

Jack Contract

so that it may be made available to others for return this copy as soon as it has served your purreference use. Your cooperation will be appreciated Because of our limited supply you are requested to WASH. .pril 17, 1943 PLEASE RETURN THIS COPY TO: NAVAL RESEARCH LABOBATORY entre) di tata di secto WASHINGTON 25, D. C. i are in a short frince by norm if relates on altrice what her altrice(s,-i. train date). ATTM: CODE 2028 and a second PRNC-NRL-20-820 **6**2047 poses APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED AEC Str C:CFK of 20 May 1959 3 June 1959 Diane D. Jactheran NAVY DEPARTMENT

OFFICE OF NAVAL RESEARCH NAVAL RESEARCH LABORATORY WASHINGTON 20, D. C.

Report Documentation Page				Form Approved OMB No. 0704-0188		
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.						
1. REPORT DATE 17 APR 1943		2. REPORT TYPE		3. DATES COVE 00-00-1943	RED 3 to 00-00-1943	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Third Partial Report on Liquid Thermal Diffusion Research. Theory of Isotope Separation by Thermal Diffusion - I. Single Column				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Avenue SW,Washington,DC,20375-5320				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NO	DTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT	OF PAGES 20	RESPONSIBLE PERSON	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

April 17, 1943

Cy. 26 N.R.L. Report No. 0-2047

1955

NAVY DEPARTMENT

Third Partial Report

on

Liquid Thermal Diffusion Research

Theory of Isotope Separation by Thermal

Diffusion, - I. Single Column

NAVAL RESEARCH LABORATORY ANACOSTIA STATION Mashington, D. C.

Plate - 1 Text -15Number of pages:

BuShips ltr. NP14/L1 (CF) NP14/44-41 (NSA) of Authorization: October 31, 1940. BuShips Project 1668/42

Prepared by:

Nathan Rosen, Chapel Hill, N. C. Contract Employee, NRL

Reviewed by:

Ross Gunn, Superintendent of Mechanics and Electricity

Approved by:

A. H. Van Keuren, Rear Admiral, U.S.F., Director

Distribution:

LEB

UNCLASSIFIED

TABLE OF CONTENTS

Abstract	
Introduction	
Apparatus and Process	
Convection	
Diffusion	
Stationary Condition	
Approach to Equilibrium]	1
Footnotes	15

Experimental Data Curve

L

Plate 1

Page

ABSTRACT

The fundamental equations governing the process of isotope separation by thermal diffusion are derived. The equations are applied to the behavior of a single column in the cases of equilibrium, stationary flow and approach to equilibrium.

INTRODUCTION

1. The separation of isotopes by the method of thermal diffusion has assumed a practical significance in connection with the problem of obtaining concentrated uranium 235, an element which is capable of releasing large amounts of energy. Thile the work on this problem is primarily of an experimental nature, theoretical work can play an important role in guiding the work of the experimenter and in correlating his results.

2. The present paper deals with the theory of the thermal diffusion method. In the published literature there are a number of papers on the theoretical treatment of isotope separation by thermal diffusion, among which one might single out for mention those of Furry, Jones and Onsager¹(to be referred to as F. J. O.), Waldmann², Bardeen³, and Debye⁴. However, all of these but the last are concerned with gases rather than liquids. The paper of Debye is not satisfactory because of the rough approximations introduced, while the papers dealing with gases make some assumptions which are probably not valid for liquids. (Incidentally it is interesting to note that since 1940 no papers on isotope separation by thermal diffusion have appeared in German publications, although there had been numerous papers previously.)

3. Because there exists no satisfactory theoretical treatment of isotope separation by thermal diffusion in liquids, it seems desirable to attempt such a treatment. The purpose of the present paper is to discuss the case of a single liquid diffusion column, introducing assumptions and approximations which are appropriate to the type of column being used, and to obtain results which can be directly applied to it.

APPARATUS AND PROCESS

4. In order to be able to treat the problem theoretically, we must first have a clear picture before us of the system to be investigated. Some idealization will be necessary, to be sure, but it is important to try to retain the essential features.

