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Abstract

In many applications in science and engineering one must rely on coarsely quantized and
often unreliable noisy measurements in order to accurately and reliably estimate quantities
of interest. This scenario arises, for instance, in distributed wireless sensor networks where
measurements made at remote sensors need to be fused at a host site in order to decipher
an information-bearing signal. Resources such as bandwidth, power, and hardware are
usually limited and shared across the network. Consequently, each sensor may be severely
constrained in the amount of information it can communicate to the host and the complexity
of the processing it can perform.

In this thesis, we develop a versatile framework for designing low-complexity algorithms
for efficient digital encoding of the measurements at each sensor, and for accurate signal es-
timation from these encodings at the host. We show that the use of a properly designed and
often easily implemented control input added prior to signal quantization can significantly
enhance overall system performance. In particular, efficient estimators can be constructed
and used with optimized pseudo-noise, deterministic, and feedback-based control inputs,
resulting in a hierarchy of practical systems with very attractive performance-complexity
characteristics.

Thesis Supervisor: Gregory W. Wornell
Title: Cecil and Ida Green Associate Professor of Electrical Engineering
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Chapter 1

Introduction

There is a wide range of applications in science and engineering where we wish to deci-

pher signals from noisy measurements, and where system constraints force us to rely on a

quantized or coarse description of those measurements. Representative examples include

analog-to-digital (A/D) conversion, lossy compression, and decentralized data fusion. In-

deed, in many data fusion problems the available resources place constraints in the type and

the amount of data that can be exploited at the fusion center. Data fusion problems arise

in a very broad and diverse range of applications, including distributed sensing for military

applications [8], data-based management systems [2], target tracking and surveillance for

robot navigation [22, 28] and radar applications [35], and medical imaging [9].

Recently, data fusion has attracted considerable attention in the context of distributed

sensing problems, due to the continuing reduction in the cost of sensors and computation,

and the performance improvements that inherently emanate from the use of multiple sen-

sors [33]. Unlike classical multi-sensor fusion where the data collected by the sensors are

communicated in full to a central processor, it is often desirable to perform some form of

decentralized processing at the sensor before communicating the acquired information to

the central processor in a condensed and often lossy form.

Various challenging signal detection and estimation problems have surfaced in such dis-

tributed sensing applications. Naturally, it is important to determine the extent to which de-

centralized preprocessing limits performance and to develop effective low-complexity meth-

ods for performing decentralized data fusion. As Hall et al. [19] show in the context of

decentralized estimation, depending on the particular scenario, distributed data processing
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may range from being optimal, in the sense that no loss in performance is incurred by sim-

ply communicating the local estimates computed at each sensor, to being catastrophic, in

the sense that preprocessing at each sensor can completely destroy the underlying structure

in the joint set of sensor measurements. Similar performance characteristics are exhibited

in decentralized signal detection problems [5, 30]. Although for many important cases of

practical interest decentralized signal detection and estimation methods have been formed

for locally optimized processing at each sensor and subsequent efficient data fusion at the

host (see [10, 34, 6, 30, 19, 11, 7, 13, 24] and the references therein), a number of real-time

decentralized fusion problems are still largely unexplored.

In this thesis we focus on an important real-time decentralized fusion problem that arises

in networks of distributed wireless sensors used for collecting macroscopic measurements.

In particular, such networks are naturally suited for monitoring temporal variations in the

average levels of environmental parameters. Representative examples include monitoring

concentration levels in the atmosphere for detecting chemical or biological hazards, and

measuring temperature fluctuations in the ocean surface for weather forecasting applica-

tions.

A block diagram of such a wireless sensor network is depicted in Fig. 1-1. In such a

network, the local measurements made at each sensor must be communicated with minimal

delay to a host over a wireless channel, where they must be effectively combined to decipher

the information-bearing signal. Since bandwidth must often be shared across such a sensor

network, the effective data rate at which each sensor can reliably communicate to the

host over the wireless channel may be severely limited, often, to a few bits of information

per each acquired sensor measurement. The need for power efficient design may also place

constraints in the available processing complexity at each sensor, but usually not at the host,

which typically possesses more processing power than each individual sensor. Depending

upon bandwidth availability in these wireless networks, the host may or may not broadcast

information back to the remote sensors, so as to improve the quality of the future sensor

data it receives.

This type of problem may also arise in networks that are not wireless, but where the

sensors are intrinsically limited by design. For instance, concentrations of chemical or bi-

ological agents are often computed by observing the color or the conformation of certain

indicator/sensor molecules. In many of these cases, these sensor molecules exhibit only a
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Figure 1-1: Block
straints.

diagram of a wireless sensor network with bandwidth and power con-

finite set of possible outputs. In addition, there is often very limited flexibility in terms of

affecting or biasing future outputs exhibited by these indicator molecules. Such networks of

resolution-limited sensors are also employed by a number of biological systems for perform-

ing vital sensory tasks, suggesting that the type of processing performed by these systems

somehow corresponds to an efficient use of resources [15, 16, 23]. For instance, it has been

conjectured that certain types of crayfish enhance the ability of their crude sensory neurons

to reliably detect weak signals sent by their predators by exploiting remarkably simple and,

at first sight, counterintuitive pre-processing [16].

Various types of data fusion problems of the form depicted in Fig. 1-1 have been exam-

ined; in particular, the limitations in the amount of information that each sensor can com-

municate to the host are present in a number of decentralized detection problems [10, 32].

Another example that fits the same framework is what is referred to as the "CEO problem"

[4], where a number of agents obtain noisy observations of a signal of interest and have to
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Signal acquisition

Information-bearingSensor Encoded symbol stream
signal

(a) Encoding the noisy measurements of the information-bearing signal into a symbol
stream at each sensor

Encoded
symbol - . Host Signal estimate
streams

(b) Estimation of information-bearing signal at the host from the encoded data streams

Figure 1-2: Framework for signal estimation from noisy measurements in sensor networks.

communicate this information to a CEO who can at most absorb R bits of information per

second.

In this thesis, we focus on the problem of signal estimation in the context of sensor

networks of the form depicted in Fig. 1-1, where system constraints limit the amount of

information that each sensor can communicate to the host, and where there may also exist

constraints in the amount of computation available at each sensor. It is very convenient to

decompose this problem in the two stages shown in Fig. 1-2. First, as depicted in Fig. 1-

2(a), at each sensor, the acquired noisy measurements of the information-bearing signal

must be encoded into an efficient digital representation. Then, as shown in Fig. 1-2(b), the

data streams from all sensors are to be effectively combined at the host in order to obtain

an accurate signal estimate.

As we might expect, these two design stages of data encoding and signal estimation are

very closely coupled. At each sensor, the measurements have to be efficiently encoded so

as to enable the host to obtain an accurate signal estimate. Conversely, the host should

exploit all the available information about the encoding strategy, and, in particular, when

feedback is available, it may broadcast feedback information to the sensors so as to improve

the quality of the future sensor encodings it receives. As we demonstrate in this thesis, the

performance of the overall system strongly depends on the type of processing complexity

constraints that are present at the sensor for encoding the sensor measurements.
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1.1 Outline of the Thesis

In this thesis we develop a framework for designing computationally efficient algorithms

for effective digital encoding of the measurements at each sensor, and for accurate signal

estimation from these encodings at the host. In Chapters 3-5 we focus on the case where

the information-bearing signal varies slowly enough that we may view it as static over the

observation interval. We begin by examining in detail in Chapter 2 a class of low-complexity

algorithms for encoding noisy measurements collected from a single sensor in the static case.

Specifically, we consider encodings of the form of a suitably designed control input added

prior to signal quantization. Depending on the amount of information that the estimator can

exploit about the control input and the limitations in processing complexity at the encoder,

a number of key encoding strategies and associated estimator structures are presented. For

a number of scenarios of practical interest, we develop host efficient estimators that can be

used with optimized control inputs at the sensor, resulting in a hierarchy of systems with

very attractive performance-complexity characteristics.

In Chapter 3, we develop a number of important extensions of the systems developed

in Chapter 2 which can be useful in the context of networks of sensors. We first develop

optimized multi-sensor extensions of the single-sensor encoding and estimation strategies

for all the scenarios considered in Chapter 2. These systems have a number of important

potential applications, especially in the context of distributed sensing networks where there

are physical limitations in the sensor design, or bandwidth and power constraints. We also

develop extensions of these encoders and estimators for scenarios where prior information

about the information-bearing signal is available. In addition, we consider the case where

the sensor noise power level is also unknown, and develop the performance limits and the

associated extensions of the encoders and estimators for all the scenarios considered in

Chapter 2.

In Chapter 4, we consider more general encoding strategies for the static signal case.

These encoders require more complex processing than the encoders employing quantizer bias

control of Chapters 2-3 and are therefore attractive when there are less stringent complexity

constraints at the encoder. As we demonstrate, we can develop refinable encoding and

estimation strategies which asymptotically achieve the best possible performance based on

the original sensor measurements. In this sense, we show that using a suitably designed
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digitized description of the acquired noisy measurements does not incur any performance

loss in signal estimation.

In Chapter 5, we consider a number of extensions of the static-case encoding strategies

which encompass a broad class of time-varying signals. In particular, in the case that

the same time-varying signal is observed at each sensor, a rich class of algorithms can

be designed for measurement encoding by exploiting the encoding principles for the static

problem. In fact, these methods can be applied in the context of a large class of signal

models, namely, signals that can be characterized by conventional state-space models. As

we also show, for such information-bearing signals we can also design effective estimation

algorithms which are based on extensions of conventional Kalman filtering solutions.

Finally, a summary of the main contributions of this thesis is given in Chapter 6, along

with a representative collection of potentially interesting directions for future research that

are suggested by this work.
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Chapter 2

Encoding from Noisy

Measurements via Quantizer Bias

Control: Static Case

In developing methods for overcoming the power/bandwidth constraints that may arise

across a sensor network, or the dynamic range and resolution constraints at each sensor, it

is instructive to first examine the single-sensor problem. In fact, this special case captures

many of the key design and performance issues that arise in the context of networks of

sensors. The block diagram corresponding to a single sensor is shown in Fig. 2-1, where

A[n] denotes the information-bearing signal, v[n] represents sensor noise, s[n] denotes the

sensor measurement sequence, and y[n] denotes the sequence of M-ary symbols encoded

at the sensor and used at the host to obtain a signal estimate A[n]. Consistent with the

system constraints, throughout the thesis, we focus on developing algorithms that generate

encoded sequences whose average encoding rate does not exceed one M-ary symbol per

available sensor measurement. The task is then to design the encoder at the sensor and

the associated estimator from the encodings at the host so as to optimize the host estimate

quality.

To illustrate some of the key issues that may arise in the encoder design, it is insightful

to consider the static case, i.e., the case where the signal A[n] is varying slowly enough

that we may view it as static over the observation interval. Given a fixed time instant

N, we can easily devise a method for efficiently encoding the N sensor measurements
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Figure 2-1: Block diagram of encoding the noisy measurements at the sensor and signal
estimation from these encodings at the host.

s[1], s[2], -.- , s[N], into a sequence of N M-ary symbols y[l], y[2], -- , y[N] provided N

is large. Specifically, consider the following algorithm:

At the sensor:

(i) compute an estimate of the static information-bearing signal using the N sensor

measurements;

(ii) quantize the estimate using a uniform quantizer with MN quantization levels;

(iii) communicate to the host the quantized level by means of the N M-ary symbols

y[l], y[2], -- , y[N].

At the host:

(i) reconstruct the "quantized" estimate using y[1], y[2], -.. , y[N].

Clearly, since the number of available quantization levels in step (ii) of the encoder grows

exponentially with the number of available observations N, the error between the "quan-

tized" estimate used at the host and the original sensor estimate produced in step (i) of the

encoder (i.e., the estimate prior to quantization) decays exponentially fast with N.

A major disadvantage of such an encoding scheme, however, is that it is not refinable,

namely it provides an one-shot description; no encodings are available to the host for forming

estimates before time N, and no encodings are available after time N to further refine the

quality of the host estimate. Furthermore, this encoding scheme assumes that there is

absolute freedom in designing the MN-level quantizer. However, this is often not the case

such as in problems where the sensors are intrinsically limited by design. For these reasons,

in this thesis we instead focus on designing refinable encoding strategies.

One of simplest refinable encoding strategies that can be constructed consists of quan-

tizing each noisy measurement at the sensor by means of an M-level quantizer. As we
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Figure 2-2: Signal estimation based on digital encodings which are generated by adding a
suitably designed control input prior to signal quantization.

show in this chapter, however, this simple encoding scheme can have very poor perfor-

mance characteristics, in terms of overcoming the power/bandwidth constraints across the

network, or the dynamic range and resolution constraints at the sensor. As a means for

improving the effective digital encoding we may consider the use of a control input added

to the information-bearing signal prior to quantization at the sensor. The block diagram

corresponding to a single sensor in the context of such an encoding scheme is shown in

Fig. 2-2, where w[n] is a control input, and, as in Fig. 2-1, A[n] denotes the information-

bearing signal, v[n] represents sensor noise, and y[n] denotes the quantized signal that is

sent to the central site.

In this chapter we focus on the static case of the estimation problem depicted in Fig. 2-2

in which A[n] = A, i.e., we examine the problem of estimating a noise-corrupted unknown

parameter A via quantized observations. This case reveals several key features of signal

estimation from quantized observations obtained via a network of sensor encoders, each

comprising a control input and a quantizer; in Chapter 5 we develop extensions of our

analysis corresponding to the dynamic scenario where A[n] is time-varying.

Several basic variations of the encoding and estimation problem depicted in Fig. 2-2 can

arise in practice, which differ in the amount of information about the control input that is

available for estimation and the associated freedom (or available encoding complexity) in the

control input selection. In this chapter we develop effective control input selection strategies

and associated estimators for all these different scenarios. In particular, for pseudo-noise

control inputs whose statistical characterization alone is exploited at the receiver, we show

that there is an optimal power level for minimizing the mean-square estimation error (MSE).

The existence of a non-zero optimal pseudo-noise power level reveals strong connections to

the phenomenon of stochastic resonance, which is encountered in a number of physical
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nonlinear systems where thresholding occurs and where noise is often exploited for signal

enhancement [3, 16, 18]. Performance can be further enhanced if detailed knowledge of the

applied control waveform is exploited at the receiver. In this scenario, we develop methods

for judiciously selecting the control input from a suitable class of periodic waveforms for

any given system. Finally, for scenarios where feedback from the quantized output to the

control input is available, we show that, when combined with suitably designed receivers,

these signal quantizers come within a small loss of the quantizer-free performance.' In the

process we develop a framework for constructing the control input from past observations

and design computationally efficient estimators that effectively optimize performance in

terms of MSE.

The outline of this chapter is as follows. In Section 2.1 we describe the static-case esti-

mation problem associated with the system depicted in Fig. 2-2. In Section 2.2 we develop

the estimation performance limits for a number of important scenarios. In Section 2.3 we

design control inputs and associated estimators for each of these distinct scenarios, which

achieve the performance limits developed in Section 2.2. Finally, in Section 3.1 we examine

a network generalization of the scenario depicted in Fig. 2-2, in which signal estimation is

based on quantized observations collected from multiple sensors.

2.1 System Model

As outlined above, in this chapter we consider the problem of estimating an unknown

parameter A from observation of

y[n] = F(A + v[n] + w[n]) n = 1, 2, , N, (2.1)

where the sensor noise v[n] is an independent identically distributed (IID) process, w[n] is

a control input, and the function F(-) is an M-level quantizer, with the quantized output

1Although the feedback loop can be entirely implemented at the sensor, sensor complexity is reduced by
having the feedback information come from the central site. This is especially appealing in wireless networks
where power resources at the central site are often such that there is plenty of effective bandwidth available
for broadcasting high-resolution control information.
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y[n] taking M distinct values Y, Y2, - -, YM, i.e.,

F(x) = , (2.2a)F(x) { Yi if Xi-1 < x < Xi, for 2 < i < M (2.2a)Y1 otherwise

where X 0 = -oo and XM = oo. Without loss of generality, we assume that the quantizer

levels are uniformly spaced, i.e.,

Yi = -(M+ 1) +2i, i = 1, 2,..., M; (2.2b)

any other set of distinct quantization levels is equivalent to (2.2b) in the sense that the two

sets are related by means of an invertible transformation. We also define the intermediate

sequence

s[n]AA + v[n] = A + a, [n] . (2.3)

We will frequently be interested in a measure of predicted performance for a family

of sensor noises parameterized by a, in (2.3), arising from scaling an IID noise sequence

b[n]. We use the notation Pz (-) to denote the probability density function (PDF) of any

sample of an IID sequence z[n], and C, (-) to denote one minus the corresponding cumulative

distribution, i.e.,

C (z)= pz (t) dt.

We shall refer to an IID noise process as admissible if the associated PDF is non-zero and

smooth (i.e., C') almost everywhere. Throughout this chapter, we assume that all noise

processes are admissible, including v[n] as well as w[n], when w[n] is viewed as a pseudo-

noise process. Furthermore, when referring to a Gaussian process we assume it is IID and

zero-mean, unless we specify otherwise.
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2.2 Performance Limits for Controllers with Quantizer Bias

Control

In this section we quantify the performance degradation that results from estimating A

based on observation of y[n] instead of s[n]. We first introduce the concept of information

loss, which we use as a figure of merit to design quantizer systems and evaluate the as-

sociated estimators. We then present a brief preview of performance limits based on this

notion for a number of important scenarios and finally develop these performance limits in

Sections 2.2.1-2.2.3.

We define the information loss for a quantizer system as the ratio of the Cramer-Rao

bounds for unbiased estimates of the parameter A obtained via y[n] and s[n], respectively,

i.e.,

(A)- A B (A; yN)
= (A; N) '

where B (A; yN) is the Cramer-Rao bound [31] for unbiased estimation of A from 2

y -[y[1] y[2] ... y[N]] , (2.5)

where y[n] is given by (2.1), and where B (A; sN) and sN are defined similarly. We often

consider the information loss (2.4) in dB, (i.e., 10 log10o(A)); it represents the additional

MSE in dB that arises from observing y[n] instead of s[n] in the context of efficient estima-

tion of A. From this perspective, better systems achieve smaller information loss over the

range of parameter values of interest.

Taking into account the inherent dynamic range limitations of these signal quantizers, we

assume that the unknown parameter A takes values in the range (-A, A), with A assumed

to be known. Often, the degradation of the estimation quality is conveniently characterized

in terms of the ratio X = A/a,, which we may view as a measure of peak-signal-to-noise

ratio (peak SNR).

Worst-case performance is used to characterize the overall system. Accordingly, we

2The use of the term information loss follows from the fact that (2.4) also equals the inverse of the ratio
of the associated Fisher information quantities.
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define the worst-case Cramir-Rao bound and worst-case information loss via

Bmax (A) = sup (A; yN) , (2.6)
IAI< A

and

ma,,(A) sup C(A), (2.7)
IAI<A

respectively. Both the worst-case Cram6r-Rao bound and the worst-case information loss

are functions of other system parameters, such as av and F(-), the dependence on which is

suppressed for convenience in the above definitions.

As a consequence of the linear model (2.3), the Cramer-Rao bound B (A; sN) is inde-

pendent of the parameter value A, i.e., B (A; sN) = B (0; sN) for any A. Furthermore,

the bound B (A; sN) is proportional to r,2; by letting S[n] = A + [n] and using (2.3), we

obtain

B (A; sN ) = a: B (0; S) /N, (2.8)

where B (0; ) denotes the Cramer-Rao bound for estimating A based on any one sample

of the IID sequence [n]. Hence, since B (A; sN) from (2.8) is independent of A, both

Bma (A) and £ma,(A) can be used interchangeably as figures of merit for assessing the

performance of quantizer systems.

Table 2.1 summarizes the performance limits for a number of important scenarios. As

we show in this chapter, in any of these scenarios the worst-case information loss can be

conveniently characterized as a function of peak SNR X- According to Table 2.1, pseudo-

noise control inputs with properly chosen power levels provide performance improvements

over control-free systems in any admissible noise. Specifically, for pseudo-noise control

inputs the control input can be designed so that the worst-case information loss grows only

quadratically with X, while it always grows faster than quadratically in the control-free case.

For scenarios where the control input is known for estimation, the associated worst-case loss

can be made to grow as slow as X with proper control input selection. Finally, if feedback

from the quantized output to the control input is available and properly used, a fixed small

information loss, which does not grow with increasing X, can be achieved. In the remainder
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Order of growth of information loss

Control Input Gaussian case J General case

Control-free case eX 2/ 2 > X2

Pseudo-noise (known statistics) X2 X2

Known input X X

Feedback-controlled input I 1

Table 2.1: Order of growth of worst-case information loss as a function of peak SNR
X = A/a, for large X and for any M-level quantizer. The quantity A denotes the dynamic
range of the unknown parameter, and a, is the sensor noise power level. The Gaussian case
refers to Gaussian sensor noise of variance a,. The general case refers to any admissible
sensor noise.

of Section 2.2 we develop the performance limits shown in Table 2.1, while in Section 2.3

we develop control selection methods and associated estimators that achieve these limits.

2.2.1 Pseudo-noise Control Inputs

In this section we consider signal quantizers with control inputs w[n] that correspond to

sample paths of an IID process, independent of the sensor noise process v[n], and determine

the performance limits in estimating the unknown parameter A based on observation of

yN from (2.5), by simply exploiting the statistical characterization of w[n] at the receiver.

In general, we may consider pseudo-noise control inputs that are parameterized by means

of the scale parameter a,, i.e., w[n] = a, i[n], where zt[n] is an admissible IID noise

sequence with PDF P,, (). Our goal is to select the pseudo-noise level org so as to optimize

performance in terms of the associated worst-case information loss.3

The Cramer-Rao bound for all unbiased estimates of the parameter A based on obser-

vation of the vector yN is defined as [31]

6(A; yN) = (E[ lnP(y;A)])

where P(yN; A) is the associated likelihood function, denoting the probability that the

particular vector yN is observed from (2.1) given that the unknown parameter takes the

3 The scaling factor a, is a measure of the strength of the noise process w[n]. For cases where the noise
variance exists, a2 denotes the power of the pseudo-noise signal to within a scaling.
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value A. In particular, the log-likelihood function satisfies

M

In P(yN; A) = Cyi (yN) In Pr(y[n] = Yj; A) (2.9)
i=l

where Kyi (yN) denotes the number of entries in yN that are equal to Yi. Since

a[n] = v[n] + w[n] (2.10)

is an IID sequence, B (A; yN) satisfies the condition

B (A; yN) = B(A; y), (2.11)
N

where B (A; y) corresponds to the Cram6r-Rao bound for estimating A based on any one

sample of the IID sequence y[n]. Finally, by taking the second partial derivative of (2.9)

with respect to A followed by an expectation, we obtain

B (A; y)= [p (Xi - A) - p (Xi - A) (2.12)
=, c, (xi- - A) - C (Xi - A)

For the system corresponding to the symmetric two-level quantizer (M = 2, X 1 = 0),

i.e.,

F(x) = sgn x, (2.13)

the Cram6r-Rao bound (2.12) reduces to

B (A; y) = C. (-A) [1 - C. (-A)] [pa (-A)]- 2 (2.14)

When, in addition, the PDF pa, () is an even function of its argument, (2.14) further

specializes to

B (A; y) = B (-A; y) = C, (-A) C. (A) [Pa (A)]- 2 . (2.15)

We consider the special case where v[n] and w[n] are IID Gaussian processes and F(-)

is the symmetric two-level quantizer, and determine the pseudo-noise level that minimizes
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the worst-case information loss. We then consider the general case, i.e., the case M > 2

where v[n] and w[n] are any IID noise processes.

Special Case: Gaussian Noises and M = 2

For the system M = 2 where v[n] and w[n] are independent IID Gaussian noise sequences

with variances a2 and 2 respectively, the Cramer-Rao bound (2.15) reduces to

B(A; y) =2 taQ ( - Q(- - exp (-) , (2.16)

where a, = + , and Q (x) = f(1/xi/ ) e- t /2 dt. Fig. 2-3 depicts the associated

information loss (2.4) as a function of A for A = 1, cr = 0.1 and various ae levels.

Observation of Fig. 2-3 reveals several key characteristics of this type of quantizer-based

processing. Specifically, in this Gaussian sensor noise scenario the minimum achievable

information loss occurs for A = 0 and a, = 0 and equals 10 log 10(ir/2) 2 dB. In

addition, for any pseudo-noise power level oa, the information loss is an increasing function

of IAI. This property is shared by many other common noises, such as the Laplacian and

the Cauchy. More important, as the figure reveals, proper use of pseudo-noise (aw 0)

can have a major impact on performance in terms of reducing the associated worst-case

information loss.

The sensitivity of performance with respect to the optimal pseudo-noise power level

is examined in Fig. 2-4 for the Gaussian noise scenario. In particular, the figure depicts

the additional worst-case information loss (in dB) that arises from suboptimal selection of

the pseudo-noise power level. Since the encoding performance for the optimally selected

pseudo-noise power level is used as a reference, the additional worst-case information loss for

the optimal pseudo-noise encoder equals zero dB. From the figure we see that the optimal

aggregate noise level is well approximated by

0opt 2 A (2.17)
cr 7
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Figure 2-3: Information loss for a system comprising a two-level quantizer and an IID
Gaussian pseudo-noise control input, for various pseudo-noise power levels a,. The sensor
noise is IID Gaussian with variance a2 = 0.01.

so that the optimal pseudo-noise level satisfies

t J /(ooPt) 2 _ 2 if a, <pt (2.18)

10 otherwise

If av, A (high SNR), Fig. 2-4 reveals that for the fairly wide range of pseudo-noise levels

5 OOPt < a < 2 aopt•- a t

the associated performance is inferior to that corresponding to the optimal pseudo-noise

level by less than 3 dB. However, the performance degrades rapidly as the pseudo-noise

level is reduced beyond 5 a°Pt/8 . For instance, for a = Pt/3, there is nearly 30 dB of

additional loss incurred by the suboptimal selection of the pseudo-noise level.

