and its nodes must be designed to achieve outputs Measures of Performance (MoP) results and
fairness in PE system performance versus generates displays for the analyst. Performance
cost/complexity. The PE design objective is to generate evaluation software associates track-to-truth and
fair (e.g., accurate) DF system mission EEl metrics (e.g., estimates the MoPs. Thus PE is type of fusion problem
MME, MSEs, MoPs) with minimal cost. As such the PE where truth and the Consistent Track Picture (CTP) track
MoPs need to be computed with sufficient accuracy to files are associated and MoP state estimates are



generated based upon this association. Thus PE software 5.2 PE Node Optimization
design can be performed with the same architecture as
used for fusion, as noted previously. Rawat et aL [9] and Figure 4 shows the functions for any performance
Bowman [1] discuss the issues of designing the PE evaluation node in PE process architecture. The various
process as a fusion process and discuss the development steps involved are as follows:
of such an architecture from the (i) role optimization I. PE Data Preparation: This performs track and truth
phase, to the (ii) network optimization phase, (iii) to the common reference transformations. It accounts for
node optimization phase, and finally into the (iv) known spatial and temporal misalignments
software pattern optimization phase. Figure 3 shows the 2. PE Data Association: This performs track-to-truth
entire process with the requirements, design, and or track-to-track association using kinematics,
evaluation refinement step for each phase. attributes and ID of the distributed track files.

Design Phase Design Design Development (each level)
IConstraints 1

1. PE System Role Requirements Functional Poi
"Optimization: RAnalysis Partitioning Deign Perfo•rance
PE CONOPS & User Needs
Slckox & Scenarios

2. PE Component e rmn Functional Poin Prformance
Partitioning Optimization: Analysisartitionng sign
PE Network/Tree +

3. PE Node Optimization: 3
PE Node Processing Requirements Functional Point Pe.omac

1 alysis Partitioning Design n evauation

4. PE Pattern Optimization: 4
PE Module Development & Requireme F a PPerformance
Evaluation Analys Partitioning Design Evaluation

SOperational Test

& Evaluation

Figure 3: Different design phases of the PE fusion process.

In the context of AFFTC test and evaluation (T&E) 3. PE State Estimation: This estimates the MoPs using
framework, PE provides (i) performance evaluation of selected associations (e.g., deterministic, MHT,
the different DF&RM test articles and (ii) utilizes the probabilistic, Wasserstein).
test management and support services.

Next PE and
Prior PE
Nodes Data Association Fusion &

Mgmt.
Hypothesis Generation Nodes

Fusion & MoPs

Mgmt. Nodes Data State
(Measured Preparation Hypothesis Evaluation Fusion &Estimation Fso

Truth & Mgmt. Nodes
Desired (Measured

Responses) / Hypothesis Selection Truth &

Desired
Responses)

Figure 4: PE node components according to DF&RM Dual Node Network (DNN) architecture.



6 Case Study: PE Simulator for Study, during data preparation the PE node puts tracks
and truth information in [x, y] co-ordinates and common

AFFTC time. Data association performs deterministic track-to-
In the above, we have summarized some of the truth association and track-to-track association. During

generalized issues when considering the test and data association the following three actions are
evaluation of a prototype data fusion process (what we performed:
have called the "System Under Test" or SUT). The (i) Hypothesis Generation,
current research is focused on the problem of PE and the (ii) Hypothesis Evaluation, and
"fairness" issue for the distributed data fusion case. In (iii) Hypothesis Selection.
future AFFTC applications, one type of expected The PE node uses a Kalman filter for MoP state
distributed fusion application will be the case of multiple estimation. Figure 5 shows the generic PE node network
aircraft platforms working cooperatively on a common

Time= t Time = t+I

Scenario Scenario
Generation truth tracks and Generation truth tracks and

desired responses PE Nodes desired responses PE Nodes

ScnroPerformance Current SReports Performance Current
Evaluation mops Evaluation mp

Cumutative Cumulative ' Cumutative 2Cumulative

Response commands iResponse commands
Fusin & imie/siinelw Fsion& I timinLp/Si7ing/hw

manageent mnagement 1
Nodes CTP tracks NdsCPtak

Figure 5: Generic PE node network (On or Off Line).

mission, each performing local or platform-specific for online and offline scenarios.
fusion while also exchanging data and fused estimates to
each other. A core evaluation issue herein is the
assessment of the degree of consistency in the multiple 6.2 Case Study Measures of Performance
track pictures across the platforms. It is also critical to for PE
guarantee that the alternative PB network node outputsFiue6dpcshwtewolafrsavter
are consistent, in accordance with a consistency Fwiguew 6oepcsf o the t wot pltue atfdormn hv theio-ord
specification pertinent to the application. PE nodes snown. vieew ofrte truth picturen bacurse ond theun-board

accurmracy-rltedorothe Msocsatind tosperorm track-o pictures. Let us assume, for the sake of example, that all
tackurassoclatidon otheo~ supor platform track file the on-board sensors see the same targets. Let platform I
trcnasistecy-eatedn MoP esupotimlatinform twoaor more sees 3 tracks (based on on-board sensors) which are
cnintern-eteplatforms (estg.,tioint Strik Fgteors mores) common to platform 2 and vice versa. The common

inteettd patfrms(e~., ointStrke ighers(JSs), tracks are shown in red. Note that even though both of
or te "F35" ircrft).the platforms see the same targets, their measurements

about those common targets could be different
6.1 PE Node Design depending on how the on-board sensors reports the

In the PB framework the PB nodes perform 3 measurements. Also there are certain targets that are
necessary functions: (i) data preparation (ii) data uniquely seen by platform I and platformn 2 ; note that
association and (iii) MoP state estimation. In our Case some of either the common or unique tracks could be



false tracks. associated track state 2-vectors (i.e., Y(tracki) -
Each of the platforms exchange their track files and Y(track)) in x and y position) between any two

sensors i andj.
SV = P + p2 is the covariance of the error which

here is the sum of the track state error
covariances in x and y positions for each

View View Pselected association
* K is the total number of selected associations

used in the consistency score.
4. The average location error standard deviation of

associated tracks at each time point
Tracks

.CTP tat o elrP CIsuo, The above equation is the association score that must

updated?' be greater than the non-association threshold given by
How are the measurements Unique to
batched for fusion? Platform I Equation (3). PE receives the fused tactical picture

.Commb),,ablnk is Uncqueto output from the distributed fusion test articles. PE
Bandwidth Limit nl eto 2

Communication Delay Platform 2 receives the truth from the simulation, commands from
the user, and support services as directed by the user. PE

Figure 6: Track pictures of individual platforms. generates MoP results and generates displays for the
analyst. After each platform's track file is associated, the

data fusion is done upon receipt of this information at consistency performance measures over the entire
each platform. We will explain further how this scenario are computed.
information is exchanged when we discuss Tier 0, Tier I
and Tier 2 (Section 6.3). We assume that there is no 6.3 Explanation of Level I Fusion Tiers
bandwidth limitation in communication. An
improvement from the earlier work is that we have 6.3.1 Tier 0
incorporated more realistic asynchronous (delayed)
communication among the sensors and the platforms. In Tier 0, each of the on-board sensors (Radar, ESM and

The baseline distributed fusion output is the IRST) fuse their own reports. The resultant Tier 0 tracks

Consistent Tactical Picture (CTP). The sensor track file are then fused together to get the Tier I consistent track
"consistency" is computed at each time point as the picture. Here the information is not yet shared across the

percentage of matching CTP tracks in the track files of platforms, so the result tends to be less accurate than for

each platform. In addition to this measure, the following example the fusion of Tier 0 sensor tracks to the all

four consistency metrics have been computed: source CYP. Generally, batching of larger data sets for
fusion is more accurate; albeit more complex.

I. Track-to-Track Consistency: The percentage of
matching tracks across all the platforms' track files 6.3.2 Tier I
w.r.t. the average number of track files per platform
that are generated over the scenario. For example, if In Tier 1, each of the on-board sensors (Radar, ESM and

one platform currently has 7 tracks and the other 9 IRST) share their Tier 0 track files to generate the

with 6 associated (i.e., matching within bounds), ownship consistent track picture. This is typically

then the average consistency is 6/ {[7+9]/2) = 0.75= done for each sensor track file as it is updated, rather

75%. than all sensors at once. The DNN architecture exposes

2. Track-to-Truth Consistency: The percentage of these and many other ways to network fusion nodes on a

average number of matching tracks per platform single platform for Tier I fusion or on multiple platforms

w.r.t. true number of tracks. For example, suppose for Tier 2 fusion.

one platform has 7 tracks with 3 associated tracks
and the other has 10 with 4 associated tracks. Let the 6.3.3 Tier 2
number of true tracks be 5. Then the average track In a typical Tier 2 fusion the Tier I track files are fused
to truth consistency is 13/5 + 4/51/2 = 0.7= 70%. Inqaetial as ionch Tier I track files ate A

3. The average number of standard deviations of error modifed form of a Tier 2 fusion network is for each
in the associated tracks at each time point

i platform to share its own sensor measurements with the
y_ i;'I-)-7 other platforms. This can be done one sensor at a time

K sequentially as each sensor scan of data is received. This

and the average is over the scenario where alternative tends to be more accurate, however at a cost

* I is the Ix2 matrix difference of feasibly of more communications bandwidth and fusion
complexity (e.g., due to report propagations for time
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Figure 7: Baseline Level 1 Fusion Network for Tiers 0, 1 and 2.

