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Abstract. In this paper, we concentrate on synthesis of real-time programs modeled by Alur
and Dill timed automata for automatic addition of different types of time-bounded liveness
properties. Time-bounded liveness (also called time-bounded response) – that something
good will happen soon, in a certain amount of time – captures a wide range of requirements
for specifying real-time and embedded systems. We show that the problem of automatic ad-
dition of a time-bounded liveness property to a given timed automaton while maintaining
maximal nondeterminism is NP-hard in the size of locations of the input automaton. Fur-
thermore, we show that by relaxing the maximality requirement we can devise a sound and
complete algorithm that adds a time-bounded liveness property to a given timed automaton,
while preserving its existing MTL specification. This synthesis method is useful in adding
properties that are later discovered as a crucial part of a program. Moreover, we show that
addition of interval time-bounded liveness, where the good thing should not happen sooner
than a certain amount of time, is also NP-hard in the size of locations even without maximal
nondeterminism. Finally, we show that adding time-bounded and interval time-bounded as
well as unbounded liveness properties are all PSPACE-complete in the size of the input timed
automaton.

Keywords: Program transformation, Program synthesis, Timed automata, Real-time,
Bounded liveness, Bounded response, Formal methods.

1 Introduction
Automated program synthesis is the problem of designing an algorithmic method to find a pro-
gram that satisfies a required behavior. Such automated synthesis is desirable, as it ensures that the
synthesized program is correct by construction. The synthesis problem has mainly been studied
in two contexts: synthesizing programs from specification, where the entire specification is given,
and synthesizing programs from existing programs along with a fully or partially available new
specification. In approaches where the entire specification must be available, changes in specifi-
cation, e.g., addition of a new property, requires us to begin from scratch. By contrast, in the latter
approach, it is possible to reuse an existing program (and, hence, the previous efforts made for
synthesizing the existing program). Since it may not be possible to anticipate all the necessary
required properties at design time, this approach is especially useful in program maintenance,
where the program needs to be modified to add a new property of interest.

In order to add a new property of interest to a program there are two ways: (1) comprehensive
redesign, where the designer introduces new behaviors (e.g., by introducing new variables, or
adding new computation paths), or (2) local redesign, where the designer removes behaviors that
violate the property of interest, but does not add any new behaviors. While the former requires the

1 This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901,
ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant from Michigan State University.
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designer to verify all other properties of the new program, the latter ensures that certain existing
properties (e.g., LTL and MTL) are preserved. Local redesign is especially applicable when the
original program is designed manually, e.g., for ensuring that the original program is efficient.
Moreover, with this approach, existing computations are preserved and, hence, it has the potential
to preserve the efficiency of the original program.

Depending upon the choice of formulation of the problem and expressiveness of specifica-
tions and programs, the class of complexity of synthesis methods varies from polynomial time
to undecidability. In this paper, we focus on complexity issues in synthesis methods that add
properties typically used for specifying timing constraints in real-time programs using local re-
design. Precisely, we identify the cases where the complexity of such addition is manageable.
More specifically, we study the problem of incremental addition of time-bounded liveness prop-
erties (also called time-bounded response) – that something good will happen soon, in a certain
amount of time – to Alur and Dill timed automata [1], while preserving their existing Metric Tem-
poral Logic (MTL) specification [2]. This method will be especially desirable when an existing
system is to be modified so that it meets new timing constraints (respectively, stronger timing
constraints).

1.1 Related Work
In the context of untimed systems, in the pioneering work [3, 4], the authors propose methods
for synthesizing the synchronization skeleton of programs from their temporal logic specifica-
tion. More recently, in [5–7], the authors investigate algorithmic methods to locally redesign
fault-tolerant programs using their existing fault-intolerant version and a partially available spec-
ification. In [8], the authors introduce a synthesis algorithm that adds UNITY properties [9] such
as leads-to (which is an unbounded liveness property) to untimed programs.

Synthesis of real-time programs has mostly been formulated in the context of timed controller
synthesis from game theoretical perspective. In the early works [10–12], the authors investigate
the problem, where the given program (also called plant) is given by a deterministic timed au-
tomaton and the specification is modelled as a deterministic internal winning condition on the
state space of the plant. The authors also assume that the controller can use unlimited resources
(i.e., the number of new clocks and guards that compare the clocks to constants). Similarly, in [13],
the authors solve the reachability problem in timed games. Deciding the existence of a winning
condition with the formulation presented in [10–13] is shown to be EXPTIME-complete in [14].

In [15, 16], the authors address the problem of synthesizing timed controllers with limited
resources. Similar to the aforementioned work, the plant is modelled by a deterministic timed
automaton, but the specification is given by an external nondeterministic timed automaton that de-
scribes undesired behavior of the plant. With this formulation, the synthesis problem is 2EXPTIME-
complete. However, if the given specification remains nondeterministic, but it describes desired
behavior of the plant the problem turns out to be undecidable.

In [17], the authors propose a synthesis method for timed games, where the game is modelled
as a timed automaton, the winning condition is described by TCTL-formulae, and unlimited re-
sources are available. In [18], the authors consider concurrent two-person games given by a timed
automaton played in real-time and provide symbolic algorithms for solving them with respect to
all ω-regular winning conditions. In both approaches, deciding the existence of a winning strategy
is EXPTIME-complete.

1.2 Contributions
The point of departure of our work from the above related work is as follows. In our work, we
(i) consider the case where the entire specification of the program is not given to the synthesis
algorithm; and (ii) model the notion of program by nondeterministic timed automata. In fact, we
study how the level of nondeterminism affects the complexity of synthesis methods. High level of
nondeterminism increases the potential of success in later manipulations such as adding another
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time-bounded liveness property to the transformed program. Furthermore, unlike the related work,
we model specifications in MTL. Moreover, the aim of our study is to identify the class of com-
plexity of automated addition of different types of time-bounded liveness properties and possibly
devising algorithms that can be used in tools for synthesizing real-time programs.

The main results in this paper are as follows:

– We show that adding a time-bounded liveness property while maintaining maximal nondeter-
minism is NP-hard in the size of locations of the given timed automaton.

