
A Family of Collusion Resistant Protocols for

Instantiating Security

Sandeep S. Kulkarni Bruhadeshwar Bezawada Mohamed G. Gouda

Department of Computer Science and Engineering Department of Computer Science

Michigan State University The University of Texas at Austin

East Lansing MI 48824 Austin, TX 78712

Abstract

In this paper, we focus on the problem of identifying a family of collusion resistant protocols that

demonstrate a tradeoff between the number of secrets that users maintain and the level of collusion

resistance. Towards this end, we define the classes of collusion resistant protocols (modeled along the

complexity classes in algorithmic complexity) and evaluate the membership of existing protocols as

well as the protocols in the proposed family for membership in these classes. We also show that this

family contains existing protocols for instantiating security.
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1 Introduction

One way to achieve security, including authentication and privacy, is to require that the sender and

receiver share a common secret that no other user in the network knows. An impediment in providing
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such security is the issue of collusion among users. Specifically, if a group of users collude then they

can combine their collection of secrets and attempt to foil the security of the communication among the

remaining users. One way to achieve such collusion resistance is to use the full secret protocol, where each

pair of users maintains a unique secret that only known to those two users. With such an approach, the

collusion among some users does not affect the remaining users. However, in this approach, the number

of secrets that users maintain is n − 1, and it is difficult to maintain these secrets if the number of users

is large or the user capability is low (e.g., in ad-hoc networks and sensor networks).

Another protocol in this context is the square grid protocol from [1] (recalled in Section 2.1). This

protocol guarantees security in the absence of collusion while maintaining only O(
√

n) secrets per user.

Specifically, it guarantees that when two users communicate, the collection of secrets they use is such that

no other user knows all secrets in that collection. However, other users may know (different) subsets of

this collection of secrets. Hence, the collusion among such users can compromise the security between a

pair of users. Also, in this protocol, a small group of colluding users can significantly degrade the ability

of others to communicate securely.

Since the number of secrets maintained by the square grid protocol is within a constant factor of optimal

[1] for any protocol that provides security in the absence of collusion and the level of collusion resistance

of the full secret protocol is as good as it gets, we focus on the question of tradeoff between number of

secrets maintained by users and the corresponding collusion resistance.

Contributions of the paper.

• We propose a family of collusion resistant protocols where the level of collusion resistance is pro-

portional to the number of secrets that users maintain.

• We formally define the notion of collusion resistance. Using this definition, we identify classes

of collusion resistant protocols. We evaluate the membership of existing protocols as well as the

protocols in the proposed family in these collusion resistance classes.

• While the proposed family of collusion resistant protocols is based on the square grid protocol

from [1], we show that other variations of the square grid protocol cannot be used to obtain such

a family.
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Organization of the paper. In Section 2, we consider the related work and recall the square

grid protocol from [1]. Then, in Section 3, we define what we mean by collusion resistance of a secret

distribution protocol. Using this definition, in Section 4, we define collusion resistance classes. In Section

5, we identify the constraints that should be met in order to identify a family of collusion resistant

protocols. Using these constraints, in Section 6, we present our family of collusion resistant protocols.

Finally, in Section 7, we present simulation results and conclude in Section 8.

2 Classification of Protocols for Instantiating Security

The approaches for instantiating security can be broadly classified in terms of those that use asymmetric

keys (e.g., public/private key) and those that use symmetric keys. In the former approach (e.g., [2–4]),

certificates are used and initially each user is provided with a certificate signed by a trusted authority.

However, this solution requires high computing power (100-1000 times when compared with symmetric

keys). For this reason, we focus on solutions that use shared secrets instead of certificates.

The approaches for providing security with shared secrets can be further classified in terms of (1) avail-

ability (or, the lack thereof) of a trusted server during communication between users, and (2) trust (or,

the lack thereof) in the intermediate users that may be required to facilitate routing of messages between

communicating users.

Existing protocols such as [5–9] are designed for systems where a trusted server is available when two users

need to communicate. However, in many systems, this approach is undesirable (respectively, impossible)

as no trusted server is available when two users need to communicate with each other. The protocols in

the proposed family assume that a trusted server is unavailable when users need to communicate.

Also, other protocols have been designed where intermediate users are trusted. These protocols include

[10–13]. Since the intermediate users are trusted, if two non-neighboring users need to communicate,

they route the messages through the intermediate users that decrypt and re-encrypt the message. Thus,

it suffices that the communicating users share a path such that every user on the path shares a secret

with its predecessor and its successor. However, in this case, compromise of a small number of users

(and, collusion among them) that act as intermediate users can severely compromise the security.
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Another category of solutions includes solutions where intermediate users are not trusted. Clearly, in

such a solution, compromise of intermediate users (or collusion between them) does not affect system

security as long as the communicating users share a secret that is not known to the intermediate users.

