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Examination of the convergence of full valence CASSCF-CISD energies with 
expansion of the one-electron basis set reveals a pattern very similar to the 
convergence of single determinant CCSD energies. Calculations on the lowest 
four singlet states and the lowest four triplet states of N2 with the sequence of 
ntuple-ζ augmented polarized (nZaP) basis sets (n = 2, 3, 4, 5, and 6) are used to 
establish the complete basis set (CBS) limits. Full CI and core electron 
contributions must be included for very accurate potential energy surfaces. 
However, a simple extrapolation scheme that has no adjustable parameters and 
requires nothing more demanding than CAS(10e-,8orb)-CISD/3ZaP calculations 
gives the Re, ωe, ωeXe, Te and De for these eight states with rms errors of 0.0006 
Å, 4.43 cm–1, 0.35 cm–1, 0.063 eV, and 0.018 eV respectively. 
 

 

I. INTRODUCTION 
 Virtually all ab initio electronic structure calculations employ expansions in basis 
sets of atomic orbitals. Modern treatments of electron correlation such as CCSD(T)1,2, 
CASPT23, and CAS-CISD4-7, have reduced the errors from the many-body expansion to 
the point where truncation of this one-particle basis set is the dominant source of error in 
these calculations.8 Over the past twenty years, it has become evident that the slow 
convergence of molecular energies would require the use of prohibitively large atomic 
orbital basis sets to achieve “chemical accuracy” of ~1 kcal/mol directly. It is therefore 
necessary to either employ empirical corrections9,10, or attempt to extrapolate to the 
complete basis set (CBS) limit.11-14 Extrapolation schemes for calculations employing a 
single reference configuration are now used routinely11-14. Our previous paper15 
developed an extrapolation scheme for CASSCF calculations. In this paper we shall 
examine the convergence of the dynamic correlation component from multi-reference 
methods to the complete one-electron basis set (CBS) limit. 

Many problems require higher accuracy than can be achieved with 
computationally accessible basis sets. For example, the reaction, O(3P) + 
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HCl(v=2,j=1,6,9) → OH(v’j’) + Cl(2P), exhibits large differences between 
measured OH(v’j’) distributions and benchmark quantum scattering calculations on 
recently computed multi-reference potential surfaces with large basis sets, suggesting a 
need for re-examination of the surfaces with higher accuracy.16 Another example is the 
reaction, O(3P) + H2O  → OH(A) + OH(X), observed in space-based17 and laboratory 
experiments.18 Recent work using multi-reference wave functions and large basis sets has 
mapped the conical intersection mechanism of this reaction.19 However, an explanation 
of the magnitude of the total cross section and product state distributions will require 
chemically accurate energies over large portions of the potential surfaces involved - a 
task that would be prohibitively expensive with basis sets that are sufficient to ensure 
chemical accuracy. Many other reactions of open-shell species with singlet molecules, 
such as O(3P) reactions with hydrocarbons, are now being studied at hyperthermal 
energies,20 and may require multi-reference wave functions where computation of 
chemically accurate energies using large basis sets would again be prohibitively 
expensive. 
 Our approach will be to systematically examine the convergence of the electronic 
energy with the one-electron basis set for each component of the energy. In a previous 
paper, we examined the convergence of the multi-reference CASSCF energy15. We found 
that a computationally inexpensive single reference UHF calculation with two different 
size basis sets provided a means of extrapolating the multi-reference CASSCF energy to 
the complete basis set limit. In the present paper, we will examine the convergence with 
the one-electron basis set of the dynamic correlation energy at several levels: MP2, 
CCSD, CCSD(T), and CAS-CISD. We find that single reference MP2 and CCSD 
calculations provide a model for the basis set convergence of the dynamic component of 
multi-reference CAS-CISD calculations. In this way, we develop an extrapolation 
formula that requires nothing more demanding than CAS(10e-,8orb)-CISD calculations 
within a modest sized triple-ζ basis set.   

We will examine the first 8 electronic states of N2, as a case study, since highly 
accurate theoretical and experimental data are available to test the new methods. It is 
important to note that convergence with basis set is studied with a sequence of ntuple-ζ 
augmented polarized (nZaP) basis sets (n = 2, 3, 4, 5, and 6) which were developed by 
requiring uniform convergence of each component of both the SCF and the correlation 
energy.21-23 Although we are primarily interested in the basis set convergence of valence 
electron CAS-CISD calculations, we shall also consider Full CI and core-valence 
corrections. This will provide a check on our extrapolation method through quantitative 
comparisons with experimental data. 
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II. EXCITED STATE MODELS 
 We shall develop a multi-reference model chemistry based on the full valence 
complete active space self consistent field (CASSCF) reference.24-28 These calculations 
employ a full CI within a variationally optimized set of molecular orbitals that is uniquely 
determined by the number of valence-shell orbitals of the constituent atoms. They are a 
size consistent MCSCF extension of single determinant Hartree-Fock theory and require 
no subjective choices. These CASSCF methods are thus an appropriate starting point for 
a model chemistry.29-31

We have selected the lowest four singlet states and the lowest four triplet states of 
N2 for this study, since there is a wealth of experimental and computational results 
available for comparison (Table I). We first examine the basis set convergence of single 
configuration UHF energies, since we have shown that they are useful models for the 
convergence of CASSCF energies.15 Note that we use the same UHF reference for Σ and 
Δ (π → π*) excited states, since our previous work demonstrated that the specific UHF 
state employed for comparison with CAS calculations was not important as long as the  

 
Table I. The eight low-lying states of N2 considered in this paper. 

State Configuration ___________RNN_(Å)__________ 
  UHF/2ZaP    CAS(10e,8orb)/2ZaP    Experimenta

X 1Σg
+ (1σg

2,1σu
2,2σg

2,2σu
2,3σg

2,1πu
4) 1.0754 1.1148 1.0977 

A 3Σu
+  (1σg

2,1σu
2,2σg

2,2σu
2,3σg

2,1πu
3,1πg)  1.2374b 1.3069 1.2866 

B 3Πg (1σg
2,1σu

2,2σg
2,2σu

2,3σg,1πu
4,1πg) 1.1918 1.2320 1.2126 

W 3Δu (1σg
2,1σu

2,2σg
2,2σu

2,3σg
2,1πu

3,1πg) 1.2374b 1.2980 1.2833d

B'3Σu
- (1σg

2,1σu
2,2σg

2,2σu
2,3σg

2,1πu
3,1πg) 1.2374b 1.2984 1.2784 

a'1Σu
- (1σg

2,1σu
2,2σg

2,2σu
2,3σg

2,1πu
3,1πg)  1.2383c 1.2927 1.2755 

a 1Πg (1σg
2,1σu

2,2σg
2,2σu

2,3σg,1πu
4,1πg) 1.2017 1.2395 1.2203 

w 1Δu   (1σg
2,1σu

2,2σg
2,2σu

2,3σg
2,1πu

3,1πg) 1.2383c 1.2865        1.268 

a. Reference 32. 
b. & c. These UHF wavefunctions are mixtures of Σ and Δ states. 
d. No experimental value was available. This is the CAS-CISD/5ZaP calculated geometry. 
 