– Based on the above result and the NP-hardness of adding two time-bounded liveness prop-
erties without maximal nondeterminism 2, we focus on addition of a single time-bounded
liveness property to a time automaton without maximal nondeterminism. In fact, we present
a surprising result that by dropping the maximality requirement we can devise a simple sound
and complete transformation algorithm that adds a time-bounded liveness property to a timed
automaton. The algorithm also ensures that the input timed automaton continues to satisfy its
existing MTL properties. Since our algorithm is complete, if it fails to synthesize a program
then it informs the designer a more comprehensive (and expensive) approach must be used.
Moreover, since the complexity of our algorithm is comparable with that of model checking,
the algorithm has the potential to provide timely insight to the designer about how the given
program needs to be modified to meet the required time-bounded liveness property. Thus, in
this paper, we extend the results presented in [8] to the context of real-time programs.

– We show that adding interval time-bounded liveness, where the good thing should not happen
sooner than a certain amount of time, is also NP-hard in the size locations of the given timed
automaton even without maximal nondeterminism.

– We show that the problems of adding time-bounded and interval time-bounded as well as
unbounded liveness (also called leads-to) properties are all PSPACE-complete in the size of
the input timed automaton.

Table 1 compares the complexity of our approach and other synthesis methods in the literature.

Adding Bounded Liveness Direct Synthesis from MTL Timed control synthesis Timed games
(This paper) [19] [15, 16] [10, 12, 13, 17, 18]

PSPACE-complete EXPSPACE-complete 2EXPTIME-complete EXPTIME-complete

Table 1. Complexity of different approaches for synthesizing real-time systems.

Organization of the paper. In Section 2, we present the preliminary concepts. In Section 3, we
formally state the problem of addition of an MTL property to an existing real-time program. We
describe the NP-hardness result for adding time-bounded liveness with maximal nondeterminism
in Section 4. Then, in Section 5, we present a sound and complete algorithm for adding time-
bounded liveness to timed automata without maximal nondeterminism. In Section 6, we present
the complexity of addition of interval time-bounded liveness and unbounded liveness properties.
In Section 7, we answer the potential questions raised about our approach. Finally, we make the
concluding remarks and discuss future work in Section 8.

2 Preliminaries
In this section, we present the preliminary concepts and formal definitions of real-time programs
and specifications. Real-time programs are modeled by Alur and Dill timed automata [1]. Speci-
fications are modeled by Metric Temporal Logic (MTL) [2].

2 In [8], it is shown that adding two unbounded liveness properties to an untimed program is NP-hard. The
same proof can be easily extended to the problem of adding two time-bounded liveness properties to a
timed automaton.
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LetAP be a set of atomic propositions. A state is a subset ofAP . A timed state sequence is an
infinite sequence of pairs (σ, τ) = (σ0, τ0), (σ1, τ1)..., where σi (i ∈ N) is a state and τi ∈ R≥0

satisfies the following constraints:

1. Initialization: τ0 = 0.
2. Monotonicity: τi ≤ τi+1 for all i ∈ N.
3. Progress: For all t ∈ R≥0, there exists j such that τj ≥ t.

2.1 Metric Temporal Logic
We briefly recap the syntax and semantics of point-based MTL. Linear Temporal Logic (LTL)
specifies the qualitative part of a program. MTL introduces real time by constraining temporal
operators, so that one can specify the quantitative part as well. For instance, the constrained even-
tually operator ♦[1,3] is interpreted as “eventually within 1 to 3 time units both inclusive”.
Syntax. Formulae of MTL are inductively defined by the grammar: φ ::= p | ¬φ | φ1 ∧
φ2 | φ1UIφ2, where p ∈ AP and I ⊆ R≥0 is an open, closed, half-open, bounded, or un-
bounded interval with endpoints in Z≥0. For simplicity, we use ♦Iφ and �Iφ instead of trueUIφ
and ¬♦I¬φ. We also use pseudo-arithmetic expressions to denote intervals. For instance, “≤ 4”
means [0, 4].
Semantics. For an MTL formula φ and a timed state sequence (σ, τ) = (σ0, τ0), (σ1, τ1)..., the
satisfaction relation (σi, τi) |= φ is defined inductively as follows:

(σi, τi) |= p iff σi |= p (σi |= p iff p ∈ σi and we say σi is a p-state);
(σi, τi) |= ¬φ iff (σi, τi) 6|= φ;
(σi, τi) |= φ1 ∧ φ2 iff (σi, τi) |= φ1 ∧ (σi, τi) |= φ2

(σi, τi) |= φ1UIφ2 iff there exists j > i such that τj − τi ∈ I and (σi′ , τi′) |= φ1 for all i′,
where i ≤ i′ < j, and (σj , τj) |= φ2

A timed state sequence (σ, τ) satisfies the formula φ if (σ0, τ0) |= φ.
The formula φ defines a set Σ of timed state sequences that satisfy φ. We call this set a

specification (or property). In this paper, we focus on a standard class of properties of real-time
programs defined as follows. An interval time-bounded liveness (or interval time-bounded re-
sponse) property is of the form LI ≡ �(p → ♦[δ1,δ2]q), where p, q ∈ AP and δ1, δ2 ∈ Z≥0;
i.e., it is always the case that a p-state is followed by a q-state within δ2, but not sooner than δ1
time units. A special case of LI is in which δ1 = 0 known as time-bounded liveness property
and is of the form LB ≡ �(p → ♦≤δq); i.e., it is always the case that a p-state is followed by a
q-state within δ time units. Furthermore, an unbounded liveness (or leads-to) property is defined
as L∞ ≡ �(p → ♦[0,∞)q); i.e, it is always the case that a p-state is eventually followed by a
q-state.

2.2 Timed Automata
For a set of clock variables X , the set Φ(X) of clock constraints ϕ is inductively defined by the
grammar:

ϕ ::= x ≤ c | x ≥ c | x < c | x > c | ϕ ∧ ϕ

where x ∈ X and c ∈ Z≥0. A clock valuation is a function ν : X → R≥0 that assigns a real value
to each clock variable. Furthermore, for τ ∈ R≥0, ν + τ = ν(x) + τ for every clock x. Also, for
Y ⊆ X , ν[Y := 0] denotes the clock valuation for X which assigns 0 to each x ∈ Y and agrees
with ν over the rest of the clock variables in X .
Definition 2.1. A timed automaton A is a tuple 〈L,L0, ψ,X,E〉, where

– L is a finite set of locations,
– L0 ⊆ L is a set of initial locations,
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– ψ : L → 2AP is a labeling function assigning to each location the set of atomic propositions
true in that location,