The information loss associated with the optimal pseudo-noise level corresponds to the

best achievable performance by a particular family of pseudo-noise sources-in this partic-

ular example the family of zero-mean normal distributions. For the optimal choice of a,, in

(2.18), the worst-case information loss can be completely characterized by means of peak
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Figure 2-4: Additional worst-case information loss (solid) due to suboptimal pseudo-noise
level selection for a two-level quantizer. The net noise sequence ce[n] = v[n] + w[n] is
Gaussian with variance c2. The "x" marks depict the additional information loss for net
noise levels 5/8 uOPt and 2 aoPt. The "o" mark depicts the additional information loss at
°opt/3

SNR X- In particular, by using (2.17)-(2.18) with (2.16) in (2.4) we obtain the optimal

worst-case information loss for the Gaussian scenario with pseudo-noise control, namely,

2rQ() )Q(-x) e2 if < X (2.19)
max (X) 2 - (2.19)

2 if X

where we indicate explicitly that in this case the worst-case information loss is a function

of X-

As (2.19) reveals, for estimation in Gaussian noise via a two-level quantizer system,

the worst-case information loss can be made to grow quadratically with peak SNR by

judicious selection of a Gaussian pseudo-noise control input. For comparison, the worst-

case information loss in the absence of control input grows exponentially with peak SNR.

In particular, by substituting B (A; y) from (2.16) in (2.7), we obtain

Lm (X) = 2 7rQ (X) Q (-X) eX2, (2.20)
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which is proportional to exp(X 2/2) for large X- The results in (2.19)-(2.20) extend to

quantizers with M > 2, i.e., the worst-case information loss grows as exp(x 2/2) for control-

free systems, while it can be made to grow as X2 for appropriately chosen Gaussian pseudo-

noise control inputs.

General Case: Arbitrary Noises and M > 2

As we show next, proper use of a pseudo-noise control input w[n] can improve performance

over the control-free system in any (admissible) sensor noise v[n] and for any M-level quan-

tizer. Substituting (2.8) and (2.11) in (2.4) reveals that the associated information loss is

independent of N. Thus, we may focus on the case N = 1 without any loss of generality.

We next use 3max (A; a,, aw) to denote the worst-case Cramer-Rao bound (2.6), in order to

make its dependence on ra, and a, explicit. Since i[n] is an admissible process, the Cramer-

Rao bound (2.12) is continuous in the a, variable, and so is Sma, (A; ao,, oa,). Thus, given

any fixed a,c > 0 and A, for small enough ao we have

Smax (; ao, a,) Sma (; 0, a,,) . (2.21)

Substitution of (2.21) and (2.8) in (2.7) reveals that LP1,(x) x2 is achievable for large

X Furthermore, since Bmax (A;o av, aw) is also continuous in ao,, for any F(-) with fixed

M < oo

inf Bmax (A; 0, aw) > 0, (2.22)
fw E [O, oo)

which in conjunction with (2.8) and (2.21) implies that the worst-case information loss can

not be made to grow slower than 2 for pseudo-noise control inputs. Therefore, at high

peak SNR the worst-case information loss for pseudo-noise control inputs £nax(X) grows

quadratically with peak SNR for pseudo-noise control inputs. In general, the sensor noise

level may be fixed, in which case we are interested in selecting the pseudo-noise level a, as

a function of the dynamic range A so as to minimize the worst-case information loss. From

(2.21)-(2.22) the optimal worst-case information loss rate can be achieved by selecting

a, = A A for some A > 0. This is in agreement with our conclusions for the Gaussian

scenario in the special case M = 2, as (2.17)-(2.19) clearly demonstrate. For comparison,

in App. A.1 we show that for control-free systems corresponding to F(-) in (2.2) and for
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any sensor noise the worst-case information loss Lf (X) grows faster than x2 for large X.

Remarkably, pseudo-noise control inputs with appropriately selected power levels provide

performance improvements over the control-free systems for any sensor noise at high peak

SNR.

2.2.2 Known Control Inputs

We next develop performance limits for scenarios where the estimator can exploit detailed

knowledge of a suitably designed control waveform. In particular, we determine the mini-

mum possible growth rate of the worst-case information loss as a function of X, and develop

control input selection strategies that achieve the minimum possible rate.

The Cramer-Rao bound for unbiased estimates of A based on yN and given knowledge

of the associated N samples of w[n] is denoted by B (A; yN, wN) and satisfies

B(A; yN wN) = -(E[ 2 In P(yN;A wN) ) 

-N . -

= LZ [B (A+w[n]; )]' (2.23)
=1

where B (A; y) is given by (2.12), with a replaced by v, and where P(yN; A, wN) denotes the

associated likelihood function. As expected, the associated worst-case Cramer-Rao bound

and worst-case information loss are functions of the control waveform wN. In App. A.2 we

show that, for any known control waveform selection strategy, the worst-case information

loss associated with any M-level signal quantizer grows at least as fast as X for any sensor

noise distribution. This includes the optimal scheme, which selects the waveform w[n] that

results in minimizing the worst-case information loss for any given set {A, oa, po (.), F(-)}.

Classes of periodic waveforms parameterized by the period K are appealing candidates

for known control inputs, since they are easy to construct and can be chosen so that the

worst-case information loss grows at the minimum possible rate. In constructing these

classes of periodic waveforms, we use as a figure of merit the worst-case information loss

for N -+ oo; extensions to the finite N case are developed in App. A.2. From (2.23), the

Cram6r-Rao bound for estimating A based on yN, where N is a multiple of the period K,
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is given by,

(N n= [ (A + w[n]; y)] (2.24)

As we show next, in order to achieve the minimum possible growth rate it suffices to

select w[n] from properly constructed K-periodic classes for which there is an one-to-one

correspondence between each element in the class and the period K. Optimal selection of

the control input in this case is equivalent to selecting the period K that minimizes the

associated worst-case information loss, or equivalently, the worst-case Cramer-Rao bound

from (2.24)

K
K.P (A, a) - arg min sup K (A ] (2.25)

K A E (-A,) n= [ (A+ wn; y)]

where B (A; y) is given by (2.12) with a replaced by v. We next develop a framework for

selecting the control waveform from properly constructed classes of K-periodic waveforms

for the case M = 2, which results in achieving the optimal growth rate of worst-case

information loss. Then, we extend our framework to quantizers with M > 2.

Optimized Periodic Waveforms for Signal Quantizers with M = 2

The construction of the elements of the K-periodic class in the case M = 2 is based on

the observation that in the control-free scenario the worst-case information loss grows with

A for fixed a,. This observation suggests that the information loss is typically largest for

parameter values that are furthest from the quantizer threshold. This is strictly true, for

instance, for Gaussian sensor noise, since B (A; y) in (2.16) is an increasing function of Al.

Since our objective is to optimize over the worst-case performance, a potentially appealing

strategy is to construct the K-periodic waveform w[n] so as to minimize the largest distance

between any A in (-A, A) and the closest effective quantizer threshold. For this reason,

we consider K-periodic control inputs, which have the form of the sawtooth waveform

w[n] = (- 2 +nmodK), (2.26)

where the effective spacing between thresholds is given by w, = 2 A/(K - 1). The net

effect of the periodic control input (2.26) and the symmetric two-level quantizer (2.13) is
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equivalent to a two-level quantizer with a periodically time-varying threshold; it is important

to observe that the time-varying quantizer threshold comes within at least Sw/2 of any

possible parameter value once every K samples.

For the system with F(-) given by (2.13) and wi[n] given by (2.26), the optimal period

Kopt is completely characterized by means of peak SNR X; using (2.14) in (2.25) reveals

that Iopt satisfies Ipt(A, a,) = Kopt(L A, t uao) for any > 0. For this reason, we use

the one-variable function Kopt(X) to refer to the optimal period from (2.25) for a particular

X-

In the context of the sawtooth K-periodic inputs (2.26), strategies that select K so as to

keep a fixed sawtooth spacing ,, achieve the minimum possible growth rate. In particular,

in App. A.2 we show that, for any given X, if we select the period K in (2.26) according to

K = rA X + 11 (2.27)

where A can be any positive constant, the associated worst-case information loss grows

linearly with X- In general, there is an optimal A for any particular noise PDF p (),

resulting in an optimal normalized sawtooth spacing. Specifically, consider the normalized

spacing between successive samples of w[n] in (2.26), namely,

d(; K) - (2.28)

In addition, let dopt(x) denote the normalized spacing associated with the optimal period

Kopt(X) from (2.25), i.e.,

dopt(X) d(x; Kopt(X)) · (2.29)

In App. A.2, we outline a method for finding the asymptotic optimal normalized spacing

doo lim dpt(X), (2.30)
X-+oo

associated with a particular sensor noise PDF. For purposes of illustration, we also show in
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App. A.2 that in the special case that the sensor noise is Gaussian with variance a2

d 2.5851, (2.31)

while the associated worst-case information loss is well approximated by

ax () 1.4754 + 1) (2.32)

for large X- In this Gaussian scenario, if we select w[n] as in (2.26) with K = r2X/doo + 11,

the worst-case information loss is given by (2.32) and achieves the optimal growth rate for

known control waveforms. We next extend the above analysis to quantizers with M > 2.

Optimized Periodic Waveforms for Signal Quantizers with M > 2

As we have seen in the preceding section, selection of w[n] according to (2.26) for M = 2

results in a two-level quantizer with periodically time-varying thresholds uniformly spaced

in [-A, A]. This selection method minimizes the maximum distance between the parameter

value and the closest of the time-varying thresholds, over the dynamic range (-A, A). The

same strategy can be used for M > 2, although the availability of multiple thresholds allows

for reduction of the dynamic range that w[n] needs to span. We assume that all quantizer

thresholds are within the dynamic range, i.e., -A < Xi < A, for i = 1, 2, - - , M - 1. In

this case, the effective dynamic range Aeff that w[n] needs to span is given by

Aeff = max 6xi,

where

X1 + A if i = 1

x62i = Xi- Xi-1 if 2 < i <M-2

- XM_1 if i = M - 1

In particular, we consider using the control input (2.26) where the effective spacing between

thresholds &w is given in terms of A and the quantizer thresholds X 1, X 2, . , XM_1, as
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follows

= max 6wi (2.33a)
t

where

2 x2 if i=l, M-1
8wi = . (2.33b)

-Ki if 2<i<M-2
K

For any A in (-A, A), this selection guarantees that at least one of the M - 1 time-

varying quantizer thresholds is within J,/2 of the parameter, where i, is given by (2.33a).

One can in principle perform the optimization (2.25) to obtain Kopt(A, a,) for any F(-)

with M > 2. We should emphasize, however, that at high SNR we may often obtain an

approximate estimate of performance via our results for the case M = 2. For instance,

for Aeff/,v large and small enough A in (2.27), the optimal normalized spacing and the

corresponding worst-case information loss for a quantizer with M > 2 are approximately

given by the respective quantities for the symmetric two-level quantizer, with X replaced

by Xeff = eff/av.

If in addition there is freedom in selecting the M - 1 quantizer thresholds, these can

be selected so that wi = 6wj for all i and j in (2.33b) which implies that i, = A/[(M -

1) K - 1]. This selection guarantees that for every K successive observations, the collection

of all M K associated quantizer thresholds form a uniformly spaced collection in [-A, A].

For instance, in the special case that the sensor noise is Gaussian, the optimal normalized

spacing and the worst-case loss for large X are given by (2.31) and (2.32), respectively, with

X/(M - 1) replacing X on the left hand side of (2.32). In summary, simply constructed

classes of periodic control waveforms achieve the optimal information loss growth rate with

peak SNR.

2.2.3 Control Inputs in the Presence of Feedback

In this section we consider the scenario where, in addition to knowing the control waveform,

the estimator has the option of using feedback from past output observations in the selection

of future control input values. Specifically, we develop performance bounds for the problem
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A [n]

Figure 2-5: Estimation based on observations from a signal quantizer, where feedback from
the quantized output is used in the selection of the control input.

of estimation of A based on yN, where the control input sequence w[n] is a function of all

past quantized observations. This scenario is depicted in Fig. 2-5 where w[n] = g(yn-l).

We next show that the worst-case information loss for any feedback-based control input

strategy is lower bounded by the minimum possible information loss for the same quantizer

system with w[n] = 0; in Section 2.3 we develop feedback-based control selection algorithms

that effectively achieve this lower bound. Examination of the Cramer-Rao bound (2.23)

reveals that for any A in (-A, A) we can obtain information loss equal to £(Ao) by selecting

w[n] = Ao - A. In particular, if there exists a parameter value A. for which B (A; y) >

B (A.; y) for all A in (-oo, oo) and where B (A; y) is given by (2.12) with ac replaced by

v, then using (2.23) we obtain

B (A; yN, wN) > B (A.; y) /N, (2.34)

with equality achieved for w[n] = A* - A for n = 1, 2, - -, N. This control input results in

£ (A; wN) > L (A; A. - A) = 1(A.), (2.35)

where (A) is given by (2.4), and where B (A; y) is given by (2.12) with a replaced by v.

The minimum information loss from (2.35) decreases as the number of quantization

levels increases. In App. A.3 we show that as we would expect, the minimum information

loss L(A.) tends to zero as the number of quantization levels approaches infinity for any

sensor noise.

For a number of common sensor noises the control-free information loss for the system

corresponding to M = 2 is minimized at the negative of the median of the PDF P, (), i.e.,

C, (-A.) = 1/2. The corresponding minimum information loss (2.35) can be obtained by
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Figure 2-6: Minimum possible information loss as a function of quantization levels for a
uniform quantizer in IID Gaussian noise. For any given M, the threshold spacing is selected
so as to minimize this loss.

evaluating (2.4) at A = A., while employing (2.8) and (2.14) for a, = 0, namely,

L(A.) = [4p? (-A./c) B (0; )] - , (2.36)

which is actually independent of a,, and A, since -A./a, equals the median of the PDF of

i[n].

Special Case: Gaussian Sensor Noise

In the case that the sensor noise is Gaussian, the minimum information loss (2.35) decays

rapidly to zero as more quantization levels are introduced. In Fig. 2-6 we plot the minimum

possible information loss through any uniform M-level quantizer for various values of M, in

the presence of IID Gaussian noise. From the figure it is apparent that a few quantization

levels suffice to effectively eliminate the minimum information loss due to quantizer-based

processing.

For the two-level quantizer (2.13) in this Gaussian scenario, use of (2.16) for a, = a in
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Figure 2-7: Worst-Case information loss over IA < A for a two-level quantizer in zero-
mean IID Gaussian noise of variance o2, with no control input (solid), pseudo-noise control
inputs (upper dashed), and known periodic control waveforms (middle dashed). The dotted
curve depicts approximation (2.32). The lower dashed line depicts the minimum possible
information loss ( 2 dB) for any control input scheme.

(2.7) reveals that A, = 0. In this case, (2.34) reduces to

B (A; wN, yN) > B (0; y)/N = 2Nr (2.37)

while from (2.36) the information loss for any parameter value A is lower-bounded as follows

E (A;wN) > L(o) = , (2.38)

which corresponds to a 2 dB information loss.

Fig. 2-7 depicts the worst-case information loss for the system corresponding to M = 2

in the context of Gaussian sensor noise and the various control input scenarios that we have

examined. As the figure reflects, the performance of the control-free system (solid curve)

degrades rapidly as the peak SNR is increased. The benefits of pseudo-noise control inputs

(upper dashed curve) at high peak SNR are clearly evident, and known periodic control

inputs provide additional performance benefits (middle dashed curve) over pseudo-noise

control inputs. In particular, the associated worst-case information loss increases linearly
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with peak SNR as the accurate approximation (2.32) reveals. Finally, in the presence of

feedback from quantized output to the control input, the performance is lower bounded by

the minimum possible information loss of 2 dB, which is independent of X- In Section 2.3 we

develop control selection strategies and associated estimators that meet all these bounds.

2.3 Efficient Estimation

In this section we develop control input selection strategies and associated estimators which

achieve the performance limits computed in Section 2.2. A natural measure of performance

of a specific system comprising a control input a quantizer and a particular estimator is the

MSE loss, which we define as the ratio of the actual MSE of a particular estimator of A based

on observation of yN, divided by the Cram6r-Rao bound for estimating A from observation

of sN . In case an efficient estimator of A based on sN exists, the notion of the MSE loss

of any given estimator of A given yN has an alternative, appealing interpretation. In this

case, the MSE loss represents the additional MSE in dB that arises from estimating A using

this particular estimator on yN, instead of efficiently estimating A via sN. Analogously to

£max in (2.7), the worst-case MSE loss of an estimator is defined as the supremum of the

MSE loss function over the range JAI < A.

In this section we construct estimators for which the corresponding MSE loss asymp-

totically achieves the associated information loss, for each of the control input scenarios

of Sec 2.2. We examine the control-free and pseudo-noise control scenarios first, and then

develop estimators applicable to known K-periodic control inputs. Finally, in the context

of feedback we develop control input selection strategies and associated estimators which

achieve the minimum possible information loss for any given system.

2.3.1 Pseudo-noise Control Inputs

For pseudo-noise control inputs, the maximum-likelihood (ML) estimator of A based on yN

over the restricted dynamic range IAI < A satisfies

AML (YN; A) = argmax In P (yN;) , (2.39)
181<A
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where In P (yN; 9) is the log-likelihood function given by (2.9). We first examine ML es-

timation for the system with M = 2, and then construct estimators for signal quantizers

with M > 2. Estimators of A for control-free systems can be readily obtained as a special

case of the estimators of A for the associated systems with pseudo-noise control inputs by

setting aw = 0.

ML Estimation for Signal Quantizers with M = 2 in IID Noise

If F(.) is given by (2.13) and a[n] is admissible, the ML estimator (2.39) can be found in

closed form, by setting to zero the partial derivative of the log-likelihood function (2.9) with

respect to A, viz.,

AML (YN; A) = A (AML (N ; o)) (2.40)

where ZA (-) is the following piecewise-linear limiter function

zA()= if 1zx < (2.41)

A sgn (x) otherwise

The function AML (yN; oo) denotes the ML estimate of A from yN when there are no

restrictions imposed in the dynamic range of the unknown parameter A.4 In particular,

AML (yN; oo) = arg max In P (yN; 8)

wh= 1-cl (n ) )(2.42)

where C;,1 () in (2.42) is the inverse of Ca (), and y (yN) denotes the number of elements

in yN that are equal to Y. In the special case that w[n] and v[n] are zero-mean IID Gaussian

noise sequences with variances a2 and o 2, respectively, (2.42) reduces to

AML (yN; o) = a-a Q-1 (i(yN) (2.43)

For any parameter value A in the range (-A, A), the Cramer-Rao bound (2.14) is a

4 Note that (2.40) does not necessarily hold for M > 2.
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reasonable predictor of the MSE performance of the ML estimator (2.40)-(2.42) provided

that the number of observations N is large enough. Indeed, as shown in App. A.4 for any

A E (-A, A), the ML estimator (2.40)-(2.42) is asymptotically efficient in the sense that

it achieves the Cramer-Rao bound for unbiased estimates (2.14) for large enough N, i.e.,

lim NE [(AML (yN; A) - = B (A; y)
N-+oo

Although the ML estimate (2.40)-(2.42) is asymptotically unbiased and efficient for any

A in (-A, A), the associated MSE does not converge uniformly to the Cramer-Rao bound

in the parameter A with N. Specifically, for any fixed N, no matter how large, there

exist parameter values close enough to the boundaries ±A for which the ML estimator

has significant bias,5 in which case (2.14) should not be expected to accurately predict the

associated MSE of the ML estimator. This is clearly reflected in Fig. 2-8, where the actual

MSE loss for AML (yN; A) is also depicted alongside the associated information loss for

the Gaussian noise scenario. In particular, the dashed and solid lines depict the MSE loss

from Monte-Carlo simulations for the ML estimator (2.40)-(2.42), in the absence (o,, = 0)

and presence (a, = 2/ir) of pseudo-noise control input, respectively, for a, = 0.1, A = 1,

and N = 100, 104. As we can see in Fig. 2-8, when the pseudo-noise level is aw = 2/r

the worst-case MSE loss is about 21 dB. However, in the absence of a control input, the

worst-case MSE loss is about 36 dB for N = 100, and 55 dB for N = 104. For both values

of N the Cramr-Rao bound (2.14) is applicable for only a subset of the dynamic range,

whose size increases with N. In fact, since the ML estimator is asymptotically efficient

for any AI < A with respect to the Cramer-Rao bound (2.14) for unbiased estimates, the

worst-case MSE loss for the control-free system increases with N towards the associated

worst-case information loss (2.20), which is approximately 211 dB.

ML Estimation for Signal Quantizers with M > 2 in IID Gaussian Noise

For the estimation problem (2.1)-(2.2) where F(-) is an M-level quantizer and c[n] is an IID

sequence, the set of sufficient statistics reduces to (y N), N) ... , YIC (yN) (cf. (2.9)).

5By incorporating the bias of the ML estimator (2.40)-(2.42) it is possible to obtain a Cramer-Rao bound
that directly applies to the associated MSE. An even tighter bound can be obtained by properly combining
three separate Cramer-Rao bounds, each describing the effects of a piecewise linear region of the soft limiter
za () on AML (A; oo) in (2.40).
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Figure 2-8: MSE loss from Monte-Carlo simulations for a system comprising a Gaussian
pseudo-noise control input a two-level quantizer and the ML estimator (2.40)-(2.42) for
A = 1, a, = 0.1 and various pseudo-noise power levels. The dashed curves depict the
MSE loss of AML (yN; A) in the absence of control input (i.e., a,, = 0); upper curve:
N = 104, lower curve: N = 100. The solid curves depict the MSE loss of AML (yN; A) for
a, = 2/r, and for N = 100, 104. For comparison, the associated information loss functions
are depicted by the dotted curves (also shown in Fig. 2-3).

For the special case that a[n] is Gaussian with variance cr, we develop in App. A.5 an EM

algorithm [14] for obtaining the ML estimate (2.39). This algorithm takes the following

form:

M
A(k+l) ) + a E Ym(Y)

EMEM v N N)
m=1

exp ((X. -A (k)
2.2

a~k 
Q x EM)

(Xm EM))
-exp 2a}2aI 

_-Q (XA1)

(2.44)

initialized with A(O) = 0. Provided that the log-likelihood function does not possess multiple

local minima, (2.44) provides the ML estimate (2.39), i.e.,

AML (yN; ) = aim E(k)
k-+ooEM '
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Empirical evidence suggests that limk,o, A(k) obtained via the algorithm (2.44) is asymp-

totically efficient, i.e., it achieves (2.12) for large N. Consequently, use of information loss

as an accurate predictor of the MSE loss is also justified in this scenario.

Efficient Estimation for Signal Quantizers with M > 2 in IID Noise

In general, there is no computationally efficient method for obtaining the ML estimate (2.39)

of A in nonGaussian noise via a signal quantizer with M > 2. In this section we present an

alternative class of elementary estimators which can be shown to be asymptotically efficient

for any admissible noise PDF p (), in the sense that for any AI < A the MSE of the

estimator approaches the bound (2.12) for large N.

Without loss of generality we may view the output of the quantizer F(.) in (2.2) as the

collection of the outputs of M - 1 two-level quantizers generating the following observed

sequences *

yi[n] = sgn (x[n] - Xi) i = 1, 2, , M- 1,

where x[n] = s[n] + a[n] (cf. Fig. 2-2) and the Xi's are the thresholds of the quantizer.

Consider the ML estimates of A formed from each of these binary sequences, namely,

Ai = ZA (AML (YN; oo) + Xi) i= 1,, 2, , M- 1, (2.45)

where

Y [yi [N] yi[2]--y i[N]] ,

and where Za (-) is given by (2.41), and AML (; oo) is given by (2.42) with a replaced by v.

In App. A.6 we show that the joint cumulative distribution of

A=[Al A2 ... AM-1] (2.46)

approaches the cumulative distribution of a Gaussian random vector with mean A 1 (where

1 denotes a vector of l's) and covariance matrix C/IN, whose inverse is given by (A.39). We
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also show in the appendix that if we use

A = (1 T - 1 1)- 1 1T c- 1 A (2.47)

where C = C(Ai) for some 1 < i < M - 1, the estimator A is asymptotically efficient, i.e.,

lim NE [(A - A)2 ; A] = B (A; y) , (2.48)

where B (A; y) is given by (2.12). In practice, in computing C we may select the value of i

for which (Ai; yN) is minimum, so as to expedite the MSE convergence to the asymptotic

performance predicted by (2.48). In summary, the estimator first obtains the set (2.46) by

means of (2.45) and (2.41)-(2.42), it then selects the value of i for which B (Ai; y/N) is

minimized and forms C = C(Ai), and finally substitutes Ai and ( in (2.47) to obtain the

asymptotically efficient estimate A.

2.3.2 Known Control Inputs

In this section we construct estimators that exploit detailed knowledge of the applied control

waveform. In particular, in the context of K-periodic control inputs that are known for

estimation, we develop estimators that are asymptotically efficient in the sense that they

asymptotically achieve (2.23).

For IID Gaussian sensor noise, the ML estimate of A from yN given a control vector

wN, where win] is a K-periodic sequence and N is a multiple of K, can be obtained as a

special case of the EM algorithm presented in App. A.5. In particular, the EM algorithm

takes the following form

A (k+ 1 ) = tA C(k) + E
EM E

I<e<l
l<mCl

_< _

(2.49a)

and

AML = lim AkEM (2.49b)k-+oo(2.49b)
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where N = N/K, and yN[e] is the N x 1 vector comprised of the elements of the th

K-decimated subsequence, i.e.,

yNv [y[el y[K+] [ + y[N - K + ] e = 1, 2, ... , K . (2.50)

Empirical evidence suggests that the estimate resulting from the EM algorithm (2.49) is

asymptotically efficient, i.e., it achieves the Cramer-Rao bound (2.24) for large enough N.

