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Abstract

Averaged circuit models for switching power converters are useful for purposes of analysis
and obtaining engineering intuition into the operation of these switched circuits. This paper
develops averaged circuit models for switching converters using an in-place averaging method.
The method proceeds in a systematic fashion by determining appropriate averaged circuit el-
ements that are consistent with the averaged circuit waveforms. The averaged circuit models
that are obtained are syntheses of the state-space averaged models for the underlying switched
circuits. An important feature of our method is that it is applicable to switched circuits whose

" non-switch elements may be nonlinear. Our approach is compared and contrasted with the
results on averaged circuit models currently available in the literature.
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1 Introduction

This paper studies the existence and synthesis of non-switched circuits that exhibit the dynamics
described by the state-space averaged model of a given switching power converter. An averaged
circuit representation for a switching converter is of use for purposes of analysis (e.g. circuit-based
simulation) and for obtaining engineering intuition into the operation of a given switching converter.
In order that the averaged circuit be most useful, it is desired that this model resemble as closely as
possible the underlying switched circuit. The method of in-place averaging pioneered by Wester and
Middlebrook [14] is a natural approach for obtaining averaged circuit models. With this method,
one attempts to replace each element of the switched converter circuit by an appropriate “averaged
element.” The main contribution of this paper is in extending the earlier results of [14] (and
others) on averaged circuit synthesis. In particular, we give a systematic approach for synthesizing
averaged circuit models that realize their respective state-space averaged models. One of the most
interesting extensions offered by our work is that our synthesis procedure is applicable to switched
circuits whose non-switch elements may be nonlinear. This is not a feature of any previous work.

The paper is organized as follows. Section 2 of the paper presents background on modeling
of switching power converters; an up-down converter is used as the main example in that section
and in the remainder of the paper. Undoubtedly, the ideas developed in this paper are applicable
to other areas where switched circuits are used, but we focus our attention on switching power
converters since this application area motivated our research. As mentioned above, there has been
significant previous work on the synthesis of averaged circuit models. We give a brief summary of
this work in Section 3. The relationships between our results and previous ones are also discussed as
our development proceeds. Our main results on averaged circuit synthesis are contained in Section
4 along with a number of examples. Summarizing remarks and suggestions for future research are
included in Section 5.

2 State-Space Models for Power Electronic Circuits

This section develops a state-space model for an up-down converter to illustrate the nature of
state-space models for power electronic circuits. This model and certain variants of it are used
extensively as examples in the remainder of the paper. For more details on modeling of power
electronic circuits, see [1,2,3,16].

Consider the up-down converter shown in Figure 1a). The nominal steady state operation of
such a converter involves a cyclic process. The transistor is turned on in the first part of the
cycle, so that the inductor current ramps up. During this time, the diode is reverse biased (a
non-conducting state) so that the capacitor voltage decays into the load. Then, in the second part
of the cycle, the transistor is turned off and the diode becomes forward biased (a conducting state),
so that the inductor current flows through the diode into the capacitor and the load. Typical
waveforms are displayed in Figure 1b). With this type of cyclic operation, the average value of the
capacitor voltage v in the steady state can be made either larger or smaller in magnitude than the
source voltage V. This is why the circuit is termed an up-down converter. One can determine the
approximate steady state transfer ratio from source voltage to average capacitor voltage by noting
that the average voltage across the inductor is zero in steady state, and hence

(Vi +(1=d)v,=0 (1)
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Figure 1: a) Up-Down Converter, and b) Typical Waveforms

where v, is the nominal steady state value of the capacitor voltage and d is the duty ratio, that is,

the fraction of each cycle that the transistor is on. From (1), we readily obtain
d

Uy = ———V,. 2

n=T1-4" (2)

Under the restriction that the inductor current ¢ is always positive (so-called continuous con-

duction), we can model the transistor-diode pair as a single pole, double throw (SPDT) switch.

Note that the position of the switch can always be dictated by turning the transistor on (v = 1) or

off (v = 0). When either switch position is specified, the circuit can be characterized by a linear,

time-invariant (LTI) model. Suppose that under u = 1, the model is given by

z' = Ajz + Byw (3)

and under u = 0, is given by
= Aoz + Bow (4)

where z is the state vector of the capacitor voltage and the inductor current, z’ is its time derivative,
and w is the vector of voltage and current source values. Note that we have not explicitly noted the
time dependence in the state z and its derivative 2/, and we shall continue this omission throughout
the paper when such dependence is clear from the context. An ensemble model can be obtained by
combining (3) and (4) as

2 = [Ao + u(A4; - Ao)].’t + [Bo + ‘U,(Bl - Bo)]’w (5)

This is termed a bilinear state-space model because the control u enters multiplicatively with the
state. as well as linearly. For the up-down converter of Figure 1, the state-space representation




takes the form:
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Note that the control variable u takes on only the values 0 and 1.

In the more general case where nonlinear circuit elements are present in a switching converter,
the ensemble model (5) would take the more general form

2’ = fo(z)+ u(fi(z) - fo(z)). (7)

Note that terms corresponding to independent sources may be absorbed into fo(e) and fi(e) in
(7). In some applications involving time-varying source and/or load waveforms, the vector-valued
functions fo(e) and fi(e) may be time dependent. For all cases of interest in this paper, fo(e) and
fi(e s will be continuous functions of their arguments.

There are many converters of interest that admit more than two switch configurations. For
details on modeling these converters and on deriving averaged circuit representations, see [28].

State-Space Averaged Models To facilitate the use of well established control design methods
based on state-space models that have a continuously variable input, state-space averaged models
for switching converters have been developed [4,5,16]. A state-space averaged model is an approx-
imation to a model that contains discrete control inputs (such as (6)), and can be obtained by
replacing the instantaneous values of all state and control variables by their one-cycle averages, i.e.

