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ABSTRACT 

Spectral signature coding is an effective means of characterizing spectral features. This paper 

develops a rather different encoding concept, called progressive signature coding (PSC) which 

encodes a signature in a hierarchical manner. More specifically, it progressively encodes a 

spectral signature in multiple stages, each of these stages captures disjoint spectral information 

contained in the spectral signature. As a result of such a progressive coding, a spectral profile of 

progressive changes in a spectral signature can be generated for spectral characterization. The 

proposed idea is very simple and evolved from the Pulse Code Modulation (PCM) commonly 

used in communications and signal processing. It expands PCM to multi-stage PCM (MPCM) in 

the sense that a signature can be decomposed and quantized by PCM progressively in multiple 

stages for spectral characterization. In doing so, the MPCM generates a priority code for a 

spectral signature so that its spectral information captured in different stages can be prioritized in 

accordance with significance of changes in spectral variation. Such MPCM-based progressive 

spectral signature coding (MPCM-PSSC) can be useful in applications such as hyperspectral data 

exploitation, environmental monitoring, chemical/biological agent detection. Experiments are 

provided to demonstrate the utility of the MPCM-PSSC in signature discrimination and 

identification. 

 

Subject Terms: Multistage Pulse Coding Modulation (MPCM). MPCM-based progressive 

spectral signature coding (MPCM-PSSC). Progressive spectral signature coding (PSSC). 

Spectral signature coding (SSC). Spectral discrimination. Spectral identification.  
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1. INTRODUCTION 

pectral signature coding (SSC) is a scheme or a rule or a mapping that transforms spectral 

values into a new set of symbols in a specific manner that a signature can be represented by the 

new symbols more effectively or efficiently. In hyperspectral imagery, each pixel is acquired by 

hundreds of contiguous spectral channels to form a column vector that can be used to diagnose 

subtle material substances based on their spectral characteristics. Therefore, taking advantage of 

such intra-pixel spectral information (e.g., spectral information provided by spectral channels 

within a hyperspectral image pixel vector) is one of great benefits resulting from hyperspectral 

data. However, this also is traded off for a price that many unknown spectral signatures may be 

also extracted to further complicate spectral analysis. So, one of major challenges in 

hyperspectral data exploitation is how to best utilize the spectral information provided by 

hyperspectral imagery to accomplish tasks such as detection, discrimination, classification, 

identification while discarding undesired information caused by unwanted interference such as 

noise. 

This paper investigates a new approach to SSC, called progressive spectral signature coding 

(PSSC) where the SSC is carried out in a progressive fashion rather than sequential coding. It is a 

technique that can decompose a signature in multiple stages, each of these stages captures 

spectral changes in a progressive manner.1-3 As a consequence, it provides a profile of 

progressive changes in spectral variation that describes the spectral behavior of a pixel vector in 

various stages. Accordingly, we can consider PSSC as “soft” coding in a progressive procedure 

as opposed to SSC that can be viewed as “hard” coding performed by classical coding techniques 

with binary decisions.  

This paper develops a technique, called Multistage Pulse Coding Modulation (MPCM) for 

S 
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PSSC, (MPCM-PSSC) which was previously developed for progressive image compression.4 

The success of MPCM has been also demonstrated in image progressive reconstruction,5-6 

progressive edge detection7-8 and progressive text detection.9 It is indeed a one-dimensional (1-

D) transform coding technique, which encodes a 1-D signal progressively according to a priority 

assigned to each signal point. The signal priorities are determined by changes between two 

successive signal points. Interestingly, a hyperspectral image pixel can be also considered as a 1-

D signal function.10-11 As a consequence, each signal point corresponds to the spectral value of a 

particular wavelength in spectral dimension. With this interpretation, the MPCM can be 

implemented to capture progressive changes of spectral variation occurred in spectral 

wavelengths that are used to acquire the pixel. 

One major advantage of using the PSSC is characterization of a spectral signature in 

progressive changes across its spectral channels. This unique feature cannot be accomplished by 

any “hard” coding-based spectral coding methods. Another advantage is the spectral profile of 

progressive changes produced for a signature can be used for various applications such as 

discrimination, classification, identification, etc. It is often the case that two signatures may be 

very similar in terms of spectral signature vector direction measured by spectral angle mapper 

(SAM),11-12 but in fact, they do have very different spectral profiles of progressive changes in a 

range of spectral channels. The PSSC provides such a profile for signature characterization. A 

third advantage is the change detection which is a major issue in land-cover remote sensing 

image classification and has been generally performed by temporal processing. The PSSC offers 

a different perspective in terms of change detection in spectral variation. A fourth advantage is 

that it can be viewed as a progressive implementation of a sequence of binary coding with a set 

of decreasing thresholds.  
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The proposed MPCM-PSSC provides a new look at how a SSC can be accomplished 

progressively for signature characterization. The idea is derived from the success of the MPCM 

in text detection for video images9 where the edges of text were detected more effectively in a 

progressive manner. Such progressive edge detection seems to be very useful in hyperspectral 

signature characterization. It generates a priority code that keeps track of progressive changes in 

spectral variation. The larger the change in a spectral wavelength is, the higher the priority of this 

particular wavelength is. Such an MPCM-PSSC generated priority code provides fingerprints of 

a spectral signature via priority code words assigned to each of spectral wavelengths. Here, the 

term of “code” is referred to as a code book which is made up of “code words” that are used for 

encoding. Another important advantage resulting from the MPCM-PSSC generated priority code 

is progressive decomposition of a spectral signature in according with the priority code words 

assigned to each of spectral wavelengths. The resulting progressive decomposition delineates a 

profile of progressive changes in spectral variation that can be used for discrimination and 

identification of a spectral signature, a feature that cannot be achieved by any spectral similarity 

measure. Furthermore, the MPCM-PSSC generated priority code can progressively reconstruct a 

spectral signature literally by the priority code words assigned to spectral wavelengths. This 

progressive signature reconstruction enables one to see how spectral changes are updated in 

order to recover the original signature from the MPCM-generated priority code. Most 

importantly, the MPCM-PSSC priority code can describe progressive transitions of spectral 

values from one spectral band to another via a simple coding scheme with a detailed profile of a 

spectral signature in terms of progressive changes in spectral variation across spectral 

wavelengths. Such capability makes the MPCM-PSSC unique. It distinguishes the MPCM-PSSC 

from a spectral similarity measure which can only measure the closeness or similarity between 
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two spectral signatures, not progressive spectral signature similarity across spectral wavelengths. 

In order to facilitate analysis, a distinction between discrimination and identification 

suggested in Ref. [11] is also made clear in this paper. The former is performed among a set of 

signatures where one signature is discerned from another compared to the latter carried out by 

verifying a signature via a database (spectral library). Consequently, algorithms designed for 

discrimination and identification are slightly different. In particular, a threshold is generally 

required for signature discrimination to discriminate one signature from another. On the other 

hand, signature identification via a database can be performed directly by finding the one in the 

database that most matches the signature to be identified. In our proposed MPCM-PSSC, the 

signature discrimination and signature matching are measured by the priority code words using 

Hamming distance.  Finally, computer simulations and real data experiments are conducted to 

demonstrate the utility of the MPCM-PSSC in applications of signature discrimination and 

identification. 

