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Abstract—We present the Adaptive Group Notification paradigm grow, a number of methods have also been
(AGNO) scheme for efficiently contacting large peer pop- proposed to implement multicast communication
defines a novel implicit approach towards group mem- o ertheless, these approaches take advantage of

bership by monitoring demand for content as this is .
expressed through lookup operations. Utilizing search in- the structure that DHTs (distributed hash tables)

dices, together with a small number of soft-state shortcuts, Provide. In many realistic scenarios, the topology
AGNO achieves effective and bandwidth-efficient content cannot be controlled and thus DHTs cannot be
dissemination, without the cost and restrictions of a mem- ysed (e_g_, ad-hoc networks or current Iarge-scale
bership protocol or a DHT. We present several simulation ynstructured overlays). Other approaches require
results over different topologles using both synthetic and frequent communication overhead between group
real workloads, to evaluate its performance. Our method . )
achieves high-success content transmission at a cost a{nembers and eXpIICIt mem_berShlp protocols. These
least two times smaller than proposed techniques for SChemes often prove unsuitable because of the gen-
unstructured networks. erated traffic for large and dynamically changing
group populations.
|. INTRODUCTION Today, the most popular P2P applications operate

A multicast transmission is defined as the di®n unstructurednetworks, where peers connect in
semination of information to several hosts withian ad-hoc fashion, the location of the documents
a network. These hosts are interested in receivirgg not controlled by the system and no guaran-
the same content from an authority node (such &®s for the success or the complexity of a search
a web server) and naturally form a group. Thare offered to the users. More important, peers
lack of deployment of multicast communication imbtain only local knowledge of a network where
the IP layer has led to the development of varioumdes enter and leave frequently. For such systems,
application-level multicast protocols, in which the€ontacting large numbers of nodes is implemented
end hosts are responsible for implementing thiy either broadcast-based schemes (e.g., Gnutella
functionality. One-to-many communication is a verj7], Modified-BFS [8]), orgossipbased approaches,
useful mechanism for a variety of network applicee.g., [9]-[11]. Both produce large numbers of mes-
tions (e.g., [1], [2]). sages by contacting many peers inside the network.

Peer-to-Peer (hence P2P) computing representén this paper, we present thAdaptive Group
the notion of sharing resources available at thidotification (AGNO method for this problem.
edges of the Internet. The P2P paradigm dictate®©ar work is motivated by the following observa-
fully-distributed, cooperative network design, wherton: Group membership can be implicitly defined
nodes collectively form a system without any suhrough the interest that peers show by conduct-
pervision. As the applications that embrace the P#R) searches. Locally maintained state during these
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lookup operations can assist in the process of dize interested in receiving such content. For example,
seminating content to interested peers. Regardles#ta$ safe to assume that a host frequently querying
the low-guarantee nature of our target environmenter the price of a quote or the temperature of an
we aim at producing a protocol that is: area would like to be informed about an update or

« Efficient: Our method should be able to contad@nother object-related notification.
a high percentage of interested peers with low It is important to note here that peers still search
message overhead. and retrieve objects in a distributed manner. The
« Scalable:The scheme should be able to scaRotification itself may or may not be directly related
to very large group sizes (over 1,000 peers).to a specific object: A severe weather alert to be
« Robust:We would like to avoid the necessityeffective in the next 3 hours is not related to the
of a single point of contact or group leader agurrent area temperature. A change in the scores or
well as the burden of costly message exchang@g¢ote prices, on the other hand, is directly linked
in case of member arrivals and departures. tO the content of the object. Group communication
« Adaptive: AGNOshould adapt to changes ifespecially for large groups) requires a considerable
the group size and to dynamic workloads. amount of bandwidth. Content providers can assess
o ) the importance of various updates/notifications and
A. Motivation and Overview of our Approach  cpgose to push those that would be the most bene-
P2P computing is gaining an increasing amoufitial.
of attention from both the academic and the large On a more technical note, the forwarding path
Internet community. The number of applications utbetween any two given peers in a DHT remains
lizing this technology is constantly increasing (wethe same with high probability. This is a feature
caching [12], instant messaging [13], e-mail [14}hat many approaches utilize in order to construct
etc). The importance and applications of grougfficient multicast paths. This is not the case for
communication schemes have been well-definedunstructured P2P networks: Peers have multiple
past and recent research work (e.g., [2], [3], [5land dynamically changing) communication paths
[10]). Our work aims at providing peers in dynamicwith each other. Therefore, a notification scheme
unstructured environments with an effective yet ifer such networks can also be used to simulate
expensive mechanism to disseminate informationttwat functionality and identify reverse paths from
groups of nodes interested in their content. the destination (replica location) to the requesters.
We assume a fully distributed and unstructurethis information can in turn be used in a variety of
system, where peers share and request resoumm@dlems (e.g., load balancing and replication [15]).
replicated inside the network. Users are interestedOur approach combines the utilization of state
in mutable objects, for example results of a sporé&&cumulated during the search process together with
meeting in real time, current temperature or weathgrobabilistically stored shortcuts. The first indicates
maps, stock quotes, etc. There exist some nodke amount of demand for a specific object and
(similar to the web servers or mirror sites in thean be used to infer membership and guide our
Internet) that provide with fresh content, but theicontent dissemination. Note that our method builds
connectivity or availability varies, as happens witlis knowledge by only monitoring the independently
all other network nodes. Peers that are interesteshducted lookups and does not produce any arti-
in retrieving the newest version of the conterficial or control messages. By also allowing peers
conduct searches for it in order to locate a fresh locally store a constant amount of requester ad-
or closer replica. In this environment, interest idresses (callethackpointery we show thatAGNO
a specific object is tied to the lookups generatethieves a robust, scalable behavior in a variety of
for it. We argue for a push-based approach, whesavironments and group sizes. Our method utilizes a
a server node can forward notifications (or otheimplebinningscheme as well as adaptive indasgy-
object-specific information) towards the interestadg to adjust its performance to different workloads
hosts. Our assumption is that peers which hased member joins/leave®AGNO does not require
recently searched or retrieved an object would alsay global knowledge, existence of a special contact



node or any membership message exchange. Finaly,Multicast over P2P Overlays

its p'erfo.rmance.can be easily tuned to fit specific The algorithm described in [6] describes a broad-
application r(_eqw_rements. cast mechanism that operates over CAN [18]. Nodes