5. We shall consider a column to consist of two vertical concentric tubes, spaced a distance a apart, each of length L, between which the diffusing liquid is contained, in the annular space of mean circumference b. The surfaces of the tubes in contact with the liquid will be referred to as the "walls". One wall is maintained at a low temperature T1, the other at a high temperature T2. The mass of the fluid contained between the walls will be denoted by $M_{\rm C}$. At the top of the column there is a reservoir filled with liquid having a mass $M_{\rm R}$. At the bottom of the column there is an outlet which may be connected to another reservoir, or else kept closed,

6. Because of the temperature difference between the walls, a conjection current sets in, the liquid near the hot wall, having the

lower density, flowing upward, while that near the cold wall flows down. At the same time thermal diffusion takes place, the molecules of the lighter isotope diffusing from the cold toward the hot wall. The result is that there is an exchange of molecules between the upward convection stream and the downward one, by which the upward stream acquires an excess of the lighter isotope and carries it to the top of the column. The concentration of the lighter isotope at the top of the column, or in the reservoir, gradually increases while that at the bottom decreases, unless the bottom is connected to a large reservoir or to another column, so that a constant concentration is maintained.

7. If this process is allowed to continue, a condition of equilibrium will be approached, at which there will be a definite relation between the concentrations at top and bottom. It is possible to stop the process at some stage, remove the enriched liquid from the reservoir and start the process over again. Such a procedure is referred to as intermittent operation. On the other hand, it is possible, beginning at a certain stage, to draw off a continuous stream of enriched liquid from the top of the column. This procedure is called continuous operation. Under working conditions, the rate at which the isotope is drawn off from the top of the column is equal to that at which it is carried to the top of the column by convection, so that one has a stationary condition within the column.

8. In the mathematical treatment of a column such as has been described, one can take into account the fact that the distance between the walls a is very small compared to the circumference b, by neglecting the curvature of the walls and treating them as plane surfaces. In discussing the convection and diffusion, one can simplify the calculations considerably by neglecting the small regions near the ends of the column where the temperatures vary from the values prevailing elsewhere and where the convection streams curve back to reverse their directions. These regions can be neglected because their dimensions are generally very small compared to the usual length of a column. (F.J.C.¹)

9. Finally, since a column in a practical case will produce a relatively small change in the isotope concentration, one can represent the concentration very often as a power series in the distance up from the bottom of the column. The series will usually converge so rapidly that only a small number of terms are required for reasonable accuracy. Such a power series expansion frequently reduces the work of mathematical calculation considerably.

CONVECTION

10. Since we are dealing with isotopes having a small percentage difference in atomic weight, the two kinds of molecules being zeparated are very similar in their properties, and the presence of thermal diffusion does not alter the behavior of the liquid to any marked extent. Hence one can first treat the convection of the liquid in the

SECRET

--2-

absence of diffusion and afterwards theat the diffusion as influenced by the convection.

11. Let us suppose that we have the liquid between two parallel vertical walls a distance a apart, of breadth b and height L. Let us take a coordinate system with the X-axis at right angles to the plates and the Z-axis vertical, so that $0 \le x \le \alpha$, $0 \le z \le L$. Since we shall consider the case in which none of quantities to be discussed varies in the direction of the third coordinate axis, the latter will not be used. Let us take the "cold" wall, as the one at x = 0, and let its temperature be T_1 , while the "hot" wall, at x = a, has a temperature T2, so that $\Delta T = \tilde{T}_2 - T_1 > 0$. Let p be the pressure, g the acceleration of gravity, and Q the heat flow per unit area of plate. Furthermore let ρ , λ and μ denote the density, thermal conduct tivity, and viscosity of the liquid, as functions of the temperatura T. Debye⁴ assumed the last three quantities to be constant, corresponding to a small value of AT . However, these quantities may change rapidly with the temperature and therefore, for any appreciable value of ΔT , the dependence on temperature should be taken into consideration. On the other hand, because of the similarity of the two kinds of molecules, we shall assume that ρ, λ and μ do not depend on their concentrations. Finally, from the conditions of the problem, we can take these quantities independent of Z.