The remainder of this paper is organized as follows. Section II describes the MPCM 

encoding scheme in detail. Section III presents an MPCM-based progressive spectral signature 

coding (MPCM-PSSC) where algorithms are developed for discrimination and identification. 

Section IV conducts extensive experiments to substantiate the proposed MPCM-PSSC. Section 

V summarizes the results and conclusions with some remarks. 

 

2. MULTISTAGE PULSE CODE MODULATION (MPCM) 

In this section, we present a new concept, called Multistage Pulse Coding Modulation 

(MPCM) that can be used for encoding spectral signatures in a progressive manner. The MPCM 

was originally developed for image progressive transmission and reconstruction.4-6 It can be 
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viewed as a progressive version of commonly used coding scheme in communications, Pulse 

Code Modulation (PCM).13 It expands the hard-decision PCM-based quantizer to a soft-decision 

quantizer in such a fashion that it allows PCM to have a non-decision region which passes on its 

decisions to next stage progressively. As a result, a decision can be refined stage-by-stage so as 

to improve quantization results. The idea of multistage coding is not new and can be found in 

Ref. [13] in which many references are available such as tree or residual coding2-3,13-14, multi-

resolution15, etc. Nevertheless, the MPCM is new and quite different from the reported 

references in the sense that it makes use of priority code words derived from multiple stages for 

progressive coding. The detailed idea of the MPCM can be described as follows. 

A PCM-based coder is a quantizer, denoted by Q(x) which is specified by a set of 

quantization levels { }M

1=∆ kk  and a corresponding set of quantization thresholds { }M

1=kkτ . It 

quantizes a signal function x(n) according to 

),[)( if  ))(( 1 kkk nxnxQ ττ −∈∆=                                                      (1)   

where 0∆ and M∆  are initial conditions determined by the domain of the signal function x(n). It is 

a hard decision-based quantizer, referred to as a hard quantization because Q(x(n)) must make a 

decision on the input x(n) via Eq. (1) by assigning the quantization level k∆  to x(n). The 

proposed MPCM expands the Q(x) in the sense that x(n) in Eq. (1) is encoded by a sequence of 

M soft decision-based quantizers { }M

1))(( =kk nxQ  in multiple stages, referred to as soft quantizers, 

in a progressive manner compared to the hard decision made by one single value k∆ in Eq. (1). 

Unlike the hard decision-based quantizer described in Eq. (1) which makes its binary decision on 

x(n) by a single threshold interval ),[ 1 kk ττ −  for each quantization level k∆ , Qk(x(n)) makes its 

decision based on three threshold intervals,  ],( k∆−−∞ , ),( kk ∆∆− and ),[ ∞∆ k  determined by 
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zero and its quantization level k∆  where the interval ),( kk ∆∆−  is designated as a no-decision 

threshold interval. More specifically, a soft quantizer Qk(x(n)) derived from Q(x(n)) via the k-th 

quantization level k∆  is defined by 

�
�

�
�

�

∞∆∈∆
∆∆−∈
∆−−∞∈∆−

=
),[)(  if  ;

 ),()(  if  );(
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nxnx
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where the soft quantizer Qk(x(n)) passes its input x(n) without making any decision when the 

input x(n) falls in the region ),()( kknx ∆∆−∈ as described in Fig. 1. The consequence of soft 

decisions comes from the inclusion of the no-decision interval, ),( kk ∆∆−  in the quantizer 

Qk(x(n)). 

The MPCM takes advantage of such a soft quantizer Qk(x(n)) specified by Eq. (2) to perform 

quantization progressively in multiple stages specified by { }M

1=∆ kk , referred to as stage levels in 

the MPCM. Assume that { }M

1=∆ kk  are strictly decreasing quantization levels, i.e., 

0M21 >∆>>∆>∆ � . Therefore, the no decision-made outputs passed by the k-th soft 

quantizer by Qk(x(n)) at stage k are further processed by the follow-up (k+1)st soft quantizer 

Qk+1(x(n)) in next stage which uses a smaller quantization level, kk ∆<∆ +1  to refine its decision. 

In other words, instead of encoding x(n) directly into k∆  by Eq. (1), the x(n) is actually encoded 

by M soft quantizers { }M

1))(( =kk nxQ  one at a time progressively using of M refined quantization 

levels. As a result of using a sequence of progressive soft quantizers { }M

1))(( =kk nxQ , x(n) can be 

decomposed into a set of binary-valued stage components, denoted by { }M

1)(ˆ
=kk nx  where 

}1,0{)(ˆ ∈nxk  for M1 ≤≤ k  so that the x(n) can be approximated by the estimate of x(n), )(ˆ nx  by 
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kk k nxxxxnx ∆=∆++∆+∆= � =

M

1MM2211 )(ˆˆˆˆ)(ˆ �                                       (3) 

The key issue is how to find a desired set of M soft binary quantizers, { }M

1))(( =kk nxQ  for a given 

set of quantization levels { }M

1=∆ kk  to produce an optimal M-block length binary code for Eq. (3) 

in approximation. In doing so, the soft quantizer using the quantization level k∆  defined by Eq. 

(2) can be used for the k-th progressive soft quantizer in the MPCM defined by  
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which takes the approximation error  �
−

=− ∆−= 1

11 )(ˆ)()(
k

j jjk nxnxnε obtained at the (k-1)st stage as 

its input. It should be noted that �
−

=− ∆−= 1

11 )(ˆ)()(
k

j jjk nxnxnε used in Eq. (4) is the 

approximation error obtained by a successive approximations using the binary code word 

( ))(ˆ)(ˆ)(ˆ M21 nxnxnx �  up to the (k-1)st stage. The soft decision comes from the case that if 

),()(1 kkk n ∆∆−∈−ε , )())(( 11 nnQ kkk −− = εε . A detailed implementation of the MPCM is described 

as follows. A generalized version of MPCM can be found in Refs. [4-6]. 

MPCM Encoding Algorithm for the n-th Signal Point, x(n) 

1. Initial condition 

Let { }M

1=∆ kk  be a set of M stage levels which are used for MPCM and the initial 

approximation error  )1(ˆ)()(0 −−= nxnxnε  where )1(ˆ −nx  is obtained by Eq. (3). Set 

0)0(ˆ =x  and 1=k . 

2. At the k-th stage, three cases are considered for the k-th two-valued soft quantizer, Qk 

defined by Eq. (4). 
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Case 1: If kk n ∆≥− )(1ε , then kkk nQ ∆=− ))(( 1ε , 1)(ˆ =nxk  and set 0)(ˆ =nx j  for 

M≤< jk . In this case, the priority codeword c(n) assigned to x(n) is knc =)( . Its 

diagram is depicted in Fig. 2. Let k

M

kj kjjk nnxnn ∆−=∆−= � = −− )()(ˆ)()( 11M εεε . Go to 

step 4. 

