

Leveraging Open Source Software to Create Technical

Animations of Scientific Data

by John M. Vines

ARL-TR-3918 September 2006

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICE⎯Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3918 September 2006

Leveraging Open Source Software to Create Technical
Animations of Scientific Data

John M. Vines
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 September 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Leveraging Open Source Software to Create Technical Animations of
 Scientific Data
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 6UH7CC

5e. TASK NUMBER

6. AUTHOR(S)

 John M. Vines (ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Computational and Information Sciences Directorate
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3918

10. SPONSOR/MONITOR’S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Open source animation software packages provide a means for which scientists, researchers, and engineers can develop
technically correct animation at no cost. The U.S. Army Research Laboratory spends tens of thousands of dollars annually
for software licenses for packages such as Maya, Houdini, and 3D Studio Max, while in many instances, an open source
package such as Blender3D would suffice.

15. SUBJECT TERMS

 high performance computing; HPC; Python; scientific; visualization

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

 John M. Vines
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

15

19b. TELEPHONE NUMBER (Include area code)

 410-278-9150
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Discussion 1

3. Conclusions 5

4. References 7

Appendix A. Blender Python Script Importing and Animating Time Variant Data 9

Distribution List 12

iv

List of Figures

Figure 1. Blender3D user interface...4
Figure 2. Blender3D rendered image, time step 1. ...4
Figure 3. Blender3D rendered image, time step 300. ...5
Figure 4. Blender3D rendered image, time step 500 (the last time step in data)............................5

1

1. Introduction

The objective of this technical report is to provide data about the use of open source software tools
to create scientifically correct technical animations from scientific data. The packages used were
Blender 3D, blender3d.org, and the Visualization Toolkit (VTK), www.vtk.org. Television and
movie industry animation packages, such as Maya1, Houdini2, Lightwave3 or 3D Studio Max1, are
very powerful and very costly. These programs are very good at importing, animating, and render-
ing the millions of polygons created by large scientific data sets. My objective was to see if we
could employ an open-source package with the same or nearly the same results as using a
professional package.

2. Discussion

The first place that I started when reviewing Blender3D was the number of polygons supported;
at present, version 2.42 supports as many as 2 billion faces per scene. A face can be comprised
of quadrilateral or triangular polygons. On average, a scientific data set may encompass 500,000
to 1,000,000 cells or polygons; larger data sets contain well over 1,000,000 and approach
1,000,000,000 cells or polygons. The data that I am using have at most 750,000 polygons;
therefore, Blender3D will have no problems with the data.

At the very heart of Blender3D is the Python4 programming language. Python is a high-level
programming language designed by Guido van Rossum in 1990. It is a dynamically typed,
object-oriented language, which makes it similar to Perl5, Ruby, Scheme, Smalltalk6, and Tcl.
Python runs on Windows7, Linux8 or UNIX9, Palm Handhelds and is the primary programming
language for Nokia mobile phones. It was developed as an open-source project, under the
Python Software Foundation. Its versatility allows for many different uses in many different
areas. National Aeronautics and Space Administration uses it to streamline communication with
Oracle’s databases for space shuttle missions, the New York Stock Exchange uses it to create

1Maya and 3D Studio Max are registered trademarks of Autodesk, Inc.
2Houdini is a registered trademark of Side Effects Software, Inc.
3Lightwave is a registered trademark of NewTek, Inc.
4Python is a trademark of Python Software Foundation.
5Perl is a trademark of The Perl Foundation.
6SmallTalk is a trademark of Active Information Corporation.
7Windows is a trademark of Microsoft Corporation.
8Linux is a registered trademark of Linus Torvalds.
9UNIX is a registered trademark of The Open Group.

2

graphical user interfaces (GUIs) for the real-time equity trading system, and Industrial Light and
Magic use Python to “glue” together the thousands of computers and hundreds of software
components in its computer graphics pipeline.

By default, Blender3D does not provide an interface for color-per-vertex shading. We needed to
find a way to map scalar values from the data to the vertices, or nodes, of the polygonal data. I
was able to accomplish this through the use of VTK and a new Python module, VTKBlender.py,
written at the University of Alberta. VTK is an open source, freely available software system for
three-dimensional (3-D) computer graphics, image processing, and visualization. VTK is a true
visualization program, meaning that it does not just allow for simple geometry visualization but
for a wide variety of algorithms that include scalar, vector, tensor, texture, and volumetric
methods. It also allows for advanced modeling techniques such as implicit modeling, polygon
reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation.

The VTKBlender Python module was written at the University of Alberta's Academic Information
and Communication Technology center. The module converts vtkPolyDataMapper’s to Blender3D
polygonal meshes, with color-per-vertex information, and converts Blender3D meshes to
vtkPolyData.