Especially, in the context of developing collusion resistant protocols, it is, therefore, desirable to follow

this approach.

Based on the above discussion, we focus on the security protocols where (1) shared secrets are used, (2)

a trusted server is not available when two users communicate (such a trusted server could exist for users

to obtain their shared secrets in an offline manner), and (3) intermediate nodes are only trusted as far

as routing is concerned. They should not be able to decrypt any communication they are forwarding.

One such protocol is the square grid protocol from [1]. Since our proposed family of collusion resistant

protocols is based on this protocol, we recall this protocol, next.

2.1 The Square Grid Protocol

In this section, we recall the square grid protocol [1] for instantiating security. In this protocol, n users

are arranged in a logical square grid of size
√

n x
√

n. Each location, 〈i, j〉, 0 ≤ i, j <
√

n, in the grid is

associated with a user u〈i,j〉 and a grid secret k〈i,j〉. Each user knows all the grid secrets that are along

its row and column. For example, in Figure 1, the grid secret associated with 〈1, 1〉 is known to users

at locations 〈j, 1〉, 〈1, j〉, 0 ≤ j ≤ 3. (One small optimization of this protocol is that user u〈i,j〉 need not

maintain k〈i,j〉. However, for simplicity, in this paper, we ignore this optimization.) Additionally, each

user maintains a direct secret with users in its row and column. This direct secret is not known to any

other user. For example, user u〈1,2〉 shares a direct secret with user, u〈1,3〉, which is located in the same

row (cf. Figure 1).

0, 0 0, 1 0, 2 0, 3

1, 3

2, 32, 1 2, 2

1, 0 1, 2

3, 3

2, 0

3, 0 3, 1

1, 1

3, 2

Figure 1: Single grid protocol: A node marked 〈j, k〉 is associated with user u〈j,k〉 and grid secret k〈j,k〉
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Now, consider the case where a user A wants to send message m to user B. Let the locations of A and

B be 〈j1, k1〉 and 〈j2, k2〉 respectively. In this case, A encrypts m using the following secret selection

protocol and sends it along with its own grid location (in plain text). If multiple secrets are selected by

the communicating users then a combination of those secrets (using primitives like XOR or hash functions

like MD5) is used to encrypt the message.

If (j1 6=j2 ∧ k1 6=k2) // Users are neither in same row nor in same column

Use the grid secrets k〈j1,k2〉 and k〈j2,k1〉

Else // Users are in the same row or column

Use the direct secret between u〈j1,k1〉 and u〈j2,k2〉

Theorem 2.1 The above protocol ensures that the collection of secrets used by two communicating

users is not known to any other user in the system. Hence, in the absence of collusion, the above protocol

can be used for providing authentication and privacy. (cf. [1] for proof.)

Remark. Note that in this paper, we only focus on the issue of secret distribution and secret selection.

Once the secret(s) is selected, existing approaches can be used to provide resistance against attacks such

replay of old messages. These approaches include the use of ‘time’ and/or ‘nonces’,

3 Defining Collusion Resistance of Security Protocols

In this section, we precisely define how we count the secrets maintained by users and what we mean by a

protocol to be collusion resistant. We are interested in protocols where the secrets maintained by a user

are independent, i.e., even if an attacker knows a subset of the secrets that a user has, it should not be

possible for the attacker to discover the other secrets that user has. In other words, the knowledge of a

subset of secrets does not assist the attacker in identifying the remaining secrets through cryptanalytic

attacks. Thus, even if two users use a set of secrets to ensure security and the attacker is aware of all

but one of those secrets, the attacker cannot compromise that communication.

Furthermore, to compute the space requirement for secrets, we count all secrets that are need to be

stored by the user. To illustrate this issue, consider the case where a small number, say x, of secrets are
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used initially to generate a large number, say y, of new secrets by some mathematical manipulation (e.g.,

using those in evaluating certain polynomials) of the original secrets. In such a case, if these y secrets are

stored by the user then the space requirement for this case is y. However, if these secrets are computed

on-the-fly then the space requirement is x.

Our intruder/attacker/colluder model is as follows:

Intruder/Attacker/Colluder Model. We assume the standard node-compromise attacker model

(e.g., [10,11,13–15]). If a user has been compromised by an attacker then it can utilize all the secrets that

the user had. It can do so either passively, i.e., by just listening to messages and attempting to decrypt

them if possible. Or, it can do so actively, for example, it can attempt to impersonate another user. The

colluding users (attackers) can pool together their secrets in order to break communication security.

