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Abstract

In this paper, we focus on automated addition of fault-tolerance to an existing fault-intolerant real-

time program. We consider three levels of fault-tolerance, failsafe, nonmasking, and masking, based on

the properties satisfied in the presence of faults. Furthermore, for failsafe and masking fault-tolerance, we

introduce two cases, soft and hard, based on satisfaction of timing constraints in the presence of faults. We

present sound and complete algorithms with polynomial time complexity in the size of region graphs for

the case where soft-failsafe, nonmasking, and soft-masking fault-tolerance is added to an existing real-time

program. Furthermore, we propose a sound and complete algorithm with polynomial time complexity in

the size of region graphs for adding hard-failsafe fault-tolerance, where the synthesized program is required

to satisfy at most one bounded response property in the presence of faults. Moreover, we show that the

problem of adding hard masking fault-tolerance, where the synthesized fault-tolerant program is required to

satisfy multiple bounded response properties in the presence of faults, is NP-hard in the size of the region

graph. Thus, this work characterizes classes of problems where adding fault-tolerance to real-time programs

is expected to be feasible and where the complexity is too high.

Keywords: Fault-tolerance, Real-time, Program synthesis, Program transformation,

Formal methods.

1 Introduction

Fault-tolerance and real-time properties are crucial assurance requirements in many computing systems. How-

ever, since fault-tolerance and real-time properties often impose conflicting constraints on systems, they are

not easy to combine. Meeting real-time properties needs predictability and fault-tolerance requires programs

to continue to function even in the presence of unanticipated faults. In other words, while satisfaction of tim-

ing constraints requires a priori knowledge of the system’s temporal operation, fault-tolerance is built on the

principle that faults occur unexpectedly and that faults must be handled through some recovery mechanism.
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Automated program synthesis is the problem of designing an algorithmic method to find a program that

satisfies a required set of properties. Such automated synthesis is desirable, as it ensures that the synthesized

program is correct by construction even if its required set of properties have conflicting constraints such as

fault-tolerance and real-time. In the existing specification-based synthesis methods, a change in the specifica-

tion requires us to synthesize from scratch. Thus, it would be advantageous, if we could reuse the previous

efforts made to synthesize fault-intolerant real-time programs and somehow add fault-tolerance to them. More-

over, such addition is especially useful if the fault-intolerant real-time program is designed manually, e.g., for

ensuring that the original program is efficient.

With this motivation, in this paper, we focus on designing synthesis algorithms that solely add fault-

tolerance to real-time programs . Such synthesis methods are desirable, as it may not be possible to anticipate

all faults that a program may be subject to, at design time. Our goal in this work is to concentrate on algo-

rithms with manageable time and space complexity, i.e., complexity that is comparable to the corresponding

complexity of existing model checking techniques for fault-tolerant programs in dense real-time model.

Regarding fault-tolerance, we consider three levels, based on the properties satisfied in the presence of

faults. Intuitively, a failsafe fault-tolerant program does not violate its safety specification even in the presence

of faults, i.e., a bad thing does not occur when the program is running in the presence of faults. A nonmasking

program ensures recovery to its normal behavior after the occurrence of faults. A masking fault-tolerant pro-

gram has both properties, i.e., in the presence of faults, it does not violate its safety specification while ensuring

recovery to its normal behavior. Regarding real-time, we propose two cases, soft and hard, based on satisfaction

of timing constraints in the presence of faults (cf. Section 3 for examples).

1.1 Related Work

In real-time computing literature, fault-tolerance has mostly been addressed in the context of scheduling al-

gorithms (e.g., [1–5]). In fault-tolerant real-time scheduling, the objective is to find the optimal schedule of

a set of tasks on a set of processors dynamically, such that the largest possible set of tasks meet their dead-

lines. Since time complexity is a critical issue in dynamic scheduling, most of the proposed algorithms are

in the form of heuristics designed for specific platforms or architectures and for a special type of faults (e.g.,

transient, fail-stop, Byzantine, etc.).

The problem of synthesizing untimed fault-tolerant programs has been studied in the literature from differ-

ent perspectives. In [6–10], the authors propose synthesis methods, heuristics, and enhancement algorithms for

adding fault-tolerance and multitolerance to existing programs in the high (respectively, low) atomicity model,

where processes can (respectively, cannot) read and write all the program variables in one atomic step. In [11],

Attie, Arora, and Emerson study the problem of synthesizing fault-tolerant concurrent untimed programs from

temporal logic specification expressed in CTL formulas.

Synthesis of real-time systems has mostly been studied in the context of timed automata from a game-
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theoretic perspective [12–19]. In these papers, the common assumption is that the existing program (called a

plant) and/or the given specification is deterministic. Moreover, since the authors of the aforementioned work

consider highly expressive specifications, the complexity of proposed methods are also very high. For example,

algorithms presented in [12–15,18,19] are EXPTIME-complete. Moreover, deciding the existence of a solution

(called a controller) in [16, 17] is 2EXPTIME-complete.

Online fault detection in a given dense-timed automaton is studied by Tripakis in [20]. The author proposes

a polynomial space online algorithm to design a diagnoser that detects faults in the behavior of the given

timed automaton after they occur. In this modeling, it is assumed that (1) the given system is in synchronous

model, and (2) faults and errors are the same thing. Bouyer, Chevalier, and D’Souza [21] address the same

problem where the diagnoser is supposed to be realizable as a deterministic timed automaton or an event record

automaton.

1.2 Contributions

The point of departure of our work from the above related work is as follows. In this paper we (i) consider

a generic fault-tolerance framework for real-time programs independent of platform, architecture, and type of

faults; (ii) extend the previous work by Kulkarni and Arora [6] for adding fault-tolerance to untimed programs;

(iii) consider a general notion of real-time programs that covers both deterministic and nondeterministic pro-

grams in both synchronous and asynchronous models; and (iv) consider different levels of fault-tolerance for

real-time systems based on satisfaction of properties and timing constraints. Furthermore, we present a class of

specifications where we can express typical requirements for specifying real-time and fault-tolerant computing

systems and we show that the complexity of synthesis algorithms for this class of specifications is manageable

in the sense that they are comparable to existing model checking techniques for real-time programs [22]. The

main results in this paper are as follows:

1. We propose a generic formal framework that defines the notions of faults and levels fault-tolerance in the

context of real-time programs.

2. We present polynomial time (in the size of the region graphs) sound and complete algorithms that trans-

form fault-intolerant real-time programs into

(a) soft-failsafe, nonmasking, and soft-masking fault-tolerant programs, and
(b) hard-failsafe fault-tolerant programs, where the synthesized fault-tolerant program is required to

satisfy at most one bounded response property in the presence of faults.

3. We present a sound polynomial time algorithm that transforms a fault-intolerant real-time program into a

hard masking fault-tolerant program, where the synthesized fault-tolerant program is required to satisfy

at most one bounded response property in the presence of faults.

4. We note that the problem of adding hard masking fault-tolerance, where the synthesized program is

required to satisfy multiple bounded response properties in the presence of faults, is NP-hard.
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Organization of the paper. In Section 2, we present the preliminary concepts. We formally define the

notions of faults and fault-tolerance in the context of real-time programs in Section 3. In Section 4, we formally

state the problem of adding fault-tolerance to real-time programs. We present our transformation algorithms

and NP-hardness result in Section 5. Then, in Section 6, we answer the potential questions raised about our

approach. Finally, in Section 7, we make the concluding remarks and discuss future work.