12. To calculate the convection flow, we follow F. J. O. in determining the temperature distribution on the basis of the heat conduction alone. Except near the edges of the plate, one can write,

$$Q = \lambda \frac{dT}{dx} , \qquad (1)$$

or, on integrating,

$$Q = \frac{\chi}{a} , \qquad (2)$$

whero

$$\mathcal{H} = \int_{T_1}^{T_2} \lambda \, dT. \tag{3}$$

13. F.J.O. showed that the convection flow can be treated as lamellar. To a sufficient accuracy, one can use the hydrodyâmical equation for steady viscous flow in the form

$$(\nabla \cdot \mu \nabla) \vec{v} = \nabla \beta - \beta \vec{q} , \qquad (4)$$

where \vec{v} , the velocity vector, is taken in the z-direction, but independent of z, while \vec{g} , the gravitational acceleration vector is taken in the (-z) direction and of magnitude \underline{g} . Eq. (4) gives for the x-component:

$$\frac{\partial p}{\partial x} = 0, \tag{4}$$

and for the z component:

$$\frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{v}}{\mathbf{x} \partial \mathbf{x}} \right) = \frac{\partial \mathbf{p}}{\partial q} + gg.$$
(5)

Since, in (5), all terms other than $\sum_{\lambda \in X} \Delta$ depend only on x, we see that

$$\frac{\partial \mathbf{p}}{\partial \mathbf{r}} = \mathbf{B}, \tag{6}$$

where B is a constant, and the equation can be written by means of (1) as

$$\frac{Q^2}{\lambda} \frac{d}{dt} \left(\begin{array}{c} \mu & dV \\ \lambda & d \end{array} \right) = B + \rho g.$$
(7)

This equation is to be solved subject to the boundary conditions

$$V(T_1) = V(T_2) = 0$$
 (8)

The solution of (7) can be obtained by quandratures and will depend linearly upon the constant B. The value of this constant will depend on the total flow of liquid. It will be seen from (7) that for given values of B, T₁ and T₂, v(T) for a fixed value of T will vary as $1/Q_{\perp}^2$ or by (1), as a^2 .

DIFFUSION

14. Let the two types of molecules in the liquid be referred to by subscripts 1 and 2, so that, for example, c_1 and c_2 are the relative particle concentrations, $(c_1 + c_2 = 1)$, and let 1 represent the species which it is desired to concentrate, i.e., the lighter one. The equation of diffusion can be written in the form

$$c_1(\vec{v}_1 - \vec{v}) = -D\vec{v}c_{1} + C\nabla T, \qquad (9)$$

where the first term on the right-hand side represents ordinary diffusion, while the second term represents thermal diffusion. In the case of ordinary diffusion, the diffusion coefficient D (often denoted by D_{12}) is known to be a function of the temperature. It will be assumed that it is independent of the concentrations c_1 and c_2 , an assumption which is justified by the similarity of the two species of molecules.

15. The coefficient C of the thermal diffusion term must depend not only on the temperature, but also on the concentrations. Since there is no thermal diffusion if either species alone is present, one can assume C to contain a factor c_1c_9 . Let us write

 $\frac{C}{D} = qc_1c_2$

One can expect that q will depend on T and that it will be, in general, a slowly varying function of the concentrations. In particular, if the two species are very similar in their properties, it is reasonable to believe that q will be very nearly independent of c_1 and c_2 . This is borne out by the fact that such is the case for thermal diffusion in gases⁵. We shall therefore assume, until there is evidence to the contrary, that q in (10) is a function only of the temperature. What this function is we do not know at present. In the case of gases, it has been found to be of the form d/T, where this nearly a constant, and arguments have led to either d/T or x/T^2 , depending on the model assumed. It seems best, in the present state of our knowledge, to leave open the question of what the dependence of <u>q</u> on <u>T</u> is.

16. From (9) and (10) the flux density of species 1 is given by

$$\vec{J}_{1} = c_{1}\vec{v}_{1} = c_{1}\vec{v} + D(-\nabla c_{1} + qc_{1}c_{2}\nabla T)], \quad (11)$$

so that we can write

$$\vec{b} \in (\mathbf{c}_1) = -\nabla \cdot \vec{J}_1, \quad (12)$$

where t is the time. If we are dealing with a stationary condition, such as that of equilibrium, or of continuous operation, the left-hand member is zero, and we have

 $\nabla \cdot \vec{J}_{1=0} \tag{13}$

As pointed out by F.J.O.1, the condition will be essentially stationary even during the approach to equilibrium provided the endreservoirs are sufficiently large.