Also, we make no assumptions about mobility in the network. Thus, the users may be mobile or static.

We only assume that an orthogonal approach is used to route messages (even in the presence of mobility)

and to deal with denial of service attacks. In other words, we only assume that any message sent by

legitimate users is delivered (even if users are mobile or the system is subject to a denial of service attack).

The approaches used for routing or for dealing with denial of service attacks are outside the scope of this

paper.

When users collude, they can combine the secrets they know in order to compromise communication

among the remaining users. To study the effect of such collusion, consider a system with n users. In such

a system, there are a total of n(n − 1) pairs of communicating users. (For simplicity, we consider 〈j, k〉

to be a different pair than 〈k, j〉). Hence, when a set of users collude, some of these pairs can no longer

communicate securely, as all the secrets they use for achieving security are known to the colluding users.

For example, in Figure 1, if users u〈0,0〉 and u〈1,1〉 collude then users u〈2,0〉 cannot communicate securely

with u〈3,1〉. Our definition of collusion resistance is based on the effect of the collusion on these pairs.

First, we consider two such plausible definitions, and argue that they are inappropriate because either

they do not capture the true collusion resistance of the protocol or they are difficult to use.

Attempt 1: A protocol is collusion resistant to x users if at least one pair of users can communicate

securely even if any subset of x users collude.

This definition is inappropriate for the following reason: Consider any secret distribution protocol for
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users 1 . . . n. Without loss of generality, let n be even. In this protocol, add an additional secret between

(1, 2), (3, 4), . . . , (n − 1, n). With such modification, if the number of colluding users is less than n/2

then at least one pair of users can communicate securely. Thus, if we were to use the above definition

then the protocol will be collusion resistant to n/2 users. Since this modification involves addition of

one secret to each user, any secret distribution protocol can be trivially modified to get resistance to

n/2 colluding users. In other words, the above definition fails to identify the true collusion resistance of

different protocols. Therefore, the definition of collusion resistance should require a ‘significant number’

of pairs to be unaffected. Hence, we consider the following definition.

Attempt 2: A protocol is collusion resistant to x users if at least half of the pairs of users can commu-

nicate securely even if any subset of x users collude.

Although this definition does allow one to distinguish between collusion resistance of different protocols,

the choice of half is arbitrary. Moreover, using this definition, it may be difficult to compute the collusion

resistance of a particular protocol. Also, the collusion resistance varies widely if we change the requirement

about the percentage of unaffected pairs.

Yet another problem with the above definition is that it does not allow us to identify the trend in the

effect of collusion. Specifically, as the number of users in a system grows, it is desirable that the number

of colluding users required to inflict the same disruption, computed in terms of the percentage of pairs

affected, should also increase. Therefore, the definition of collusion resistance should be such that we can

say ‘a protocol is collusion resistant to f(n) users if n is the total number of users in the system’. With

this intuition, we now define the notion of a collusion resistance function.

Definition. A function C : N 7−→ N , is a collusion resistance function for a protocol P iff

limn→∞
NumUnAffected(n,C (n))

TotalPairs(n) > 0,

where, NumUnAffected(n,C (n)) = the minimum number of pairs in a system of n users that can

communicate securely even if any subset of C (n) collude and

TotalPairs(n) = All possible pairs in a system with n users =n(n − 1)

Definition. We say that a protocol P with n users is collusion resistant to C (n) users iff C is a

collusion resistance function of P.

7



Remark. Note that, NumUnAffected(n,C (n))
TotalPairs(n) is always in the range [0, 1]. Thus, the above definition

requires that as the system size increases the ratio converges to a non-zero constant. A reader may

wonder if we could have defined that a protocol is collusion resistant to C (n) users if the number of

affected pairs is insignificant, i.e., limn→∞
NumUnAffected(n,C (n))

TotalPairs(n) = 1. We note that such a definition

would be viable. We consider this issue after identifying the collusion resistance of the square grid

protocol.

Example: Collusion resistance of the square grid protocol. Observe that, in the square grid

protocol in [1], the worst case disruption due to collusion occurs if the colluding users are in different

rows and different columns. Moreover, without loss of generality, the grid locations of such colluding

users can be renamed so that they lie along the diagonal of the square grid as such renaming does not

affect the nature of secrets known to the colluding users. Thus, if r users collude, we can assume that

they are at locations, 〈0, 0〉, 〈1, 1〉 . . . 〈r − 1, r − 1〉, along the diagonal.