Case 2: If kk n ∆−≤− )(1ε , then kkk nQ ∆−=− ))(( 1ε , 0)(ˆ =nxk  and set 1)(ˆ =nx j  for 

M≤< jk . In this case, the priority codeword c(n) assigned to x(n) is knc =)( . Its 

diagram is depicted in Fig. 3. Let �� +=−=− ∆−=∆−= M

11

M

1M )()(ˆ)()(
kj kkkj jjk nnxnn εεε . 

Go to step 4.          

Case 3: If kkk n ∆<<∆− − )(1ε , then )())(( 11 nnQ kkk −− = εε  and )1(ˆ)(ˆ −= nxnx kk . Its 

diagram is depicted in Fig. 4. Go to step 3. 

3. If M<k , let 1+= kk  and go to step 2. Otherwise, continue. 

4. Go to the next sample, (n+1) st signal point, x(n+1). 

In the above MPCM encoding algorithm, the priority codeword is only assigned when a hard 

decision is made in a certain stage. When it occurs at stage k, the encoding for x(n) is terminated 

and the priority code word for x(n) is encoded as knc =)( . In this case, the priority assigned to 

x(n) is k, which indicates that there is a significant change in x(n) at stage k. As a result, the 

higher the priority is, the bigger the change is, the smaller the index number of the stage is. That 

is, c(n) = 1 has the highest priority since there is a drastic change in stage 1 specified by the 

largest quantization level 1∆ .  To the contrary, c(n) = M indicates that there only has a small 

change in stage M because the quantization level M∆  is the smallest quantization level. 

Interestingly, an immediate advantage resulting from the MPCM encoding algorithm is that it 

allows one to decompose a signal sample x(n) in multiple stages, i.e., M stages and its priority 
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code word indicates which stage the priority occurs where the signal sample makes a significant 

change. 

Correspondingly, we also describe the MPCM decoding algorithm as follows. It decodes the 

n-th signal sample x(n) based on the encoded priority code word c(n) along with the previous 

decoded )1(ˆ −nx  which is an approximation of x(n-1) via Eq. (3). In contrast to the MPCM 

encoding algorithm which decomposes the n-th signal sample stage-by-stage in M stages, the 

MPCM decoding algorithm reconstructs the n-th signal samples stage-by-stage based on its 

priority code word c(n). 

MPCM Decoding Algorithm for x(n) 

1. Initial condition:  

Let { }M

1=∆ kk  be a set of M stage levels which are used for MPCM. Set the initial condition 

as 0)0(ˆ =x , and )1(ˆ −nx  is the reconstruction of )(nx which is unknown and can be 

expressed by { }M

1)1(ˆ
=− kk nx  as 

                                    MM nxnxnxnx ∆−++∆−+∆−=− )1(ˆ)1(ˆ)1(ˆ)1(ˆ
2211 �                    (5) 

2. Input the encoded priority code word knc =)(  for x(n), in which case the priority of x(n) 

occurs in stage k. Two cases are considered. 

Case 1: if 1)1(ˆ =−nxk , then )1(ˆ)(ˆ −= nxnx jj  for kj <≤1 , 0)(ˆ =nxk  and 1)(ˆ =nx j  for 

M<< jk .  In this case, �� +=

−

=
∆+∆−= M

kj j

k

j jj nxnx
1

1

1
)1(ˆ)(ˆ . 

Case 2: if 0)1(ˆ =−nxk , then )1(ˆ)(ˆ −= nxnx jj  for kj <≤1 , 1)(ˆ =nxk  and 0)(ˆ =nx j  for 

M<< jk . In this case, k

k

j jj nxnx ∆+∆−=�
−

=

1

1
)1(ˆ)(ˆ . 

In order to apply the MPCM to spectral signature coding we consider the spectrum of a 
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signature vector ( )T

Lrrr ,,, 21 �=r  as a 1-D signature vector with rl being the spectral value of 

the l-th band. Let { } { }llll rr minmax)( −=∆ r . The number of stages, M is then given by 

[ ] 1)(logM 2 +∆= r                                                                    (6) 

with ][x  defined by the largest integer less than or equal to x.  So, the stage levels { }M

1=∆ kk  used 

in the MPCM is defined by 

)(2)( rr ∆=∆ −k
k  for M,,2,1 �=k .                                       (7)                                           

In order to demonstrate the utility of the MPCM in spectral signature coding, two examples are 

provided for illustration. 

The first example shows a progressive MPCM-encoded signal of a 1-dimensional chemical 

spectral data r, methyl salicylate obtained from the web-book of National Institute of Standard 

Technology.16 It is shown in Fig. 5 and has 880 bands of spectral coverage 450-3966/cm. 

In order for the MPCM to operate on this signal, the number of stages required for the 

MPCM encoding was calculated by Eq. (6) to be M = 13 stages. Since there are 13 stages, the 

stage levels obtained by Eq. (7) are k
k 2/)(r∆=∆  for 13,,2,1 �=k . With the initial condition 

assumed to be x(0) = 0.  Fig. 6 shows a graphical plot of the priority code words c(n) for each of 

signal points x(n) in Fig. 5 produced by the MPCM encoding algorithm with the x-axis and y-

axis specified by signal points and their corresponding priority code words ranging from 1 to 13. 

Using the MPCM encoded priority code words provided by Fig. 6, a 13-stage progressive signal 

components of the original signal in Fig. 5 can be decomposed stage-by-stage in Fig. 7. As we 

can see from Fig. 7, the MPCM encoding algorithm started with the largest stage level, 

( )( ) ( )131313
1 2/)(40962/)(2/2 rr ∆×=∆=∆  in stage 1, then began to reduce stage levels by 

half stage-by-stage to refine signal samples until it reached the last stage which is stage 13 
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specified by stage level 
13

13 2/)(r∆=∆ . 

In order to decode the signal of methyl salicylate, the MPCM-encoded priority code words in 

Fig. 6 was used as inputs and Fig. 8 shows the 13 decoded signal components of methyl 

salicylate progressively stage by stage for signature reconstruction along with the approximation 

error )(13 nε . 

Since it may not be trivial to fully understand how the MPCM works, the second example is 

provided by Table 1 for an illustrative purpose. It takes the first 20 signal points in Fig. 5 to walk 

through detailed stage-by-stage implementations of the MPCM encoding and decoding 

algorithms. 

In Table 1, the 1st column lists the inputs specified by the first 20 signal points { }20

1)( =nnx with 

the initial condition specified by x(0) = 0. The 2nd column lists the values of predicted )(ˆ nx  and 

predicted error )(nε . The 3rd column lists all predicted values of signal components in 13 stages 

with stage levels specified by the largest stage level, 4096212
1 ==∆  down to the smallest stage 

level, 12 0
13 ==∆ . Finally, the last column produces the priority code words { }20

1)( =nnc  for the 

first 20 signal points, { }20

1)( =nnx . 

Table 2 provides a stage-by-stage decoding process for signal reconstruction of the 20 

MPCM signal samples encoded in Table 1 where the 1st column takes the priority code words 

from the output in Table 1 as the input to the MPCM decoder to decode the signal components in 

all 13 stages in the 2nd column. Finally, the last column of Table 2 outputs the predicted values of 

all the first 20 signal points of { }20

1)( =nnx . 