Asymptotically efficient estimators in the context of nonGaussian sensor noises can be

obtained in a fashion similar to those developed in App. A.6. Specifically, in the case M = 2,

we may consider the vector A in (2.46) where we use for Ai the ML estimate of A given

the ith K-decimated subsequence from (2.50), i.e.,

A = (AML (yN[i]; ) - Wi]) i= 1, 2, , K (2.51)

and where Za (-) and AML (; O0) are given by (2.41) and (2.42), respectively. The Ai's from

(2.51) are independent random variables, since for any i j, yN[i] and yN[j] are indepen-

dent random vectors. Therefore, the corresponding vector A. from (2.46) is asymptotically

Gaussian (in terms of its cumulative distribution), with diagonal covariance matrix C/N;

the (i, i)th entry of the matrix C equals B (A + w[i]; y[i]), where B (A; y) is given by (2.12)

with a replaced by v. Consequently, an asymptotically efficient estimate is provided by A

from (2.47); the estimate covariance matrix that is used for faster MSE convergence to

the asymptotic performance is given by C = C(A2 ) where i is the index that minimizes

B (Ai + w[i]; yN[i]).

Asymptotically efficient estimators can also be constructed for signal quantizers with

M > 2 and known K-periodic inputs in nonGaussian sensor noise. Specifically, for each

M-ary subsequence y[t] from (2.50) we may first apply the algorithm (2.45)-(2.47) to

obtain K statistically independent estimates of A. By combining these K estimates in a

fashion similar to the method used in the case M = 2 for combining the estimates (2.51),

we obtain an asymptotically efficient estimator of A based on yN given wN.

2.3.3 Control Inputs in the Presence of Feedback

In Section 2.2.3 we have shown that the worst-case information loss of a system composed of

a signal quantizer and an additive control input is lower-bounded by the minimum possible
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information loss of the same system in the control-free case. In this section we develop

control input selection strategies based on past quantized output samples and construct

associated estimators which effectively achieve this bound.

Feedback Control and Estimation for Signal Quantizers with M = 2

We first examine the Gaussian sensor noise scenario with M = 2 in detail. As (2.38) reveals,

the associated control-free information loss is minimized for w[n] = -A. Although this

control input selection is not permissible, it suggests a viable control input selection method

based on past quantized observations. Specifically, if A[n] is any consistent estimator of A

based on yn, a reasonable choice for the control input sequence is as follows

w[n] =-A[n- *]. (2.52)

Assuming the control sequence is selected according to (2.52), the ML estimator at time

n satisfies

n

AML[n] = argmax ln Q (y[m] (AML[m - 1]--))

In App. A.5 we show that in the Gaussian scenario the ML estimate of A based on yn for

n = 1, 2, -.- can be obtained using the following EM algorithm,

exp (- E

AEM[n] 1 AEM [n] + - E y [m] (2.53a)

initialized with A(°) [n] = AML[n - 1] and AML[O] = 0, where for any n,

AML[n] = lim A(k) [n]. (2.53b)
k-+oo

Although empirical evidence suggests that the ML estimator obtained by means of the EM

algorithm in (2.53) achieves the 2 dB information loss bound (2.38) for any A in (-A, A)

for a moderate number of observations, 6 it is rather computationally intensive; for any

6 There are a number of other control input selection methods and associated estimators which can
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additional observed sample an EM algorithm has to be employed. In addition, even though

the number of iterations necessary for adequate convergence of the EM algorithm appears

to be small for large n, the algorithm may still be impractical.

We next develop algorithms that achieve the bound (2.38) and have the additional

advantage that they can be implemented very efficiently. These are based on the observation

that once the estimate A[n] is not changing significantly with n (i.e., the changes are small

with respect to av) we may assume that A + w[n + 1] is in the regime where the information

loss is small, and a linear estimator can be used that approaches the 2 dB bound (2.38).

Specifically, let z = Q (A/a,) and assume that IA/ovl < 0.1. In this regime, the truncated

power series expansion provides a reasonable approximation for Q-1 (z), i.e.,

Q-1 (z) /2(1- 2z) . (2.54)

We can use (2.54) to form a linear estimator as follows. Assuming that the estimation error

is inversely proportional to the measurements (which implies that the asymptotic MSE loss

is not infinite), the estimate at time n is given as a weighted sum of the estimate at time

n - 1 and an estimate arising from using the nth measurement y[n] alone, i.e.,

AL[n] = L[n] + - A[nly[n]], (2.55)
n n

where the estimate based on the nth measurement alone is given by using (2.54) in (2.43)

(by setting aw to 0), and the fact that w[n] = -AL[n - 1], i.e.,

A[nly[n]] = AL[n - 1] + a, 2y[n] . (2.56)

By incorporating (2.56) in (2.55) this linear estimator takes the following iterative form

AL[n] = AL[n-1] + a n (2.57)

In order to obtain an algorithm that converges much faster than (2.57) to the 2 dB bound

approach arbitrarily close to the 2 dB bound; the systems developed in this chapter for the case M > 2
and nonGaussian noise are such an example. However, the associated MSE of these algorithms converges
to the bound (2.38) considerably slower than the algorithms of this section. In fact, the number of samples
required so that the MSE of (2.53) with w[n] as in (2.52) effectively achieves the 2 dB bound (2.38) increases
linearly with ln(x).
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(2.38), we employ the EM algorithm (2.53) for n < no and the recursive algorithm (2.57)

for n > no, i.e.,

AML[n] from (2.53) if n < no

i A [n- 1] + +o. [2n if n > no

where the control input w[n] is given by (2.52) provided that we substitute A[n - 1] for

A[n- 1], and where we also incorporated the dynamic range information by means of Ia ().

Selection of an appropriate value for no is related to the peak SNR X. Since, in principle,

the larger the peak SNR, the longer (in terms of the number of observations) it takes

A - AML[n] to reach the linear regime (2.54), we consider the case A > a,. For instance,

assume we are interested in selecting no so that the O SE in A[no] is less than a given

fraction of a, (so that the truncated series approximation is valid), for example a,/8. For

small enough no, the maximum MSE from no observations is roughly given as the square

of A 2-'o. In summary, this crude-MSE based rule of thumb for selecting no reduces to

no > log2(A/av) + 3.

The solid and dashed curves in Fig. 2-9 depict the MSE of the ML estimator obtained by

means of the EM algorithm in (2.53), and of the computationally efficient estimator (2.58)

with no = 10, respectively, based on Monte-Carlo simulations. The system parameters for

this simulation are A = 1, a, = 0.1, resulting in log2 (A/a) - 6.6, while A = 0.4. In

both cases the control sequence is selected according to (2.52). The lower and upper dotted

lines depict B (A; sN) and the right hand side of (2.37), respectively. As we can see in this

figure, both estimates effectively achieve the 2 dB loss bound (2.38) for a moderate number

of observations.

In terms of the actual implementation of the estimator (2.58), for a given no there are

2no possible values of AML[no]. These 2o estimate values can be precomputed and stored

in a lookup table. This results in an appealing computationally efficient implementation,

whereby given no or fewer observations the estimate is obtained from a lookup table, while

once the number of observations exceeds no, a recursive linear estimator is employed. Since

no grows logarithmically with X, the number of lookup table entries for storing all possible

values of AML[no] grows only linearly with peak SNR X.

A similar strategy can be used in the context of quantizer systems using feedback in any
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Figure 2-9: MSE from Monte-Carlo simulations for AML[n] (solid) and A[n] with no = 10
(dashed), based on observations from a signal quantizer with M = 2 exploiting feedback
according to (2.52). The lower dotted line represents the Cramer-Rao bound for estimating
A based on s[n], while the upper dotted line is the 2 dB bound (2.38); Parameters: or, = 0.1,
A = 1, and A = 0.4.

sensor noise. In the general case A. in (2.35) may not equal zero. A reasonable extension

of the control input selection method (2.52) for nonzero A. is as follows

w[n] = A - A[n- ]. (2.59)

An estimator similar to (2.58) can be used to estimate A in this case. Specifically, for

n < n the estimator may consist of a precomputed lookup table, while for n > n a

recursive estimator resulting from a truncated series expansion of C-' 1 (z) around z = A.

can be employed, namely,

A[n] A[n -]+1 y[n] + 1-2C (-A.))
2 p, (-A.)

In particular, if A. is the median of Pv (-), in which case £(A.) is given by (2.36), we have

A[n] = a (A[n-1] + 2 (-A)Y[ ) for n > n 

54

.W



In general, empirical evidence suggests that the MSE loss of these algorithms practically

achieves the associated £(A.) for a moderate number of observations.

Feedback Control and Estimation for Signal Quantizers with M > 2

For the Gaussian sensor noise scenario, the EM algorithm (2.53) can be extended to F(-)

with M > 2; the resulting algorithm is a special case of the one presented in App. A.5.

Empirical evidence suggests that it is also asymptotically efficient. Assuming flexibility in

selecting the thresholds of the M-level quantizer, the corresponding information loss (2.35)

can be obtained from Fig. 2-6. For instance, for the optimal selection of the quantizer

thresholds for M = 6 we have A. = 0; if the control input is selected according to (2.59),

the EM algorithm in App. A.5 yields a worst-case MSE loss of about 0.25 dB. Similarly to

£max, the asymptotic MSE loss is independent of a, and A.

For signal quantizers with M > 2 where v[n] is any nonGaussian noise, we may use the

following two stage approach that effectively achieves L(A.). For the first N1 observations

we may employ any consistent estimator A [n] of A. For instance, we may use one of the

feedback-based algorithms corresponding to the system M = 2 by ignoring all but two of

the M levels of the quantized output. In the second stage, we fix w[n] = A. - A1[N1] for

all n > N 1. The number N1 determines the accuracy of the approximation

( + A-A[Nl) c (A.) .

For any given n > N 1, we can then obtain an estimate A 2[n] of A from

[y[Ni + 1] y[Ni + 2] -- y[n]] ,

by means of (2.45)-(2.47), which is asymptotically efficient with respect to (A. + A - [Nl]).

For faster convergence, the overall estimate can be a weighed sum of the estimates A1 [N1]

and A 2[n]. Although the associated asymptotic MSE loss can be made to approach arbi-

trarily close to £(A.), these algorithms typically require significantly larger data sets to

effectively achieve the desired information loss, as compared to the algorithms for M = 2

of the previous section.
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Chapter 3

Static Case Extensions for

Quantizer Bias Control Systems

In a number of applications involving estimation of slowly-varying information-bearing sig-

nals, data may be collected from multiple sensors. In this case, the acquired measurements

must be efficiently encoded at each sensor and, in turn, these encoded streams must be effec-

tively combined at the host to obtain accurate signal estimates. In addition, irrespective of

whether the application involves one or multiple sensors, a number of other issues may arise

and may thus have to be taken into consideration. For instance, we often have available

accurate signal models or other forms of prior information about the information-bearing

signal. In such cases, we would be interested in exploiting any such form of additional in-

formation to improve the quality of the encodings and the associated estimates from these

encodings. In addition, there are many instances where the noise at each sensor is non-

stationary, or its statistical characterization is only partially known. It is important to

incorporate such forms of uncertainty in the encoding and estimation algorithms and to

determine the extent to which such issues may affect the overall system performance.

In this chapter we develop a number of such extensions of the systems we examined

in Chapter 2. These extensions address a representative collection of cases of the signal

estimation problem from digitally encoded measurements that may arise in practice. In

Section 3.1 we consider estimation of a static signal from digitally encoded data obtained

from multiple sensors and develop multi-sensor extensions of the signal encoding strategies

and the algorithms of Chapter 2. As we show, the performance and optimal design of the
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encoding and estimation algorithms of many multi-sensor generalizations of the estimation

problem of Chapter 2 are natural extensions of the associate single-sensor performance and

algorithms.

In Section 3.2 we consider the case where we have available a priori information about

the relative likelihood of values of the information-bearing signal and would like to exploit

it so as to improve the estimate quality. For instance, spatial or temporal correlations of

the information-bearing signal are often available and can often be used to obtain such an

a priori description of the static parameter. As we show, such a priori information can be

naturally incorporated in the signal encoding and estimation algorithms by using average

rather than worst-case performance metrics to design these systems.

Finally, in Section 3.3 we examine another important extension of the static-case esti-

mation problem of Chapter 2 where, in addition to the signal parameter of interest, the

sensor noise power level is unknown. We show how the performance measures and the as-

sociated systems we developed in Chapter 2 can be extended to encompass this important

case. In the context of all these extensions we will focus our attention on the special case

that the sensor noise is IID zero-mean Gaussian, although in most cases our results can be

generalized to a much broader class of nonGaussian sensor noises.

3.1 Multiple Sensors

In this section we examine a network generalization of the single-sensor problem stated in

(2.1)-(2.2), namely, estimating an unknown parameter A from observation of

yt[n] = F(A + ve[n] + w[n]) n = 1, 2,.. - , N, £ = 1, 2, --- , L (3.1)

where Fe() is a Me-quantizer of the form (2.2) with thresholds Xte,, - -, Xt,M,-1, the vi[n]'s

are IID processes, and the wi[n]'s denote the applied control input sequences. We use for

convenience yN to denote the following (N L) x 1 vector of N encoded observations from

each of the L sensors

yN- [[yN]T [N]T .. [N]T] (3.2)

Networks employing encodings in the form of (3.1) provide attractive models for a
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Figure 3-1: Block diagram of a network of distributed signal quantizers using feedback in
the context of signal estimation.

number of distributed sensor networks. In Fig. 3-1, for instance, we show the block diagram

of a special case of such a distributed estimation network which employs feedback in the

selection of the control inputs. In this section, we consider distributed estimation networks

with and without feedback.

3.1.1 Statistically Independent Sensor Noises

In the case that the sensor noise processes ve[n] in (3.1) are statistically independent,

straightforward extensions of the single-sensor systems developed in Chapters 2 yield net-

work generalizations. In particular, these networks can be analyzed by means of the tools

developed for the single-sensor case.

For the remainder of this section we restrict our attention to IID Gaussian sensor noise,

which we use as a representative example to illustrate the extensions of the single-sensor
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results to the associated multi-sensor settings. Analogous extensions can be similarly derived

for all the other scenarios we developed in Sections 2.2-2.3.

Pseudo-noise Control Inputs

We may consider a network of sensors employing encodings of the form (3.1) for which the

control inputs are IID pseudo-noise sequences with known statistical description we[n] 

KJ(O, a,'), and which can be adequately modeled as statistically independent of one another

and of the sensor noises. We will consider two cases which differ in terms of whether the

sensor noise levels and the quantizers are identical or different.

In the case that all quantizers are identical, i.e., Fe(x) = F(x) for all x and the sensor

noises have equal strength, i.e., a = a, in (3.1), the collection of L observation vectors

{yN} can be viewed as a single (N L) x 1 observation vector yN collected from a single

sensor. Hence, in this case all the analysis of Sections 2.2.1 and 2.3.1 applies intact. For

instance, in the special case Me = M = 2, the optimal noise level is given by awt = vowt

from (2.18) and the associated ML estimator is given by (2.43) where the N x 1 observation

vector yN is replaced with the (N L) x 1 vector yN, i.e.,

AML (yN; ) = -o( Q- 1 (K ( )) (3.3)NL

In the general case where the quantizers are distinct and the overall noise levels (sum-

marizing the effects of the sensor noise and the pseudo-noise component) have different

strengths, Cramr-Rao bounds and corresponding ML estimators can be formed with mi-

nor modifications of the single-sensor problem. Specifically, the optimal pseudo-noise power

level aw, to be used at the th sensor can be selected so as to optimize the single-sensor

performance; for instance for any for which Me = 2, the optimal awt is given by (2.18)

with a, replaced by a,,. Similarly, the ML estimator of A from observation of yN is given

by the following extension of the single-sensor EM algorithm

m-_A(k) )2 , ---- ](k) 2
Ak) exp- - exp 2Mt K 2 2 (

^(k+l) = (k) at ( y(yN) 2 
'M E M + (,) (X A( )

(3.4)
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where

a = Wa2 + a2

As a direct extension of the single-sensor results discussed in Chapter 2, at high peak

SNR (i.e., A > a,, for e = 1, 2, -., L) by selecting the pseudo-noise levels as a,,w A,

the worst-case information loss can be made to grow as slow as the square of the parameter

dynamic range A, for any network of fixed size L with a fixed set of quantizers, and sensor

noise components with fixed statistical characterization.

Known Control Inputs

Similarly, in the case that the control inputs we[n] in (3.1) are known for estimation we

can easily extend the associated encoding strategies and estimation algorithms so as to

achieve optimal performance in terms of minimizing the worst-case information loss rate.

Specifically, we may design the encoding strategy used at each sensor separately viewing

it as a single-sensor system. If, for instance, Me = M = 2, we can select the control

input sequence at the th sensor according to (2.26) where Ife is given by (2.27) where X is

replaced by

A
Xe = (3.5)

avt

A = 2/dc, and d is given by (2.30).

The performance of networks of sensors in the context of known control inputs is a

natural extension of the associated single sensor performance; for a fixed network size, with

fixed quantizers and sensor noise PDFs, the worst-case information loss can be made to

grow linearly with the signal dynamic range A by means of the encoding scheme described

by (3.5).

Natural extensions of the EM algorithm (2.49) can be used to perform efficient data

fusion and signal estimation in the multi-sensor case. In particular, assuming that a Ke-

periodic sequence we[n] is used as the bias of the th quantizer Fe(.) in (3.1), we have
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e=l l<i<K

l<m<A

(3.6a)

and

AML = lim A(k) (3.6b)
k-+oo EM

where Ne = LNIKe, yNt[i] is the Ne x 1 vector comprised of the elements of the th

Ke-decimated subsequence, i.e.,

Yet [i [y e[IK + i]. ye[N - Ke + i = 1, 2, -- , K , (3.6c)

and

k)[m i] Xe, - M - we[i] (3.6d)
Uve

If all the quantizers are identical, i.e., Fe() = F(-), and all the sensor noises have

identical PDFs, the above encoding design method results in selecting the same control

input sequence for each sensor, i.e., we[n] = w[n] from (2.26) where K is given by (2.27).

When in addition L > K, or when L is an integer multiple of K, the encoding strategy

can be simplified even further by spatially distributing the K possible control input values.

Specifically, consider for simplicity the case where n = L/K is an integer. By dividing the

L sensors into K groups of n sensors, and by setting the control input of any sensor within

a given group equal to one of the K distinct samples of the K-periodic sequence (2.26) for

all n, we can achieve optimal encoding performance without the need for a time-varying

control input.

Control Inputs in the Presence of Feedback

Networks exploiting feedback from the host (observing the quantized outputs) to the sen-

sors (using quantizer bias control) can also be analyzed using the associated single-sensor
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principles. As a natural extension of the single sensor results, at each sensor our objective

is to operate around the point where the information loss is minimized; in the case M = 2

for instance, performance is optimized when we operate in the vicinity of the quantizer

threshold. As a generalization of the single-sensor analysis for quantizer bias control via

feedback, the control input can be selected using (2.52), where A[n- 1] denotes the estimate

of A based on observations collected from all L sensors up to and including time n - 1. For

instance, in the case M = 2, the multi-sensor extension of the ML estimator (2.53) is given

by

EM [n]=ZA + Le~i V~WnL exp (_ ( L[]A[lEM n])

,(k+l) (k) rn, + 2 (a

ye=m] (: i [m]

(3.7a)

initialized with A(o) [n] = AML[n - 1] and AML[O] = 0, where for any n,

AML[n] = lim A(k[n] (3.7b)
k-+oo

The associated multi-sensor extension of (2.58) is similarly given by

AML[n] from (3.7) if n < nO

AAn] EL O V-1 ytn (3.8)
a iA[n- 1] + /) if n > n (3.8)

Fig. 3-2 depicts the MSE performance of the ML estimator (3.7) and A[N] given by (3.8)

for a network of L = 5 sensors. As in the single-sensor case, the MSEs of both estimators

practically achieve the associated Cramer-Rao bound corresponding to a 2 dB information

loss for moderate N. In general, spatial redundancy (large L) leads to faster convergence to

the associated 2 dB bound. This fact is exploited in Chapter 5 where we develop encodings

for sensor networks used to estimate fast time-varying signals.

In the Gaussian scenario, for networks of sensors encoding 1 bit of information per

measurement and employing quantizer bias control with feedback, the associated informa-

tion loss can be directly obtained using appropriate interpretation of Fig. 2-7 describing

the single-sensor case. Similar extensions of the associated single-sensor problem can be
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Figure 3-2: MSE for AML[N] and A[N] for a network of L = 5 two-level quantizers, using
feedback in the selection of the control input, and associated Cramer-Rao bounds (see also
caption of Fig. 2-9). The sensor noise levels are 0.08, 0.08 0.08, 0.2, and 0.4, while A = 0.4
and A = 1.

obtained for any set of sensor noises for M > 2. For instance, if feedback is available and

properly used in the multi-sensor setting shown in Fig. 3-1, a small worst-case information

(and MSE) loss can be achieved, independent of the dynamic range and the noise power

levels. This small information loss, however, will in general depend on both the quantizers

Fe() and the sensor noise PDFs.

3.1.2 Perfectly Correlated Sensor Noises

In this section we consider an example involving sensor noises that are spatially correlated.

In particular, we consider the case where the concurrent sensor noise samples are spatially

perfectly correlated, i.e., v[n] = v[n] for 1 < e < L and where v[n] is an IID sequence.

This model may be naturally suited for distributed estimation settings in which there

is an additive distortion component that is identical at a number of distinct sensors. In

addition, this model may arise in a variety of other applications involving estimation from

coarsely digitized measurements; in the context of analog to digital conversion of noisy

signals for instance, this model may provide a reasonably accurate representation of the

noisy analog signal that is to be digitized by each element in an A/D converter array of
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inexpensive components.

For such systems, the analysis in the presence of known periodic control inputs, or

of control inputs selected using feedback information, naturally decouples to that of the

associated single-sensor problems we have already considered in Chapter 2. For instance,

a network of L binary quantizers where the control inputs used are known for estimation,

is equivalent to a single L + 1-level sensor with known time-varying thresholds.

Henceforth, we focus on the special case where the control inputs wt[n] correspond to

pseudo-noise sequences that are well modeled as independent IID Gaussian sequences, each

with variance a2, and focus on the case M = 2.

Motivated by the form of the estimator (3.3) we focus on the following elementary

estimators of A

A (yN)= A (-O Q-l1 (y (yN))) (3.9a)

where yN is given by (3.2) and

k (YN) = NL =2 + NL y e[n] (3.9b)
n=l £=1

We will mainly focus on the case where a, < A, which corresponds to significant worst-case

information loss in the case L = 1 examined in Chapter 2, even when the pseudo-noise level

is optimally selected (see dash-dot curve in Fig. 2-7 for large A/av) . We can show by

methods very similar to those used in App. A.4, that for large N and L, the MSE of the

estimator in (3.9) is reasonably approximated as follows

E [(A - A (YN))2] N (A; a) + - (A, a,, a) (3.10)

where BAr (A; oa) is given by (2.16), and

q(A, =, p(A, a, .) = ( AQ

where

p(A,av,a)= 2 j Q (- A+) exp - dv.
-oo Bw 2a2~~~~~~
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Figure 3-3: Estimation in the presence of perfectly correlated sensor noise components. The
pseudo-noise sequences wi[n] for i = 1,2, ,-.. L are modeled as independent IID Gaussian
noise sources, independent of v[n], with , = 0.6. The solid (dashed) curve corresponds to
the predicted MSE loss, while the "o" ("*") marks depict the MSE Loss from Monte-Carlo
simulations for the estimator (3.9) for A = 0.6 and ao = 0.02 (a, = 0.1).

In Fig. 3-3 we present the results of Monte-Carlo simulations on the MSE loss of the es-

timator (3.9) for two representative sensor noise levels. The solid (dashed) curve depicts

the MSE estimate (3.10) for A = 0.6, = 0.02 (a, = 0.1), while the "o" ("*") symbols

depict the associated simulated MSE from Monte-Carlo simulations. The pseudo-noise level

used at all sensors was .= 0.6, while the signal dynamic range is A = 1. As the figure

illustrates, (3.10) predicts the MSE loss fairly accurately for large L in these two examples.

Eqn. (3.10) suggests a method for obtaining an approximate value for the minimum

number of sensors Lmin that is required in order to achieve performance within C dB of

the unconstrained performance o,2/N, for ,o < A, by means of the estimator (3.9). In this

parameter regime, Bg (A; au) > r/(A, a,,, o,) and a,, a, which together imply that

min a2 B (A; a)Ln 10 C/0' O - (311)

In Fig. 3-4 we present the network size Lmin required to achieve MSE performance within
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Figure 3-4: Minimum network size Lmin required for reaching within 2 dB (solid curve) and
1 dB (dashed curve) of the infinite-resolution MSE, as predicted by (3.11). The "o" and
"*" marks depict the required Lmin according to (3.10) for a,/A = 0.02 and a,/A = 0.1,
respectively.

2 dB (solid curve) and 1 dB (dashed curve) of the best performance based on the original

infinite-resolution noisy measurements (i.e., B (A; SN) = a2/N), as a function of a,,/A

according to (3.11). The "o" and "*" marks depict the required network size Lmin by

means of (3.10) for av/A = 0.02 and a,/A = 0.1, respectively. Note for instance that, if

A = 1, then for a, = 0.6 and a, = 0.1, a network of size L 280 is needed to achieve the

infinite-resolution bound within 2 dB, while a network of size L - 635 reaches within 1 dB

of the infinite-resolution performance.

3.2 Incorporation of Prior Information

In a number of applications involving estimation from digital encodings of the form of

quantizer bias control, we may have prior information about the relative likelihood of various

values of the information-bearing signal, which in the static case is a single parameter

A. Such a priori information can arise from a variety of sources, such as the underlying

mechanisms that generate the information-bearing signal. As we will see in Chapter 5,

temporal correlations in the information bearing signal can often be exploited in the form
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of a priori information.

In all these cases an average rather that worst-case performance metric is more naturally

suited for system analysis and design. As we show in this section, we can design encodings

based on quantizer bias control for which the average information loss rates exhibit strikingly

similar behavior to the associated worst-case information loss rates developed for unknown

parameter estimation. Specifically, the quality of the encoding is characterized by the

average encoding performance given by

/ (A; y) - E[ (A; y)] = B (A; y)PA(A)dA. (3.12)

and the average information loss given by

(PA ( )) E [£(A)] = (A)A (A) PA (3.13)

where L(A) is given by (2.4), and B (A; y) is the Cramer-Rao bound for estimating an

unknown parameter A based on any one sample of the IID sequence y[n]. Since the best

possible MSE performance based on the uncoded set of observations s[n] satisfies

B (A; s)= B(A; s),

the average information loss (3.13) and average Cramer-Rao bound (3.12) can be used

interchangeably as measures of performance.