– X is a finite set of clocks, and
– E ⊆ (L×2X×Φ(X)×L) is a set of switches. A switch 〈s0, λ, ϕ, s1〉 represents a transition

from location s0 to location s1 under clock constraint ϕ over X , such that it specifies when
the switch is enabled. The set λ ⊆ X gives the clocks to be reset with this switch. ut

The semantics of a timed automaton is as follows. A state of a timed automaton is a pair (s, ν),
such that s is a location and ν is a clock valuation for X at location s. The labeling function for
states is defined by ψ′((s, ν)) = ψ(s). Thus, if p ∈ ψ(s), s is a p-location (i.e., s |= p) and
(s, ν) is a p-state for all ν. Since the domain of clock variables ranges over the real numbers, the
state space of A is infinite. An initial state of A is (sinit, νinit) where sinit ∈ L0 and νinit maps
the value of all clocks in X to 0. Transitions of A are of the form (s0, ν0) → (s1, ν1). They are
classified into two types:

– Delay (elapse of time): for a state (s, ν) and a time increment τ ∈ R≥0, (s, ν)
τ
−→ (s, ν+ τ).

– Location switch: for a state (s0, ν) and a switch (s0, λ, ϕ, s1) such that ν satisfies the clock
constraint ϕ, (s0, ν) → (s1, ν[λ := 0]).

We use the well-known railroad crossing problem from the literature as a running demonstra-
tion throughout the paper. The original problem comprised of three timed automata, but we only
consider the TRAIN automaton (cf. Figure 1-a). The TRAIN automaton models the behavior of
a train approaching a railroad crossing. Initially, the train is far from the gateway of the crossing.
It announces approaching the gateway by resetting the clock variable x. The train is required to
start crossing the gateway after at least 2 minutes. It passes the gateway at least 3 minutes after
approaching the gateway. Finally, there is no constraint on reaching the initial location.

We now define what it means for a timed automaton A to satisfy an MTL specification
Σ. An infinite sequence (s0, ν0, τ0), (s1, ν1, τ1)..., where τi ∈ R≥0, is a computation of A iff
∀j > 0 : (sj−1, νj−1) → (sj , νj) is a transition of A and the sequence τ0τ1... satisfies initial-
ization, monotonicity, and progress. We write A |= Σ and say that timed automaton A satis-
fies specification Σ iff every computation of A that starts from an initial location is in Σ. Thus,
A |= (�(p → ♦≤δq)) iff any computation of A that reaches a p-state, reaches a q-state within δ
time units. If A 6|= Σ, we say A violates Σ.
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Fig. 1. (a) TRAIN automaton. (b) Region automaton of TRAIN automaton.
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2.3 Region Automata
Given a timed automaton A〈L,L0, ψ,X,E〉, to check whether a location s1 is reachable from
another location s0, we must determine if there is a computation that starts from s0 and reaches
s1 in the infinite state space. The solution to this reachability problem involves construction of
a finite quotient proposed in [1]. This construction uses an equivalence relation, called region
equivalence (denoted ∼=), on the state space that equates two states with the same location, is
defined over the set of all clock valuations for X . For two clock valuations ν and µ, ν ∼= µ iff:

1. ∀x ∈ X : ((bν(x)c = bµ(x)c) ∨ (ν(x), µ(x) > cx)).
2. ∀x, y ∈ X : ((ν(x) < cx ∧ ν(y) < cy)) : (〈ν(x)〉 < 〈ν(y)〉 iff 〈µ(x)〉 < 〈µ(y)〉).
3. ∀x ∈ X : ν(x) < cx : (〈ν(x)〉 = 0 iff 〈µ(x)〉 = 0).

where cx is the largest integer c, such that x is compared with c in some clock constraint in A, 〈τ〉
denotes the fractional part, and bτc denotes the integral part of τ and for any τ ∈ R≥0. A clock
region for A is an equivalence class of clock valuations induced by ∼=. Note that, there are only
finite number of regions. Also, region equivalence is a time-abstract bisimulation [1].

A region is a pair (s, ρ), where s is a location and ρ is a clock region. If s is a p-location, we say
that (s, ρ) is a p-region. Using the region equivalence relation, we construct the region automaton
of A (denoted R(A)) as follows. Vertices of R(A) are regions. Edges of R(A) are of the form
(s0, ρ0) → (s1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is
a transitions of A. We note that, the size of a region automaton is in polynomial (respectively,
exponential) order of its corresponding timed automaton, space-wise (respectively, time-wise).
Figure 1-b shows the region automaton of the TRAIN automaton.

We say a region (s0, ρ0) of region automaton R(A) is a deadlock region iff for all regions
(s1, ρ1), there does not exist an edge of the form (s0, ρ0) → (s1, ρ1).

A clock region β is a time-successor of a clock region α iff for each ν ∈ α, there exists
τ ∈ R≥0, such that ν + τ ∈ β, and ν + τ ′ ∈ α ∪ β for all τ ′ < τ . We call a region (s, ρ)
a boundary region, if for each ν ∈ ρ and for any τ ∈ R≥0, ν and ν + τ are not equivalent. A
region is open, if it is not a boundary region. A region (s, ρ) is called end region, if ν(x) > cx
for all clocks x. For instance, in Figure 1-b, (APPROACHING , x = 2) is a boundary region,
(CROSSING, 3 < x < 4) is an open region, and (PASSED , x > 4) is an end region.

3 Problem Statement
Given are a timed automaton A〈L,L0, ψ,X,E〉 and an MTL property L (either LI ,LB , or L∞).
Our goal is to find a timed automaton A′〈L′, L′0, ψ′, X ′, E′〉, such that A′ |= L and for any MTL
specification Σ, if A |= Σ then A′ |= Σ.