2 Preliminaries
In this section, we present the preliminary concepts and formal definitions of real-time programs, specifications,

and region graphs. Programs are specified in terms of their state space and their transitions [23]. The definition

of specifications is adapted from Henzinger [24]. Finally, the notion of region graph is due to Alur and Dill [25].

2.1 Program
A program includes a finite set V of discrete variables and a finite set X of clock variables. Each discrete

variable is associated with a finite domain D of values. A location is a function that maps each discrete variable

to a value from its respective domain. For the set X of clock variables , the set Φ(X) of clock constraints ϕ is

inductively defined by the grammar: ϕ ::= x ≤ c | x ≥ c | x < c | x > c | ϕ ∧ ϕ, where x ∈ X and c ∈ Z≥0.

A clock valuation is a function ν : X → R≥0 that assigns a real value to each clock variable. Furthermore, for

τ ∈ R≥0, ν + τ = ν(x) + τ for every clock x. Also, for λ ⊆ X , ν[λ := 0] denotes the clock valuation for X

which assigns 0 to each x ∈ λ and agrees with ν over the rest of the clock variables in X .

A state of a program (denoted σ) is a pair (s, ν), such that s is a location and ν is a clock valuation

for X at location s. Since the domain of clock variables ranges over the real numbers, the state space of a

program (the set of all possible states) is infinite. A transition of a program (denoted (σ0, σ1)) is of the form

(s0, ν0) → (s1, ν1). Transitions are classified into two types:

• Delay (elapse of time): for a state σ = (s, ν) and a time duration δ ∈ R≥0 (denoted (σ, δ)), (s, ν) →

(s, ν + δ).

• Jump (location switch): for a state (s0, ν), a location s1, and a set λ of clock variables, (s0, ν) →

(s1, ν[λ := 0]).

We say a state σ1 is passed by the delay (σ0, δ) if σ1 = σ0 + ε for some ε ∈ R≥0 such that ε < δ.

A program P is a tuple 〈Sp, ψp〉, where Sp is the state space, and ψp is a set of transitions. Let ψs
p and ψd

p

denote the set of jump and delay transitions in ψp, respectively. A state predicate is a Boolean expression over

the variables of P . Note that, in such an expression, a clock constraint must be picked from Φ(X), i.e., clock

variables can only be compared with nonnegative integers. A state predicate can also be expressed as a subset of

Sp such that it is definable by the above syntax of clock constraints. A state predicate S is closed in the program

P iff ((∀(σ0, σ1) ∈ ψs
p : (σ0 ∈ S ⇒ σ1 ∈ S)) ∧ (∀(σ, δ) ∈ ψd

p : (σ ∈ S ⇒ ∀ε ≤ δ : σ+ ε ∈ S))), i.e., if a

jump transition originates in S then it must terminate in S, and if a delay transition originates in a state in S then
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any state passed by the delay plus the target state must be in S. A timed state sequence 〈(σ0, τ0), (σ1, τ1) · · · 〉,

where τi ∈ R≥0, is a computation of P iff the following conditions are satisfied: (1) ∀j > 0 : (σj−1, σj) ∈ ψp,

(2) if it is finite and terminates in (σl, τl) then there does not exist state σ such that (σl, σ) ∈ ψp, and (3) the

sequence 〈τ0, τ1 · · · 〉 satisfies the following constraints:

Monotonicity: τi ≤ τi+1 for all i ∈ N.

Divergence: For all t ∈ R≥0, there exists j such that τj ≥ t.

The projection of a set of program transitions ψp on state predicate S (denoted ψp|S) is the set of transitions

{(σ0, σ1) | (σ0, σ1) ∈ ψs
p ∧ σ0, σ1 ∈ S} ∪ {(σ, δ) | (σ, δ) ∈ ψd

p ∧ σ ∈ S ∧ (∀ε ≤ δ : σ + ε ∈ S)}. I.e.,

ψp|S consists of jump transitions of ψp that start in S and end in S, and delay transitions of ψp that start and

remain in S continuously.

2.2 Specification
A specification (or property), denoted Σ, is a set of timed state sequences of the form 〈(σ0, τ0), (σ1, τ1) · · · 〉.

Following Henzinger [24], we require the sequence 〈τ0, τ1 · · · 〉 to satisfy monotonicity and divergence. We

now define what it means for a program P to satisfy a specification Σ. Given a program P , a state predicate S,

and a specification Σ, we write P |=S Σ and say that program P satisfies Σ from S iff (1) S is closed in P , and

(2) every computation of P that starts where S is true is in Σ. If P |=S Σ and S 6= {}, we say S is an invariant

of P for Σ.

Notation. Whenever the specification is clear from the context, we will omit it; thus, “S is an invariant of P”

abbreviates “S is an invariant of P for Σ”.

We say that program P maintains Σ iff for all finite timed state sequences α of P , there exists a timed state

sequence β such that αβ ∈ Σ. Similarly, we say that P violates Σ iff it is not the case that P maintains Σ. Note

that, the definition of maintains identifies the property of finite timed state sequences, whereas the definition of

satisfies expresses the property of infinite timed state sequences.

Following Alpern and Schneider [26] and Henzinger [24], we let the specification consist of a liveness spec-

ification and a safety specification. The liveness specification is represented by a set of infinite computations.

A program satisfies the liveness specification, if every computation prefix of the program has a suffix that is in

the liveness specification.

Remark 2.1: In the synthesis problem, we begin with an initial fault-intolerant program that satisfies its

specification (including the liveness specification) in the absence of faults. In Section 5, we show that our

synthesis algorithms preserve liveness specification. Hence, the liveness specification need not be specified

explicitly.

Regarding safety, in synthesis algorithms presented in this paper, we let the safety specification con-

sist of (1) a set Σbt of bad transitions that should not occur in the program computation, i.e., a subset of

{(σ0, σ1) | σ0, σ1 ∈ Sp}, and (2) a conjunction of zero or more bounded response properties of the form
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Σbr ≡ ((P1 7→≤δ1 Q1) ∧ (P2 7→≤δ2 Q2) ∧ ... ∧ (Pm 7→≤δm
Qm)), i.e., it is always the case that a state in

Pi is followed by a state in Qi within δi time units, where Pi and Qi are state predicates and δi ∈ Z≥0, for all

i such that 1 ≤ i ≤ m. Observe that it is possible to trivially translate this concise representation of safety into

the corresponding set of infinite computations. The same concept is applicable to definitions of maintains and

violates.

2.3 Region Graph
Given a program P〈Sp, ψp〉, in order to reason about properties of P , one must deal with the infinite state space

Sp. Alur and Dill [25] propose construction of a finite quotient as a solution for dealing with the infinite state

space. This construction uses an equivalence relation, called region equivalence (denoted ∼=), on the state space

that equates two states with the same location, is defined over the set of all clock valuations for X . For two

clock valuations ν and µ, ν ∼= µ iff:

1. ∀x ∈ X : ((bν(x)c = bµ(x)c) ∨ (ν(x), µ(x) > cx)),

2. ∀x, y ∈ X : ((ν(x) < cx ∧ ν(y) < cy)) : (〈ν(x)〉 < 〈ν(y)〉 iff 〈µ(x)〉 < 〈µ(y)〉), and

3. ∀x ∈ X : ν(x) < cx : (〈ν(x)〉 = 0 iff 〈µ(x)〉 = 0),

where cx is the largest integer c, such that x is compared with c in a clock constraint, 〈τ〉 denotes the fractional

part, and bτc denotes the integral part of τ and for any τ ∈ R≥0. A clock region for P is an equivalence class

of clock valuations induced by ∼=. Note that, there are only finite number of clock regions.

