
AGNO: An Adaptive Group Communication
Scheme for Unstructured P2P Networks

CS-TR-4590, UMIACS-TR-2004-33

Dimitrios Tsoumakos
Department of Computer Science

University of Maryland
College Park, MD 20742, U.S.A.

dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland
College Park, MD 20742, U.S.A.

nick@cs.umd.edu

Abstract— We present the Adaptive Group Notification
(AGNO) scheme for efficiently contacting large peer pop-
ulations in unstructured Peer-to-Peer networks. AGNO
defines a novel implicit approach towards group mem-
bership by monitoring demand for content as this is
expressed through lookup operations. Utilizing search in-
dices, together with a small number of soft-state shortcuts,
AGNO achieves effective and bandwidth-efficient content
dissemination, without the cost and restrictions of a mem-
bership protocol or a DHT. We present several simulation
results over different topologies using both synthetic and
real workloads, to evaluate its performance. Our method
achieves high-success content transmission at a cost at
least two times smaller than proposed techniques for
unstructured networks.

I. I NTRODUCTION

A multicast transmission is defined as the dis-
semination of information to several hosts within
a network. These hosts are interested in receiving
the same content from an authority node (such as
a web server) and naturally form a group. The
lack of deployment of multicast communication in
the IP layer has led to the development of various
application-level multicast protocols, in which the
end hosts are responsible for implementing this
functionality. One-to-many communication is a very
useful mechanism for a variety of network applica-
tions (e.g., [1], [2]).

Peer-to-Peer (hence P2P) computing represents
the notion of sharing resources available at the
edges of the Internet. The P2P paradigm dictates a
fully-distributed, cooperative network design, where
nodes collectively form a system without any su-
pervision. As the applications that embrace the P2P

paradigm grow, a number of methods have also been
proposed to implement multicast communication
utilizing some popular P2P overlays, e.g., [3]–[6].
Nevertheless, these approaches take advantage of
the structure that DHTs (distributed hash tables)
provide. In many realistic scenarios, the topology
cannot be controlled and thus DHTs cannot be
used (e.g., ad-hoc networks or current large-scale
unstructured overlays). Other approaches require
frequent communication overhead between group
members and explicit membership protocols. These
schemes often prove unsuitable because of the gen-
erated traffic for large and dynamically changing
group populations.

Today, the most popular P2P applications operate
on unstructurednetworks, where peers connect in
an ad-hoc fashion, the location of the documents
is not controlled by the system and no guaran-
tees for the success or the complexity of a search
are offered to the users. More important, peers
obtain only local knowledge of a network where
nodes enter and leave frequently. For such systems,
contacting large numbers of nodes is implemented
by either broadcast-based schemes (e.g., Gnutella
[7], Modified-BFS [8]), orgossip-based approaches,
e.g., [9]–[11]. Both produce large numbers of mes-
sages by contacting many peers inside the network.

In this paper, we present theAdaptive Group
Notification (AGNO) method for this problem.
Our work is motivated by the following observa-
tion: Group membership can be implicitly defined
through the interest that peers show by conduct-
ing searches. Locally maintained state during these
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lookup operations can assist in the process of dis-
seminating content to interested peers. Regardless of
the low-guarantee nature of our target environments,
we aim at producing a protocol that is:
• Efficient:Our method should be able to contact

a high percentage of interested peers with low
message overhead.

• Scalable:The scheme should be able to scale
to very large group sizes (over 1,000 peers).

• Robust:We would like to avoid the necessity
of a single point of contact or group leader as
well as the burden of costly message exchanges
in case of member arrivals and departures.

• Adaptive: AGNOshould adapt to changes in
the group size and to dynamic workloads.

A. Motivation and Overview of our Approach

P2P computing is gaining an increasing amount
of attention from both the academic and the large
Internet community. The number of applications uti-
lizing this technology is constantly increasing (web
caching [12], instant messaging [13], e-mail [14],
etc). The importance and applications of group
communication schemes have been well-defined in
past and recent research work (e.g., [2], [3], [5],
[10]). Our work aims at providing peers in dynamic,
unstructured environments with an effective yet in-
expensive mechanism to disseminate information to
groups of nodes interested in their content.

We assume a fully distributed and unstructured
system, where peers share and request resources
replicated inside the network. Users are interested
in mutable objects, for example results of a sports
meeting in real time, current temperature or weather
maps, stock quotes, etc. There exist some nodes
(similar to the web servers or mirror sites in the
Internet) that provide with fresh content, but their
connectivity or availability varies, as happens with
all other network nodes. Peers that are interested
in retrieving the newest version of the content
conduct searches for it in order to locate a fresh
or closer replica. In this environment, interest in
a specific object is tied to the lookups generated
for it. We argue for a push-based approach, where
a server node can forward notifications (or other
object-specific information) towards the interested
hosts. Our assumption is that peers which have
recently searched or retrieved an object would also

be interested in receiving such content. For example,
it is safe to assume that a host frequently querying
for the price of a quote or the temperature of an
area would like to be informed about an update or
another object-related notification.

It is important to note here that peers still search
and retrieve objects in a distributed manner. The
notification itself may or may not be directly related
to a specific object: A severe weather alert to be
effective in the next 3 hours is not related to the
current area temperature. A change in the scores or
quote prices, on the other hand, is directly linked
to the content of the object. Group communication
(especially for large groups) requires a considerable
amount of bandwidth. Content providers can assess
the importance of various updates/notifications and
choose to push those that would be the most bene-
ficial.