(1) = %/;Tx(s)ds, (8)

(t) = %/;T u(s)ds, (9)

in the case where the converter is operated cyclically with period T. The symbol d is used to
represent the duty ratio, that is the one-cycle averaged value of u. See [14,16] for discussions on
the use of one-cycle averaging for developing state-space averaged models.

To develop some intuition on the approximations involved, consider applying the one-cycle
average to the model (7). We obtain

7' = fo(z) + ufi(z) - fo(z)]. (10)

Note that the one-cycle averaging operation commutes with differentiation (as demonstrated in
Section 4), and hence the left-hand side of (10) is equal to Z’. Under the conditions that the states
do not vary much over the period of length T (small ripple assumption), and that the functions
fo(e). fi(e) are continuous, the right-hand side of (10) can be approximated as

fo(Z) + d[fi(T) - fo(Z)]- (11)

This approximation can be justified by first noting that the small ripple and continuity conditions
assure that the relative variation in the functions fo(e), fi(e) is small over the period T, and hence

u[fi(z) = fo(2)] = T [fi(z) - fo(z)] = d [fi(z) — fo(z)]. (12)

d(t)
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The small ripple and continuity conditions also permit the approximations

@ ~ fo(T)
filz) = f(T). (13)

which lead to our result. (Note that in the case where the functions fo(e), fi(e) are linear or affine,
(13) involves no approximation.) In summary, the state-space averaged model for (7) takes the
form

T = fo(T) + d [f1(T) - fo(T)]- (14)

For the up-down converter, the state-space averaged model has an identical form to that of (6),
except that the discrete input u is replaced with the continuous duty ratio d, which can take on any
value satisfying 0 < d < 1. In the remainder of the paper, we shall omit (except where otherwise
indicated) the overbar notation when considering state-space averaged models, to simplify the
presentation. The nature of the model of interest should be clear from the context.

In the case where the functions fo(e) and fi(e) possess bounded and continuous first partial
derivatives with respect to z, the trajectories of the averaged model can be shown to approximate
those of the underlying switched system model on a finite interval with arbitrarily small error,
for sufficiently small T. See [24] for results of this type. Also see [4,5,12] for discussions of the
approximations involved in averaging. Reference [24] also proves that the underlying switched
system is exponentially stable if the state-space averaged system is exponentially stable (provided
T is sufficiently small). Our focus in this paper is not on the approximations involved in averaging,
but on the relationship between state-space averaged models and circuit realizations for these.
Therefore, we omit further discussion of the approximations involved in averaging.

3 Previous Work on Averaged Circuits

The earliest work on averaged circuit models for switching converters was that of Wester and
Middlebrook [14]. In [14], the technique used to obtain an averaged circuit realization for a given
switching converter could be termed an in-place averaging scheme, where the averagingis performed
directly on the circuit. In particular, [14] suggested the construction of an averaged circuit model
whose branch variables are one-cycle averages (see Section 2) of the corresponding branch variables
of the underlying switched circuit. This very physical approach results in an averaged circuit that
closely resembles the underlying circuit. However, [14] did not adequately realize the elements
required to replace the switch branches. Rather, each ideal switch pair was simply replaced by an
ideal transformer. A consequence of this is that the state-space model that governs the dynamics
of the obtained averaged circuit is not always equivalent to the state-space averaged model for the
underlying circuit.

The later synthesis method of Middlebrook and Cuk [5,12], termed ‘hybrid modeling’, is based
on the state-space averaged model (and proceeds apparently by inspection). This technique results
in circuit syntheses that do indeed realize the state-space averaged models for their underlying
models. The development by Cuk and Middlebrook in {17] illustrated an analogous approach for
synthesizing averaged circuits for switching converters operating in the discontinuous conduction
mode. It is claimed in [5,12,17] that the technique is applicable to any converter; however, syntheses
are only given for a set of example converters. A more recent paper of Tymerski et al. [13] reverts
to the technique of simply replacing an ideal switch pair by an ideal transformer.
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Averaged circuit models have also been developed for the analysis of switched capacitor filters.
In particular, the paper of Tsividis [18] illustrates the replacement of a capacitor and switch pair
by a simple resistor. This equivalent circuit modeling involves a reduction of the order of the state-
space. as is required in modeling a switching converter operating in the discontinuous conduction
mode. Similar ideas were applied by other authors [19,20] for the analysis of switched capacitor
circuits.

4 Averaged Circuit Synthesis

In this section, we apply the method of in-place averaging to obtain averaged circuit models that
do indeed realize their appropriate state-space averaged models. Our approach will be based on
compact network representations for various subnetworks in a given converter, and will typically
permit the replacement of a switch pair with a simple non-switched two-port network. This devel-
opment will also permit nonlinear circuit elements to be present in the converter. The question of
existence of averaged circuit models is answered by a constructive synthesis procedure. See [28] for
a treatment of the existence question that is independent of any synthesis technique.

The in-place averaging method is based on the application of the one-cycle averaging operation
to each branch variable in a switched circuit, e.g.

i) = -,}- /;T i(s)ds 1)

for some branch current where the averaging interval T is selected to be equal to the fundamental
period of the cyclic operation of the switches. A fundamental property of the resulting averaged
branch variables is that these variables satisfy the same topological constraints, namely Kirchhoff’s
current and voltage laws (KCL and KVL), as the respective variables in the non-averaged circuit.
This follows from the facts that the constraints imposed on the circuit branch variables by KCL
and KVL are inherently linear algebraic constraints, and apply identically at each time instant. A
first step in the synthesis of an averaged circuit is then to consider a circuit that is topologically
equivalent to the underlying switched circuit. (For the present time, we can regard each switch as
a two-terminal branch element.) In order to complete the synthesis, we need to specify averaged
circuit elements that are consistent with the one-cycle averaged branch variables. We consider below
the two distinct types of circuit elements (namely reactive and resistive) to clarify this procedure.