The metrics (3.12) and (3.13) are reasonable performance metrics for assessing the en-

coding performance for a large number of observations, and, in particular, as N -+ oo.

Specifically, if N is large enough so that the information due to the encodings yN domi-

nates the information from the prior information, (3.12) and (3.13) represent the MSE limits

for estimation based on the encodings only, averaged with respect to the prior PA (). At

the other extreme where N = 0, there is no information loss in terms of using the encodings

instead of the original data: in both cases the only information available is due to the prior

information. In general, the larger N the more the information due to the encodings, and

thus the larger the information loss. Thus, for small finite N the information loss due to

the encodings is in general less than (3.13).

We next consider two representative forms of a priori information. First, we consider
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the case where the random variable A is uniformly distributed within the range (-A, A).

Consequently, we consider a case where the parameter A is a Gaussian random variable

(and thus is not range-limited).

3.2.1 Uniformly Distributed Signal

In this section we develop extensions of the encoding and estimation algorithms of Chapter 2

where the objective is to optimize average rather than worst-case performance over the

signal dynamic range. It is often reasonable to assume that the random variable A is a

priori uniformly distributed in (-A, A).

Estimation Algorithms

Analogously to the ML estimate for unknown parameters, we may consider the maximum

a posteriori (MAP) estimate of the random variable A given yN [31], namely

AMAP (yN) = arg max [In (PYNIA (yNI))+ln(pA ())]

Due to the particular form of the prior PA (), for any type of encodings generated via

quantizer bias control, the MAP estimate is identical the associated ML estimate with range

restriction in (A, A) developed in Chapter 2. Consequently, for all encoding scenarios of

the form of quantizer bias control that we have considered in Chapter 2, the associated

estimation algorithms we have developed in Chapter 2 are asymptotically optimal, in the

sense that they asymptotically achieve the associated average information loss (3.12) of

the encodings. Consequently, we simply need to redesign the encoding strategies having in

mind that we now need to optimize over average rather than worst-case information loss

performance.

Pseudo-noise inputs

We first consider the estimation problem (2.1) with F(-) given by (2.2), where the control

input is a pseudo-noise sequence. We assume that w[n] and v[n] are independent IID zero-

mean Gaussian sequences with variance av2, and oa respectively, and independent of A.

We wish to select the pseudo-noise level a so as to minimize the average information loss

(3.13). For convenience, we use B (A, a, aw) to denote (3.12) for a given A, ao, and
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a,, and B (A, a,>) to denote (3.12) for a given A and a, = va + /oa. Similarly, we let

L (A, a,, a,) denote (3.13) for a given A, a,, and a,, and L (A, a,) denote (3.13) for a

given A and a = aO +a.

For any admissible sensor noise distribution, let a°Pt(A) denote the sensor noise level

that minimizes the average encoding performance (3.12), i.e.,

aoPt(A) = arg min (A, ) (3.14)

In a manner analogous to the treatment of the unknown parameter case we can show that

a°Pt(A) > 0 for any A > 0. In particular,

a°Pt(A) = argmin B (A, ) = A argmin E[B (A/A; a/A)] = -°Pt() A, (3.15)
a a

which also implies that

B (A, op t(a)) = A2 (1, aoPt(1)) . (3.16)

Fig. 3-5 depicts B (A, a,) /A 2 as a function of a,/A for A being uniformly distributed. As

the figure reveals, ooPt(A) > 0 for A > 0. In particular, numerical evaluation of (3.14) for

A = 1 together with (3.15) yields

aoPt(A) = aoPt (1) A 0.4622 A. (3.17)

The existence of a nonzero optimal noise level in terms of minimizing the average MSE

performance of the encoding for any given A can be exploited to provide encoding per-

formance benefits by means of pseudo-noise bias control. Specifically, by choosing the

pseudo-noise power level as

.OP"t(a) = ( /[aopt(A)] 2 - a2 if Oopt(A) (3.18)
0 otherwise

where a°oPt(A) is given by (3.17), the average encoding performance is given by (3.16) at
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Figure 3-5: B (A, ) /A 2 as a function of avi/ when A is a priori uniformly distributed in
(-A, A).

high SNR X defined as X = A/a,, which, in conjunction with (2.8), gives

,pn (X) = L (1, aoPt(l)) X2 (3.19)

for large enough X. For comparison, consider the case where the control input is set to zero

and where the sensor noise is Gaussian. The average information loss in this case is given

by

L2 A ^ () (~ _) By exp 2)dA

-2
~ A exp (X2/2)

where the approximation holds for large X- Combining the above approximation with (2.8)

we obtain the average information loss in Gaussian noise in the absence of a control input,

namely,

free (X) exp (X2/2) ,

which grows at a rate much faster that the optimal pseudo-noise case in (3.19). Again, we

can easily show by extending the proof of the unknown parameter case that pseudo-noise
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yields performance benefits for any admissible sensor noise PDF and any quantizer with

M >2.

Known Control Inputs and Control Inputs via Feedback

Similar extensions of the unknown noise counterparts can be developed for known control

inputs; we may use periodic control inputs of the form (2.26), where by choosing K according

to (2.26) we can again achieve a linear growth rate for the average information loss as a

function of X-

Finally, in the presence of feedback the encoding and estimation strategies used in

Chapter 2 achieve the 2 dB loss for all parameter values, which implies that worst-case and

average performance are in this case identical.

Similar behavior is exhibited by other a priori PDFs. We next describe encoding strate-

gies and estimation algorithms in the case that the random variable A is Gaussian and

where the sensor noise is also Gaussian.

3.2.2 Normally Distributed Signal

In a number of practical scenarios the information-bearing signal is not range-limited, that

is, a uniformly distributed PDF description fails to provide an accurate description of the

a priori parameter characterization. Often, it is reasonable to assume that A is a priori

normally distributed with mean mA and power level a . For instance, this is a naturally

suited a priori signal description in cases where the random parameter denotes the overall

effect of large collections of finite power events. As we will show, there is also a natural

measure of signal-to-noise ratio in the design and performance evaluation of these systems.

Again we focus on the case that the sensor noise PDF is Gaussian.

Pseudo-Noise Control Inputs

We first consider the estimation problem (2.1) with F(-) given by (2.2) in the case that the A

control input is a pseudo-noise sequence. We assume that wi[n] and v[n] are independent

IID zero-mean and normally distributed sequences with variance o, and a respectively,

and independent of the Gaussian random variable A. We wish to select the pseudo-noise

power level oa so as to minimize the average information loss (3.13). For illustration, we

focus on the case M = 2.
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Figure 3-6: B (aA, a) /A as a function of c7v/(CA when A is a priori zero-mean and normally
distributed with variance OA.A

First we consider the special case where A is zero-mean. For convenience, we use

(A, a, a,,,) to denote (3.12) for a given A, a, and a,,, and (A, a,) denote (3.12) for
a given aA and a, = C/ + cr. Similarly, let (aA, a,, a,,) denote (3.13) for a given A,

a,, and oa(, and (A, Aoc) denote (3.13) for a given aA and a, = /. Following

the analysis of Section 3.2.1 we can show that for any given signal power level aA > 0, there

is an optimal aggregate noise level a oPt in terms of minimizing the average encoding loss

(3.12). In particular, similar to (3.15) we have

°OPt(CA) = a°Pt(ol) A 1. 1 3 9 5 A (3.20)

where aoPt(al) has been numerically computed. Fig. 3-6 depicts (A, aC) /aA as a func-

tion of a,r/CA, where A AJ(O, aA). As the figure reveals, ao°Pt(A) > 0 for A > 0.
Eqn. (3.20) also implies that

(A, aoPt(CA)) = a B(1, aoPt(l)) . (3.21)

We can exploit (3.21) to show that the average information loss (3.13) can be made to grow

as slow as quadratically with an appropriately defined measure of SNR; by choosing the
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pseudo-noise power level as

ropt(A) _ /[o°Pt(A)] 2 - 2 if o°Pt(OA) > 0' (3.22)

0 otherwise

where Or°Pt(aA) is given by (3.20), the average encoding performance is given by (3.21)

which, in conjunction with (2.8), and by letting X = aA/a, gives

Lpn () = L (1, ,°Pt(l)) x2 (3.23)

for X > 1//a°Pt(1). For comparison, performance degrades rapidly at high SNR j if w[n] = 0;

free (X) = 1 Q (U)Q i2( ) f (u)du, (3.24)

which is finitel only for X < 1. Furthermore, due to the optimal selection of the pseudo-noise

power level in (3.22), we have

opn () < free (;) (3.25)

for all .

For mA 0, the optimal pseudo-noise level depends both on A and on mA. For

aA < mA, the random variable A is effectively distributed within a very small region

around mA. In that case the worst-case performance analysis of Chapter 2 can be used to

accurately predict average performance (where A is replaced with mA):

°OPt(aA,mA) = argmin B(aA, m A, a,)
av

2
arg min B (mA, a,) - ImA,

where B (mA, a,) is given by the right hand side of (2.16) for A = mA and a = oa,. For

'The information loss in the encodings is finite for any N < oo. The fact that free (aA/0a) diverges for
0A > a, simply implies that the information loss in the encodings is an increasing function of N with no
upper bound.
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Figure 3-7: Each solid curve depicts the numerically computed value of a°Pt(aA, mA) as a
function of CA for a given mA. The dashed curves correspond to the associated predicted
values based on (3.26).

arbitrary mA and CA, the optimal pseudo-noise level is accurately approximated by

O'°Pt(aA, mA) [(1.1395)r aA + (2/)r lImAl]r , (3.26)

with r = 1.6. Fig. 3-7 shows the accuracy of the approximation (3.26) (dashed) in terms of

predicting the optimal pseudo-noise level a°Pt(aA, mA), obtained via numerically optimiza-

tion (solid).

The (MAP) estimate of A given yN can be readily implemented by means of the EM

algorithm described in App. A.5; use Eqns. (A.36), (A.37) in conjunction with (A.28) and

(A.30). In this case these equations specialize to the following algorithm

AM = mA -t2 ['EM -mA - +A(k+l) =MA+ (k) 

T*K ()exp 2 - exp 2-

m=l Z N ( i( x .l-A1 ) Q c( . C )

(3.27a)
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and where AMAP (yN) is given by

AMAP (yN) = lim A(k) (3.27b)k-+oo EM

In general, for large N the MAP estimate (3.27) is approximately given by the ML estimate.

Thus asymptotically it achieves the average information loss (3.13).

Known Control Inputs

A priori information can be also incorporated in the system (2.1)-(2.2) in case the control

sequence is known for estimation so as to enhance performance. Specifically, optimized

encodings together with the corresponding MAP estimators that approach the associated

bounds (3.12) can be constructed.

For brevity we again focus on the system corresponding to M = 2. We simply need

to consider the case where the Gaussian random variable A is zero-mean; given that the

control input is known to the estimator, the encoding strategies we develop in this section

for the zero-mean case can be readily modified to accommodate the general case.

Unlike the range-limited information-bearing signals considered in Chapter 2 and Sec-

tion 3.2.1, periodic control inputs are inadequate for achieving optimal performance 2 . For

this reason we consider aperiodic control inputs, and in particular control inputs that are

sample paths of an lID zero-mean Gaussian random process with power level C2. The

objective is to determine the power level of the control input signal that optimizes the

encoding performance in terms of minimizing (3.12) or (3.13).

To distinguish it from B (A, a,, to,) (the average encoding performance in the case that

the estimator only exploits statistical characterization of w[n]) we will use B (oA, oa; aw)

to denote the average encoding performance for a given set of aA, oa,, and aw, where win] is

an IID Gaussian process of power level a 2 , and where w[n] is known for estimation. For any

given value of the random variable A, the Cram6r-Rao bound on all unbiased estimates of

A from y[n], where w[n] is known to the estimator and is a sample path of an IID Gaussian

2 Although as N -+ oo we can not rely on periodic inputs to achieve optimal performance, for any finite
N, no matter how large, we can develop periodic inputs that are approximately optimal
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process, satisfies

1 (A; y, p, ()) J {B(A-w; y))}-' p () d] -

Q(A--) Q( A-w) f w

= a aw Qf2 (u) Q (-u) e)du]
(U) f(uA) du]-

Q u)Q 0w2A 

where approximation (3.28d) is valid for a,, < aw, and where

T =[ p Q ( ) Q(u) du] t 0.5536.

The average encoding performance B (aA, a,; aw) is then given by substituting (3.28d) in

(3.12)

a, aW |( A)
a ( adA

CA f A)

av aw I
aA

which is finite if and only if a > A.

exp °° A2

exp -2
1 1) dAa72 ar2A WJ

(3.29a)

(3.29b)

In particular, the value of aw that minimizes

B (aA, a, ; a) for aA > a (i.e., large SNR X) is a = aA, in which case (3.29b)

reduces to

Specifically, if we select

awP(oA) = { 0

if a > a,
(3.30)

otherwise
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Figure 3-8: Average information loss as a function of signal-to-noise ratio X for no control
inputs (upper solid) and for optimally designed pseudo-noise (middle solid) and known
(lower solid) inputs in the case M = 2. Both the IID sensor noise and the a priori PDF are
zero-mean Gaussian. The control input is a typical sample path of an IID Gaussian process
of power level, selected according to (3.22) and (3.30), respectively. The successively lower
dashed lines show the high-SNR performance, as predicted by (3.19) and (3.31), respectively.
The dotted line depicts the 2 dB lower bound.

and by using the fact that B (A; s) = a2, we get

Tkn (X) 4 HEX (3.31)

for high SNR, i.e., by proper choice of the energy level of the Gaussian control input we

can make the average information loss to grow as slow as linearly with SNR.

The information loss of this scheme is depicted in Fig. 3-8 as a function of SNR . The

figure also depicts the high-SNR average performance for optimized pseudo-noise (upper

dashed) and known (lower dashed) control inputs and predicted by (3.19) and the approxi-

mation (3.31), respectively. Although the encoding scheme and the criterion used to assess

the encoding quality as well as the a priori assumptions about the information-bearing

signal differ substantially from the unknown parameter case considered in Chapter 2, the

resulting performance is strikingly similar.

The MAP estimator for any known control input sequence is very similar to (3.27) which
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was used in the pseudo-noise case. Specifically, it can be readily implemented by means of

the following EM algorithm which is a special case of the algorithm derived in App. A.5:

A(k+l) 1 [,A(k)
EM =MA+ a2 EM-mA+-~2~1) 2 2mA

expV 2 ) (· 2 exp

mE l TV Q (k) -Q (Zm )
m=1 ZN

(3.32a)

and where

Z(k ) Xm - EM - Wopbzk= mA )p .(3.32b)
o'v

the MAP estimate AMAP (yN) is then given by

AMAP (yN) = lim A(kEM . (3.32c)

Feedback in Control Input Selection

A priori information can also be incorporated in the system (2.1)-(2.2) employing feedback

in the selection of the control sequence. Specifically, average encoding performance bounds

and corresponding MAP estimators that asymptotically approach these bounds can be

constructed.

Again we focus on the system corresponding to M = 2. We can design MAP estimators

for the feedback case; these asymptotically (large N) attain the performance of the ML

estimators based on feedback (developed in Chapter 2) and thus for any A asymptotically

achieve the 2 dB bound. Consequently, in this case the average performance is the same.

In general, for finite N, the performance bounds of these MAP solutions will be depen-

dent on N. In determining the lowest possible achievable Cramer-Rao bound for estimating

A ' A'/ (mA, aA) based on observation of yN from (2.1)-(2.2), we allow the selected control

vector wN to depend on the particular value of A. Specifically, let /6 (yN; wN) denote

the Cram6r-Rao bound for estimating A resulting from a particular selection method for

the control input wN based on observation of yN. We may use the Cram6r-Rao bound on
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unbiased estimates in the case that A is a random variable which in the case the input is

known satisfies

(yN; WN)= (E [{B (A; yN, wN) } ] + -AA (3.33a)

= (E [{B(A-w[n]; )}-'] + A2 (3.33b)

n 1
>- 2N 1 ' (3.33c)

2 A

where B (A; yN, wN) and B (A - w[n]; y) are given by (2.23) and (2.16), respectively.

Ineq. (3.33c) provides a bound on the performance of any unbiased estimator of A from

yN, and for any selection of the control sequence wN. Note that (3.33c) results from

application of (2.37), with equality achieved for w[n] = -A. Since such a control sequence

is not plausible (due to its dependence on the unknown parameter A), in a manner analogous

to (2.52) we may select the control sequence as follows

w[n] = -AMAP (yn-) . (3.34)

The corresponding MAP estimator can be obtained from the ML estimation algorithm

(2.53) with minor modifications, and can be derived as a special case of the algorithm

described in App. A.5:

1 A( [ ] - m +c[EM ] mA 1+ a2 AEM +
noA

n y exp MP , m]) (3.35a)

Vm=l n Q(AEM [n]-AMAP [m] y[m])

AMAP[n] AMAP (yn) = lim AEM[n] (3.35b)
k-+oo (3.35b)

Empirical evidence suggests that the MAP estimate (3.35) in conjunction with selecting

w[n] according to (3.34) achieves the minimum possible information loss (3.33c) for mod-
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Figure 3-9: Performance based on Monte-Carlo simulations (solid curve) of the MAP esti-
mator of the random parameter A based on observations from a binary quantizer where the
control input at time n equals the negative of the estimate at time n - 1. The dotted curves
correspond to the Cram6r-Rao bounds for estimating A based on the infinite-resolution
sequence (dotted curve) and the quantized-sequence based on the best possible control
sequence selection.

erate N values, similarly to its ML counterpart. Note that in the presence of a priori

information, and for A << a, the control sequence w[n] enables immediate operation

around the quantizer threshold, and thus quicker convergence to the corresponding mini-

mum possible information loss (3.33c). However, for large enough N, where the information

from the available observations dominates the a priori information we may also substitute

the MAP algorithm (3.35) with the low-complexity estimator (2.58) without compromising

performance.

3.3 Unknown Noise Power Level

Another important extension of the estimation problem considered in Chapter 2 involves

estimation of the unknown parameter of interest when in addition the noise power level is

unknown. Specifically, consider the problem of estimating the unknown parameter A and

81

: : : . : : I : : : ; ;

...........; ...... ,....:. ..... ................................ ........... ................

................. ........... .. ·........................... ,...~~·.. ~ ....

.......... . ...... ;. · ....... ... ·........ ................. ·.- ;



possibly the unknown noise power level a, from observation of

y[n] = F(A + ao, [n] + w[n]) (3.36)

where i[n] is an IID process of known statistical characterization, w[n] is a control input,

and F(.) is an M-level quantizer given by (2.2).

3.3.1 Performance Limits

In order to assess the performance of the encoding strategy we develop, we rely on extensions

of the figures of merit developed in Chapter 2. Specifically, let 0 = [A a,]T denote the vector

of unknown parameters, and let also for convenience 01 = A and 2 = a,. Let B (; yN)

denote the 2 x 2 Cram6r-Rao bound matrix for unbiased estimates of the vector parameter

0 from observation of yN. Then

E [(A (yN)- A)1] > [ (; YN)] 1 1

and

E [(d (N) _ av) 2] > [ (; N)122 ,

where A (yN) and d, (yN) are any unbiased estimators of A and a,, respectively.

Analogously to the known a, case, we use as our measure of quality of the encoding

strategy the following notion of information loss

[B (0; yN)]~,1
1(A, a) = [B (A; sN)], 1 (3.37)

We assume that the range of the parameter of interest A is (-A, A), while the unknown

noise level satisfies amin < a,. Worst-case performance is used as a measure of the encoding

quality, i.e.,

Lmax(A, amin)= -max L£(A, a,). (3.38)
AE(-a, A)

OWv E (fmin, )

We focus our attention on the case where [n] is a zero-mean Gaussian noise process of unit
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variance; similar results can be developed for nonGaussian admissible sensor noises.

Pseudo-noise Control Inputs

In this section we assume that the estimator can only exploit knowledge of the statistical

characterization of the control input w[n] for estimation. In particular, we assume that

the control input can be modeled as an IID zero-mean Gaussian sequence of power Ua2. As

usual, absence of a control input corresponds to the special case aw = 0. Consider the 2 x 2

Fisher Information matrix associated with the Cramer-Rao bound matrix B (; yN), i.e.,

(8; yN) = [ (; yN)] -. (3.39)

The (i, j)th entry of the Fisher Information matrix can be obtained by partial differentiation

of the log-likelihood with respect to 8i and j, followed by an expectation, and can be put

in the following form

[F (; N)] j=

M

1 M
N E

m=lM1 v

N 
m=l

2

7rnEm

em

Em

if i= j = 1 (i.e., Oi = Oj = A)

if i = j = 2 (i.e., i = j = a,)

if i j

1 [f
Xm_ --A

( c, '

m = a,, [Xm - A f ( Xm- -A)
aO2 a, a

t cn -tr'

f (Xm A)] (3.40b)

Xm-A f X-A

aa a,
(3.40c)

(3.40d)

f(x) = exp(-x 2/2)/V, and ao = /a + o,.

In the special case M = 2 the determinant of F (0; yN) equals zero, revealing that
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estimation of 9 for M = 2 is an ill-posed problem. In the absence of pseudo-noise (, = 0)

this is easily clarified by noting that a parameter 6 = [A av]T yields the same observation

sequence as the parameter A - = [A A Xatv]T; given any sequence [n], and by denoting the

observed sequence as y[n; A] to denote its A-dependence, we have

y[n; A] = sgn (A A + A a,, [n]) = sgn (A + av, [n]) = y[n; 1] .

Similarly, in the pseudo-noise case, for any A > 1, any pair (A, a,) is equivalent to a pair

(A A, A' a,), where

A/= _ A2 (0f2 + _2 _2

since

y[n; A]=sgn(A A ,2 +a n]) =sgn ( A + A a, [In]) = y[n; 1].

For this reason, for pseudo-noise control inputs we focus on the case M = 3 to illustrate

the encoder design. In particular, we assume that F(-) is a symmetric quantizer, i.e.,

X1 = -X2 = X. Given A and amin, we wish to select the noise power level Ao,, so as to

minimize the worst-case performance as depicted by (3.38).

The worst-case performance (3.38) in this case occurs at the parameter space boundary

where a - amin and AI -+ A. In particular, analogous to the case that the sensor noise

power level is known we may define a measure of peak signal-to-noise ratio, as follows

X=
Amin

via which we can characterize the encoding performance. In Fig. 3-10 we show the optimal

choice in terms of the pseudo-noise level in the sense of minimizing the worst-case informa-

tion loss (3.38) as a function SNR for A = 1 and X = 0.5. As in the case corresponding to

a known sensor noise level examined in Chapter 2, it is evident that at high SNR A/,min,

the optimal pseudo-noise level is independent of the sensor noise level amin.

The solid line in Fig. 3-11 depicts the associated worst-case information loss as a function

of SNR. In the same figure the dotted curve depicts the uncoded performance, corresponding
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Figure 3-10: Optimal Pseudo-noise level as a function of SNR for a three level quantizer
with X = 0.5, and A = 1.

to win] = 0. For comparison we show the associated performance curves when there is no

control input (dash-dot) and for pseudo-noise encoders (dashed) in the case that the sensor

noise level is known (in which case the peak SNR equals A/a,).

Fig. 3-12 shows the additional information loss arising from lack of knowledge of the

sensor noise level. As we can see, lack of knowledge of the sensor noise level comes at an

additional cost of less than 8 dB encoding loss for any signal-to-noise ratio X-.

Known Control Inputs

We can also consider encoding strategies for the case that the estimator can fully exploit

knowledge of the control input sequence used at the encoder. Naturally, we wish to construct

the control input so as to minimize the worst-case information loss (3.38). In a fashion

similar to the case where the noise level is known we can show that by using periodic

control inputs of the form (2.26) where K is selected from (2.27) and where X is replaced

with A/Lmin we can provide encoding strategies for which the associated information loss

grows linearly with A/amin.

The (i, j)th entry of the Fisher Information matrix can be obtained by partial differen-

tiation of the log-likelihood with respect to Oi and Oj, followed by an expectation:

[I (; yN)> =

K M K k]
if i = j = 1 (i.e., Oi = j = A)

N m=1 k=1 Em[k]
(m[k] if i = j = 2 (i.e., i= = ) , (3.41a)

m=l k=l

1 M K
if i j

m=l k=l
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Figure 3-11: Information loss as a function of SNR in the absence of a control input (dotted)
and in the presence of optimally selected pseudo-noise level (solid). For comparison, the
associated performance curves for known sensor noise level are shown.

where

m[k] = 1 [f (Xm - A - w[k]) _ f (X m - A- w[k])] (3.41b)

Sm[,k] = a [Xm- - A k- w[k] f (a2 O'Ce 
Ot~a

m[k] = Q (Xm-1

X - A - [k] Xm - A - w[k] Xm - A - w[k]
a a (3.41)

(3.41c)

- A - w[k] Q Xm - A - w[k]) 
a, Oaa

(3.41d)

and f(x) = exp(-x 2/2)/ 2.

In Fig. (3-13) we show the performance (solid) in terms of the worst-case information

loss as a function of SNR. We also show the associated performance in the case that the

power level is known for estimation (dashed). As the figure illustrates, lack of knowledge

of the noise power level comes at a cost that is upper-bounded by about 3 dB at low SNR,

while at high SNR the additional loss is negligible.
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Figure 3-12: Additional worst-case information loss arising from lack of knowledge of the
sensor noise level a,.

-20 -10 0 10

Peak SNR X (in dB)
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Figure 3-13:
noise level is

Worst-case information loss for known control input, in the case the sensor
known (dashed) and unknown (solid).

