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ABSTRACT

The fundamental equations governing the process of isotope
separation by thermal diffusion are derived, The equations are applied
to the behavior of a sinle coltun in the cases of equilibrium,
stationary flow and approach to equilibriumn

m



INTRODU CTION -

I. The s eparation of isotopes by the method of thermal diffusion
has assumed a practical significanice in connection with the problem of

obtaining concentrated uranium 235, an element which is capable of
releasing large amounts of energy. .hile the work on this problem is
primarily of anexperimental nature, theoretical work can play an

important role in guiding the wrork of the- experimenter and in correlating
his results.

2. The present paper deals with the theory of the thermal diffusion

method. In the published literature there are a number of papers on

the theoretical treatment of isotope separation by thermal diffusion,
among which one might single out for mention those of Furry4 Jones and
Onsagerl(to be referred to as P. J. 0.), `.aldmann 2 , Bardeen , and Debye 4 .

However, all of these but the last are concerned with gases rather than

liquids. The paper of Debye is not Satisfactory because of the rough

approximations introduced, while the papers dealing with gases make

some assumptions which are probably not valid for liquids. (Incidentally

it is interesting to note that since 1940 no papers on isotope separation
by thermal diffusion have appeared in German publications, although
there had been numerous papers previously.)

3. Because there exists no satisfactory theoretical treatment of

isotope separation by thermal diffusion in liquids, it seems desirable
to attempt such a treatment. The purpose of the present paper is to

discuss the case of a single liquid diffusion column, introducing
assumptions and approximations which are appropriate to the type of
column being used, and to obtain results which can be directly applied
to it.

APPARATUS AJTD PROCESS

4. In order to be able to treat the problem theoretically, we

must first have a clear picture before us of the system to be investi-
gated. Some idealization will be necessary, to be sure, but it is
important to try to retain the essential features.

5. We shall consider 'a column to consist of two vertical
concentric tubes, spaced a distance a apart, each of length L, between
which the diffusing liquid is cntaiied, in the annular space of mean

circumference b. The surfaces of the tubes in contact with the liquid
will be referred to as the "walls". One wall is maintained at a low

temperature Tl, the other at a high temperature T2. The mass of the
fluid contained between the walls will be denoted by 11'. At the top
of the column there is a reservoir filled with liquid having a mas-S

"iR. At the bottom of the column there is an outlet which iray be con-
nected to anothe7- reservoir, or else kept closed,

6, Because of the temperature difference between the walls, a
con ection current sets in, the liquid near the hot wall, having the
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loweridensity, flowing upward,while that near the cold wall flows down.
At the same time thermal diffusionrtakes plaze, the molecules of the

lighter isotope diffusing from the cold toward the hot wall. The result

is that there is an exchange of molecules between the ipward convection

stream and the downward one, by which the upward stream acquires an
excess of the lighter isotope and carries it to the top of the column.

The concentration of the lighter isotope at the top of the column, or
in the reservoir, gradually increases, while that at the bottom decreases,
unless the bottom is connected to a large reservoir or to another
column, so that a constant concentration is maintained.

7. If this process is allowed to continue, a condition of
equilibrium will be approached, at which there will be a definite
relation between the concentrations at top and bottom. It is possible
to stop the process at some stage, remove the enriched liquid from the

reservoir and start the process over again. Such a procedure is referred
to as intermittent operation. On the other hand, it is possible,
beginning at a certain stage, to draw off a continuous stream of enriched
liquid from the top of the column * This procedure is called
continuous operation. Under working conditions, the rqte at which the
isotope is drawn off from the top of the column is equal to that at
which it is carried to the top of the column by convection, so that one
has a stationary condition within the column.

8. In the mathematical treatment of a column such as has been

described, one can take into account the fact that the distance between
the walls a is very small compared to the circumference b, by neglecting
the curvature of the walls and treating them as plane suF'faces. In
discussing the convection and diffusion, one can simplify the calculat-
ions considerably by neglecting the small regions near the ends of the
column where the temperatures vary from the values prevailing elsewhere
and where the convection streams curve back to reverse their directions.