On a more technical note, the forwarding path
between any two given peers in a DHT remains
the same with high probability. This is a feature
that many approaches utilize in order to construct
efficient multicast paths. This is not the case for
unstructured P2P networks: Peers have multiple
(and dynamically changing) communication paths
with each other. Therefore, a notification scheme
for such networks can also be used to simulate
that functionality and identify reverse paths from
the destination (replica location) to the requesters.
This information can in turn be used in a variety of
problems (e.g., load balancing and replication [15]).

Our approach combines the utilization of state
accumulated during the search process together with
probabilistically stored shortcuts. The first indicates
the amount of demand for a specific object and
can be used to infer membership and guide our
content dissemination. Note that our method builds
its knowledge by only monitoring the independently
conducted lookups and does not produce any arti-
ficial or control messages. By also allowing peers
to locally store a constant amount of requester ad-
dresses (calledbackpointers), we show thatAGNO
achieves a robust, scalable behavior in a variety of
environments and group sizes. Our method utilizes a
simplebinningscheme as well as adaptive indexag-
ing to adjust its performance to different workloads
and member joins/leaves.AGNO does not require
any global knowledge, existence of a special contact



node or any membership message exchange. Finally,
its performance can be easily tuned to fit specific
application requirements.

The contributions of our work are two-fold:
First, we propose a group communication algorithm
specifically designed for unstructured networks. To
the best of our knowledge, this is the first work
that couples searches to membership information
for such environments. Second, we present de-
tailed simulation results over a variety of topologies
and dynamic workloads, showing thatAGNO can
achieve high-success and low-overhead delivery for
many realistic and highly dynamic scenarios.

The rest of this paper is organized as follows:
Section II presents the related work. In Section III
we describe our scheme in detail, while in Section
IV we present the simulation results. Finally, Sec-
tion V contains our conclusions.

II. RELATED WORK

The problem of distributing content to multiple
hosts is well-studied. We categorize existing meth-
ods into general application-layer multicast pro-
tocols, multicast for structured P2P overlays and,
finally, approaches for unstructured networks.

A. Application-layer Multicast

Proposed approaches roughly fall into three cate-
gories: The mesh-first category (e.g., Narada [16]),
where nodes form a random mesh between them
and then compute unicast paths for each pair of
members. This approach requires control overhead
quadratic to the group size with refresh messages.
In the tree-first approach (e.g., Yoid [17]), peers
directly form a data delivery tree and also maintain
a few extra links to exchange control messages.
Finally, in the implicit approach (e.g., NICE [2]),
both control and delivery structures are implicitly
defined by the underlying routing protocol. For
example, NICE arranges members into a hierarchy
of layers and clusters and defines processes for
member arrival/departure and cluster merge/split.
All these approaches require the existence of a
designated host to initiate the membership process,
periodic exchange of control messages and also
significant overhead for member joins/leaves.

B. Multicast over P2P Overlays

The algorithm described in [6] describes a broad-
cast mechanism that operates over CAN [18]. Nodes
forward to their neighbors in the d-dimensional
space, as this is defined in CAN. There are also pro-
visions made to eliminate duplicate messages and
prevent looping of the packets around the coordinate
space.

Scribe [4] is implemented on Pastry [19]. Inter-
ested hosts route their requests towards the node
responsible for the group’s key (the root). Each node
on the path checks if it is a current member of
the group. If this is the case, it registers the source
node as its child in the multicast tree and stops the
forwarding process. Otherwise, it stores the ID of
the source and makes a join request towards the root.
Scribe is a decentralized and scalable protocol that
takes advantage of the overlay structure to produce
a balanced delivery tree.

Bayeux [3] is implemented on Tapestry [20]. The
difference with Scribe is that join/leave operations
go through the root of the tree, making it less scal-
able. Overcast [5] also requires coordination with
the root node, while it builds its multicast tree in a
manner similar to Yoid. The work in [21] contains
thorough descriptions and performance comparisons
for representative schemes from this category.

C. Group Communication in Unstructured Overlays

Many search schemes for unstructured P2P net-
works have been proposed that implement flooding
or its modifications in order to contact large num-
bers of nodes. Examples include the gnutella flood-
ing algorithm [7], the modified-BFS scheme [8],
the iterative deepening method [22], etc. All these
techniques produce a large number of messages,
cannot adapt to variable group sizes and use blind
forwarding, which results in many non-members
receiving the message.

An alternative solution to the problem is pre-
sented by a variety of gossip algorithms, where each
member is responsible for forwarding a notification
to a randomly selected subset of the group. These
approaches have been used in a variety of different
scenarios (e.g., distributed databases [23], publish-
subscribe systems [24]) and have proved to be
a robust solution in the face of member/network



failures at the cost of inducing extra traffic on the
network.

In Lpbcast [24], membership is achieved by a
periodic gossiping of subscriptions: peers transmit
a set of subscriptions that they recently heard to a
random subset of their locally known group mem-
bers. Upon receiving such a message, nodes replace
a random subscription from their local lists with the
new one. To achieve the probabilistic guarantees
offered by similar schemes, the size of the group
and the local list size must be fixed, which is not
the case in highly dynamic networks.

SCAMP [11] is a decentralized membership pro-
tocol that utilizes gossiping. Joining members sub-
scribe by contacting a random existing member.
Upon receiving a subscription request, a member
forwards it to all the members in its local repository.
Nodes decide probabilistically whether to store or
forward the subscription. For the unsubscription
process, a node notifies the locally known members
to replace its ID with the IDs of the members it
has received messages from. Group communication
is performed in the standard gossip-based manner.
SCAMP is shown to converge to a local state of
slightly over log(n) member IDs, which guarantees
with high probability that all members will receive
a notification.