A region is a pair (s, ρ), where s is a location and ρ is a clock region. Using the region equivalence

relation, we construct the region graph of P〈Sp, ψp〉 (denoted R(P)〈Sr
p , ψ

r
p〉) as follows. Vertices of R(P)

(denoted Sr
p) are regions. Edges of R(P) (denoted ψr

p) are of the form (s0, ρ0) → (s1, ρ1) iff for some clock

valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions in ψp. We say that a region (s0, ρ0) of

region graph R(P) is a deadlock region iff for all regions (s1, ρ1), there does not exist an edge of the form

(s0, ρ0) → (s1, ρ1).

A region predicate Sr with respect to a state predicate S is defined by Sr = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈

S ∧ ν ∈ ρ)}. Likewise, the region predicate with respect to invariant S of a program P is called region

invariant Sr. The projection of a set of edges ψr
p on region predicate Sr (denoted ψr

p|S
r) is the set of edges

{(r0, r1) | (r0, r1) ∈ ψr
p ∧ r0, r1 ∈ Sr}.

Based on the above description to construct a region graph, in our synthesis algorithms in Section 5, we

transform a real-time program P〈Sp, ψp〉 into its corresponding region graph R(P)〈Sr
p , ψ

r
p〉 by invoking the

subroutine ConstructRegionGraph. We also let this subroutine take state predicates and sets of transitions in

P (e.g., S and Σbt) and return the corresponding regions predicates and sets of edges in R(P) (e.g., S r and

Σr
bt).

A clock region β is a time-successor of a clock region α iff for each ν ∈ α, there exists τ ∈ R≥0, such that

ν + τ ∈ β, and ν + τ ′ ∈ α ∪ β for all τ ′ < τ . We call a region (s, ρ) a boundary region, if for each ν ∈ ρ
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and for any τ ∈ R≥0, ν and ν + τ are not equivalent. A region is open, if it is not a boundary region. A region

(s, ρ) is called an end region, if for all ν ∈ ρ and for all clocks x, ν(x) > cx.

3 Faults and Fault-Tolerance in Real-Time Programs
In this section, we extend formal definitions of faults and fault-tolerance due to Arora and Gouda [27] and

Arora and Kulkarni [28], so that they fit in the context of real-time programs.

The faults that a program is subject to are systematically represented by transitions. A class of faults f for

program P〈Sp, ψp〉 is a subset of the set Sp ×Sp. We use ψp[]f to denote the transitions obtained by taking the

union of the transitions in ψp and the transitions in f .

We say that a state predicate T is an f -span (read as fault-span) of P from S iff the following conditions

are satisfied: (1) S ⊆ T , and (2) T is closed in ψp[]f . Observe that for all computations of P that start at states

where S is true, T is a boundary in the state space of P up to which (but not beyond which) the state of P may

be perturbed by the occurrence of the transitions in f . Similar to the notion of region invariant (cf. Subsection

2.3), the region predicate with respect to fault-span T of a program P is called region fault-span T r. Likewise,

f r denotes the set of faults edges in R(P) that correspond to fault transitions f in P .

As we defined the computations of P , we say that a timed state sequence, 〈(σ0, τ0), (σ1, τ1), · · · 〉, is a

computation of P in the presence of f iff the following four conditions are satisfied: (1) ∀j > 0 : (σj−1, σj)∈

(ψp ∪ f), (2) if 〈σ0, σ1, · · · 〉 is finite and terminates in state (σl, τl) then there does not exist state σ such that

(σl, σ)∈ψp, (3) 〈τ0, τ1 · · · 〉 satisfies monotonicity and divergence, and (4) ∃n ≥ 0 : (∀j > n : (σj−1, σj)∈ψp).

In this paper, we consider three levels of fault-tolerance, failsafe, nonmasking, and masking, based on the

properties satisfied in the presence of faults. For failsafe and masking fault-tolerance, we propose two cases,

soft and hard, based on satisfaction of timing constraints in the presence of faults. To motivate the idea of soft

and hard fault-tolerance let us consider the railroad crossing problem. Suppose that a train is approaching a

railroad crossing. The safety specification requires “if the train is crossing, the gate should be closed”. Also,

the bounded response property requires that “once the gate is closed, it should reopen within 5 minutes”. In

this example, it may be catastrophic if the train is crossing while the gate is open due to occurrence of faults.

On the other hand, if the gate remains closed for more than 5 minutes due to occurrence of faults, the outcome

is not disastrous. Thus, depending upon the outcome of violation of a safety specification, the desired fault-

tolerance requirement changes. Hence, in the railroad crossing problem the desired requirement is the system

must tolerate faults that cause the gate to be open while the train is crossing and, hence, this system must be soft

fault-tolerant. Intuitively, a soft fault-tolerant real-time program is not required to satisfy its timing constraints

in the presence of faults.

Now, consider a system that controls internal pressure of a boiler. Suppose that in this system, the safety

specification requires that once a pressure gauge reads 30 pounds per square inch, the controller must issue a

command to open a valve within 20 seconds. In such a system, if occurrence of faults causes the controller not
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to respond within the required time, the outcome may be disastrous. Thus, our boiler controller must satisfy

its timing constraints even in the presence of faults. In other words, the boiler controller must be hard fault-

tolerant. Intuitively, a hard fault-tolerant real-time program must satisfy its timing constraints in the presence

of faults.

We now present formal definitions of different levels of fault-tolerance. Let specification Σ consist of Σbt

and Σbr. We say that P is soft-failsafe f -tolerant from S for Σ iff the following conditions hold: (1) P |=S Σbt,

(2) P |=S Σbr, and (3) there exists T such that T is an f -span of P from S, and P〈Sp, ψp[]f〉 maintains Σbt

from T . A program P is hard-failsafe f -tolerant from S for Σ iff P is soft-failsafe f -tolerant from S for Σ and

P〈Sp, ψp[]f〉 maintains Σbr from T .

Since a nonmasking fault-tolerant program need not satisfy safety in the presence of faults, P is nonmasking

f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff the following conditions hold: (1) P |=S Σbt,

(2) P |=S Σbr, and (3) there exists T such that T is an f -span of P from S, and every computation of

P〈Sp, ψp[]f〉 that starts from a state in T , reaches a state in S within δ time units.

A program P〈Sp, ψp〉 is soft-masking f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff the

following conditions hold: (1) P |=S Σbt, (2) P |=S Σbr, (3) there exists T such that T is an f -span of P from

S and P〈Sp, ψp[]f〉 maintains Σbt from T , and (4) every computation of P〈Sp, ψp[]f〉 that starts from a state

in T , reaches a state in S within δ time units. A program P〈Sp, ψp〉 is hard-masking f -tolerant from S for Σ

with recovery time δ, where δ ∈ Z≥0, iff P is soft-masking f -tolerant from S for Σ with recovery time δ, and

P〈Sp, ψp[]f〉 maintains Σbr from T .