These regions can be negrlected because their dimensions are generally
very small compared to the usual length of a column. (F.J.0. 1 )

9. Finally, since a column in a practical case will produce a
relatively small change in the isotope cbncentration, one can represent
the concentration very often as a power series in the distance up from
the bottoniof the column. The series will usually converge so

rapidly that only a small number of terms are required for reasonable
accuracy. Such a power series expansion frequently reduces the work
of mathematical calculation considerably.

SLC TI ION

10. Since we are dealing with isotopes having a small percentage
difference in atomic weight, the two kinds of molecules being separated
are very similar in their properties, and the presence of thermal
diffusion does not alter the behavior of the liquid to any marked
extent. Hence one can first treat the convection of the liquid in the
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absence of diffusion and afterwards treat the diffusion a s influenced
by the convection.

11. Let us suppose that we have the liquid between two parallel
vertical walls a distance a-apart, of breadth b and height L. Let us
take a coordinate system w-ith the X-axis at right angles to the plates
and the Z-axis vertical, so that X- .,
Since we shall co nsider the case in which none- ofý'Qumtities to be
disuussed varies in the direction of the third coordinate axis, the
latter will not be used. Let us take the "cold" wall, as the one at
x : 0, and let its temperature be T1 , while the "hot" wall, at x = a,
has a temparature T2, so that bT a T2 - Tl> 0. Let p be the pressure,
g the acceleration of gravity, and Q the heat flow prr unit area of
p--late. Furthe zmore let c , k and p"denote the density, thermal conduco
tivity, and viscosity of the liquid, as functions of the tem~erature

Te Debyo4 assumed the last three quantities to be constant, corres-
pending to a small value of 6T9 -However, these quantities may change
rapidly with the temperature and therefore, for any appreciable value
of AT, the dependence on temperature should be taken into consideration.
On the other hand, because of the similarity of the two kinds of
molecules, we shall assume that p, #A and u do not depend on their
concontrations. Finally, from the conditions of the problem, we can
take these quantities independent of Z.

12. To calculate the convection flow, we follow F. J. O. in
detonmining the tempersture distribution on the basis of the heat
conduction alone4 Except near the edges of the plate, one can write,

or, on integreting,

C , (2)

where

d 7, (3)

13. F.J.O, showed that the convection flow can be treated as
lamollar, To a sufficient aocur•cy, one can use the hydrod..mical
equation for s toady viscous flow in the form

= (4)

where V. the vc-lczity vector, is taken in the z-direction, but inde-
pendent of z, whil , , the gr-vitational accel7ration vector is taken
in the (-z)-direction a.nd of magnitude go Eq. (4) gives for- the
x.~covxponsent,
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O (p (4)

and for the z component:

'~ /, 'V -+.-go (5)

Since, in (5), all terms ether than )p depend only on x, we see that

p : B, (6)

where B is a constant, and the equation can be written by means of (1)
as

2 d dV av B +÷g (7)

This equation is to be solved subject to the boundary conditions

V(TI) = V(T 2 ) : 0 (8)

The solution of (7) can be obtained by quandritures and will depend
linearly upon the constant B. The value of this constant will depend
on the total flow of liquid- It will be seen from (7) that for given
values of B,>Tl and T2 , v(T) for a fixed value of T will vary as I/Qý or
by (1), as a-.

DIFFUSION

14. Let the two types of molecules in the liquid be referred
to by subscripts 1 and 2, s o that, for example, c, and 02 are the
relative particle concentrations, (al t -2 = 1), and let 1 represent
the species which it is desired to concentrate, 1,e., the lighter one.
The equation of diffusion can be written in the form

Ol(1 .-- ) -. D(9 1 + C7 T, (9)

where the first term on the right-hand side represents ordinary diffus-
ion, while the second term represents thermal diffusion. In the case
of ordinary diffusion, the diffusion coefficient D (often denoted by
D1 2 ) is known to be a function of the temperature-7 It will be assumed
that it is independent of the concentrations cI and 02, an assumption
which is justified by the similarity of the teo species of molecules.