STATIONARY CONDITION

17. Substituting (11) into (13), we get

$$\frac{\partial}{\partial x} \left[\mathcal{P}D \left(-\frac{\partial^2 c_1}{\partial x} + qc_1 c_2 \frac{\partial^2 T}{\partial x} \right) \right] + \mathcal{P} \sqrt{\frac{\partial^2 c_1}{\partial x^2}} - \mathcal{P}D \frac{\mathcal{P}^2 c_1}{\mathcal{P}^2} = 0, (14)$$

or if we replace x by T, by means of (1),

$$\frac{\partial}{\partial T} \left[\frac{\partial c_1}{\partial T} - \frac{qc_1c_2}{r^2} \right] = \frac{\partial P}{Q^2} \left[\frac{v \partial c_1}{\partial g} - \frac{v \partial c_1}{\partial g^2} \right] (15)$$

The boundary conditions at the walls are given by

$$J_{1x} = 0$$
 (x = 0, a), (16)

SECRET

UNCLASSIFIED

(10)

$$\frac{\partial c_1}{\partial T} = q c_1 c_2 = 0.$$

18. In solving these equations, we shall not look for an explicit solution giving the value of c_1 for each value of T and z; rather we shall follow F.J.O. in seeking information about the average value of c_1 across a section z=constant, for various values of z, since this is the quantity which is of the most direct concern to the experimenter, and since the concentration varies but little over the cross-section of the column.

19. Let us therefore integrate eq. (15) over T from T_1 to T_2 . Making use of the boundary conditions (17) we obtain a result which can be written

$$\frac{\partial \tau_j}{\partial x} = 0, \tag{18}$$

where τ_i is the upward transport of species 1, given by

$$\overline{c}_{i} = 5 \int_{0}^{\infty} \frac{d}{f} \left(vc_{i} - D \frac{\partial c_{i}}{\partial 5} \right) dx$$

$$= \frac{5}{Q} \int_{T}^{T} \lambda \left(vc_{i} - D \frac{\partial c_{i}}{\partial 3} \right) dT.$$
(19)

Eq. (18) states the obvious fact, that T_i is constant along the tube for a stationary state.

20. Let us now define a function

$$F(\tau) = Q^{2} \int_{T_{c}}^{T_{c}} \lambda_{f} v dT.$$
⁽²⁰⁾

We see that

$$F(T_{1}) = 0, \qquad F(T_{1}) = \frac{Q^{3} \sigma}{b}, \qquad (21)$$

where G is the total transport, given by

$$\sigma = b \int_{0}^{T_{v}} \nabla dx = \frac{b}{Q} \int_{T_{v}}^{T_{v}} \lambda p v dT.$$
 (22)

Eq. (19) can be written

$$\mathcal{Z}_{i} = \frac{b}{Q^{3}} \int_{T_{i}}^{T_{2}} dT - \frac{b}{Q} \int_{T_{i}}^{T_{2}} \lambda_{F} D \frac{\partial c_{i}}{\partial \overline{z}} dT.$$
(23)

SECRET

UNCLASSIFIED

(17)

or

Integration by parts, with the aid of (21), gives

$$\tau_{i} = \sigma c_{i} \left(T_{2}, \overline{3} \right) - \frac{b}{Q^{3}} \int_{T_{i}}^{T_{2}} F \frac{\partial c_{i}}{\partial T} dT - \frac{b}{Q} \int_{T_{i}}^{T_{2}} D \frac{\partial c_{i}}{\partial \overline{3}} dT.$$
(24)

21. If one now goes back to eq. (15) and integrates it with respect to T, one obtains an expression for $\partial c_1 / \partial T$, which can then be substituted into (24). Taking into account the boundary conditions (17), one finds

$$\frac{\partial c_{i}}{\partial T} = gc_{i}c_{2} + \frac{\lambda}{PDQ^{2}} \int_{T}^{T} \left(v \frac{\partial c_{i}}{\partial 3} - D \frac{\partial^{2} c_{i}}{\partial 3^{2}} \right) \lambda_{P} dT, \qquad (25)$$

and, substituting this into (24), one obtains.