0, 0 0, 1 0, 2 0, 3

1, 3

2, 3

1, 2

2, 2

3, 2

2, 1

1, 0

2, 0

3, 13, 0 3, 3

1, 1

Colluding Users

Unaffected Pairs

Figure 2: Effect of Collusion on Grid Protocol

Now, we show that the function, C (n) = b
√

n
2 c is a collusion resistance function for the square grid

protocol. To verify this, consider the case where the first b
√

n
2 c users along the diagonal collude (cf.

Figure 2). The grid secrets of users in the top b
√

n
2 c rows and left b

√
n

2 c columns are compromised.

However, the users in the lower right quadrant (cf. Figure 2) are not affected if they communicate within

themselves. Since the number of users that are not affected is at least n
4 , the number of unaffected pairs

is at least n
4 .(n

4 − 1). Now,

limn→∞
n
4
.( n

4
−1)

n.(n−1) = 1
16 > 0

From the above result, C (n) = b
√

n
2 c is a collusion resistance function of the square grid protocol. In
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general, a function c.
√

n is a collusion resistance function for the square grid protocol if 0 < c < 1.

Moreover, 1.
√

n is not a collusion resistance function because if all
√

n users along the diagonal collude

then, all the grid secrets are compromised. Thus, a user is able to communicate securely only with those

users with which it maintains a direct secret. In other words, users will be able to communicate securely

with users in their rows and columns. Each row (column) has
√

n users. Hence, the number of pairs in a

row are at most n. Since there are
√

n rows and
√

n columns, the number of unaffected pairs is atmost,

2n
√

n. And,

limn→∞
2n

√
n

n.(n−1) = limn→∞ 1√
n

= 0

Remark. If we had used the definition ‘a protocol is collusion resistant to C (n) users if the number

of affected pairs is insignificant, i.e., limn→∞
NumUnAffected(n,C (n))

TotalPairs(n) = 1’ then it could be shown that the

grid protocol is collusion resistant to n(1/2)−ε users where ε is any positive number. We leave this proof

as an exercise to the reader. Therefore, the conclusion reached about the collusion resistance of the grid

protocol is essentially the same as that reached with our definition. We note that this observation is true

for all the protocols considered in this paper.

4 Collusion Resistance Classes

Based on the above discussion of the grid protocol, we now define, along the lines of complexity classes

for algorithms, the notion of collusion resistance class.

Definition. Or(f(n)) is the set of key distribution protocols for which c.f(n) is a collusion resistance

function for some (positive) value of c. In other words,

Or(f(n)) = {P | ∃c : c > 0 : c.f(n) is a collusion resistance function of P }

Definition. Ωr(f(n)) is the set of key distribution protocols for which c.f(n) is not a collusion

resistance function for some (positive) value of c. In other words,

Ωr(f(n)) = {P | ∃c : c > 0 : c.f(n) is not a collusion resistance function of P }

Definition. Θr(f(n)) is the set of key distribution protocols that are both in Or(f(n)) and Ωr(f(n)).

In other words,

Θr(f(n)) = Or(f(n)) ∩ Ωr(f(n)).
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Now, based on these definitions and the above discussion about the square grid protocol, we have:

Observation 4.0 Given ε and δ such that 0 ≤ δ ≤ ε, we have

• Or(n
ε) ⊆ Or(n

δ)

• Ωr(n
δ) ⊆ Ωr(n

ε)

Theorem 4.1 The square grid protocol ∈ Θr(
√

n).

Remark. Although the above definitions are modeled along the complexity classes for algorithms,

not all results about complexity classes may apply in this context and vice versa. For example, above

definitions are meaningful only if f(n) linear or a slower growing function. Also, since f(n) = n is not

a collusion resistance function for any protocol (because if all users collude then none can communicate

securely), Ωr(n) consists of all key distribution protocols.

Example: Collusion resistance of the full secret protocol. Now, we describe the full secret

protocol and its collusion resistance. In this protocol, there is a unique secret associated with every pair

of users. Thus, for a system of n users, each user maintains n − 1 secrets.

The function C (n) = bn
2 c is a collusion resistance function for the full secret protocol. To verify this,

we note that the pairwise secrets shared by the remaining d n
2 e users are not compromised due to the

collusion. Thus, the number of pairs that are unaffected due to collusion is at least n
2 .(n

2 − 1). Now,

limn→∞
n
2
.( n

2
−1)

n.(n−1) = 1
4 > 0

From this result, we note that, C (n) = b n
2 c, is a collusion resistance function for the full secret protocol.