In [10], the push phase of an update algorithm
for unstructured P2P networks is a rumor-spreading
scheme: each peer receives an update message along
with a partial list of other peers to which the update
has been sent. If the update has not been received
before, it is forwarded to a different subset of
members with a certain probability. In [9], peers that
have received a message less than F times, forward
it to B randomly selected neighbors, but only those
that the node knows have not yet received it. The de-
terministic version of that algorithm requires global
knowledge of the overlay. Nodes forward messages
to all neighbors with degree equal to 1, plus to B
remaining neighbors that have the smallest degrees.

In contrast, our approach requires no special
group management process, while its forwarding
scheme is an adaptive selection between neighbors
and shortcuts, relative to the quality of the local
search knowledge.

III. T HE AGNO PROTOCOL

In this section we presentAGNO. We first de-
scribe our general framework and also give an
overview of the APS search algorithm which is
utilized by our approach. We then present theAGNO
scheme in detail.

A. Our Framework

We assume a pure P2P model, with no imposed
hierarchy over the set of participating peers. All
of them may equally serve and make requests for
various objects. Each peer retains its own collec-
tion of objects which are locally maintained. Peers
and objects are assumed to have unique identifiers.
Ignoring physical connectivity and topology from
our talk, we assume that peers are aware of their
one-hop neighbors in the overlay. The system can
generally exhibit a dynamic behavior, with peers
entering and leaving at will and also updating their
local repositories. We should also note that we do
not expect the overlay structure to be static, since
nodes are not guaranteed to connect to the same
neighbors each time.

A multicast transmission in this setting (also re-
ferred to as the notification or push phase hereafter)
is initiated by an object holder (orservernode) and
its target is to reach as many group members (or
requester nodes) as possible with the least amount
of messages over the overlay. The focus of this
work is to describe an efficient mechanism for such
transmissions and not to define their content.

B. Overview of the APS Method

In APS [25], each node keeps a local index
consisting of one entry for each of its neighbors on
a per-object basis. The value of each entry reflects
the relative probability of this node’s neighbor to be
chosen as the next hop in a future request for the
specific object.

Searching is based on the simultaneous deploy-
ment of k walkers and probabilistic forwarding:
The requester choosesk out of its N neighbors
to forward the request to. Each of these nodes
evaluates the query against its local repository and
if a hit occurs, the walker terminates successfully.
On a miss, the query is forwarded to one of the
node’s neighbors. This procedure continues until all
k walkers have terminated, either with a success or



Indices Initially Walkers’ finish After updates
A→B 30 20 20
B→C 30 20 20
C→D 30 20 20
A→E 30 20 40
E→F 30 20 40
A→G 30 30 30

Fig. 1. Search for an object with the APS method. X→Y denotes the index value stored at node X for neighbor Y relative to the requested
object.

a failure. The paths of the walkers are not chosen
at random, but using the probabilities given by the
index values of the intermediate peers. These values
are updated in the following manner: Upon forward-
ing, a node pro-actively increases or decreases the
index values for the peer(s) it selected, assuming the
walker(s) will be successful or not (optimistic and
pessimisticapproaches respectively).

Upon walker termination, if the walker is suc-
cessful, there is nothing to be done in the optimistic
approach. If the walker fails, the update procedure
is initiated with nodes along the reverse path de-
creasing their local index values relative to the next
hops for that walk. For the pessimistic approach, this
procedure takes place only after a walker succeeds.

Figure 1 shows an example of how the search
process works. Node A initiates a request for an
object served by node F using two walkers. All
index values for this object are initially equal to
30 and thepessimisticapproach is used. During
the search, the index value for a chosen neighbor
is reduced by 10. The walker with path (A,B,C,D)
fails, while the second (A,E,F) succeeds. The update
process is initiated on the reverse path (along the
dotted arrows), with nodes E and A increasing
the index value for nodes F, E respectively by
20. In a subsequent search for the same object,
peer A will choose peer B with probability 2/9
(= 20

20+40+30), peer E with probability 4/9 and peer
G with probability 3/9.

APSexhibits a learning feature with both positive
and negative feedback from the walkers. Positive
feedback helps in achieving high performance and
discovery of new objects, while negative feedback
helps our process adjust to object deletions and
node departures, redirecting the walkers. Knowledge

is refined as more questions are made inside the
network. Another characteristic is that all nodes par-
ticipating in a search will benefit from the process.
Therefore, a node that has never before requested an
object but is “near” peers that have done so, inherits
this knowledge by proximity.

To better understand the state thatAPS builds,
we present a part of a 4,000-node power-law graph
on the right part of Figure 1. The oval represents
a server node and arcs represent links to or from
the server and 400 randomly selected nodes that
search for the object. Links drawn with light lines
represent high index values (i.e. many successful
searches through them), while dark black links show
paths with low probability of success. After only a
small number of requests, most paths that connect
the server to the requesters comprise of light-colored
lines.

C. AGNO Protocol Description

The rationale behindAGNO relates to the ob-
servation that efficient group communication comes
at a cost. In current approaches, this cost is paid
by either a membership management protocol or
an overlay infrastructure. Our goal is to provide
with the missing state that can allow for content
dissemination to a group of peers, but in a way
consistent to the nature of an unstructured P2P
system. Our approach couples search knowledge
with the information necessary to contact interested
peers. InAGNO, the equivalent of group member-
ship is the demand for an object (or group of them),
realized through searches and object sharing that are
independentlyconducted by peers. The granularity
can be as coarse or fine-grained as the application
requires. For the remainder of this paper we assume



Fig. 2. Search for an object stored at the gray node and the push
phase from this node towards the requesters (black nodes)
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Fig. 3. Example of the reverse index value update
process

that groups are formed on a per-object basis.
After each search with theAPS scheme, peers

accumulate knowledge about the relative success of
a search through each of their neighbors. Intuitively,
overlay paths that comprise of high index values are
the ones most frequently used to connect requesters
and object holder(s). InAGNO, nodes utilize those
indices in order to forward group messages towards
possible group members during the push phase.
Note here that, although theAPSmethod is used as
a means to provide with the soft state, our approach
can be used with a variety of search mechanisms,
as long as they support a similar demand incentive.