$$\begin{aligned} \mathcal{E}_{i} &= \sigma c_{i} \left(\overline{T}_{2}, \overline{3} \right) - \frac{b}{\overline{\varphi}^{3}} \int_{F_{q}c_{i}c_{2}}^{\overline{T}_{2}} dT - \frac{b}{\overline{\varphi}^{3}} \int_{\overline{\beta}D}^{\overline{T}_{2}} dT \int_{A_{p}V}^{\overline{\gamma}_{1}} dT \\ &+ \frac{b}{\overline{\varphi}^{3}} \int_{\overline{T}_{1}}^{\overline{T}_{2}} \frac{\lambda F}{\overline{\gamma}D} dT \int_{\overline{T}_{1}}^{\overline{T}_{1}} \lambda_{\overline{\beta}} D \frac{\overline{\delta}c_{i}}{\overline{\delta}_{3}^{2}} dT - \frac{b}{\overline{\varphi}} \int_{\overline{T}_{2}}^{\overline{T}_{2}} D \frac{\overline{\delta}c_{i}}{\overline{\delta}_{3}^{2}} dT. \end{aligned}$$
(26)

22. If one neglects the small variation in concentration along a section z = const., one can write this equation as

$$\tau_{1} = \sigma c_{1} + H c_{1} c_{2} - K \frac{d c_{1}}{43} - N \frac{d^{2} c_{1}}{43^{2}},$$
 (27)

where H , K, and N are positive quantities defined by

$$H = -\frac{b}{Q} \int_{T_{i}}^{T_{2}} F_{q} dT,$$

$$K = K_{c} + K_{d},$$

$$K_{c} = \frac{b}{Q} \int_{T_{i}}^{T_{2}} \frac{\lambda F^{2}}{SD} dT,$$

$$K_{q} = \frac{b}{Q} \int_{T_{i}}^{T_{2}} \frac{\lambda F}{SD} dT,$$

$$N = \frac{b}{Q} \int_{T_{i}}^{T_{2}} \frac{\lambda F}{SD} dT \int_{T_{i}}^{T} \lambda SD dT,$$

$$(28)$$

and the concentrations are now regarded as depending only on z.

23. One can show that in practical cases the term in (27) involving $d^2 c_1 / d_3^2$ will generally be small compared to the other quantities present. Hence we shall discard this term. For convenience we shall write c in place of c_1 , l-c in place of c_2 , and z in place of z_1 . The equation then becomes

$$\tau = \sigma c + Hc(i-c) - K \frac{dc}{d_3}.$$
 (29)

(a) Equilibrium

In the case of equilibrium both σ and τ are zero. Eq. (29) then becomes

$$K \frac{dc}{d_3} - Hc(1-c) = 0.$$
 (30)

If we lot

$$\not = \frac{H}{K}, \tag{31}$$

This can be integrated to give

$$ln \frac{c}{i-c} = \propto 3 + const.$$
 (32)

24. Let the value of c at the top of the column be denoted by c, , that at the bottom by c. . It is customary to define the separation factor by

$$S = \frac{c_{+}(i-c_{*})}{c_{*}(i-c_{+})}$$
 (33)

If we let S_e denote the value of S at equilibrium, then it follows from (32) that

$$\ln S_e = xL, \quad S_e = e^{\alpha L}. \quad (34)$$

Where L is the length of the column. An important feature of this result is that the value of the equilibrium separation factor is independent of the concentration at the bottom of the column.

25. It is desirable to investigate more closely the dependence of S_0 on the variables of the system. In terms of the integrals listed in (28), it can be written

$$In S_{e} = \frac{HL}{K}, \qquad (35)$$

SECRET

_**-8**

the or, by uso of (2),

 $\ln S_e = \frac{-La^2 n^4 \int_{T}^{T_e} F_q dT}{a \int_{T}^{T_e} \int_{T}^{T_e} J_{T} + n \int_{T}^{T_e} J_{T} D dT}$ (36)

26. If ono looks for the value of a, denoted by a_{m} , for which lnS_c has a maximum value, one finds that it satisfies the relation

$$2a_{n}^{4}\int_{T}^{T_{2}}\frac{\lambda F^{2}}{SD}dT = X\int_{T_{1}}^{T_{2}}\frac{\lambda J}{S}DJT.$$
 (37)

The maximum value of lnSe is then given by

$$\ln S_{em} = \frac{\sum_{T_{i}}^{T_{3}} \int_{F_{q}}^{T_{2}} F_{q} dT}{\int_{T_{i}}^{T_{2}} \int_{F_{i}}^{T_{2}} \int_{T_{i}}^{T_{2}} \int_{T_{i}}^{T_{i}} \int_{T_$$

This depends only on the wall temperatures T and T. The dependence is rather complicated, however. 1

27. It might be pointed out that, on the basis of rough considerations of the behavior of the various quantities in (38), raising T₂ should generally increase S_{em} . However, this cannot be done indefinitely, since a high value of ΔT will lead to parasitic, or local convection, resulting in mixing of the liquid and lowering of the separation factor. It appears that the choice of optimum wall temperatures can best be made on the basis of experiment, rather than theory.