We now explain how we formulate the problem. Since we require that A′ |= Σ, if L′ contains
locations that are not in L, then A′ may include computations that are not in Σ and as a result, A′

may violate Σ. Hence, we require that L′ ⊆ L and L′0 ⊆ L0. Moreover, if E′ contains switches
that are present in E, but are guarded by weaker timing constraints, or E ′ contains switches that
are not present in E at all then A′ may include computations that are not in Σ. Hence, we require
that E′ contains a switch 〈s0, λ, ϕ

′, s1〉, if there exists 〈s0, λ, ϕ, s1〉 in E, such that ϕ′ is stronger
than ϕ. Furthermore, extending the state space of A by introducing new clock variables under the
above circumstances is legitimate. Finally, we requireψ′ to be equivalent to ψ. Thus, the synthesis
problem is as follows:
Problem Statement 3.1. Given A〈L,L0, ψ,X,E〉 and an MTL property L, identify
A′〈L′, L′0, ψ′, X ′, E′〉 such that

(C1) L′ ⊆ L, L′0 ⊆ L0

(C2) ψ′ = ψ
(C3) X ⊆ X ′
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(C4) ∀〈s0, λ, ϕ
′, s1〉 | 〈s0, λ, ϕ

′, s1〉 ∈ E′ :
(∃ 〈s0, λ, ϕ, s1〉 | 〈s0, λ, ϕ, s1〉 ∈ E : (ϕ′ ⇒ ϕ))

(C5) A′ |= L
(C6) For any MTL specification Σ: ((A |= Σ) ⇒ (A′ |= Σ)) �

Note that, based on Problem Statement 3.1, since we allow synthesis methods to remove states
and transitions of a timed automaton, such methods are appropriate to analyze linear types of
temporal logic such as MTL. In fact, constraints of Problem Statement 3.1 do not suffice to reason
about existential properties of a program expressed in branching-time temporal logics such as
TCTL. We will discuss this issue in Section 7 (cf. second question) in detail.
Remark 3.2. The results in this paper can be easily extended to the case where all initial lo-
cations are preserved in the synthesized automaton. We discuss this issue in detail in proofs of
theorems 5.1 and 5.2, and in Remark 5.3.

4 Adding Time-Bounded Liveness Properties with Maximal
Nondeterminism

In this section, we show that the synthesis problem in Problem Statement 3.1 for adding a time-
bounded liveness property while maintaining maximal nondeterminism is NP-hard in the size
of locations of the input timed automaton. We show this result by a reduction from the Vertex
Splitting Problem [20] in directed acyclic graphs (DAG).

Given a timed automaton A and property LB ≡ �(p → ♦≤δq), we say that the synthesized
timed automaton A′ is maximally nondeterministic iff A′ meets all the constraints of Problem
Statement 3.1 and its set of transitions is maximal. Maintaining maximal nondeterminism is de-
sirable in the sense that it increases the potential for further successful manipulations of a syn-
thesized program. Note that, although we defined maximality in terms of transitions of a timed
automaton, one may define it in terms of reachable locations or behaviors of a timed automaton.
We discuss this issue in Section 7 in detail.
The DAG Vertex Splitting Problem (DVSP). Let G〈V,A〉 be a weighted DAG and vs, vt be
arbitrary source and target vertices in G. Let G/Y denote the DAG when each vertex v ∈ Y is
split into vertices vin and vout such that all arcs (v, u) ∈ A, where u ∈ V , are replaced by arcs
of the form (vout, u) and all arcs (w, v) ∈ A, where w ∈ V , are replaced by arcs of the form
(w, vin). In other words, the outgoing arcs of v now leave vertex vout while the incoming arcs
of v now enter vin, and there is no arc between vin and vout. The DAG vertex splitting problem
is to find a vertex set Y , where Y ⊆ V and |Y | ≤ i (for some positive integer i), such that the
length of the longest path of G/Y from vs to vt is bounded by a prespecified value d. In [20], the
authors show that DVSP is NP-hard.

We now show that the problem of adding of a time-bounded liveness property while main-
taining maximal nondeterminism is NP-hard.
Instance. A timed automaton A〈L,L0, ψ,X,E〉, a time-bounded liveness property LB ≡
�(p→ ♦≤δq), and a positive integer k, where |E| ≥ k.
Maximally Nondeterministic Time-bounded Liveness Addition Problem (MNTLAP). Does
there exist a timed automaton A′〈L′, L′0, ψ′, X ′, E′〉, such that |E′| ≥ k and A′ meets the con-
straints of Problem Statement 3.1?
Theorem 4.1: MNTLAP is NP-hard in the size of locations of the input timed automaton.
Proof. We reduce DVSP to MNTLAP. The reduction maps a weighted DAG G〈V,A〉 and inte-
gers d and i to a timed automaton A and integers δ and k, respectively.
Mapping. Let G〈V,A〉 be any instance of DVSP whose longest path is to be bounded by d. Let
l(a) be the length of arc a ∈ A. We construct a timed automaton A as follows (cf. Figure 2). Each
vertex v ∈ V is mapped to a pair of locations vin and vout in A. The set of initial locations of
A is the singleton L0 = {vins }, where vs is the source vertex in G. Switches of A consist of two
types of switches as follows:
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Fig. 2. Mapping DVSP to MNTLAP.

– We include switches of the form vin
(x=0)?
−−−−→ vout for all v in V . The clock constraint (x = 0)

is used to force computations of A not to wait at location vin.

– We add 2|V | number of parallel switches of the form vout
(x=l(a))?, x:=0
−−−−−−−−−−→ uin, for all arcs

a = (v, u) ∈ A of length l(a).

Let the set of clock variables of A be the singleton X = {x}. Finally, let vins |= p, voutt |= q,
k = i, and δ = d. Other locations may satisfy arbitrary atomic propositions except p and q.
Reduction. We need to show that vertex v ∈ Y in G must be split if and only if the switch

vin
(x=0)?
−−−−→ vout must be removed from A. We distinguish two cases:

– DVSP −→ MNTLAP: Suppose the answer to DVSP is the set Y , where |Y | ≤ i. Hence, by
splitting all v ∈ Y the length of the longest path ofG is at most d. Now, we show that we can
synthesize a timed automaton A′ from the mapped timed automaton A〈L, {vins }, ψ, {x}, E〉

as an answer to MNTLAP. It is easy to see that if we remove switches of the form vin
(x=0)?
−−−−→

vout (for all v ∈ Y ) fromE to obtainE ′, the maximum delay between locations vins and voutt

in A′ becomes at most δ. Recall that, δ = d and i = k. Therefore, A′ |= LB and |E′| ≥ k.
Other constraints of Problem Statement 3.1 are immediately met by construction of A′.