We now describe the nature of the index values
that are stored at each peer.APSkeeps a local view
(an index value) for each neighbor. ForAGNO, each
peerP needs to maintain the index values thatP’s
neighbors hold relative toP. If A→B denotes the
index value stored at node A concerning neighbor
B for a particular object, then peerP must know
X → P, for each neighborX. These values can be
made known toP either implicitly or explicitly: In
the first case, peerP can infer the indexQ→ P if
it knows about the update process used (optimistic
or pessimistic) and the initial value. In the explicit
approach, whenever a search is conducted andQ
forwards toP, it piggybacksQ→ P. We call these
new stored values thereverse indices, to distinguish
them from the indices used byAPS in searches.
For the rest of our discussion, we assume that the
explicit approach is used.

Reverse indices are not the only state that our
method utilizes. During the search, intermediate
nodes decide with probabilitypr whether to store
the requester’s ID or not. For a search pathh hops
long, the (ID, address) pair of the requester will be

stored onhpr peers on average. With this scheme,
we create a number of soft-state shortcuts called
backpointersalong the search paths which point to
group members. Each peer can individually decide
on the maximum number of backpointers stored.
For simplicity, we assume that all nodes can store a
maximum ofc backpointer values. Backpointers are
soft-state that gets invalidated after some amount of
time.

In the push phase, a peer that receives a group
message forwards it to its neighbors using the
reverse index values. We consider the following
forwarding schemes:
• Forward to one or more neighbors chosen with

probabilities given by the reverse indices or to
those with thek largest values

• Forward to all neighbors with reverse index
value larger than a defined threshold

Notifications carry aTTL field which is decre-
mented whenever it reaches a node. A group mes-
sage is discarded either when itsTTL value reaches
zero or if it is a duplicate (a node receives the
same notification more than once due to a cycle).
Moreover, a peer forwards to each of its valid
backpointers with probabilitypn. These messages
have aTTL= 1 and do not travel further. Therefore,
our scheme combines a selective, modified-BFS
forwarding augmented with shortcuts in order to
contact the group members. This is shown picto-
rially in Figure 2.

We now discuss how the aforementioned state
is maintained at each peer. The backpointer values
expire after a certain amount of time. Since our
incentive to push a message is the demand on a
per-object basis, new backpointers replace the oldest
valid ones (if a node already hasc valid back-



pointers). As searches take place inside the system,
the backpointer repositories get updated, while the
probabilistic fashion in which they are stored guar-
antees a diverse collection of (ID, address) pairs.
Reverse indices get updated during searches, but
this is not enough: There may be peers that have
searched for an object and built large index values,
but are no longer interested in receiving notifications
(i.e., stop querying for that object). If searches are
no longer routed through those peers, the reverse
index values (which reflectAPS indices) will not
be updated and will remain high.

To correct this situation, we add anaging factor
ξ to the reverse indices, which forces their values to
decrease with time. Peers need to keep track of the
time that a reverse index was last updated in order to
acquire its correct value before using it. When a peer
receives a search message, it sets the corresponding
reverse index to the piggybacked value and its last
modified field to the time of receipt. Figure 3 shows
how this process works. The value of the index
decreases exponentially, while two searches at times
t1, t2 reset its value. A push message received at time
t3 will use the value as shown in the figure. The last
modified value is also reset when a reverse index is
used, since a peer computes its current value before
using it.
In the next section we describe in more detail how
our protocol proceeds in the computation of the
various parameters described above.

D. Protocol Specifics

1) Space Requirements:The amount of space
required by the peers isO(2d+c) per object, where
d is the average node degree in the overlay andc is
the maximum number of backpointers stored. Even
if nodes want to keep track of large numbers of
objects, the space requirements are in the order of
a few tens of megabytes, definitely affordable by
the vast majority of modern hosts (typical 1GB of
main memory configurations). For about 1 million
objects, assumingc = d = 4, each peer would need
approximately 48MB of memory forAGNO.

2) Forwarding: Nodes use a threshold parameter
Thresh in order to choose the neighbors to which
a notification will be forwarded. Neither the prob-
abilistic or the top-k value schemes are suitable,
as they fail in a variety of cases. Consider for

......

Thresh0 Thresh1 Thresh2 Threshn

a0 b0 b1 b2

Fig. 4. Sample binning scheme with the respective threshold values
for each interval

example a peer with very low values for all its
neighbors. Thresholding enables peers to forward to
the most “promising” (active in searches) parts of
the overlay. A good first approximation is for each
peer to use the average of all its neighbors’ indices
as Thresh. Nevertheless, both the average and the
median values fail as well in various circumstances
(e.g., when all indices have a very close low or high
value).

3) Local Threshold Computation:After each peer
computes the average of its neighbors’ reverse index
values at timet (aivt), it uses a globally defined
binning scheme to come up with the actual value
for Thresh. The binning method divides the space
of index values into a set number of bins,{Bini =
([ai ,bi),Threshi)}. Bini is characterized by its lower
and upper limit valuesai ,bi (a0 < b0 = a1 < b1 =
a2...) and a Threshi value. The final threshold
value is Thresh= Threshi , if aivt ∈ [ai ,bi). For
example, assume we use a 2-bin scheme,{Bin1 =
([0,50),40),Bin2 = ([50,∞),100)}. If aivt = 75, that
node will forward to all neighbors with reverse in-
dex value over 100. Bins represent an approximation
that maps reverse indices to a value representing
their quality. Higher numbered bins represent higher
quality indices.