15. The coefficient C of the thermal diffusion term must depend
not only on the temperaturi, but also on the concentrations. Since
there is no thermal diffusion if either species alone is present, one
can assume C to contain a factor clc2 . Let us write

SECRET -4-W



C x qclc2  (10)D

One can expect that q will depend on T and that it will be, in general,a slowly varying function of the concentrations. In particular, if thetvo species are very similar in their properties, it is reasonable tobelieve that q will be very nearly independent of cI and c * This isborne out by the fact that such is the case for thermal di fusion ingases5o * We shall therefore assume, until there is evidence to thecontrary, that q in (10) is a function only of the temperature. What
this function is we do not know at resents In the case of gases, it
has been found to be of the form ok/T, where CO•is nearly a constant, andthis is tge function used by F.J.O.1  For liquids, very rough thevreticalarguments have led to eitherA/T or */T 2 , depending on the modelassuned, It seems best, in the present state of our knowledge, toleave open the question of what the dependence of a on T is.

16. From (9) and (10) the flux density of species 1 is
given by

1--fclvl " + : c D(vcl_ qclc2vT)3 , (11)
so that we can write

)(12)

where t is the time. If we are dealing with a stationary condition,such aT that of equilibrium, or of continuous operation, the left-handmember is zero, and we have

V.J 1 : 
(13)

As pointed out by F.J.O. 1 , the condition will be essentiallystationary even during the approach to equilibrium provided the end-reservoirs are sufficiently large*

STATIONARY CONDITION

17a Substituting (11) into (13), we get

S D -DS-i t qcic 2  _ +pv• -r 2 :0, (14)
or if we replace x by T, by means of (1),

D qc ~ V 'Acl - D clJ (15)

The boundary conditions at the walls are given by

Jlx : 0 (x : o,.a), (16)

SECRET -5-



or

(17)

18, In so lying those equations, we shall not look for an ex-
rlicit solution giving the value of cI for each value of T and z;
rather we shall follow F.J.0. in seeking information about the average
value of cI across a section z.-constant, for various values of z,
since this is the quantity which is of the most direct concern to the
experimenter, and since the concentration varies but little over the
cross-section of the column.

19, Lot us thor;fore integrate eq. (15) over T frbm T1 to T2 ,
Making use of the boundary conditions (17) we obtain a result which
can be written

1 .. (18)

whore o is the upward transport of species 1, given by

Eq,-(18) states the obvious fact, that t is constant vaong the tube
for a stationary strte.

20. Let us now define a function

F jT) VJ T. (20)I'

Vec see that

F--(T,)o, (

where cV is the total transport, given by

G- bJy•T'vd (22)

Eq. (19) ca~n be written

"Z' 7T 4- '7 - ,•j T.

SEE -SECRET -6-



Integratioh by partn, with the aid of (21), givos

7- r Tc,( ()-20 -)
,T •J J ..D~J/ (

21. If one now goes back to eq. (15) and integrtntes it with
respect to T, one obtains an expression for )c,/"T * which
can then be substituted into (24)o Taking into account the boundary
conditions (17), one finds

- ~-j (Vd

ands substituting this into (24)j one obtains.

<X-C, f 7-_f
'7- 

r

4- (' " , at T Zl

22. If one neglects the small variation in ooncontration along
a section zu const., one can write this equation as

"- C, +/,, -K " -, '- 2'
7. 4:,2 -.1 27)

where H , K, r,.nd N are positive quantities definod by

7-

C 
22

.€,,

""'4JT ( 7

alo



and the concentrations are now regarded as depending only on z.