_The contributions of our work are two-foldtoryarq to their neighbors in the d-dimensional
First, we propose a group communication algorith@hace a5 this is defined in CAN. There are also pro-
specifically designed for unstructured networks. Igsjons made to eliminate duplicate messages and
the best of our knowledge, this is the first work o\ ent |ooping of the packets around the coordinate
that couples searches to membership informati Bace.

for such environments. Second, we present dé-g. e [4] is implemented on Pastry [19]. Inter-

talled simulgtion results over ayariety of tOpOIOQieésted hosts route their requests towards the node
and_ dyna_mlc workloads, showing thAGNO_can Tresponsible for the group’s key (the root). Each node
achieve high-success and low-overhead delivery 9 the path checks if it is a current member of

many realistic an_d highly o_lynam|c scenarios. the group. If this is the case, it registers the source
The rest of this paper is organized as followgoge as its child in the multicast tree and stops the
Section Il presents the related work. In Section Ithyarding process. Otherwise, it stores the ID of
we describe our scheme in detail, while in Sectigfe soyrce and makes a join request towards the root.
IV-we present the simulation results. Finally, SeGripe is a decentralized and scalable protocol that
tion V contains our conclusions. takes advantage of the overlay structure to produce
a balanced delivery tree.
Il. RELATED WORK Bayeux [3] is implemented on Tapestry [20]. The
o . difference with Scribe is that join/leave operations
The problem of distributing content to multipléy, through the root of the tree, making it less scal-
hosts is well-studied. We categorize existing metlip e - vercast [5] also requires coordination with
ods into general application-layer multicast propg yoot node, while it builds its multicast tree in a
t_ocols, multicast for structured P2P overlays anf,anner similar to Yoid. The work in [21] contains
finally, approaches for unstructured networks.  thqrough descriptions and performance comparisons
for representative schemes from this category.
A. Application-layer Multicast

Proposed approaches roughly fall into three cat%l Group Communication in Unstructured Overlays

gories: The mesh-first category (e.g., Narada [16]), Many search schemes for unstructured P2P net-
where nodes form a random mesh between thewarks have been proposed that implement flooding
and then compute unicast paths for each pair @f its modifications in order to contact large num-
members. This approach requires control overhelders of nodes. Examples include the gnutella flood-
guadratic to the group size with refresh messag#sg algorithm [7], the modified-BFS scheme [8],
In the tree-first approach (e.g., Yoid [17]), peerthe iterative deepening method [22], etc. All these
directly form a data delivery tree and also maintaitechniques produce a large number of messages,
a few extra links to exchange control messagesnnot adapt to variable group sizes and use blind
Finally, in the implicit approach (e.g., NICE [2]),forwarding, which results in many non-members
both control and delivery structures are implicitlyeceiving the message.

defined by the underlying routing protocol. For An alternative solution to the problem is pre-
example, NICE arranges members into a hierarchgnted by a variety of gossip algorithms, where each
of layers and clusters and defines processes fember is responsible for forwarding a notification
member arrival/departure and cluster merge/split. a randomly selected subset of the group. These
All these approaches require the existence ofapproaches have been used in a variety of different
designated host to initiate the membership processenarios (e.g., distributed databases [23], publish-
periodic exchange of control messages and alsgbscribe systems [24]) and have proved to be
significant overhead for member joins/leaves.  a robust solution in the face of member/network



failures at the cost of inducing extra traffic on the [1l. THE AGNO PrOTOCOL
network. In this section we preselAGNQ We first de-

In Lpbcast [24]’ membership is achieved by §0r|be our general framework an.d also .give- an
periodic gossiping of subscriptions: peers transnflverview of the APS search algorithm which is
a set of subscriptions that they recently heard toUilized by our approach. We then present #@NO
random subset of their locally known group menficheme in detail.
bers. Upon receiving such a message, nodes replaces - rramework

a random subscription from their local lists with the | with :
new one. To achieve the probabilistic guaranteesV/€ @ssume a pure P2P model, with no imposed

offered by similar schemes, the size of the gro erarchy over the set of participating peers. All
and the local list size must be fixed, which is ndt! them may equally serve and make requests for
the case in highly dynamic networks. various objects. Each peer retains its own collec-

tion of objects which are locally maintained. Peers

SCAMP [11] is a decentralized membership praand objects are assumed to have unique identifiers.
tocol that utilizes gossiping. Joining members Sutgnoring physical connectivity and topology from
scribe by contacting a random existing membejur talk, we assume that peers are aware of their
Upon receiving a subscription request, a membgfie-hop neighbors in the overlay. The system can
forwards it to all the members in its local repositorygenerally exhibit a dynamic behavior, with peers
Nodes decide probabilistically whether to store @htering and leaving at will and also updating their
forward the subscription. For the unsubscriptiomcal repositories. We should also note that we do
process, a node notifies the locally known membetigt expect the overlay structure to be static, since
to replace its ID with the IDs of the members ihodes are not guaranteed to connect to the same
has received messages from. Group communicatigéighbors each time.
is performed in the standard gossip-based mannera multicast transmission in this setting (also re-
SCAMP is shown to converge to a local state @érred to as the notification or push phase hereafter)
slightly overlog(n) member IDs, which guaranteess initiated by an object holder (aervernode) and
with high probability that all members will receiveits target is to reach as many group members (or
a notification. requester nodes) as possible with the least amount
Qf messages over the overlay. The focus of this