VTKBlender.PolyDataMapperToBlender(pmapper, me=None)

If the function is run with only one argument, this function takes a vtkPolyDataMapper
pmapper and returns a new blender mesh with the converted polydata. A second optional
argument, which takes a pre-existing blender mesh, may be provided, causing the existing
mesh to be overwritten with the polydata. Please note that the new mesh is not added to the
scene and can be added afterwards via
sc = Blender.Scene.GetCurrent()
ob = Blender.Object.New('Mesh')
ob.link(me)
sc.link(ob)

The reason why the function takes a vtkPolyDataMapper object as an argument (instead of a
vtkPolyData object) is because the vtkPolyDataMapper can also contain a look-up table to
color the data, in which case, the blender mesh will have vertex colors set accordingly.

VTKBlender.BlenderToPolyData(me)

This function takes a blender mesh and returns a vtkPolyData object that contains the
geometry contained in the mesh.

(http://www.ualberta.ca/CNS/RESEARCH/Vis/VTKBlender/index.html)

Blender 3D is an open-source software package used for 3-D modeling and animation developed
as an in-house application by the Dutch animation studio NeoGeo and Not a Number Technologies

3

(NaN). Blender is available for use on many operating systems, including FreeBSD10, IRIX11,
GNU/Linux, Windows, Mac OSX, Solaris12, SkyOS, and MorphOS. Recent additions to Blender
support for 2 billion faces per scene, user interface enhancements and support for third party ray-
tracing packages have brought its capabilities close to those of “high end” 3-D software, such as
XSI, 3D Studio Max, and Maya, all professional programs used by Hollywood studios such as
Pixar.

The user interface for Blender3D is highly customizable and configurable by the user. A typical
“scripting” setup will have an OpenGL13 showing the data, a text editing window showing the
Python script, and application windows at the bottom of the screen comprised of rendering
options, directory information, animation options and hierarchical data.

The Python program shown in figure 1 imports, animates, and renders the time-variant data on a
local file system.

All polygonal objects in Blender3D are considered meshes. The VTKBlender module,
“VTKBlender.py,” provides the interface between the VTK data and Blender3D creating the
polygonal mesh and applying the color-per-vertex information “on the fly”.

The data represented here are of an experimental armature for an electromagnetic weapon
system. The rendered data show the electromagnetic forces in the X axial direction. In the
completed animation, I was able to move the camera around the data showing multiple views of
the data. The areas of interest (and showing where the forces are the greatest) are in red. The
completed animation presents a complete picture of the performance of the candidate armature,
presenting the color-per-vertex scientific data in a manner that is easily understood by the
viewing audience. Figures 2, 3, and 4 show time-variant electromagnetic data rendered in
Blender3D.

10FreeBSD is a registered trademark of The FreeBSD Foundation.
11IRIX is a trademark of Silicon Graphics, Inc. (SGI).
12Solaris is a trademark of Sun Microsystems, Inc.
13OpenGL is a registered trademark of SGI.

4

Figure 1. Blender3D user interface.

Figure 2. Blender3D rendered image, time step 1.

5

Figure 3. Blender3D rendered image, time step 300.

Figure 4. Blender3D rendered image, time step 500 (the last time step in data).

3. Conclusions

In the past, I have used animation packages such as Maya, Lightwave, 3D Studio Max, and
Houdini to present and render scientific data. All these animation packages are tremendous at
what they do, but there is a cost associated with each package and in some cases, it may be in the
range of tens of thousands of dollars each year. Employing an open-source software package
such as Blender3D to render photographic quality images and technical animations at no cost
would save ARL and the Department of Defense tens of thousands of dollars each year in fees
associated with software licenses and maintenance.

6

The incorporation of a Python interpreter at the very core of Blender3D provides an application
programming interface to the data, thus providing a means to read and manipulate the data in a
highly scientific manner.