– MNTLAP −→ DVSP: Suppose the answer to MNTLAP is A′〈L′, L′0, ψ′, {x}, E′〉, where
|E′| ≥ k and the maximum delay to reach voutt from vins is at most δ. Note that, L′0 =
{vins }, as vins is the only initial location of A. Since the number of switches removed from
E is at most k and k is at most |V |, we could not have removed switches of the form

vout
(x=l(a))?, x:=0
−−−−−−−−−−→ uin. This is because there are 2|V | of such switches and their removal

would not change the maximum delay. Hence, we should have removed switches of the form

vin
(x=0)?
−−−−→ vout from E to bound the maximum delay. These switches actually identify the

set Y of vertices that should be split inG; i.e, Y = {v | (v ∈ V ) ∧ 〈vin, vout〉 ∈ (E−E′)}. It
is easy to see that by removing the set Y from V the length of the longest path of G becomes
at most d. ut

5 Adding Time-Bounded Liveness Properties without Maximal
Nondeterminism

In this section, we show that by relaxing the maximality constraint, we can solve the problem de-
fined in Problem Statement 3.1 in polynomial time in the size of locations of the input timed au-
tomaton. More specifically, we present a sound and complete algorithm that adds a time-bounded
liveness property to a given timed automaton, while preserving its existing MTL specification.
Since our synthesis algorithm constructs and manipulates a specific weighted directed graph in-
troduced by Courcoubetis and Yannakakis as a solution to the maximum delay problem in timed
automata [21], we review this problem in Subsection 5.1. In Subsection 5.2, we describe our
synthesis algorithm.

5.1 The Maximum Delay Problem in Timed Automata
The maximum delay problem is as follows. Given a timed automaton A, a source location and
clock valuation, what is the latest time that a target location can appear along a computation of



Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 9

A? For our purpose, we extend the proposed solution in [21] to the case where a set of source and
target locations are given.

The algorithm in [21] works as follows. First, we construct the region automatonR(A)〈S, T 〉,
where S is the set of regions and T is the set of edges. Then, we transform the region automaton to
an ordinary weighted directed graph (called MaxDelay digraph). Let the subroutine Construct-
MaxDelayGraph do this transformation as follows.
Construction of MaxDelay digraph. The subroutine ConstructMaxDelayGraph takes a re-
gion automaton R(A)〈S, T 〉, a set X of source regions, and a set Y of target regions, where
X,Y ⊆ S, as input, and constructs a MaxDelay digraph G〈V,A〉. Vertices of G consist of the
regions in R(A) with the addition of a source vertex vs and a target vertex vt.
Notation: We denote the weight of an arc (v0, v1) by Weight(v0, v1). Let f denote a function
that maps each region in R(A) to its corresponding vertex in G; i.e., f(r) is a vertex of G that
represents region r in R(A). Also, let f−1 denote the inverse of f ; i.e., f−1(v) is the region of
R(A) that corresponds to vertex v in G. Likewise, let F be a function that maps a set of regions
in R(A) to the corresponding set of vertices in G and F−1 be its inverse. Finally, for a boundary
region r with respect to clock variable x, we denote the value of x by r.x (equal to some constant
in Z≥0).

Arcs of G consist of the following:

– Arcs of weight 0 from vs to all vertices in F (X), and from all vertices in F (Y ) to vt.
– Arcs of weight 0 from v0 to v1, if f−1(v0) → f−1(v1) is a location switch in R(A).
– Arcs of weight c′ − c, where c, c′ ∈ Z≥0 and c′ > c, from v0 to v1, if f−1(v0) and f−1(v1)

are both boundary regions with respect to clock variable xi, such that f−1(v0).xi = c,
f−1(v1).xi = c′, and there is a path in R(A) from f−1(v0) to f−1(v1), which does not
reset xi. It suffices to only consider the case where c′ − c = 1.

– Arcs of weight c′ − c − ε, where c, c′ ∈ Z≥0, c′ > c, and ε � 1, from v0 to v1 , if (1)
f−1(v0) is a boundary region with respect to clock variable xi, (2) f−1(v1) is an open region
whose time-successor f−1(v2) is a boundary region with respect to clock variable xi, (3)
f−1(v0) → f−1(v1) represents a delay transition in R(A), and (4) f−1(v0).xi = c and
f−1(v2).xi = c′. Again, it suffices to only consider the case where c′ − c = 1.

– Self-loop arcs of weight ∞ at vertex v, if f−1(v) is an end region.

In order to compute the maximum delay between X and Y , it suffices to find the longest
distance between vs and vt in G. Note that, strongly connected components reachable from vs
containing an arc of nonzero weight cause maximum delay of infinity. As an example, Figure 3
shows the MaxDelay digraph the TRAIN automaton. The dotted arcs are a specific type of arcs
and will be discussed in Subsection 5.2.
5.2 The Synthesis Algorithm
In this subsection, we present a sound and complete algorithm, Add BoundedLiveness (cf.
Figure 4), for solving the synthesis problem presented in Problem Statement 3.1 with respect to
LB ≡ �(p → ♦≤δq). The core of the algorithm is straightforward. It begins with an empty
digraph. Then, it invokes the subroutine ConstructSubgraph, which builds up a subgraph of the
MaxDelay digraph by adding paths of length at most δ that start from the set of vertices that
represents p-regions in G to the set of vertices that represents q-regions. Finally, it adds the rest
of vertices and arcs while ensuring that no new paths from p-regions to q-regions are introduced.
In order to ensure completeness, the algorithm preserves p-regions.

We now describe the algorithm in detail. First, in order to keep track of time whenever p
becomes true, we add an extra clock variable t to A as a timer. Moreover, the maximum value
that t would be compared with is δ (lines 1-3). Note that, since the length of a path in MaxDelay
digraph is equal to the time elapsed along regions, our algorithm works correctly even if t is reset
in between a p-state and a q-state (e.g., a computation that goes from a p-state to a (¬p)-state, then
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Fig. 3. MaxDelay digraph of TRAIN automaton.

again to a p-state, and finally to a q-state). Next, we construct the region automaton R(A)〈S, T 〉,
where S is the set of regions and T is the set of edges (Line 4).
Notation: Since a location s ∈ L may appear in a set of regions, in order to determine the source
and target regions for computing maximum delay, we need to identify those regions where p and
q become true. The function g : AP → 2S calculates a set of such regions for an arbitrary atomic
proposition ap as follows:

g(ap) = {(s1, ρ1) | (s1 |= ap) ∧
(∃ (s0, ρ0) | (((s0, ρ0), (s1, ρ1)) ∈ T ) : (s0 6|= ap))}

We now reduce our problem to the problem of bounding the length of longest path in ordinary
weighted digraphs. Towards this end, we first generate the MaxDelay digraph G〈V,A〉 (Line 6),
as described in Subsection 5.1. Then, we invoke the subroutine ConstructSubgraph (Line 7),
where we construct a subgraph of G, which meets the required response time.