UHF calculations used the same geometry and occupied the same orbitals as the CAS 
calculation.15 We also examine the basis set convergence of single reference MP2 and 
CCSD(T) energies to provide models for the convergence of CAS-CISD energies. Full 
configuration interaction (FCI) energies and core electron correlation energies are 
included in order to make comparisons with experiment.  
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We shall now examine the basis set convergence of UHF, UMP2, UCCSD(T), 
CAS(10e-,8orb), CAS-CISD, and FCI calculations at the experimental geometries in 
Table I. Most numerical results in this paper were obtained with a modified version of the 
Gaussian suite of programs.33 However, the CAS-CISD calculations employed the 
Columbus programs.34-37 

 
III. CONVERGENCE OF THE ENERGY TO THE CBS LIMIT 
 Extrapolation requires a well defined sequence of approximations and a model for 
the convergence of this sequence. The expansion of molecular orbitals in increasing 
numbers of Gaussian basis functions provides a systematic sequence of approximations. 
Each component of the molecular electronic energy has its own distinct pattern of 
convergence. We must therefore develop a set of models, one for the convergence of each 
of the components of the molecular energy. 
 
A. The SCF energy 

The approximate exponential convergence of SCF energies with the

number of Gaussian basis 
functions is well known.38 As 
suggested by Kutzelnigg,39,40 the 
basis set truncation errors for 
these SCF calculations are 
actually better described by a 
function of the form: 
 

[ ]1/2
pn a - expAError ⋅≅   , (1) 

 
 
where np is the number of 
primitives and a is a parameter 
(Fig. 1). If we calculate the SCF 
energy with two different size 
basis sets comprised of n1 and n2 
sets of optimized Gaussian basis 
functions respectively (with n2 > 
n1), then Eq.(1) provides the 
model for a linear extrapolation to 
the SCF limit:15,21 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Fig. 1 The basis set convergence of the 
         UHF energies of the N2 states in Table  I.
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Note that the extrapolation does not explicitly include the coefficient, A in Eq.(1), which 
varies from one atom or molecule to another. 

Extrapolations based on Eq.(2) require using a sequence of basis sets with 
systematically increasing numbers of Gaussian primitives for each angular momentum 
type combined with sets of polarization functions selected to give uniform convergence 
for each component of the molecular SCF energy. We have constructed such a balanced 
sequence of ntuple-ζ augmented polarized (nZaP) basis sets (n = 2, 3, 4, 5, and 6) for 
which the parameter, a, is relatively constant, a~5 (Fig. 1), for Hartree-Fock calculations 
at a fixed geometry.21,22 These basis sets include diffuse valence (i.e. s and p) functions 
permitting some mixing in of Rydberg states, but spare the cost of diffuse higher angular 
momentum functions. We note that throughout this paper we are using preliminary 
versions of these basis sets, which may differ from the final versions.23 Substitution of 
a=5 and the appropriate values of n1 and n2 into Eq.(2): 

 
E(5ZaP)} - {E(6ZaP) E(6ZaP E Limit  SCF 309.0) +≅ ,     (3) 

 
provides our best estimate of the HF limit. This extrapolation gives –108.9938169 hartree 
(Eh) for the SCF limit of the X 1Σg

+ ground state of N2 at RNN = 2.068 bohr, which is in 
good agreement with the numerical SCF energy at this geometry,41 –108.9938256 Eh. 
Since these nZaP basis sets were optimized for atoms, it is reasonable to assume that the  
 
Table II. The convergence of the UHF energies (hartree) to the CBS limit. 

State ___________Basis Set___________ 
       2ZaP                  3ZaP                  4ZaP                   5ZaP                  6ZaP            CBS[Eq.(3)] 

X 1Σg
+ -108.967814 -108.988992 -108.992209 -108.993004 -108.993124 -108.993161

A 3Σu
+  -108.769142 -108.787873 -108.790430 -108.791051 -108.791176 -108.791215

B 3Πg -108.700891 -108.719275 -108.722135 -108.722733 -108.722846 -108.722881

W 3Δu -108.769573 -108.788325 -108.790888 -108.791513 -108.791638 -108.791676

B'3Σu
- -108.770196 -108.788984 -108.791557 -108.792187 -108.792312 -108.792350

a'1Σu
- -108.714405 -108.734254 -108.737143 -108.737848 -108.738001 -108.738048

a 1Πg -108.673750 -108.692598 -108.695347 -108.695946 -108.696054 -108.696088

w 1Δu   -108.715139 -108.735050 -108.737954 -108.738667 -108.738819 -108.738866
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UHF CBS energies of the valence excited states (Table II) are also accurate to about 10 
microhartree (μEh). We should also note that the extrapolations differ from the 
UHF/6ZaP energies by only 40 μEh lending support to our 10 μEh error estimate. 
 
B. The CASSCF energy 
 The CASSCF wave function is similar to the SCF wave function in that it consists 
of a limited number of optimized self-consistent-field orbitals. We can therefore employ 
the UHF CBS limit obtained above to extrapolate our CAS calculations as described in 
our previous paper:15

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−
−

−+≅
)3()4(
)3()4(

)4()()4()(
ZaPEZaPE
ZaPEZaPE

ZaPECBSEZaPECBSE
UHFUHF

CASCAS
UHFUHFCASCAS

, (4) 

 

based on 3ZaP and 4ZaP calculations, or: 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−
−

−+≅
)4()5(
)4()5(

)5()()5()(
ZaPEZaPE
ZaPEZaPE

ZaPECBSEZaPECBSE
UHFUHF

CASCAS
UHFUHFCASCAS

, (5) 

 

based on 4ZaP and 5ZaP calculations (Table III). These extrapolations are analogous to 
Eq.(6) and Eq.(7), respectively, in our previous paper,15 but we now employ the limit, 
EUHF(CBS), obtained from Eq.(3) above. The rms difference between these two 
extrapolations is less than 30 μEh. As a further check, we can compare the CAS(10e-
,8orb) energy of the N2 X 1Σg

+  ground state obtained from Eq.(5), –109.141729 Eh, with 
the value obtained by application of Eq.(3) to the CAS(10e-,8orb)/5ZaP and CAS(10e-
,8orb)/6ZaP energies, –109.141713 Eh. This suggests that the CBS limits for the 
CASSCF energies in Table III are accurate to about 15 μEh. 
 
      Table III. The convergence of the CAS(10e,8orb) energies (hartree) to the CBS limit. 

State _______________Basis Set_______________ 
        2ZaP                  3ZaP                   4ZaP                    5ZaP              CBS[Eq.(4)]           CBS[Eq.(5)]    

X 1Σg
+ -109.116846 -109.137445 -109.140757 -109.141570 -109.141738 -109.141729

A 3Σu
+  -108.886133 -108.901746 -108.903812 -108.904345 -108.904446 -108.904485

B 3Πg -108.829782 -108.846015 -108.848521 -108.849061 -108.849175 -108.849195

W 3Δu -108.827965 -108.844248 -108.846431 -108.846996 -108.847103 -108.847143

B'3Σu
- -108.802217 -108.817650 -108.819676 -108.820198 -108.820300 -108.820334

a'1Σu
- -108.778492 -108.794414 -108.796530 -108.797070 -108.797193 -108.797223

a 1Πg -108.785634 -108.802772 -108.805321 -108.805881 -108.806008 -108.806014
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w -108.783364 -108.783922 -108.784060 -108.784078 1Δu   -108.764493 -108.781149

C. The MP2 correlation energy 
 The basis set convergence of the MP2 correlation energy is the best understood 
part of the dependence of the correlation energy on the one-electron basis set.42-45,11 The 
same spin, αα− and ββ−pair energies converge21 with the maximum angular momentum 
included in the basis set, lmax, as lmax

-5 (Fig. 2).43 This behavior can be used to construct 
linear extrapolations of these pair correlation energies based on 3ZaP and 5ZaP MP2 
calculations: 

⎭
⎬
⎫

⎩+−+ −− )15()13( ,
55

,, jiji
ij

ji
ij ⎨

⎧
−

+
+≅ ∑∑∑

−

)3()5()15()5()(
,

)2()2(
5

)2()2( ZaPeZaPeZaPeCBSe
occ

ji
ij

occ

ij

occocc
αααααααα  , (6) 

or based on 4ZaP and 6ZaP MP2 calculations: 
 

∑
 

⎭⎩+−+ −− )16()14( ,,
5

,, jijijiji

 

where we have employed l

⎬
⎫

⎨
⎧

−
+

+≅ ∑∑∑
−

)4()6()16()6()( )2()2(
5

5
)2()2( ZaPeZaPeZaPeCBSe

occ

ij

occ

ij

occ

ij

occ

ij
αααααααα  . (7) 

umulative error from the UHF and the αα

 

Fig. 2 The second-order αα-pair 
energies converge as (lmax+1)-5. 