Thus, we have,

Theorem 4.2 The full secret protocol ∈ Θr(n).

Tradeoff between number of secrets and collusion resistance. The full secret protocol is in

Θr(n) and requires each user to store Θ(n) secrets. The collusion resistance provided by the full secret

protocol is, in some sense, the maximum collusion resistance offered by any security protocol. However,

this protocol also requires the users to store the maximum number of secrets. On the other hand, the

square grid protocol is in Θr(
√

n) and requires each user to store Θ(
√

n) secrets. The number of secrets

stored by a user in the square grid protocol (cf. [1]) is within a factor of the minimum number of secrets
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that need to be stored in any security protocol that guarantees authentication and privacy in the absence

of collusion. However, the collusion resistance provided by the square grid protocol is also lower than the

full secret protocol.

Now, consider the following question: Is it possible to identify a family of protocols that provide a

tradeoff between the number of secrets that users maintain and collusion resistance. Specifically, are

there protocols in Θr(n
δ), 1/2 ≤ δ ≤ 1, where the number of secrets maintained by users is Θ(nε),

1/2 ≤ ε ≤ 1. Our approach to identify this family is based on variations of the square grid protocol.

We consider two variations of the square grid protocol in Section 5 and show that they cannot be used

to identify such a family. Then, in Section 6 we present the family of protocols that achieves the above

requirements.

5 Identifying Constraints on Family of Collusion Resistant Protocols

In this section, we consider two variations of the square grid protocol. While these variations fail to

identify the desired family of collusion resistant protocols, they identify two of the desired properties, (1)

need to use 2D grids instead of higher dimensional grids, and (2) need to use symmetric grids where the

number of users in a row is (approximately) the same as that in column, that should be met by protocols

in this family. Hence, a reader who is willing to take these properties for granted can skip this section.

Grid Protocol for Higher Dimensions. In the context of higher dimensional grid, we consider

3D grids. Each location 〈i, j, k〉, 0 ≤ i, j, k < n1/3, is associated with a user u〈i,j,k〉 and a grid secret

k〈i,j,k〉. Each user gets the grid secrets associated with the (3) planes it is in. 2 Also, the user maintains

a direct secret with users in its planes. Thus, the number of secrets maintained by the user is Θ(n2/3).

2A reader may wonder if we could have allowed a user to only maintain the grid secrets in the (3) lines (instead of planes)

it is in. With such an approach, we could reduce the number of secrets to n
1/3. However, with this approach, it is not

possible for all users to communicate securely even in the absence of collusion. Specifically, consider users located at 〈0, 0, 0〉

and 〈1, 1, 1〉. The former maintains secrets of the form 〈0, 0, ∗〉, 〈0, ∗, 0〉, 〈∗, 0, 0〉 and the latter maintains secrets of the form

〈1, 1, ∗〉, 〈1, ∗, 1〉, 〈∗, 1, 1〉. Therefore, they have no common secrets. By contrast, when they maintain secrets in their planes,

the secrets maintained by 〈0, 0, 0〉 is of the form 〈0, ∗, ∗〉, 〈∗, ∗, 0〉, 〈∗, 0, ∗〉. And, the secrets maintained by 〈1, 1, 1〉 is of the

form, 〈1, ∗, ∗〉, 〈∗, ∗, 1〉, 〈∗, 1, ∗〉. Therefore, they have common secrets that they can use.
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Now, when two users communicate, if they are in the same plane, they use the direct secret. Otherwise,

they use all the grid secrets shared by them. Now, consider the case where the users on the diagonal of

this grid, i.e., 〈0, 0, 0〉, 〈1, 1, 1〉, . . . 〈n1/3 − 1, n1/3 − 1, n1/3 − 1〉, collude. Since all grid secrets are thus

compromised, users can communicate with only those with whom they maintain direct secrets. In other

words, a user can communicate securely with only those users in its planes. As each plane has n2/3 users,

the number of pairs that can communicate securely is atmost, n2/3.n2/3. Since there are 3n1/3 planes in

the grid, the total number of unaffected pairs is atmost, 3n1/3.n2/3.n2/3. Now,

limn→∞ 3n1/3.n2/3.n2/3

n(n−1) = limn→∞ 1
n1/3

= 0

As in the case of the square grid protocol, if we consider that n1/3

2 users on the diagonal collude then,

we have at least n/8 users who can communicate securely within themselves. Therefore, similar to the

square grid protocol, we can show that n1/3

2 is a collusion resistance function for the 3D grid. Thus,

Theorem 5.1 The 3D grid protocol ∈ Θr(n
1/3).