ValuesThreshi are chosen such thatThreshi−1−
bi−1 > Threshi − bi and Threshi−1 < Threshi . For
small i values we should pick few neighbors (there-
fore a high threshold relative to the bin’s interval),
while for large i (i.e., high quality bins), most of
the neighbors need to be chosen. Note that we do
not requireThreshi to belong to[ai ,bi), nor do we
require thatbi − ai = b j − a j , i 6= j. As a simple
heuristic for selecting theThreshi values, given
Thresh0 near or larger thanb0, we setThreshi =
(2Threshi−1+bi−bi−1)/2. Figure 4 gives a graphic
description of our binning scheme. Its granularity,
controlled by the number of defined bins, can be as
fine-grained or coarse as our application requires.

4) Reverse Index Aging: APSupdates its index



values after either a success or a failure, achieving
both learning and unlearning. The latter is very
important forAGNOas well: Peers that lose interest
in an object should be left out of the push phase
as quickly as possible. Our scheme uses the aging
factorξ together with the last modified time of each
reverse index to reduce the influence of inactive
ones. Assuming indexP→ Q was last modified at
time tlast, its value at timet ≥ tlast is: P→Q(t) =
(1− ξ)t−tlastP→Q(tlast), whereξ ∈ [0,1]. For ξ =
0.2, a reverse index value will be 80% of its last
modified after one time unit.

The value ofξ dictates how aggressive our aging
will be. It depends on the rate at which requests
(and therefore index updates) occur: The larger the
rate of searches, the more aggressive the aging can
be. Nevertheless, it is still application-dependent,
since the rate at which notifications are issued (or
even their content) largely affects the aging factor.
For example, in sharing stock market data, for the
duration of a peer’s online time it can be assumed
that a user is always interested in her portfolio. We
define λr ,λn to be the average rates at which a
peer or server makes requests or issues notifications
respectively.

For the remainder of this paper, we assume
that peers use the same value forξ which satis-
fies the inequality:(1−ξ)Tmax reducedThresh<
mini(Threshi) (1). In effect, we pickξ such that
any reverse index with value less or equal to
max reducedThresh will be reduced below the
lowest threshold (and thus will not be selected) if
not used forT time steps (T is defined as our “toler-
ance” parameter). The maximumThreshi represents
the minimum high-quality index value. Therefore,
by setting max reducedThresh= maxi(Threshi),
we chooseξ such that all reverse indices up to
that level of quality are discarded after a period
of time T without getting updated. Choosing larger
max reducedThreshvalues results in a more ag-
gressive aging. The same is true for choosing
smaller T values. Assuming that, in the vast ma-
jority of cases, notifications are considerably less
frequent than requests, we setT = O(1/λr), which
defines the tolerance interval to be in the order of
the average request interarrival period. This is done
in order to quickly identify and decrease idle indices
in the overlay.

5) Estimation ofλr : In order for our scheme to
work without requiring a priori knowledge of the
request rate but also to be able to adapt to changes in
the workload, we need an effective yet inexpensive
mechanism to estimate its value and compute the
new ξ before each push. This value is then piggy-
backed downstream and used by all receiving nodes.
In order to estimateλr , we need the zeroth and first
frequency moment of the request sequence arriving
at a server.F0 is the number of distinct IDs that
appear in the sequence, whileF1 is the length of the
sequence (number of requests). Servers can easily
monitor the number of incoming requests inside a
time interval. Many efficient schemes to estimateF0
within a factor of 1± ε have been proposed (e.g.,
[26], [27]). We use one of the schemes in [26],
which requires onlyO(1/ε2+ log(m)) memory bits
(only at servers), wherem is the number of distinct
node IDs. In reality,m is in the order of the distinct
peers withinTTL hops from a server, since only
these nodes can reach it. After each push phase,
both estimates are reset and a new estimation cycle
begins.

6) Backpointer Selection:Finally, we specify
which backpointers are used by a node that receives
a group notification message. Clearly, following the
same number of backpointers at different peers and
times is not efficient. Our method utilizes the local
thresholding computation to assist in the process
of selecting valid backpointers. As we mentioned
before, the threshold value is representative of the
average quality of a peer’s reverse indices (higher
bins choose on average more neighbors to forward
to).

Given that a peer’s threshold bin isi at time
t, the probability with which each stored back-
pointer will be followed ispni , given from the set
{pn1, pn2, ...pni , ...} (i.e., onepn value for each bin).
We choose those values such thatpni > pn j ∀i < j,
since better quality bins forward to more neighbors
and need not waste more bandwidth. With this
scheme,AGNO adaptively balances the amount of
forwarded messages per peer between the shortcuts
and the neighbors according to the current quality
of its reverse indices.

7) Summary: AGNOis a probabilistic group no-
tification scheme that integrates search indices with
a constant amount of shortcuts to effectively route
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messages in an unstructured overlay. It utilizes a
tunable binning scheme to choose between the exact
amount of useful information from each source and
an aging mechanism to gracefully adapt to member
departures, requiring no explicit cooperation on their
part.

IV. SIMULATION RESULTS

A. Simulation methodology and compared methods

We use a message-level simulator written in C
(about 2,100 lines of code) which runs on a linux-
based platform using an Athlon 2.1GHz proces-
sor and 1GB of main memory. Requesters make
searches for objects usingAPSat rateλr (exponen-
tially distributed interarrival times), while servers
initiate push transmissions at rateλn. At each run,
we randomly choose a node that plays the role of a
server and a number of requesters, also uniformly at
random. Results are averaged over several hundred
runs.