delays, multiple platform coordinate misalignments, from north and elevation up from local level using a flat
internetted ghost tracks, etc.). earth. These (R, Az, El) reports are converted to a fixed

centered (E, N, Up) Cartesian coordinate system for use6.4 Baseline Level 1 SUT Fusion Network by the Tier 0 fusion SUTs. In this paper, we only used

the [E, N[ as the [x, y] coordinates. RAE position and
The Level I fusion network involves entity state covariance inputs are converted to the ownship centered
estimation based upon data shared among the sensors E, N, Up (ENU) coordinate system using range, r,
(Radar, ESM, IRST) and the sources (e.g., aircraft, Azimuth from N, Az, and elevation from level, El in the
satellite, EI0A, UAV) on each ownship, cooperatively, re0orts as follows:

and offboard sources.. The Level I fusion node network E =r sin(Az) cos(EI)includes Tier 0 sensor report fusion nodes sequenced N r cos(Az)cos(EI)

over time batches of reports from each sensor. The Tier 0 Up - r sin(EI)
associated reports and tracks are fused in a sequence of The range rate conversion to east and north rates is as
Tier I ownship fusion nodes over sensors and time. The follows:
ownship fused results from each platform are fused in a E* = R* sin(Az) cos(EI) + R cos(Az) Az* cos(EI) -
sequence of Tier 2 cooperative fusion nodes. Figure 7 R sin(Az) sin(EL) EL* = R* sin(Az) cos(EI)

illustrates the network architecture. N* = R* cos(Az) cos(EI)- R sin(Az) Az* -R

cos(Az) sin(EI) EI* = R* cos(Az) cos(EI)
7 Tier Based Fusion Node Design Up* =R* sin(El) + R cos(EI) EI* =R* sin(EI)

where
The Tier 0, 1 and 2 fusion node detailed designs are E* is east rate, N* is north rate,
presented for (i) Tier 0 report-to-track sensor fusion, (ii) R* is the range rate measurement ,and Az is azimuth
Tier 1 track-to-track ownship fusion, and (iii) Tier 2 maueet
track-to-track cooperative fusion Az*=0 and EI*=0, since azimuth rate and elevation

7.1 Coordinate Conversion rate are not measured and the expected value of zero
is used.

The spherical co-ordinates. (R, Az, El) from the sensor For sensor tracks the 3x3 top left comer of the ENU

reports are converted to (E, N, Up) co-ordinates. The error covariance matrix, R(3x3) of the whole R(6x6), is
reports are converted from (R, Az, El), with azimuth rotated by the report azimuth and elevation from the
clockwise from the projctintofthevel t level and sensor etyRAE error covariance oriented along north and
elevation up from level, to the (e, N, Up) relative level as follows:
platform (R, Az, El), with azimuth measured clockwise R(3A3) = N Ron r



where Ro is the independent measurement error Y +.(T.k) = Y.*.(T) + Ck

covariance and its diagonal elements are the sensor where Y is the full (E, N, Up) position and velocity
azimuth, range, and elevation error variances in meters vector for the sensor report. For this design no time
such as for the baseline radar: alignment is needed.

(8 mrad*range) 2 m2  0 0
0 (25)2 m2  0 7.2 Tier 0 Sensor Fusion Node Design
0 0 (16 mrad*range)2 m2

where 'range' is the sensor range measurement. The sensor report-to-track fusion node processing from

An example for the ESM in track mode for the baseline the previous effort [5] was used as the starting point for

(Az, R, El) error covariance is each of the 3 sensors. The report and track kinematics

(8 mrad*range) 2 M2. 0 0 are in earth fixed (E, N) coordinates. Since we chose

0 (0.4*range)2 m 2  0 constant elevation, we ignored the Up axis.

0 0 (16mrad*range) 2 m 2  Data Preparation propagates the previous sensor tracks

where 'range' is twice the sensor range measurement to the expected next-measurement time for data

with a cap at the max detection range and a floor at ¼/4 the association which then generates, evaluates, and selects

max detection range. from the alternative report-to-track associations versus

0 is the 3x3 rotation matrix (i.e., rotation by report track initiation or deletion hypotheses. State estimation

azimuth about up clockwise and then rotation by report then updates the sensor track file based upon the

elevation about the axis orthogonal with the azimuth and hypothesis selection.

up plane) defined as follows:
cos(Az) sin(Az) cos(EI) -sin(Az) sin(El) 7.2.1 Data Preparation
-sin(Az)cos(Az) cos(E1) -cos(Az) sin(EI)0 sin(EI) cos(EI) The primary sensor data preparation design operation isFor the radar, the 3×3 lower right corner of the radar track file propagation. All sensor tracks are propagated

ENU theraror covarie mat3lowerrix, t comr of the w e to the current sensor report time. This is done for theENUsensor states and their covariance matrices viaradar (E, N, Up) error covariance R(6x6), is computed multiplication by a time dependent phi matrix and the
by rotating by the sensor Rj rate error covariance (where addition of noise for the uncertainty in the entityazimuth rate from north is row I, range rate is row 2, and adion fnisfrth uceanyinheniy
elevation rate from level is row 3), by the iD 3x3 rotation dynamics and aircraft navigation error over this period ofmatrix as follows: time. Namely, the sensor track state, x, and itsma rix s f(3x3) R*s (3 T covariance, P, is propagated (e.g., x seconds forward) toR*(3x3) = R*.1. (3x3) ~ (3x3) the current report state time as follows:

In this paper, R*.r.(3x3) is the independent rate Y-k.(T) = 0(•t)Yk.i.(T), and
measurement error covariance with its user specified P-k(.= = )P- (.T(t) -. + Q(St).

diagonal elements as follows: where,

"* Azimuth rate aircraft dynamics constraints (e.g., whereGausiansped vriaion wih a3 sgmaof Y k-.i (T) is the best estimate at time k-I of the sensor
about 900 in/see), track T kinematics state which consists of positionSensort rane rte mand velocity in (E,N,Up); Yk-.i (T) is actually a 6-d"• Sensor range rate measurement variance invariane ,column 6xI vector of (x, y, z, v.X., v.y, v..) where x is
(meters/see) 2, and

"* Elevation rate aircraft dynamics constraints East, y is North and z is Up.
( Y -k .(T) is the estimate of the ownship track T

(eg., Gfaboussian clmb/die vkinematics state propagated from time k-I to time ksigma of about 150 in/see). n eoea paea iek

This baseline R, * matrix then becomes and before an update at time k.

3002 (m/sec) 2  0 0 • (p (8t) is the 6x6 state transition matrix for a change

0 12 (meters/sec) 2  0 in time of 8t from time k-I to time k for each

0 0 502 (m/sec)2  dimension of a sensor kinematics state. This

The resulting sensor measurement error covariance assumes a constant velocity model in each axis, (i.e.,

matrix, R, is the 6x6 block diagonal matrix with R(3x3) p is the identity with 5t's along the block diagonal

in upper left and R*(3x3) in lower right and zeros of the upper right 3x3;

elsewhere. * P.k- .is the error covariance for Y.k-i at time k-I. The

The above results in report state and its error covariance functional T dependence is suppressed since it

in fighter centered (E, N, Up) coordinates. To transform would appear for all covariances P of sensor tracks,
these to fixed coordinates at each time point use the T.

fighter position as given by its inertial navigation system * P % is the error covariance for Y %. at time k before

(INS) to translate to fixed (E, N, Up) coordinates. Thus an update is performed in the sensor track. P -k.is a

the sensor report is translated using the ENU fighter 6x6 matrix.

coordinates, Ck, at the time, k, of the report as follows:



* Q(5t) is the white noise process uncertainty 6x6 * H is the measurement to state conversion matrix that
covariance matrix over a time difference of 8t for is the 3x6 conversion matrix to 3-D from track 6-D
the kinematics model for each axis, which is an with identity in the first 3x3 and remainder zeros
input depending primarily upon the velocity 0 V is the innovations covariance,
uncertainty per entity type. A simple random walk V = H [P .-k] H. + R.
model for velocity in each axis is used with the • Y(S) is the 3xI portion of the sensor report
process noise in velocity with a specified variance Gaussian kinematics with 3x3 error covariance R,
(e.g., 0-250 m2 /sec2 for vehicles, 0-2000 m 2 Isec2  which is the covariance of the position measurement
for helicopters, and 0 - 1000Km2 /sec 2 for fixed error in E, N, Up coordinates.
wing aircraft). Q is equal to this velocity variance, * Y(T) is the track Gaussian kinematics with
with a default value of (300 m/sec) 2, times the covariance P%. propagated to current time above in
matrix [8t 2., 8t, 8t, 1] in each axis. Namely, Q is the data preparation.
6x6 symmetric positive definite matrix containing 0 M is the gate around Y(S), outside of which Y(T) is
four 3x3 blocks. The upper left has 5t

2 along the infeasible, for simplicity a 3-sigma gate is used.
diagonal and the lower right has I's along the In this paper, we used a 2-D-only position gating (i.e.,
diagonal. The other two have 8t's along their not using altitude). If all gates are passed then the pair is
diagonals. marked as a feasible association (we presume that each

The resulting P.k. covariance needs to be increased by sensor and sensor track is a track on a single entity).
the ownship INS error covariance in the new location at Each sensor track passing the gates is included in the
time k, N.k, is added to the track position error feasibly associated tracks for each sensor report as in the
covariance, P+-k., to yield the translated error covariance. existing SUT.
The 6x6 Nk. matrix is computed based upon the delta
time, 8t, from the last update of this track to the current 7.2.4 Hypothesis Evaluation
report time. We assumed this error covariance, Nk(.t), to
be a constant with a baseline of (5 M) 2 in each position The baseline scoring equations with entity type
axis and (0.1 m/sec) 2. in each velocity axis and is added classification network confidences are based upon the
to the propagated Pk., viz., standard Max a Posteriori (MAP) hypothesis evaluation

P.-(k) = P÷-k.+ N k(8t) scoring defined as follows:
max P(HIR) = max {P(RIH) P(H)}

7.2.2 Data Association = max {P(YIH) P(ZIY,H) P(H)}
= max [HIT. {P(Y(S)IY(T),H) P(Z(S),

The primary sensor track to sensor report data Z(T)FY(S), Y(T), H) P(H))]
association design operations are the following: where

I. Hypothesis Generation: Find feasibly 0 the maximization's are over all association and
associated sensor tracks within gates of each non-association hypotheses, H,
sensor report [use nearest (in time) last updated • H is the set of feasible association or non-
sensor track propagated to each feasible sensor association hypotheses,
report time] • R represents both the sensor track, T, and sensor

2. Hypothesis Evaluation: Compute MAP scores report, S, data,
for all feasible hypotheses * Y is the set of kinematics from both,

3. Hypothesis Selection: Apply the existing , Z is the set of all parameters & entity attributes
fusion node SUT Vogel, best first, assignment measured in both

algorithm to select the associations.
0 the product is over all independent track, T,

7.2.3 Hypothesis Generation hypotheses (i.e., of all 5 types),

The baseline design uses the (E,N,Up) 3-D position-only * Y(T) are the track kinematics, the P(Y(T)IH) term

chi-square gate as used in the existing SUT to avoid is dropped as constant with respect to the
detrimental affects of inaccurate velocity estimates or maximization,
inaccurate entity typing. The kinematics gate is 0 Y(S) are the sensor report kinematics,
parameterized (e.g., M=25 for a 5 sigma gate). Namely, • Z(T) are the parameters and entity attributes from
for the report, Y(S), gate out all sensor tracks, Y(T), the track,
such that * Z(S) are the parameters and entity attributes from

1T V-1 I > M the sensor report,
where • P(H) is the a priori confidence in the hypothesis.