 Fig. 3 The second-order αβ-pair 
energies converge as (lmax+1/2)-3. 

 

∑

0 and l0+2 to improve the stability of numerical derivatives. 
The rms difference between these two extrapolations is less than 50 μEh for the eight 
low-lying states of N2 (Table IV). This is clearly an overestimate of the error in Eq.(7), 

hich is obviously the better of the two extrapolations. We would estimate our w
c -pair energies to be on the order of 20 μEh.  
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Table IV. The convergence of the sum of the second-order αα- and ββ-pair energies 
(hartree) to the CBS limit. 

State ___________Basis Set___________ 
     2ZaP              3ZaP               4ZaP               5ZaP              6ZaP       CBS[Eq.(6)]   CBS[Eq.(7)]

X 1Σg
+ -0.083498 -0.096374 -0.099519 -0.100451 -0.100719 -0.101069 -0.100994

A 3Σu
+  -0.064090 -0.076547 -0.079629 -0.080574 -0.080842 -0.081185 -0.081119

B 3Πg -0.087148 -0.100655 -0.104006 -0.105020 -0.105313 -0.105682 -0.105612

W 3Δu -0.063955 -0.076423 -0.079508 -0.080453 -0.080721 -0.081064 -0.080998

B'3Σu
- -0.063745 -0.076231 -0.079320 -0.080266 -0.080534 -0.080877 -0.080811

a'1Σu
- -0.069115 -0.080293 -0.083138 -0.084018 -0.084265 -0.084582 -0.084522

a 1Πg -0.081801 -0.094071 -0.097211 -0.098151 -0.098423 -0.098700 -0.098700

w 1Δu   -0.068683 -0.079897 -0.082750 -0.083630 -0.083877 -0.084196 -0.084135

 
The opposite spin, αβ-pair energies, converge with the maximum angular 

momentum included in the basis set, lmax, as lmax
-3 (Fig. 3).42 This behavior can again be  

used to construct linear extrapolations of these pair correlation energies based on 3ZaP 
and 5ZaP MP2 calculations: 
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or based on 4ZaP and 6ZaP MP2 calculations: 
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The rms difference between these two extrapolations is 447 microhartree for the eight 
low-lying states of N2 (Table V). This is undoubtedly an overestimate of the error in 
Eq.(9), which is obviously the better of the two extrapolations. A more realistic estimate 
of the erorr comes from comparison of the total E(2) estimated from Eq.(7) and Eq.(9) 
with the value obtained from pair natural orbital (PNO) extrapolations11 from the 6ZaP 
calculations with Nmin=25.46 The rms deviation between the PNO extrapolations and the 
values for E(2) from Eq.(7) and Eq.(9) is 140 μEh for the eight low-lying states of N2 
(Table V). If we adopt this figure for the error in the αβ-pair extrapolation, our 
cumulative error is now about 150 μEh, and comes primarily from the uncertainty in the 
CBS limit for the αβ-pair energies. 
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Table V. The convergence of the sum of the second-order αβ-pair energies (hartree) to 
the CBS limit. 

State ___________Basis Set___________ 
     2ZaP              3ZaP               4ZaP               5ZaP              6ZaP       CBS[Eq.(8)]   CBS[Eq.(9)]

X 1Σg
+ -0.228800 -0.279590 -0.300933 -0.309602 -0.313483 -0.320021 -0.319716

A 3Σu
+  -0.189548 -0.235962 -0.255105 -0.262850 -0.266218 -0.272184 -0.271737

B 3Πg -0.221250 -0.269528 -0.289404 -0.297457 -0.300946 -0.307153 -0.306678

W 3Δu -0.189170 -0.235617 -0.254772 -0.262519 -0.265891 -0.271859 -0.271412

B'3Σu
- -0.188582 -0.235081 -0.254256 -0.262007 -0.265383 -0.271355 -0.270909

a'1Σu
- -0.179498 -0.229200 -0.249443 -0.257624 -0.261188 -0.267492 -0.267021

a 1Πg -0.223270 -0.272617 -0.293068 -0.301375 -0.304964 -0.311358 -0.310871

w 1Δu   -0.178884 -0.228657 -0.248928 -0.257116 -0.260688 -0.266996 -0.266528

 
 
D. The CCSD(T) energy 
 It is useful at this point to 
examine the basis set convergence of the 
CCSD(T) energy.  The major component 
of the CCSD(T) correlation energy is the 
CCSD component. This is the part that is 
responsible for the proper dissociation of 
single bonds. However, we shall first 
treat the triple excitation component, 
since this fits the pattern of the MP2 
convergence. 

The increment to the correlation 
energy resulting from triple excitations 
is relatively easy to understand and 
extrapolate. The triple excitation energy 
component is dominated by the 
contributions from mixed spins: ααβ,  
αβα, βαα, αββ, βαβ, and ββα. The 
convergence of these terms is controlled 
by the opposite spin interactions and 
thus converges as lmax

–3 (Fig. 4). Once 
again we compare two extrapolations: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 The triple excitation component 
 of the CCSD(T) energy converges as 
 (lmax-1/3)-3 
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−
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Partly as a consequence of the modest total contribution from triple excitations, these two 
estimates of the CBS limit (Table VI) agree to within 30 μEh, suggesting that any errors 
from Eq.(11) add something on the order of 10 μEh to the error in our estimate of the 
CCSD(T) CBS limit. 

The CBS limit for the CCSD component presents a greater challenge. The CCSD 
increment to the correlation energy (i.e. ECCSD – EMP2) becomes less negative and can 
even become positive as we increase the basis set (Table VII). This arises from an 
“interference effect” between the Hartree-Fock configuration and doubly excited 
configurations.11,47 We  gave a detailed derivation11 and quantitative tests47,48 of this 
effect a number of years ago, so we shall just give a brief description here. 
 
Table VI. The convergence of the triple excitation component of the CCSD(T) energies 
(hartree) to the CBS limit. 

State ___________Basis Set___________ 
     2ZaP              3ZaP               4ZaP               5ZaP             6ZaP      CBS[Eq.(10)]   CBS[Eq.(11)]

X 1Σg
+ -0.012542 -0.018646 -0.020311 -0.020858 -0.021044 -0.021366 -0.021317

A 3Σu
+  -0.014222 -0.018509 -0.019806 -0.020239 -0.020391 -0.020635 -0.020608

B 3Πg -0.015248 -0.021700 -0.023652 -0.024282 -0.024516 -0.024875 -0.024836

W 3Δu -0.014135 -0.018413 -0.019708 -0.020140 -0.020292 -0.020536 -0.020509

B'3Σu
- -0.014000 -0.018264 -0.019556 -0.019987 -0.020138 -0.020382 -0.020355

a'1Σu
- -0.013383 -0.017601 -0.018952 -0.019413 -0.019581 -0.019829 -0.019816

a 1Πg -0.019411 -0.025275 -0.027079 -0.027663 -0.027882 -0.028211 -0.028181

w 1Δu   -0.013219 -0.017419 -0.018764 -0.019224 -0.019391 -0.019638 -0.019625

 
The wave function including double excitations within a particular basis set (e.g. 