Control Inputs in the Presence of Feedback

As in the known sensor noise level case, exploiting feedback in the design of the quantized

encodings can yield substantial benefits in terms of the associated information and MSE

loss. Although feedback can also be exploited in the case M = 2, for purposes of illustration

we restrict our attention to the case M = 3 involving a symmetric quantizer. In that case,

for any oa we have

[6 ([A aT; YN)]i i< [3 ([0 a] ]T; YN)ii

for i = 1, 2, which reveals that

[B ([A a]; y, w )]ii > ([,T; N)iiN,

and where equality is achieved if w[n] = -A for n = 1, 2, --- , N. In the presence of

feedback the performance corresponding to w[n] = -A can be practically achieved by using
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encodings of the form:

w[n]= -A[n - 1] (3.42)

where A[n - 1] is a consistent estimate of A.

3.3.2 Estimation Algorithms

In App. B we present an EM algorithm which, under the condition that the likelihood

function has a single local maximum over the parameter range of interest, results in the ML

estimate of the unknown parameter vector 8 = [A a,]. Depending on the particular case,

this EM algorithm specializes to a number of different forms.

For pseudo-noise control inputs, the ML estimates AML[N] and aML[N], of A and a,,

respectively are given by

(3.43a)AML[N] = lim (k)
k-+oo = EM

(k) 2
UML[N] = lim [ 2E] -- a 2

k-+oo

where AE(k+) and M(kfl) are given by (B.5a) and (B.5b) with I = N, and where

ar

dr

- amin + a 2

= 00

(3.43c)

(3.43d)

a(k) £m (yN)

(3.43b)

M

= NAE+Z
m=1

= XEM. [E

X -(k) EM
(k)

7EM

1 +E Kym(yN)

m=l NV

Q (t) 1) - Q (k9)

t ('-) .) 2 2

exp (i2) tm- exp tm

Q (t(k) ) -Q ((k))

In Fig. 3-14

A = 0.1, A

we present the MSE performance of this EM algorithm for X = 0.5, N = 1000,

= 1, amin = 0.05, for several values of the pseudo-noise power level a, in the
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Figure 3-14: MSE loss in the parameter A from quantized encodings with pseudo-noise
control inputs as a function of sensor noise level for aw = 0.25.

two cases that aw = 0 and rwa, = 0.25. As we can see, in both cases the information loss

metric (3.37) accurately predicts the MSE loss performance of the EM algorithm.

Similarly, in Fig. 3-15 we depict the MSE in A and a, of the EM algorithm of App. B,

when feedback is available and is exploited in the form of (3.42), for a symmetric quantizer

with M = 3 and X = 0.1, in the case that 0 = [0.5 0.1]T. As the figure reveals, feedback

in conjunction with the EM algorithm of App. B achieves the optimal performance within

a few iterations.
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Figure 3-15: MSE performance of the EM algorithm of App. B for estimating the parameters
A (upper figure) and a, (lower figure) from quantized encodings in the presence of feedback
exploited via (3.42). The dashed lines correspond to the performance predicted by the
Cramr-Rao bounds at 0. = (A*, a,). The dotted lines correspond to the Cramer-Rao
bounds for estimation of the parameter 0 based on original observations sN .
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Chapter 4

Optimized Encoding Strategies for

the Static Case

Encoders of the form of quantizer bias control are very attractive for digitally encoding

noisy measurements since they can be designed to provide nice tradeoffs between encoder

complexity and performance. However, although these encoders can achieve performance

that does not degrade with SNR by exploiting feedback, these systems are inherently limited

in the sense that, in general, they incur a small information loss.

In this chapter we examine the problem of eliminating performance losses by allowing

more freedom in the encoder design. This problem may arise, for instance, in the context of

distributed networks of wireless sensors, where bandwidth constraints limit the effective data

rate (or equivalently bits per measurement) at which each sensor can reliably communicate

to the host, but not the processing complexity at the sensor. The resulting problem of

joint design of signal encoding and estimation can be viewed as a generalization of the

low-complexity quantizer bias control systems developed in Chapter 2, where the encoder

has the resources to perform more elaborate processing.

As in Chapters 2 and 3, we focus on the static case; we wish to determine the performance

limits in terms of estimating a range-limited parameter based on digitally encoded noisy

measurements. A block diagram description of the general problem is depicted in Fig. 4-1.

A sequence of noise-corrupted observations sn] of an unknown parameter A E (-A, A)

is encoded causally into a sequence of symbols M-ary symbols y[n]. The objective at the

receiver is to estimate A based on the encodings y[1], y[2], - , y[n].
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[n] Causal Signal y[nP
A - Encoder Estimator A n]
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parameter estimate
in (-A, A) vin]

Sensor noise

Figure 4-1: Block diagram of systems performing encoding and signal estimation.

We assume that system constraints actually limit the average encoding rate to at most

one encoded M-ary symbol per sensor measurement (as shown in Fig. 4-1, this rate limi-

tation is enforced by constraining the encoder to be causal). In the process we consider a

variety of encoding schemes. These range from batch-mode encoding strategies, where the

encoder first observes all n noisy measurements and then provides an n-symbol encoding

from these measurements that can be used to form a single estimate at time n, to embedded

fixed-rate encoders which encode one M-ary symbol per each available sensor measurement.

In Section 4.1 we introduce the figures of merit that we use to characterize the perfor-

mance of the various encoding and estimator systems that we develop in this chapter. In

Section 4.2 we develop variable-rate encoding methods and associated estimators which are

asymptotically optimal in the sense that they asymptotically achieve the performance of

any consistent estimator from the original sensor measurements that can be computed at

the encoder. Then in Section 4.3 we consider fixed-rate encoding methods which encode

at the sensor one symbol for every new available observation. We construct a class of such

encoding methods which are also asymptotically optimal. We also illustrate the robustness

of these encoding strategies by examining their performance in the presence of a nonadmis-

sible noise. Finally, in Section 4.4 we present multi-sensor extensions of the single-sensor

systems that are developed in this chapter.

4.1 Performance Characterization

For convenience, throughout this chapter we use the notation A[n] to denote an estima-

tor of the parameter A that is formed at the sensor from the original noisy observations

s[l], s[2], , s[n] given by (2.3), and the notation A[n] to denote an estimator of A that is

formed at the host from all digitally encoded observations collected up to and including time
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n. Throughout, we refer to A[n] and A[n], as the sensor and the host estimate, respectively.

Consistent with the system constraints, we design encoders for which at any time instant

n the average encoding rate is less than or equal to one M-symbol per sensor measurement

(i.e., the number of encoded M-ary symbols never exceeds the number of available noisy

measurements at the encoder).

In designing the signal encoder and estimator pair we use figures of merit based on the

asymptotic performance of these systems. The performance metrics we employ are analo-

gous to the asymptotic MSE loss criterion we have introduced in Chapter 2. Specifically, a

naturally suited measure of performance is the asymptotic MSE loss, defined as

£MSE(A) - lim ) (4.1)n-+oo B (A; sn)

In all the encoding strategies we develop in this chapter, the encoder operates on a particular

consistent sensor estimator A[n] formed from the original data sn. A suitable measure

of encoding performance for these strategies is based on comparing the MSE of the host

estimate A[n] that is formed based on the encoding yn against that of the associated estimate

A[n] computed at the sensor from the original data. For that reason, we use the notion of

asymptotic processing loss of an encoder with respect to a particular sensor estimator A[n]

from s, defined via

proc(A) - lim (n]A) (4.2)

We refer to an encoding that achieves

IProc(A) = 1, (4.3)

or

EMSE(A) = 1, (4.4)

over all IAI < A as asymptotically optimal, or asymptotically efficient, respectively. In

the case that the sensor estimate A[n] (formed via sn) is asymptotically efficient with
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respect to B (A; s), the metrics £MSE(A) and pro,,(A) are identical and can be thus used

interchangeably.

When designing an algorithm for encoding an asymptotically efficient sensor estimate

A[n] formed from s, it is important to minimize the mean-square difference between the

sensor estimate A[n] and the associated host estimate A[n], which we throughout refer to as

the residual error between these two estimates. In particular, since the MSE of the sensor

estimate A[n] decays as the inverse of the number of observations (for admissible noises),

whenever we can design encoding schemes for which the residual error decays faster than the

inverse of the number of observations, the resulting host estimate would be asymptotically

optimal in the sense that it would satisfy (4.3). Specifically, if the residual error decays

faster than l/n, i.e., if

lim nE (A[n] - A[n]) = (4.5)

then, by using the triangle inequality

E [(A[n]- A)] < E [(A[n]- A[n])] + E [(A[n]- A)]

and the definition (4.2) we obtain

E
/proc(A) < 1 + lim -

I
1 < 1 . (4.6)

We also note that 1 < Lproc(A) due to the data processing inequality and the asymptotic

efficiency of the sensor estimate, which, in conjunction with (4.6), proves the asymptotic

optimality of the corresponding encoder in the sense of (4.3) and (4.4).

4.2 Variable-Rate Signal Encoders

In this section we consider algorithms that generate variable-rate encodings. Given any

consistent sensor estimator A[n] formed from sn , the objective is to construct a digital

encoding and a host estimator A[n] from this encoding which (as a pair) asymptotically

achieve the MSE performance of the original sensor estimator A[n]. For reference, we first
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consider asymptotically optimal batch-type algorithms, which collect all the available data

prior to generating a digital encoding from which a host estimator A[n] can be formed.

Thereafter, we present a class of variable-rate algorithms which are extensions of the batch-

mode algorithms and also result in asymptotically achieving the MSE rate of the original

sensor estimator.

4.2.1 Batch-Type Encoders

The objective in batch-type encoding is to generate an encoded description that is to be

used once at a particular instant n; a batch encoder first collects all the observations

s[l], s[2], -- , s[n] before forming the digital encoding y[1], y[2], -- , y[n].

As suggested in the introduction of Chapter 2, it is straightforward to devise batch-

type encoding algorithms and associated host estimators from these encodings that are

asymptotically optimal, in the sense that they achieve (4.4). For convenience and without

loss of generality, we consider the case where the encoder can construct an efficient sensor

estimate A[n] from the noisy data sn, i.e.,

E (A -A[n])2 - 8 (A; 47
n

In that case, the encoder first collects s[1], s[2], - - -, s[n], subsequently computes A[n], and

finally encodes as y[1], y[2], -. , y[n] the n most significant M-ary symbols in the base-M

representation of A[n]. If the host estimate A[n] of A based on the encoding yn is formed

as the real number whose base-M representation consists of the same n most significant

M-ary symbols as the sensor estimate A[n] followed by some sequence of M-ary symbols,

the residual error between A[n] and A[n] decays to zero exponentially with n, i.e.,

E [(A[n]- A[n])] <DM-2-, (4.8)

and, hence, it satisfies (4.5). The constant D in (4.8) depends on the parameter range A

and, in particular, satisfies D > A2. By using (4.7)-(4.8) and the triangle inequality, we

obtain

lim nE[(A[n]-n)2 ] =B(A; s),
n.-yoo
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i.e., the host estimate A[n] is asymptotically efficient with respect to B (A; s). In fact, A[n]

effectively achieves the bound B (A; s) /n rapidly with increasing n, since the residual error

(4.8) between A[n] and A[n] decays exponentially with n, while the MSE of the original

sensor estimate A[n] in (4.7) decays only as 1/n.

Similarly, if the estimate A[n] formed at the encoder via sn is asymptotically efficient

with respect to B (A; sn), the described batch encoding method produces an encoding

from which the corresponding A[n] is also asymptotically efficient. In general, if A[n] is

any consistent estimator, the resulting A[n] based on batch encoding is asymptotically

optimal, in the sense that it satisfies (4.3). As we have discussed at the outset in Chapter 2,

although this simple batch encoding method asymptotically achieves the MSE performance

of the original sensor estimate A[n] (and the Cramer-Rao bound B (A; s) /n in case A[n]

is asymptotically efficient), it has the major disadvantage that no encoded bits can be

generated until all the observations are available. Moreover, it is not refinable, since no

method is suggested for encoding any additional M-ary symbols as new sensor measurements

are collected.

4.2.2 Refinable Variable-Rate Encoding Algorithms

As we have seen, batch encoding algorithms produce asymptotically optimal host estimates

since the residual error between the sensor estimate and the host estimate decays at a faster

rate than the mean-square error in the sensor estimate. In fact, the residual error between

the two estimates decays exponentially fast with the number of observations, as opposed

to the MSE in the encoder estimate which decays only as the inverse of the number of

observations.

We can exploit this exponentially fast rate in the improvement of the host estimate

quality to construct refinable variable-rate signal encoding strategies that are asymptotically

optimal. In particular, by using repeatedly the batch-type encoding algorithm at a sequence

of appropriately spaced time instants Nk, we can construct variable-rate encoding strategies

which achieve (4.3) and for which the average encoding rate never exceeds one M-ary symbol

per observation. Specifically, at each n = Nk for k = 1, 2, -.- we may use the batch-type

algorithm to encode the sensor estimate A[Nk] obtained from sNk into the (Nk - Nk-l)

M-ary symbols y[Nk1 + 1], - - -, y[Nk - 1], y[Nk], based on which the host estimate A[Nk]

is to be formed. Since no encoded symbols are supplied by the encoder to the host between
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time instants n = Nk-1 + 1 and n = Nk - 1, the host may use as its estimate for all these

time instants the most current host estimate, namely, A[Nk - 1].

Note that Nk-_l and Nk must be spaced far enough from one another so that the number

of M-ary symbols used to describe the sensor estimate A[Nk] (i.e., Nk-Nk-l) is large enough

to guarantee that the residual error decays faster than 1/Nk. On the other hand, since no

encoded symbols are to be communicated between n = Nk-1 + 1 and n = Nk - 1, the time

instances Nk-1 and Nk should still be close enough so that during the delay incurred by this

batch-type scheme the "old" host estimate A[Nk - 1] remains still "accurate enough". The

following theorem describes how these instants Nk can be spaced in time so as to guarantee

that the residual error between the host estimate A[n] and the sensor estimate A[n] decays

faster than 1/n.

Theorem 1 Let

Nk+l = Nk + h[Nk] (4.9)

for k > 1, initialized with N 1 > 1, and where h: N + -+ N + . Consider the encoding strategy

which at time n = Nk+l encodes as y[Nk + 1], y[Nk + 2], ..- , y[Nk+l] the h[Nk] most

significant symbols in the base-M representation of a consistent sensor estimator A[n] from

sn . Let A[Nk+l] denote the number whose h[Nk] most significant symbols in the base-M

representation is given by y[Nk + 1], y[Nk + 2], -- , y[Nk+1] followed by O's. If the function

h[-] satisfies both

lim h[n] =0, (4.10a)
n-+oo n

and

lim sup < 2 ln(M), (4.10b)
n-+oo h[n]

then the host estimator A[n] given by

A[n] = A[ max Nk], (4.11)
k:Nk<n

is asymptotically optimal in the sense that it achieves (4.3).
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Figure 4-2: MSE performance of A[n] from (4.11) in Gaussian noise, where A[n] is the
sample mean (4.12). Simulation parameters: A = 1, A = 0.2, r, = 0.1.

A proof of the asymptotic optimality of the encoding class of Theorem 1 is included in

App. C.1.

Fig. 4-2 depicts the MSE performance of two instances of the host estimator A[n] from

(4.11) in the case that M = 2, v[k] .Af(O, oa2), and where the estimator based on sn is the

sample-mean, i.e.,

A[n] = s[k] . (4.12)
k=1

In particular, the solid and the dashed curves in the figure depict the MSE performance of

A[n] in the two special cases that the function h[-] in (4.11) is given by

h[n] = [rVl , (4.13)
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and

h[n] = [2 V1i ] , (4.14)

respectively, and where [xl denotes the smallest integer that is greater or equal to x. In

both cases the recursion (4.11) is initialized with N1 = 2. One can easily verify that both

(4.13) and (4.14) satisfy (4.10). The dotted line in the figure depicts the Cramer-Rao bound

B (A; sn) which in this Gaussian case is achieved by the sample-mean estimator (4.12) for

all n. As the figure illustrates, both host estimates are asymptotically efficient with respect

to this bound. Clearly, the particular choice of N 1 and h[-] dictates how fast the MSE of the

host estimate A[n] achieves the bound B (A; s)n. In general, optimal selection of N 1 and

h[-] depends on the signal-to-noise ratio A/a, and the particular sensor noise and sensor

estimate characteristics.

4.3 Fixed-Rate Encodings

Although the host estimate A[n] in (4.11) is optimal in the sense that it asymptotically

achieves the MSE rate of the sensor estimate A[n] formed from the original original mea-

surements, the encoded sequence is not generated at a fixed encoding rate. In particular,

delay is inherently incurred by the encoder and this encoding delay increases with n. In

general, we may want to construct embedded algorithms that generate fixed-rate data en-

coding descriptions, i.e., algorithms which provide one M-ary symbol of the description for

each new available observation.

This problem possesses many similarities to the one of successive refinement of infor-

mation [17]. In that problem a sequence of n IID random variables of known PDF are

observed, and the task is to form a successively refinable approximate description of these

n observations which achieves optimal or close to optimal approximation quality at any

description level, as measured by a rate distortion metric. Analogously, in the problem we

are addressing in this section the PDF of the IID random variables si[n] is known up to an

uncertainty in the mean. The task is to form a multi-stage encoding, so that the estimate

sequence A[n] generated from the nth stage encoding yn is asymptotically optimal, i.e., the

MSE performance of A[n] achieves B (A; sn) for any n large enough.

In this section we develop fixed-rate digital encodings that result in asymptotically
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efficient estimation with respect to B (A; s). We focus on the case M = 2, although similar

asymptotically optimal schemes can also be designed for M > 21.

In general, an embedded fixed-rate binary encoder is a rule for selecting the nth encoded

bit y[n] based on yn-1 and sn. The approach we follow in this section constrains the

encoding strategy to select y[n] based on yn-1 and A[n], where A[n] denotes a rule for

obtaining an estimate of A based on sn. In that sense the objective of the encoding strategy

is to achieve the performance of a particular estimator A[n] from the original observations.

The motivate the design of the encoders we present in this section, it is worthwhile to

revisit the encoders we have developed in Chapter 2, which also generate fixed-rate digitally

encoded descriptions. As we have seen, encodings in the form of quantizer bias control via

feedback such as (2.59), when used in conjunction with the associated host estimators devel-

oped in Section 2.3.3, come within 10 logo L£(A. ) dB of the optimal performance B (A; s).

For instance, in the Gaussian scenario, selecting

y[n] = sgn (s[n] - A[n - 1]) (4.15)

with A[n - 1] given by the linear-complexity algorithm (2.58) results in a 2 dB loss.

A lot of insight can be gained in the design of the asymptotically optimal schemes by ex-

amining the performance limits of the low-complexity structure (2.58), originally developed

for signal estimation from the encodings generated by (4.15). Specifically, it is instructive

to consider the MSE performance of the host estimate A[n] given by the low-complexity

algorithm (2.58), in the case that the sensor precisely knows the static signal A, in which

case it could use an encoding of the form (4.15) where the noisy measurements s[n] are

replaced by A. The MSE performance of the resulting host estimate A[n] is described by

the following theorem which we prove in App. C.2.

Theorem 2 Given 0 < c < oo, consider the dynamical system

A[n] = A[n - 1] + -sgn (A - A[n - 1]), (4.16)
n

'In fact, we can easily design asymptotically efficient schemes for M > 2, by trivial extensions of the
M = 2 case, namely, by exploiting at the host only two of the available M encoded levels. Although beyond
the scope of this thesis, designing algorithms that generate optimized fixed-rate M-level encoded schemes is
clearly a problem worth further investigation.
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initialized with A[no], for some no > 1. Then

lim A[n] = A (4.17)
n-+oo

for any n, any initialization A[n,], and any A. In addition, the mean-square difference

between A and A[n] decays as 1/n 2. In particular, for almost all initial conditions

lim sup n2 IA[n] - A12 = c2 (4.18)
n--oo

As suggested in Theorem 2, in the case that an error-free estimate is available and

used for encoding at the sensor the residual error decays as 1/n 2 . In the actual setting

where noisy measurements of A are instead available at the sensor, replacing s[n] with a

sensor estimate A[n] can actually improve the MSE performance of the host estimate. In

particular, we consider the following binary encoding method

y[n] = sgn (A[n] - A[n - 1]), (4.19a)

where the host estimate A[n] based on yn is given by

A[n] = from look-up table if n < n 

a I r(A[n -1] -y[n]) if n > no

and where we are also interested in optimally selecting the parameter A. As in Chapter 2,

we assume that v[n] = oav i[n]; in that sense optimal selection of A will depend on pf (), the

particular sensor noise generating PDF2 . The estimator that is to be used with this encoder

is given by (4.19b). Note the similarity of algorithms (4.19b) and (2.58) in terms of their

dependence on the sensor noise scaling oa,.

The look-up table structure in (4.19b) is used to provide faster convergence to asymp-

totically optimal behavior. Specifically, at high peak SNR (i.e., for A > a,), the first

collection of bits y[1], -. , y[no] may be used to encode a coarse description of A, ignoring

2More generally, we may consider nonstationary V's, i.e., A's of the form A[n] = f(yn). Although proper
design of the resulting encoders can potentially further improve the performance of the systems presented
in this section, its investigation is beyond the scope of this thesis.
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Figure 4-3: Block diagram of the sequential encoder (4.19) for n > no.

the effects of sensor noise, i.e.,

A[n] = A[n - 1] + A y[n] for n < n,, (4.20)

initialized with A[O] = 0, and where y[n] is given by (4.19a). Naturally, selection of a

suitable value for n in (4.19b) depends on A, av, and the particular sensor noise PDF.

We must note, however, that the proper value of no depends logarithmically on X = A/a,

as (4.20) suggests about the convergence of the MSE of A[n] to that of A[n] (see also the

associated discussion in Section 2.3.3).

Since we are primarily concerned with the performance of the algorithm (4.19) for large

n, we focus on the encoding performance for n > n. The block diagram for the sequential

encoder of observations s[n] into bits y[n] for n > n is shown in Fig. 4-3. Intuitively,

at any time instant n, the sensor encodes the sign of the difference between the current

sensor estimate A[n] and the most recent host estimate A[n - 1]. The associated host

decoder/estimator from these bits is also shown in Fig. 4-4. As we have remarked, for

n < n both the decoder and encoder may employ a lookup table to obtain A[n].

This class of fixed-rate binary encoding and estimator pairs have very attractive asymp-

totic properties. In particular, we may recall that (4.18) provides a bound on the best

possible decay rate of the mean-square difference between A[n] and A[n] of any algorithm

of the form (4.19), since the algorithm (4.19) encodes an estimate A[n] rather than A which
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A [n]

Figure 4-4: Block diagram of the sequential decoder associated with the encoder described
by (4.19) for n > no.

was used in Theorem 2 (see (4.16)). As we will see in the following sections, if the MSE of

A[n] decays as 1/n and if A[n] satisfies a mild set of conditions, the resulting residual error

between the host and the sensor estimate decays as 1/n2 , guaranteeing that the resulting

host estimate A[n] is asymptotically optimal, in the sense that it achieves (4.3).

4.3.1 Gaussian Sensor Noise

For Gaussian sensor noise, fixed-rate encodings of the form (4.19) can be designed that

possess low computational complexity and are asymptotically efficient in the sense that

they achieve (4.4). Specifically, consider the encodings of the form (4.19) where the sensor

estimate A[n] is the sample-mean of the original noisy measurements, given by (4.12). Then,

for sufficiently large n we can easily show that

E[(A[n] - A[n -1])] ,aV/n2 (4.21)

for some,/ > 1. In particular, as shown in App. C.3,

lim n2E [([n] - A[n 1]) 2] =3v (4.22)
n---oo

Using the readily verified identity satisfied by the sample-mean estimate

E [(A[n ]- [n- ] =,2 I 1 ) (4.23)

the triangle inequality, and (4.22) we obtain the following bounds on the residual error

(-1) a2 < lim n2 E [(A[n -1] - A[n- 1)1] <(a+1) (4.24)
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Figure 4-5: Block diagram of the sequential encoder (4.12)-(4.19b) for n > no, for asymp-
totically efficient estimation in white Gaussian noise.

The set of Ineqs. (4.24) implies that the residual between A[n] and A[n] decays as 1/n 2 .

Hence, since the sample-mean A[n] is an efficient estimator in additive IID Gaussian noise,

we have

B (A; s) < n (A[] -A) 2lim nE [(E (A[n]- A)[] m n {E[A[n])] 2
n-o n-+oo -

< B(A;s),

which reveals that the host estimate A[n] formed from yn is asymptotically efficient with

respect to B (A; sn).

In this case, the block diagram of the sequential encoder of the original noisy observations

s[n] into bits y[n] for n > no specializes to the low-complexity structure shown in Fig. 4-5.

The associated decoder/estimator from these bits is also shown in Fig. 4-4. For n < no both

the decoder and encoder may obtain A[n] by means of the same lookup table. Again, in the

coarse stage of the description (i.e., n < n) the residual error between the two estimates

decays exponentially with n since the noise level is small compared to the dynamic range.

Although the host estimate A[n] obtained via (4.19) and (4.12) is asymptotically efficient

for any A > 0 in (4.19b), we can choose the value of A so as to minimize the residual error

given by (4.21). Specifically, as we show in App. C.3, / in (4.21) and A in (4.19b) are related
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Figure 4-6: Resulting residual error scaling 1 as a function of parameter A in (4.19b).

as follows

3(A) r (1 +2) 2

t(A) = 8A2 ' (4.25)

so that

min P(A) = r/2,

which is achieved for A = 1. Fig. 4-6 depicts the residual error dependency on the value of

A chosen. As (4.25) reveals, selecting a value of A an order of magnitude larger or smaller

that the optimal value results in increasing the residual error by about 14 dB for any given

n.

Fig. 4-7 illustrates the validity of our analysis for this Gaussian scenario by means of

Monte-Carlo simulations for a specific example where A = 1, a, = 1, A = 0.2, and A = 1.

The dotted line in Fig. 4-7(a) represents the Cramer-Rao bound B (A; s) while the solid

curve depicts the MSE in the host estimate A[n] as a result of Monte-Carlo simulations.

Fig. 4-7(b) depicts the associated residual error (4.21) from simulations (solid) and the

estimate of the residual error (dashed) obtained via (4.21) and (4.25).