I is the 3x1 innovations column vector, These 3 scores in the product of MAP score are
I = Y(S) - H Y+(T). defined in more detail below.



7.2.4.1 Kinematics Association Scoring where

The association hypothesis kinematics scoring for a new & Y(S) is the sensor report Gaussian kinematics with

incoming sensor report, Y(S) to an existing track, Y(T) covariance R,
assumes a Gaussian distribution [ellipsoid], with a sensor o Y(T) is the track Gaussian kinematics with

track covariance P which models the error in the track covariance P.+-k.,

location due to possible motion. The baseline uses a . H is the hypothesis that the report and track are

position-only 3x3 scoring due to the uncertainty-in-the- associated,
uncertainty in the track velocity error as in the existing * K are the elements of the disjoint ID classes (e.g.,
SUT. Thus, the kinematics score is computed as follows: friend, foe, neutral)

P(Y(S)IY(T), H) {1/ (2r)"'V2 jVI} exp[-½(lIT V- I)] * Z(T) are the parameters and attributes for the
where reports associated with the track,

* Y(S) are the sensor report Gaussian kinematics * Z(S) are the parameters and attributes from the
with covariance R which for (E,N,Up) position sensor report,
only is a 3x3, - P(KIZ(T),Y(T), H) are the elements of the sensor

* Y(T) are the track Gaussian kinematics with track classification confidence vector,
covariance P÷-k, * P(KIZ(S),Y(S), H) are the elements of the sensor

* H on the left side of the equation is the hypothesis report classification confidence vector, and
that the report and track are associated, * P(KIY(T),Y(S), H) are the elements of the a priori

* d is the dimension of the Gaussian kinematics (unclassified) confidence vector which is a user
state, input with default to uniform (i.e., all .2 values

* IVi is the determinant of the innovations having 5 classes).
covariance, V = H[P*k.]HT .+ R. H is the
measurement to state conversion matrix. For 7.2.4.3 A priori Association Hypothesis Scoring
position only reports H is the 3x6 conversion For the a priori hypotheses terms, P(H), the following is
matrix to 3-D from track 6-D with identity in the the 0th-order approximate scoring equation for each
first 3x3 and remainder zeros. sensor report S and track T hypothesis as in the existing

0 I is the innovations vector, I = Y(S) - H Y(T) SUT, viz.,
P(associat ion) = [I-PrA (S)][I-PrA (T)] P0 (S)P0 (T)

7.2.4.2 Noncommensurate Attributes (Entity P(pop-up) = [I-PFA(S)I[l -D (T)]P 0(S)

Type) Association Scoring P(pop-up) = [I-Pr,(S)][I-PD(T)]P,(S)

The measured sensor attributes are typically P(false alarm) = PFA(S)P,(S)

commensurate (e.g., for ESM RF, PRI, scan rate, PW) P(propagate) = [I-PFA(T)][l-PD(S)]PD(T)

and can be included using commensurate scoring which P(drop) = PFA(T)PD(T)
is similar to the kinematics scoring above, for the where
Gaussian error models. The use of the reported entity ID * P.D(S) is the probability of detection given in the
confidence vector helps to track through crossing entities sensor, S, report (i.e., an approximation to the
of different types. However, the errors in these reported probability that the sensor detects a current sensor
entity ID confidence vectors are highly correlated with track),
unknown correlations. The default entity attribute 0 P.FA(S) is the probability of this sensor report being
scoring assumes that these errors are uncorrelated given false alarm (FA) as given in the sensor report (e.g.,
the entity class (i.e., noncommensurate ID confidence expected number of false reports divided by total
vector) to aid in report-to-track association for differing expected number of reports),
entity types. The fact that this is not the case for one * PD(T) is the probability that the sensor file will have
sensor will cause the expected value for this term to not the reported entity as a track (i.e., probability sensor
be I and will thus increase the association score over the will have had a prior track initiation of this object).
non-association score. This penalty is not severe here The default is the P.D (S) for the last associated
due to the inaccuracies in the apriori P.D and P.FA sensor report.
information. Even though noncommensurate scoring is PFA .(T) is the probability that this track is a false
assumed to be sufficient, noncommensurate ID updating alarm (e.g., expected number of false tracks divided
is not used for the ID confidence vector output to Tier I by total expected number of tracks). The is the PFA
fusion. The score for noncommensurate entity type .(S) for the last associated report.
report inputs is as follows:

P(Z(S), Z(T)IY(S), Y(T), H) = {YK[P(KIZ(T),Y(T), 7.2.4.4 Hypothesis Evaluation Summary
H) P(KIZ(S),Y(S), H)/P(KIY(T),Y(S), The total scene hypothesis score is the product of the

H)]) individual hypothesis scores for how all the given batch
of reports and the sensor tracks are associated (i.e., for



each of the 5 types of hypotheses). These five 5. V = 4.35 for 5 DOF
association type scores for each report or track using the 6. V = 5.35 for 6 DOF (e.g., Cartesian (x, y, z) with
sensor classification and a priori confidences are as rates)
follows: The expected innovations covariance multiplier is the
1. Association Hypotheses expected value of the report to track innovations

P(Y(S)IY(T),H)P(Z(S), Z(T)IY(S), Y(T), H)P(H) covariance in the determinant term of the kinematics
= {IVj""'} exp[-{11

TV
1 I}/2] {XE[P(KIZ(T),Y(T), score. Namely, it is the expected value of IVI'/2' for the

H) P(KIZ(S),Y(S), H)/P(KIY(T),Y(S), H)]}[1- given report as in the existing SUT. For the non-
P*FA (S)] [I- P.rA.(T)] P.D (S) P(T) association track hypotheses (i.e., propagation, and drop

2. Pop-up Hypotheses track), the kinematics, P(Y(T)), and noncommensurate
P(Y(S)lH)P(Z(S)IY(S),H)P(H) = terms are all constant with respect to the maximization
E(IVi)"'vexp[-lp/2][I-PFA (S)]1[- P.D(T)] P.D(S) so are ignored as in the existing SUT.

3. False Alarm Hypotheses
P(Y(S)IH)P(Z(S)IY(S),H)P(H) 7.2.5 Hypothesis Selection
E(lVl)/'exp[-V/2]PFA (S) PD(S)

4. Propagation Hypotheses The objective of this function is to select the association

P(H) = [I-P-FA.(T)] [1- P.(S)] P.o(T) (and non-association) hypotheses that are used for state

5. Track Drop Hypotheses estimation based upon hypothesis evaluations. The

P(H) = P.FA(T) P.0 (T) Vogel, best association score selected first, search

where algorithm is used.

a Y(S) are the sensor report Gaussian kinematics with For report-to-track hypothesis selection, all

covariance R, unassociated reports initialize a new track and a sensor

* Y(T) are the track Gaussian kinematics with track is dropped after it has not been updated for a

covariance P. k-, sufficient period of time. The sensor hypothesis selection

0 H in the overall equations is the hypothesis that the function declares a sensor track to be deleted based upon

report and track are associated, the elapse of time without an association when one is

0 Ili is the determinant of the innovations covariance, expected. The sensor tracks are maintained until they are

V = H [P1 -k] HT. + R, unassociated for longer than the user-specified length of

0 H in the innovations covariance equation is the time (e.g., 20 seconds) as in the existing SUT. When a
sensor track is dropped, a delete track number message ism easurem ent to state conversion m atrix, s n ot eo n h p f s o o e

0 E is the expectation operation,
0 I is the innovations vector,

I= Y(S)- H Y(T) 7.2.6 State Estimation
* K are the elements of the disjoint class network, The primary sensor state estimation design operations
0 Z(T) are the parameters and attributes from the are the following:

track, 1. Use the report and the associated last updated
0 Z(S) are the parameters and attributes from the sensor track, propagated to the current report

sensor report, time, to update the sensor track kinematics
0 PD (S) is the probability of detection by the sensor, 2. Use the new sensor report classification

S, of the hypothesized associated object, confidences to replace the last ID confidence
0 PFA (S) is the probability of false alarm (FA) of the vector.

sensor for this type of report, 3. Update the P. and P.Fr. for each track using the
0 P.D (T) is the probability of detection of this object in P.D. and P.FA. for the associated report.

the sensor track file,
* P.fA .(T) is the probability that this track is a false 7.2.6.1 Kinematics State Estimation

alarm. Given a sensor report and its associated sensor track, the
For the non-association report hypotheses (i.e., pop-up track kinematics state and its covariance is updated using

initiation, and false alarm) the expected value of the a Kalman filter as in the existing SUT. One difference is
kinematics score is used as in the existing SUT. Namely, that the radar report is a 5 vector with a 5x5 error
the kinematics score equation is used except that the chi- covariance, R, used in the Kalman filter update instead
square statistic (i.e., [IT V-1 I]) is replaced with its mean, of a 3x3, Namely, for a 3-D report update
p. Namely, Y-k.(T) = Y-k.(T) + K[Y.k(S) - H Y÷.k(T)]

1. p = 0.455 for I degree of freedom (DOF) (e.g., P.k.= [I - KH] Pk.
bearings-only) where

2. p = 1.39 for 2 DOF (e.g., x and y only) * Y.k(T) is the updated sensor track T state at time
3. p = 2.37 for 3 DOF (e.g., Cartesian (x, y, z)) increment k.
4. p = 3.36 for 4 DOF (e.g., 2 dimensions with rates)



"* Y.k(S) are the sensor report, S, Gaussian kinematics the uncertainty in the entity dynamics over this time
with 3x3 error covariance, R, at time increment k. period.