5ZaP): 

∑+=
virtba

occji

ab
ij

ab
ijHF ZaPZaPC

 ,

 ,
)5()5( φφψ ,    (12) 

has coefficients, C, that are all negative. If we now expand the basis set (e.g. to 6ZaP), 
the increment to the second-order correlation energy is: 
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Table VII. The convergence of the CCSD – MP2 component of the correlation energies 
(hartree) to the CBS limit. 

State ___________Basis Set___________ 
     2ZaP              3ZaP               4ZaP              5ZaP             6ZaP       CBS[Eq.(17)] CBS[Eq.(18)] 

X 1Σg
+ -0.002121 0.002177 0.006062 0.008805 0.010302 0.013044 0.013069

A 3Σu
+  -0.028402 -0.023780 -0.019883 -0.017276 -0.015881 -0.013588 -0.013475

B 3Πg -0.004908 -0.000398 0.003463 0.006095 0.007492 0.010230 0.010211

W 3Δu -0.028451 -0.023847 -0.019958 -0.017353 -0.015960 -0.013669 -0.013555

B'3Σu
- -0.028525 -0.023948 -0.020072 -0.017472 -0.016079 -0.013792 -0.013677

a'1Σu
- -0.029860 -0.026127 -0.022501 -0.019901 -0.018492 -0.016242 -0.016100

a 1Πg -0.013336 -0.008720 -0.004712 -0.001975 -0.000527 0.001939 0.002054

w 1Δu   -0.029965 -0.026256 -0.022642 -0.020046 -0.018637 -0.016390 -0.016247
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However, to second-order the increment in the CCSD correlation energy is: 
 

∑ −−+
∑
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Where we have included all configurations in Eq.(12). We have shown11,47 that in the 
limit as μ and ν approach ∞, all matrix elements in Eq.(14) approach the same value: 
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so the basis set change to the CCSD increment to the correlation energy is:49 
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which will always be positive (Table VII). The CCSD increment given by Eq.(16) is 
available (as: “CBS-int”) from the CBS PNO extrapolation code that we have 
implemented in the Gaussian suite of programs.33

11 



 

 We shall again compare two levels of extrapolation to provide a measure of the 
accuracy of the CCSD/CBS correlation energy: 
 

)20min,5()5()( int =Δ+≅ − NZaPEZaPECBSE CBSCCSDCCSD
,   (17) 

and: 
)25min,6()6()( int =Δ+≅ − NZaPEZaPECBSE CBSCCSDCCSD
.   (18) 

 

The correction to the CCSD/6ZaP energy is about 2.5 mEh, but the rms deviation between 
these two estimates is only 109 μEh. We again note that the error from the better estimate 
is certainly considerably smaller than this, perhaps about 30 μEh.  

If we now consider the cumulative effects from errors in our estimates of the CBS 
limits for the UHF (10 μEh), MP2(αα) (20 μEh), MP2(αβ) (140 μEh), CCSD (30 μEh), 
and CCSD(T) (10 μEh) energies, we estimate the accuracy of our extrapolated 
CCSD(T)/CBS limit to be about 200 μEh. This is consistent with the rms difference 
between the sum of our 5ZaP extrapolations (Tables II, IV, V, VI, and VII) and the sum 
of our 6ZaP extrapolations (638 μEh).  
 
E. The CAS-CISD energy 
 We are finally ready to consider the basis set convergence of the CISD correction 
to the CAS(10e,8orb) energy (Table VIII). Just as the basis set convergence of the UHF 
energy provided a model for the basis set convergence of the CAS energy, the UCCSD 
dynamic correlation energy provides a model for the basis set convergence of the CAS-
CISD dynamic correlation energy (Fig. 5). Several plausible candidates for modeling the  
 
Table VIII. The convergence of the CAS(10e,8orb)-CISD dynamic correlation 
 energies (hartree) to the CBS limit. 

State ___________Basis Set___________ 
    2ZaP             3ZaP               4ZaP              5ZaP          CBS[4ZaP]        CBS[5ZaP] 

X 1Σg
+ -0.173425 -0.233904 -0.254180 -0.260915 -0.267218 -0.267194 

A 3Σu
+  -0.189401 -0.245821 -0.263836 -0.269738 -0.275349 -0.275090 

B 3Πg -0.194374 -0.254043 -0.273493 -0.279857 -0.285677 -0.285353 

W 3Δu -0.196363 -0.255934 -0.275193 -0.281438 -0.287500 -0.287015 

B'3Σu
- -0.192829 -0.252737 -0.272337 -0.278710 -0.284861 -0.284438 

a'1Σu
- -0.201940 -0.265248 -0.285640 -0.292229 -0.298803 -0.298184 

a 1Πg -0.192215 -0.252535 -0.272454 -0.279017 -0.285193 -0.285003 

w 1Δu   -0.198701 -0.260704 -0.281157 -0.287794 -0.294356 -0.293851 
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CAS-CISD convergence have been 
considered. The UHF-CISD, CAS-
CISD, CCSD, and CCSD(T) methods 
are all equivalent to a full CI for two 
electrons. The full valence CAS we have 
employed in this paper reduces to a 
single configuration Hartree-Fock for a 
species such as Neon with all valence 
orbitals fully occupied. Thus, UHF-
CISD would be the correct model in the 
two limiting cases of Li2 and Ne2. 
However, the lack of disconnected 
quadruple and higher excitations (i.e. 
linked diagrams) makes UHF-CISD an 
inappropriate model for a CAS-CISD 
calculation of N2, which includes the 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5 The basis set increments in the CCSD 
dynamic correlation energy very nearly 
equal the basis set increments in the CAS-
CISD dynamic correlation energy. 

most important quadruple excitations. 
Thus, it is not surprising that CCSD closely mimics the basis set convergence of CAS-
CISD. The ratio of ΔECAS-CISD to ΔECCSD: 
 

[ ] { } { }[ ]{ }
[ ] { } { }[ ]{ })1()1()()(

)1()1()()(
ZaPnEZaPnEnZaPEnZaPE

ZaPnEZaPnEnZaPEnZaPE

UHFCCSDUHFCCSD

CASCISDCASCASCISDCAS
n −−−−−

−−−−−
≡ −−ρ ,  (19) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

is very close to unity, but shows a small 
systematic decrease with increasing n (Fig. 
6), approaching limiting values between 
0.96 and 1.02 for the various states. We can 
use this pattern to estimate the ratio for 
larger basis sets: 
 

⎟
⎠
⎞⎜

⎝
⎛≅

−
+

1
1

n

n
nn ρ

ρρρ .           (20) 

 
 
 
Fig. 6 The ratio of the basis set increments of the 
CAS-CISD dynamic correlation energy to the 
CCSD dynamic correlation energy [Eq.(19)] 
decreases monotonically as the basis set 
increases. The exponential curves satisfy 
Eq.(20).
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The combination of Eq.(20) with Eq.(19) gives the extrapolation formula for ECAS-CISD 
that was used in Table VIII: 
 

)1()1(
1

+Δ⎟
⎠
⎞⎜

⎝
⎛≅+Δ

−
− nEnE CCSD

n

n
nCISDCAS ρ

ρρ  ,  

         (21) 

)2()2(
2

1
+Δ⎟

⎠
⎞⎜

⎝
⎛≅+Δ

−
− nEnE CCSD

n

n
nCISDCAS ρ

ρρ  , etc. 

 
The rms difference between the extrapolations based on 4ZaP and 5ZaP calculations is less 
than 400 μEh (Table VIII). We estimate the accuracy of our extrapolated CAS-
CISD(5ZaP)/CBS limit to be about 200 μEh. The only way to test this estimate is to 
calculate the core and core-valence contributions to the correlation energy and estimate 
the full CI correction to the CAS-CISD energy so we can compare our calculations to 
experiment. 
 