Notation. Whenever the specification Σ and the invariant S are clear from the context, we omit them; thus,

“f -tolerant” abbreviates “f -tolerant from S for Σ”.

Assumption 3.1: Since the program P satisfies Σbr ≡ ((P1 7→≤δ1 Q1) ∧ (P2 7→≤δ2 Q2) ∧ ...∧ (Pm 7→≤δm

Qm)) in the absence of faults (cf. Remark 2.1), without loss of generality, we assume that for each bounded

response property (Pi 7→≤δi
Qi), where 1 ≤ i ≤ m, the intolerant program already has a clock variable that is

reset on transitions that go from a state in ¬Pi to a state in Pi. This assumption simplifies dealing with the given

bounded response property, as we are ensured that the program itself keeps track of time when Pi becomes true.

In case such a clock does not exist, we can simply add it without changing semantics of the given program.

Assumption 3.2: We assume that faults are immediately detectable and that given a state of the program, we

can determine the number of faults that have occurred in reaching that state. (For example, one can achieve

this if the program has a variable that stores how many faults have occurred in a program computation.) This

assumption is needed only for hard fault-tolerance.

Assumption 3.3: We assume that the number of occurrence of faults in a program computation is bounded

by a pre-specified value n. This assumption is required since for commonly considered faults, it can be shown

that bounded-time recovery in the presence of unbounded occurrence of faults is impossible.
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4 Problem Statement
Given are a fault-intolerant real-time program P〈Sp, ψp〉, its invariant S, a set of faults f , and a safety specifi-

cation Σ such that P |=S Σ. Our goal is to synthesize a real-time program P ′〈Sp, ψ
′
p〉 with invariant S ′ such

that P ′ is f -tolerant from S ′ for Σ.

As mentioned in the introduction, our synthesis method obtains P ′ from P by adding fault-tolerance alone

to P , i.e., P ′ does not introduce new behaviors to P when no faults have occurred. We now describe how we

formulate the problem. Observe that:

1. If S′ contains states that are not in S then, in the absence of faults, P ′ may include computations that

start outside S. Since P ′ |=S′ Σ, it would imply that P ′ is using a new way to satisfy Σ in the absence of

faults (since P satisfies Σ only from S). Therefore, we require that S ′ ⊆ S.

2. If ψ′
p|S

′ contains a transition that is not in ψp|S
′ then P ′ can use this transition in order to satisfy Σ in

the absence of faults. Since this was not permitted in P , we require that ψ ′
p|S

′ ⊆ ψp|S
′.

Thus, the synthesis problem is as follows (This definition will be instantiated for (soft and hard) failsafe, non-

masking, and (soft and hard) masking f -tolerance):

Problem Statement 4.1. Given P〈Sp, ψp〉, S, Σ, and f such that P |=S Σ.

Identify P ′〈Sp, ψ
′
p〉 and S′ such that

(C1) S′ ⊆ S

(C2) ψ′
p|S

′ ⊆ ψp|S
′, and

(C3) P ′ is f -tolerant from S ′ for Σ. �

5 Adding Fault-Tolerance to Real-Time Programs

In this section, we present our synthesis algorithms and NP-hardness result for adding fault-tolerance to an

existing real-time program. In particular, in Subsection 5.1, we describe our algorithms for adding (soft and

hard) failsafe fault-tolerance. In Subsection 5.2, we describe how we add nonmasking fault-tolerance. In Sub-

section 5.3, we describe automated addition of (soft and hard) masking fault-tolerance. Finally, in Subsection

5.4, we consider the case of hard masking fault-tolerance where two or more timing constraints must be met in

the presence of faults.

5.1 Automated Addition of Failsafe Fault-Tolerance to Real-Time Programs

In this subsection, we first present our algorithm for adding soft-failsafe fault-tolerance. Then, we describe our

algorithm for adding hard-failsafe, where the synthesized program is required to satisfy at most one bounded

response property in the presence of faults. As mentioned in Subsection 2.2, the safety specification identifies a

set Σbt of bad transitions that should not occur in any program computation, and a conjunction Σbr of multiple

bounded response properties. Also, recall that in the presence of faults, a soft-failsafe program is required to

maintain only Σbt, whereas a hard-failsafe program should maintain both Σbt and Σbr.
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5.1.1 Adding Soft-Failsafe Fault-Tolerance

In order to synthesize a soft-failsafe program, we should generate a program P ′, such that a bad transition

(σ0, σ1) ∈ Σbt does not occur in any computation of P ′ in the presence of faults. Towards this end, we adapt

the proposed algorithm in [6] that adds failsafe fault-tolerance to untimed programs.

We now describe our algorithm Add SoftFalisafe (cf. Figure 1) in detail. First, we transform the real-time

program P〈Sp, ψp〉, invariant S, a set f of fault transitions, and a set Σbt of bad transitions into a region graph

R(P)〈Sr
p , ψ

r
p〉, region invariant Sr, fault edges f r, and bad edges Σr

bt (Line A1). This is achieved by invoking

the subroutine ConstructRegionGraph, as described in Subsection 2.3. Then, the algorithm adds failsafe

fault-tolerance to R(P), so that no edge of Σr
bt occurs in computations of R(P). This is achieved by invoking

the subroutine Add UntimedFailsafe (Line A2).

The subroutine Add UntimedFailsafe (cf. Figure 1) first finds the set ms of regions and the set mt of

edges from where safety of P may be violated by faults alone (lines C1, C2). Next, it removes such regions

(respectively, edges) from the region invariant Sr (respectively, set of edges ψr
p) of R(P). This removal may

create deadlock regions. Hence, next, the subroutine removes deadlock regions from S r (Line C3), ensures

closure of Sr in ψr
p (Line C5), and returns a failsafe region graph R(P ′)〈Sr

p, ψ
′r
p 〉 (Line C6).

Finally, The algorithm Add SoftFalisafe transforms the region graph R(P ′) back into a real-time program

P ′ (Line A3).

Theorem 5.1. The algorithm Add SoftFalisafe is sound and complete.

For reasons of space, we refer the reader to [29] for proofs of all theorems in this paper.. �

Theorem 5.2. The problem of adding soft-failsafe fault-tolerance to a real-time program is in PSPACE. �

5.1.2 Adding Hard-Failsafe Fault-Tolerance with a Single Bounded Response Property

In this subsection, we consider the case that a hard-failsafe fault-tolerant program is required to satisfy at most

one bounded response property in the presence of faults. In other words, Σbr ≡ P 7→≤δ Q. Towards this

end, we need to generate a program P ′, such that it maintains both Σbt and Σbr in the presence of faults. In

other words, a bad transition (σ0, σ1) ∈ Σbt occurs in no computation of P ′. Moreover, if a computation of

P ′ reaches a state in P then it reaches a state in Q within δ units of time even in the presence of faults. To

this end, we first add soft-failsafe fault-tolerance to R(P) to ensure that P ′ maintains Σbt in the presence of

faults. Then, we transform R(P) to an ordinary weighted directed graph (called MaxDelay digraph). To ensure

that the maximum delay to reach a state in Q from each state in P is at most δ time units in the presence of

faults, we extract a subgraph of the MaxDelay digraph, such that the longest distance between the vertices that

correspond to the states in P and Q is at most δ. Before we present our algorithm for adding hard-failsafe

fault-tolerance in detail, we reiterate how to construct a MaxDelay digraph from [30].