"* K is the 6x3 Kalman gain matrix,
K = P+-k HrT[H P-k, HT + R]-I 7.3.2 Data Association

"* I is the identity matrix.
"* Y.k-. (T) is the best estimate at time k-I of the sensor The primary ownship to sensor data association design

track T kinematics state which consists of position operations are the following:
and velocity in x and y. I. Hypothesis Generation: Determine which

* Y%-k .(T) is the propagated estimate of the sensor confirmed track-to-track associations are withintrack T kinematics state and before an update at time confirmed track gates, then remove from both lists
k. and pass to hypothesis selection. For the remainder

ak. find feasibly associated ownship tracks within
Pkcis thensrorT dependence is suppressed since gates of each sensor track using the most current
functional sensor ownship tracks propagated to the sensor track time.
it would appear for all covariances P of ownship 2. Hypothesis Evaluation: Compute MAP scores for
tracks, T. 2 yohssEauto:CmueMPsoe otrckis, Te all feasible (unconfirmed) track-to-track
* P.k .is the error covariance for Y'.k. at time k before association hypotheses.
an update. 3. Hypothesis Selection: Associate confirmed

• H is the measurement to state conversion matrix that associations that are within confirmed track gates.
is the 3x6 conversion matrix to 3-D from track 6-D Apply assignment algorithm to find best track-to-
with identity in the first 3x3 and remainder zeros. ack assignment andim ofnd es track

The positive definiteness of the covariance is essential initiation and deletion. Make confirmed association
for the filter. To avoid such a problem with minimum in ionas
computational cost, it is recommended that the matrices
be made symmetric by placing the lower left part of P
into the upper right each update (i.e., since the lower left 7.3.3 Hypothesis Generation
is less sensitive to round-off errors). For the ownship 7.3.3.1 Confirmation Gating
tracks that are not updated, the propagated state, Y .'-k.(T)
and its covariance, P-k., are used as the current state, The current sensor track is gated with the ownship track
Y.k(T), and its covariance, Pk .The initial state error to which the sensor track number has been confirmed to
covariance is the report error covariance R in the 3x3 insure that the ownship track has not been pulled off by
position and a parameter specified error covariance in other source reports/tracks since the last sensor update.
velocity based upon entity type velocity uncertainties. The baseline design uses the 3-D position-only chi-
The baseline is 300 m/sec one sigma in E and N and 50 square gate to avoid detrimental affects of inaccurate
in/sec when Up is added. The current report and the velocity estimates especially over long revisit times or
updated track state are included in the sensor track file to uncertain ID estimates. The kinematics gate is user
be passed to the ownship fusion node.. defined (e.g., M=49 for a 7 sigma gate). Namely, for the

sensor track position-only, Y(S), gate out all ownship
7.2.6.2 Entity Type State Estimation tracks, Y(T), such that

IT. .Vl I> M
The sensor report classification confidence vector is used where
to replace the last ID confidence vector. * I is the 3×x1 innovations column vector,

7.2.6.3 Sensor Track Confidence Estimation I = Y(S) - H Y.+(T).
0 H is the measurement to state conversion matrix that

The current associated report P.0. and PFA (i.e., as used in is the 3x6 conversion matrix to 3-D from track 6-D
the hypothesis evaluation) is attached to each updated with identity in the first 3x3 and remainder zeros.
track as the track P. and PFT. The propagated tracks * V is the innovations covariance,
retain their P.D and PFT. V = H [P ."k.] HT + R.

0 Y(S) is the 3x1 sensor report Gaussian kinematics
7.3 Tier 1 Ownship Fusion Node Detailed with 3x3 error covariance R, which is the

Design covariance of the measurement error in E, N, Up
coordinates

7.3.1 Data Preparation & Y(T) is the 6x] track Gaussian kinematics with

The ownship tracks are propagated to the current sensor covariance P%- propagated to current time above in
track file time. All the current sensor and ownship tracks data preparation.
have a common time. This is done for the ownship states 0 M is the gate around Y(S), outside of which Y(T) is
and their covariance matrices via multiplication by a no longer confirmed, for the baseline a 7-sigma gate
time dependent phi matrix and the addition of noise for is used.



2-D-only position gating is used. If all gates are passed 7.3.4.1 Kinematics Association Scoring
then the pair is marked as the only feasible associations The association hypothesis kinematics scoring for a new
for each other (i.e., removed for consideration for further incoming sensor track, Y(S) to an existing ownship
association). This presumes that each sensor and track, Y(T) assumes a Gaussian distribution (ellipsoid),
ownship track is a track on a single entity. If the gates with a ownship track covariance P which models the
are not passed, the confirmation is removed, and the pair error in the track location due to possible motion. Then
is passed along for data association and specifically the kinematics score is computed as follows:
passed next to the rest of hypothesis generation for P(Y(S)IY(T), H) = {I [(2it)'112IVI"']} exp[-½2{IT.V.T I }]

feasible association gating. where
sTracks Y(S) are the sensor track Gaussian position

kinematics with covariance R,

The next step is to find remaining unconfirmed ownship • Y(T) are the ownship track Gaussian kinematics
tracks (i.e., ownship tracks whose association is not with covariance P+-k.,
confirmed with any ownship track) within 3-D gates of * H on the left side of the equation is the hypothesis
each unconfirmed sensor track. 2-D gates are used. that the sensor track and ownship track are
Gating is performed for each unconfirmed sensor track associated,
against all unconfirmed ownship tracks Each ownship * d is the dimension of the Gaussian kinematics state
track passing the gates is included in the feasibly which here is a constant = 3 since only position is
associated tracks for each unconfirmed sensor input, used for association hypothesis evaluation,

• Ili is the determinant of the innovations covariance,
7.3.4 Hypothesis Evaluation V = H [P*-k.I H . + R. H is the sensor track position

to ownship state conversion matrix that is the 3x6
The baseline scoring equations with entity type conversion matrix to 3-D from track 6-D with

classification network confidences are based upon the identity in the first 3x3 and remainder zeros. Note

standard Max a Posteriori (MAP) hypothesis evaluation identity w P the positi
scorng dfind asfollws:that H is 3x<3 identity when P is the position-only

scoring defined as follows: covariance of the track state in xyz.
max P(HIR) = max {P(RIH) P(H)} • I is the innovations vector,

= max {P(YIH) P(ZIY,H) P(H)} 1=YS-HYT

= max[n T.{P(Y(S)IY(T),H)P(Z(S), I = Y(S) - H Y(T)

where Z(T)IY(S), Y(T), H) P(H))] 7.3.4.2 Noncommensurate Attributes (Entity

"• The maximization's are over all association and Type) Association Scoring

non-association hypotheses, H, The noncommensurate ID confidence vector scoring
"* H is the set of feasible association or non- used in the Tier 0 fusion nodes are used here except that

association hypotheses, the pedigree of the ownship track ID confidence is

"• R represents both the ownship track, T, and sensor maintained. The current sensor ID confidence vector is

track, S, data, combined with the noncommensurate portion of the track

"* Y is the set of kinematics from both, ID confidence vector. For example, when radar is being

"* Z is the set of all parameters & entity attributes fused with the ownship track file containing ESM and

measured in both IRST ID contributions, then the ESM and IRST updated
"• the product is over all independent track, T, track ID confidence vector maintained in the track ID

hypotheses (i.e., of all 5 types), pedigree is used for the track ID confidence vector

"* Y(T) are the track kinematics, the P(Y(T)IH) term is instead of the all sensor ownship track ID confidence

dropped as constant with respect to the vector. The score for noncommensurate entity type track

maximization, inputs is the same as above, viz.,

"• Y(S) are the sensor track kinematics, P(Z(S), Z(T)IY(S), Y(T), H) = {XK[P(KJZ(T),Y(T),H) P(KIZ(S),Y(S), H)/P(KIY(T),Y(S),
"* Z(T) are the parameters and entity attributes from H)]}

the ownship track, where only terms for which the a priori (i.e.,

"* Z(S) are the parameters and entity attributes from weu nlas ted) s fTr hich are used
the ensr trckP(unclassified)) P(KJY(T),Y(S), H):•0 are used

"the sensor track, * Y(S) are the sensor track Gaussian kinematics with
* P(H) is the a priori confidence in the hypothesis. covariance R,

These 3 scores in the product of MAP score are

defined in more detail below. • Y(T) are the ownship track Gaussian kinematics
with covariance P-k.,

• H is the hypothesis that the sensor track and
ownship track are associated,

* K are the elements of the disjoint class network,



"* Z(T) are the parameters and attributes for the sensor P(KIZ(S),Y(S),H)/P(KIY(T),Y(S),H)]}[I-
track associated with the ownship track, PfA.(S)] [ I- P.EA.(T)] P-D-(S) PDJ.(T)

"* Z(S) are the parameters and attributes from the 2. Pop-up Hypotheses
sensor track, P(Y(S)IH) P(Z(S)FY(S), H) P(H) = E(IV[).-"exp[-pi2]

"* P(KIZ(T),Y(T), H) are the elements of the [I-PEA (S)] [I- P.o(T)] P.D.(S)
noncommensurate portion of the ownship track 3. False Alarm Hypotheses
classification confidence vector, P(Y(S)IH) P(Z(S)IY(S), H) P(H) = E(lVJ)"/'exp[-p/2]