F. Full configuration interaction 
 Bytautas and Ruedenberg have recently examined the convergence of full CI 
energies with the cc-pVnZ basis sets.50 Their results for the X1Σg

+ ground state of N2 at 
1.0977 Å are included in Table IX. We observe that in this particular example the 
CCSD(T) energy differs from the FCI energy by less than 2 mEh for all three basis sets 
for which results are available and that this small difference slowly decreases with 
increasing basis set. In fact, the basis set increment to this difference, Δ[FCI-CCSD(T)], 
follows the basis set increment to the CCSD(T) correlation energy, Δ[CCSD(T)-SCF], 
the ratio being -0.004. If we assume that this ratio persists, we can estimate the changes 
to Δ[FCI-CCSD(T)], and thus the FCI energy with the larger basis sets and the FCI/CBS 
limit (the CCSD(T)/CBS limit was extrapolated as described above). Our extrapolated 
FCI/CBS limit (-109.42363) is in excellent agreement with the “experimental” valence 
FCI energy given by Bytautas and Ruedenberg (-109.4237 Eh).50

 The FCI energies in the last row of Table IX were used to obtain the FCI 
corrections to the CAS(10,8)-CISD energies of the X1Σg

+ N2 ground state as given in 
Table X. We have also included FCI/cc-pVDZ corrections for the a’1Σu

-, a1Πg, and w1Δu 
excited states obtained from the FCI calculations of Larsen, Olsen, and Jørgensen.51 We 
employed a linear interpolation of ΔE(RNN) to obtain ΔE at the geometries in Table I. The 
remaining values in Table X are based on two reasonable approximations that are best 
justified by the ultimate agreement with experiment (vide infra). Since we did not have 
FCI energies for the triplet states, we assumed that the FCI correction for the triplet states  
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Table IX. The basis set convergence of the FCI energy for the X1Σg

+ ground state of N2. 
Energy 

Component 
cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z CBS limit 

SCF -108.954128 -108.983470 -108.991084 -108.992765 -108.993086 -108.993185 

CCSD(T) -109.275253 -109.373840 -109.404373 -109.414187 -109.417772 -109.422333 

CCSD(T)-SCF -0.321125 -0.390370 -0.413289 -0.421422 -0.424686 -0.429148 

Δ[ CCSD(T)-SCF]  -0.062624 -0.021236 -0.007498 -0.003032 -0.004097 

FCIa -109.27698 -109.37530 -109.40573    

FCI-CCSD(T) -0.00173 -0.00146 -0.00136    

Δ[ FCI-CCSD(T)]  0.00027 0.00010    

Δ[ FCI-CCSD(T)] 
Δ[ CCSD(T)-SCF]  -0.0039 -0.004    

-0.004 x Δ[ CCSD(T)-SCF] 0.00028 0.00009 0.00003 0.00001 0.00002 

{FCI-CCSD(T)}(cc-pVDZ) 
 -0.004 x Δ[ CCSD(T)-SCF] -0.00145 -0.00136 -0.00133 -0.00131 -0.00130 

CCSD(T)+{FCI-CCSD(T)}(cc-pVDZ) 
 -0.004 x Δ[ CCSD(T)-SCF]b -109.375290 -109.405732 -109.415513 -109.419085 -109.423628 

 
a. Reference 50.  
b. Our extrapolation of the FCI energies. 
 

Table X. The basis set convergence of the FCI correction to the CAS(10e,8orb)-CISD 
energies (hartree). 

State              ___________Basis Set___________ 
   cc-pVDZ           cc-pVTZ             cc-pVQZ            cc-pV5Z              CBS        

X 1Σg
+ -0.005780a -0.01128a -0.01314a -0.01393 -0.014710d

A 3Σu
+  -0.006908c    -0.016983d

B 3Πg -0.007191c    -0.018082d

W 3Δu -0.007221c    -0.018078d

B'3Σu
- -0.007145c    -0.018040d

a'1Σu
- -0.007492b    -0.019066d

a 1Πg -0.007183b    -0.018281d

w 1Δu   -0.007394b    -0.018818d

 a. Ref. 50.  b. Ref. 51  c. Estimated from b.  d. 2.545 x cc-pVDZ 
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was the same fraction of the CAS-CISD dynamic correlation energy as was found for the 
corresponding singlet states (e.g. B3Πg  vs a1Πg). We then made the further assumption 
that the ratio of the complete basis set correction to the cc-pVDZ correction was the same 
for the excited states as for the ground state (i.e. 2.545). The differences in these FCI 
corrections for the different states are modest, but our justification for this assumption 
lies primarily in the accuracy of the excitation energies that result (vide infra). We shall 
apply the cc-pVnZ corrections from Table X to our nZaP CAS-CISD calculations. 
 
G. Core electrons 

We have calculated the core-core and core-valence effects on the correlation 
energy using several basis sets (Table XI). The first is the standard APNO kk, kl, ll basis 
set52 included in Gaussian.™ The 3ZaPcore and 4ZaPcore basis sets include additional 
basis functions that were optimized for the MP2 energy of the 1s electrons plus functions 
with intermediate exponents. The core correlation energies in Table XI were obtained 
from pair natural orbital extrapolations11,52 using a minimum of 5, 10, and 15 PNOs for 
the APNO, 3ZaPcore, and 4ZaPcore basis sets respectively. The variations in the core 
effects for the various states are modest. The rms change in the core contribution to the 
excitation energies is 118 μEh between the APNO and 3ZaPcore basis sets and 27 μEh 
between the 3ZaPcore and 4ZaPcore basis sets. These small changes and the agreement 
of our ground state results with the CCSD(T)-R12 results of Noga, Valiron, and 
Klopper53 indicate that the accuracy of the 4ZaPcore calculations is sufficient for our 
purposes. 
 

Table XI. The CBS extrapolated core-core, core-valence correlation 
energies (hartree). 

State APNO/CBS 3ZaPcore 4ZaPcore CCSD(T)-R12a

N 4S3/2 -0.057073 -0.058140 -0.058474 -0.058779 

X 1Σg
+ -0.116085 -0.117978 -0.118618 -0.118983 

A 3Σu
+ -0.114834 -0.116682 -0.117350  

B 3Πg -0.115596 -0.117294 -0.117954  

W 3Δu -0.114854 -0.116703 -0.117371  

B'3Σu
- -0.115073 -0.116733 -0.117402  

a'1Σu
- -0.114665 -0.116548 -0.117217  

a 1Πg -0.115109 -0.117045 -0.117710  

w 1Δu -0.114714 -0.116597 -0.117266  
a. Reference 53. 
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H. Total energies 

We can now assemble all the components necessary for comparison with 
experiment. We combine the CAS(10e-,8orb) energies from Table III with the CISD 
corrections from Table VIII, the full CI corrections from Table X, and the core 
contributions from Table XI to obtain the total energies at the geometries, Re, from Table 
I. These total energies yield the equilibrium geometry excitation energies, Te, given in 
Table XII. The excellent agreement of these excitation energies with experiment provides 
justification for the assumptions made in Section III. F. about the convergence of the full 
CI corrections, but the real significance lies in the validation of the accuracy of the 
extrapolated CAS-CISD/CBS limits, which are the focus of this study. 