Construction of MaxDelay digraph. We now describe the subroutine ConstructMaxDelayGraph that

transforms a region graph to a MaxDelay digraph. The subroutine takes a region graph R(P)〈S r
p , ψ

r
p〉 and a

10



Add SoftFailsafe(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, Σbt: specification)
{

R(P)〈Sr
p, ψ

r
p〉, Sr , fr , Σr

bt := ConstructRegionGraph(P〈Sp, ψp〉, S, f , Σbt); (A1)
ψ′r

p , S
′r,mt := Add UntimedFailsafe(R(P)〈Sr

p, ψ
r
p〉, f

r, Sr,Σr
bt); (A2)

P ′〈Sp, ψ
′

p〉, S
′ := ConstructRealTimeProgram(R(P)〈Sr

p , ψ
′r
p 〉, S′r) (A3)

}

Add HardFailsafe(P〈Sp, ψp〉 :real-time program f :transitions, S, P,Q: state predicate, Σbt: specification, n, δ: integer)
{

R(P)〈Sr
p, ψ

r
p〉, S

r, P r, Qr, fr ,Σr
bt := ConstructRegionGraph(P〈Sp, ψp〉, S, P, Q, f,Σbt); (B1)

ψr
p, S

r,mt := Add UntimedFailsafe(R(P)〈Sr
p, ψ

r
p〉, f

r, Sr,Σr
bt); (B2)

repeat
IsQRemoved := false; (B3)
ψr

p := ψr
p ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) 6∈ Sr ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])}; (B4)
ψr

p, ns := Add BoundedRecovery(R(P)〈Sr
p −ms,ψr

p −mt〉, fr, P r, Qr, n, δ); (B5)
rs := {r0 | ∃r1, r2, ...rn : (∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ ns ∧ rn ∈ P r}; (B6)
rt := {(r0, r1) | (r0, r1) ∈ ψr

p1
∧ r1 ∈ rs)}; (B7)

S′r := RemoveDeadlocks(Sr − (ns ∪ rs), Qr, ψr
p − rt); (B8)

if (S′r ={}) then declare no hard-failsafe f-tolerant program P ′ exists; exit; (B9)
if (∃r0 ∈ Qr : (r0 ∈ Sr ∧ r0 6∈ S′r)) then (B10)

IsQRemoved := true; (B11)
Sr := S′r; (B12)
Qr := Qr − {r0}; (B13)
ψr

p := ψr
p − {(r, r0), (r0, r) | r ∈ Sr}; (B14)

until (IsQRemoved = false)

ψ′r
p := EnsureClosure(ψ′r

p , S
′r); (B15)

P ′〈Sp, ψ
′

p〉, S
′ := ConstructRealTimeProgram(R(P)〈Sr

p , ψ
′r
p 〉, S′r) (B16)

}

Add UntimedFailsafe(R(P)〈Sr
p, ψ

r
p〉: region graph, fr : set of edges, Sr : region predicate, Σr

bt : specification)
{

ms := {r0 | ∃r1, r2, ...rn : (∀j | 0≤j<n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ Σr
bt }; (C1)

mt := {(r0, r1) | (r1∈ms) ∨ ((r0, r1) ∈ Σr
bt) }; (C2)

Sr := RemoveDeadlocks(Sr −ms, {}, ψr
p−mt); (C3)

if (Sr ={}) then declare no soft/hard-failsafe f-tolerant program P ′ exists;exit; (C4)
ψr

p :=EnsureClosure(ψr
p−mt,S

r); (C5)
return ψr

p, S
r, mt (C6)

}

RemoveDeadlocks(Sr , Qr : region predicate, ψr
p : set of edges)

// Returns the largest subset of Sr from where all computations of R(P) are infinite
{

while (∃r0 | r0∈S
r : (∀r1 ∈ Sr : (r0, r1) 6∈ψ

r
p))

Sr := Sr − {r0};
if (r0 ∈ Qr) then break;

return Sr

}

EnsureClosure(ψr
p : set of edges, Sr : region predicate)

{ return ψr
p−{(r0, r1) | r0∈S

r ∧ r1 6∈ Sr}}

Figure 1: Addition of Failsafe Fault-Tolerance
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set f r of fault edges as input, and constructs a MaxDelay digraph G〈V,A〉 as follows. Vertices of G consists

of the regions in R(P).

Notation: We denote the weight of an arc (v0, v1) by Weight(v0, v1). Let γ denote a bijective function that

maps each region r ∈ Sr
p to its corresponding vertex in G; i.e., γ(r) is a vertex of G that represents region r of

R(P). Also, let γ−1 denote the inverse of γ; i.e., γ−1(v) is the region of R(P) that corresponds to vertex v in

V . Let Γ be a function that maps a region predicate in R(P) to the corresponding set of vertices of G and let

Γ−1 be its inverse. Finally, for a boundary region r with respect to clock variable x, we denote the value of x

by r.x (equal to some constant in Z≥0).

Arcs of G consists of the following:

• Arcs of weight 0 from v0 to v1, if γ−1(v0) → γ−1(v1) represents a jump transition in R(P).

• Arcs of weight c′ − c, where c, c′ ∈ Z≥0 and c′ > c, from v0 to v1, if γ−1(v0) and γ−1(v1) are both

boundary regions with respect to clock variable xi, such that γ−1(v0).xi = c, γ−1(v1).xi = c′, and there

is a path in R(P) from γ−1(v0) to γ−1(v1), which does not reset xi.

• Arcs of weight c′ − c − ε, where c, c′ ∈ Z≥0, c′ > c, and ε � 1, from v0 to v1 , if (1) γ−1(v0) is a

boundary region with respect to clock xi, (2) γ−1(v1) is an open region whose time-successor γ−1(v2)

is a boundary region with respect to clock xi, (3) γ−1(v0) → γ−1(v1) represents a delay transition in

R(P), and (4) γ−1(v0).xi = c and γ−1(v2).xi = c′.

• Self-loop arcs of weight ∞ at vertex v, if γ−1(v) is an end region.

In order to compute the maximum delay between regions in P r and Qr, it suffices to find the longest distance

between Γ(P r) and Γ(Qr) in G. Note that, strongly connected components reachable from Γ(P r) containing

an arc of nonzero weight cause maximum delay of infinity.