Moreover, the number of secrets maintained by the users is Θ(n2/3). Thus, the collusion resistance of

the 3D grid protocol is not as good as the square grid protocol even though it requires the users to store

more secrets.

Rectangular Grid Protocol. Based on the discussion about protocols with higher dimensional grid,

it is clear that to identify a family of collusion resistant protocols, we should focus on 2D grids. One

variation of the 2D grid is a rectangular grid of size lxb, where l 6= b. In this case, the number of users

is l.b. The square grid protocol from [1] can be trivially extended to such rectangular grids. The reason

for considering such protocols comes from the observation that if b = 1 then this protocol is identical to

the full secret protocol. Specifically, if b = 1 then all users are in a single row. Hence, there are no grid

secrets and there is a direct secret between every pair of users.

Now, we evaluate the collusion resistance of such a protocol. Without loss of generality, we consider

a grid with l > b. Consider the case where the users on the diagonal, 〈0, 0〉, 〈1, 1〉, . . . 〈b, b〉, collude.

Thus, all the grid secrets are compromised and a user can communicate securely with only those users

with which it maintains a direct secret. Thus, secure communication is possible only along the rows and

columns of the rectangular grid. As each column has b users and the number of columns is l, the number

of unaffected pairs in the columns is atmost l.b2. Likewise, the number of unaffected pairs in the rows is
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atmost b.l2. Now,

limn→∞
l.b2+l2.b
n.(n−1) = limn→∞

n
b
.b2+( n

b
)2.b

n.(n−1) = limn→∞
1
b

Thus, if b is O(1) (i.e., independent of n) then the above limit is non-zero. However, if b is of the form f(n)

where limn→∞f(n) = ∞ then the above limit is zero. Thus, the above protocol is collusion resistant to b

users only if b = O(1). Moreover, since l > b then the collusion resistance of the rectangular grid protocol

is no better than that of the square grid protocol. In other words, to identify the family of collusion

resistant protocols, we should focus on protocols where the number of users in a row is (approximately)

equal to the number of users in a column. We identify such a protocol family in Section 6.

6 Proposed Family of Collusion Resistant Protocols

Based on our discussion in Section 5, to identify a family of collusion resistant protocols, we should

focus on 2D grids where the number of users in a row is approximately the same as that in a column.

With this intuition, in this section, we propose a family of collusion resistant protocols that (1) are in

Θr(n
ε), 1/2 ≤ ε ≤ 1, (2) maintain Θ(nε), 1/2 ≤ ε ≤ 1, secrets, and (3) the level of collusion resistance

is proportional to the number of secrets that users maintain. Specifically, in Section 6.1, we present our

diagonal protocol family and in Section 6.2, we identify its collusion resistance.

6.1 Diagonal Protocol Family

For a given set of n users, a protocol in this family arranges these users in a grid of size kxk, where

k ≥ √
n. The value used to instantiate k identifies different members in this family. Similar to the square

grid protocol, each grid location 〈i, j〉 is associated with a grid secret, k〈i,j〉. However, as there are more

grid locations than users, some grid locations are not associated with users. We assign the users to grid

locations along the diagonal. First, we arrange k users along the diagonal, i.e., these users are at locations

〈x, y〉 where (x − y) ≡ 0 mod k. Then, another k users are assigned to grid locations 〈x, y〉, where,

(x − y) ≡ 1 mod k. We continue assigning the remaining users, to grid locations, (x − y) ≡ 2 mod k,

(x − y) ≡ 3 mod k, and so on, until all the users are assigned a grid location. (cf. Figure 3 where 36

users are arranged in a 8x8 grid). Observe that with such assignment, the number of users in a row is

13



approximately the same as the number of users in a column.

The secret distribution is identical to that of the square grid protocol. Specifically, a user gets the grid

secrets in its row and in its column. And, each user shares a direct secret with users in its row and

column. Moreover, the secret selection protocol is the same as that of the square grid protocol (recalled

in Section 2.1). Now, we show that by appropriate instantiation of k, we can obtain the square grid

protocol and the full secret protocol.

Grid locations with users

Figure 3: User assignment in the diagonal protocol

Obtaining the square grid protocol. If we instantiate k =
√

n in the diagonal protocol family then

all grid locations will be associated with users. Thus, the resulting protocol is the same as the square

grid protocol. .