We present results for bothrandomand power-
law graphs. There has been strong evidence [28]
that connects large-scale unstructured P2P networks
to a power-law topology. We utilize theBRITE
[29] and Inet-3.0[30] topology generators to create
the random and power-law graphs respectively. We
consider 10K node graphs with average node de-
grees around 4 (similar to gnutella snapshots [28]).
Results for graphs up to 50K nodes and larger
average degrees are qualitatively similar.

We use the following metrics to evaluate the
performance of a scheme: Thesuccess rate, which
is the ratio of contacted group members versus the
total number of group nodes and the bandwidth
stress, which we define as the ratio of the produced
messages over the minimum number of messages in
order to contact all members.

AGNO Parameters:We choose to setc ≈ d,
which reserves an amount of space for backpointers

roughly equal to the average node degree. Ref. [28]
shows that over 90% of the node pairs in gnutella
are around 5 hops away. Given this value as an
estimate for theTTL parameter, we setpr ≥ 1

TTL,
so that at least one peer on the search path can
store the requester’s address. Given that the default
index value forAPSis 30, increased by 10 for each
successful walk and linearly decreased after a failed
one, we employ a 3-bin scheme with backpointer
probabilities as shown in figure 5. The first bin
represents indices below the initial value (very few
or no successes), the second those with some hits
and the last those with even more successes. While
we experimented with various configurations, using
more bins and different thresholds, we prefer to
study the performance of our method with this
simple scheme. From (1) and settingT = 2Tr (where
Tr = 1/λr ) we have:ξ = 1−0.440.5λr . The value of
λr (and thereforeξ) is estimated right before each
server push usingε = 0.1.

We compare our method against 3 algorithms:
The SCAMP membership protocol [11] and the two
rumor-spreading schemes in [9]:Rumor Monger-
ing (RM) and its deterministic version (det-RM),
where peers have complete topology information.
For SCAMP, we first run the membership phase, in
which we favor the method by assuming joining
peers know all already joined members. The pa-
rameters for those three methods are thebranching
factor B, which represents how many other peers
shall be contacted per forwarding step and theseen
valueF that represents how many times a peer can
receive the same message before dropping it.

Finally, we also designed and implemented a
pure shortcut selection scheme (Shortcuts) inspired
by the DHT-based multicast tree creation. Search
packets carry the (ID, address) values of the last
node along the path interested in the object so
far. Initially, this pair contains the requester node’s
information. During the search, an interested peer
that receives a search message, decides with prob-
ability pr whether to store the last member’s ID
or not. Moreover, it replaces this ID with its own
before forwarding the request. With this scheme, we
create a small sub-overlay of soft-state backpointers
with direction from the object holders towards the
group members. For simplicity, we assume the same
maximum number of shortcuts as inAGNO. In the
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push phase, a peer forwards to all valid shortcuts,
using the standardTTL scheme (unlikeAGNO,
where backpointers are contacted with aTTL= 1).

B. Basic performance analysis

In this first set of experiments, we try to quantify
the ability of our method to contact requesters
without considering time-related aspects (i.e., take
a snapshot of its operation in time, orξ = 0). We
first try to identify the effect thatAPS has on the
performance ofAGNO. For a group size of 500
peers, we vary the number of requests each of
them makes before a single push phase occurs. We
report the stress and success rates averaged over
20 random 10,000-Node topologies and 20 10,000-
Node power-law topologies (d = 4 andd = 4.1 re-
spectively) with 1,000 runs for each graph. Figures
6 and 7 present the results forAGNOandShortcuts
which are affected by the number of searches.

We notice that the pure shortcut scheme, while
capable of identifying a non-negligible number of
members, cannot provide an efficient notification
method. AGNO quickly contacts the majority of
requesters after only a few searches take place,
while maintaining a low stress factor. As our scheme
adapts to increased quality indices, there exists a
slight variation in the stress. This is due to the
fact that after a certain number of queries, peers
switch to a different (higher) bin on average. Figure
8 shows the percentage of contacted members and
messages ofAGNOpurely attributed to forwarding
(not backpointers). As we move from less to more
precise reverse indices (from fewer to more queries),
our method uses a decreasing number of back-
pointers. These results also depict the usefulness of

TABLE I

SUCCESS RATE AND STRESS RESULTS FOR THE REMAINING

METHODS WITH 500 REQUESTERS

SCAMP RM det-RM
10K random(0.89,2.7) (0.89,34.5) (0.98,31.1)
10K PLAW (0.68,2.1) (0.27,13.6) (0.65,10.8)

TABLE II

EFFECT OF PARAMETERc

10 queries/member20 queries/member
success stress success stress

c=1 68.7% 1.17 90.3% 1.16
c=2 73.5% 1.27 91.5% 1.20
c=4 77.9% 1.42 91.6% 1.23
c=8 79.6% 1.80 92.5% 1.37
c=16 81.2% 2.80 92.9% 1.49

the backpointer scheme as for less accurate indices
they can provide with over 50% of the contacted
members.

The distinctiveness of the power-law topologies,
where about 34% of the peers have degree one,
forces fewer paths to be used compared to the
random topologies. This, combined to the fact that
no aging is performed, explains why the stress
for AGNO slighty increases with more requests in
Figure 7. The respective results for the remaining
methods (not affected by searches) are shown in
Table I. AGNO proves very accurate (in the big
majority of runs) and also the most bandwidth-
efficent of the compared methods. All three rumor-
spreading schemes show considerably worse num-
bers in the power-law topologies.det-RM is much
more effective thanRM in such graphs, which is in
accordance to the findings of [9].
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Table II summarizes the effect that a change in
the number of maximum stored backpointers (c) has
on the performance ofAGNO. We select two runs
from the previous experiment, where each of the
500 members make 10 or 20 queries in the random
topologies. For 10 queries/requester, many peers fall
into bins 1 and 2 on average, while the majority of
nodes operate on bin 3 with twice as many queries.
With less queries (and larger backpointer usage), the
increase in the success rate over our selectedc = 4
is very small compared to the stress increase. As
the indices get more accurate, the method becomes
almost insensitive to the value ofc.