In [10], th h ph f te algorith
n [10] e push phase of an update algori Mg;gis to describe an efficient mechanism for such
y

for unstructured P2P networks is a rumor-spreadi
scheme: each peer receives an update message a
with a partial list of other peers to which the updatg. overview of the APS Method

has been sent. If the update has not been receivegn APS [25], each node keeps a local index

before, it is forwarded to a different subset Ofonsistin of one entry for each of its neighbors on
members with a certain probability. In [9], peers that 9 i y 9
a Ber-object basis. The value of each entry reflects

_have received a message Ie_ss than F times, forwghre relative probability of this node’s neighbor to be
it to B randomly selected neighbors, but only thosq1osen as the next hop in a future request for the

that the node knows have not yet received it. The & ecific obiect
terministic version of that algorithm requires globaﬁp ject.

knowledge of the overlay. Nodes forward messagesSearChIng s based on the simultaneous deploy-

> : ent of k walkers and probabilistic forwarding:

to all neighbors with degree equal to 1, plus to h hoosds £ iahb
remaining neighbors that have the smallest degre a° requester chooses out of its N neighbors
{6 forward the request to. Each of these nodes
In contrast, our approach requires no specievaluates the query against its local repository and
group management process, while its forwardinfya hit occurs, the walker terminates successfully.
scheme is an adaptive selection between neighb@nms a miss, the query is forwarded to one of the
and shortcuts, relative to the quality of the localode’s neighbors. This procedure continues until all

search knowledge. k walkers have terminated, either with a success or

missions and not to define their content.



Indices|Initially |Walkers’ finish |After updates /
A—B | 30 20 20

B—~C| 30 20 20 N

C—D| 30 20 20

A—E| 30 20 40

E—F 30 20 40

A—G| 30 30 30

Fig. 1. Search for an object with the APS method-X denotes the index value stored at node X for neighbor Y relative to the requested
object.

a failure. The paths of the walkers are not chos&n refined as more questions are made inside the
at random, but using the probabilities given by theetwork. Another characteristic is that all nodes par-
index values of the intermediate peers. These valu&spating in a search will benefit from the process.
are updated in the following manner: Upon forwardFherefore, a node that has never before requested an
ing, a node pro-actively increases or decreases tiigect but is “near” peers that have done so, inherits
index values for the peer(s) it selected, assuming tties knowledge by proximity.
walker(s) will be successful or nopftimisticand  To better understand the state ths®S builds,
pessimisticapproaches respectively). we present a part of a 4,000-node power-law graph
Upon walker termination, if the walker is sucon the right part of Figure 1. The oval represents
cessful, there is nothing to be done in the optimisti& server node and arcs represent links to or from
approach. If the walker fails, the update procedutle server and 400 randomly selected nodes that
is initiated with nodes along the reverse path deearch for the object. Links drawn with light lines
creasing their local index values relative to the nex¢present high index values (i.e. many successful
hops for that walk. For the pessimistic approach, théearches through them), while dark black links show
procedure takes place only after a walker succeegaths with low probability of success. After only a
Figure 1 shows an example of how the searamall number of requests, most paths that connect
process works. Node A initiates a request for ghe server to the requesters comprise of light-colored
object served by node F using two walkers. Alines.
index values for this object are initially equal to o
30 and thepessimisticapproach is used. DuringC- AGNO Protocol Description
the search, the index value for a chosen neighborThe rationale behindAGNO relates to the ob-
is reduced by 10. The walker with path (A,B,C,Dgervation that efficient group communication comes
fails, while the second (A,E,F) succeeds. The updaie a cost. In current approaches, this cost is paid
process is initiated on the reverse path (along thg either a membership management protocol or
dotted arrows), with nodes E and A increasingn overlay infrastructure. Our goal is to provide
the index value for nodes F, E respectively byith the missing state that can allow for content
20. In a subsequent search for the same objedissemination to a group of peers, but in a way
peer A will choose peer B with probability/2 consistent to the nature of an unstructured P2P
(=594930): Peer E with probability 49 and peer system. Our approach couples search knowledge
G with probability 3/9. with the information necessary to contact interested
APSexhibits a learning feature with both positivgpeers. INAGNQ the equivalent of group member-
and negative feedback from the walkers. Positighip is the demand for an object (or group of them),
feedback helps in achieving high performance amealized through searches and object sharing that are
discovery of new objects, while negative feedbadhkdependentlyconducted by peers. The granularity
helps our process adjust to object deletions andn be as coarse or fine-grained as the application
node departures, redirecting the walkers. Knowledgequires. For the remainder of this paper we assume



Reverse Index Value

Fig. 2. Search for an object stored at the gray node and the puslFig. 3. Example of the reverse index value update
phase from this node towards the requesters (black nodes) process

that groups are formed on a per-object basis.  stored onhp peers on average. With this scheme,