Reactive Elements If it is possible to obtain an averaged circuit model, such a model should
include all the reactive elements of the underlying circuit. To see why, we can consider without loss
of generality either a nonlinear multiport capacitor or a nonlinear multiport inductor. A nonlinear
multiport capacitor can be represented by the state-space description

/

¢ =
v = flg) (16)

where f(e) (assumed to be continuous) is the gradient of a scalar function, i.e. f(q) = VW(q)
where W(q) is the internal energy of the capacitor to within an additive constant. Consider the




application of the one-cycle averaging operation to this element, i.e.
1 t
t) = = / s)ds
g(t) T J,_p 98

W = 7 /tiTi(s)ds

1 [t
() = = / v(s)ds. 17
W = 7 [ o (17)
The averaging operation commutes with differentiation with respect to time since
d 1 rt g(t)-qt-T) 1 ¢ —
=4 —_— N A A S / = ad
7= 57 [ ae)ds £ 7 [ q)s =7, (18)

and therefore, we have ¢ = 7. In general © # f(§). However, because of the small ripple assumption
and the continuity of f(e), this will be a good approximation (see the discussion in Section 2). For
sufficiently small T', the approximation T =~ f(g) approaches equality arbitrarily closely. Since we
are concerned with infinitesimally small T in the case of state-space averaging, it is an appropriate
step in the construction of the averaged circuit model to include in the averaged circuit each
nonlinear capacitor of the underlying circuit. An analogous argument applies for the nonlinear
inductors. Naturally, this argument is applicable to linear reactive elements, as well.

Let us note at this point that if it is possible to synthesize an averaged circuit via the method of
in-place averaging, the resulting circuit will be a synthesis of the state-space averaged model. This
follows from the facts that such a circuit will include all the reactive elements of the underlying
circuit, and that the port variables of these elements will exhibit the one-cycle averaged waveforms.
Therefore, the time derivatives of all inductor fluxes and all capacitor charges in the averaged
circuit will coincide with those of the state-space averaged model that has as its state variables the
one-cvcle averages of the fluxes and charges.

It is clear that the reactive elements do not pose any significant problems in the synthesis of
an averaged circuit. However, the nonlinear resistive elements can present some difficulties, as
discussed below.

Resistive Elements Assume that the constitutive relations for all nonlinear resistive elements
are continuous. In a given switched circuit, it is possible to identify two types of resistive branch
elements: (i) those with continuous current or continuous voltage waveforms and (ii) those with
discontinuities in both their current and their voltage waveforms. (Note that the classification is
with respect to terminal waveforms rather than constitutive relation.) It is in the latter branch
type that difficulties can arise. In fact, the switch branches can be thought of as elements of this
type.

To see that those resistive branch elements that have continuous current and continuous voltage
waveforms present no difficulties, consider such a two-terminal resistor characterized by v = r(?).
For such a resistor, the approximation 7 = r(z) approaches an equality for infinitesimally small
T. This is a consequence of the small ripple assumption and the continuity of r(s). Hence, the
corresponding resistive element of the averaged circuit can be realized with a resistive component
that is identical to that of the underlying circuit. This argument is applicable to a multiport
resistor, as well. Any resistive branch that has a discontinuity in only one of its waveforms for




all admissible operation must be a source, either independent or dependent. (If the element was
not a source, the normally continuous waveform would necessarily exhibit a discontinuity for some
discontinuity in the complementary waveform.) The source branches can be replaced with identical
ones in the averaged circuit. '

S T

Figure 2: Switched Circuit that Violates Conditions for Simple In-Place Averaging
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In the case of nonlinear resistive branches that have discontinuities in both their current and
voltage waveforms, there may not exist an approximate constitutive relation that is consistent with
the one-cycle averaged waveforms. To see why, consider the up-down converter of Figure 2 that
has a nonlinear resistor with relation ¢ = g(v) in parallel with the inductor. The average voltage
across this resistor is given by

7, = (d)V, + (1 — d)3,

while the average current takes the form
iy = (d)g(Vs) + (1 - d)g(7).

It is clear that for this resistor z, # g(%,), and that there is no general relationship between the
average current and the average voltage. The relationship depends upon the particular values of
the capacitor voltage and the voltage source. Hence, for this example, it is not possible to construct
an averaged circuit that simply replaces this two-terminal resistor with some other two-terminal
element. Therefore, it is not possible in general to directly apply the in-place averaging procedure
to switched circuits that contain nonlinear resistive elements that have discontinuities in both their
current and voltage branch waveforms. However, we shall demonstrate that it is typically possible
to obtain averaged circuit models for switched circuits that contain nonlinear resistive elements with
discontinuous current and voltage waveforms. Our method will lnump all such elements including
the switch branches into a multiport element, and then attempt to replace the entire multiport
with an appropriate averaged multiport element.

Note that any LTI resistive element can be replaced in the averaged model by an identical
resistive element. This is a consequence of the fact that the one-cycle averaging operation commutes
with any LTI constitutive relation. For the example above, if g(e) was linear, we would have
obtained 7, = g(?r), despite the discontinuous waveforms.

Keeping the preceding discussion in mind, the in-place averaging synthesis technique is devel-
oped in the following two subsections. The first will treat the case where all resistive elements are




LTI and the circuit has one controlled switch pair (a two configuration circuit). The second subsec-
tion will consider the case where nonlinear resistive elements are present. See [28] for a treatment
of the case where there are more than two switch configurations.