4.3.2 Robust Encodings in NonGaussian Finite-Variance Noise

The low-complexity encoding method consisting of (4.19) and the sample-mean A[n] in

(4.12) is very robust with respect to variations in the sensor noise PDF. In particular, it

achieves similar performance characteristics when the sensor noise v[n] is an IID finite-
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Figure 4-7: Performance of A[n] from
the sample mean (4.12).

(4.19b), where y[n] is given by (4.19a) and A[n] is

variance nonGaussian admissible process, as we now show.

For convenience, we assume that [n] is a unit-variance distribution, in which case a2

equals the variance of the sensor noise v[n]. Without loss of generality we consider the

case where the sensor noise is zero-mean, in which case, as is well known, the sample-

mean A[n] from (4.12) forms a consistent estimator of A with MSE equal to Oa2/n. The

method that we used in App. C.3 to show that the host estimate A[n] of the previous

section has asymptotic MSE equal to a2/n applies exactly to this case as well; that is, the

encoder/estimator structure described by (4.12) and (4.19) provides a host estimate A[n]

with asymptotic MSE equal to the noise power level divided by the available number of

observations. Conveniently, the encoder and the decoder do not even require knowledge of
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a, to obtain an estimate; it is simply required that both the encoder and decoder use the

same system parameters, i.e., the same lookup table and value of A a,, in (4.19b). However,

knowledge of av can be exploited to provide faster convergence to asymptotic efficiency via

optimal selection of A a,.

Although attractive due to its simplicity, this approach does not always lead to a better

asymptotic MSE than the quantizer bias control encoding approach described by (4.15) and

(4.19b). This is clearly illustrated in the special case where the sensor noise is Laplacian,

i.e.,

1 -Vl1V/v
Pv (v) = e-lf

The Cramer-Rao bound for estimating A from s[n] can be obtained by partial differentiation

of the log-likelihood function followed by an expectation and is given by

B (A; s)= u (4. '

Note that in this case the sample-mean A[n] is not asymptotically efficient with respect to

B (A; s) from (4.26), since it incurs a 10 logo10 2 3 dB loss. Hence, the encoder/estimator

structure (4.19) that operates on the sample-mean A[n] incurs a 3 dB loss. Alternatively,

consider using the quantizer bias control-based encoder/estimator structure described by

(4.15) and (4.19b). The associated information loss (2.4) in the case of the Laplacian PDF

is minimized at A, = 0; by using the expression for B (A; y) given by (2.15) with a = v,

we obtain

(0; y) =.
L(A.) = = 1-a2/2

Interestingly, at A = 0 this quantizer bias control encoder with feedback incurs no in-

formation loss. Hence, in the Laplacian case we may expect the quantizer bias control-

based method described by (4.15) and (4.19b) to asymptotically outperform the encod-

ing/estimation set (4.12)-(4.19b).

This is indeed the case as demonstrated in Fig. 4-8 where we depict the MSE performance

of these two methods in the Laplacian case, for A = 1, av = 0.1, along with B (A; s)

(lower dotted line) and the MSE of the sample mean (upper dotted line). As we can see,
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Figure 4-8: MSE performance of the host estimator in Laplacian sensor noise. The sensor
estimate encoded in each case is the sample-mean (solid), the sensor measurement s[n]
(dash-dot), and the ML estimate (dashed). The two dotted lines depict the Cram6r-Rao
bound for estimating A given s n (lower) and a'2/n (upper).

the method encoding the difference between the sample mean and the current host estimate

(solid curve) asymptotically achieves the sample-mean MSE rate (i.e., a 3 dB loss), whereas

the quantizer bias control method encoding the difference between s[n] and A[n - 1] (dash-

dot curve) leads to an estimate that is asymptotically efficient with respect to the original

observation sequence s[n].

4.3.3 NonGaussian Admissible Noise

Whenever the sensor can form an estimate A[n] from Sn for which the mean-square difference

between the successive estimates A[n] and A[n - 1] decays as 1/n 2 , the encoder/estimator

structure (4.19) can be used to provide a host estimate A[n] whose asymptotic MSE equals

that of A[n]. In particular, if the mean-square difference between successive sensor estimates
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A[n] and A[n - 1] decays as 1/n 2 , i.e., if

lim n2 E [e2[n]] = av, (4.27)
n-+oo

where 0 < y < oo and

[n]( A[n] - A[n- 1], (4.28)

then, as shown in App. C.3, the residual error between the sensor estimate A[n] and the

associated host estimate A[n - 1] has the form (4.21), implying that the asymptotic MSE

of A[n] is the same as the one corresponding to A[n]. The optimal value of A in (4.19) can

be found by minimizing the associate 6(A) in (4.21); specifically, as we also show in the

appendix we have

(7 + 2)2 (4.29)
8 A2

so that

min () ~ r /2,

which is achieved for A = .

Under a mild set of conditions on the sensor noise PDF, the ML estimator AML[n]

based on observation of sn, has the property that it is asymptotically efficient with respect

to B (A; sn), asymptotically Gaussian distributed, and also satisfies (4.27) [12]. In these

cases, when the sensor estimate computed is the ML estimate AML[n] formed from s, the

block diagrams in Figs. 4-3 and 4-4 describe a general algorithmic method for obtaining an

asymptotically efficient encoding.

Fig. 4-8 also depicts the MSE performance of the host estimator of the method (4.19) in

the case that the sensor estimate A[n] is the ML estimate, which in this Laplacian scenario

is the median of the n observations s[1], s[2], .. - , s[n] and is asymptotically efficient with

respect to B (A; s) /n. As the dashed curve in the figure reveals, the associated host estimate

A[n] based on the encodings is also asymptotically efficient.
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4.3.4 Uniformly Distributed Noise

As we have already mentioned in Section 4.3.2, the estimator/detector structure described

by (4.19) possesses remarkable robustness. As an illustration of this fact, in this section we

consider estimation in IID uniformly distributed noise. In this case, the first-order PDF of

v[n] is given by

if Iv < v/'3a

0 otherwise

This noise process does not belong to the admissible class we have defined in Chapter 2. As

is well known, a Cramer-Rao bound for this estimation problem does not exist, consistent

with the fact that there exist estimators A[n] of A based on sn, whose MSE decays faster

1/n. For instance, the MSE of the following estimator

A[n] = max{s[1], s[2], - , s[n]} + min{s[1], s[2], - -, s[n]} (4.30)
2

decays as l/n 2 :

2
E [( [n]-A = (n + l)(n + 2)A6 (4.31)

Even though the residual error between A[n] and A[n] from the encoder/estimator pair

(4.19) decays at best as fast as 1/n2 (see Theorem 2), by proper choice of A the pair (4.19)

we can effectively achieve the performance of A[n] in (4.30), as we demonstrate next.

The simulated MSE performance of the host estimate from (4.19) for A = 1 and where

the sensor estimate A[n] is given by (4.30) is depicted in Fig. 4-9. Note that since the

variance of e[n] defined in (4.28) decays faster than 1/n2 , y from (4.27) equals zero. Since

for any A > 0 the asymptotic residual error scaling is given by (4.29) for y = 0, in this

example we have / = 7r/8. Consequently, the asymptotic MSE of the host estimate A[n]

can be approximated as

E [(A[n] - A)] < E [(A[n + 1]- A[n])] + E [([n+ 1] - A)

< (6 + 7r/8) u2/n2. (4.32)

110



.-0

o0aC
0

E

Ct)

r

a,
W>

10 o10' 10 103

n

Figure 4-9: The dash-dot and solid curves show the host estimate MSE in uniformly dis-
tributed sensor noise, when the sample-mean and the estimator (4.30), respectively, are
encoded at the sensor. For reference, the bound (4.32), oa2/n, and the MSE of A[n] in
(4.30) are depicted by the lower dotted, upper dotted, and dashed curve, respectively.

Combining (4.32) and (4.31) suggests that the encoder/decoder pair described by (4.19)

and (4.30) incurs an asymptotic processing loss over the sensor estimate A[n] from (4.30)

that is about

£Proc(A) 1 + 4

corresponding to only about 0.28 dB.

4.4 Network Extensions

Multi-sensor extensions of all the preceding single-sensor encoding and estimation algo-

rithms can be constructed that retain the asymptotic optimality properties of the original

single-sensor schemes. As in Chapter 3, we assume that se[n], the nth observation collected
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at the eth sensor, is given by

se[n] = A + ve[n],

where the sequences ve[n]'s are independent lID noise sequences.

By designing the eth encoder according to the single-sensor principles and then properly

combining the L symbol streams we can obtain asymptotically optimal estimates. As an

illustration of the design of such multi-sensor extensions, we briefly consider fixed-rate

encodings. Let ye[n] denote the sequence encoded at the th sensor, Ae[n] denote the

asymptotically optimal host estimate resulting from using the encoding strategy (4.19) on

the consistent sensor estimate Ae[n] formed at the eth sensor from

s = [se[l] se[2] -- s[n]]

The th encoder is depicted in Fig. 4-3, with s[n], y[n], A[n], and A[n] replaced by s[n],

ye[n], Ae[n], and Ae[n], respectively.

For simplicity and without loss of generality we consider the case where the original

Ae[n]'s are asymptotically efficient with respect to B (A; s). In that case, the estimate

[A[n] e E 1(O; Se) (4.33)A[n] 1 [B (0; 1 B (0; (0; )

(where Ae[n] is the estimate formed solely from the encodings of the eth sensor) provides

an asymptotically efficient estimator of A from s, s', .- , sn. In the general case where

the Ae[n]'s are consistent but not necessarily efficient estimates with known MSE rates that

are independent of the unknown parameter A, A[n] from (4.33) provides an asymptotically

optimal estimate provided we replace B (0; st) with E [(At[n] - A)2].

Finally, in the special case that the PDFs of the sensor noises are identical i.e., Pv () =

Pv (z) almost everywhere, the host estimator (4.33) reduces to

A[n] = A[n- 1] + L ye[n],
e=1

for n > n, and where we also used (4.19b). This decoder is also depicted in Fig. 4-4

provided we replace y[n] with E=l ye[n]/L.
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Chapter 5

Encoding and Estimation with

Quantizer Bias Control:

Time-Varying Case

In Chapters 2 and 3 we have focused our attention on estimating a static signal from

noisy measurements in the context of encoders composed of a control input added to each

measurement prior to quantization. We have developed optimized encodings of the noisy

measurements into digital sequences and asymptotically efficient estimators from these en-

codings for a number of scenarios of practical interest. Although our static case analysis

has revealed a number of key characteristics of this signal estimation problem, the systems

we have designed prove inadequate in cases where the information-bearing signal varies suf-

ficiently fast to render the static signal assumption invalid across the observation interval

used to form the estimates; in designing encoding strategies for the general time-varying

case, we generally need to take into account the information-bearing signal characteristics,

namely, the signal model and dynamics. However, as we show in this chapter, for a partic-

ular class of time-varying extensions, we can develop a rich class of encoding strategies and

signal estimators by building on the principles that we have developed for the static case.

In this section we develop generalizations of the framework we have developed in Chap-

ters 2 and 3 that encompass a number of time-varying information-bearing signals. Through-

out this chapter we focus on information-bearing signals and sensor noises that are well

modeled as Gaussian processes. In the general time-varying case, we usually have to rely
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on coarse measurements from multiple sensors to obtain accurate signal estimates. This is

clearly illustrated by considering the extreme case where the information-bearing signal is

well modeled as an IID Gaussian process, and where the host is faced with the problem

of estimating such a signal from encoded bits collected from a single sensor that measures

this signal in statistically independent IID sensor noise. Since the information-bearing sig-

nal and the sensor noise are independent IID processes, for any fixed-rate binary encoding

scheme (such as encoders of the form of quantizer bias control), at any given time instant

n, the encoded bit can only provide information about the current signal sample. Further-

more, since past and future encodings do not provide any information for estimating the

current signal sample, the problem of estimating any signal sample from the whole encoded

sequence reduces to estimating the associated Gaussian random signal variable by observ-

ing a single encoded bit. Clearly, the ability of the host to estimate this Gaussian random

variable based on a single bit is severely limited.

To overcome this problem, in this chapter we focus on signal estimation based on data

collected from a network of sensors, each encoding one bit of information per measurement.

In particular we focus on the special case where the information-bearing signal is perfectly

correlated spatially over the sensor network, i.e., at any time instant all sensors observe the

same signal (in noise) 1. In addition we assume that the sensor noise samples are independent

in both time and space.

In Section 5.1 we present the class of time-varying signal models that we consider in

this chapter. In Section 5.2 we state the figures of merit that we use to construct encoders

and estimators for this class of time-varying signals. In Section 5.3 we present a number

of methods that can be used to encode the noisy measurements at each sensor into bit

streams. In Section 5.4 we sketch some of the methods that can be used to estimate the

underlying information-bearing signal by intelligently fusing these bit streams at the host.

Finally, In Section 5.5 we consider an example involving a simple signal model, which we use

as a vehicle for illustrating the design and the performance characteristics of the schemes

presented in Sections 5.3-5.4.

'We may also want to consider the dual problem, where the information-bearing signal is static in time,
but partially correlated across the sensor network. Some of our analysis in this chapter carries through
in this case, with appropriate modifications. Although beyond the scope of this thesis, a very interesting
problem worth further investigation corresponds to the case where the signal samples are partially correlated
in time and space. Indeed, a number of very interesting decentralized data fusion problems arise in that
context; see [19, 10, 5, 6] and the references therein.
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5.1 System Model

Throughout this chapter we focus our attention on the problem of estimating a single

information-bearing signal A[n] given by

A[n] = qT x[n], (5.1a)

where

x[n]= [x[n] x[n-1] x[n- R]] (5.1b)

is a state-space vector that obeys the following dynamics

x[n] = Gx[n - 1] + h u[n], (5.1c)

and where G is a known R x R matrix, h is a known R x 1 vector, and u[n] is a zero-mean

IID Gaussian process of variance ao.

The linear state-space model (5.1) describing the dynamics of the information-bearing

signal is fairly general and, as is well known, encompasses a number of broadly used signal

models, including the autoregressive (AR), the moving-average (MA), and the autoregres-

sive moving-average (ARMA) model [1]. For instance, an R-th order AR model of the

form

R

A[n] = E ai A[n- i] + u[n]
i=l

can be readily described via (5.1) by letting

qT =1 1 OXR]

[h]1 = 1, and

G=a, a2 ... aR

= IR-1 OR-1x1

We consider an L-sensor scenario according to which the nth measurement at the th
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sensor is given by

se[n] = A[n] + ve[n], (5.2)

where the sensor noise sequences ve[n] are statistically independent zero-mean IID Gaussian

processes with variance a,2, independent of the information-bearing signal A[n]. At time n,

the eth sensor encodes the measurement se[n] by means of quantizer bias control, i.e.,

ye[n] = sgn (se[n] + we[n]), (5.3)

where ye[n] and we[n] denote the encoded bit and the control input used at the £th sensor

at time n, respectively. For compactness, we rewrite the above encoding equation (5.3) in

matrix form as

yl [n]

Y2[n]

YL[n]

sgn (sl [n] + wl [n])

sgn (s 2[n] + w 2[n])

sgn (sL[n] + WL[n])

(5.4)

Our objective is to design the control inputs we[n] used at the sensors and the associated

estimators at the host based on the state-space model given by (5.1), (5.2) and (5.4), so as

to enable the host to obtain accurate signal estimates.

5.2 Performance Measures

Consistent with our previous developments, to address the quality of the encoding and

the associated estimator we compare its performance against the one from the original

measurements in the form of se[n], i.e.,

s [n] v [n]

2 [n] = x[n] +. (5.5)

SL[n] VL[n]
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In particular, to design of the encoder at any given time instant n we use as performance

metric the encoding (information) loss associated with estimation of A[n] via

y [n] [yl[n] y2[n] - yL[n] (5.6)

instead of

s[n]Isl[n] S2[n] -... sL[n]] (5.7)

Since we are interested in minimizing

MSE(N) = E E (A[n] - A[n] (5.8)

to construct the encodings we use as our criterion average rather than worst-case (informa-

tion loss) performance. We use as our figure of metric for designing the encodings at time n

the average information loss in terms of estimating A[n] based on observation of the L x 1

vector y[n] instead of the vector s[n]:

L(A[n]; n) B (A[n], [n]) (5.9)
B (A[n], s[n])

Since the sensor noise sequences are independent IID processes, minimizing the encoding

loss (5.9) for each n, also minimizes the average encoding loss over all n. Similarly, to

assess the performance of the estimator, we use as our figure of metric the average MSE

loss, defined-as the MSE performance (5.8) based on the sequence {y[n]}= 1 divided by the

associated MSE performance via the sequence {s[n]}lNn=

As in the static case, both the design and performance of the systems employing quan-

tizer bias control is dictated by the available freedom and the processing complexity in

forming w[n], as well as the number of sensors in the network. However, in this time-varying

case the encoding performance of (5.4) also depends on the particular signal characteristics

(5.1). As we show, however, in many cases of practical interest there exist naturally suited

measures of SNR that can be used to describe the encoding and estimation performance.

In particular, due to the perfect spatial correlation of the signal across the sensor sensor, to

design the encoding at any time instant, it is convenient to view these encodings obtained
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from all the sensors in the network as being equivalent to a temporal sequence of encodings

of a static signal obtained from a single sensor. We first consider the design of the encoder

and consequently address the estimation problem.

5.3 Encoding Algorithms

In this section we focus on designing encoding strategies based on quantizer bias control

characterized by the control sequences w[n]. As we demonstrate, we can build on the prin-

ciples we developed for the static case to develop a rich class of efficient encoding strategies

for time-varying signals. We next develop encoders employing pseudo-noise control inputs,

control inputs based on feedback and finally, combinations of pseudo-noise and feedback;

similar strategies can be developed for control inputs known to the host, as well as any

combinations thereof with pseudo-noise and feedback-based control inputs.

5.3.1 Pseudo-noise Control Inputs

In this section we consider the case where the control input sequences w 1[n], w 2[n], ... , wL[n]

in (5.3) are statistically independent IID Gaussian processes, each with power level a2W. The

objective is to select the pseudo-noise power level a2 so as to minimize the average infor-

mation loss of the form (5.9) that occurs when estimating A[n] (for a fixed n) based on the

L x 1 vector y[n] in (5.6) instead of s[n] in (5.7), and where ye[n] denotes the output of the

encoder (5.3) using binary quantizer bias control on se[n] given by (5.2).

The dual interpretation of the signal encodings obtained at a given time instant from the

sensor network as a temporally encoded sequence of a static signal obtained from a single

sensor is extremely convenient, since it readily allows us to exploit the encoding principles

we developed for the static case. As expected from the static case analysis, at any given

time n, for pseudo-noise control inputs the optimal pseudo-noise level and the associate

encoding performance are also functions of the signal power level, namely,

A[n] a_ var (A[n]),

and the sensor noise level oa. In particular, following the analysis for pseudo-noise con-

trol inputs presented in Section 3.2.2, the average information loss (5.9) for a given sig-

nal strength A[n], sensor noise level a, and pseudo-noise level a, can be denoted as
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(A[n], av, a,) and is thus given by (3.13), where the average encoding performance is

given by / (aA[n], a, a,) , defined in Section 3.2.2.

Note that since the system (5.1) is LTI, A[n] is a zero-mean Gaussian random variable

whose variance converges to a constant a as n -+ oo. Thus, in steady state 12 (aA[n], o, a,)

is independent of n. We are interested in the steady-state solution, i.e., we wish to select

a, so as to minimize the associated average information loss, i.e.,

aopt = arg min (aA, a, a) . (5.10)
ow

The optimal steady-state pseudo-noise level is then readily given by (3.22) where a°oPt(l) is

given by (3.20). The associated optimal average information loss is then given by SCpn ()

from (3.23) where

A aA
X=I

ov

Comparison of (3.23) and (3.24) reveals that proper use of pseudo-noise across the network

improves the encoding efficiency over simply quantizing the measurements especially at high

SNR X; in particular, for large X the information loss (5.9) can be made to grow as slow as

X2 by proper selection of the pseudo-noise power level.

5.3.2 Encodings Based on Feedback

Similarly, we may consider cases where feedback from the host to each sensor in the network

is available, and takes the form

wt[n] = w[n] = f(y[k]; k < n) . (5.11)

We would like to determine the performance limits of these strategies, and, in addition, to

select f(-) so as to optimize the quality encodings.

To assess the performance limits of feedback methods it is convenient to consider the

following alternative description of A[n] in (5.1)

A[n] = qT G x[n - 1] + qT h u[n]. (5.12)
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As we may recall from the static case analysis, the encoding performance is optimized if

the encoder operates close to the quantizer threshold; ideally, we would like to use a control

input wi[n] based on past encoded values that is as close to -A[n] as possible. However,

since feedback at time n can only depend on past observed encoded bits, i.e., y[k] for k < n,

we can only hope to accurately predict the component qT G x[n - 1] of A[n] in (5.12); the

term qT h u[n] in (5.12) can not be predicted (and "subtracted" off) via feedback from past

encodings, since this signal component is statistically independent of all past observation,

i.e., independent of all s[k] for k < n.

Assuming that the term qT G x[n - 1] can be accurately predicted via feedback and

subtracted from the measurement at each sensor, at any time instant n the information

loss across the array is governed by the unpredictable component qT h u[n]. Consequently,

the information loss in the encodings via feedback is lower bounded by free (fb) given by

(3.24), where

-_ eU (5.13)Xfb

and where U,2 is the power level of the term qT h u[n] of A[n] in (5.12) (which cannot be

predicted from the past)

al = o qT h hT q. (5.14)

The accuracy within which we can approach the bound £free ( fb) depends on how accurately

we can estimate the term qT G x[n - 1] of A[n] in (5.12) based on past observations. Since

the estimate improves with the number of observations, we can get arbitrarily close to this

bound provided we have enough spatial observations for each n, i.e., provided that L is

large enough.

For small enough feedback SNR Xfb in (5.13), encodings of the form (5.11) may incur

only a small loss in performance. However, for high fb performance degrades very rapidly

as (3.24) reveals. For this reason, we may consider joint use of feedback and pseudo-noise

to improve performance for large Xfb.
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5.3.3 Joint Use of Pseudo-noise and Feedback

Joint use of pseudo-noise and feedback can provide significant performance improvements

over using feedback or pseudo-noise alone. In this section we consider control inputs of the

form

we[n] = wfb[n] + aw ·ie[n] (5.15a)

where the sequences die[n] are statistically independent IID zero-mean unit-variance Gaus-

sian processes, and the feedback sequence wm[n] is to be properly selected as a function of

all past observations, i.e.,

wfbt[n] = f(y[k]; k < n) . (5.15b)

According to our development in the preceding section, we may use the feedback term

(5.15b) to predict and "cancel" out the term qT G x[n - 1] from A[n], and then use pseudo-

noise term to optimize the encoding in terms of the novel term. Provided that there are

enough sensors to form accurate estimates of qT G x[n - 1] from y[k] for k < n, to minimize

the encoding loss we simply have to select the pseudo-noise level a, according to (3.22)

for aA replaced by a'. The resulting encoding strategy (5.15) can be used to achieve

encodings whose information loss (5.9) grows as slow as quadratically with ~fb in (5.13);

specifically, at high SNR fb the encoding performance is given by (3.19) for X replaced by

Xfb. As expected, joint use of pseudo-noise and feedback provides advantages over using only

feedback or only pseudo-noise separately; since Xfb < and since P"n (-) is an increasing

function of its argument we have

fpn (fb) < ,pn (5.16)

revealing that the encoding performance of networks exploiting feedback and pseudo-noise

is in general superior to that of networks exploiting pseudo-noise alone. In fact, since pn (-)

is a strictly increasing function, equality in (5.16) is achieved if and only if fb = , i.e., if

and only if A[n] is an IID process. As (3.25) reveals we must also have

tpn (fb) < free (b ) (5.17)
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which suggests that joint use of feedback and pseudo-noise is advantageous over using

feedback alone, if and only if aPt(o) in (3.22) equals zero, i.e., if and only if Xfb <

l/aot(l).

5.3.4 Other Encoding Strategies

We can similarly develop encoding strategies that are based on the use of distinct known con-

trol inputs across the network, and their combinations with pseudo-noise and/or feedback-

based control inputs. For instance, we can design encodings using control inputs exploiting

pseudo-noise, feedback, and known components which can provide improvements over con-

trol inputs based on joint use of pseudo-noise and feedback for large fb. Specifically, by

exploiting feedback we can effectively cancel out the term qT G x[n - 1] in (5.12). By as-

sociating with the eth sensor a known predetermined quantizer bias Wkn[n; f], and by using

pseudo-noise inputs with smaller (optimized) or, we can obtain performance improvements

and make the average information loss to effectively grow as slow as linearly with fb.

5.4 Signal Estimation

To illustrate some of the techniques that can be exploited to design effective estimators

of time-varying signals based on encodings obtained via quantizer bias control, it is first

convenient to consider estimation based on the original unconstrained observations se[n]

in (5.5). Let's consider estimation of A[k] based on observation of {s[m]}mSn, and, in

particular, let's focus on the case k = n. Due to the statistical independence of the IID

noise components in v[n] and the form of (5.5), the sequence

b[n] = E s[n] (5.18)
e=l

forms a sequence of sufficient statistics for estimating A[n] based on s[n] [1]. Moreover, 4[n]

is the ML estimate of A[n] based on s[n]. Equivalently, we may replace the measurement

equations (5.5) by the single measurement equation

9[n] = A[n] + v[n], (5.19)
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where u[n] is a zero-mean IID Gaussian process with variance a2/L; since the sequence

A[n] in (5.18) is a sequence of sufficient statistics for estimating A[n] from s[n], optimized

estimators for the model (5.1), (5.2) are the same as for the model (5.1), (5.19). We may

exploit this observation to design signal estimators of A[n] based on the encodings y[n];

specifically, we can replace the L measurement equations (5.4) by a single measurement

equation arising from making an estimate of the nth sample A[n] based on the nth L x 1

observation vector y[n].