After each search with thé&PS scheme, peerswe create a number of soft-state shortcuts called
accumulate knowledge about the relative successhaickpointersalong the search paths which point to
a search through each of their neighbors. Intuitivelgroup members. Each peer can individually decide
overlay paths that comprise of high index values ao® the maximum number of backpointers stored.
the ones most frequently used to connect requestees simplicity, we assume that all nodes can store a
and object holder(s). IRGNQ, nodes utilize those maximum ofc backpointer values. Backpointers are
indices in order to forward group messages towardsft-state that gets invalidated after some amount of
possible group members during the push phasiene.
Note here that, although tl&PSmethod is used as In the push phase, a peer that receives a group
a means to provide with the soft state, our approagtessage forwards it to its neighbors using the
can be used with a variety of search mechanisntigyerse index values. We consider the following
as long as they support a similar demand incentiferwarding schemes:

We now describe the nature of the index valuese Forward to one or more neighbors chosen with

that are stored at each peAPSkeeps a local view probabilities given by the reverse indices or to
(an index value) for each neighbor. F&GNQ each those with thek largest values

peerP needs to maintain the index values tid « Forward to all neighbors with reverse index
neighbors hold relative t®. If A—B denotes the value larger than a defined threshold

index value stored at node A concerning neighbdlotifications carry aTTL field which is decre-
B for a particular object, then pedt must know mented whenever it reaches a node. A group mes-
X — P, for each neighboX. These values can besage is discarded either when Tt L value reaches
made known tdP either implicitly or explicitly: In zero or if it is a duplicate (a node receives the
the first case, pedP can infer the indexQ — P if same notification more than once due to a cycle).
it knows about the update process used (optimisMoreover, a peer forwards to each of its valid
or pessimistic) and the initial value. In the explicibackpointers with probabilityp,. These messages
approach, whenever a search is conducted @ndhave aT TL= 1 and do not travel further. Therefore,
forwards toP, it piggybacksQ — P. We call these our scheme combines a selective, modified-BFS
new stored values theverse indicesto distinguish forwarding augmented with shortcuts in order to
them from the indices used b&PSin searches. contact the group members. This is shown picto-
For the rest of our discussion, we assume that thally in Figure 2.
explicit approach is used. We now discuss how the aforementioned state
Reverse indices are not the only state that oisr maintained at each peer. The backpointer values
method utilizes. During the search, intermediagxpire after a certain amount of time. Since our
nodes decide with probability, whether to store incentive to push a message is the demand on a
the requester’s ID or not. For a search phthops per-object basis, new backpointers replace the oldest
long, the (ID, address) pair of the requester will bealid ones (if a node already has valid back-



Thresh0  Thresh] Thresh2 Threshn

pointers). As searches take place inside the system, I ‘ J
the backpointer repositories get updated, while theo 0. bl o
probabilistic fashion in which they are stored guar-

antees a diverse collection of (ID, address) paiSg. 4. sample binning scheme with the respective threshold values
Reverse indices get updated during searches, bugach interval

this is not enough: There may be peers that have

searched for an object and built large index values,

but are no longer interested in receiving notificatiof®ample a peer with very low values for all its
(i.e., stop querying for that object). If searches af€ighbors. Thresholding enables peers to forward to
no longer routed through those peers, the revet§€ most “promising” (active in searches) parts of

index values (which reflecAPS indices) will not the overlay. A good first approximation is for each
be updated and will remain high. peer to use the average of all its neighbors’ indices

To correct this Situation’ we add Eﬂg”']g factor as Thresh NevertheleSS, both the average and the

£ to the reverse indices, which forces their values ggedian values fail as well in various circumstances
decrease with time. Peers need to keep track of f§ed-, When all indices have a very close low or high
time that a reverse index was last updated in orderalue).

acquire its correct value before using it. When a peer3) Local Threshold Computatiorfter each peer
receives a search message, it sets the correspon@@igputes the average of its neighbors’ reverse index
reverse index to the piggybacked value and its lagtlues at timet (aiv), it uses a globally defined
modified field to the time of receipt. Figure 3 showBinning scheme to come up with the actual value
how this process works. The value of the indef@er Thresh The binning method divides the space
decreases exponentially, while two searches at timffsindex values into a set number of bindin; =
t1,t, reset its value. A push message received at tiriéi, bi), T hresh) }. Bin; is characterized by its lower
t3 will use the value as shown in the figure. The lagind upper limit valuesy,b; (ap <bp=a1 <by =
modified value is also reset when a reverse indexds-.) and a Thresh value. The final threshold
used, since a peer computes its current value befgpdue is Thresh= Thresh, if aiv € [a,bi). For
using it. example, assume we use a 2-bin schefiBin; =

In the next section we describe in more detail ho(0,50),40),Binz = ([50,),100)}. If aiv; = 75, that
our protocol proceeds in the computation of theode will forward to all neighbors with reverse in-

various parameters described above. dex value over 100. Bins represent an approximation
- that maps reverse indices to a value representing
D. Protocol Specifics their quality. Higher numbered bins represent higher

1) Space Requirement¥he amount of spacequality indices.

required by the peers 8(2d +c) per object, where ValuesT hresh are chosen such thathresh_; —
d is the average node degree in the overlay aigl bi_1 > Thresh—bj and Thresh_; < Thresh. For
the maximum number of backpointers stored. Evemalli values we should pick few neighbors (there-
if nodes want to keep track of large numbers dére a high threshold relative to the bin’s interval),
objects, the space requirements are in the ordervdiile for largei (i.e., high quality bins), most of
a few tens of megabytes, definitely affordable byre neighbors need to be chosen. Note that we do
the vast majority of modern hosts (typical 1GB ofiot requireT hresh to belong to[a;, b;), nor do we
main memory configurations). For about 1 milliomiequire thatb; —a = bj —a;,i # j. As a simple
objects, assuming=d = 4, each peer would needheuristic for selecting thel hresh values, given
approximately 48MB of memory foAGNQ Thresly near or larger tharg, we setThresh =