Next, we try to measure the scalability of our
method relative to various group sizes, ranging from
10 to 2,000 peers, using the random topologies.
Requesters make only 10 searches on average, im-
mediately followed by a single push phase from the
server node. For SCAMP, the membership protocol
is run before each different group size. For RM, det-
RM and SCAMP, we setB= 3,F = 1, which proves
the best combination taking into consideration both
the success rate and stress metric. Figures 9 and 10
present the results.

Our method is very successful in all group sizes,
deteriorating only slightly as the members increase.
This happens because with more requesters, their
average distance from the server increases (the
number of peers reachable from a node increases
exponentially with the hop distance). This makes
APSsearches (and its indices) less accurate for some
requesters. The RM schemes produce a similar num-

ber of messages regardless of the group size (aver-
age stress between 1600 and 20), while the closest
competitor (SCAMP) has roughly twice the stress
value of AGNO, without including the overhead
of the membership phase. Our method manages to
contact a very high percentage of the members (86-
99.5%) using an almost constant message ratio over
the group size.

C. Sensitivity toλr

In this section, we try to evaluate the effectiveness
of our λr estimator and the computedξ values over
the random topologies. Results for the power-law
graphs are qualitatively similar.

The value ofT defines how aggressive the aging
is. The smaller it gets, the biggerξ becomes and
thus the bigger the reduction in the reverse index
values. Figure 11 shows how the success rate of
AGNO, given 1,000 peers making requests atλr =
1/sec (and Tn = 10sec), varies by changing the
value of T relative to the average request period
Tr = 1/λr . Our default choice forT = 2Tr yields
very good results, while choosing values close to
the request period also produces fast learning. AsT
decreases more, the success rates increase at much
smaller rate. Surprisingly, even if we employ twice
as aggressive an aging as the average request rate,
over 80% of the members will be contacted after
threeAGNO pushes. Nevertheless, it is not safe to
assume that the larger the value ofT the better.
This would be the case if, for example, we had a
static group size (no aging necessary); a significant
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Fig. 14. Adaptation to a change inλr by a factor of 20

number of member departures combined with a
large value forT would delay the adaptation to
the new group size and cause more messages to be
created than necessary.

In the next experiment, assuming a group size
of 1,000 peers, we try to evaluate the performance
of AGNO for different λr values. Figures 12 and
13 show the results. Not surprisingly, the bigger
the value of λr , the faster the increase in the
success rate, since indices get accurate faster. An-
other observation is that, regardless of the average
request rate, our method asymptotically manages to
contact all interested peers and reach a very low
stress level (below 1.3). For most realistic scenarios
(Tn >> Tr ), the choice ofTn does not affectAGNO’s
performance. In the very rare cases thatTn < Tr , we
just setT = O(Tn) to achieve comparable adaptation.
In all cases, our adaptive aging mechanism selects
a suitable value forξ such that the stress remains
almost static and below 1.4, half the value of the
best of the remaining schemes (SCAMP). For small
request rates, peers adapt using initially low and
then higher quality bins (thus the slight variation

in stress). The smaller the value ofλr , the longer
this adaptation takes.

Finally, Figure 14 shows how effective our adap-
tive λr estimation scheme is. We simulate the ex-
treme case where the 1,000 requesters suddenly
change their query rates by a factor of 20 (from
λr = 4/sec to λr = 0.2/sec and vice versa). Our
goal for the transition from high to low rate is
to quickly decreaseξ so that our success rate is
not affected. For the transition from low to high
rate, we wish to quickly adjust the newξ value
according to the increased requests, such that no
more than the necessary indices increase their value.
We name our two runs high-low-high and low-high-
low respectively: Starting with a rate ofλr = 4/sec
(0.2/sec), requesters drop (increase) their average
number of requests to 0.2/sec (4/sec) at timet =
100sec. At time t = 200sec, they increase (decrease)
their rates to 4 queries/sec (0.2/sec). The top two
lines correspond to success rates while the bottom
two to the respective stress values. The maximum
observed decrease in the success rates at 100 or 200
seconds is only 2%, while the stress values remain
almost unaffected (increase equal to 0.01).

D. Changes in group sizes

We now evaluate the performance ofAGNOunder
dynamic changes in the group size. Our goal is
to allow for members to join or leave the group
with the minimum amount of message exchange and
performance degradation. Employing this approach
that ties group membership to the interest (or lack
thereof) of peers for objects, we require no coor-
dination between members nor any single authority
node.

Our protocol uses the aging scheme in order to
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identify and ultimately stop contacting disinterested
peers, while it takes advantage of the cooperative
nature ofAPS in order to quickly learn new mem-
bers. Figure 15 shows how our two metrics are
affected by having 10-80% of the 1,000 requesters
leaving the group (stop making queries) at time
t = 100sec. We take the worst-case scenario and
assume that all these nodes jointly and instantly
decide to leave from the group.

In all runs, the stress value peaks at the time of
the departures, since the same number of peers are
notified but fewer are now considered as members.
The size of the departing sub-group directly affects
the stress increase. The stress value instantly drops
due to our aging mechanism, but it does not reach
its previous value. This is due to the fact that a

peer’s indices get updated not only when it makes a
request but also when any request passes through
it. Therefore, while shortcuts for departing peers
expire, indices leading to them may still have large
values, depending on the relative positions of other
requesters in the overlay. The amount of increase
for {10%, 20%, 50% and 80%} of the members de-
parting is{7%, 12%, 38% and 100%} respectively.
The amount of increase decreases as the original
group size gets smaller, which proves our previous
point: Assuming 200 initial members instead, the
respective stress increase percentiles are{7%, 9%,
16% and 25%}. On the other hand, as the included
graph shows, our success rate is not affected at all.
We show next that the decrease in stress after new
members join compensates for the increase after
peer departures.