The subroutine ConstructSubgraph (lines 20-32) takes a MaxDelay digraph G and two
integers δ and n as input. It generates a subgraphG′ whose longest path from vs to vt is bounded
by δ. Recall that vs and vt are additional source and target vertices connected to F (g(p)) and
F (g(q)), respectively. Since enumerating all paths from vs to vt to test their lengths costs an
exponential exhaustive search, we begin with an empty digraph and add a certain number of paths
in polynomial order of |S|. To this end, first, we include the shortest path from each vertex in
F (g(p)) to vt, provided its length is at most δ (lines 21-24). In case there exists a vertex v in
F (g(p)) from where there does not exist such a path to vt, f−1(v) becomes a deadlock region.

In order to increase the level of nondeterminism, we now include additional n shortest paths
whose length is at most δ. However, every time we add a path, we need to test that this path does
not create new paths of length greater than δ or cycles containing an edge of nonzero weight (lines
25-29). One can interpret the integer n, as a level of nondeterminism; i.e., the more paths we add,
the more nondeterminism we gain in the synthesized timed automaton. Next, we can safely add
the rest of the vertices and arcs to G′ (lines 30-32) while ensuring that no new paths are added
from vs to vt.

After invoking ConstructSubgraph, we transform G′ back to a region automaton R(A′)
(lines 8-10). Next, due to pruning some vertices and arcs in ConstructSubgraph, we remove
deadlock regions from R(A′) using a backward reachability analysis (lines 11, 12). However, in
order to ensure that this removal does not break the completeness of our algorithm, we should
consider the case where a q-region r0 becomes a deadlock region. In this case, it is possible that
all the regions along a path that starts from a region in g(p) and ends at r0 become deadlock
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Add BoundedLiveness(A〈L,L0, ψ,X,E〉 : timed automata, n : integer, LB ≡ �(p → ♦≤δq))
{

X = X ∪ {t}; (1)
ct := δ; (2)
∀〈s0, λ, ϕ, s1〉 | (〈s0, λ, ϕ, s1〉 ∈ E ∧ (s0 6|= p ∧ s1 |= p)) : λ := λ ∪ {t}; (3)
R(A)〈S, T 〉 := ConstructRegionAutomaton(A); (4)
Repeat

IsQRemoved := false; (5)
G〈V,A〉 := ConstructMaxDelayGraph(R(A), g(p), g(q)); \\ Defined in Subsection 5.1 (6)
G′〈V ′, A′〉 := ConstructSubgraph(G, δ, n); (7)

R(A′)〈S′, T ′〉 := {}; (8)
S′ := F−1(V ′); (9)
T ′ := {(r0, r1) | (r0, r1) ∈ T ∧ (f(r0), f(r1)) ∈ A′} ∪

{(r1, r2) | (r1, r2) ∈ T ∧ (f(r1), f(r2)) /∈ A′ ∧
∃r0 : Weight(f(r0), f(r1)) = 1 − ε}; (10)

while (∃r0 | r0 ∈ S′ : (∀r1 | r1 ∈ S′ : (r0, r1) /∈ T ′)) (11)
S′ := S′ − {r0}; T ′ := T ′ − {(r, r0), (r0, r) | r ∈ S′}; (12)
if r0 ∈ g(q) then (13)

IsQRemoved := true; (14)
S := S − {r0}; T := T − {(r, r0), (r0, r) | r ∈ S}; break; (15)

until (IsQRemoved = false);

if {(s, ρ) | (s, ρ) ∈ S′ ∧ s ∈ L0 ∧ (∀x, ν | (ν ∈ ρ ∧ x ∈ X) : ν(x) = 0)} = {} then (16)
declare failure; exit; (17)

A′ := ConstructTimedAutomata(R(A′)); (18)
return A′ ; (19)

}
ConstructSubgraph(G〈V,A〉 : MaxDelay digraph, δ, n : integer)
{

G′〈V ′, A′〉 = {}; (20)
for all vertices v such that (vs, v) ∈ A (21)

if the length the shortest path P from v to vt is at most δ then (22)
V ′ := V ′ ∪ {u | u is on P}; (23)
A′ := A′ ∪ {a | a is on P}; (24)

for k = 1 to n (25)
if adding the kth shortest path does not create other paths of length
greater than δ or cycles containing an edge of nonzero weight then (26)

P := the kth shortest path of G from vs to vt ; (27)
V ′ := V ′ ∪ {u | u is on P}; (28)
A′ := A′ ∪ {a | a is on P}; (29)

A′ := A′ ∪ {(u, v) | (u, v) ∈ A ∧ (u /∈ V ′ ∨ (u, vt) ∈ A′)}; (30)
V ′ := (V ′ ∪ {u | (∃v : (u, v) ∈ A′ ∨ (v, u) ∈ A′)}) − {vs, vt}; (31)
return G′〈V ′, A′〉; (32)

}

Fig. 4. The synthesis algorithm for adding time-bounded liveness.

regions. Thus, we need to find another path from that region in g(p) to a region in g(q) other than
r0. Hence, we remove r0 from the set of regions of the original region automatonR(A) and start
over (lines 14, 15). In case the removal of deadlock regions leaves no initial regions, the algorithm
declares failure and terminates (lines 16, 17). Otherwise, it constructs the timed automaton A′ out
of R(A′) (lines 18, 19) and terminates successfully.

As a demonstration, let us consider the TRAIN automaton presented in Section 2 (cf. Figure 1-
a). Our goal is to bound the delay of revisiting the initial location by at most 4 minutes. To this end,
we add the property LB ≡ �(APPROACHING → ♦≤4FAR) to the TRAIN automaton. Since
the automaton already contains a clock that gets reset upon entering the location APPROACHING,
we do not add an extra clock. However, we should have cx = 4 when generating the region
automaton (cf. Figure 1-b). Next, we construct the MaxDelay digraph (cf. Figure 3). In Figure 3,
the dotted arcs contribute in violating the required response time. On the other hand, the solid arcs
do not violateLB . It is easy to observe that by choosingn = 12, ConstructSubgraph includes all
computations that satisfy LB . The rest of the procedure is constructing the new region automaton
(cf. Figure 5-a) and then the final timed automaton (cf. Figure 5-b), which is straightforward .
Theorem 5.1: The algorithm Add BoundedLiveness is sound.
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Fig. 5. (a) Synthesized region automaton (b) Synthesized TRAIN automaton.