28. Returning to (36), we see, that, for fixed wall temperatures T_1 and T_2 , the dependence of S_{Θ} on a can be expressed in the form

 $In S = \frac{k_i a^2 L}{1 + k_i a^6}, \qquad (39)^4$

where k_1 and k_2 are sonstants depending on the temperature . A similar relation was given by Waldmann² for gases.

29.In plate 1, the crosses indicate experimental values of lnS for a number of values of a, as determined by Dr. Philip H. Abelson for a particular set of conditions. The curve represents $\ln S_e$ as given by (39), k_1 and k_2 having been chosen to fit the experimental data. It will be seen that the agreement is good. However, the agreement may be fortuitous to some extant for, as Dr. Abelson pointed out, in the experiments what was kept constant was not the temperature of the wall in contact with the diffusing liquid, but rather the temperature of the heating or cooling substance in contact with the other side of

the wall. When the distance a is varied, the temperature of the diffusing liquid at the wall \overline{w} ill vary somewhat in spite of the fact that the heating and cooling agents are kept at fixed temperatures.

30. If we wish to have a solution for the concentration c at equilibrium, we can obtain it in a convenient form by expanding it in a power series in z. Substituting into eq. (30) and equating to zero the coefficients of each power, we get

$$c(g) = c_0 + c_0(1-c_p) \left[d_1 g + (\frac{1}{2}-c_0) d_1^2 g^2 + \cdots \right], \qquad (40)$$

provided we take z = 0 at the bottom of the column.

31. If the solution is desired in a closed form rather than as a power series, it can be obtained from (32). The result is

$$C(z) = \frac{C_{0} e^{-\frac{1}{3}} \sqrt{3}}{1 + C_{0} (e^{-\frac{1}{3}})}$$
 (40A)

(b) Stationary flow

32. We next consider the case in which there is a steady upward flow of liquid through the column at such a rate that the concentration at every point remains constant with time, a condition which might be referred to as "stationary". In this case eq. (29) applies, with and $\frac{1}{2}$ both constant, $\frac{1}{2}$ being the mass of liquid flowing upward per unit time through any cross-section of the column, while $\frac{1}{2}$ is the mass of the desired constituent crossing any section per unit time. These two quantities are related to each other by the equation

where c_m is the value of c at the point where the enriched material is withdrawn. If one is operating a single column this will be the same as c_+ , but if the column is part of a pyramid, c_m will be the concentration at the top of the pyramid. Let us for the present impose no restriction on c_m .

Eq. (29) can now be written

$$C^{c}c_{m} = C^{-c} + Hc(1-c) - K \frac{dc}{dg}.$$
(42)

If we define a as in (31) and let

$$\gamma = \frac{1}{H},$$
 (43)

the equation becomes

$$\frac{dc}{dq} - i \lambda c(1-c) + i \lambda v(c_m - c) = 0$$

$$-10-$$
(44)

This can be solved most conveniently by means of a power series in z. In this way one obtains as the solution

$$c = c_0 + \left[c_0(1-c_0) - v (c_m - c_0) \right] \left[d_1 - \frac{1}{2} \left(1 - 2c_0 + v \right) d_1^2 + \frac{1}{2} \left(1 - 2c_0 + v \right) d_1^2 + \frac{1}{2} \right] \frac{1}{(45)}$$

Putting z = L gives us C \perp , and f rom this we get the separation factor

$$s = 1 + \left[\frac{V(c_{m} - C_{0})}{C_{0}(1 - C_{0})} \right] \left\{ \partial_{1}L + \left[\frac{V}{2} + \frac{V(k_{2} + \frac{V(k_{2} + \frac{V}{2} c_{0} - c_{m})}{1 - c_{0}} \right] \left\{ \partial_{1}L + \left[\frac{V}{2} + \frac{V(k_{2} + \frac{V}{2} c_{0} - c_{m})}{1 - c_{0}} \right] \right\}^{2} \right\}^{2} (46)$$