As concluding remarks in this section, two comment are noteworthy. In order to implement 

the MPCM-PSSC, a set of parameters, such as stage levels, { }M

1=∆ kk  is required a priori. A 
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general approach to such selection is given by Eq. (7) which are empirically reasonable in our 

experiments. Another comment is that the computational complexity of the MPCM-PSSC is 

simple. As a matter of fact, it can be implemented as a real-time process for progressive 

transmission. 

 

3. MPCM-BASED PROGRESSIVE SPECTRAL SIGNATURE CODING (MPCM-PSSC) 

As recalled in the MPCM encoding algorithm, a signature vector ( )T

Lrrr ,,, 21 �=r  will be 

considered as a 1-D spectral signature where rl is represented by one of the priority code words 

{ }M

1)( =kkc r  taking values in { }M,,2,1 � . For example, cl(r) indicates the priority of rl in the 

MPCM encoding and decoding. The smaller the number cl(r) is, the higher priority the rl(r) is for 

spectral encoding and decoding. 

Next, we can further construct an M-dimensional priority unit vector associated with the 

priority code word cl(r) for MPCM-PSC as follows 

         ( )T

llll ccc )(,),(),()( M21 rrrrc �=                                                                 (8) 

with }1,0{)( ∈rlkc  and 1)(M
1 =� =k lkc r . The condition that 1)(M

1 =� =k lkc r  in Eq. (8) implies that 

cl(r) has only one “1” in its component and all zeros in its remaining components. It should be 

noted that the priority code word cl(r) takes the value in { }M,,2,1 � . Instead of using the 

priority code word cl(r) itself, we use its corresponding M-dimensional priority unit vector cl(r) 

defined by Eq. (8) where the boldface of cl(r), cl(r) indicates that it is the priority unit vector of 

the original scalar priority code word cl(r). As an example, for M = 8, cl(r) can take any of 8 

values, 1, 2, 3, 4, 5, 6, 7, 8. In this case, the following 8-dimensional priority unit vectors derived 

from Eq. (8) can be used for spectral signature coding 
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)1,0,0,0,0,0,0,0()(8)( );0,1,0,0,0,0,0,0()(7)(

)0,0,1,0,0,0,0,0()(6)( );0,0,0,1,0,0,0,0()(5)(

)0,0,0,0,1,0,0,0()(4)( );0,0,0,0,0,1,0,0()(3)(

)0,0,0,0,0,0,1,0()(2)( );0,0,0,0,0,0,0,1()(1)(

=⇔==⇔=
=⇔==⇔=
=⇔==⇔=
=⇔==⇔=

rcrrcr
rcrrcr
rcrrcr
rcrrcr

llll

llll

llll

llll

cc

cc

cc

cc

            (9) 

More specifically, if the priority code word cl(r) resulting from rl is the priority, k, its M-

dimensional priority unit vector cl(r) is then specified by 

� � � � � � �
T

kkk
l )0,0,,0,1,0,,0,0()(

M-1M1121

��
+−

=rc                                               (10) 

where only one “1’ occurs in the k-th component and represents its priority specified by the k-th 

stage. The advantage of using the M-dimensional priority unit vector, the position of “one” in 

Eq. (10) indicates the significance of its priority in the same manner that the bit position 

indicates the precision of the bit in a binary representation. Most importantly, we can use Eq. 

(10) and the Hamming distance to define a distance measure between two signature vectors 

( )T

Lrrr ,,, 21 �=r  and ( )T

Lsss ,,, 21 �=s  at the k-th stage via their corresponding M-

dimensional priority unit vectors by 

( )� =
⊕= L

l lklkk ccD
1

)()()( srsr,                                            (11) 

A. Spectral Discrimination 

By virtue of Eq. (11), the similarity between two signature vectors r and s can be measured 

progressively. In other words, two signature vectors r and s are first measured by Eq. (11) in 

stage 1 via a prescribed stage threshold, say 1∆ . If the distance D1(r,s) is greater than 1∆ , r and s 

will be declared to be distinct. Otherwise, the comparison between r and s is continued to 

proceed at stage 2. If the distance D2(r,s) is greater than a prescribed stage threshold 2∆ , r and s 

will be considered to be distinct signatures. Otherwise, a further comparison between r and s is 

continued on at stage 3, etc. The implementation of the MPCM-based progressive spectral 
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coding for target discrimination can be summarized as follows. 

MPCM-PSSC Spectral Discrimination Algorithm 

1. Let r and s be two spectral signature vectors to be discriminated. 

2. Specify the number of stages, M, needed to be processed. If two signatures produce different 

stage numbers M1 and M2, M is chosen as the minimum of M1 and M2. 

3. Determine the stage thresholds { }M

kk 1=τ  to be used for discrimination in each of M stages. 

4. Apply the MPCM to r and s to generate their priority code words as described in Eq. (8) and 

expressed by Eq. (10). 

5. Use Eq. (11) to measure the similarity between r and s progressively. For each stage k, we 

calculate the distance Dk(r,s) and compare it against the k-th stage threshold, k∆ . If 

kkD τ>),( sr , two pixel vectors r and s are declared to be distinct, and the process is 

terminated. Otherwise, repeat the same procedure until it reaches the last stage M. In this 

case, we check if MM ),( τ>srD .  

6. If MM ),( τ>srD , two pixel vectors r and s are declared to be distinct, and the process is 

terminated. 

7. If MM ),( τ≤srD , the process is also terminated and output “no discrimination”, which 

declares r and s to be the same signature. 

 

A key issue in implementing the MPCM-PSSC discrimination algorithm is the determination of 

an appropriate set of M stage thresholds for a signature. In doing so a simulated white Gaussian 

noise is added to the signature to achieve a certain level of signal-to-noise ratio (SNR). This SNR 

is determined by how much sensitivity we would like to have for a signature responding to its 

spectral variations. 
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B. Spectral Identification 

The target identification studied in this section is different from spectral discrimination in 

Section III.A. While the target discrimination only discriminates one signature from another 

without performing any additional task such as detection, classification and identification, the 

target identification uses a given database (spectral library) Γ  to identify an unknown target 

signature t. Unlike spectral discrimination, the proposed spectral identification does not require 

stage thresholds. 

 

MPCM-PSSC Spectral Identification Algorithm 1 

1. Let Γ be a given database (spectral library) which is made up of p spectral signatures, 

psss ,,, 21 � , i.e., { }p

hh 1==Γ s  and t be target spectral signature vector to be identified via 

the database Γ . 

2. Specify the number of stages, M via Eq. (6), needed to be processed. For each signature sh, 

let Mh be the associated stage number. M is chosen as the minimum among 

pM,,M,M 21 � . 

3. Determine stage thresholds for all M stages, { }M

kk 1=τ  for psss ,,, 21 � . 