 
Table XII. Calculated and experimental excitation energies, Te (eV), at experimental Re.a 

State CAS(10,8)-CISD 
 2ZaP   3ZaP   4ZaP   5ZaP   CBSb + FCIc + cored Exp.a

X 1Σg
+ → A 3Σu

+ 5.843 6.089 6.185 6.215 6.240 6.179 6.213 6.224

→ B 3Πg 7.241 7.382 7.427 7.444 7.466 7.374 7.392 7.392

→ W 3Δu 7.237 7.379 7.437 7.457 7.476 7.376 7.410 7.415

→ B'3Σu
- 8.034 8.190 8.243 8.261 8.276 8.182 8.215 8.217

→ a'1Σu
- 8.431 8.482 8.511 8.522 8.531 8.412 8.450 8.450

→ a 1Πg 8.501 8.600 8.630 8.642 8.650 8.553 8.578 8.590

→ w 1Δu 8.900 8.966 8.991 9.001 9.006 8.895 8.931 8.939

Rms error 0.186 0.056 0.041 0.051 0.063 0.038 0.007 

a. Reference 32.  b. Sum of the last column of Table III plus the last column of Table VIII. 
c. Sum of the previous column plus the last column of Table X.  
d. Sum of the previous column plus the 4ZaPcore column of Table XI. 

 
IV. RESULTS 

Excitation energies measure the relationship between the potential energy 
surfaces of different states. We must also consider predicted equilibrium geometries and 
harmonic and anharmonic vibrational constants as measures of the short-range accuracy 
of the individual potential energy surfaces, along with dissociation energies as measures 
of the long-range accuracy of these surfaces. We have therefore repeated the above 
calculations at 7 points on a 0.01Å grid for each of the 8 states of N2 under study. A 
polynomial of degree 5 was least-squares fit to the 7 grid points to determine Re, ωe, and 
ωeXe for each of the 8 states of N2. The values of Re and ωe were consistently well-
defined, but the third- and especially the fourth- derivatives were problematic for the 
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most elaborate calculations (vide infra). The dissociation energies were determined both 
from calculations at 20 Å and also from calculations on the atomic 4S3/2, 2D3/2 and 2P1/2 
states. 
 
A. Equilibrium geometries 
 The CAS(10e-,8orb), CAS(10e-,8orb)-CISD, CAS(10e-,8orb)-CISD + FCI 
correction, and CAS(10e-,8orb)-CISD + FCI correction + core-core & core valence 
optimized geometries are compared to the experimental geometries in Table XIII. The 
CAS/2ZaP geometries are comparable to the CAS-CISD/2ZaP geometries, but the CAS 
geometries do not improve significantly beyond the 3ZaP basis set and are consistently 
about 0.012 Å too long, whereas the CAS-CISD/CBS geometries are within 0.0016 Å of 
the experimental values. FCI corrections to the CAS-CISD energies lengthen the bonds 
by about 0.0008 Å and core effects then reduce the bond lengths to within 0.0005 Å of 
the experimental values 
 

Table XIII. Calculated and experimental equilibrium geometries, Re (Å). 

State ___CAS(10,8)___  
 2ZaP  3ZaP    CBS 

______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS + FCI 

+ 
core Exp.a

X 1Σg
+ 1.1148 1.1060 1.1036 1.1181 1.1054 1.1019 1.1008 1.0998 1.1000 1.0977 1.0977 

A 3Σu
+ 1.3069 1.3023 1.3006 1.3067 1.2962 1.2920 1.2907 1.2884 1.2893 1.2863 1.2866 

B 3Πg 1.2320 1.2268 1.2246 1.2314 1.2209 1.2169 1.2156 1.2138 1.2145 1.2119 1.2126 

W 3Δu 1.2980 1.2936 1.2920 1.2973 1.2879 1.2844 1.2833 1.2812 1.2824 1.2795  

B'3Σu
- 1.2984 1.2939 1.2922 1.2962 1.2863 1.2827 1.2816 1.2795 1.2804 1.2775 1.2784

a'1Σu
- 1.2927 1.2882 1.2866 1.2917 1.2826 1.2796 1.2786 1.2768 1.2779 1.2750 1.2755 

a 1Πg 1.2395 1.2343 1.2321 1.2392 1.2292 1.2252 1.2240 1.2221 1.2227 1.2202 1.2203 

w 1Δu 1.2865 1.2821 1.2805 1.2845 1.2755 1.2724 1.2714 1.2696 1.2708 1.2679 1.268 

Rms 
error 0.0189 0.0137 0.0119 0.0185 0.0082 0.0046 0.0034 0.0016 0.0024 0.0005

a. Reference 32. 
 
B. Harmonic vibrational frequencies 
 The calculated harmonic vibrational frequencies are given in Table XIV. Once 
again, the CAS/2ZaP results are comparable to the CAS-CISD/2ZaP results, but the CAS 
frequencies do not improve with larger basis sets. If we scale the CAS/2ZaP and CAS-
CISD/2ZaP frequencies by 1.015, the rms errors are reduced to 14.1 cm–1 and 7.9 cm–1 
respectively. When full CI and core corrections are added to the CAS-CISD/CBS 
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energies, the harmonic vibrational frequencies increase to within 2.3 cm–1 of the 
experimental values. 
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Table XIV. Calculated and experimental harmonic vibrational frequencies, ωe (cm-1). 

State ___CAS(10,8)___  
 2ZaP  3ZaP    CBS 

______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS + FCI + core Exp.a

X 1Σg
+ 2344.6 2337.1 2340.6 2320.6 2332.1 2342.6 2346.0 2349.1 2346.3 2356.3 2358.57

A 3Σu
+ 1421.6 1420.4 1420.0 1419.3 1435.9 1446.6 1450.0 1458.5 1452.3 1464.3 1460.64

B 3Πg 1706.5 1694.7 1696.1 1707.6 1712.4 1723.0 1726.2 1732.4 1725.7 1735.6 1733.39

W 3Δu 1476.9 1472.5 1471.0 1481.8 1489.2 1495.9 1498.1 1505.1 1497.7 1503.6  1501.4 

B'3Σu
- 1476.8 1472.4 1470.8 1491.8 1501.2 1508.0 1510.2 1517.3 1511.2 1516.2 1516.88

a'1Σu
- 1501.8 1496.6 1494.8 1512.3 1517.6 1522.2 1523.7 1531.6 1526.4 1533.4 1530.25

a 1Πg 1687.2 1675.8 1676.8 1674.2 1675.2 1684.4 1687.3 1694.2 1682.9 1693.4 1694.21

w 1Δu 1524.7 1518.6 1516.3 1541.9 1547.7 1552.0 1553.4 1558.0 1551.7 1560.7 1559.26

Rms 
error 28.9 34.5 35.1 27.1 18.7 10.5 7.9 3.7 8.1 2.3

a. Reference 32. 
C. Anharmonic constants 
 The CAS results (Table XV) show the familiar pattern of no improvement beyond 
the 2ZaP basis set. However, the CAS-CISD anharmonic constants also show no 
improvement beyond the 3ZaP basis set. The erratic pattern with larger basis sets 
suggests that the CAS-CISD calculations with basis sets beyond 3ZaP are not sufficiently  
 
Table XV. Calculated and experimental anharmonic constants, ωeXe (cm-1). 