Obtaining the full secret protocol. If we instantiate k = n in the diagonal protocol family then all

users will be arranged along the diagonal. Thus, no direct secrets are maintained and each user maintains

2(n − 1) grid secrets. Consider the secrets maintained by a user, say at location 〈j, j〉. When this user

communicates with a user at location 〈l, l〉, it uses secrets at locations 〈j, l〉 and 〈l, j〉. Observe that

while communicating with any other user, 〈j, j〉 (respectively, 〈l, l〉) uses neither of these secrets. Hence,

instead of maintaining the secrets at locations 〈j, l〉 and 〈l, j〉, the user at locations 〈j, j〉 (respectively,

〈l, l〉) can only maintain a combination of these secrets. With this revision, the protocol is the same as

the full secret protocol.

Remark. In the subsequent discussion, for brevity, we use the term ‘a diagonal protocol’ to mean ‘a

member in the diagonal protocol family’.

14



6.2 Collusion Resistance of Diagonal Protocol

In the diagonal protocol, if kxk grid is used for a group of n users then users will be assigned to locations

〈x, y〉 where x−y ≡ w mod k, where 0 ≤ w < dn/ke. For simplicity, we assume that n/k is an integer and

ignore the fact that some locations where x − y ≡ dn/ke − 1 mod k are not associated with users. This

assumption is reasonable as we are interested in asymptotic behavior of the protocol while computing its

collusion resistance.

Now, we consider the collusion resistance of such a protocol. Similar to the protocol in [1], the colluding

users cause the maximum disruption when they are in different rows and columns. Hence, without loss

of generality, we can assume that if there are r colluding users then they are at locations 〈0, 0〉, 〈1, 1〉

. . . 〈r − 1, r − 1〉, along the diagonal.

We consider the case where there are k/2 colluding users. Similar to our discussion in 3, we can see

that that the users in the lower right quadrant can communicate securely within themselves. Now, we

compute the number of users in this quadrant. The users in the lower right quadrant are at locations

〈x, y〉 where x ≥ k/2 and y ≥ k/2. The number of such users where x − y = 0 mod k is k/2. Also, the

number of such users where x − y = 1 mod k is k/2 − 1, and so on. Thus, the number of users in the

lower right quadrant is:

k/2 + (k/2 − 1) + ... + (k/2 − n/k + 1)

≥ (k/2 − n/k) ∗ n/k

≥ n/2 − n/(k2)

Now, if k = nε where 1/2 < ε < 1 then n/(k2) is o(n). Therefore, the number of users in the lower

quadrant is n/2 - o(n). Thus, if k = nε where 1/2 < ε < 1 then the number of users in the lower quadrant

is Θ(n). And, the number of unaffected pairs is Θ(n2). It follows that the diagonal protocol with a kxk

grid is resistant to collusion of k/2 users.

Furthermore if all k users along the diagonal collude then all grid secrets are compromised. Thus, a user

can securely communicate with only users in its row/column. There are n/k users in each row/column.

And, there are k rows and columns. Hence, the number of unaffected pairs is at most 2k(n/k)2. If

k = nε then the number of unaffected pairs is atmost 2(n2−ε). It follows that the diagonal protocol is

not collusion resistant to k users.
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Based on the above discussion, we have:

Theorem 6.1 The diagonal protocol with a nε x nε grid ∈ Θr(n
ε).

Thus, the diagonal protocol family consists of protocols (one for each value of ε) such that the number

of secrets maintained by users in these protocols are proportional to the collusion resistance provided by

them.

7 Performance Analysis

In this section, we compare the collusion resistance of different protocols in the diagonal protocol family.

Specifically, we consider the protocols in the diagonal protocol family where the grid size is kxk, where

k is either
√

n, n2/3, n3/4 or n4/5. Of these, k =
√

n corresponds to the protocol from [1]. We compare

collusion resistance of these protocols in two cases (1) where the colluding users are selected in such a

way that they cause the maximum number of user pairs to be affected, and (2) where colluding users are

selected randomly. The former corresponds to the case where colluding users can select their grid locations

whereas in the latter corresponds to the case where the colluding users do not have such capability.

In these simulations, we also consider a randomized version of the protocol family from Section 6. To

compare this with the diagonal protocol family, observe that in a diagonal protocol, deterministic ap-

proach is used to ensure that the number of users in a row is approximately equal to the number of

users is a column. An alternative approach is to assign grid locations to users randomly with uniform

probability. With such an approach, the expected number of users in a row is the same as the expected

number of users in a column. Hence, it is expected that such a protocol can be used in identifying a family

of collusion resistant protocols. Unfortunately, in this protocol, it is difficult to identify the worst-case

disruption that can occur due to colluding users. For this reason, in this protocol, we consider the case

where a random collection of users is selected to collude. For this protocol, we only consider the case

where the colluding users are selected randomly.