"* P(KIY(T),Y(S), H) are the elements of the a priori PFA.(S) PD (S)

(unclassified) confidence vector, 4. Propagation Hypotheses

"* P(KIZ(S),Y(S), H) are the elements of the sensor P(H) = [I-P.EA.(T)] [1- P.D(S)] P.D.(T)

track classification confidence vector. 5. Track Drop (i.e., delete ownship track) Hypotheses
P(H) = P F(T) P.D.(T)

7.3.4.3 A priori Association Hypothesis Scoring where
• Y(S) are the sensor track Gaussian kinematics with

For the a priori hypotheses terms, P(H), the same 0th- covariance R,
order approximate scoring equation for each sensor track • Y(T) are the ownship track Gaussian kinematics
S and ownship track T hypothesis is used, viz., with covariance P-k.,

P(association) = [I-PFA(S)][l-PIA(T)]Po(S)PO(T) • H in the overall equations is the hypothesis that the

P(pop-up) = [I-PEA(S)][l-PD(T)]PD(S) report and track are associated,

P(false alarm) = prA(S)PD(S) * IVi is the determinant of the innovations covariance,

P(.propagate) = [I -P,(T)][I -P, (S)]P, (T) Hinthe V =H [P+k.] HT + R,
P(propa) = )]P S(T) H in the innovations covariance equation is the
P(drop) = PIA (T)P0(T) measurement to state conversion matrix,

where 0 E is the expectation operation,
"* PD(S) is the sensor track probability of detection • I is the innovations vector,

passed by the sensor fusion node. This term is the I = Y(S) - H Y(T)
probability of detection for the report last associated • K are the elements of the disjoint class network,
with the track. • Z(T) are the parameters and attributes from the track

"* PEA(S) is the probability of this sensor track being (not used since pedigree used),
false (e.g., expected number of false tracks divided & Z(S) are the parameters and attributes from the
by total expected number of tracks). This term is sensor track (not used since pedigree used),
approximated by the track P.-r passed from the * PD (S) is the probability of detection by the sensor,
sensor fusion node which is the PFA of the last S, ofthe hypothesized associated object,
associated report. 0 PEA .(S) is the probability of false alarm (FA) of the

"• P.0(T) is the probability that the ownship file sensor for this track,
contains a track that represents the sensor track. This a P.D.(T) is the probability of detection of this object in
is approximated by the last updated ownship track the ownship track file,

* PEAT) is the probability that this ownship track is a
" P.EA(T) is the probability that this ownship track is a false alarm.

false alarm (e.g., expected number of false ownship
tracks divided by total expected number of ownship evaluation
tracks). This is approximated by the last updated For the non-association sensor track hypotheses (i.e.,
ownship track PFT. ownship track initiation, and sensor false alarm) the

7.3.4.4 Hypothesis Evaluation Summary expected value of the kinematics score is used. Namely,
the kinematics score equation is used except that the chi-

The total scene hypothesis score is the product of the square statistic (i.e., ITY.V-1 ) is replaced with its mean, jt,
individual hypothesis scores for how all the given batch viz.,
of reports and the ownship tracks are associated (i.e., for 1. p = 0.455 for I degree of freedom (DOF) (e.g.,
each of the 5 types of hypotheses). These five bearings-only)
association type scores for each sensor track and/or 2. pt= 1.39 for 2 DOF (e.g., x and y)
ownship track using the track kinematics, ID 3. p = 2.37 for 3 DOF (e.g., Cartesian (x, y, z))
confidences, and a priori confidences are as follows: 4. p = 3.36 for 4 DOF (e.g., 2 dimensions with rates)
1. Association (i.e., sensor track and ownship track 5. p = 4.35 for 5 DOF

combine) Hypotheses 6. p = 5.35 for 6 DOF (e.g., Cartesian [x, y, z] with
P(Y(S)IY(T),H) P(Z(S), Z(T)IY(S), Y(T), H) P(H) = rates)

{[VV"/'}exp[-½{ITV-'I}]{XK[P(KiZ(T),Y(T),H) The expected innovations covariance multiplier is the
expected value of the sensor track to ownship track



innovations covariance in the determinant term of the XK[P(KIT,H)P(KIS,H)/P(KIY(S),H

kinematics score. Namely, it is the expected value of IV1 A
-for the given sensor track. For the non-association if P(CIY(S), H)=O

ownship track hypotheses (i.e., ownship track P(class CIT, S, H) = 0
propagation, and drop track), the kinematics, P(Y(T)), where,
and noncommensurate terms are all constant with respect 0 C is the element of the ownship track class vector
to the maximization, so are ignored. being updated,

• T is the ownship entity track data [both kinematics

7.3.5 Hypothesis Selection and attribute],
• S is the current sensor track data [both kinematics

The hypothesis selection objective and process is similar and attribute],
to Tier 0. For ownship track fusion there is an additional 0 P(CISH) is the entity ID confidence vector from the
complication when a drop track message is received current sensor fusion node,
from the sensor. The ownship immediately drops the 0 P(CITH) is the ownship entity ID confidence vector
confirmed ownship track association, if any. When the containing only pedigree from noncommensurate
sensor track is the only constituent part of the last
associated ownship track, this solitary associated sensors

a H is the association hypothesis where the associated
ownship track is dropped. When there is at least one sensor ID pedigree has been updated,
other sensor constituent part, the track is retained but the se iD de e h asbee upa ed,
current sensor constituent part flag is eliminated. The noKaisatinds
kinematics and ID pedigree is retained since the sensor normalization],trac ma hae ben vlidandonl dropeddueto P(CIY(S), H) is the a priori probability of an entity
sensor mode or FOV changes due to aircraft of type C having the location and velocity given bymaneuvering, the track kinematics state which is specified a prioriin a table look-up, and each of the probabilities are

the components of the noncommensurate report,
7.3.6 State Estimation track, and a priori entity type vectors

The primary ownship state estimation operations are the The most recent ID confidence vector from each
following: associated noncommensurate sensor is used in the
I. Use the report for the newly updated sensor track update. For example, for a radar-to-ownship entity

(i.e., passed with the sensor track file) and the last confidence vector update where the ownship track

updated ownship track (i.e., propagated to the already includes a full pedigree (i.e., radar, ESM, and
current report time) to update the ownship track IRST ID contributors), the above update is performed
kinematics using a Kalman filter. twice. First the ESM confidence vector updates the IRST

2. Use the sensor track classification confidences to ID confidence vector to form a new ownship entity ID
update the noncommensurate portion of the ownship confidence vector using the above equation. Second, the
track ID pedigree. new radar entity ID confidence vector updates the

3. Update the PD and P.FT for each track using the PD resulting ownship ESM and IRST pedigree entity ID
and PFA for the associated report, confidence vector using the above equation. The

ownship track file is updated to contain this updated

7.3.6.1 Kinematics State Estimation "best" track ID confidence vector as well as the "best"
track ID confidence vectors from each noncommensurate

Given the sensor reports associated with the sensor sensor (i.e., radar, ESM, and IRST).
tracks, each ownship track kinematics state and its
covariance can be updated using a Kalman filter such as 7.3.6.3 Ownship Track Confidence Estimation
used in Tier 0 fusion. For track initiation the sensor track
state and covariance is used. The current associated track P.D and Pvr. are compared

with the ownship track P.0 and PT.-. The higher P.0 and

7.3.6.2 Entity Type State Estimation lower PFT are used. The propagated ownship tracks
retain their P.0 and P.FT.

The ownship track ID state is updated only when a new
ID state is reported from a Tier 0 fusion node. The 7.4 Tier 2 Cooperative Fusion Node
equation used to update an element C of the track type
vector for each conditionally independent track ID Detailed Design
confidence vector is as follows: For the baseline design each fighter shares its
if P(CIY(S), H)•0 cooperative track file with the other fighters in its flight.

P(class CIT,S,H) = These inputs to each fighter's cooperative fusion node
[P(CIT,H)P(CIS,H)/P(CIY(S),H)]/ are called the 'flight-cooperative tracks' which are fused



with the 'ownship-cooperative tracks' on each fighter in ownship track initiation and deletion decisions.
the Tier 2 cooperative fusion nodes. The Tier I 'ownship Make confirmed association decisions.
tracks' are also be fused with the 'ownship-cooperative
tracks' in the Tier 2 fusion nodes. 7.4.2.1 Hypothesis Generation

The sharing of cooperative track files provides the best This function is performed as described for Tier I except
information in each communications to lessen the impact for ownship-cooperative confirmed track and
of missed communications and potentially reduce the unconfirmed track gating instead of sensor-ownship
bandwidth and processing complexity and improve gating.
consistency. However it has the highest error
correlations with the ownship track files and increases 7.4.2.2 Hypothesis Generation
the impact of spoofing. The following sharing of This function is performed as described for Tier I except
cooperative track files is chosen as the baseline: for using ownship-cooperative tracks instead of using

i. Report sharing to avoid cooperative track re- sensor-ownship tracks for unconfirmed association
initialization to remove filtered track error hypothesis evaluation using kinematics, ID, and a priori
autocorrelations over time at the cost of gen.Seiialtenocmesrt esrIadditional bandwidth terms. Specifically, the noncommensurate sensor ID

2. aOwnshi assigned track sharinb with pedigree (i.e., radar, ESM, and IRST for air-to-air) for2. Onshp asiged tack shain ith each cooperative track is maintained and shared.
cooperative "track ownership" to avoid track
error correlations by assigning the best source
to provide updates for each track (used in 7.4.2.3 Hypothesis Selection
similar sensor surveillance systems) in the cost This function is performed as described for Tier I except
of reduced synergy when each source provides for using ownship-cooperative tracks instead of using
different parts of the entity information (e.g., sensor-ownship tracks for unconfirmed association
range, angle, resolution, IFF, type, ID). hypothesis selection. Namely, the baseline uses