33. If we are dealing with the case in which $c_m = c_{+}$, we can put the result into a more convenient form. At the top of the column, (45) then becomes

$$c_{+} = c_{0} + \left[c_{0}(1-c_{0}) - v(c_{+} - c_{0}) \right] \left[\partial_{1} L + \frac{1}{2}(1-2c_{0} + v) \partial_{1}^{2} L^{2} \right] + \cdots$$
(47)

we solve this equation for c_+ we obtain

$$c_{+} = c_{0} + c_{0}(1-c_{0}) \left[- \propto L + \frac{1}{2} (1-2c_{0}-v)q^{2} L^{2} \right] + \cdots$$
 (48)

and from this we find

$$S = 1 + d_{L} + \frac{1}{2} (1 - v) d^{2} \frac{1}{2} \frac{1}{2} + \cdots$$
 (49)

34. It will be seen by a comparison of (49) with (34) that when liquid is withdrawn continuously from the top of the column the separation factor is less than that at equilibrium; the difference will be very small however if $S_{\rm e}$ is nearly equal to unity (41 small).

APPROACH TO EQUILIBRIUM

35. If one is interested in following the process by which the column goes from its initial state to the condition of equilibrium, one must replace eq. (29) by the more general equation involving the time. This equation can be obtained from eq. (12) in much the same way as (29) was obtained from (13). Such an equation was derived by Bardeen.⁷ If we again omit terms which are small in practical cases, the equation can be written in the form

If we define
$$\mathcal{A}$$
 as in (31) and let $(1 - \varepsilon) + K \frac{\partial^2 \varepsilon}{\partial z}$. (50)

(51)

 $\gamma = \frac{1}{K_{A}^{2}} + \frac{1}{H_{A}^{2}} + \frac{1}{H_{A}^{2}},$

this becomes

$$\gamma + \frac{\partial c}{\partial t} = - \phi \frac{\partial}{\partial \gamma} \left[c \left(1 - c \right) \right] + \frac{\partial^2 c}{\partial \gamma^2} .$$
 (52)

36. To solve this equation, we look for a solution which is a power series in z, with coefficients which are functions of t. Let us set

$$c = \delta_{0}(t) + \delta_{1}(t) + \delta_{2}(t) + \delta_{2}(t) + \delta_{2}^{2} + \cdots$$
 (53)

Substituting this into (52) and equating coefficients of corresponding powers of z on both sides of the equation, we obtain a series of relations $\sqrt{\sqrt{2}}$

$$\begin{array}{c} Y & \delta_{0} = -\delta_{1} \left(1 - 2\delta_{0} \right) + 2 S_{2} \\ Y & \delta_{1} = -2 \left[\delta_{2} \left(1 - 2\delta_{0} \right) - \delta_{1}^{2} \right] + 6 \delta_{3} \\ Y & \delta_{1} = -3 \left[\delta_{2} \left(1 - 2\delta_{0} - 2 - \delta_{1} \right) - \delta_{1}^{2} \right] + 1 2 \delta_{1} \\ \end{array}$$

$$(54)$$

where a prime denotes differentiation with respect to time. It will be seen that two of the functions, χ_0 and χ_1 can be taken arbitrarily. The others will then be determined by the equations in terms of these two. One finds, for example,

$$\begin{aligned} &\delta_{a} = \delta_{i} \left(\frac{1}{2} - \delta_{c} \right) + \frac{1}{2} \frac{1}{3} \delta_{0} \end{aligned} \tag{55} \\ &\delta_{3} = \frac{1}{6} \left\{ \frac{2}{i} \left[\left(1 - 2 \frac{3}{2} \right)^{2} - \frac{1}{2} \right] + \frac{1}{6} \frac{1}{8} \frac{3}{i} \frac{1}{3} \frac{3}{i} \left[\left(1 - 2 \frac{3}{3} \right) \right]_{i} \text{ etc} \end{aligned}$$

The upward transport \mathcal{T} , given by

$$\mathcal{T} = He(I-e) - K \frac{3}{3}, \qquad (56)$$

is found to be

$$\tau = H \left\{ \chi_{(1-\chi_{0})}^{*} + \frac{1}{2} + \frac{1}{$$

37. The functions X_0 and X_1 will be chosen in any perticular problem so as to satisfy the initial conditions and the boundary conditions at the top and bottom of the column.