4. Apply the MPCM to the target signature t to generate its priority code. Set 1=k . 

5. At the k-th stage, calculate the distance between t and sh, ),( hkD st  at stage k for ph ≤≤1  

using Eq. (11). The t is identified by *h
s  with { })(min 1

*
hkph ,Dh st≤≤= . If there is a tie, the 

process is continued with those signatures that yield { })(min 1 hkph ,D st≤≤  and continue. 

6. If M<k , let 1+← kk  and go to step 5. Otherwise, continue.  
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7. In this case, we reach the last stage M. The t is identified by *h
s  with 

{ })(min M1
*

hph ,Dh st≤≤= .  If there is a tie at this final stage, the algorithm declares either “no 

match” or identifies t as one of tied signatures. 

The steps 5-7 in the above algorithm calculates the distance between t and sh, ),( hkD st  for each 

ph ≤≤1  stage-by-stage and makes a progressive decision to determine if there is a match 

between t and *h
s  for some h*. There is no need of implementing stage thresholds as the way 

carried out by spectral discrimination. As an alternative, we can also replace the steps 5-7 to 

derive a second version of MPCM-PSSC target identification which postpones the decision until 

the last stage M by calculating the sum of stage distances between t and sh in all M stages. In this 

case, the identification is to find the signature that yields the smallest sum. 

MPCM-PSSC Spectral Identification Algorithm 2 

The same first four steps used in MPCM-PSSC target identification algorithm 1. 

5’. Compute � =
= M

1
)(SUM

k hkh ,D st  and identify t by *k
s  with { }{ }h1

* SUMminarg phh ≤≤= , 

the signature that yields the smallest SUMh. If there is a tie at this final stage, the algorithm 

declares either “no match” or identifies t as one of tied signatures. 

It should be noted that step 5’ does not make its decision progressively. Instead, it makes its 

decision at the final stage, M, on the sum of all stage distances. Nevertheless, it does take 

advantage of progressive spectral signature changes occurred at each stage, each of which 

contributes its change to the sum. 

 

4. CHEMICAL/BIOLOGICAL LABORATORY DATA EXPERIMENTS 

The ability of the MPCM-PSSC in progressive signature decomposition and progressive 
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signature reconstruction was demonstrated in Figs. 7-8 and Tables 1 and 2. This and the 

following sections further demonstrate versatility of the MPCM-PSSC in other applications, 

spectral discrimination and identification. Two sets of data were used for experiments, laboratory 

data and real hyperspectral images. The laboratory data to be used in this section are 

chemical/biological spectral data available online at National Institute of Standards Technology 

(NIST)‘s website.16 The data set has five 880-band chemical/biological spectral signatures shown 

in Fig. 9, which are methyl salicylate, pentanedione, propanoic acid, thiodiglycol, thriethyl 

phosphate and heptanol. Since the selected data set for experiments was empirical and all the 

experiments conducted for this data set can be also applied to other data set in Ref. [16]. 

There are two reasons to select this data set. One is to demonstrate that the MPCM-PSSC has 

an application in chemical/biological defense. The other is to demonstrate that the MPCM-PSSC 

can be also used for ultraspectral signature characterization with a thousand of spectral channels. 

There are also some other applications such as hyperspectral laboratory data experiments that 

can be found in Ref. [17]. 

EXAMPLE 1 (Spectral discrimination) 

In order to perform spectral discrimination using the MPCM-PSSC, we need to determine 

appropriate thresholds for each stage that are implemented by MPCM-PSSC stage by stage. For 

each signature we create a noise-corrupted signature with signal-to-noise ratio (SNR) 30:1 where 

the SNR was defined in ref. [18] as the ratio of 50% reflectance to noise standard deviation. 

Using the methyl salicylate in Fig. 5 as an example, the spectral signature represented by the 

methyl salicylate is denoted by ( )Trrr 88021 ,,, �=r . Then a noise corrupted methyl salicylate 

signature denoted by ( )Trrr 88021
~,,~,~~ �=r  can be obtained by adding a white Gaussian noise to each 

band to achieve the signal-to-noise (SNR) = 30:1. Finally, the MPCM is applied to both the pure 
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methyl salicylate signature with no noise and the 30:1 SNR noise corrupted methyl salicylate 

signature to obtain their respective MPCM priority code word for band l, ( )T

llll ccc M21 ,,, �=c  

and ( )T

llll ccc M21
~,,~,~~ �=c  with M = 13. Then the k-th stage threshold k∆ is obtained by  

� =
⊕= 880

1

~
l lklkk ccτ                                                       (13) 

Table 3 tabulates all the stage thresholds { }M

1=kkτ  for each of five signatures, methyl salicylate, 

pentanedione, propanoic acid, thiodiglycol, thriethyl phosphate and heptanol which are denoted 

by 1s , 2s , 3s , 4s  and 5s . 

It should be noted that the total number of stages, M = 13 is determined by Eq. (6). As long 

as { }M

1=kkτ  is determined, the discrimination process starts with the stage threshold in stage 1. If 

the distance between two signatures in stage 1 is greater than the threshold, the two signatures 

are declared to be distinct and discrimination process is terminated. Otherwise, it implies that 

two signatures cannot be discriminated in stage 1 and the discrimination process is then passed 

on to stage 2 where the distance between two signatures in stage 2 is calculated and compared to 

the threshold at stage 2. If the distance at stage 2 is greater than the threshold, the process is 

terminated. Otherwise, the same procedure is repeated again until the last stage is reached. 

Since the stage thresholds produced by one signature generally are different from those 

produced by another signature, the discrimination threshold is then determined by the minimum 

of the two different stage thresholds, that is, min{ iτ (signature 1), iτ  (signature 2)}. Table 4 

shows the results where the stage thresholds in Table 3 were used for discrimination and the 

numbers highlighted (shaded) underneath each stage were the stages that two signatures were 

discriminated. As we can see from Table 4, all the five signatures can be discriminated in stage 

1. 
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EXAMPLE 2 (Spectral identification) 

In this example, we further demonstrate the utility of the MPCM-PSSC in spectral 

identification via a database (spectral library) Γ  which consists of the five signatures in Fig. 9. 

For each target signature t, 60% abundance fraction was simulated while the other four 

signatures sharing the remaining 40% abundance fraction with each of 10% abundance fraction. 

Five different admixtures were generated by a fixed mixing composition (0.6,0.1,0.1,0.1,0.1) of 

the five signatures. When one of 1s , 2s , 3s , 4s  and 5s  was designated as a target signature, say s1, 

a mixed signature s was then generated by mixing 0.6 of s1 with abundance fraction of 0.1 from 

each of the other four signatures 2s , 3s , 4s  and 5s . Table 5 tabulates a progressive spectral 

identification process for such a mixed signature s where the signature s was quickly identified 

by the target signature t = s1 immediately by Algorithm 1 in the first stage as well as by 

Algorithm 2 correctly. 

Similar experiments were also performed by changing the designated target signature t from 

s1 to 2s , 3s , 4s  and 5s  for two spectral identification algorithms. Tables 6-9 tabulate their 

respective spectral progressive identification results. All the four mixed signatures are correctly 

identified by both Algorithm 1 and Algorithm 2. This experiment indicated that s4 as s5 are very 

similar to each other in terms of spectral variation. Algorithm 1 had difficulty with identification 

until stage 2.  