Figures 16 and 17 display the performance of the
compared methods under a combination of member
joins and leaves. At timest = {200,350}sec, 50% of
the current group members decide to leave. Att =
{250,280,300,400,420,440}sec, 50% of the non-
active requesters re-join the group. Members make
requests atλr = 0.5, while the group notification
phase is performed every 10 secs.

The success rate shows an instant decrease at the
exact time of arrival which is proportional to the
number of joining peers. Nevertheless, always more
than 85% of the current members are contacted,
and AGNO has learned of their presense by the
exact next transmission. In the next push phases,



the method quickly reaches its previous levels. On
the other hand, the value of stress is decreased after
member joins and balances the small increase that
occurs after member departures.
SCAMP and the two rumor spreading schemes show
big variations in the stress metric. For RM and det-
RM, this happens because of the change in the group
size (same number of messages regardless of peer
membership), while for SCAMP this is due to the
subscription and unsubscription processes.AGNO
contacts the vast majority of members at a cost 1 to
10 times lower than the closest compared method
(SCAMP).

E. Real traces

We now present results from using real traces
to our simulation environment. In our first ex-
periment, we monitor the change in content for
two very popular web sites, CNN and BBC news.
We retrieve their home pages (http://www.cnn.com
and http://news.bbc.co.ukrespectively) at a minute
granularity and record the time that their content
has been modified. To determine that, we extract
the official Last Updatedstring from the page and
also directly compare the files1. Each page is
preprocessed withHTML Tidy. Taking advantage of
the fact that the overall structure of the same page
rarely changes, we discard code, advertisements and
pictures that change after each browser refresh,
focusing on content. We monitor the changes over
a period of 2 weeks, from Feb. 16th to Mar. 1st,
2004.

The CNN home page changes every 18.1 min-
utes on average, while BBC’s news page every
8.6 minutes. In our experiments, we use the same
10,000-Node power-law graphs of the previous sec-
tions and a group size of 1,000 requesters, making
requests with exponentially distributed interarrival
times (λr = 0.1/min) for those two pages. The no-
tification phases occur each time a page is updated,
as given by our collected data. At exponentially dis-
tributed intervals (an average of 1 every 15 minutes),
we choose with equal probability among the fol-
lowing events: 10% of the members stop requesting
the pages; 80% of inactive members resume their

1This method was developed as part of a project for the CS724
Database graduate course in University of Maryland
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Fig. 18. Average results for one-day periods for the CNN and BBC
news front pages

requests; and nothing happens. On average, we vary
our setup over 60 times per run. Figure 18 shows
the results over the 14 1-day periods (averaged
over all graphs with multiple runs for each).AGNO
manages to exhibit very high accuracy and adapts
its notification mechanism such that the stress value
always remains stable between 1.6 and 1.7.

Finally, we test the behavior of our scheme in
a much more dynamic environment. We use real
traces taken from NYSE stock trades, which de-
scribe the accesses, volumes and values of all quotes
in a 10-day period (Apr. 3-14, 2000). Aggregat-
ing to minute granularity, we monitor quote activ-
ity (accesses-updates) during a busy time interval
(11:00-11:59am) each day. For our simulation, using
the same power-law topologies as in the previous
experiment, we assume a standard client population
(group members) equal to the maximum number
of accesses recorded at any minute per individual
quote. We model our system such that, given there
wereQ accesses at a given minute, only the firstQ
clients are assumed to query for that object. This
is equivalent to having a variable request rate for
each member. Pushes were conducted whenever a
quote’s value was updated, with a maximum of one
notification per minute.

Figure 19 shows the results for three of the most
active quotes, SUNW (Sun Microsystems Inc.),
MSFT (Microsoft Corp.) and ORCL (Oracle Corp.)
The statistics for each of these quotes are presented
in Table III. The interesting statistic here is the



Mean Max STD
SUNW 148 1037 118
MSFT 240 1171 184
ORCL 165 1137 101

TABLE III

ACCESS STATISTICS FOR THE THREE QUOTES
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Fig. 19. Results for a 7-day period for the Microsoft, SUN and
Oracle quotes between 11:00am and 11:59am

high standard deviation value for all three quotes,
which translates to a wide range of differentλi
rates for each requesteri in our experiments. Up-
dates (=push transmissions) were performed once
a minute. For all three datasets,AGNO achieves
a high success rate with few small spike-shaped
decreases occurring. A more detailed analysis of
the data shows that these coincide with sudden
increases (often more than 400%) in the group size
(or accesses per minute), as were observed in the
data. Given traces for more days, those spikes would
have less weight on the averages. We also depict the
average stress values for the quotes, which are kept
at a very low level throughout the whole interval.
These results also show that our adaptive forwarding
and aging mechanisms work effectively even in
the most dynamic environments. Results for less
popular quotes or for time intervals outside high-
access periods are qualitatively similar and were not
selected since the average group size was less than
100.

V. CONCLUSIONS

In this paper we presentAGNO, an adaptive
and scalable group communication scheme for un-
structured Peer-to-Peer networks. Our method inte-
grates knowledge accumulated during searches to
enable content-providers contact the large major-
ity of interested peers with very small overhead.
We described in detail our adaptive mechanisms
to regulate message forwarding according to the
quality of existing knowledge as well as to ensure
efficient performance in all group operations. A
variety of simulations using both synthetic and real
traces showed thatAGNOadapts quickly to variable
request rates and group sizes, being at least twice
as bandwidth-efficient as the compared methods.
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