2) Forwarding: Nodes use a threshold parametd@T hresh_1+b; —bi_1)/2. Figure 4 gives a graphic
Threshin order to choose the neighbors to whicHescription of our binning scheme. Its granularity,
a notification will be forwarded. Neither the probcontrolled by the number of defined bins, can be as
abilistic or the top-k value schemes are suitabléne-grained or coarse as our application requires.
as they fail in a variety of cases. Consider for 4) Reverse Index Aging: AP§pdates its index



values after either a success or a failure, achieving5) Estimation ofA;: In order for our scheme to
both learning and unlearning. The latter is veryork without requiring a priori knowledge of the
important forAGNOas well: Peers that lose interestequest rate but also to be able to adapt to changes in
in an object should be left out of the push phaske workload, we need an effective yet inexpensive
as quickly as possible. Our scheme uses the agmgchanism to estimate its value and compute the
factor& together with the last modified time of eaclmew ¢ before each push. This value is then piggy-
reverse index to reduce the influence of inactideacked downstream and used by all receiving nodes.
ones. Assuming indef — Q was last modified at In order to estimate@,, we need the zeroth and first
time tja5;, itS value at timet > tj5¢ is: P — Q(t) = frequency moment of the request sequence arriving
(1— &)t lastP — Q(tjast), Whereé € [0,1]. For & = at a serverfFy is the number of distinct IDs that
0.2, a reverse index value will be 80% of its lashppear in the sequence, whigis the length of the
modified after one time unit. sequence (number of requests). Servers can easily
The value of¢ dictates how aggressive our agingnonitor the number of incoming requests inside a
will be. It depends on the rate at which requestsne interval. Many efficient schemes to estimbBge
(and therefore index updates) occur: The larger thathin a factor of 14+-¢ have been proposed (e.g.,
rate of searches, the more aggressive the aging 26], [27]). We use one of the schemes in [26],
be. Nevertheless, it is still application-dependenthich requires onlyO(1/€2+log(m)) memory bits
since the rate at which notifications are issued ((wnly at servers), wherm is the number of distinct
even their content) largely affects the aging factanode IDs. In realitymis in the order of the distinct
For example, in sharing stock market data, for thgeers withinT TL hops from a server, since only
duration of a peer’s online time it can be assumedese nodes can reach it. After each push phase,
that a user is always interested in her portfolio. Waoth estimates are reset and a new estimation cycle
define A;,A\, to be the average rates at which begins.
peer or server makes requests or issues notification§) Backpointer SelectionFinally, we specify
respectively. which backpointers are used by a node that receives
For the remainder of this paper, we assunaegroup notification message. Clearly, following the
that peers use the same value fowhich satis- same number of backpointers at different peers and
fies the inequality{1—&)"maxreducedT hresh< times is not efficient. Our method utilizes the local
min;(Thresh) (1). In effect, we pick& such that thresholding computation to assist in the process
any reverse index with value less or equal tof selecting valid backpointers. As we mentioned
maxreducedT hresh will be reduced below the before, the threshold value is representative of the
lowest threshold (and thus will not be selected) #verage quality of a peer’s reverse indices (higher
not used fofT time stepsT is defined as our “toler- bins choose on average more neighbors to forward
ance” parameter). The maximufrhresh represents to).
the minimum high-quality index value. Therefore, Given that a peer’s threshold bin isat time
by setting maxreducedT hresh= max (T hresh), t, the probability with which each stored back-
we chooseé such that all reverse indices up tgointer will be followed ispy;, given from the set
that level of quality are discarded after a periofipny, Pno,---Pni, -} (i.€., onepy value for each bin).
of time T without getting updated. Choosing largewe choose those values such tipat > pn; Vi < j,
maxreducedT hreshvalues results in a more ag-since better quality bins forward to more neighbors
gressive aging. The same is true for choosirapd need not waste more bandwidth. With this
smaller T values. Assuming that, in the vast mascheme AGNO adaptively balances the amount of
jority of cases, notifications are considerably ledsrwarded messages per peer between the shortcuts
frequent than requests, we set= O(1/A;), which and the neighbors according to the current quality
defines the tolerance interval to be in the order of its reverse indices.
the average request interarrival period. This is done7) Summary: AGNGQs a probabilistic group no-
in order to quickly identify and decrease idle indiceification scheme that integrates search indices with
in the overlay. a constant amount of shortcuts to effectively route



Theshondo Thesi2o50 roughly equal to the average node degree. Ref. [28]
; ‘ ; > shows that over 90% of the node pairs in gnutella
0 30 ? 80 are around 5 hops away. Given this value as an
Ry estimate for theT TL parameter, we sy > <7,
so that at least one peer on the search path can
Fig. 5. Our binning scheme with the respective threshold pnd gtgre the requester’s address. Given that the default
values for each interval . . .
index value forAPSis 30, increased by 10 for each

successful walk and linearly decreased after a failed

messages in an unstructured overlay. It utilizesCR€, we employ a 3-bin scheme with backpointer
tunable binning scheme to choose between the exg@oabilities as shown in figure 5. The first bin
amount of useful information from each source arf§Presents indices below the initial value (very few
an aging mechanism to gracefully adapt to memb@r N0 successes), the second those with some hits

departures, requiring no explicit cooperation on thed the last those with even more successes. While
part. we experimented with various configurations, using