State ___CAS(10,8)___  
 2ZaP  3ZaP    CBS 

______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS + FCI + core Exp.a

X 1Σg
+ 13.0 13.5 13.6 13.3 14.0 13.3 13.2 13.0 12.0 11.5 14.324

A 3Σu
+ 14.0 13.3 13.3 14.1 13.6 13.6 13.6 13.4 13.1 10.1 13.872

B 3Πg 13.0 12.8 13.0 13.4 13.6 13.9 14.0 14.1 15.7 14.8 14.122

W 3Δu 12.2 11.6 11.6 10.9 12.0 12.6 12.7 12.9 14.7 11.6     11.6 

B'3Σu
- 11.7 11.2 11.2 11.9 11.6 11.3 11.5 11.2 11.7 8.9 12.181

a'1Σu
- 12.2 11.5 11.5 12.2 12.1 12.0 12.0 11.8 10.0 13.1 12.075

a 1Πg 12.2 11.9 12.1 13.0 13.7 13.5 13.4 13.2 14.4 13.8 13.949

w 1Δu 11.8 11.1 11.1 11.9 11.6 11.0 10.9 10.5 11.2 11.0     11.63 

Rms error 0.9 1.0 0.9 0.6 0.3 0.6 0.7 0.9 1.7 2.1

a. Reference 32. 
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converged to obtain meaningful fourth derivatives. Nevertheless, the rms error for the 
CAS-CISD/3ZaP anharmonic constants (0.3 cm–1) is small compared to the range of 
ωeXe (11.6 to 14.3 cm–1), indicating that our results for small basis sets are meaningful. 
 
D. Excitation energies 

We have noted that the CAS-CISD/2ZaP geometries and frequencies show little 
improvement over the CAS/2ZaP values (Table XIII and Table XIV). One might infer 
that the CAS(10e,8orb) calculation has exhausted the small 2ZaP basis set. However, the 
CAS-CISD/2ZaP excitation energies do show substantial improvement over the 
CAS/2ZaP values (Table XVI). In contrast to the geometry and frequency calculations, 
the CAS excitation energies are only useful for qualitative purposes. For example, the 
order of the a’1Σu

- and a1Πg states is reversed. The CAS-CISD/2ZaP excitation energies 
are generally too small, but the CAS-CISD values increase beyond the experimental 
values in the CBS limit. The full CI and core correlation corrections then bring the 
calculated values to within 0.007 eV of the experimental values. This close agreement 
with experiment verifies the accuracy of the CAS-CISD/CBS limits. 

 
Table XVI. Calculated and experimental excitation energies, Te (eV). 

State ___CAS(10,8)___  
 2ZaP  3ZaP    CBS 

______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS + FCI + core Exp.a

X 1Σg
+ →     

A 3Σu
+ 6.288 6.412 6.453 5.863 6.091 6.185 6.215 6.242 6.179 6.213 6.224

B 3Πg 7.818 7.927 7.957 7.258 7.384 7.427 7.445 7.466 7.374 7.392 7.392

W 3Δu 7.876 7.980 8.017 7.262 7.383 7.439 7.458 7.478 7.385 7.418 7.415

B'3Σu
- 8.571 8.700 8.743 8.055 8.192 8.244 8.261 8.277 8.186 8.218 8.217

a'1Σu
- 9.220 9.334 9.373 8.454 8.484 8.512 8.523 8.532 8.413 8.451 8.450

a 1Πg 9.020 9.105 9.133 8.518 8.601 8.631 8.642 8.651 8.539 8.578 8.590

w 1Δu 9.599 9.694 9.730 8.922 8.969 8.992 9.001 9.007 8.895 8.931 8.939

Rms error 0.498 0.597 0.631 0.171 0.055 0.042 0.051 0.064 0.036 0.007

a. Reference 32. 
 

E. Dissociation energies 
 The recent determination of the dissociation energy of the X1Σg

+ ground state of 
N2 to within ±0.001 eV by Tang, Hou, Ng, and Ruscic54 can be combined with the 
tabulated N2 excitation energies32 and atomic energy levels of nitrogen55 to give 
experimental dissociation energies for all eight states of N2 with an uncertainty of ±0.001 
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eV (Table XVII). Since the molecular correlation energies are larger than the sum of the 
atomic correlation energies, the incomplete treatment of electron correlation in CAS and 
CAS-CISD calculations gives dissociation energies that are consistently too small. Full 
CI and core corrections bring the CAS-CISD dissociation energies into close agreement 
with experiment (Table XVII). 
 
Table XVII. Calculated and experimental dissociation energies, De (eV), using atomic calculations.  

State ___CAS(10,8)___  
 2ZaP  3ZaP    CBS 

______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS + FCI + core Exp.a

X 1Σg
+ → 2 4S3/2 8.874 9.171 9.249 8.689 9.277 9.515 9.593 9.673 9.867 9.905 9.900

A 3Σu
+ → 2 4S3/2 2.596 2.757 2.793 2.845 3.187 3.330 3.378 3.433 3.688 3.692 3.676

B 3Πg   →   4S3/2 + 2D3/2 3.911 4.090 4.132 4.120 4.404 4.529 4.566 4.592 4.851 4.899 4.892

W 3Δu   →   4S3/2 + 2D3/2 3.862 4.042 4.077 4.125 4.407 4.518 4.553 4.581 4.841 4.872 4.869

B’ 3Σu
-  →  4S3/2

 + 2P1/2 4.067 4.233 4.263 4.458 4.785 4.904 4.943 4.966 5.225 5.257 5.259

a’ 1Σu
- → 2 2D3/2 5.364 5.536 5.562 5.604 5.814 5.884 5.906 5.911 6.172 6.226 6.218

a 1Πg
 → 2 2D3/2 5.559 5.763 5.801 5.534 5.695 5.765 5.786 5.792 6.031 6.098 6.078

w 1Δu
- → 2 2D3/2 4.984 5.175 5.204 5.135 5.329 5.404 5.428 5.436 5.690 5.745 5.729

Rms error 0.947 0.761 0.723 0.789 0.471 0.347 0.309 0.281 0.037 0.012

a. Reference 32, 54, and 55. 
 
 If we employ molecular calculations at 20 Å rather than atomic calculations to 
determine the dissociation limits, the CAS dissociation energies are unaffected, but the 
CAS-CISD dissociation energies are now in much better agreement with experiment 
(Table XVIII). The CAS-CISD/CBS limit for the dissociation energies determined this 
way is of comparable accuracy to the CAS-CISD/CBS limit for the excitation energies 
(Table XVI). This demonstrates the importance of size-consistency. The calculations in 
Table XVIII maintain the same number of electrons in all calculations so that size-
consistency errors cancel. The residual errors of ~0.04 eV represent effects beyond 
simultaneous single and double excitations.  
 
V. DISCUSSION 
 Having established the CAS-CISD/CBS limits, we can now use them as a guide to 
evaluate extrapolations based on more modest calculations. A CAS/2ZaP geometry 
optimization and zero-point energy calculation followed by a CAS-CISD/3ZaP single 
point energy calculation would give excitation energies accurate to ~0.05 eV (Table 
XVI). Unfortunately, this CAS-CISD/3ZaP//CAS/2ZaP model chemistry gives poor 
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Table XVIII. Calculated and experimental dissociation energies, De (eV), using molecular  
calculations at 20 Å.  

State ______CAS(10,8)-CISD______ 
 2ZaP   3ZaP   4ZaP   5ZaP   CBS 

+ core Exp.a

X 1Σg
+ → 2 4S3/2 8.783 9.431 9.687 9.769 9.834 9.873 9.900 

A 3Σu
+ → 2 4S3/2 2.942 3.346 3.508 3.559 3.600 3.604 3.676 

B 3Πg   →   4S3/2 + 2D3/2 4.230 4.587 4.735 4.781 4.799 4.847 4.892 

W 3Δu   →   4S3/2 + 2D3/2 4.238 4.593 4.727 4.769 4.789 4.821 4.869 

B’ 3Σu
-  →  4S3/2

 + 2P1/2 4.572 4.972 5.113 5.158 5.181 5.213 5.259 

a’ 1Σu
- → 2 2D3/2 5.727 6.016 6.113 6.144 6.148 6.202 6.218 

a 1Πg
 → 2 2D3/2 5.656 5.899 5.995 6.025 6.025 6.092 6.078 

w 1Δu
- → 2 2D3/2 5.269 5.534 5.633 5.664 5.669 5.724 5.729 

Rms error 0.682 0.294 0.144 0.097 0.073 0.040  

a. Reference 32, 54, and 55. 
 
accuracy (~0.3 eV) for dissociation energies (Table XVIII), and thus would not be a good 
choice for studies of reactive surfaces. The corrections to the CAS-CISD/3ZaP energy are 
relatively independent of the electronic state, but show a strong dependence on geometry. 