We now describe our algorithm Add HardFailsafe (cf. Figure 1) in detail. The algorithm takes a real-time

program P with invariant S, a set of fault transitions f , a set of bad transitions Σbt, a bounded response property

Σbr ≡ P 7→≤δ Q, the maximum number of occurrence of faults n (cf. Assumption 3.3), and returns a hard-

failsafe program P ′〈Sp, ψ
′
p〉 with invariant S ′. First, we transform P into its region graph R(P) (Line B1). Let

P r and Qr be region predicates with respect to state predicates P and Q, respectively. Then, to ensure that P ′

maintains Σbt, we add soft-failsafe fault-tolerance to R(P) (Line B2). Next, we modify R(P), such that any

computation that starts from a region in P r, reaches a region in Qr in at most δ time units even in the presence

of faults. Towards this end, we compute the set of regions and edges from where Σbr is maintained (lines

B3-B14). In particular, to ensure that Q is reachable from the states in P ∧ ¬S, we add edges that start from

each region in Sr
p − Sr and go to regions where the time monotonicity condition is preserved (Line B4). Now,

we invoke the subroutine Add BoundedRecovery to ensure that P 7→≤δ Q is maintained in the presence of

faults (Line B5).
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Add BoundedRecovery(R(P)〈Sr
p , ψ

r
p〉: region graph, fr: set of edges, P r, Qr: region predicate, n, δ: integer)

// Adds bounded-time recovery from P r to Qr in the presence of fr

{
G〈V,A〉 := ConstructMaxDelayGraph(R(P)〈Sr

p , ψ
r
p〉, f

r); (D1)
// Let Gi〈V i, Ai〉 be the portion of G, in which (n− i) faults have occurred, where 0 ≤ i ≤ n

for each vertex v ∈ V 0 : Rank (v) := Length of the shortest path from v to a vertex in Γ(Qr)0; (D2)
for i = 1 to n (D3)

for each vertex v0 ∈ V i : (D4)
Vf := {v1 | (v1 ∈ V i−1 ∧ (γ−1(v0), γ

−1(v1)) ∈ fr)}; (D5)
if Vf 6= {} then (D6)

MinRank(v0) := max{(Rank (v1) + Weight(v0, v1)) for all v1 ∈ Vf}; (D7)
else MinRank(v0) := 0; (D8)

AdjustShortestPaths(Gi〈V i, Ai〉,Γ(P r)i,Γ(Qr)i); (D9)

// Constructing a subgraph of each portion such that the longest distance between Γ(P r) and Γ(Qr) is at most δ
and then adding the arcs and vertices that do not appear on paths from Γ(P r) to Γ(Qr)

for i = 0 to n (D10)
G′i〈V ′i, A′i〉 = {}; (D11)
for each vertex v ∈ Γ(P r)i : (D12)

if Rank (v) ≤ δ then (D13)
Π := the shortest path from v to a vertex in Γ(Qr)i; (D14)
V ′i := V ′i ∪ {u | u is on Π}; (D15)
A′i := A′i ∪ {a | a is on Π}; (D16)

A′i := A′i ∪ {(u, v) | (u, v) ∈ Ai ∧ (u /∈ V ′i ∨ (u ∈ Γ(Qr)i))}; (D17)
V ′i := (V ′i ∪ {u | (∃v : (u, v) ∈ A′i ∨ (v, u) ∈ A′i)}); (D18)

// Transforming weighted digraph G into a region graph
ψ′r

p := {(r0, r1) | (r0, r1) ∈ ψr
p ∧ (γ(r0), γ(r1)) ∈ A′} ∪

{(r1, r2) | (r1, r2) ∈ ψr
p ∧ (γ(r1), γ(r2)) /∈ A′ ∧ ∃r0 : Weight(γ(r0), γ(r1)) = 1 − ε}; (D19)

ns := {r | γ(r) ∈ V − V ′}; (D20)

return ψ′r
p , ns (D21)

}
AdjustShortestPaths(Gi〈V i, Ai〉 : directed weighted graph, Vp, Vq: set of vertices)
// Adjusts the rank of each vertex based on the ranks computed in Add BoundedRecovery
{

for each vertex v ∈ Vp apply Dijkstra’s shortest path with the following change:
if Dijkstra’s shortest path computes a length less than MinRank (v) then

Rank(v) := MinRank(v); (D22)
else Rank(v) := length of Dijkstra’s shortest path from v to Vq (D23)

}

Figure 2: Addition of Bounded-Time Recovery in the Presence of Faults

The subroutine Add BoundedRecovery (cf. Figure 2) adds bounded-time recovery to a given region

graph as follows. First, it transforms the given region graph R(P) to a MaxDelay digraph G〈V,A〉 (Line D1).

Recall that, by Assumption 3.2, faults are detectable and P already has a variable that shows how many faults

have occurred in a computation. Thus, let Gi〈V i, Ai〉 be the portion of G, in which n− i faults have occurred,

where 0 ≤ i ≤ n. More specifically, initially, a computation starts from portion Gn, where no faults have

occurred. If a fault occurs in a computation that is currently in portion Gi, the computation will proceed in

portion Gi−1. Obviously, if n faults occur then the computation proceeds in portion G0 and no faults will occur
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Figure 3: Adjusted Shortest Path.

in that computation. We use these portions to see whether it is possible to reach a vertex in Γ(Qr) from each

vertex in Γ(P r) within δ time units.

Next, we rank vertices of all portions of G using a modified Dijkstra’s shortest path algorithm, which takes

fault perturbations into account (lines D2-D9 and D22-D23). More specifically, since no faults occur in G0,

we first let the rank of all vertices v ∈ V 0 be the length of Dijkstra’s shortest path from v to a vertex in

Γ(Qr)0 (Line D2). Now, let v0 be a vertex in V i, where 1 ≤ i ≤ n, and let v1 be a vertex in V i−1, such that

(γ−1(v0), γ
−1(v1)) is a fault edge in R(P) and both v0 and v1 are on a path from Γ(P r) to Γ(Qr). There

exist two cases: (1) the fault edge (γ−1(v0), γ
−1(v1)) decreases or does not change the computation delay, i.e,

the shortest distance from v1 to a vertex in Γ(Qr)i−1 is less than or equal to the shortest distance from v0 to a

vertex in Γ(Qr)i, and (2) the fault edge (γ−1(v0), γ
−1(v1)) increases the computation delay, i.e., the shortest

distance from v1 to a vertex in Γ(Qr)i−1 is greater than the shortest distance from v0 to a vertex in Γ(Qr)i (cf.

Figure 3). While the former case does not cause violation of Σbr in the presence of faults, the later may do.

Hence, the rank of v0 must be at least the rank of v1 in V i−1. Moreover, if there exist multiple fault edges at

γ−1(v0) then we take the maximum rank (Line D7). After computing the rank of vertices from where faults

may occur, we adjust the rank of the rest of vertices from where faults do not occur by invoking the subroutine

AdjustShortestPath (Line D9). Figure 3 illustrates how vertex rankings work.

Now, for each portion Gi, we construct a subgraph ofGi whose longest distance from each vertex in Γ(P r)i

to a vertex in Γ(Qr)i is at most δ as follows (lines D11-D16). To this end, we begin with an empty digraph

G′i〈V ′i, A′i〉 and we first include shortest paths from each vertex v ∈ Γ(P r)i to a vertex in Γ(Qr)i, provided

Rank (v) ≤ δ (lines D13-D16). Note that, adding such shortest paths does not create new paths of length greater

than δ. Next, we include the remaining arcs and vertices in G′i, so that no arcs of the form (v0, v1), where v0 is

on a path from Γ(P r)i to Γ(Qr)i are added (lines D17, D18).

Now, we transform the digraph G′ back into a region graph (Line D19). Finally, we return the set ψ ′r
p of

edges from where Σbr may not be violated even in the presence of faults, and the set ns of regions from where

Σbr may be violated in the presence of faults (lines D20, D21).