more bins and different thresholds, we prefer to
V. SIMULATION RESULTS study the performance of our method with this
A. Simulation methodology and compared methoé:sn;plle/;::)h@gﬁ;z? z(ll)fgizgg\l:ﬁg:rﬁ;rvgms rgf
We use a message-level simulator written in & (and therefore) is estimated right before each
(about 2,100 lines of code) which runs on a linwgerver push using = 0.1.
based platform using an Athlon 2.1GHz proces- We compare our method against 3 algorithms:
sor and 1GB of main memory. Requesters maki&e SCAMP membership protocol [11] and the two
searches for objects usifgPSat rate, (exponen- rumor-spreading schemes in [9Rumor Monger-
tially distributed interarrival times), while servergng (RM) and its deterministic version (det-RM),
initiate push transmissions at rakg. At each run, where peers have complete topology information.
we randomly choose a node that plays the role ofFrar SCAMP, we first run the membership phase, in
server and a number of requesters, also uniformlywahich we favor the method by assuming joining
random. Results are averaged over several hundpggérs know all already joined members. The pa-
runs. rameters for those three methods are lihenching
We present results for bottandomand power- factor B, which represents how many other peers
law graphs. There has been strong evidence [ZHall be contacted per forwarding step and ¢ben
that connects large-scale unstructured P2P netwovk$ue F that represents how many times a peer can
to a power-law topology. We utilize th8RITE receive the same message before dropping it.
[29] andInet-3.0[30] topology generators to create Finally, we also designed and implemented a
the random and power-law graphs respectively. \ld@ire shortcut selection schentghprtcut$ inspired
consider 10K node graphs with average node dey the DHT-based multicast tree creation. Search
grees around 4 (similar to gnutella snapshots [28fhackets carry the (ID, address) values of the last
Results for graphs up to 50K nodes and largabde along the path interested in the object so
average degrees are qualitatively similar. far. Initially, this pair contains the requester node’s
We use the following metrics to evaluate thenformation. During the search, an interested peer
performance of a scheme: Tiseiccess ratewhich that receives a search message, decides with prob-
is the ratio of contacted group members versus thbility p, whether to store the last member’s ID
total number of group nodes and the bandwidtir not. Moreover, it replaces this ID with its own
stress which we define as the ratio of the producebefore forwarding the request. With this scheme, we
messages over the minimum number of messagesibate a small sub-overlay of soft-state backpointers
order to contact all members. with direction from the object holders towards the
AGNO Parameters:We choose to set ~ d, group members. For simplicity, we assume the same
which reserves an amount of space for backpointemaximum number of shortcuts as AGNQ In the
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TABLE |

push phase, a peer forwards to all valid shortcuts,
SUCCESS RATE AND STRESS RESULTS FOR THE REMAINING

using the standard’ TL scheme (unlikeAGNQ

. . METHODS WITH 500 REQUESTERS
where backpointers are contacted witif &L= 1).

B. Basi ; vsi SCAMP | RM det-RM
. BasiCc periormance analysis 10K random) (0.89,2.7)[(0.89,34.5)[(0.98,31.1)

In this first set of experiments, we try to quantify 10K PLAW [(0.68,2.1)[(0.27,13.6)[(0.65,10.8)
the ability of our method to contact requesters TABLE |

without considering time-related aspects (i.e., take

a snapshot of its operation in time, &r= 0). We EFFECT OF PARAMETERC

first try to identify the effect thaBPShas on the 10 queries/membé20 queries/member
performance ofAGNQ For a group size of 500 succes$ stress |succesh stress
peers, we vary the number of requests each of c=1]68.7%| 117 [90.3% 1.16

: c=2 | 735%| 1.27 |91.5%| 1.20
them makes before a single push phase occurs. We =1 779% 147 1916% 123
report the stress and success rates averaged over =g [79.6%| 1.80 |92.5%| 1.37
20 random 10,000-Node topologies and 20 10,000- c=16/81.2%| 2.80 |92.9%| 1.49

Node power-law topologied(= 4 andd = 4.1 re-

spectively) with 1,000 runs for each graph. Figures

6 and 7 present the results fAGNOandShortcuts the backpointer scheme as for less accurate indices

which are affected by the number of searches. they can provide with over 50% of the contacted
We notice that the pure shortcut scheme, whiteembers.

capable of identifying a non-negligible number of The distinctiveness of the power-law topologies,

members, cannot provide an efficient notificatiowhere about 34% of the peers have degree one,

method. AGNO quickly contacts the majority of forces fewer paths to be used compared to the

requesters after only a few searches take placandom topologies. This, combined to the fact that

while maintaining a low stress factor. As our schem® aging is performed, explains why the stress

adapts to increased quality indices, there existsfaa AGNO slighty increases with more requests in

slight variation in the stress. This is due to thEigure 7. The respective results for the remaining

fact that after a certain number of queries, peemsethods (not affected by searches) are shown in

switch to a different (higher) bin on average. Figur&able . AGNO proves very accurate (in the big

8 shows the percentage of contacted members andjority of runs) and also the most bandwidth-

messages aAGNO purely attributed to forwarding efficent of the compared methods. All three rumor-

(not backpointers). As we move from less to morgpreading schemes show considerably worse num-

precise reverse indices (from fewer to more querie®grs in the power-law topologiedet-RMis much

our method uses a decreasing number of backere effective tharRM in such graphs, which is in

pointers. These results also depict the usefulnessactordance to the findings of [9].
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Table Il summarizes the effect that a change ber of messages regardless of the group size (aver-
the number of maximum stored backpointershas age stress between 1600 and 20), while the closest
on the performance oAGNQ We select two runs competitor (SCAMP) has roughly twice the stress
from the previous experiment, where each of thalue of AGNQ, without including the overhead
500 members make 10 or 20 queries in the randahthe membership phase. Our method manages to
topologies. For 10 queries/requester, many peers fadintact a very high percentage of the members (86-
into bins 1 and 2 on average, while the majority dd9.5%) using an almost constant message ratio over
nodes operate on bin 3 with twice as many querigbe group size.