The CAS-CISD/3ZaP calculations describe the local behavior of a potential 
energy surface (i.e. Re, ωe, ωeXe, and Te) with sufficient accuracy for most purposes 
(Tables XIII – XVI), and thus provide an appropriate starting point for a model 
chemistry. However, the long range behavior (i.e. De) requires large basis sets or 
extrapolations to the CBS limit (Table XVIII). The development of a reliable 
extrapolation scheme will require careful testing on a variety of examples. Nevertheless, 
the results we have are sufficient to suggest a preliminary model for reactive surfaces. 
We shall employ the same mathematical models described in section III for the basis set 
convergence of each of the energy components, but we shall now apply them to much 
smaller basis sets to develop a practical scheme. The least expensive MRCI/CBS model 
chemistry would employ extrapolations from 2ZaP and 3ZaP CAS(10e,8orb)-CISD 
calculations. It has been noted previously56 that DZP basis sets are too small to fit the 
asymptotic convergence pattern (Figures 7 and 8), but the lower cost of single reference 
calculations makes it practical to use 3ZaP and 4ZaP calculations to extrapolate to the 
UHF and CCSD CBS limits, which can then be used to extrapolate the CAS and CAS-
CISD energies, respectively. 
 First, we use an expression analogous to Eq.(5), but applied to the 
CAS(10e,8orb)/2ZaP and 3ZaP energies to extrapolate to the CAS(10e,8orb)/CBS limit: 
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Figure 7. The 2ZaP second-order αα-pair 
energies do not fit the (lmax + 1)–5 asymptotic 
form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The 2ZaP second-order αβ-pair 
energies do not fit the (lmax + 1/2)–3 
asymptotic form. 
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where the coefficient, 1.205 is obtained from Eq.(2) with a=5.15 This extrapolation 
reduces the rms error in the absolute CAS(10,8) energy [relative to the CAS/CBS limit 
from Eq.(5)] for the eight N2 states and their dissociation limits from 3.58 mEh for the 
CAS(10,8)/3ZaP energies to 0.18 mEh for the extrapolated values. 

The CAS-CISD extrapolation will employ the CCSD/CBS limit, which in turn is 
obtained from the MP2/CBS limit. The MP2 αα− and αβ−pair energies must be 
extrapolated separately using forms analogous to Eq.(7) and Eq.(9) respectively: 
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These extrapolations reduce the rms error in the absolute valence MP2 correlation energy 
(relative to the MP2/CBS limit) for the eight N2 states and their dissociation limits from 
24.53 mEh for the MP2/4ZaP valence shell correlation energies to 0.99 mEh for the 
extrapolated values. 
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 The CBS limit for the CCSD energy includes the interference effect described in 
section III.D: 
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This extrapolation reduces the rms error in the absolute valence CCSD correlation energy 
[relative to the CCSD/CBS limit from Eq.(18)] for the eight N2 states and their 
dissociation limits from 15.84 mEh for the CCSD/4ZaP valence shell correlation energies 
to 2.27 mEh for the extrapolated values. 

The CBS limit of the CAS-CISD dynamic correlation energy, ECAS-CISD – ECAS, is 
now estimated from the CCSD CBS limit: 
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This extrapolation reduces the rms error in the absolute valence CAS(10,8)-CISD 
dynamic correlation energy (relative to the CAS-CISD/CBS limit from Table VIII) for 
the eight N2 states and their dissociation limits from 41.91 mEh for the CAS-CISD/3ZaP 
valence shell dynamic correlation energies to 3.18 mEh for the extrapolated values. 
Finally, we combine the CAS/CBS energy from Eq.(22) with the ΔECISD/CBS energy 
from Eq.(26) and the PNO extrapolations of the core-core and core valence CCSD(T) 
correlation energies using the 4ZaPcore basis set: 
 
 ECAS-CISD(CBS) = ECAS(CBS) + ΔECISD(CBS) + ΔECore/4ZaPcore.  (27) 
 
The rms error in the total CAS(10,8)-CISD/CBS energy has been reduced from 45.47 
mEh for the CAS-CISD/3ZaP energies to 3.05 mEh for the extrapolated values. The 
extrapolation has no adjustable parameters. The results in Table XIX should therefore be 
typical of the accuracy to be expected in applications. The CAS-CISD/3ZaP anharmonic 
constants, ωeXe, were used in Table XIX without extrapolation, since extrapolated fourth 
derivatives proved unreliable. 
 The values obtained for Re, ωe, ωeXe, Te and De from the CBS extrapolations of 
CAS-CISD/2ZaP and 3ZaP calculations agree with experiment as well as our best 
estimates of the CAS-CISD/CBS values obtained from CBS extrapolations of CAS-
CISD/4ZaP and 5ZaP calculations. The consistent overestimation of excitation energies 
in Table XIX is completely consistent with the results in Table XVI. The full valence 
CAS wave function includes more virtual orbitals and thus more correlation energy for 
the ground state than for the excited states. The full CI correction (or a model to estimate 
this correction) to the CAS-CISD energy will be required to improve the accuracy of the 
excitation energies. This correction necessarily depends on the number of valence  
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Table XIX. Results obtained from from Eq.(22) through Eq.(27). 

State Re(Å) ωe(cm–1) ωeXe(cm–1) Te(eV) De(eV) 

X 1Σg
+ 1.0986 2353.24 13.97  9.895

A 3Σu
+ 1.2878 1462.58 13.60 6.230 3.671

B 3Πg 1.2127 1739.23 13.62 7.469 4.848

W 3Δu 1.2802 1505.93 12.01 7.467 4.852

B'3Σu
- 1.2783 1518.40 11.63 8.275 5.251

a'1Σu
- 1.2752 1535.06 12.07 8.500 6.216

a 1Πg 1.2211 1693.27 13.72 8.646 6.078

w 1Δu 1.2683 1565.87 11.60 9.038 5.717

Rms error   

Eq.(22) – Eq.(27)      0.0006 4.43 0.35 0.063 0.018

CAS-CISD/3ZaP      0.0082 18.72 0.35 0.055 0.294

 
electrons, so a model must be developed with a broader set of examples than the low-
lying states of N2 considered here. 
 
V. CONCLUSIONS 
 Just as the basis set convergence of the UHF SCF energy provided a model for the 
basis set convergence of the CASSCF energy, the UCCSD dynamic correlation energy 
provides a model for the basis set convergence of the CAS-CISD dynamic correlation 
energy. This can be exploited with extrapolations based on Eq.(22) through Eq.(27), 
which can reduce basis set truncation errors by more than an order-of-magnitude. 
However, accurate descriptions of excited state potential energy surfaces also require 
inclusion of FCI and core electron contributions. 

The quality of the results obtained with the relatively modest calculations in Table 
XIX based on CAS-CISD/3ZaP calculations with the extrapolations in Eq.(22) through 
Eq.(27) will be quite sufficient for many purposes. This provides a basis for optimism 
that a practical CBS model chemistry for excited states can be developed. We stress that 
many more benchmark systems must be examined in order to obtain a reliable and 
general extrapolation method for multi-reference states. In particular, the effectiveness of 
extrapolations near electronic state curve crossings, which can have a profound effect on 
dynamics, will be the subject of future work. In addition, the practicality of performing 
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the basic CAS-CISD/3ZaP calculations on chemical systems with many atoms must also 
be addressed. 
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