3. Ownship track file sharing. (e.g., with or Hungarian algorithm for an optimal 2-D assignment.
without cooperative track associations) to lessen Similar drop track logic is used. Namely, when a drop
track error correlations by sharing separately track number message is received from the ownship or
derived ownship track files each of which are flight-cooperative fusion node, the cooperative fusion
used to reinitialize the cooperative track files on node immediately drops the corresponding confirmed
each platform. cooperative track association, if any. When the dropped

track is the only constituent part of the last associated

7.4.1 Data Preparation cooperative track, this solitary associated cooperative
track is dropped. When there is at least one other

Data Preparation transforms the current batch of input cooperative track constituent part, the track is retained,
ownship tracks and the current ownship-cooperative but the current cooperative constituent part in the
tracks in preparation for data association which cooperative track contribution pedigree is eliminated.
generates, evaluates, and selects from the alternative The kinematics and ID pedigree is retained since the
associations between the track files. The primary data cooperative track may have been valid and only dropped
preparation design operations include preprocessing of due to source tracking problems.
inputs to put into the ownship format and propagation to
the most recent time 7.4.3 State Estimation
7.4.2 Data Association The primary cooperative track state estimation

The primary ownship-to-cooperative track association operations are the following:
design operations are the following: 1. The current ownship or cooperative track

1. Hypothesis Generation: Determine if kinematics is used to update the associated
confirmed track-to-track associations are within ownship-cooperative track using a Covariance
confirmed track gates. Find feasibly associated Intersection (CI) filter.
ownship tracks within gates of each cooperative 2. The current ownship or cooperative track
track using nearest in time last updated classification confidences is used to update the
cooperative propagated to each feasible sensor noncommensurate portion of the associated
track time. ownship-cooperative track ID pedigree.

2. Hypothesis Evaluation: Associate confirmed 3. The PD and PFT for each ownship-cooperative
associations that are still within confirmed track track is updated using the Po and P*FA for the
gates. Compute MAP scores for all feasible associated ownship or cooperative track.
(unconfirmed) association hypotheses.

3. Hypothesis Selection: Apply assignment
algorithm to find best associations and make



7.4.3.1 Kinematics State Estimation 7.5 Case Study Test Articles: Testbed
Since only track data is available for kinematics state Model and Implementation

estimation a Kalman filter is not used and a Covariance
Intersection (CI) filter is used. Cl provides provably 7.5.1 Case Study PE Fusion Network
consistent estimates that are derived without Each PE node associates the fused track files to truth to
independence assumptions. estimate the track file accuracy of Tier 0, 1 and 2 fusion

nodes in each time period. In addition, PE associates the
7.4.3.2 Cooperative Track ID State Update track files to each other to estimate the consistency of the

The cooperative track ID state is updated only when a ownship and cooperative fusion tracks over time. Use of
new track ID state is input (i.e., updated ownship track truth for the associated report is not always viable as a
ID confidence vector). The equation used to update an poor accuracy report will not shift track state estimates
element C of the cooperative track ID confidence vector sufficiently and truth is not available for AFFTC range

Radar Tier 0 PE Cooperative ESM Tier 0 PE

Ownship Ownshi
Radar to Picture Picture ESM to
Ownsi Owns -i wi Ownship 4

wnhi 
ip 

O wnsh 
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Figure 8: Ownship Fusion PE Network Nodes

with a noncommensurate ID pedigree confidence vector operations (i.e., truth is not available in the absolute

is same as that for Tier 1. The best noncommensurate ID sense). Figure 8 shows the ownship PE node network
confidence vector from each source is used for the for the case study.
update.

For example, for an ownship-cooperative entity 7.5.2 PE Assignment Algorithm
confidence vector update where the ownship and the
ownship-cooperative track both include a full pedigree Based on the MAP score, the association matrix for
(i.e., radar, ESM, and IRST ID contributors), the above hypothesis selection is generated. The MAP scores areupdae i pefored wice Fist he estESMnormalized with -log and inserted into the assignment
confidence vector updates the best IRST ID confidence matrix. The Hungarian algorithm is used for optimizing
vonfdenctr vtoorm updated cooperative trackcentitynID the hypothesis selection. Table I shows the conversionvectn vetorm an updated cooperative trackt D of association matrix to 2-D assignment problem forequation. Second, the best radar entity ID confidence Hungarian algorithm. "No Track Association" columnsvecuatior. up cnda the resultin trackren ID confidence vhave been added to denote the hypothesis, H2, of a truthThe best ID confidence vector from each sensor is the with no associated track. "False Track" rows have beenThe with the coidessngce vectornfrodeach c ensosthe added to denote the hypothesis, H , of a false track forone with the highest single confidence component. unassociated tracks. The zeros in lower right box

7.4.3.3 Cooperative Track Confidence Estimation discourage selection of non-association hypotheses.

The current associated track P.D and PFT. are compared Current Tracks No Track Association

with the ownship-cooperative track PD and P.rF.. The -ttP(rR,, -In[P(PR,.. -In[P(R,. - inf
higher P.D and lower PFTr. are chosen. The propagated Curren T+.IH)P(H)) T.,IH)P(H)] T.,.IH)P(H)] In[P(H2)]
ownship tracks retain their P.D and PFT. t Truth -In[P(R,., -In[P(R, . -In[P(R_., i

TownshipH). H)P(H) )PtH)] T.,.jH)P(H) n In[P(H.)]

False -In[P(H. l] inf inf 0 0

Track inf -In[P(Hj )] inf 0 0
inf inf -ln[P(H )] 0 0



Table 1: Association Matrix for 2D Assignment Problem. (i) Probability of Detection: 0.7, 0.4, and 0.8 for
radar, ESM and IRST respectively, at

7.5.3 Case Study Environment for SUT reference range (i.e., min range+0.75 (max -

The simulator has been developed in MATLAB 6.5. min range)).

It incorporates targets, platforms, on-board sensors, (ii) False Alarm Rate: 10 per hour (constant).

filters, and run parameters. The current case study 8. Sensor ID: Sensor ID declarations were based

settings were as follows: 8. ensor ID: Sensor matix wer based

1. Targets: 6 targets upon entity class confusion matrix per sensor mode.

2. Platforms: 2 Platforms The entity ID declaration and confidence vector is
the output for each mode change. The

3. Sensors: Each platform has 3 on-board sensors approximat to a o ode class ve

(Radar, ESM and IRST) approximation to a posteriori entity class vectors

4. Scenario: from the confusion matrix of entity class

(i) Air-to-Air ofoffensive sweep of 2 platforms declarations is given as:

vs. 6 targets engaging simultaneously in pairs P(CI S)= • P(D I C)P(C)

from left and right 45 degrees and center at the K[P(D, I C)P(C)]

same ranges. where C is the entity class and P(DIC) are the
(ii) Sensor models have search and track modes elements in the confusion matrix column (K) for the

with separate range limits, probability of given entity class declaration. P(C) is the a priori
detection (Pd), probability of false alarm/tracks entity class confidence before any measurements.
(Pfa/Pft), measurement accuracies, resolution Table 3 shows a sample ID classification for ESM.
limits, and ID uncertainties

5. Internetted Fusion Node Tier 0, 1 and 2 Test Pl(F P(FofNon. P(Ffiendly P(Friendly T
Tnc Entity Typo Fighter Fighter Fighter Non-Fightcr Neclral Unknroon

Declaration)Declaration) Declaration) Dcclaration) Decbaration Declaration
(i) Data Preparation: Spherical co-ordinates Foe Fighter 0.00 0.05 0.03 0.01 0.0 0.10

[R,Az] converted to Cartesian co- FocNon-Fighte, 0.05 0.80 0.01 0.03 0.01 01I0

ordinates [x, y]. Friendly Fighter 0.03 0.01 0.80 0.05 0.01 0.10

(ii) Data Association: Feasible gating, Max a FriendlyNon- 0.01 0.03 0.05 0.00 0.01 0.10Fighter

Posteriori (MAP) scoring, and Vogel Neutra .05 o 0.05 0.05 0.05 0.70 0.10

approximation based hypothesis selection
with 5 consecutive missing scans to drop Table 3: Sample Sensor ID Classification.
tracks.

(iii) State Estimation: Extended Kalman filter 8 Experimental Results and Analysis
kinematics with PD, PFT. and ID
confidence update. 8.1 Baseline Scenario:

OSS Range Az Elev Report Range I Az/El R I RR Angular Report Report ID
(min-max) FOV FOV Ratc R Rate Accuracy Resolution Resolution ID Confidence

Accuracy Range

Radar 0.1 - 80 Ki ± 60 ± 30 4 sec 25 m 1 8/16 n 100 i 1 50 m rad N/A N/A
Search dcg dcg I n/sec rad 5 rn/scc
Radar 0.1-95Kin ± 40 ±10 0.1 - 6 25mi 8/16 on 100m1 50mnrad 35Kin 75 - 85%
Track ddg deg see I rn/sec rad 5 n/sec air
ESM 0.1 - 100 ± 120 ±60 Passive 50% 24/48 m m Omrad 100Km 80-90%
Search Km deg deg of Range rad

ESM Track 0.1 - 100 ± 80 ± 20 Passive 30% 24/48 i0 in 0mnod 100 Km 90-95%
Kin dcg deg of Range rad

IRST 0.1 - 80 Km ± 50 ± 16 Passive 40%4 sec 2/4 mrad N/A 4/8 m rad 20 Km 75 -85%
Search > 20 K ft deg deg of Range

IRSTTrack 0K1 - 80 Km ± e 5 ± 4 0.2 sec Passive 70% 1/2 mr ad N/A 4/8 m rad 40 Km 80-90%
> 20 K ft deg deg of Range

Table 2: Air-to-Air On-Board Sensor Top-Level Model Parameters.