With less queries (and larger backpointer usage), the

increase in the success rate over our selectedt C. Sensitivity to\,

is very small compared to the stress increase. Asin this section, we try to evaluate the effectiveness
the indices get more accurate, the method becomgsur )\, estimator and the computédvalues over
almost insensitive to the value of the random topologies. Results for the power-law

Next, we try to measure the scalability of ougraphs are qualitatively similar.
method relative to various group sizes, ranging from The value ofT defines how aggressive the aging
10 to 2,000 peers, using the random topologies, The smaller it gets, the biggér becomes and
Requesters make only 10 searches on average, ihus the bigger the reduction in the reverse index
mediately followed by a single push phase from thealues. Figure 11 shows how the success rate of
server node. For SCAMP, the membership protoc@GNQ, given 1,000 peers making requestshat=
is run before each different group size. For RM, dety/sec (and T, = 10seq, varies by changing the
RM and SCAMP, we seB = 3,F =1, which proves value of T relative to the average request period
the best combination taking into consideration both = 1/A;. Our default choice foiT = 2T; yields
the success rate and stress metric. Figures 9 andv/&B; good results, while choosing values close to
present the results. the request period also produces fast learningTAs

Our method is very successful in all group sizedecreases more, the success rates increase at much
deteriorating only slightly as the members increasemaller rate. Surprisingly, even if we employ twice
This happens because with more requesters, thasraggressive an aging as the average request rate,
average distance from the server increases (iner 80% of the members will be contacted after
number of peers reachable from a node increageeee AGNO pushes. Nevertheless, it is not safe to
exponentially with the hop distance). This makesssume that the larger the value Dfthe better.
APSsearches (and its indices) less accurate for soift@s would be the case if, for example, we had a
requesters. The RM schemes produce a similar nustatic group size (no aging necessary); a significant
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e h oo High-Low-High | in stress). The smaller the value &f, the longer
z sof- *--x Low-High-Low |, ¢ this adaptation takes.
E i ] Finally, Figure 14 shows how effective our adap-
LR 1,  tive A, estimation scheme is. We simulate the ex-
g | 7 £ treme case where the 1,000 requesters suddenly
EU 1" change their query rates by a factor of 20 (from
G r J % ) .
S w0lF S S S FA S e AR AR e I Ar = 4/secto A, :_Q.Z/sec and_ vice versa). Our
| * ] goal for the transition from high to low rate is
0 e to quickly decreas€ so tha_lt_ our success ratg is
time(sec) not affected. For the transition from low to high

rate, we wish to quickly adjust the ned value
according to the increased requests, such that no
more than the necessary indices increase their value.

number of member departures combined with Y& Name our two runs high-low-high and low-high-
large value forT would delay the adaptation to/OW respectively: Starting with a rate af = 4/sec

the new group size and cause more messages td{hé/Sec), requesters drop (increase) their average
created than necessary. number of requests to 0.2/sec (4/sec) at time

In the next experiment, assuming a group siZdosec At timet = 200seG they increase (decrease)

of 1,000 peers, we try to evaluate the performanpéeir rates to 4 queries/sec (0.2/sec). The top two
of AGNO for different A, values. Figures 12 and'"€S correspond to success rates while the bottom

13 show the results. Not surprisingly, the biggéYVO to the respectiv_e stress values. The maximum
the value of),, the faster the increase in thobserved decrease in the success rates at 100 or 200
success rate, since indices get accurate faster. AACONdS |sf<r)nly 3% while the strless values remain
other observation is that, regardless of the averayg0st unaffected (increase equal to 0.01).

request rate, our method asymptotically manages _to ch . .
contact all interested peers and reach a very [ow anges in group sizes

stress level (below 1.3). For most realistic scenariosWe now evaluate the performanceAGNOunder

(T, >>T;), the choice off, does not affecAGNOs dynamic changes in the group size. Our goal is
performance. In the very rare cases thak T, we to allow for members to join or leave the group
just sefT = O(T,) to achieve comparable adaptatiorwith the minimum amount of message exchange and
In all cases, our adaptive aging mechanism selepgrformance degradation. Employing this approach
a suitable value fo€ such that the stress remainthat ties group membership to the interest (or lack
almost static and below 1.4, half the value of théhereof) of peers for objects, we require no coor-
best of the remaining schemes (SCAMP). For smalination between members nor any single authority
request rates, peers adapt using initially low anwde.

then higher quality bins (thus the slight variation Our protocol uses the aging scheme in order to

Fig. 14. Adaptation to a change Iy by a factor of 20
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1] expire, indices leading to them may still have large
200 ] values, depending on the relative positions of other
requesters in the overlay. The amount of increase
for {10%, 20%, 50% and 80%wf the members de-
[ e 1 parting is{7%, 12%, 38% and 100%respectively.
panannsss s : The amount of increase decreases as the original
— group size gets smaller, which proves our previous
time (sec) point: Assuming 200 initial members instead, the
Fig. 15. Stress and success rates when a different ratio of pere?sspecnve stress increase percentlles{gl%_’ 9%,
depart at time t=100sed(= 1, T, — 10se9 16% and 25%. On the other hand, as the included
graph shows, our success rate is not affected at all.
We show next that the decrease in stress after new