23. One can show that in practical cases the terni in (27)
involving 12./d will gcnerally be small comparod to the
other quantities present. Henace we shall discard this tern, For
convenience we shall write c in place of c , 1-c in place of c2,
and Z in place of •:, • The equation t~en becomes

-,.a - • •(.c - >.' (29)

(a) Equilibrium

In the case of equilibrium both d and Z. are zero. Eq. (29) then
become s

5 -H c(/-c) :Q. (30)

If wc let

(31)

This can be integrated to give

�--4-= + Co•- -t (32)

24. Let the value of c at the top of the column be denoted by
c , %that It tho bottom by c • It is customary to define the
separation factor by

K/

If we let Se denote the value of S at equilibrium, then it follows
from (32) that

- . . (34)

Where L is the length of the columns 1,n important feature of this
result is that the value of the equilibrium sepraration factor is
independent of the concentration at the bottom of the column.

25. It is desirable to investigate more closely the; dependence
of So on the w-mria_:blos of the system. In terms of the integrals
listed in (28), it c-n be writtdn

I-IL c(35)
,% K

SECRET ý-8



or, by use of (2),
A

Fj Pd 7

b

26. If ono looks for the value of a, denoted by an, for which
inS 0 has a mzximum value, one finds that-it satisfies the relation

d J = K A yI).-r (37)
T

The maximum value of inSe is then given by

-- "_-- (38)

This depends only on the wall temperatures T1 and T 2 The dependence
is rather complicated, however2

27. It might be pointed out that, on the basis of rough
considerations of the behavior of the various quantities in (38),
raising T2 should generally increase Seme However, this cannot be
done indefinitely, since a high value of 4T will lead to parasitic,
or local convection, resulting in mixing of the liquid and lowering
of the separation factor. It appears that the choice of optimt= wall
temperatures can best be made on the basis of experiment, rather than
theory.

28. Returning to (36),we see. that.,for fixed wall temperatures
T1 and T2 , the dependence of S0 on a can be expressed in the form

2"- S (39)

where k1 and k2 are sonstants do ending on the temperature * A similar
rolatibn was given by waldmannZ for gases.

S29.Ir plate l,the mrosses indicate experimental values of InS
for a number of values of a, as determined by Dr. Philip H. Abelson
for a particular set of crnditions. The curve represents in S. as
given by (39), ki and k2 having been chosen to fit the experimental
data. It will be seen that the agreement is good. However, the
agreement may be fortuitous to some extant for, as Dr. Abelson
pointed out, in the wxperiments what was kept constant was not the
temperature of the wall in contact with the diffusing liquid, but
rather the temperature of the heating or cooling substance in contact
with the other side of

SECRET 
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the wall. 'ihen the distance a is varied, the temperature of the
diffusing liquid at the wall 7ill vary somewhat in spite of the fact
that the heating and cooling agents are kept at fixed temperatures.

30. If we wish to have a solution for the concentration c at
equilibrium, we can obtain it in a convenient form by expandin: it in

a power series in z. Substituting into eq. (30) and equating to

zero the coefficients of each power, we get

--0 + L.,(l-cv)F + ( CA2 .24- (40)

provided we take z 0 at the bottom of the column.

31. If the solution is desired in a closed form rather than as a
power series, it can be obtained from (32). The result is

3

0(z) (-:1 - , C o 0 ..• % ' ,) " (4 0 1:,)

(b) Stationary flow

32. VCe next consider the case in which there is a steady upward
flow of liquid through the column at such a rate that the concentration
at every point remains constant wmith time, a condition which might be

referred to as "stationary". In this case eq. (29) applies, withcr--
and •- both constant,C.,-- being the mass- of liquid flowing upward per
unit time through any cross-section of the column, while J is the mass
of the desired constituent crossing any section per unit time.

These two quantities are related to each other by the equation

- cm (41)

where cm is the value of c at the point where the enriched material is

withdrawn. If one is operating a single column this will be the same

as C + , but if the column is part of a pyrmuid, cm will be the
concentration at the top of the pyramidj Let us for the present impose
no restriction on cm.