As a concluding remark, the abundance fraction of the target signature t has impact on the 

performance of the MPCM-PSSC in identification. If the abundance fraction was greater than 

60%, the MPCM-PSSC improved significantly its performance. Otherwise, its performance 

deteriorates as the abundance fraction gradually diminishes. In the following real image 

experiments, we will further demonstrate that the MPCM-PSSC can still perform effectively 
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when the estimated abundance fraction of a subpixel target is above 40%. 

 

5. REAL IMAGE HYPERSPECTRAL EXPERIMENTS 

The second data set used for experiments was a real HYperspectral Digital Imagery 

Collection Experiment (HYDICE) image shown in Fig. 10(a), which has size of 6464×  pixel 

vectors with 15 panels in the scene. Within the scene there also has a large grass field 

background, a forest on the left edge and a barely visible road running on the right edge of the 

scene. Low signal/high noise bands: bands 1-3 and bands 202-210; and water vapor absorption 

bands: bands 101-112 and bands 137-153 were removed. The spatial resolution is 1.56m and 

spectral resolution is 10nm. There are 15 panels located in the center of the grass field and are 

arranged in a 35 ×  matrix as shown in Fig. 10(b) which provides the ground truth map of Fig. 

10(a). Each element in this matrix is a square panel and denoted by ijp with row indexed by 

5,4,3,2,1=i  and column indexed by 3,2,1=j . For each row 35× , the three panels pi1, pi2, pi3 

were painted with the same material but have three different sizes. For each column 3,2,1=j , 

the five panels jjjjj 54321 ,,,, ppppp have the same size but were painted with five different 

materials. It should be noted that the panels in rows 2 and 3 are made by the same material, but 

with different paints, so did the panels in rows 4 and 5. Nevertheless, they were still considered 

as different materials. The sizes of the panels in the first, second and third columns are m3m3 × , 

m2m2 ×  and m1m1 ×  respectively. So, the 15 panels have five different materials and three 

different sizes. Fig. 10(b) shows the precise spatial locations of these 15 panels where red pixels 

(R pixels) are the panel center pixels and the pixels in yellow (Y pixels) are panel pixels mixed 

with background. The 1.56m-spatial resolution of the image scene suggests that most of the 15 

panels are one pixel in size except that 51413121 p,p,p,p which are two-pixel panels, denoted by 
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p211, p221, p311, p312, p411, p412, p511, p521. Since the size of the panels in the third column is 

m1m1 × , they cannot be seen visually from Fig. 10(a) due to the fact that its size is less than the 

1.56m pixel resolution.   

Fig. 10(c) plots the five panel spectral signatures { }5

1=iip  obtained from Fig. 10(b), where the i-

th panel signature, denoted by Pi was generated by averaging R pixels in row i.  These panel 

signatures will be used to represent target knowledge of the panels in each row. 

Two scenarios will be conducted for experiments based this 15-panel HYDICE scene. One is 

spectral discrimination among the five panel signatures, p1, p2, p3, p4 and p5. The other is to 

identify the 15 panels unsupervisedly using only knowledge obtained directly from the data.  

EXAMPLE 3 (Spectral discrimination) 

Like Example 1, the spectral discrimination was performed by the MPCM-PSSC where the 

number of stages required for MPCM-PSSC was calculated by Eq. (6) to be M = 13 and the 

stage levels { }13

1=∆ kk  were obtained by Eq. (7). In order to implement MPCM-PSSC algorithms, 

we also need to determine an appropriate set of stage thresholds.  

Using the same way conducted in Example 1, the desired set of stage thresholds { }13

1=kkτ  were 

obtained in Table 10 by Eq. (13) using noise-corrupted signatures with signal-to-noise ratio 

(SNR) set to 30:1 as variation of signature tolerance.  

Table 11 tabulates the discrimination results obtained by the MPCM-PSSC among the five 

panel signatures { }5

1=iip  in Fig. 10(c). As shown in Table 11, p1 and p2 are more similar each other 

than other three panel signatures since the discrimination could be accomplished in stage 2 in 

terms of spectral variation compared to other signature discrimination which was discriminated 

in stage 1. 

EXAMPLE 4 (Spectral identification) 
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The experiments conducted in this example are very interesting and offer several intriguing 

results and observations. It was designed to identify the 19 R panel pixels, pij in Fig. 10(b) by the 

MPCM-PSSC. Since the panel pixels p13, p23, p33, p43, p53 have size of m1m1 ×  which is smaller 

than pixel size, their abundance fractions present in single pixels can be at most ( ) 4109.056.1/1
2

=  

which can be interpreted as approximately 50% of pixel size. As a result, the performance in 

identification of these subpixel panels can be expected to be very challenging and difficult. On 

the other hand, due to its very high spatial and spectral resolution the spectral variations of image 

pixels in this HYDICE scene can be very subtle and sensitive. Therefore, using the five panel 

signatures { }5
1=iip  in Fig. 10(c) as a data base may not be appropriate. Instead, a more effective 

data base must be obtained in an unsupervised means directly form data. In doing so, the result 

of the 34 target pixels generated directly from the scene by an unsupervised fully constrained 

least squares (UFCLS) method developed in Refs. [11,19] was used to form a desired data base 

Γ. Among these 34 generated target pixels there were five panel pixels identified to correspond 

to the five distinct panel signatures, { }5

1=iip . Table 12 tabulates the results produced by the 

MPCM-PSSC using Algorithm 1 and Algorithm 2 for target identification along with the 

abundance fractions of the 19 R pixels estimated by the fully constrained least squares method in 

Ref. [19] where an identification error is highlighted by shade.  

According to Table 12, Algorithm 1 yielded the best performance in the sense that it only 

missed identification when the panels, p13, p212, p33, p412, p43, p53 with estimated abundance 

fractions less than 0.3821. Algorithm 2 also made 6 identification errors, but it seemed that these 

misidentifications had no clear tie to the abundance fractions as the way Algorithm 1 did. For 

example, it correctly identified p212 whose abundance is only 0.3141, but it misidentified the p32 

whose abundance is 0.5343. Compared to Algorithm 2, the SAM and the spectral information 
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divergence (SID)11-12 not only made the same 6 identification errors as did Algorithm 2, but also 

made two more additional errors, which are panel pixels p511, p52 with abundance fractions, 

0.7203 and 0.7789. 

This experiment showed that the MPCM-PSSC performed more effectively than a pixel-

based spectral similarity measure such as SAM and SID in Table 12. It should be noted that real 

target pixels in Table 12 were compared against the five panel signatures { }5

1=iip  for analysis. 

It is interesting to note that if the five panel signatures { }5

1=iip  in Fig. 10(c) were directly used 

for identification, the results were reported in Ref. [17] and were not as good as the results in 

Table 12 that were produced by using the real target pixels in Table 12. This is primarily due to 

the fact that the signatures { }5

1=iip  obtained by averaging R panel pixels are not real pixels. As a 

result, the signature variations of real target pixels have been compromised. The MPCM-PSSC 

seemed to remedy such deficiency by capturing subtle spectral variations in multiple stages 

which can dictate changes in subtle difference encountered in real data as shown in Table 12. 