. . . . . members join compensates for the increase after
identify and ultimately stop contacting dlsmteresteg

o peer departures.
peers, while it takes advantage of the cooperati P

e

nature of APSin order to quickly learn new mem- Figures 16 and 17 display the performance of the
bers. Figure 15 shows how our two metrics a@@mpared methods under a combination of member
affected by having 10-80% of the 1,000 requestd@ins and leaves. At timets= {200, 350} se¢ 50% of
leaving the group (stop making queries) at tim@e current group members decide to leavet At

t = 1006sec We take the worst-case scenario and?50.280 300 ,400,420,440}sec 50% of the non-
assume that all these nodes jointly and instan@gtive requesters re-join the group. Members make
decide to leave from the group. requests at\, = 0.5, while the group notification

In all runs, the stress value peaks at the time Bpase is performed every 10 secs.
the departures, since the same number of peers aréhe success rate shows an instant decrease at the
notified but fewer are now considered as membeexact time of arrival which is proportional to the
The size of the departing sub-group directly affecteimber of joining peers. Nevertheless, always more
the stress increase. The stress value instantly drdipsn 85% of the current members are contacted,
due to our aging mechanism, but it does not reaeahd AGNO has learned of their presense by the
its previous value. This is due to the fact that exact next transmission. In the next push phases,
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the method quickly reaches its previous levels. Or
the other hand, the value of stress is decreased aft  CNN home oase

member joins and balances the small increase thi *|° - BBCnows |
occurs after member departures. I e
SCAMP and the two rumor spreading schemes shovg | i ] N
big variations in the stress metric. For RM and det-£ | BE E 1
RM, this happens because of the change in the grot3 4o} g of E :
size (same number of messages regardless of pes | "‘15;,» — ]
membership), while for SCAMP this is due to the ; ] .
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subscription and unsubscription process&&NO I b 50 o0 1400
contacts the vast majority of members at a cost 1 ti o
10 times lower than the closest compared metho ~ ° 2% %0 8@ 00 12000 1400 1600
(SCAMP).

Fig. 18. Average results for one-day periods for the CNN and BBC
E. Real traces news front pages

We now present results from using real traces

to our simulation environment. In our first ex'requests; and nothing happens. On average, we vary

periment, we monitor the change in content fq

Sur setup over 60 times per run. Figure 18 shows
two very popular web sites, CNN and BBC new he resul [ the 14 1- i ;
We retrieve their home pagebt(p://www.cnn.com§ e results over the day periods (averaged

) " . over all graphs with multiple runs for eactAGNO
and http://news.bbc.co.ukespectively) at a m'nUtemanages to exhibit very high accuracy and adapts

granularity and_ _record the t'm(.e that their contei notification mechanism such that the stress value
has been modified. To determine that, we extr

- : i I 1. 1.7.
the official Last Updatedstring from the page and ngsllremalnf stta;lra]e Ee:}we.en f6 and h .
also directly compare the file. Each page is inafly, we test the behavior ot our scheéme in

repr tHTML Tidv. Takin n fa much more dynamic environment. We use real
preprocessed wit idy. Taking advantage o aces taken from NYSE stock trades, which de-

the fact that the overall structure of the same pag :

rarely changes, we discard code, advertisements Hbe the accesses, volumes and values of all quotes

pictures that change after each browser refredf), 2 10-day period (Apr. 3-14, 2000). Aggregat-

focusing on content. We monitor the changes oV to minute granularity, we monitor quote activ-

a period of 2 weeks, from Feb. 16th to Mar. 1sky (accesses-updates) during a bu§y time mter_val

2004. 11:00-11:59am) each day. qu our S|_mulat|on, using
The CNN home page changes every 18.1 miHle same power-law topologies as in the previous

utes on average, while BBC's news page evef%perlment, we assume a standard client population
0

) . roup members) equal to the maximum number
8.6 minutes. In our experiments, we use the sa

10,000-Node power-law graphs of the previous sec- ;Zcevs\/zefnéz(é?rgff Sa;tzrr;)]/ SrEthuiﬁaﬁ)er ii/r(]adr:vtlgg?el
tions and a group size of 1,000 requesters, maki i y ' g

requests with exponentially distributed interarrival,. reQ accesses at a given minute, only the figst .
. . Clients are assumed to query for that object. This
times @, = 0.1/min) for those two pages. The N9%¢ equivalent to having a variable request rate for
tification phases occur each time a page is updated, d 9 q
each member. Pushes were conducted whenever a

as given by our collected data. At exponentially dis- , . .
: . . uote’s value was updated, with a maximum of one
tributed intervals (an average of 1 every 15 minutes), ..~ .. :
otification per minute.

we choose with equal probability among the fol-~_.
lowing events: 10% of the members stop requestin%l:_lgure 19 shows the results fo_r three of the most
the pages; 80% of inactive members resume th8fllVe quotes, SUNW (Sun Microsystems Inc.),
MSFT (Microsoft Corp.) and ORCL (Oracle Corp.)
1This method was developed as part of a project for the CS?_H"e statistics for e_aCh of t_hese qu_Ot_eS are pr_esented
Database graduate course in University of Maryland in Table Ill. The interesting statistic here is the
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'(\j"sg igg ﬁ; 13‘1‘ In this paper we presenAGNQ an adaptive
and scalable group communication scheme for un-
TABLE il structured Peer-to-Peer networks. Our method inte-
ACCESS STATISTICS FOR THE THREE QUOTES grates knowledge accumulated during searches to

enable content-providers contact the large major-
ity of interested peers with very small overhead.
We described in detail our adaptive mechanisms
to regulate message forwarding according to the
quality of existing knowledge as well as to ensure
efficient performance in all group operations. A
o MSFT variety of simulations using both synthetic and real

) ORCL traces showed tha®GNOadapts quickly to variable

L8l i request rates and group sizes, being at least twice

16| - as bandwidth-efficient as the compared methods.
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