After adding bounded-time recovery, the algorithm Add HardFailsafe first identifies the set rs of regions

and the set rt of edges from where faults alone may violate Σbr (lines B6, B7 in Figure 1). Then, it removes
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such regions and edges along with the deadlock regions from S r (due to pruning some vertices and arcs in

step B5) in the same fashion that we did for adding soft-failsafe fault-tolerance (Line B8). However, while

removing deadlock regions, we need to consider a special case where a region r0 ∈ Qr becomes a deadlock

region. In this case, it is possible that all the regions along the paths that start from a region in P r and end

in r0 become deadlock regions. Hence, we need to find another path from the region in P r to a region in Qr

other than r0. Hence, in this case, we remove r0 from Sr and Qr and start over (lines B10-B14). Finally, the

algorithm ensures closure of the invariant (Line B15) and transforms the synthesized region graph R(P ′) back

to a real-time program P ′ (Line B16).

Theorem 5.3. The algorithm Add HardFalisafe is sound and complete. �

Theorem 5.4. The problem of adding hard-failsafe fault-tolerance to a real-time program, where the syn-

thesized program is required to satisfy at most one bounded response property in the presence of faults, is in

PSPACE. �

5.2 Automated Addition of Nonmasking Tolerance to Real-Time Programs

To derive a nonmasking f -tolerant program P ′, we ensure that if the state of P ′ is perturbed by faults in f

then it recovers to a state in S within a pre-specified recovery time δ. Since a nonmasking program is not

required to satisfy its safety specification in the presence of faults, to provide bounded-time recovery, it suffices

to invoke the subroutine Add BoundedRecovery for state predicates Sp − S and S. Since an algorithm for

adding nonmasking fault-tolerance is very simple and, in Subsection 5.3, we describe how we add bounded-

time recovery from fault-span to invariant, we do not present the algorithm in a formal fashion.

5.3 Automated Addition of Masking Tolerance to Real-Time Programs

As mentioned in Section 3, in masking fault-tolerance the program is required to satisfy its safety specification

in the presence of faults and if the state of a program is perturbed by faults then it recovers to its invariant within

a bounded amount of time. In Subsection 5.3.1, we present our synthesis algorithm for adding soft-masking

fault-tolerance to an existing real-time program. Then, in Subsection 5.3.2, we discuss the issues in addition

of hard-masking fault-tolerance, where the synthesized program is required to satisfy at most one bounded

response property in the presence of faults.

5.3.1 Adding Soft-Masking Fault-Tolerance

In order to synthesize a soft-masking program, we should generate a program P ′ with invariant S ′ and fault-

span T ′, such that it never violates its safety specification and if a fault perturbs the state of a program to a state

in T ′, it recovers to S ′ within a pre-specified recovery time δ. To this end, we extend the algorithm proposed

in [6] for adding masking fault-tolerance to untimed programs, such that it provides bounded time recovery.

Now, we describe the algorithm Add SoftMasking (cf. Figure 4) in detail. First, we construct the region

graph R(P) (Line E1). Our first estimate of a soft-masking program is a soft-failsafe program. Hence, we let

our first estimate Sr
1 be the region invariant of its soft-failsafe fault-tolerant program. Likewise, we estimate
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Add SoftMasking(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, Σbt: specification, n, δ: integer)
{

R(P)〈Sr
p, ψ

r
p〉, Sr , fr , Σr

bt := ConstructRegionGraph(P〈Sp, ψp〉, S, f , Σbt); (E1)

Define ms and mt as in Add UntimedFailsafe. (E2)
Sr

1 , T
r
1 := RemoveDeadlocks(Sr −ms, ψr

p−mt), Sr
p−ms; (E3)

repeat (E4)
T r

2 , S
r
2 := T r

1 , S
r
1 ; (E5)

ψr
p1

:= ψr
p|S

r
1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ T r

1 ∧ (s0, ρ0) 6∈ Sr
1 ∧ (s1, ρ1) ∈ T r

1 ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} −mt; (E6)

T r
1 := ConstructFaultSpan(T r

1 − {r | Sr
1 is not reachable from r using ψr

p1
}, fr); (E7)

Sr
1 := RemoveDeadlocks(Sr

1 ∧ T r
1 , ψ

r
p1

); (E8)
if (Sr

1 ={} ∨ T r
1 ={}) then (E9)

declare no soft-masking f-tolerant program P ′ exists; exit; (E10)
until (T r

1 =T r
2 ∧ Sr

1 =Sr
2); (E11)

ψ′r
p , ns := Add BoundedRecovery(R(P)〈Sr

p , ψ
r
p1
〉, fr, T r

1 − Sr
1 , S

r
1 , n, δ); (E12)

rs := {r0 | ∃r1, r2, ...rn : (∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ ns}; (E13)
rt := {(r0, r1) | (r0, r1) ∈ ψr

p1
∧ r1 ∈ rs)}; (E14)

Sr
1 := RemoveDeadlocks(Sr

1 − rs, ψr
p1

− rt); (E15)
if (Sr

1 = {}) then declare no soft-masking f-tolerant program P ′ exists; exit; (E16)
else ψr

p := EnsureClosure(ψr
p1
−rt, Sr

1 − rs); (E17)

S′r , T ′r := Sr
1 − rs, T r

1 − ns; (E18)
P ′〈Sp, ψ

′

p〉, S
′, T ′ := ConstructRealTimeProgram(R(P ′)〈Sr

p, ψ
′r
p 〉, S′r, T ′r) (E19)

}
ConstructFaultSpan(T r : region predicate, fr : set of edges)
// Returns the largest subset of T r that is closed in fr .
{

while (∃r0, r1 : r0∈T
r ∧ r1 6∈T

r ∧ (r0, r1)∈f
r)

T r := T r − {r0};
return T r

}

Figure 4: Addition of Soft-Masking Fault-Tolerance

T ′r to be T r
1 where T r

1 includes all the regions in the region space minus the regions from where safety of

R(P) may be violated (lines E2, E3). Next, we compute the set of edges ψr
p1

, region fault-span T r
1 , and region

invariant Sr
1 of R(P) in a loop as follows (lines E4-E11):

1. In order to compute the set of edges ψr
p1

, we first include edges in ψr
p|S

r
1 . Then we consider edges that

start from a region (s0, ρ0), where (s0, ρ0) ∈ T r
1 − Sr

1 , and end at a region (s1, ρ1) ∈ T r
1 (by closure

of fault-span), such that the time monotonicity condition is preserved, i.e., there exists ρ2, where ρ2 is a

time-successor of ρ0 and ρ1 = ρ2[λ := 0], such that λ is any subset of the set X of clock variables of P .

Finally, we remove the transitions mt from this set (Line E6).

2. We recompute the region fault-span by first removing the regions from where S r
1 is not reachable using

the edges in ψr
p1

. Then, we remove regions from where closure of fault-span may be violated through a

fault edge, by invoking the subroutine ConstructFaultspan (Line E7).
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3. Since Sr
1 must be a subset of T r

1 , we recompute the region invariant by invoking the subroutine Re-

moveDeadlocks for Sr
1 ∧ T r

1 (Line E8) and jump back to step 1.

Upon the termination of the repeat-until loop, recovery from T r
1 to Sr

1 is provided, but not in δ time units.