As a final comment, it should be noted that the 34 target pixels used in this experiment were 

shown in Ref. [19] to sufficiently enough to include target pixels that represent the five distinct 

panel spectral signatures. However, it did not imply that it required at least 34 target pixels to do 

so. There may have some unsupervised target detection and classification algorithms that can 

generate a fewer number of target pixels than 34 but still include pixels that can represent all the 

desired five panel signatures. In this case, these generated target pixels can be used as a data base 

as well. As expected, the conclusion drawn from Table 12 will remain unchanged. 

 

6. CONCLUSIONS 

This paper introduces a new concept of progressive spectral signature coding (PSSC) for 
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hyperspectral signature characterization. It is derived from a technique, called multistage pulse 

code modulation (MPCM) that was previously developed for progressive image reconstruction 

and edge detection. Unlike the commonly used spectral signature coding which performs coding 

with hard decision, the proposed PSSC characterizes a hyperspectral signature in a sequence of 

soft decisions in multiple stages to produce a profile of progressive changes in spectral variation 

of the spectral signature. The idea of the MPCM-based PSSC (MPCM-PSSC) is to use a 

sequence of soft decision-based quantizers to generate a priority code for a hyperspectral 

signature which can be used to prioritize the signature values across its spectral coverage whose 

priorities are specified by stage levels implemented in various stages. Such a priority code allows 

one to decompose and reconstruct a hyperspectral signature progressively in accordance with the 

priorities assigned to spectral signature values in wavelengths. As a result, a profile of 

progressive changes in spectral variation can be generated for a hyperspectral signature and can 

be further used to dictate subtle differences in spectral characterization. In order to substantiate 

the utility of the proposed MPCM-PSSC applications in spectral discrimination and 

identification are considered and investigated. Experiments are also conducted to demonstrate 

unique features of the MPCM-PSSC in hyperspectral signature characterization such as 

progressive spectral changes, progressive signature decomposition and progressive signature 

reconstruction which cannot be found in any spectral signature coding. 
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Tables 

Table 1.  The first 20 MPCM-encoded signal samples in Fig. 5 using 13 stages for signal decomposition 

MPCM ENCODING ALGORITHM 

INPUT PREDICT
ION SIGNAL COMPONENTS OUTPUT 

n x(n) )(ˆ nx  )(nε  
1x̂  2x̂  

3x̂  
4x̂  5x̂  

6x̂  
7

x̂  
8

x̂  
9

x̂  10x̂  
11x̂  

12x̂  
13x̂  c(n) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 367 256 111 0 0 0 0 1 0 0 0 0 0 0 0 0 5 
2 144 255 -111 0 0 0 0 0 1 1 1 1 1 1 1 1 5 
3 33 127 -94 0 0 0 0 0 0 1 1 1 1 1 1 1 6 
4 108 111 -3 0 0 0 0 0 0 1 1 0 1 1 1 1 9 
5 70 95 -25 0 0 0 0 0 0 1 0 1 1 1 1 1 8 
6 106 96 10 0 0 0 0 0 0 1 1 0 0 0 0 0 8 
7 59 63 -4 0 0 0 0 0 0 0 1 1 1 1 1 1 7 
8 119 64 55 0 0 0 0 0 0 1 0 0 0 0 0 0 7 
9 157 128 29 0 0 0 0 0 1 0 0 0 0 0 0 0 6 

10 162 160 2 0 0 0 0 0 1 0 1 0 0 0 0 0 8 
11 198 192 6 0 0 0 0 0 1 1 0 0 0 0 0 0 7 
12 233 224 9 0 0 0 0 0 1 1 1 0 0 0 0 0 8 
13 240 240 0 0 0 0 0 0 1 1 1 1 0 0 0 0 9 
14 223 223 0 0 0 0 0 0 1 1 0 1 1 1 1 1 8 
15 245 224 21 0 0 0 0 0 1 1 1 0 0 0 0 0 8 
16 290 256 34 0 0 0 0 1 0 0 0 0 0 0 0 0 5 
17 388 384 4 0 0 0 0 1 1 0 0 0 0 0 0 0 6 
18 516 512 4 0 0 0 1 0 0 0 0 0 0 0 0 0 4 
19 591 576 15 0 0 0 1 0 0 1 0 0 0 0 0 0 7 
20 665 640 25 0 0 0 1 0 1 0 0 0 0 0 0 0 6 

 

Table 2.  The first 20 MPCM decoded signal points for signal reconstruction in Fig. 5 with 13 stages 

MPCM DECODING ALGORITHM 

INPUT SIGNAL COMPONENTS OUTPUT 

n c(n) 1x̂  2x̂  
3x̂  

4x̂  5x̂  
6x̂  

7x̂  
8x̂  

9x̂  10x̂  
11x̂  

12x̂  
13x̂  )(ˆ nx  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 5 0 0 0 0 1 0 0 0 0 0 0 0 0 256 
2 5 0 0 0 0 0 1 1 1 1 1 1 1 1 255 
3 6 0 0 0 0 0 0 1 1 1 1 1 1 1 127 
4 9 0 0 0 0 0 0 1 1 0 1 1 1 1 111 
5 8 0 0 0 0 0 0 1 0 1 1 1 1 1 95 
6 8 0 0 0 0 0 0 1 1 0 0 0 0 0 96 
7 7 0 0 0 0 0 0 0 1 1 1 1 1 1 63 
8 7 0 0 0 0 0 0 1 0 0 0 0 0 0 64 
9 6 0 0 0 0 0 1 0 0 0 0 0 0 0 128 

10 8 0 0 0 0 0 1 0 1 0 0 0 0 0 160 
11 7 0 0 0 0 0 1 1 0 0 0 0 0 0 192 
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12 8 0 0 0 0 0 1 1 1 0 0 0 0 0 224 
13 9 0 0 0 0 0 1 1 1 1 0 0 0 0 240 
14 8 0 0 0 0 0 1 1 0 1 1 1 1 1 223 
15 8 0 0 0 0 0 1 1 1 0 0 0 0 0 224 
16 5 0 0 0 0 1 0 0 0 0 0 0 0 0 256 
17 6 0 0 0 0 1 1 0 0 0 0 0 0 0 384 
18 4 0 0 0 1 0 0 0 0 0 0 0 0 0 512 
19 7 0 0 0 1 0 0 1 0 0 0 0 0 0 576 
20 6 0 0 0 1 0 1 0 0 0 0 0 0 0 640 

 

Table 3. 13 stage thresholds for 5 signatures in Fig. 9 with SNR 30:1 
stage 1 2 3 4 5 6 7 8 9 10 11 12 13 

1s  2 3 7 16 23 28 40 47 58 58 54 48 47 

2s  1 9 6 19 29 40 61 61 83 96 94 83 81 

3s  2 3 6 10 21 27 38 49 50 57 70 66 64 

4s  1 2 9 26 27 52 92 110 150 150 140 80 130 

5s  0 0 1 5 8 18 20 30 37 55 55 58 87 
 

Table 4. Discrimination among 5 signatures in Fig. 9 using the stage thresholds in Table 3 
stage 1 2 3 4 5 6 7 8 9 10 11 12 13 