In the following simulation results, the term ‘Grid’ denotes the protocol in [1] (also equivalent to the

diagonal protocol with k =
√

n). The term ‘Diagonal k = nε’ denotes the diagonal protocol with nεxnε

grid where colluding users are selected along the diagonal. And, as discussed in Section 3, this causes
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maximum user pairs to be affected. The term ‘Random’ denotes the above random distribution of users

where colluding users are selected at random. Finally, the term ‘Diagonal k = nε with random collusion’

denotes the diagonal protocol with nεxnε grid where colluding users are selected randomly. For the

experiments with random collusion, we repeated the simulation five times and took the average of these

simulations. For other experiments, repetition is not required as the calculation is deterministic.

In Figures 4(a), (b) and (c), respectively, we show the effect of, 5, 10 and 20 colluding users. From

these figures, we see that, as the number of users increases, the number of affected pairs in the diagonal

protocol with k = n2/3 is less than that in the grid protocol. The percentage of user pairs affected due

to random collusion is slightly less than the case where colluding users are along the diagonal. This

is due to the fact that with some random colluding users, some of the colluding users are in the same

row/column. Moreover, even with random colluding users, the diagonal protocol provides slightly better

collusion resistance when compared to the case where users are randomly distributed in the grid. In

other words, even if the colluding users were to be selected at random, it is beneficial to arrange the users

deterministically.
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Figure 4: Effect of collusion on various protocols. (a) 5 colluding users (b) 10 colluding users and (c) 20

colluding users

Figure 5 compares collusion resistance of different protocols in the diagonal protocol family. When users

are arranged in a nεxnε grid, the number of pairs affected due to collusion decreases as the value of

ε increases. Thus, the level of collusion resistance is proportional to the number of secrets that users

maintain.
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Figure 5: Collusion in diagonal protocol for different k values. (a) 5 colluding users (b) 10 colluding users

and (c) 20 colluding users

Finally, Figure 6 evaluates the effect of different collusion resistance functions for the protocols in the

diagonal protocol family. Based on the discussion in Section 6, for a diagonal protocol with nεxnε grid,

c.nε is a collusion resistance function if c < 1. We consider the number of affected user pairs for the

case where c equals 1/2,1/3, ..., 1/6. As shown in Figure 6, the number of user pairs affected reaches

a constant as the number of users is increased. This validates the expected result that in a diagonal

protocol with nεxnε grid, the percentage of pairs unaffected by collusion reach a non-zero limit if the

number of colluding users is c.nε where c < 1.
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8 Conclusion

In this paper, we presented a family of collusion resistant protocols, the diagonal protocol family, where

the level of collusion resistance is proportional to the number of secrets that users maintain. The proposed

protocol family is based on the square grid protocol from [1]. We showed that other variations of this

protocol, however, failed to identify the family of collusion resistant protocols.

We defined the notion of collusion resistance classes. We showed that these collusion resistance classes

could be effectively used to compare the collusion resistance of different protocols. We identified the

collusion resistance of existing protocols as well as the protocols in the proposed family for membership

in these families. We also validated these results through simulation. Specifically, we showed that given

a collusion resistance function C (n) of a protocol, the percentage of unaffected pairs due to collusion of

C (n) users in a system of n users is unchanged as the number of users is increased.

To improve the security further and to reduce the window of vulnerability while using the diagonal

protocol family, users should use their initial secrets to establish a new disposable secret and use that

new secret during further communication. With such a change, security can be compromised only if the

adversary can eavesdrop during the establishment of the new secret.

For reasons of space, we did not discuss how the user obtains the initial secrets as this issue is orthogonal

to the issue of what secrets a user should get. A user may obtain these initial secrets in several ways,

e.g., a user may obtain these secrets by initially visiting (respectively, periodically revisiting) a trusted

server. Also, the problem we discussed is orthogonal to the issue of secret maintenance [16], where users

change their secrets periodically to thwart cryptanalytic attacks.

One of the open questions from this work is the optimality of the number of secrets maintained in order

to provide the required level of collusion resistance. In the proposed diagonal protocol family, if Θ(nε)

secrets are maintained then the resulting protocol is in Θr(n
ε). For ε = 1/2 (where we obtain the protocol

from [1], the number of secrets maintained is within a constant factor of the optimal. Also, for ε = 1, the

number of secrets maintained by user is within a constant factor of optimal. However, the optimality is

not known for intermediate values.
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