Hence, we need to ensure that any computation of the soft-masking program P ′〈Sp, ψ
′
p〉 that starts from a state

in the fault-span T ′, reaches its invariant S ′ within δ time units, even in the presence of faults. In fact, we

need bounded-time recovery from each state in T ′ − S′ to a state S ′, which is in turn the bounded response

property (T − S) 7→≤δ S. To this end, we invoke the subroutine Add BoundedRecovery with parameters

R(P)〈Sr
p , ψ

r
p1
〉, f r, T r

1 − Sr
1 , S

r
1 , n, and δ (Line E12). Since Sr

1 is closed in ψr
p1

, unlike adding hard-failsafe,

we do not need to worry about removal of regions in Sr
1 . However, if there exists a region r0 ∈ Sr

1 that may

reach a region r1 ∈ ns by taking faults alone, where ns is the set of regions from where recovery from T r
1 is

not possible, r0 becomes a region from where a program computation goes to the fault-span, but cannot recover

to the invariant in δ time units. Hence, we remove the regions (respectively, edges), from where by taking

faults alone a computation may reach a region in ns, from Sr
1 (respectively, ψr

p1
) (lines E13-E17). Finally, we

construct the real-time program P ′〈Sp, ψ
′
p〉 with invariant S ′ out of its region graph R(P ′)〈Sr

p , ψ
′r
p 〉 and region

invariant S ′r (lines E18, E19).

Theorem 5.5. The algorithm Add SoftMasking is sound and complete. �

Theorem 5.6. The problem of adding soft-masking fault-tolerance to a real-time program is in PSPACE. �

5.3.2 Adding Hard-Masking Fault-Tolerance with a Single Bounded Response Property

To design a hard-masking fault-tolerant program P ′ from an intolerant program P for the case where Σbr ≡

P 7→≤δ Q, we ensure that P ′ is soft-masking fault-tolerant and it maintains P 7→≤δ Q even in the presence of

faults. Note that, since P ′ is supposed to be a soft-masking program, it must provide bounded-time recovery,

which is in turn the bounded response property (T − S) 7→δ′ S. In other words, P ′ must satisfy two bounded

response properties simultaneously. A possible solution seems to be adding the bounded response properties

one after another. Note, however, that during the addition of the first property, we may unnecessarily remove a

transition that should have been kept in order to be able to add the second property. Hence, such a solutions is

sound but not complete.

In this context, we note that in [31], the authors show that adding two unbounded response (leads-to)

properties to an untimed program is NP-hard in the state space. While there are subtle differences between

the problem considered in [31] and the problem of adding hard-masking (e.g., P,Q ⊆ T ), based on [31], we

conjecture that the time complexity of adding hard-masking fault-tolerance even with a single bounded response

property is exponential in the size of the region graph.

5.4 Adding Hard Masking Fault-Tolerance with Multiple Bounded Response Properties

In this subsection, we note that if Σbr consists of multiple bounded response properties then adding hard mask-

ing fault-tolerance to a real-time program is NP-hard.
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Theorem 5.7. The problem of adding hard masking fault-tolerance to a real-time program where the resulting

program is required to satisfy multiple bounded response properties in the presence of faults, is NP-hard in the

size of region graph.

While we omit the proof of this theorem for reasons of space, we note that in [31], we have shown that

the problem of adding two (unbounded) response properties to a given program (in the absence of faults) is

NP-hard. The same proof can be extended to this problem, as adding hard fault-tolerance requires that bounded

liveness properties are preserved in the presence of faults. For reasons of space, we refer the reader to [29] for

proofs.

6 Discussion

In this section, we justify our assumptions and effect of them on our approach.

Modeling safety specification. We choose to model the untimed part of safety specifications by a set of bad

transitions due to the recent results on time complexity of synthesis algorithms that deal with more general class

of specifications. In [32], Kulkarni and Ebnenasir show that the problem of adding masking fault-tolerance

to untimed programs, where the safety specification is specified in terms a set of bad pairs of transitions, is

NP-hard. Furthermore, as mentioned in Subsection 5.4, if the safety specification consists of multiple bounded

response properties, the problem of adding hard masking fault-tolerance is also NP-hard in size of region graph.

Therefore, we argue that automated synthesis of both soft and hard fault-tolerant real-time programs is likely

to be more successful if one focuses on problems where the untimed part safety can be represented by a set of

bad transitions. Moreover, we argue that automated synthesis methods for adding hard fault-tolerance is more

successful, if timing constraints of safety is represented by at most one bounded response property.

Safety specification in the absence and presence of faults. In many systems, the safety requirements in

the presence of faults may be weaker than that in the absence of faults. In this case, during synthesis, one

should specify the properties that should be met in the presence of faults. Since we begin with a fault-intolerant

program that meets the specification in the absence of faults and no new behaviors are added in the absence of

faults, the fault-tolerant program would continue to satisfy the stronger specification in the absence of faults.

Unbounded number of faults. In our work, for hard fault-tolerance we assumed that the number of fault

occurrences in a computation is bounded. Note that if the number of faults are unbounded then for most

interesting scenarios, the synthesis is not feasible. To illustrate this, observe that for most faults considered

in practice, the occurrence of faults causes a delay in satisfaction of a bounded response property. Thus,

if unbounded number of faults occur then hard fault-tolerance cannot be satisfied unless we ensure that the

program does not reach states where faults cannot occur.

State space explosion problem . Region graph is usually not the most efficient finite representation of

a real-time program. By contrast, zone automata [33] is considered as a more efficient model used in model

checking techniques. In this paper, since our goal was to investigate the possibility of synthesizing fault-tolerant
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real-time programs and to evaluate the classes of complexity of such algorithms, we focused on detailed region

graphs. However, an interesting improvement step is modifying the algorithms presented in Section 5, so that

manipulate a zone automaton rather than a region graph during synthesis.

7 Conclusion and Future Work

In this paper, we focused on the problem of automatic addition of fault-tolerance to real-time programs. We

considered three levels of fault-tolerance, failsafe, nonmasking, and masking. For failsafe and masking, we

proposed two cases, soft and hard, based on satisfaction of timing constraints in the presence of faults. In our

approach, we begin with an existing program rather than specification and, hence, the previous efforts made for

synthesizing the input program are reused.

We first introduced a generic framework to formally define the notions of faults and fault-tolerance in the

context of real-time programs. Then, we presented sound and complete algorithms for transforming fault-

intolerant real-time programs into soft-failsafe, nonmasking, and soft-masking fault-tolerant programs. We

also proposed a sound and complete algorithm that synthesizes hard-failsafe fault-tolerant real-time programs,

where the fault-tolerant program is required to satisfy at most one bounded response property in the presence of

faults. The complexity of our algorithms are in polynomial time in the size region graphs. We also showed that

the problem of adding hard masking fault-tolerance to real-time programs, where the fault-tolerant program is

required to satisfy multiple bounded response properties in the presence of faults, is NP-hard. Thus, this work

characterizes classes of problems where adding fault-tolerance to real-time programs is expected to be feasible

and where the complexity is too high.

Since the complexity of the aforementioned algorithms is comparable to that of existing model checking

techniques, we believe that the proposed algorithms can be used in tools for synthesizing fault-tolerant real-time

programs in practice. More specifically, as future work, we plan to extend our tool FTSyn 2 (which is currently

capable to synthesize fault-tolerant untimed programs), so that it synthesizes fault-tolerant real-time programs

as well.
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