4.1 Averaged Circuit Synthesis: LTI Resistive Elements, Ideal Sources, and
One Controlled Switch

o
.3
o

-+
2o

d

+

gk

sources

Figure 3: Partitioned Switching Converter

In tkis subsection, a rather simple and elegant result for a switched circuit with a single controlled
switch will be demonstrated. Our approach is reminiscent of the method of reactance extraction
[8] for impedance synthesis, where a given passive LTI circuit is partitioned into purely reactive
and purely resistive multiports. However, the circuit diagram for a given switching converter is
partitioned further into reactive, resistive, source, and switch multiports as shown in Figure 3. It
was already argued earlier in this section that an averaged circuit synthesis should include all the
reactive elements, all the linear resistive elements, and all the source elements of the underlying
switched circuit. The motivation for the partitioning in Figure 3 is to allow us to focus on the switch
subnetwork, since it is not necessary to examine the internal behavior of any other subnetwork. All
that remains is to determine a resistive two-port network that can replace the switch two-port in
Figure 3, and have the resulting circuit exhibit waveforms consistent with the one-cycle averaged
waveforms of the underlying converter. This can be done provided Assumption 4.1 (below) holds,
as will be demonstrated in the broader framework of Subsection 4.2. For the present, we state
a result that gives a simple form for the averaged resistive two-port network. This requires an
additional assumption (Assumption 4.2) on the existence of a particular hybrid representation for
the resistive multiport in Figure 3.

Assumption 4.1 Each branch voltage and each branch current in the underlying switching con-
verter circuit has a unique solution corresponding to each value of the state vector of capacitor
charges (or voltages) and inductor fluzes (or currents).

Assumption 4.2 There ezists a hybrid representation for the resistive multiport (Hr) in Figure
3 with controlling port variables taken as currents for those ports connected to current source or
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inductive ports, as voltages for those ports connected to voltage source or capacitive ports, and with
ezactly one current-controlled switch port and one voltage-controlled switch port.

A first result is the following.

Theorem 4.1 Suppose Assumptions 4.1 and 4.2 hold, then an averaged circuit model for the par-
titionied circuit of Figure 3 can be obtained by replacing the two-port switch network with a resistive

two-port with hybrid representation
d

1-d
for d # 1, where Hy, is the hybrid immittance seen by the switch two-port when all sources and
reactive variables are null. (The switch positions must be labeled so that u = 0 corresponds to the
position where the current-controlled switch port is open and the voltage-controlled switch port is
shorted.) Further, the resulting averaged model is a synthesis of the state-space averaged model for
the underlying switched converter circuit.

H,(d)= Hy, (19)

Proof: See Appendix A.

To obtain the averaged model, one therefore only needs to compute the hybrid immittance H,
seen by the switch two-port, and then determine a synthesis for a scaled version of this hybrid
immittance function. The linear resistive two-port synthesizing H,(d) is passive (reciprocal) if
the resistive multiport Hp is also passive (reciprocal), since scaling a hybrid matrix by a positive
real number preserves these properties. This result gives rise to a relatively simple approach to
circuit-based analysis since one may use the non-switched averaged circuit model for analytical
or computer-aided studies. There are many other ways to formulate the above problem by re-
oriexting the switch branches inside their two-port representation. We have used one of the possible
orieztations that leads to a relatively uncluttered result. The following example illustrates the use
of tkis result.

—
13
M 0
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r Va
/ N SN
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Figure 4: Partioning of Up-Down Converter with Source Resistance

Example: Up-Down Converter Figure 4 shows how we would partition a version of the up-
down converter introduced in Section 2. This particular model includes parasitic resistance in
series with the voltage source. It is straightforward to evaluate the immittance seen by the switch
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two-port:
s -1
Hypy = { 1 o ] . (20)

To realize the resistive two-port that replaces the switch network, we synthesize a resistive two-
port (see [8]) for H,(d) = 145 Hz,. The resulting averaged circuit is shown in Figure 5. Note

(l1-d)/d:1

13

<t

it

Figure 5: Averaged Circuit for Up-Down Converter with Source Resistance

that the averaged circuit includes one more two-terminal resistor than the original switched circuit.
This "extra’ resistance is required to appropriately realize the one-cycle averaged behavior. Some
previous work [13,14] on this problem resulted in averaged circuit models that did not include this
resistance, but simply replaced the switch pair with an ideal transformer. Wester and Middlebrook
[14] used a similar approach, but did not adequately model the averaged network required to replace
the switch elements. Middlebrook and Cuk [5,12] synthesized averaged circuit models that included
this resistance for certain example switched circuits, but their approach to averaged circuit synthesis
was not as general as that given here.

Note that this averaged circuit can be used in applications where the duty ratio is a function of
time (or other time-dependent variables) by inserting the appropriate time-varying value for d in
the averaged circuit. One such application is in the simulation of a transient under a closed-loop
control scheme. o

4.2 Nonlinear Circuit Elements

This subsection deals with the synthesis of non-switched averaged circuit models for switched
converter circuits that contain nonlinear resistances and nonlinear reactances. Our development
proceeds along the lines of the in-place averaging method [14], outlined earlier in this section,
and relies on constraint relations (discussed briefly in Appendix B) for multiports whose internal
behavior is not of interest. Our method will permit a simple replacement of the switch network in
certain cases, as in the previous subsection, but when this is not possible, we shall also consider
replacement of a larger portion of the resistive network than that consisting of just the switch
branches. In the interest of keeping the presentation uncluttered, we shall restrict attention to the
case where there are only two distinct switch configurations. The extension to the case where there
are more than two switch configurations can be treated in a straightforward manner, but will not

11




be given here. See [28] for a treatment of the multi-switch case where all resistive elements are
linear.

To carry out the averaged circuit synthesis, we require Assumption 4.1 along with an assumption
on the smoothness of the network constitutive relations, namely:

Assumption 4.3 All network constitutive relations are C1.