7

4. References

1. Wikipedia. Python Programming Language, web site, http://em.wikipedia.org/wiki/
Python_programming_language, 2006.

2. Wikipedia. Visualization Toolkit (VTK), web site, http://em.wikipedia.org/wiki/VTK, 2006.

3. Visualization: VTK and Blender; http://www.ualberta.ca/CNS/ RESEARCH/Vis/
VTKBlender/index.html, 2006.

5. Web site, http://www.vtk.org/, 2006.

6. Web site, http://www.blender.org/, 2006.

8

INTENTIONALLY LEFT BLANK

9

Appendix A. Blender Python Script Importing and Animating Time Variant
Data

#!BPY

"""
Name: 'ANIMATE XDMF'
Blender: 241
Group: 'Animation'
"""
import os,sys,string
import Blender
from Blender.Scene import Render

try:
 import VTKBlender as VB
except:
 print 'Problem importing VTKBlender module...'

import vtk as V
#from Xdmf import *
from XFrameWork.io import XdmfVtk as X

class Data:
 iteration = 0
 datadir = None
 name = None
 ext = None
 me = None
 ActiveScalar = 'FX'
 location = [[0,0,0]]

 def __init__(self):
 """reads XDMF files from directory"""
 pass

 def ComputeAverageDistance(self):
 x_vector = 255
 dx = x_vector / 18.0
 print 'Computing average distance...', dx
 x = 0
 for i in range(18):
 loc = [x + dx, 0, 0]
 self.location.append(loc)
 x = x + dx
 print 'X: ', x
 del x_vector
 del dx

 def ImportTimesteps(self):
 """Checks to see if we have multiple timesteps, if so import them into Blender"""
 print '%d files' % self.iteration
 if self.iteration != 0:
 self.XdmfDataFiles.sort()
 for file in self.XdmfDataFiles:
 path = self.datadir + '/' + file
 self.Import_Xdmf(self.XdmfDataFiles.index(file), path)

 def Import_Xdmf(self, cntr, xdmf_file):
 print 'XDMF file: ', xdmf_file
 Blender.Window.WaitCursor(1)
 reader = X.vtkXdmfReader()
 reader.SetFileName(xdmf_file)

10

 reader.UpdateInformation()
 reader.EnableAllGrids()
 reader.EnableAllArrays()
 reader.Update()

 surface = V.vtkDataSetSurfaceFilter()
 surface.SetInput(reader.GetOutput())
 surface.SetPieceInvariant(1)
 surface.Update()

 cells = surface.GetOutput().GetNumberOfCells()

 lut = V.vtkLookupTable()
 lut.SetNumberOfColors(256)
 lut.SetHueRange(0.667, 0.0)
 lut.Build()

 m = V.vtkPolyDataMapper()
 m.SetInput(surface.GetOutput())
 m.SetScalarModeToUsePointData()
 m.GetInput().GetPointData().SetActiveScalars(self.ActiveScalar)
 min, max = m.GetInput().GetScalarRange()
 if min < 0.0:
 min = 0.0
 print 'Scalar min: %f max: %f ' % (min, max)
 m.SetLookupTable(lut)
 m.GetLookupTable().SetTableRange(min, max)
 m.Update()

 self.name,self.ext = os.path.splitext(os.path.basename(xdmf_file))
 scn = Blender.Scene.GetCurrent()

 if cntr == 0:
 self.me = VB.PolyDataMapperToBlender(m)
 ob = Blender.Object.New('Mesh', self.name)
 ob.link(self.me) #tell object to use new mesh
 scn.link(ob) #link object to current scene
 else:
 self.u_me = VB.PolyDataMapperToBlender(m, self.me)
 c_ob = scn.getActiveObject()
 scn.unlink(c_ob)
 ob = Blender.Object.New('Mesh', self.name)
 ob.link(self.u_me) #tell object to use new mesh
 scn.link(ob) #link object to current scene

 cam = Blender.Object.Get('Camera')
 grp1 = Blender.Object.Get('armature_guides')
 grp2 = Blender.Object.Get('payload')
 lamp1 = Blender.Object.Get('Lamp')
 lamp2 = Blender.Object.Get('Lamp.001')
 ob.makeParent([cam, grp1, grp2, lamp1, lamp2])
 ob.setLocation(self.location[cntr])
 ob.sel = 1
 ob.Layers = scn.Layers
 scn.update()
 Blender.Window.RedrawAll()
 del scn

 def RenderScene(self, cntr):

 context = Blender.Scene.GetCurrent().getRenderingContext()
 context.saveRenderedImage("%s.%04d.jpg" % (self.ActiveScalar, cntr))
 context.setImageType(Render.JPEG)
 context.enableExtensions(1)
 context.render()

 del context

 def Main(self):
 self.ComputeAverageDistance()
 for i in range(1):

11

 file =
'/home/jvines/Devel/Coupling_05/EM_DYNA3D_COUPLING/TEST/Coupled_PROBED_%04d.xmf' % i
 self.Import_Xdmf(i, file)
 self.RenderScene(i)

if __name__=="__main__":
 d = Data()

d.Main()

12

NO. OF
COPIES ORGANIZATION

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV & ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 2 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS OK T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 ABERDEEN PROVING GROUND

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 4600

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI HC J VINES
 BLDG 394