6. PE Process: 7 PE Node Networks The baseline 2 vs. 6 offensive sweep scenario has 6 foe
(i) 3 individual sensor, 2 own-ship, I distributed fighters (targets) engaging simultaneously in pairs from

fusion track-to-truth PE nodes. left and right 45 degrees and center to achieve a
(ii) I intemetted platforms track-to-track PE node simultaneous missile launch against the blues

network. (platforms). The blue I launches AMRAAM missiles on
7. Air-to-Air On-Board Sensor Model Parameters: reds (fighters) 1, 2 and 3, 4 respectively. The blue I

launches AMRAAM for the second time against the



surviving red. Then the other blue turns towards reds 5, The blue cross trajectory is for Platform I and the pink
6 and launches missile. All the red fighters are in a pair one is for Platform 2. The baseline 2vs6 offensive sweep
staggered formation with the trailing fighter off to the scenario has 6 foe fighters coming towards 2 blue
left or to the right, sufficient to be not resolvable by blue fighters with the objective of engaging at 10-15 km
radar until after the final red turn. simultaneously in pairs from ±45 degrees and center.

The blue launch AMRAAM missiles between 20-25 km
8.2 Tier 0 on 1,2 and 3,4, respectively. The second launch by blue

We ran the simulation for Tier 0 from time periods I I against the surviving red 3 occurs at about 10-15 km.

to 329 with an interval of I time period. The time period Then the other blue turns at 5g towards red 5,6 and

was I second. Figures 9a, 9b and 9c show the typical launches on 5,6. All fighters are in a pair staggered

simulation output for Radar, ESM and IRST formation with the trailing fighter off to right and behind

respectively, sufficient to be not resolvable by blue radar until after
-- - - the final red turn.

G W 6 N A A k) The blue and red fighters are both initially in search
mode for each other. Once the reds detect they turn off
emissions and execute their pre-planned maneuvers to

I I -achieve near simultaneous launch on the projected blues.
The reds all turn on their radars to lock-on to blues just
after their last turn towards the projected blue position.
The reds launch radar guided missiles at their closest
blue targets as soon as possible. Red 5/6 should pull
delaying turns together then turn towards an intercept
with US I (i.e., highest closure rate) once their radar

U acquires rather than as shown in the Figure 9).
The blues split and turn towards the outside threats to

Figure 9a: Tier 0 SUT output for Radar take advantage of their longer range AMRAAM shots at
each of outside red pairs. They support their launches
until both outside reds are killed or until second shots are

oD , A P , needed. In the baseline scenario shown, US2 achieves 2
kills with its first launches then turns towards reds 5/6
that have engaged US I while taking its second shot at
the surviving red 4. US] will leave this second
AMRAAM once it has acquired red 4, then pulls
defensive maneuvers and countermeasures against the
reds 5/6 missile launches while US2 completes red 5/6
kills.

The SUT gate multiplication factor was 5 and 15. The
PE gate multiplication factors of 3 and 5, PE designs for
Vogel and Hungarian based association, expected
probability of false tracks, expected probability of

Figure 9b: Tier 0 SUT output for ESM. detection and confidence ID updates.

. ..... . ... 8.3 Tier 1
Similar to Tier 0, the simulation for Tier I was run from
time periods I to 329 with an interval of I time period.

. - Figure 10 shows the simulation output for Platforml
(blue cross) and Platform 2 (pink cross).

Figure 9c: Tier 0 SUT output for IRST.



I (A) SUT Design Gating Factor
W a A (B) PE Gating Factor

(C) PE Design
Base Design: 3,8
Runs: 80
Replicates: 10
Blocks: I

Center pts (total): 0
All terms are free from aliasing. The factors and

interactions that are significant for various MoPs are
,NK *-• • denoted by 'S'. Tables 4, 5and 6 show the summary of

the DOE run results for Tier 0, 1 and 2 respectively.
In addition to these DOE runs, we ran another set of

Figure 1 0: Tier 1 SUT output, full factorial runs to see the effect of communication tiers
on the various MoPs. We added another factor, (D) Tier,

8.4 Tier 2 with two levels: Tier I and Tier 2. Table 7 shows the

The simulation for Tier 2 was run from time periods I significant factors and their interactions for the various

through 329 at an interval of I time period. Figure II MoPs.

shows the SUT simulation output for Tier 2.

a 4p A •-- Tier 0:

A B ICIAB AC BC ABC
.. , ,' Track Consistency S

I to Pftl S S S

,... truth Mean location error S S S
i radar Avg. std. deviation S S S

ocation errorI Avg. std. deviation S S S
____________________.___- .Track Consistency S S

2 .U to Pft S S S1_ S
truth Mean location error S

Figure 11: Tier 2 SUT output. radar kvg. std. deviation S S1 S

ocation error
9 Design of Experiments Avg. std. deviation S S

Track Consistency
9.1 DOE Plan I to Pft S S
We planned a Design of Experiments (DOE) scheme for truth Mean location error S
the PE MoPs. We conducted these tests on Tier 0, Tier I ESM Avg. std. deviation S S
and Tier 2. We decided on the following factors to setup ocation error
the DOE: I.vg. std. deviation S S S

* Scenario Factors (Fixed): Track Consistency S S S S
- Offensive Sweep 2vs6 Air-to-Air 2 to ?ftl S

* PE Factors: truth Mean location error S S S
- Design (Association) ESM Avg. std. deviation S S

Vogel Approximation (PE I), and ocation error
Hungarian based association (PE 2) jvg. std. deviation S

- Gating Factor: 3 and 5 Track Consistency S S
* System under test (SUT) Design Factors: I to Pft S

- Gating Factor: 5 and 15 truth Mean location error S S S
So this yields a 2 or 23 full factorial design. We used IRST Avg. std. deviation S S

MINITAB to perform the DOE runs. The full factorial location error
design details are as follows: vg. std. deviation S I I S S S
Factors: 3 Track Consistency S S
Levels: 2 2 to Pft S



truth Mean location error S S S Mean location S S S S
IRST Avg. std. deviation S S error

location error Avg. std. deviationI.S S S S
Avg. std. deviation S S S S S S location error __

- Avg. std. deviation S S S S S
Table 4: Tier 0 DOE run summary. Consistency S S S S

Pft S S S S S

10 Conclusions and Future Directions Track 1 Mean location S S
to truth error

10.1 Summary Avg. std. deviation S
location error __

In this and our prior works, we have described a atd. error

formal and statistically-rigorous, fusion-based PE vg. std. deviation S S S S S S S
Consistency S S S S iS S

process for the evaluation of fusion-based tracking C st S S S S S

processes. In this current w ork w e extended the prior M ea location

accomplishments by adding significant improvements to Track 2 ean location S S
the SUT to incorporate multiple and different on-board to truth error

sensors along with 3 different tiers of data fusion and PE vg. std. deviation S S
node management. Further we incorporated a systematic location error

DOE implementation to rigorously analyze the different [Avg. std. deviation S S S, S S S S

SUT and PE factors that would affect the MoPs. Among
other improvements to the SUT, we incorporated Table5:rTier DOE runsummary.

asynchronous report and measurement generation along Tier 2:

with more sophisticated data association algorithms for
superior and consistent track pictures. A B C A A B ABC

IB C C

Tier 1: Consistency S
Pftl

B ABC Track Pft2
A B CAB &C AC to track Mean location error s

Track Consistency S S S S Avg. std. deviation

to trackPftl S S S S location error

Pft2 S S S Avg. std. deviation S ___

Inter Tier I and 2:

A B C D AB A AD BC BD CD AB ABD AC BCD ABC
C C D D

Consistency S S S
?ftl S S S

Track ft2 S S S S S
toMtrack ean location error S S

Avg. std. deviation S S S
ocation error
Avg. std. deviation S S S S S S S
Consistency S S S S S
Pft S S S S S

Track I Mean location error S S S
to truth Avg. std. deviation

ocation error
Avg. std. deviation S S S S S S S S S
Consistency S S S
Pft S S S S S

Track 2 Mean location error S S S S S
to truth Avg. std. deviation S S S S

ocation error
_ _ vg. std. deviation S S S S S S S S

Thlp 7. Inter T;-r I -n1t 9 fW ) nPn crnrn,



Consistency still be selected for use in state estimation for sensor
Pft track type updating to improve the sensor track type

Track I Mean location error confidences. The expected value of these terms is one so
to truth Avg. std. deviation not selecting entity type scoring will not affect the

location error normalization of the kinematics and a priori non-
Mvg. std. deviation association scores. The sensor report classification

Consistency S confidence vector is used to replace the last ID
Pft S confidence vector. In the future we plan to consider the

Track 2 Mcan location error S replacement only if the sensor has not changed to a

to truth Avg. std. deviation worse ID mode (i.e., from track back to search).

ocation error - 10.2.3 Report-to-track
A____vg. std. deviation S __
_______ std. deviation 4 4For report-to-track hypothesis selection, all

Table 6: Tier 2 DOE run summary. unassociated reports initialize a new track and a sensor
track is dropped after it has not been updated for a

The PE framework in our research enables reusable sufficient period of time. In future, this track drop logic

DF&RM avionics PE software developed specifically for depends upon whether the track is tentative or is

AFFTC. This effort extended a previous declared to be of high confidence (i.e., validated) and the

AFOSR/AFFTC effort on PE methodology for AFFTC sensor mode.

and implemented a PE network performing distributed 10.2.4 Data Preparation
fusion track-to-truth association for track file accuracy
and distributed fusion track-to-track association for track The primary data preparation design operations
file consistency. The distributed fusion PE software was include preprocessing of inputs to put into the ownship
also used (leveraged) for a project on warfare modeling format and propagation to the most recent time. In
by National Imagery and Mapping Agency (NIMA) at future, due to possible communications errors (e.g.,
University at Buffalo. modeled in future spirals) the data preprocessing

functions may include the following:

10.2 Future Work I. Incomplete data: delete messages with data
missing any vital field to include source, time,

There are yet numerous other issues that can be range, azimuth, and elevation.
addressed in this research, as PE is an under-researched 2. Duplicate messages: delete messages which are
topic in the Data Fusion community. For the focal exact duplicates.
problem types considered here, involving tactical aircraft 3. Too old: delete sensor tracks that are older than
applications, we see various possible future directions a user specified parameter (e.g., 20 seconds).
and enhancements, as described below. 4. Coordinate transformation: conversion into a
10.2.1 Gating common Cartesian track file coordinate system

as necessary.