Eq. (29) can now be written

,'"cm -ci + Hc(l-c) - K dc. (42)

If we defineok, as in (31) and let

- H, (43)

the equation beccres

dc - \c(1-c)+ -V(om-c) 0 0 (44)

SECRET -10.-
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This can be solved most conveniently by means of a power series in z.
In this way one obtains as the solution

C = L00 o.(lco) ( C cmcjLU -C (l-2co +-w-)½ýS,'. ' •': J (45)

putting z = L gives us C + , and f rom this *e get the separation factor

"S 1 i+ r '•i .. 0_ + _... -j_~ ~ C. (46) :, j• . -•

33. If we are dealing with the case in which cm: c- we can
put the result into a more convenient form. At the top Orthe column,
(45) then becomes

c: o + ± co0l-co) oV(c+- coj L -(-2co-- 2.

(47)
re solve this equation for c+ we obtain

c4" co +tco(l-co)F o(L,' L (l-2co-)- L3 V)02 L (48)

and from this we find

S = 1 +,A L +ý- -L (- 1. -... (49)

34. It will be seen by a comparison of (49) with (34) that when
liquid is withdrawn continuously from the top of the column the
separation factor is less than that at equilibrium; the differende
will be very small however if Se is nearly equal to unity (_L small).

APPROACH TO .QUILIBRM..

35. If one is interested in following the process by which the
column goes from its initial state to the condition of equilibrium,
one must replace eq. (29) by the more general equation involving
the time. This equation can be obtained from eq. (12) in much the same
way as (29) was obtained from (13). Such an equation was derived by

Bardeen. 7 If we again omit terms which are small in practical cases,
the equation can be written in the form

-(5-

If we define C4has in (31) and let

1- - 1 -, k 1. " " •J1 (51)

this be comes

(.s / 5- (52)
SECRET 6'-1 -



36. To solve this equation, we look for a solution which is a
power wries in z, with coefficients which are functions of to

Let us set
2 2ý/•2(t' +-.

c (t) + lti:c- _U0 (53)

Substituting this into (52) and equating coefficients of corresponding
powers of z on both sides of the equation, we obtain a series of relat-

ions -

V - > (54)

/ •& / ' ~ . ,. \ Y
primed'enotes differentiation with reg-pect o me. It will

be seen that two of the functions, o and • 1 can be taken

arbitrarily. The others will then te determnined by the equations in

terms of these two. One finds, for example,

Th upwa, rd ...... .. iJ (55)

The upward transport-::, given by

(56)

is found to be

37. The functions~o and Yi will be chosen in any pcrticular
problem so as to satisfy the initial conditions and the boundary
conditions at the top and bottom of the column.

38. This method of solution is much simpler than the usual method

involving a Fourier series, and it should work satisfactorily for the

cases encountered in practice. An example of its application-will
next be given.

(a) Fixod concentration at bottcm of coluii.

39. 1.ýe Consider the case of a column of the type previously

discussed which is operated by having its lowrer end connected to a

large reservoir or to a stripper column so that the initial- concen-
tration is maintained there at all times. He have then, by taking
z = 9,

(58)

SECRET -12-



whence it follows from (54) that

"4- - 17

40. In this case, eq. (57) -ives or

At the top of th olum (- =- L)
At the tep of the column (z : L) w:e ha

"I

!

(59)

ve

(61)

or, since

M k =' i-' i ' 6

we can vwrite

. T - c./,-,! )-YV-YL .., L )

(62)

(63)

I �

41. On the other hand, at the top of the column, we have the
rate of change of concentrationrelated to the transport,

:- d (64)

where I is the mass of the liquid in the reservoir, while c+ is
given

-- : . - ... -(65 )

Substituting (65) and (63) into (64) we get an equation for Y

Neglecting higher order terms, one integrates this to get

(F L/#� (67)

where the relaxation time 9 is given by

(68)
SE C ,

SECRET -3
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to the approximation 
considered*

42. The solution for the concentration can be written

jfe (69)

From this one finds for the separation factor

-iý

c! c- C , ) (70

SECRET -14-
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