In order to reduce the L sensor measurement equations (5.4) into a single equation

we consider the use of the MAP estimate of A[n] based on observation of y[n]. In each

particular encoding case our objective is to obtain a single "measurement" equation relating

the MAP estimate of the sample A[n] based on the L x 1 vector sample y[n], and the signal

A[n] - A(O, aA), and use that to design an appropriate Kalman Filter for signal estimation.

5.4.1 Pseudo-noise Control Inputs

For pseudo-noise control inputs the MAP estimator of A[n] given y[n] is given via the EM

algorithm (3.27) by replacing yN with y[n] and N with L, where a is the steady-state

variance of A[n] (and where a few additional minor modifications are required). Specifically,

the resulting algorithm takes the following form:

A(k+l) - 1 A(k) a, [KCy 1 (y[n]) - LQ (z(k)[n])] exp(- (z(k)[n]) /2) 
EM [n]2 + 0 [ LEML[n] + v/2LQ((k)[n]) [1-Q ((k)[n])] J

(5.20a)

where

z(k)n] = EM (5.20b)

ar = V/ir + i/, and where AMAp[n] is given by

AMAP[n] = lim (k) [n]. (5.20c)k-+oo

For large enough L the MSE loss of this algorithm in terms of estimating A[n] based on

y[n] instead of s[n] effectively achieves the encoding information loss (5.9). Given that for
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any given value of A[n], the MAP estimate becomes asymptotically Gaussian with mean

A[n] and variance £(A[n]) a,2/L, we may view AMAP[n] as

y[n] = AMAP[n] = A[n] + 0y[n] (5.21)

where the sequence vy[n] is Gaussian with mean zero and variance

oa3[n] = (A[n]) 4/L. (5.22)

Note that the "equivalent" sensor noise variance a? [n] at time n is a function of the signal

value A[n] at time n. Assuming that the pseudo-noise power level has been optimally

selected, we can approximate the variance of y[n] as

vy = f (X) 42/L, (5.23)

where Z (X) is the average loss over all possible values of A[n] for X = oA/v.

We can then design a Kalman filter 2 for the model (5.1), (5.21) and (5.23), namely [1],

[nn] = G5:[n - 1In - 1] + [n] ([n] - q T G*[n - l1n - 1]) (5.24a)

p[n] = A.[nln - 1]q(qTA,[nln - 1]q+a I)-' (5.24b)

A.[nln] = (I-[n] qT) A[nln - 1] (5.24c)

A~[nln- 1] = GA,[n- In - 1]GT + u2 h hT (5.24d)

initialized with *[-1I - 1] = 0 and A,[-1l - 1] = a I.

It is worthwhile to note that, in general, qT A[nIk]qT provides only an estimate of

AA[nlk], the MSE of the estimate of A[n] given all observations up to and including time

k, since the model used to construct the Kalman Filter (5.24) is only an approximate one;

cf., Eqns. (5.22) and (5.23).

2In fact, we can also design an Extended Kalman Filter for the original nonlinear state-space model given
by (5.1), (5.21) and (5.22).
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5.4.2 Estimation via Feedback

We can use a similar approach to design control input strategies based on feedback and

associated signal estimators. Specifically, we can use the MAP estimate of A[n] based on

y[n] for any control input wfb[n]. To cancel out the term qT G x[n - 1], we can select this

feedback term as

wfb[n] = _qTG [n - 1ln - 1], (5.25)

where k[n - 1n - 1] is our estimate of x[n - 1] based on all past observations, i.e., all

available observations up to and including time n - 1. Similarly to (5.21) we may view as

our measurement equation

y[n] = AMAP[n] = A[n] + y[n], (5.26)

where AMAp[n] is given by (5.20a) and (5.20c) with

z(k)[n] = AEM[n] + wfn] (5.27)

and a, = a,. Again we approximate the zero-mean strictly white nonstationary noise

source 6y[n] with a zero-mean lID process of power level given by

a = free (X ) a/L, (5.28)

We can then design a Kalman filter for the system model (5.1), (5.26) and (5.28); it is given

by (5.24) where P[n] and ay are instead given by (5.26) and (5.28), respectively.

5.4.3 Estimation in Presence of Feedback and Pseudo-noise

We can easily extend the estimators of the previous sections to take into account use of

both pseudo-noise and feedback. Specifically, as suggested in Section 5.3.3, we may use

feedback of the form (5.25). We may use as our measurement equation (5.26), where

AMAP[n] is the MAP estimate of A[n] based on observation of y[n] and is given by (3.27)

with minor modifications. Specifically, it is given by where (5.20a), (5.20c), and (5.27) with
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ar = c I- o2. In that case, the power level of the "noise" process uy[n] is given by

ry = 1C(A[n], <a) Va/L (5.29)

which in the case that the pseudo-noise power level is optimally selected is given by

y = cpn (b) 2/L (5.30)

for large if,. Especially in the case that the pseudo-noise power level is optimally selected

the measurement model (5.26) where Oy[n] is assumed an IID process of variance given by

(5.29) is a reasonably accurate model for the original measurements equations. The Kalman

filtering solution for this approximate model is given by (5.24), where ao.y and [n] are given

by (5.29) and (5.26), respectively.

5.5 Encoding and Estimation of an AR(1) process

As a brief illustration of the construction of the encoding strategies, the associated estima-

tors, and their performance characteristics, we next consider a simple example involving

estimation of a first order AR process given by

A[n] = pA[n - 1] + V ' Ap2 Ai[n] (5.31)

where [n] is a zero-mean unit-variance ID Gaussian process, and 0 < p < 1. As is

well known, for the parametric model (5.31), the parameter p can be viewed as a rough

measure of signal bandwidth; for p = 1, A[n] in (5.31) reduces to the static case which

we have considered in detail in earlier chapters; for p = 0, A[n] in (5.31) is a zero-mean

IID Gaussian process with power level o2,. Fig. 5-1 shows a typical sample path for an

intermediate value of p.

Let's consider a scenario involving a distributed network of L sensors measuring A[n] in

statistically independent IID sensor noises as in (5.2) and employing binary quantizer bias

control. As suggested in Section 5.3.3, joint use of feedback and pseudo-noise is in general

superior over using feedback alone. This is clearly illustrated in Fig. 5-2, where we consider

encodings of the form (5.15) for various oa, levels, for a network of L = 103 sensors. As the
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Figure 5-1: Sample path of an AR(1) process with dynamics given by (5.31), where
/i1- p = 0.2, aA = 1.

figure reveals, there is an optimal power level in terms of minimizing the associated MSE

loss. The optimal power level is in fact very accurately predicted by (3.22) for aA replaced

by a' from (5.14).

Fig. 5-3 depicts the performance of this encoding strategy as a function of the "band-

width" parameter p. As the figure reveals, in the static case (/1 p2 = 0) feedback alone

provides the optimal encoding loss ( 2 dB). At the other extreme, i.e., /-p2 = 0,

feedback does not provide any encoding benefits; each signal sample A[n] is independent

of all past and future signal samples so we can not rely of past encodings to effectively

predict any future A[n] samples. On the other hand, suitable use of pseudo-noise across

the network can provide performance benefits. And for intermediate p values, joint use

of feedback and pseudo-noise provides performance improvements over using feedback or

pseudo-noise alone.
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Figure 5-2: MSE loss in estimating an AR(1) process with dynamics given by (5.31), where
V1 p2 = 0.2, aA = 1, based on a network of sensors using quantizer bias control according
to (5.15), and where av = 0.1.
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Figure 5-3: MSE loss in estimating an AR(1) process with dynamics given by (5.31), as
a function of v/j'77- = 0.2 for aA = 1, based on a network of sensors using quantizer
bias control, for pseudo-noise (dashed), feedback-based (dash-dot), and jointly optimized
pseudo-noise and feedback-based control inputs (solid). Sensor noise level: av = 0.1.
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Chapter 6

Contributions and Future

Directions

In this thesis we have focused on signal estimation from noisy measurements, where system

constraints force us to rely on a quantized description of the noisy measurements. We have

developed a framework for designing encodings of the noisy measurements into efficient

digitized descriptions and optimized signal estimators from these encodings for a number

of important scenarios with various encoder complexity characteristics.

As a main contribution of this thesis, we have introduced encodings of the form of

what we refer to as quantizer bias control. For the static signal case, we have developed

optimized encodings for a variety of important scenarios that may arise in practice, together

with associated estimators which are asymptotically achieve the optimal performance from

these encodings. Specifically, we have developed a framework for evaluating these quantizer-

based systems by means of a figure of merit which we refer to as the information loss; it

is defined as the increase in dB that is incurred in the Cramer-Rao. bound for unbiased

estimates by a particular type of additive control input and a given M-level quantizer. In

general, for control-free systems the performance rapidly degrades with peak signal-to-noise

ratio (SNR) X, which is defined as the ratio of the parameter dynamic range to the sensor

noise power level. In particular, as we have shown, for a wide class of IID sensor noises the

worst-case information loss grows faster than x2 if no control input is used.

We have considered a number of important scenarios that may arise in practice which

differ in terms of the available knowledge about the control waveform for estimation and
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the associated freedom in the control input selection. If only the statistical characteriza-

tion of the control input can be exploited for estimation, we have shown that pseudo-noise

control inputs can provide significant performance benefits, in the sense that the worst-case

information loss can be made to grow as slow as quadratically with SNR. If knowledge of

the particular control input is exploited for estimation, even higher performance can be

achieved. In particular, we have developed methods for selecting the control input from

a suitably designed class of periodic waveforms, for which the worst-case information loss

grows linearly with SNR. Finally, for cases where feedback is available we have developed

control waveform selection strategies and corresponding computationally efficient estima-

tors that asymptotically achieve the best possible performance for quantizer-based systems

with additive control inputs. Specifically, these estimators achieve the minimum possible

information loss for the associated quantizer-based system which is independent of SNR.

It is worth emphasizing that these performance characteristics are exhibited by any M-

level quantizer and a wide class of IID sensor noises. Furthermore, our methodology easily

generalizes to scenarios involving networks of sensors employing quantizer bias control.

For all encoder complexity scenarios we considered, we have shown that optimized en-

codings have the same asymptotic characteristics even when the figure of merit is average

(rather than worst-case) performance, i.e., when there is prior information regarding the

relative likelihood of the signal values. Furthermore, these asymptotic performance rates

remain unaffected even if the sensor noise power level in the original measurements is un-

known.

Although quantizer bias control encoders exploiting feedback can be constructed whose

performance does not degrade with SNR, in general these systems incur a small information

loss. This loss in performance is an inherent limitation of all encoders employing quantizer

bias control and can only be eliminated by allowing more freedom in the encoder design. For

cases where such freedom is available, we have developed a framework for designing efficient

refinable encoding descriptions and estimators from these descriptions which asymptotically

achieve the performance of any estimator that could be computed at the encoder from the

original noisy measurements. In the event that the estimate computed at the encoder is

asymptotically efficient with respect to the original sensor measurements, these encoder

and estimator pairs have the attractive property that they achieve asymptotically optimal

performance, i.e., the resulting estimate based on the encodings asymptotically achieves
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the best possible performance based on the original sensor measurements.

A very important extension of the encoding and estimation strategies involves develop-

ing efficient encodings of noisy measurements of time-varying information-bearing signals

obtained at multiple sensors. Although the framework we have developed for the static case

is in general inadequate for efficient encoding in the time-varying case, we have shown that

we can exploit the key encoding principles used in the static analysis to develop a rich class

of encoding strategies for time-varying signals. In particular, pseudo-noise, deterministic,

and feedback-based control inputs can be effectively combined to provide improved perfor-

mance over encodings strategies relying on only one of these types of control inputs. We

have shown that in all cases performance is intricately linked to an appropriate measure of

signal-to-noise ratio which depends on the particular signal characteristics and the allowed

freedom in the encoder design. In the same context, we have developed estimators that

make use of static case estimation principles to transform the multi-sensor measurements

into an equivalent sufficient "single measurement" characterization which enables the use

of a Kalman filter based approach to estimation.

Although we have sketched a number of optimized strategies that can be used to encode

and estimate noisy time-varying signals, there are a number of important issues that must

be successfully addressed to make such schemes practical in the context of distributed sensor

networks. Typical issues that may arise in practical wireless sensor networks include inher-

ent delays in all encoding strategies that exploit feedback, as well as the signal variability

that is often exhibited across a network of this form.

6.1 Future Directions

While a large class of problems have been addressed in this thesis, there are a number of very

important extensions that warrant further investigation. Indeed, some of these problems

have been identified within the appropriate thesis chapters. However, there are a number

of other important future directions that are immediately suggested by this work as well

as potential connections with other important problems arising in various other areas of

research.

In the context of parameter estimation based on encodings via quantizer bias control,

for instance, it is important to study the performance that is achievable based on finite-
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length observation windows. Such analysis may be beneficial for a number of applications

involving signal quantizers. In addition, in most of our analysis we have assumed that the

sensor noises are IID processes. However, in many applications sensor noise samples are

temporally or even spatially correlated.

An interesting future direction pertains to extending the optimized higher-complexity

encoding schemes we have developed in Chapter 4 in the context of time-varying signals. An

intriguing question pertains to determining the best possible performance that is achievable

by any such system, as well as the magnitude of the performance losses introduced by

constraining the encoding strategy to the simpler quantizer bias control methods we have

developed.

The framework we have introduced may potentially provide insight in many other re-

search areas. Indeed, this is one of the potentially most fascinating directions for future

work. For instance, the framework we have developed appears naturally suited for evalua-

tion A/D conversion of noisy analog signals. In this case, the A/D converter has the dual

function of removing noise from the noisy analog signal and of constructing an accurate

digitized estimate of the analog signal. Indeed, some of the systems we have developed in

this thesis may be useful in designing high bit-rate A/D converter arrays. However, the

practical constraints that dictate the design of these systems may differ, in general, from

the ones that we have considered in depth in this thesis [20, 21, 29].

Dithered quantizers find use in a number of other applications such as reconstruction

of bandlimited signals via coarse oversampling [36], and halftoning techniques for images

[25, 27]. The objective in halftoning is to add pseudorandom patterns to an image signal

before coarse quantization as a method of removing visual artifacts that occur from coarse

quantization of image areas that exhibit small signal variation. A number of halftoning

techniques, e.g., [27], can be viewed as parallels of pseudo-noise quantizer-bias control en-

codings of the original image into coarsely quantized pixels where there is the additional

constraint that the "estimator" to be used is our visual system. Further connections be-

tween halftoning techniques and the systems we have developed in this thesis in the context

of constrained signal estimation have yet to be explored.

Perhaps, the most exciting and fruitful future directions of this thesis pertain to finding

connections and forming ties between this work and other important problems that arise in

other disciplines in science and engineering.
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Appendix A

A.1 Worst-Case Information Loss for Control-free Signal Quan-

tizers

In this appendix we show that the worst-case information loss of any signal quantizer grows

faster than x 2 for large X in the absence of a control input. We first consider the case M = 2

and show by contradiction that Cfe(X) o (X2) as X -+ 00, i.e., we show that

,Cfree
lim mx = 0 (A.1)

X-+oo X2

cannot be true. Letting X - oo is equivalent to fixing A and letting a, - 0+, since the

control-free information loss for M = 2 is completely characterized by X-. Let Bmax (A, a,; y)

denote the worst-case Cramer-Rao bound for estimating A from one sample of the IID

sequence y[n], for AI < A, and noise level a,. Then, (A.1) implies that

lim Bmax (A, v; Y) = 0, (A.2)
av-+0+

where we used (2.4), (2.7) and (2.8). However, (A.2) suggests that, as a, -+ 0+, we can

estimate any A in (-A, A) with infinite accuracy from an one-bit observation y[n], which

is not possible. Thus, (A.1) is false, i.e., Lfma(X) has to grow at least as fast as X2.

Similarly, we can also show that LCfma(X) grows faster that X2, in the sense that

mee(x) 7: O(x2). We show this by first assuming that Lfree (X) = O(x 2), i.e., that we

can find D < oo and Xo, such that for X > Xo we have Cfme(x) DX2, and arriving to

a contradiction. The condition Cf£eae(X) = O(X2) is equivalent to the statement that there
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exists D < oo such that

lim sup maX = D. (A.3)
X-+oo X

Again using (2.4) and (2.7)-(2.8) in (A.3) we obtain the following equivalent statement,

lim sup Bma (, a,; y) = D, (A.4)
av-+0+

where D' < oo. Since the sequence y[n] is IID, (A.4) implies that as oa -4 0+, the Cramer-

Rao bound B (A; yN) is upper-bounded by D'/N, which goes to 0 as N - oo. However, for

any A 0 0, in the limit a, - O+ we have y[n] = sgn (A) with probability 1 for all n, which

in turn implies that B (A; yN) cannot go to 0 as N - oo. Thus, we must have D' = o in

(A.4), which proves that the control-free worst-case information loss is not O(X2).

We can show that £free (X) 0 0 (X2) for signal quantizers with M > 2, by using our

results for M = 2. Specifically, if A is fixed, in which case X -4 o is equivalent to a, - 0 + ,

the arguments used for the M = 2 case still apply with minor modifications. Next consider

fixing ao, in which case X - oo is equivalent to A - oo. As usual, let X 1, X 2 , XM-1

denote the quantizer thresholds. By rescaling by 1/A, this problem can be mapped to an

equivalent one where A' = 1, a = ,v/A - 0+, and where the new quantizer thresholds

are X 1/A, X 2/A, XM_1/A. The arguments used to show that free (x) # (X2 ) in the

M = 2 case still apply in this case with minor modifications.

A.2 Worst-Case Information Loss for Known Control Inputs

We first show that for any known control input scenario, the worst-case information loss

grows at least as fast as X- This is true for any sensor noise distribution and for any M > 2.

For convenience, we denote by Pw () the empirical probability density function of the known

sequence w[n] [26]. The associated Cram6r-Rao bound for estimating A based on y[n] for a

particular Pw () is given by

6 (A; yN, p ()) = (E [{(A+ ; )}]) (A.)
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where the expectation is with respect to Pw (). For instance, if the periodic sequence (2.26)

is represented by an empirical PDF consisting of K Kronecker delta functions located at

w[n] for n = 0, 1- - -, K - 1 and each with area 1/K, then (A.5) and (2.24) are equivalent.

For convenience, we consider the inverse of the Cramer-Rao bound in (A.5), namely, the

Fisher information of A given y[n]. We denote the Fisher information in the control-free

case by F (A; y). The worst-case Fisher information Tmin (A; p ()) for an input with an

empirical PDF Pw (-) is defined as

Tmin (; Pw ()) inf E [ (A + w; y)]
IAI< A

where the expectation is with respect to Pw (). Consider the optimal selection of Pw (),

which results in maximizing Fmin (A; Pw ()), i.e.,

A
T.opt () = max Fmin (A; p, ()) -

The growth of the optimal worst-case information loss equals the growth of the inverse of

the optimal worst-case Fisher information defined above.

We will make use of the fact that the control-free worst-case information loss grows

strictly faster than XP for p < 2 (cf. the generalization of (A.1) to quantizers with M > 2).

Without loss of generality we may set a, = 1, in which case A = X-. Since B (A; s) is

independent of A (and thus A), the control-free worst-case Fisher information of A based

on y[n] decays faster than 1/AP for any p < 2, as A increases. Thus, there exist D > 0 and

6 > 0, such that for any AI > 6

(A; y) = [B (A; y)]-' < min { D IA - P, [ (A; s)]-1} , (A.6)

for any given p < 2. For convenience, we pick p so that 1 < p < 2. Also, let

'Pk '"(A; pw P(w) d .
k<Iw+AI<(k+l) 

For any empirical PDF Pw (.) and any A satisfying A > 6, we must have

inf Pk (A; Pw ()) < (A.7)
IAI<A A.
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We can establish (A.7) via proof by contradiction; if the inequality in (A.7) is reversed, for

any A in (-A, A) we have

25
Pk (A; p ()) > (A.8)

Let Aj = jS for j = 0,±1, -* -, ±j, where j is the largest index j satisfying Aj < A.

Note that jo > A/(2 ). Applying (A.8) for A = Aj, and summing over all j yields

.7j~~~~~~~~o 25~~~~~~

Z Pk (As; P. (-)) > (2jo + 1) A, (A.9)

which is a contradiction since the left hand size of (A.9) is upper-bounded by 2 fw P, (w) dw,

while (2 jo + 1) (2 S)/A > 2. We can similarly derive the following generalization of (A.7)

inf 3Pk Pk(A; pw ())< 2 E k (A.10)
IA<A k k

where pk > 0 and at least one of the Pk' is non-zero. We have

0o

aFpt(/A) = max inf E f p, (w) (A+ w; y) dw

pw(-) IA<a (k)P25( )DI~g/= c <l~+Zl<(k+~)S

< 26 ([B(0; s)] + D E 1 (A.llb)

C (A
< A" (A.11c)

where C < oo, since k=l k-P is a convergent series for p > 1. To obtain (A.lla) and

(A.11b) we used (A.6) and (A.10), respectively. As (A.11c) reveals, for large A the optimal

worst-case information loss grows at least as fast as X (since X = A for a, = 1).

We next show that simple periodic control input schemes can be constructed for which

the worst-case information loss (for N -+ oo) grows linearly with X-. It suffices to consider

signal quantizers with M = 2, since signal quantizer with M > 2 provide additional infor-

mation and would thus perform at least as well. In particular, we next show that K-periodic

waveforms given by (2.26), where K is given by (2.27) for a fixed A > 0, achieve the opti-
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mal growth rate for any admissible sensor noise and a symmetric two-level quantizer. Let

B (A; a,) denote the Cram6r-Rao bound (2.14) with a replaced by v. Note that since

B (A; a,) = av B (Ala,; 1), (A.12)

we also have Bmax,, (A; a,) = a2 Bma (A/l,; 1), which in conjunction with (2.8) reveals that

the associated information loss is completely characterized by the ratio X = A/,a. Since K

also solely depends on X, we may fix A = 1 without loss of generality. Note that the class

(2.26) remains invariant to changes in ,,. Hence, we may use win; K] to denote the unique

K-periodic sequence from the class (2.26) corresponding to A = 1. For a, < A, we have

3 A/a, > K, and

K
Bmax (1, v) = sup K (A.13a)

AE(-1,L) EK=1[ (A + w[n; K]; a,)] 1

3A
< -- sup min B (A + w[n; K]; a,) (A.13b)

O(v AE(-1,1) nE{1,2,---,K}

< 3 A a, sup min B (A' + w'[n; K]; 1) (A.13c)
A'E(-1/a,, l/a) nE{1,2,--- ,K)

< 3 a,, sup B (A; 1), (A.13d)
AE(-1/A, 1/A)

where w'[n; K] = w[n; K]/av, and where we used (A.12) to obtain (A.13c) from (A.13b). To

verify (A.13d) from (A.13c), note that for any fixed A' in (-1/a,, 1/a,), the minimum of

B (A' + w'[n; K]; 1) over n is upper-bounded by B (A' + w'[n'; K]; 1), where n' is the value

of n for which IA'+ w'[n; K]I is the smallest. Since the spacing i,, of the sawtooth waveform

w'[n; K] satisfies 6,, = 6/a, < 2/A, IA' + w'[n'; K]I is upper-bounded by 6,,/2 < 1/A for

any IA'I < 1/u,, verifying (A.13d). Since B (A; s) . o2 from (2.8) and by using (A.13d),

the worst-case information loss for known w[n] given by (2.26) with K given by (2.27) is

inversely proportional to ,, for small o,. Hence, this control selection method achieves the

optimal worst-case information loss growth rate.

We next determine the optimal A in (2.27) for the case where v[n] is Gaussian with

variance a2. We use LVr (x; X, K) to denote the Cramer-Rao bound (2.24) for A = xA in

order to make its dependence on X and on the period K in (2.26) explicit. The optimality of

(2.27) suggests that Kopt from (2.25) is a non-decreasing function of X for X large. Indeed,

there is a sequence Xk where k > 3, such that, Kopt(X) = k, if Xk < X < Xk+l- If X = Xk,
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both K = k and K = k + 1 minimize (2.25), i.e.,

sup B3 (; Xk, k) = sup B (; Xk, k + 1) (A.14)
xE(-1,1) xE(-1,1)

For large k the left hand side of (A.14) is maximized at x = 1 (i.e., A = A in (2.24)), while

the right hand side is maximized at x = 1-d(Xk; k)/2 with d(-; ) given by (2.28). Assuming

that dopt(X) in (2.29) converges for large X to a limit, i.e., that do = limx+,o dopt(X) exists,

(A.14) reduces to

00 00

E [Bg ((n + 1/2) d; 1)]-' = [Br (n do; 1)]- 1 , (A.15)
n=-1 n=O

where Br (A; a) denotes B (A; a) for v[n] Gaussian, and is given by (2.16) for or, = a.

Both infinite series in (A.15) are convergent; in fact, only a few terms of each series are

required to obtain an accurate estimate of d, such as the one given in (2.31). Using doo

from (2.31) in conjunction with (A.14) and (2.24) yields (2.32). Similar results hold for

nonGaussian sensor noise PDFs. Specifically, a relation of the form (A.15) holds for doo

defined in (2.30), where Bv (.; ) is replaced by the associated B (.; ). The resulting infinite

series in (A.15) are both convergent since their terms decay faster than 1/nP for 1 < p < 2

(recall that B (A; y) grows faster than AP for the control-free scenario). Clearly, the value

of d, depends on the particular noise PDF.

Extensions of the preceding control selection strategies can be developed, which achieve

the optimal growth rate of the worst-case information loss for finite N. Let *N denote the

control vector associated with the finite-N strategy, which is assumed known for estimation.

Given a set of w[n] and K selected according to infinite-N scheme, a finite-N method that

achieves the same information loss for any A selects w*N randomly from a set of K equally-

likely vectors W(N, K) = (wN : 1 < i K)}, where the nth element of the N x 1 vector

w N is given by w[n] = w[i N + n].