In this paper, we used a 2-D-only position gating (i.e., 5. Propagation: propagation of the oldest track file
not using altitude). We plan to incorporate user flags for to the most current track file, for example
max speed gates or strict type gating in the future. We propagation of the current but delayed flight-
presumed that each sensor and sensor track is a track on cooperative track file to the ownship-
a single entity. Set covering approaches that deal with cooperative track file common time.
poor resolution issues are to be decided in the future. The first 3 are straightforward to implement. The 4th is

not needed in the present case since the cooperative track
10.2.2 Sensor attribute measurements files are all in the same earth-fixed center Cartesian

In this paper, the sensor attribute measurements are not coordinates where rotation and curvature of the earth are

modeled. The user needs to decide if he wants to have ignored for this spiral. The 5th is done via the

the reported entity confidence vector ID used in the propagation equations since all cooperative tracks will be

report-to-track association hypothesis scoring. For this maintained at a common time in the present case. In

current work, the user flag was set to select entity typing future, if there is no common time for the ownship

confidences to be used for association scoring. In the cooperative tracks, then the insertion of the propagation

future, when the entity type uncertainty-in-the- as part of the track unique hypothesis generation will be

uncertainty is high this score will be avoided. Also when assessed to reduce the computational burden.

the entity type declaration has very high confidence (i.e.,
to the extent that it is always believed), then this scoring
will be replaced with gating and replacement in state
estimation. If this flag is not set the type confidences can



10.2.5 SUT Track Filters the technical guidance from staff at AFFTC, and

More sophisticated track filters will be considered if programmatic guidance from staff at AFOSR.

track accuracy becomes an issue in the future. Examples References
include the following:

The interacting multiple model (IMM) which [I] Bowman, C. Unifying Data Fusion and Resource
adapts to unknown or changing target motion Management Software Development Approaches Using
- considers a fixed set of target motion the Dual Node Network Architecture. To appear in

models (differ in noise & structure) Unification of Fusion Theories, edited by F.
- probabilistically combines estimates of Smarandache, University of New Mexico. 2005.

individual filters matched to these models
to determine the weight for each model. [2] Bowman, C. The Dual Node Network Data Fusion

* Particle filters which use sequential Monte and Resource Management Architecture. AIAA
Carlo generation of track state hypotheses to Intelligent Systems Conference, Chicago, IL, USA.
overcome nonlinear and non-Gaussian 2004.
dynamics by adapting the necessary linear
models based upon innovations accuracy [3] Bowman, C. MINTFusion Course. 2004.

* Unscented Filter which approximates the error
distribution using deterministic sigma points for [4] Bowman, C. The Data Fusion Tree Paradigm and
cases with significant nonlinearities and/or Its Dual. Proceedings of 7th National Symposium on
nonlinear target dynamics. Sensor Fusion: Invited paper, Sandia Labs, NM, USA.

Historically much effort has been put into track 1994.
estimation technology, so the payoff for additional
research is not expected as high as for less mature DF [5] Ghosh Dastidar, S., Sambhoos, K., Bowman, C.,
technology. Consequently this effort will apply simple and Llinas, J. Performance Evaluation Methods for
existing filters sufficient to drive the development and Data-Fusion Capable Tactical Platforms. International
test of the high potential capabilities (e.g., track Conference on Information Fusion. Philadelphia, PA,
confidence estimation, adjudication management, USA. July 22-25, 2005.
alternative Tier 2 data sharing strategies, and distributed
level 2 and 3 fusion and sensor management). [6] Hoffman, J.R., and Mahler, R.P.S. Multi-Target

10.2.6 Bandwidth Issues Miss Distance via Optimal Assignment. IEEE
Transactions on Systems, Man and Cybernetics: 34(3).

In the future, the PE distribution nodes. will consider pp. 327-336. 2004.
Bandwidth Utilization as another MoP to assess the peak
and average percentage of communications bandwidth [7] IEEE STD 610.12. Standard Glossary of Software
load for distributed fusion and adjudication. In later Engineering Technology. IEEE, NJ. 1990
efforts the present PE methodology and the software can
be extended to assess (i) Autonomous Aircraft Adaptive [8] Linn, R.J., Hall, D.L., and Llinas, J. A Survey of
Management, and (ii) Information Sharing Strategies Multi-sensor Data Fusion Systems. Proceedings of the
(ISS). Both of the programs are in line with Wirfel's [13] SPIE. - The International Society for Optical Engineering
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management help aircraft share threat information to'
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(CMs), ISSs, and perimeter limits of action. As a part of
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[12] Steinberg, A., and Bowman, C. Rethinking the JDL multiple starting points that maximizes the composite
Model. National Symposium on Sensor and Data Fusion. desirability to determine the numerical optimal solution.
Laurel, MD, USA. June 7-1 1, 2004. The optimal solution serves as the starting point for the

plot. This optimization plot allows the user to
[13] Wirfel, J.A. Electronic Warfare Topics Briefing. interactively change the input variable settings to
2000. perform sensitivity analyses and possibly improve the

initial solution. As, the optimization plot is interactive,

Appendix the user can adjust input variable settings on the plot to
search for more desirable solutions.

A. Albersheim's Approximation The optimization is accomplished by:
S Obtaining the individual desirability for each

Albersheim's method is an approximation based

upon the estimating the required signal to noise response.

ratio (SNR) and then computing the SNR at the 0 Combining the individual desirability's to

desired ranges. The required SNR is computed as obtain the combined or composite desirability.

follows:
SNR= A +.12AB + 1.7B

where
A = In {.62/Pfa)}
B = In {Pd/[l-Pd]}
Pfa is the probability of false alarm (example
value E-6)
Pd is the probability of detection

Given a probability of detection at the baseline range, a
baseline SNR is derived. For example, for Pfa = E-6 and
Pd = .35, A= 13.3, B= -.62, and SNRb = 13.3 -.99 -1.05

11.2. The SNR at a desired range, SNRr, is
SNRr = SNRb {Rb/Rr}n

where
SNRb is the baseline SNR
Rb is the baseline range
Rr is the desired range
n=4 for active sensors and n=2 for passive sensors
Once the SNRr at the desired range is determined the

probability of detection at the desired range can be
generated.

B. MINITAB Response Optimizer

The MINITAB Response Optimizer provides an optimal
solution for the input variable combinations and an
optimization plot over all responses (MOPs).
MINITAB's Response Optimizer helps to identify the
combination of input variable settings that jointly
optimize a single response or a set of responses. Joint
optimization must satisfy the requirements for all the
responses, i.e. MOPs, in the set, which is measured by
the composite desirability. The overall desirability is a
measure of how well the user has satisfied the combined
goals for all the selected responses. Overall desirability
has a range of zero to one. One represents the ideal case;
zero indicates that one or more responses are outside
their acceptable limits. Composite desirability is the
weighted geometric mean of the individual desirabilities
for the responses.

MINITAB calculates an optimal solution and draws a
plot. It employs a reduced gradient algorithm with



C. Tier 0 DOE Charts

This section provides the Tier 0 DOE charts conducted in Section 9.1. The three factors SUT Design Gating Factor, PE
Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In
Tier 0 we have three sensors on 2 platforms and they do not fuse any data within or across platform. Hence we have to
only analyze track-to-truth associations for each of the MOPs. The summary of the results is shown in Table 4. Here for
each MOP we have the Normal Probability plot and Pareto chart which summarizes the significant factors. Then for the
significant factors we plot the main effects plot which tells us how the change in factor affects the MOP. For the significant
interactions we plot the interaction plot which shows the effect of change in factor level combination on MOP.

After taking a look at the summary Table 4, we can say that SUT Design Gating Factor is comparatively more
significant than PE Gating Factor and PE Design. SUT Design Gating Factor appears to be a significant factor in nearly all
the Tier 0 DOE runs. So at Tier 0 we must be sensitive towards selection of SUT Design Gating Factor.
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Radar track I to truth: Percentage of false tracks
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ESM track I to truth: Average standard deviation
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D. Tier 1 DOE Charts

This section provides the Tier I DOE charts conducted in Section 9.1. The three factors SUT Design Gating Factor, PE

Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In

Tier I we have three sensors on 2 platforms and they fuse data within platform (not across platform). So we have to

analyze track-to-truth and track-to-track associations for each of the MOPs. The summary of the results is shown in Table

5. Here for each MOP we have the Normal Probability plot and Pareto chart which summarizes the significant factors.

Then for the significant factors we plot the main effects plot which tells us how the change in factor affects the MOP. For

the significant interactions we plot the interaction plot which shows the effect of change in factor level combination on
MOP.

After taking a look at the summary Table 5, we can say that all the three factors SUT Design Gating Factor, PE Gating

Factor and PE Design are very significant. All the three factors appear to be significant in nearly all the Tier 1 DOE runs.
The interaction between SUT Design Gating Factor and PE Gating Factor is mostly significant for all the MOPs.
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E. Tier 2 DOE Charts

This section provides the Tier 2 DOE charts conducted in Section 9. 1. The three factors SUT Design Gating Factor, PE
Gating Factor and PE Design at two levels each are tested to find which of these factors affect the MOPs significantly. In
Tier 2 we have three sensors on 2 platforms and they fuse data within and across platforms. So we have to analyze track-to-
truth and track-to-track associations for each of the MOPs. The summary of the results is shown in Table 6. Here for each
MOP we have the Normal Probability plot which summarizes the significant factors. Then for the significant factors we
plot the main effects plot which tells us how the change in factor affects the MOP. For the significant interactions we plot
the interaction plot which shows the effect of change in factor level combination on MOP.

After taking a look at the summary Table 6, we can say that none of the three factors SUT Design Gating Factor, PE Gating
Factor and PE Design are significant. In this case only some of the two way and three way interactions are significant
which suggests that fusing data across platforms reduces the discrepancies in the input data.
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