Proof. We show that the timed automaton synthesized by Add BoundedLiveness meets the
constraints of Problem Statement 3.1:

– Constraints C1...C3: It is easy to observe that the algorithm Add BoundedLiveness only
removes locations of A. Hence, L′ ⊆ L and L′0 ⊆ L0. Note that, pruning regions only
change the guards of the associated switches and it does not affect reconstruction of A′ such
that L′ ⊆ L. Also, we add an extra clock variable t. Hence, X ⊆ X ′. Furthermore, the
algorithm does not touch the labels of locations and, hence, ψ′ = ψ.

– Constraint C4: The subroutine ConstructSubgraph may only remove regions or edges from
a region automaton. This removal either removes a switch from the original timed automaton
completely or makes some regions unreachable, which in turn strengthens the guard of one
or more switches. Hence, the set of switches of A′ meets the constraint C4.

– Constraint C5: The subroutine ConstructSubgraph ensures that the maximum delay of
any computation that starts from a region in g(p) and reaches a region in g(q) is finite and
bounded by the required response time in LB . Hence, we are assured that the synthesized
timed automaton satisfies LB .

– Constraint C6: The algorithm removes deadlock regions from R(A′). In other words, it en-
sures all computations of A′ are infinite. Moreover, from constraints C1...C4, it follows that
the algorithm does not introduce new computations to A′. Thus, the set of computations of
A′ is a subset of the set of computations of A and, hence, for all MTL specifications Σ, if
A |= Σ then A′ |= Σ as well. ut

Theorem 5.2: The algorithm Add BoundedLiveness is complete.
Proof. In order to prove the completeness, we show that any initial location removed from the
synthesized automaton must be removed. Observe that when a p-region is removed, there is no
path from that region to a q-region where the delay is at most δ. It follows that such a region
must be removed in any timed automaton that satisfies the constraints of Problem Statement 3.1.
Furthermore, if removal of such a region causes another region to become a deadlock region then
that region must be removed for satisfying the constraint C5. Continuing thus, if an initial region
becomes a deadlocked region then it must be removed. Our algorithm declares failure when all
initial locations are removed. Based on the above discussion, in this case, any timed automaton
that satisfies the constraints of Problem Statement 3.1 cannot contain any of the initial locations
from L0. Since this is a contradiction, it follows that when Add BoundedLiveness declares
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failure, no solution exists for the given instance. Therefore, Add BoundedLiveness is complete.
ut

Remark 5.3. If we were to preserve all initial locations (cf. Remark 3.2) then the algorithm is
modified in this fashion where all initial locations are preserved and the remaining constraints
from Problem Statement 3.1 are satisfied. However, the core of the above proofs still hold. To
show soundness, in addition to those constraints, we need to check wether all initial locations are
present. The completeness proof remains unchanged.
Theorem 5.4: The algorithm Add BoundedLiveness is in P in the size of region automata.
Proof. The core of the algorithm is reachability analysis for a timed automaton. Deciding reach-
ability of a location in timed automata is in P in the size of the region automaton [21]. Moreover,
our synthesis algorithm involves finding shortest paths and the k shortest paths in an ordinary
weighted digraph. Eppstein [22] proposes an algorithm that finds the k shortest paths (allowing
cycles) in time O(m + n logn + k), where n is the number of vertices and m is the number of
arcs of a given digraph. Note that, we require that k must be in polynomial order of the number of
locations of the input timed automaton. Hence, one can implement a synthesis algorithm which
runs in polynomial time in the qualitative part (locations), and polynomial space in the quantita-
tive part of the input (timing constraints). ut
Corollary 5.5: The problem of adding a time-bounded liveness property to a timed automaton
is in PSPACE in the size of the input timed automaton. ut

6 Adding Interval Time-Bounded and Unbounded Liveness Properties
We first consider automatic addition of an interval time-bounded liveness property LI ≡ �(p →
♦[δ1,δ2]q) to a timed automaton, where δ1 > 0. As an intuition, let us use the algorithm
Add BoundedLiveness to add LI . Since the required response time has a lower bound, the
subroutine ConstructSubgraph has to enumerate and ignore all the paths whose lengths are less
than δ1. Since there may exist many of these paths, this enumeration cannot be done in polynomial
time in the size of region automata.
Theorem 6.1: The problem of adding an interval time-bounded liveness property to a timed
automaton is NP-hard in the size of locations of the input timed automaton.
Proof. The proof is a simple reduction from the longest path problem [23] to an instance of the
problem, where LI ≡ �(p → ♦[δ1,∞)q). Figure 6 illustrates the mapping of a digraph G to a
timed automaton A. It is easy to see that if G has a path of length at least δ1 from a source vertex
vs to a target vertex vt then A can be transformed to a timed automaton A′ whose delay from vs
to vt is at least δ1 time units and vice versa. ut

� �
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Fig. 6. Mapping the longest path problem to addition of interval time-bounded liveness.

Next, we discuss the problem of addition of unbounded liveness (also called leads-to) proper-
ties.
Theorem 6.2: The problem of addition of an unbounded liveness property to a timed automaton
is PSPACE-complete in the size of the input timed automaton.
Proof. Since this problem is an instance of adding time-bounded liveness, membership to
PSPACE follows from Corollary 5.5 immediately. We now show that the problem is PSPACE-
hard. To this end, we reduce the reachability problem in timed automata [21] to an instance of our
problem. In the reachability problem, our goal is to check whether a location s1 is reachable from
another location s0 in a given timed automaton.
Mapping. Let the timed automaton A be any instance of the reachability problem. We map A to
an instance of our problem as follows. Let A∗ be an automaton identical to A with the following
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modifications. Let s0 |= p and s1 |= q. Other locations of A∗ may satisfy arbitrary atomic propo-
sitions except p and q. Let s0 be the only initial location of A∗. We also add a self-loop at s1.
Reduction. If s1 is reachable from s0 in A then there exists a computation in A∗ that starts from
s0 and ends at s1. A timed automaton A′ constructed from this computation plus the self-loop
at s1 satisfies L∞ and meets the constraints of Problem Statements 3.1. Now, we show the other
direction. Let us assume that the answer to the decision problem is affirmative and we can syn-
thesize a timed automaton A′ from A∗ such that A′ |= L∞. Then A′ should contain both s0 and
s1. This means that s1 is reachable from s0. Otherwise, A′ would not satisfy L∞. ut