Note that a consequence of Assumption 4.1 is that the state-space model for the switching converter
is well defined in each switch configuration. This holds since the inductor voltages and capacitor
currents must be uniquely defined if Assumption 4.1 is in force.

![L
1 ]

3

<

x
Q=

vt
<
o

Figure 6: Partitioned Nonlinear Switched Network

Our development follows along the lines of the preceding subsection, but with the various
subnetworks of the switching converter modeled by constraint relations. We organize the relevant
constraint relations for a switching converter below.

Consider the partitioned switched circuit of Figure 6 where all sources are absorbed into the
nonlinear resistive multiport. The multiport on the right-hand side of the figure includes all the
nonlinear resistive elements that have discontinuous waveforms. For convenience, we shall refer
to this multiport as the switch multiport, since it contains at least the switch branches. Let z
denote the vector of switch port variables, v denote the vector of inductor currents and capacitor
voltages, and y denote the vector of inductor voltages and capacitor currents. We shall construct the
constraint relation for the nonlinear resistive multiport in two stages. Firstly, denote the constraints
imposed by this network on the switch port variables with the relation

Ca(v,z)=0 (21)

where the vector of controlling reactive port variables v is viewed as a parameter. Secondly, let
the constraints imposed by the resistive multiport on the reactive port variables (v, y) be written
in the form

-y =C(v,z). (22)
This can be done as a consequence of Assumption 4.1 which guarantees an explicit solution for
y. the vector of inductor voltages and capacitor currents. The constraint imposed by the switch
multiport will be represented by the relation

Csu(z) = 0 (23)
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where the dependence upon the switch configuration is noted with the subscript u. The composite
constraint imposed by the interconnection of the three multiport networks takes the form

-y = C(v,z)
0 = Cy(v,2)
0 = C.s,,(a:). (24)

The composite constraint relation (24) determines the state-space model since for each value of v,
this constraint determines a unique value of y. Further, this set of constraints uniquely determines
the vector z of switch variables for each value of v.

With the in-place averaging method, the one-cycle averaged switch variables take the form

T = dz|y=1 + (1 — d)z|u=0 (25)

where z|, is the value of the vector of switch branch variables when the switch configuration is u.
Since, by hypothesis, each branch variable in the circuit is well defined for each switch configuration,
we can determine the functional form of z|, in terms of the vector v from the constraints (24), i.e.

zluy = gu(v). (26)
We conclude that the averaged switch vector 7 assumes the functional form
Z = 94() = dg1(7) + (1 - d)go(3). (27)

Now we require conditions under which we can characterize a manifold in which the vector 7 is
constrained to lie. Such a characterization can be made implicitly via a constraint relation, i.e.

Csa(Z) =0, (28)

or with an explicit parametrization. In the previous subsection where we considered the case in
which the resistances were linear, this manifold was a subspace of R4.
Our main result is the following:

Theorem 4.2 A sufficient condition for the construction of an ezplicit characterization of the
manifold in which the averaged switch vector T must lie is that the function Cy(v,z) that appears
in the second constraint of (24) is separable into two additive terms, 1.e.

0 = Ca(v,2) = Cou(v) + Caz(z). (29)

This separability condition is necessary as well as sufficient in the case where all resistances in the
circuit are reciprocal.

Note that a representation Cz(v,z) is not unique, and the separability property may depend
upon the particular choice for this representation. However, the statement holds as long as there
exists some representation Ca(v,z) that is separable.
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Proof: To demonstrate sufficiency, we give a constructive procedure for characterizing the desired
manifold. See Appendix C for a proof of necessity in the case where all resistances are reciprocal.
Begin by forming the two functions go(e) and g;(e) which give the explicit solution z for each value
of v. Note that these functions take the form (for u = 0,1)

gul(v) = D;‘([ 0 }) (30)
where
Dy(z) = [ g:g% ] (31)

and w = —Cy,(v). Next, compute the function gq(e) according to (27) which takes the form
94(%) = §a(@) = D;l([ o ]) = {(1- D5 + (D7 K [ o ]). (32)

The image of j4(e) where T ranges over R? (more properly the subset of R? where gg(e) is well
defined) defines the manifold in which the vector T of averaged switch port variables must lie. This
is typically a two dimensional manifold embedded in R4, and is certainly two dimensional for the
extreme cases d = 0,1. °

Equation (32) gives an explicit parametrization of the manifold in which the vector Z of av-
eraged switch port variables must lie. In many cases, it is possible to determine a global implicit
representation for this manifold of the form (28) by eliminating the parameter @ in (32). We
illustrate this procedure with two examples, below.

Example: Converter with Nonlinear Source Resistance In some cases, it is possible to
lump the nonlinear resistive branches that have discontinuous waveforms with the switch network,
but without increasing the number of ports of this network. Such an example is the up-down
converter with nonlinear source resistance that is shown in Figure 7. For the circuit of Figure

1<+ Vsle o= = =9

| 51, | - Vg2 4
-J\A,-——;"_—: : 030
+ (*) ‘:2 l+
r(e
VS 1L¢ 3 T Ve Tls

Figure 7: Up-Down Converter with Nonlinear Source Resistance

7, we can lump the nonlinear source resistance with its series switch branch, as illustrated in the
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figure. With the modified port variables, we obtain the following constraint relation imposed by
the remainder of the circuit:

—-tc = —ILit+is
-V, = —UC + Us2
0 = ip -1 -1
0 = =V, 490+ v — Vs2. (33)
The first two lines in (33) form the constraint —y = C;(v,z). The last two lines of (33) form the
constraint relation 0 = C2(v,z) which can clearly be expressed in the form Cj,(z) = —Cyy(v) = w,
as follows:
i1 ti2 = iL=w
Vel — Vg2 = Vy— ¢ = ws. (34)