38. This method of solution is much simpler than the usual method involving a Fourier series, and it should work satisfactorily for the cases encountered in practice. An example of its application will next be given.

(a) Fixed concentration at bottom of column.

39. We consider the case of a column of the type previously discussed which is operated by having its lower end connected to a large reservoir or to a stripper column so that the initial concentration is maintained there at all times. We have then, by taking z = 0,

$$\delta_o(t) = constant = c_o$$
 (58)

whence it follows from (54) that

$$\chi_{2} = \delta_{1} \left[\chi_{2} - c_{0} \right]$$

$$\chi_{3} = \frac{1}{3} \left[\chi_{2} \left(1 - 2c_{0} \right) - \chi_{1}^{2} \right] + \frac{1}{6} \frac{1}{7} \delta_{1}^{2} \\ \delta_{4} = \frac{1}{4} \left[\chi_{3} \left(1 - 2c_{0} \right) + \chi_{1}^{2} \chi_{2} \right] + \frac{1}{6} \frac{1}{7} \delta_{2}^{2} \\ 40. \text{ In this case, eq. (57) gives for }$$

$$= 11 \left[t_{1} + t_{2} + t_{3} + t_{3}$$

$$= H[c_0(1-c_0)-8,]-Pa + L^2 + [88, + 88, (4-c_0)-L]$$
(61)

or, since

$$M_{c} = \rho_{\partial b} L \tag{62}$$

we can write

$$z_{\mp} = H[c_0(1-c_0) - \delta_{,}] - McAL\delta_{,} [\frac{1}{2} + \frac{1}{3}(\frac{1}{2} - c_0)\partial_{\mu}L] + ...$$
 (63)

41. On the other hand, at the top of the column, we have the rate of change of concentration related to the transport,

$$T_{+} = M_{R} \frac{de_{+}}{dt}$$
(64)

where $\mathtt{M}_{\rm p}$ is the mass of the liquid in the reservoir, while \mathtt{c}_+ is given by

$$c_{+} = c_{0} + \chi_{1} c_{1} + \chi_{1} (\frac{1}{2} - c_{0}) \chi^{2} L^{2} + \dots$$
 (65)

Substituting (65) and (63) into (64) we get an equation for X_{i} :

$$H[c_0(1-c_0)-X] = c_1 L X'_1 \{ M_{t_1}[1+(V_2-c_0)c_1L] + M_0[X_2+Y_3(X_2-c_0)c_1]^{(66)} + \dots \}$$

Neglecting higher order terms, one integrates this to get

$$\delta_{i} = \mathbf{C}_{o}(1 - \mathbf{C}_{o})\left[1 - \mathbf{C}_{o} - \frac{t/\theta}{2}\right] \tag{67}$$

where the relaxation time Q is given by

$$\Theta = \frac{1}{X} \left\{ M_h \left[1 + \left(\frac{1}{X} - c_0 \right) \propto L \right] + M_c \left[\frac{1}{X} + \frac{1}{X} \left(\frac{1}{X} - c_0 \right) \propto L \right] \right\}$$

$$(68)$$

$$SECRET$$

to the approximation considered.

42. The solution for the concentration can be written

$$(=c_{0}+c_{0}(1-c_{0})(1-e^{t/\theta})[a_{3}+(1/2-c_{0})a_{3}^{2}]+...$$
 (69)

From this one finds for the separation factor

$$S = 1 + (1 - e^{-t/e}) \left[dL + (\frac{1}{2} - c_0 e^{-t/e}) \frac{2}{2} + \dots \right]$$
(70)

Footnotes

¹Furry, Jones and Onsager, Phys, Rev. 55, 1083 (1939)
²Waldmann, Zeits. f. Physik 114, 53 (1939)
³Bardeen, Phys. Rev. 57, 35 (1940)
⁴Debye, Ann d. Physik [V] 36, 284 (1939)
⁵Chapman, Proc. Roy. Soc. (A) 177, 38 (1941)
⁶Wirtz, Ann d. Physik [V] 36, 295 (1939)
⁷Bardeen, Phys. Rev. 58, 95 (1940)

SECRET

National Constants States and Constants St