Since an unbounded liveness property is an instance of time-bounded and interval time-
bounded liveness properties, problems of adding those properties are also PSPACE-hard. This
result is also valid about addition problems with maximal nondeterminism constraint, as syn-
thesizing a timed automaton with at least one edge is an instance of the problem with maximal
nondeterminism.
Corollary 6.3: The problems of adding time-bounded and interval time-bounded as well as
unbounded liveness properties to a timed automaton with or without maximal nondeterminism
are all PSPACE-complete in the size of the input timed automaton. ut
Remark 6.4. The time complexity of adding an unbounded liveness property to a timed automa-
ton with maximal nondeterminism in terms of transitions remains open in this paper. However,
we refer the reader to [8], where the authors introduce a synthesis algorithm for adding leads-to
properties to an untimed program, while maintaining maximal nondeterminism in terms of states
of the given program.

We summarize the complexity of problems of addition of different types of liveness properties
in Table 2.

7 Discussion
In this section, we address some of the questions raised about the formulation of the problem and
the synthesis method presented in Section 5.
1- How does our work fit in the context of related work?

Our formulation of the problem (cf. Section 3) is different from those in [10–12,15–17]. Intu-
itively, we manipulate a timed automaton inside its state space, so that it satisfies a newly desired
property. By contrast, in [15, 16], the goal is synthesizing a timed controller (which is a timed
automaton itself), such that its synchronized product with the plant satisfies a given specification.
Hence, this formulation requires both plant and controller to be deterministic timed automata,
whereas in our model, we synthesize nondeterministic timed automata even with a specified level
of nondeterminism. Furthermore, in [10–12], the winning condition is given on the state space of
the plant, whereas in our approach, the new property is an external MTL formula. Moreover, in
this paper, our goal is to study the complexity issues and develop algorithms for adding various
types of a specific class of MTL properties that (we believe) can capture a wide range of require-
ments for specifying real-time programs. In fact, the complexity of our algorithm is less than
those in [10–12, 15–17] (cf. tables 1, 2). Of course, this is achieved at the cost of expressiveness
of specifications.
2- After removing a subset of computations, how can we claim that the synthesized timed automa-
ton continues to satisfy its old specification?

This is because we consider a linear type of temporal logic. As mentioned in Section 2, an
MTL formula Σ defines a set of timed state sequences. Note that, an automaton A satisfies speci-
fication Σ iff all computations of A are in Σ. Hence, a subset of computations of A satisfies Σ as
well. In the context of the algorithm Add BoundedLiveness, although it excludes some of the
computations, since it ensures that all computations are infinite (by removing deadlock regions),
it continues to satisfy its old MTL specification. A possible confusion is that “the given program
(before synthesis) does not satisfy the time-bounded liveness property L, but it does satisfy L



Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 15

after synthesis”. Note, however, that “a program does not satisfy L” cannot be expressed as “the
program satisfies L′”, where L′ is an MTL property. Also, if a given program satisfies ¬L then
no computation of the program satisfies L and, hence, it is not possible to synthesize a program
that satisfies L. In such a case, the algorithm Add BoundedLiveness declares failure. The same
problem cannot be defined by branching-time temporal logics (e.g., TCTL), as “a program does
not satisfy L” can be expressed as “the program satisfies L′”, where L′ is a TCTL property.
3- In Section 4, we defined maximality in terms of reachable transitions. What are the other
alternatives to model nondeterminism?

It is also possible to define maximal nondeterminism in terms of reachable locations or be-
haviors. However, various definitions does not change the NP-harness result. In fact, many of the
edge and vertex deletion problems are known to be NP-hard [20, 24, 25]. In particular, in case
of maximal reachable locations, one can easily reduce the vertex deletion problem [20] to our
synthesis decision problem. Moreover, in case of maximal number of behaviors, one can develop
a reduction from the kth shortest path problem [23].
4- How can we improve the state space explosion problem in our algorithm?

Generation of detailed region automaton is usually not efficient. Zone automata [26] is a more
efficient finite representation of timed automata used in model checking techniques. Since our
goal was to evaluate complexity classes for adding time-bounded liveness, we focused on region
automata. However, an interesting improvement step is modifying Add BoundedLiveness, so
that it manipulates a zone automaton rather than a detailed region automaton.

Time-Bounded Liveness Unbounded Liveness Interval Time-Bounded Liveness

Maximal NonMaximal Maximal NonMaximal
(Sec. 4) (Sec. 5) (Sec. 6) (Sec. 6) (Sec. 6)

NP-hard P see Rem. 6.4 P NP-hard

Table 2. Complexity of adding liveness properties in the size of region automata.

8 Conclusion and Future Work
In this paper, we focused on the problem of automatic addition of different types of time-bounded
liveness properties (also called bounded response) to a timed automaton, while preserving its
existing Metric Temporal Logic (MTL) specification. Unlike specification-based methods, in our
approach, we start with an existing program rather than specification and, hence, the previous
efforts made for synthesizing the input program are reused.

First, we showed the problem of addition of a time-bounded liveness property to a timed
automaton while maintaining maximal nondeterminism is NP-hard in the size of locations of the
input automaton. Then, we presented a simple sound and complete transformation algorithm that
adds a time-bounded liveness property to a timed automaton (without maximal nondeterminism),
such that the automaton continues to satisfy its existing MTL specification. The complexity of the
algorithm is polynomial in the size of locations of the input timed automaton. Furthermore, we
showed that the problem of addition of interval time-bounded liveness properties is also NP-hard.
Moreover, we showed that adding time-bounded and interval time-bounded as well as unbounded
liveness properties are all PSPACE-complete in the size of the input timed automaton.

In many hard real-time systems (e.g., mission-critical systems) meeting deadlines in the pres-
ence of faults is a necessity. As future work, we plan to study the problem of automatic addition
of fault-tolerance to existing fault-intolerant real-time programs. More specifically, we plan to ex-
tend the theory of automated addition of fault-tolerance to untimed programs [5–7] to the context
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of real-time programs. In particular, we will study how bounded-time recovery can be achieved
in the presence of faults using the results presented in this paper.
Acknowledgment. The authors would like to thank Edith Elkind at Princeton University for her
ideas on the NP-hardness result in Section 4.
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