To proceed, we form the constraint relations imposed by the modified switch network:

CSO . i_,] =0
Vg2 = 0 (35)

Csy @ vg—1(ia)=0
iye = 0. (36)

Next. form the two functions Dy '(e) and Dy!(e) by combining (34) and (35) and by combining
(34) and (36), respectively. We obtain

Dyl(e) : i =0

Vs1 = W2

ls2 = W)

Ve2 = 0 (37)
Drl(e) : ig=w

vg1 = r{wy)

ig2=10

Vs = —w2 + r(wy). (38)

The function
Dy (w1, w2) = (1 - d)Dg* (w1, w2) + (d)D7* (wi, w2)

gives an explicit parametrization of the desired two dimensional manifold in terms of the parameters
wy and wy. This function takes the form

i1 = (d)uy

vy = (1-d)wsz+ (d)r(w;y)

i = (1-d)uy

vz = (d)(~w2 +r(w1)) (39)
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The characterization (39) in terms of the variables w; and w, is an adequate representation of the
two-cdimensional manifold to which the average switch variables are constrained. However, it is
possible to eliminate the parameters w; and w; by combining the lines of (39) to obtain an implicit
representation of the manifold, i.e. a constraint relation. The constraint relation takes the form

0 = (1-d)iy - (d)ing |
0 = (1= d)s+ (d)on — (d)r (’7‘) (40)

We can obtain an equivalent hybrid representation for the resistive network described by (40) as
followes:

. 1-4d,
2 = d 151
1-d ? ,1)
v = - v r{—1]. 41
The hybrid representation suggests a synthesis involving an ideal transformer and a two terminal
nonlinear resistor. This synthesis is shown in Figure 8. °
1!’
—>
(1-d)/d:1

Figure 8: Average Circuit Realization for Up-Down Converter with Nonlinear Source Resistance

The following example shows how to apply our method to obtain an averaged circuit model
for a converter operating in the discontinuous conduction mode. This problem was addressed in
the paper of Cuk and Middlebrook {17] using the so-called ‘hybrid modeling’ technique, which
apparently proceeds by inspection. Our approach is somewhat more systematic.

Example: Converter Operating in the Discontinuous Conduction Mode Consider the
up-down converter and the typical inductor current waveform for operation in the discontinuous
conduction mode shown in Figure 9. The other state variable waveforms exhibit relatively small
ripple, and so are not shown. The diode in the figure is necessary to capture the circuit behavior
in the discontinuous conduction mode. If the diode was not present, the L; inductor current could
reverse, violating a basic constraint for this circuit (that this inductor current remains nonnegative
at all times). In order to apply any averaged circuit synthesis technique for such a circuit, we need to
recognize that a switching converter operating in the discontinuous conduction mode is governed by
a reduced order state-space averaged model. This is a consequence of the fact that the L; inductor
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Figure 9: Model and Waveforms for Discontinuous Conduction Mode of Up-Down Converter

current is identically zero during a portion of each cycle. Therefore, in our scheme, we would treat
this inductor as a nonlinear resistive element. We depart slightly from our usual framework because
the waveforms for the L; inductor are so different from those of the other resistive elements that
typically appear in a converter. Even though this inductor has a continuous current waveform, we
lump it with the switch branches and the diode into a modified two-port switch network as shown
in Figure 9. (If this was not done, it would not be possible to obtain an averaged circuit model.)
With the indicated partitioning, it is now straightforward to apply our procedure.
The constraint C2(v,z) = 0 takes the form

Vg —v = 0

Vg — V1 = 0. (42)

This constraint clearly satisfies the separability condition, and can easily be expressed in the form
Coz(z) = —Cap(v) = w as follows

U1 = Vo= 1w

Vgo = U1 = Ws. (43)
The next step is to obtain the constraints imposed by the extracted (and modified) switch network
for each of the two switch configurations. Since the inductor current i; varies significantly over

each cycle, we shall compute an averaged constraint for each of the two configurations. When the
switch is in the 0 position during an interval [t;,t; + dT'), the current 7, = 0 and the current
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i,1 is equal to the L; inductor current. The average value of the latter current over this interval
can readily be seen to be l’ffll from the form of the waveform in Figure 9. Hence, we obtain the
averaged constraint for this interval as

Vs1 dT

2L,
140 = 0. (44)

=0

Csgp : 141 —

With a similar calculation for the interval [t; + dT,t; + T') when the switch is in the 1 position, we
obtain

Csl . i,] =0
fg0 + ——— = 0. (45)

Next. we form the two funtions Dy (e) and D;*(e) by combining (43) and (44) and by combining
(43) and (45), respectively.

Dyl(e) : v =wn
Vg2 = W2
G = w1dT
sl —~ 2L1
isg =0 (46)
Dil(e) : vy =wy
Vsg = Wo
i1 =0
2,72
) wid*T
= — 47
2 T o Li(1= d) (47)
We can then form the function D;l(wl, wy) as in the previous example, i.e.
D;l(.,.) L Ug = wWy
Vg2 = W2
i = w1d2T
sl — 2L1
272
. wid*T
= - ) 48
te2 Z‘U)le ( )

The function D (w;,w;) gives an explicit parametrization of the manifold in which the modified
switch port variables are constrained to lie. It is possible to obtain a voltage controlled represen-
tation for this two-port network by eliminating w, and w; in (48). This representation takes the
form

i — U,ldzT
sl 2L1
2 J2
. v5d*T
= 2 49
o2 211’321;1 ( )
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Witk this type of representation for a resistive two-port network that replaces the modified switch
network in Figure 9, we readily obtain the averaged circuit representation shown in Figure 10.

i
>
e ol o o

" -l

+ +J- l
Vs Yo "‘ - 2-port 'I'-f\-q TIs

Figure 10: Averaged Circuit Model for Discontinuous Conduction Mode

It is of interest that the resistive two-port model (49) is an incrementally passive model. This
can be seen by evaluating the Jacobian matrix for this model, i.e.