A.3 Information Loss for Signal Quantizers with M -+ oo

We consider a uniform quantizer with M = 2(K + 1) levels. Given K, we select the

quantizer thresholds as Xk = k/x/7Ix, where k = -K, - - , K, and x > 0. For convenience,

we let X-K-1 = -0 and XK+1 = oo. We next examine the Cram6r-Rao bound (2.12) for
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w[n] = 0, where v[n] is admissible. We may rewrite (2.12) as

B (A; yN)= 1
K+1 - -1

E K
=-K 

k = [pv (Xk - A) - p (Xk-l - A)]2

Cv (Xk_ - A) - Cv (Xk - A) '
(A.16b)

Note that as K -+ oo, both ~-K - 0 and ~K+I -+ 0. By letting mk = (Xk + Xk-1)/2 - A,

for large K and for k = -K + 1, *--, K we have

Pv (Xk - A) - p (Xk-1 - A)

Cv (Xk-l - A)- C (Xk - A)

which imply that

[p (mnk)]2
piv(mk)

x

V/-1 
(A.17)

Approximation (A.17) becomes an equality as K -+ oo.

using (A.17) yields

= [ iM (f-K + [+ '+1)N -oo

Letting K -+ oo in (A.16) and

K

+ lim E
k=-K+1

N - L pv(t A)2 dt]

O In p(t- A) 2

aA 
p(t-A)d]-1

pv (t - A) dt]

A.4 Asymptotic Efficiency of ML Estimator for the Case

M = 2

In this appendix we show that AML = AML (yN; A) given by (2.40)-(2.42) achieves (2.14)

for N large, if a[n] is admissible. Let k denote the binomial random variable k(yN) =
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-00
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/Ct (yN) /N. Then,

-A

A

if k < Ca (A)

if C, (A) < k < C (-A)

if k > C (-A)

For large N the following approximation is valid in the cumulative sense

k - A/(p, &N), (A.19)

where p = Ca (-A) and aN = /p(1 - p)/N. Since g(-) is invertible (Co () is strictly

monotone almost everywhere), the PDFs of AML and k are related as follows [26]

J 6(A-A) Q (Vi3+) if A = A

PAML (A) Pk (CA (-A)) (-A) if-A < A < A ,
6(A + A)Q ( ) if A= -A

+ = (-) - p P- Ca (A)

VP (1 -~P) I I- p'P1 -p

where

(A.20)

(A.21)

Note that the PDF of AML in (A.20) consists of a sum of Kronecker delta functions.

We first consider PAML (A) for A < A. If N is large enough, so that (A.19) is valid

and also N < a, the following approximations for PAML (A) are valid in the regime

(-A, A), in the sense that for any A in (-A, A) the values of the corresponding cumulative

distribution functions are approximately equal (and where the approximation generally

A
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improves as N increases)

1 exp
V27N

( (Ca (-A) -Ca( A))) PA)

2~~-PC (A
i~~~2&

1

V2 (C- X (-A))

1

v'7

1

v/r (yIVN)

exp 2&N )

exp - (p (-A))2 ( ) 

exp -) )2 N

72 = ca (A) Ca (-A) (pa (-A))-2.

Approximation (A.22a) results from using (A.19) in (A.20). To verify (A.22b) note that

in the region that exp(-[Ca(-A) - C (-A)]2/[2 &2]) is essentially non-zero, we have

Po (-A) = pA (-A). For &N << ao,, the following approximation is valid for the expo-

nent in (A.22b)

[Ca (-A)- Ca (-A)] 2 (p, (A)) 2 (A - A)2

which when substituted in (A.22b) results in (A.22c), and (A.22d). From (A.22d), for

large N we have AML A(A, y 2/N) in the regime (-A, A). Provided N is large enough,

7
2 /N < A - IAI, in which case the MSE term contributed from AML E (-A, A) approaches

the Cramer-Rao bound 2 /N. Next, consider the two other regimes, where AML = ±A. Let

p_ = exp(-32_ /2), and p+ = exp(-/,3+/2), where i3 and 3+ are given by (A.21). For large

enough N, Q (N/+) - c1 p N/v , and Q (_I) c2 p+N/vW. Since 0 < p+, p_ <

1, the corresponding MSE terms go to zero much faster than 1/N for large N, so their

contribution to the MSE becomes negligible for large N as compared to 72 /N. Hence, AML

achieves the Cram6r-Rao bound (2.12) for large N.
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(A.22b)

(A.22c)
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A.5 EM Algorithm for Parameter Estimation in Gaussian

noise via Signal Quantizers

In this appendix we present the derivation of an EM algorithm that can be used to obtain

the ML estimate of an unknown parameter from a network of signal quantizers. The ith

observation yi is given by

Yi = Fi(xi) i = 1, 2, .--, I,

where

zi = A + vi + wi, (A.23)

A is the unknown parameter of interest, the sequence vi is IID with vi JA(O, a2), Wi is

the selected (known) control input, and Fi(-) is the ith quantizer and is given by (2.2). We

use X.(-) and Xi() to denote the functions mapping each quantizer level Ym of the ith

quantizer Fi(.) to the associated lower and upper thresholds Xm_1 and Xm, respectively.

We select as the complete set of data the set zi in (A.23). For convenience, let

x= X1 X2 -- XII T and Y = Y1 Y2 yI 

(k+l) ~(k) andThe EM algorithm selects AEMl), the estimate of A at the k + 1st step, based on A(EM and

y according to

(k+1) = argmax U (; AEM) (A.24)

where

U (; A() E [ln p(x; 0) fy; A (k) (A.25)EM EM
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The log-likelihood function In p(x; 8) satisfies

In p(x; 0) = C - W1 -_)2

i=1

I

= h(x)+ E (x- wi)
i=1 

2 1

i=1 

If we substitute the expression (A.26) for In p(x; 9) in (A.25) we obtain

U (0; AEM) = E [h(x) y; AEM + E[k]- -2 I,

where = Jf=l i 2 , and

I

E[k = 2 Ei[k]
i=l t

Substituting in (A.24) the expression for U (;

(A.28)2(E ilyAM](k) _

A() in (A.27) we obtain

(A.29)

Let z i = X-(yi) and Yi = Xi(yi). Using

= P (Yi I Xi; AM) (xi; AM) [ (i; A)]fp~y~lZSIEM EM EMnE

L -(k)
1 (IE)~~~~~~~~~~

vf2I'ri (Xi EM -W' w (x+A ( + ,2J- =g-AM - '
~-A-EM I

x2 N
exp 2 a?( ut

EM )
Q· a

exp(
= A(k) + i

( 2-A )-i)
2, J

Q ( Ai 

T -((k) 2- exp (2)Wi

- Q 2 Rk t -, (A.30)

·(r,A(~ w,
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(A.26)

(A.27)

we obtain

Ei [k] ( _i -A ( ) - i

dx

- Wi---

- -

_ .

II

i=1

= P (Xi I yi A k)EM)(xi I Y; V) 



which when substituted in (A.29) results in

1 i
J2 =1 i i=1

2 (k) -2 i ) 
exp 2ai- AE- w z - exp 2a Jt 9

0i [Q (- .M i ) Q/(i AM -i )i Q-'- -(A3ai1

(A.31)

Several special cases of (A.31) are of interest. In particular,

(A.31) reduces to

if F (x) = F(x) = sgn (),

v Z 7Ti= I O 2i 2 i=1 i
(A.32)

Next, consider the special case where N observations are collected from

quantizer (i.e., F(x) = F(x) and I = N). If, in addition, w: = w and

(A.31) reduces to

a single M-level

ai = a for all i,

M exp (x-A(k) -W )
A(k+l) T (k) m() 

EM=l Q - Q-K A.(k .-A(kM)

(A.33)

only the sufficient statistics Cy, (y), Cy2 (y), .. , KyM_ (y), are used in (A.33) to obtain

AML-

A number of Generalized EM (GEM) algorithms can be derived which have interesting

connections to the fast algorithms developed for parameter estimation in the presence of

feedback. A GEM algorithm results in a sequence of estimates A(k) which have the

property that at every step they increase U (0; A(kEM) in (A.25) instead of maximizing it,

i.e.,

U ((k+l).E A(k)M _ U (A(k) M. 0) 0 
V GEM GEMJ GEM' GEM (A.34)
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Given the kth iteration estimate of this algorithm GEM() the associated U (; AGEM) isGEM' AGEM ,,) is

given by (A.25), where E[k] is given by (A.28)-(A.30) with A(k replaced by A(k)M which

we may rewrite for convenience as

E[k]l = A(EM + [k].

Consider the following class of iterative algorithms parameterized by A

GEM = I (AM + A [1k]) . (A.35)

The algorithm corresponding to A = 1 is the EM algorithm (A.31). Substituting AGkEM)

from (A.35) in (A.34) reveals (A.35) satisfies (A.34) if

(AX- 2) > 0 .

Thus for 0 < A < 2 (A.35) yields a GEM algorithm. The algorithm corresponding to

A = 7r/2 is of particular importance, especially in the case M = 2 where feedback is present.

In fact, it is the optimal A when AML - 0 in the case M = 2 and wi = 0; the case AML = 0

arises when K1 (y) = 1/2. In this case, the convergence rate of the algorithm is given by

lim EM 1 - 2 A/r .
A(k)AML A(k) ML

GEM GAAL AEM

From this point of view, the algorithm corresponding to A = 7r/2 provides the optimal

convergence rate when AML is close to the quantizer threshold. Consequently, it should

not be surprising that its first step corresponds to the algorithm (2.58) when n > no,

which was obtained heuristically and which achieves the optimal information loss in the

Gaussian scenario for M = 2 in the context of feedback. In general, the GEM algorithm

with A = r/2 results in the ML estimate in fewer iterations than the EM algorithm for any

set of observations, control input sequences, and noise levels.

The corresponding EM algorithms for MAP estimation can be readily derived if A is

random with a priori distribution Af(mA, a). Specifically, we need only replace (A.24)
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with [14]

EM l= arg max U ; ( )M +1 ( - 2]
0 

(A.36)

which results in the following MAP counterpart of (A.29)

E[k] + mA
A(k+l)_ o

EM 1- I 

I + o."A

(A.37)

where E[k] is given by (A.28) and (A.30). MAP counterparts of (A.32) and (A.33) can be

also readily derived.

A.6 Asymptotically Efficient Estimation for Pseudo-noise Con-

trol Inputs

In this appendix, we show that the estimators (2.45)-(2.47) of the parameter A presented

in Section 2.3.1 are asymptotically efficient with respect to yN, where y[n] is given by (2.1)

with F(.) given by (2.2), and where cr[n] in (2.10) is an IID admissible noise process. In

the absence of pseudo-noise, cr[n] equals v[n]. Consider the following collection of binary

sequences

yi[n] = Fi(A + a[n]) = sgn (A + a[n] - Xi) i= 1, 2,- , M- 1 .

The observed output y[n] is equivalent to the collection yl[n], -- ,yM_-[n],

i yi[n] and yj[n] = sgn (y[n]-Yi). The ML estimate of A based on y = [y[1]

is given by Ai in (2.45). We have

Ai = z, (-cj-' (Ti) ,

since y[n] =

Yi[2] ... yi[N]]

(A.38)

where

Ti- 1 (yN) = 2 N E yi[n] + N 1Ti n 2n

n
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The estimators we develop next are based on the vector A defined in (2.46). Note that,

although the collection of Ti's is a set of sufficient statistics for the problem, .A is not, in

general, a sufficient statistic due to the limiting operation in (A.38). In order to obtain the

distribution of A for large N, we need the distribution of the vector

TT= [T1 T2 - TM-1] T
For convenience, let P- = C (X - A). First note that the distributionof the vector [ (N) Ky (yN) ... KY (yN)] is multinomial, and approaches a Gaus-

sian vector in the cumulative sense [12]. The Ti's are linear combinations of the KyC (yN) s,

since Ti = EZ=i+l Iy (yN). Consequently, T also approaches a Gaussian vector in the

cumulative sense, i.e., T A A(T, RT), where

T
= [PI P2 -.. PM-11

RT = R/N, and

pi (1- pi) P2 (1 -P ) '' PM-1 (1- pi)

Ri= P2 (1 - Pi) P2 (1 - P2) .' PM-1 (1 - P2)

. * '-. *

PM- (1- P) PM- (1 - P2) * PM-I (1 -PM-1)

In a manner analogous to the case M = 2 described in App. A.5, by using the theo-

rem for the PDF of transformation of variables [26], and in the limit as N -+ oo (where

we invoke the law of large numbers and ignore the boundary effects due to Ai < A),

we have A - A(A 1,C/lN) in the cumulative sense, where C = F - ' RF - 1, and F =

diag(fl, f2, - - -, fM-1). It can be readily verified that

C-1 

al bl 0 ... 0

bl a2 b2 ".

O b2 a3 . 0

. '. '. *- bM-2

0 ... 0 bM-2 aM-1

(A.39)
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f;2 fi2

ai = .. ++
Pi-1 -Pi Pi - Pi+1

and fi fi+1bi -
Pi+l - Pi

If C where available, then the optimal estimate (in terms of minimizing the MSE) would be

A= ATA = (1 T C - l 1)-1 1T C-l A,

while the associated MSE would satisfy

lim NE[(A-A) 2 ] = (TC - 1 ) -1 = B(A; y)
N-+oo

i.e., this estimator would be asymptotically efficient. However, C is a function of the

unknown parameter A. Instead, note that C(Ai) approaches C(A) for large N for any i

(since Ai is asymptotically efficient). Specifically, set i = 1 and consider

A = (A 1) T A,

where A(8) = (1T C-(8) 1) -1 T C-(8). Let = A - A, z = i - A, and = A - Al.

Also, let AX = A(A1 ) - A(A), and denote by Ai the ith element of AX. Then,

lim NE [(A - A)2;A] = lim NE [Z 2 ;A]N-+oo N-+oo

= lim N E [(+ AXT i) 2; A]
N-4oo

= B (A; y) + lim N Z(3i,j + (ij)
N -. oo ,y + 

i,3

(A.40)

where fij = E [AAi AAj ii ij], and (j = E [AAi Aj ,i ij]. Note that in App. A.5 we have

shown that limNO, NE [(A1 - A)2] = B (A; yi). Since p () is admissible, for large N

we have

Ai (Al - A) .(A)

Also, since A 1 - A is Gaussian for large N (see App. A.5), so is AAi. In addition, there

exists G > Ai(A)I for all i, which implies that E [AA?] < G/N, and E [AA4] < 3G 2 /N 2 .

There also exists U such that E [2] < U/N for all i, for N large enough. Finally, let
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Amax = max AXi(A). Repeated applications of the Schwarz inequality yield

and

Iijl < Aax (E [A4] E [AA 4 ] E [])1/4 < Amax33
/4GU1/2

N~fiY

which, when substituted in (A.40), result in

lim N E [( - A)2; A]
N-+oo

< B(A; y)+
i,j

< B(A; y)+
3GU

lim ( +
N-*oo N

Amax,33/ 4 GU1/2
f --

< (A; y). (A.41)

Since A is asymptotically unbiased (as a sum of asymptotically unbiased estimates), for N

large we have E [(A - A)2; A] B (A; y) /N, which in conjunction with (A.41) yields the

desired result (2.48).
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Appendix B

B.1 EM Algorithm for Estimation of Gaussian Noise Param-

eters via Signal Quantizers

In this appendix we present the derivation of an EM algorithm that can be used to obtain

the ML estimator of A and a from a network of binary quantizers. The ith observation yi

is given by

yi = Fi(xi) = F(A + a vi + wi) i = 1, , I (B.1)

where A and a are the unknown parameters of interest, satisfying AI < A and a < a < a,

vi is an IID sequence with vi -. IA(O, 1), wi is a deterministic (known) sequence, and F/(-)

is the ith quantizer and is given by (2.2). We use X-(.) and Xi(.) to denote the functions

mapping each quantizer level Y, of the ith quantizer F/() to the associated lower and upper

thresholds Xm_1 and Xm, respectively.

We select as the complete data the set xi in (B.1). For convenience we denote by x, y

the following vectors

x = [xl x2 ... XI]

and

Y- [YI Y2 ... yI]
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Let 0 denote the vector of parameters that we wish to estimate, i.e.,

OA ]

The EM algorithm then selects the k + -st estimate (k+) of based on (k)The EM algorithm then selects the k + 1-st estimate EM of 0 based on 6 EM according to

6(k+l) ;k
EM - arg max U (; (EM 

8: 1 < 1<A

U (e; EM) = E [in p(x; )jy; oEM]

In p(x; ) = h(x) - I ln(a)
A I IA2

+ 2 (Xi- Wi) 2 2-
i=1l

Substituting (B.4) in (B.3) and taking the derivative of U (0; (k) withEM yields th

,, yields VEMl, the next iteration estimate of , namely

respect to A and

= IA (B[k]/I)

G[k] + I [(kL) 2 -2A(k+l) B[k]-2 EM

I

I

B[k] = E E [(xi - wi)y; EM]
i=l

I

G[k] = Gi[k],
i=1

Gi[k] = E [(Xi - w)2 y; I (I:
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where

We have,

(B.2)

(B.3)

I1

2 E (2 ii=1

(B.4)

A(k+l)EM

(k+l)
GEM

where

(B.5a)

(B.5b)- -

I -

- Wi) .

= 4I Ur



and where (, ) () is the following piecewise linear limiter function:

t(, ) () =
x ifx <x<x

x if x<x

7 ifx >x

Uk) = i EM -/EM

-k) - ^ + ai(k)zi = Xi EM _ Wi,

the k-th samples of the sequences B[k] and Gi[k] are given by

B[k] = I A(k +EM _

(k) I
UEM S

i=1

and

Gi[k] = EM)+ (M) +

which when substituted in (B.5), and in the limit k -+ oo provide AML(Y) and ML(Y).

Note that when ik) = oo in (B.8) (and thus also ik) = oo), we have

exp (- [i)] 2/2)

Similarly, when k) = -oa, we

z() = lim exp (-u/2) () +) ) = 0.-- / EM A EM 2--)'00

have exp (-
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Letting

(B.6)

uk) = (X
-;-I ( - A(k) W) (k)

and

(k) = x + A - Wi,
_.:L 2 E

(B.7)

, (B.8)

I _1 �I___DI��·_11�1 _11__11__1_11_11_1_1I -C --- -I
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Appendix C

C.1 Proof of Theorem 1

In this section we prove the asymptotic optimality of the variable-rate encoding scheme

described in Theorem 1. Using (4.11) and (4.9) we obtain

E -(A[N+]- A[Nk+l]) ] < D M - 2h[Nk] (C.1)

where D is a constant satisfying D > A2 . Using (C.1) and (4.10b) reveals that

lim Nk E [(A[Nk+] - A[Nk+l]) ] = 0

which in turn implies that

(C.2)

Also, due to (4.11) and (4.10a) we have

lim
k-oo

=-1

which in conjunction with (C.2) implies (4.3), proving the asymptotic optimality of the

algorithm.
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lim E [(A[Nk] - A) ]
lim E [ A[NkA) 2]1.

k-o E [(A[NI- A)2]
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C.2 Proof of Theorem 2

We will first prove the following lemma, which we will then use to prove Theorem 2.

Lemma 1 Let

s[n] = sgn (A - A[n]) .

Then the following statements are true for the dynamical system (4.16):

(a) There exist arbitrarily large n such that

s[n] = -[n - 1] (C.3)

(b) If (C.3) is satisfied for some n', then

IA- A[n]j < -.
n

(C.4)

(c) The set of initial conditions for which (C.3) holds for all n satisfying n > n' for some

n' has zero measure, and satisfy

lim A - A[n] 2 n2 -
n--oo 4

(d) For almost all initial conditions there exist arbitrarily large n for which

s[n] = s[n - 1] = -[n - 2] (C.5)

Proof:

(a) To show (C.3) is satisfied for arbitrarily large n, we assume the opposite is true and arrive at

a contradiction. Assuming there is an n' such that for all n > n' i[n] = S[n - 1], and repeated

use of (4.16) yield

A[nb]> E

k=n'

which must be true for all n. This, however, is a contradiction since k=n' 1/k is not bounded

for any n'.
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(b) We can show this by induction. Due to (a) there exists an n = n' + 1 for which (C.3) is

true. Since A[n' + 1] and A[n'] have opposite signs and satisfy (4.16), (C.4) is satisfied for n'.

Assuming (C.4) holds for some n > n' we show that it also holds for n + 1. If S[n] = -[n - 1]

then (C.4) is satisfied for n + 1. If on the other hand [n] = S[n - 1], then since (C.4) holds

for n

C C C CIA- A[n + 1] = IA- A[n]I- +-- - <
n+ n+l n+l

(c) Let us assume that (C.3) is satisfied for all n > n', where n' is even. Consider the sequence

x[n] = IA- A[n]l. 

Then, for all n > n', we have x[n] > 0 and also

[n] = - x[n- 1] . (C.6)
n

Repeated use of (C.6) and the fact that x[n] > 0 yields a relationship that must be satisfied

for all even n > n'

n/2 n/2

I 1) < n 2 
k=n2 (2 k) (2 k + 1) z <n ' /2 (2k+ 1)(2k+2)

k=n'/2

Since the limits (as n -+ oo) of both the upper and lower bounds on x[n'] above are equal, we

must have

IA-A[niI= Z 1 (C.7)[AA l ~ (2 k) (2 k + ) '
k=n'/2

Thus, (C.3) is satisfied for all n > n' if and only if (C.7) holds. Finally, since (C.7) also holds

for all even n > n', we have

lim (2 k)2 A - [2 k] 2 = 
k--oo 4

The proof for odd n is similar.

(d) This is a trivial consequence of part (c).
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The proof of Theorem 2 is a direct consequence of the above lemma. Specifically, (4.17)

is trivially implied by part (b) of Lemma 1. In addition (C.4) implies that

lim sup n2 A - A[n] 2 < c2 .
n-+oo

To show that c2 is indeed the upper limit we employ part (d) of Lemma 1. Use of condition

(C.5) reveals that there exist arbitrarily large n for which

n l - A[n] > (1 -(n-1) (n - 2) 

which completes the proof.

C.3 Asymptotic Optimality of the Digital Encoding and Es-

timation Algorithms of Sections 4.3.1-4.3.3

In this appendix we show the asymptotic optimality of the sequential encoder/estimator

structures of the form (4.19) presented in Sections 4.3.1-4.3.3.

We first show the asymptotic efficiency of the fixed-rate encoder/estimator scheme of

Section 4.3.1 consisting of (4.12) and (4.19). In the process we also derive the relationship

(4.25) between and A. We will assume that (4.21) holds for large n and n + 1, and find

the value of 3 as n -+ oc. Since the resulting value is neither 0 nor oo the residual error

indeed decays as 1/n 2 . By exploiting

A[n+1]= A[n] s[n + 1],
n+l n+l

and (4.19b) we have

E (A[n + 1 - Awn]) ] E + (A[n] - A[n - 1]) +

(s[n + 1] - [n - 1]) - (C.8)n+l

- sgn (A[n] - A[n - 1]))]

For convenience, let 71 = n (A[n] - A[n - 1])/(n + 1), 2 = (s[n + 1] - A[n - 1])/(n + 1),
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and 3 = Aavsgn (A[n] - A[n - 1])/n. Then, from (4.22)

and also

lim n°E [l] = aV

lim n2 E [i3 ] =A 

The terms of the form E [r2 ri] for i 0 2 decay faster than 1/n2 , while

lim n2 E I] = 
n-+oo

(C.9c)

The term in (C.8) corresponding to E [rl r3] reduces to

AE E [ A[n] - A[n - 1]1] (C.lOa)

Using (4.22) and the Schwarz inequality reveals that E [IA[n] - A[n -1]1] decays as 1/n or

faster, i.e.,

lim n E [IA[n]- A[n- 11] = Cn-+o

where 0 < C < oo is a function of A, as is ,B.

taking the limit as n -+ oo and by using (C.9)

By multiplying both sides of (C.8) with n2,

and (C.lOb) we obtain

(C.11)

If A is chosen so that 0 < A <- oo, using (C.11) reveals that 0 < C < oo, which verifies

that E [IA[n] - A[n - 1]1] decays as 1/n. This in turn implies that E [(A[n] - A[n -1])2]

cannot decay slower than /n 2 (i.e., /3 > 0). In fact, for large n, the PDF of A[n] - A[n - 1]

is well approximated by a Gaussian PDF in the cumulative sense. Consequently,

c(,B) = v'7r Vp, (C.12)

which, when substituted to (C.11), results in (4.25).
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The accuracy of the Gaussian PDF approximation is examined in Fig. C-1, where we

depict the results of Monte-Carlo simulations along with the associated predicted quantities

from use of (4.25). Although this figure only shows the validity of the analysis for A = 1,

its accuracy is remarkable over a wide range of A values that have been tested.

The analysis for the decoder/estimator system (4.12)-(4.19b) applies intact in the case

that the noise is nonGaussian provided that v[n] has finite variance, thus providing the

asymptotic optimality of the encoder (4.12) and (4.19) in finite-variance sensor noises, de-

scribed in Section 4.3.2.

To show that the associated results hold for an encoder/estimator of the form (4.19)

where A[n] is any estimator satisfying (4.27) and where the noise v[n] is admissible, we

again write

E [(iAn + 1]- = E [{ (An]-An ]) + n +1] smgpn (A[en- A[n- 1]) }]

Similarly to the analysis of sample-mean based encoder, we make the association, -

A[n] - A[n -1], 172 = [n + 1], and r13 = A , sgn (A[n] - A[n - 1]) /n. The terms E [rii],

E [22], E [2], and E [1 3] are given by (4.21), (4.27), (C.9b), and (C.10), respectively.

Finally, we can easily show that the terms E [2 73] and E[rn1 r72] also decay at least as

fast as 1/n 2 by using the fact that E [?] decays as I/n2 and the Schwartz inequality. All

these together imply that the residual error decays as the reciprocal of the square of the

observations. By ignoring the terms E [2 773] and E [l 12] we obtain an estimate for the

scaling /3 of the residual error term in (4.29).
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Figure C-I: Validity of the residual error analysis for A = 1 for Gaussian v[n]. The solid lines
on the lower two figures depict the results of Monte-Carlo simulations. The dashed curves
correspond to the associated estimates obtained via the Gaussian approximation, leading
to the value of i in (4.25). The dotted curve on the top-left figure denotes B (A; s).
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