. d?
(2] = T (50)
- 2T v :

dvs - vvt2 1 20‘214

This Jacobian matrix is evidently positive semi-definite (where it is well defined), leading to the
conclzsion that the two-port is incrementally passive. °
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5 Summary and Suggestions for Future Research

Summary We have illustrated a systematic approach for synthesizing an averaged circuit model
for a switching converter. The averaged circuit models that are obtained are realizations of the state-
space averaged models for the underlying circuits, and further, resemble very closely the underlying
circuits. Nomne of the methods for averaged circuit synthesis that are presently available in the
literature offers as systematic an approach to averaged circuit synthesis. Further, our approach to
averaged circuit synthesis is applicable to circuits whose non-switch elements may be nonlinear.
This feature is not shared by any previous work on averaged circuit models.

Future Work The results on averaged circuit models in this paper and elsewhere in the literature
are applicable only to the class of switching power converters that have well defined state-space
averaged models. These converters have switching frequencies that are significantly higher than
the bandwidth of the averaged circuit dynamics. The class of resonant converters [2,16] can be
modeled with neither the usual state-space averaging techniques nor the available averaged circuit
representations. It is of interest to develop an averaged circuit modeling technique for resonant
converter circuits. This development might possibly follow along the lines of the in-place averaging
scheme used here and in [14]. In this case, it would be necessary to replace not only the switch
network, but also the L — C resonant tank elements. Because the resonant tank exhibits nontrivial
low frequency dynamical behavior [2], it would be necessary to replace the tank and switch elements
with a dynamical network, rather than a resistive network. This topic remains as a subject for
future research.

There are many other related areas for future study. One such topic of interest is the charac-
terization of limit cycles of in periodically switched converter circuits. We would like to investigate
the relationship between the existence of an unique equilibrium for an averaged circuit model and
the existence of an unique limit cycle for the underlying periodically switched circuit. This will
be the subject of a future publication. Note that there has been considerable interest in this topic
with some results available in [26,27].

A Proof of Theorem 4.1

Define the controlling port variables of the reactive multiport to be the inductor currents and the
capacitor voltages (elements of vector z,), the controlling port variables of the source multiport
to be voltages for voltage sources and currents for current sources (elements of vector z3), and
select one of the two ports of the switch network to be current-controlled and the other to be
voltage-controlled, as shown in Figure 3.

Partition Hp to reflect the three sets of ports to which it is connected, i.e.

Hyy Hyp Hyg
Hrp=| Hy H,;, Hy (51)
H3 H3 Hss

where the first set of ports are those connected to the reactive network, the second set consists of
the ports connected to the switch network, and the third set corresponds to the ports connected
to the source network. For the two-port switch network, with the controlling variables and switch
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positions (u = 0,1) indicated in Figure 3, we obtain for v = 0

H,(0) = [ . g ] : (52)

For u = 1, the hybrid representation is not well defined, but it is clear that the controlling port
variables are constrained to be zero, i.e. z7 = 0.

A first step in deriving the required constitutive relation is to determine the explicit solution
for the vector of switch port variables for each switch configuration, i.e.

z2|u
y2|u ’

where /|, is the vector of controlling port variables and y2|, is the vector of complementary non-
controlling port variables. (The subscript u indicates which switch configuration is present.) For
this purpose, consider the application of the network constraints (KCL and KVL) at the switch

ports. i.e.
Hopyzy + [He(u)+ Hagz2ly + Hazzs = 0. (53)

Witk (53) and the relations imposed by the hybrid model H g for the resistive subnetwork in Figure
3, it is possible to solve for 3|, and y.|,. In particular, for v = 0 we have

Talu=o = —H3'[Hnz) + Haszs)
y2Iu=0 = 0. (54)

The first line in (54) is obtained by noting that H,(0) = 0 in (53), and that H,' must exist, or else
there would not exist an unique solution z3|,—¢. The second line is a simple consequence of the
fact that H,(0) = 0, or equivalently, that y2|,=o is constrained to be zero by the switch network.
For u = 1, we obtain

x2|u=l = 0
Y2lu=1 = Hanzi+ Hyszs (55)

The first line in (55) is a consequence of the constraint imposed by the switch network, and the
second line is obtained by considering the hybrid relationship for the resistive subnetwork.

With the above formulas for the switch port variables in each switch configuration, it is possible
to determine the one-cycle averaged values for the switch port variables, i.e.

Ty = (1 - d)z2lu=0 + (d)z2lu=1 =—(1- d)H{ZIw
Y2 (1 = d)y2]u=0 + (d)y2]u=1 = (d)w. (56)

where w = [Hj 21 + H23z3]. Note that (56) gives an explicit parametrization of the subspace of R 4
that contains the vector of one-cycle averaged switch port variables. This subspace is parametrized
by the vector w € R2. (This type of parametrization is essential in the case where nonlinear
resistive elements are present in the switched circuit. See Subsection 4.2.) In the actual operation
of the circuit, the port variables may not attain any arbitrary point in the subspace parametrized
by w in (56), since evidently w may not assume any arbitrary value in R 2. For our purposes, it is
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adequate to characterize a two-port resistive network that constrains its port variables to lie in the
defined subspace. Such a characterization is sufficient because it constrains the averaged switch port
variables as required in the averaged circuit. It will be demonstrated that such a characterization
will result in an averaged circuit that realizes the state-space averaged model.

A more familiar functional relationship can be obtained by elimination of w in (56), i.e.

d
o = — H,,T 57
Y2 14 2% (57)
for d # 1. The relationship (57) suggests that the two-port switch network should be replaced in
the averaged circuit by a resistive two-port with hybrid representation given by (19), i.e.

d
1-d

H ,(d) = H 22 ) (58)
for d # 1. (A sign reversal is required to account for the opposing polarities of the non-controlling
port variables of the switch and resistive subnetworks in the original switched circuit.)

To see that the resulting averaged circuit model is a realization of the state-space averaged
model. consider the following explicit solution for 7,, the negative of the averaged vector of inductor
voltages and capacitor currents (the non-controlling reactive port variables):

T = HuTy+ Hy3T2 + H13T3
= Hn?fl - (1 - d)HuH{zl{Hgl-fl + H2353] + H13T3 (59)

where the form of Z; in the second line of (59) is obtained from (56). The state-space averaged
model can be obtained from (59) by simply writing

7= (60)

since J; can in turn be written in terms of T; = @~1(g,) and T3 using (59). This is readily verified
to be the form of the state-space averaged model, by noting that it varies with d on the chord
connecting the two extreme state-space models obtained by solving the network equations under
v=0and u=1 °

B Constraint Relations

A constraint relation is a rather general way to characterize a nonlinear (or linear) resistive multiport
network. As an example, consider a two-terminal resistive element whose branch variables v and ¢
are constrained by the element to lie on the unit circle in the v — ¢ plane, i.e. v2+4:2 = 1. Obviously,
this element has neither a global current-controlled representation, nor a global voltage-controlled
representation, and therefore illustrates the possible utility of the constraint representation. Con-
straint relations are also useful for LTI resistive multiport networks since it can be rather difficult
to determine which subset of the port variables can serve as the controlling variables in a hybrid
representation (see [15]). In general, the constraint relation for an n-port network takes the form

C(z) = 0. (61)

22




In this paper, we consider only the where the constraint relation (61) is continuous and possesses
at least first partial derivatives, i.e. C(e)is C!. The constraint relation (61) is termed regular [21]
if it imposes n independent constraints on the 2n components of z. That is, the Jacobian matrix

]
dz ],

has rank n at every zo that satisfies (61). The regularity condition essentially eliminates the
possible presence of unusual network types such as norators and nullators. An equivalent way to
characterize a nonlinear resistive network is with an explicitly parametrized manifold embedded in
R?" that contains the port variables. For the example above (with constraint v2 + i2 = 1), such a
parametrization takes the form

v = sin(o)
i = cos(o) (62)

where o € [0,27). See [21] for more on this. This type of characterization is also of use in our
development.

C Necessity of Separability Condition

In the case where the resistive subnetwork obtained by extracting the reactive and switch multiports
is reciprocal, the separability condition given in Theorem 4.2 is necessary as well as sufficent for
the existence of a constraint manifold in which the vector of averaged switch port variables must
lie. This is demonstrated here. We begin by obtaining a simple necessary condition on the first
constraint of the composite constraint relation (24), i.e. —y = C1(v,z).

It turns out that C;(e,e) must be linear in its second argument. This is a consequence of the
fact that the state-space averaged model for duty ratio d can be expressed in terms of the variable
y via

7 =7=—(1-d)C1{7,90(7)} - (d)C1{7, 9:1(D)} (63)

and equivalently by
7 =7=-C{7 (1 - d)go(7) + (d)9:(7)} (64)

where ¢ is the vector of inductor fluxes and capacitor charges. Equation (63) results by forming a
convex combination of the two extreme state-space models, while (64) is obtained by substituting
the form of the averaged switch port vector T into the first line of (24). Since go(e) and g;(e)
are general functions and (63,64) hold for all d € [0,1], C1(e, ) is evidently linear in its second
argument. The separability condition on the second constraint of (24) is a consequence of this
condition and the reciprocity of the resistive network modeled by the first two lines of (24).

To see this, consider the manifold determined by the second constraint of the constraint relation
(24). Recall that this is the manifold to which the vector of switch port variables is constrained
by the resistive subnetwork, with the vector v of controlling reactive port variables viewed as a
constant parameter. At any given point in the configuration space, such a manifold must locally
have at least one hybrid description of the form

z2 = h(v,z1) (65)
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where the dependence on the parameter vector v is noted explicitly. (This follows from the analogous
property of linear resistive networks [22,23]. The tangent space of the constraint manifold at the
poirt (Z1,T2) is a local approximation to this manifold.) With these coordinates, we can obtain a
hyb-id representation (at least locally) for the resistive network described by the first two constraints
in {24). Such a representation takes the form

-y = C(v,21) = Ci{v,(21,22)}
gz = h(v,z1). (66)

Now the hybrid relation (66) must retain the property that the first line involving the variable y
is licear in z, or z; in this case. The reciprocity of the resistive network implies that the Jacobian
matrix for this hybrid representation must satisfy

HY = SH* (67)

where ¥ is a diagonal (signature) matrix with all its diagonal elements either +1 or —1. Consider
partitioning the relationship (67) commensurately with the two sets of ports, i.e.

C.'lv C'lx El 0 - 21 0 C:’{v h:} (68)
hy, hs 0 X, 0 X Ci, h; )
An Implication of this symmetry constraint is that
Ci1zX7 = T1A2. (69)

Beczuse of the linearity of C;(e, ) in its second argument, the corresponding entry of the Jacobian
matsix, i.e. €y, is not dependent on z; (or z). The symmetry constraint (69) guarantees that h,

is alz0 independent of zy, i.e.
d

dl‘l

A consequence of this is that h(v,z;) which appears in (66) can be expressed as the sum of two
additive terms, namely as

hy, = 0.

h(’v,l‘]) = h"(v) + h’(:c;).

(This can be seen by considering the first two terms in a Taylor series expansion for h(v,z,).) The
result is the separability condition of Theorem 4.2. )
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