1s - 2s  10 32 49 80 94 120 170 190 190 200 160 110 120 

1s - 3s  12 32 53 72 100 120 150 180 180 180 190 120 140 

1s - 4s  12 30 57 98 100 150 200 160 180 170 150 87 150 

1s - 5s  10 28 48 69 88 120 140 160 180 180 170 130 260 

2s - 3s  6 22 36 54 88 110 140 160 180 200 180 140 170 

2s - 4s  6 20 42 78 82 140 180 160 190 190 160 110 170 

2s - 5s  4 18 27 45 66 100 140 130 180 210 160 130 280 

3s - 4s  8 16 44 78 88 130 160 170 160 180 170 130 170 

3s - 5s  6 14 35 39 80 98 96 140 160 170 180 170 270 

4s - 5s  6 14 39 67 76 120 150 130 170 180 160 110 280 
 

Table 5. Spectral identification for a mixed signature, 
5432 1.01.01.01.06.0 ssssts ++++=  with t = s1 

stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM 

1s  6 24 46 80 110 120 140 170 140 130 130 70 68 1234 

2s  12 34 47 88 100 130 170 170 190 190 150 99 120 1500 

3s  14 34 55 92 110 130 150 170 170 170 180 130 150 1555 

4s  14 30 61 110 110 170 200 160 170 160 140 79 160 1564 

5s  12 30 46 77 95 130 140 150 180 170 160 120 270 1580 
 

Table 6. Spectral identification for a mixed signature, 
5431 1.01.01.06.01.0 ssstss ++++=  with t = s2 
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stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM 

1s  10 32 53 87 120 150 180 190 170 170 160 96 98 1516 

2s  0 16 22 59 98 130 140 160 150 190 150 110 100 1325 

3s  6 20 42 65 100 130 150 190 160 180 170 130 160 1503 

4s  6 18 48 83 110 160 190 180 170 160 150 95 150 1520 

5s  4 16 31 54 96 120 130 150 170 180 170 120 290 1531 
 

Table 7. Spectral identification for a mixed signature, 
5421 1.01.06.01.01.0 sstsss ++++=  with t = s3 

stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM 

1s  14 34 57 93 100 160 160 180 170 170 140 110 100 1488 

2s  8 30 40 79 92 120 170 160 200 190 160 130 130 1509 

3s  6 18 24 59 84 130 130 150 160 160 150 140 120 1331 

4s  10 24 46 95 92 150 180 160 170 170 140 110 150 1497 

5s  8 24 39 58 78 120 130 140 170 180 140 140 260 1487 
 

Table 8. Spectral identification for a mixed signature, 
5321 1.06.01.01.01.0 stssss ++++=  with t = s4 

stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM 

1s  12 34 55 110 130 140 190 180 180 150 150 95 130 1556 

2s  6 24 36 83 110 130 190 160 190 190 160 110 130 1519 

3s  8 22 40 85 110 130 160 160 170 160 170 120 170 1505 

4s  6 14 42 87 110 150 170 130 150 140 130 72 96 1297 

5s  6 20 31 74 110 110 140 130 150 170 160 130 270 1501 
 

Table 9. Spectral identification for a mixed signature, tsssss 6.01.01.01.01.0 4321 ++++=  with t = s5 

stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM 

1s  10 26 54 72 120 150 180 170 190 160 160 120 140 1552 

2s  4 20 35 56 92 130 180 160 180 210 170 130 170 1537 

3s  6 16 41 58 94 120 150 160 180 170 170 150 160 1475 

4s  6 16 47 72 94 150 190 140 170 160 150 98 170 1463 

5s  2 6 28 37 88 110 130 130 150 150 150 130 230 1341 
 

Table 10. Stage thresholds for five panel signatures with SNR 30:1 
stage 1 2 3 4 5 6 7 8 9 10 11 12 13 

p1 2 1 5 10 14 24 23 16 16 16 9 4 4 
p2 2 2 14 9 13 23 24 15 13 11 10 4 4 
p3 1 4 6 8 16 19 21 13 11 11 7 6 5 
p4 3 6 3 11 15 21 23 20 16 12 7 7 3 
p5 3 6 4 10 16 19 21 18 13 10 7 4 3 
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Table 11. Discrimination among five panel signatures using the stage thresholds in Table 10 
stage 1 2 3 4 5 6 7 8 9 10 11 12 13 
p1- p2 2 2 10 13 20 32 30 24 29 21 16 4 5 
p1- p3 4 4 17 23 28 29 31 26 24 22 11 6 5 
p1- p4 4 8 8 22 26 37 32 26 22 23 10 6 4 
p1- p5 4 8 11 22 32 34 34 21 13 16 12 2 5 
p2- p3 2 2 13 12 24 35 31 22 21 9 11 6 4 
p2- p4 4 8 14 23 28 33 36 22 21 10 10 8 3 
p2- p5 4 8 17 23 28 30 30 25 28 13 8 4 4 
p3- p4 6 10 19 27 30 34 31 12 20 13 9 10 5 
p3- p5 6 10 22 29 34 35 29 29 17 16 7 6 6 
p4- p5 4 8 3 6 16 25 24 29 21 13 4 6 1 

 

Table 12. Identification of 19 R panel pixels in Fig. 10(a) 

panel pixels Algorithm 1 Algorithm 2 SAM/ 
SID 

abundance fractions  
estimated by FCLS 

p11 p1 p1 p1 1 

p12 p1 p2 p2 0.4098 

p13 p3 p2 p2 0.0499 

p211 p2 p2 p2 0.5255 

p221 p3 p2 p2 0.3141 

p22 p2 p2 p2 0.6917 

p23 p2 p2 p2 0.4221 

p311 p3 p3 p3 0.8647 

p312 p3 p3 p3 1 

p32 p3 p2 p2 0.5343 

p33 p2 p2 p2 0.3285 

p411 p4 p4 p4 1 

p412 p5 p4 p4 0.3821 

p42 p4 p4 p4 0.7034 

p43 p2 p2 p2 0.2242 

p511 p5 p5 p4 0.7203 

p521 p5 p5 p5 1 

p52 p5 p5 p4 0.7789 

p53 p2 p2 p2 0.1466 
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A List of Figures 

1. Figure 1. A soft quantizer Qk(x(n) described by Eq. (2) 

2. Figure 2. Case 1 for MPCM encoding algorithm 

3. Figure 3. Case 2 for MPCM encoding algorithm 

4. Figure 4. Case 3 for MPCM encoding algorithm 

5. Figure 5. Spectral signature of methyl salicylate, r 

6. Figure 6. Graphical plot of priority code words for the signal of methyl salicylate in Fig. 
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7. Figure 7. MPCM-encoded progressive spectral signatures of methyl salicylate 

8. Figure 8. A progressive stage-by stage decoded spectral signatures of methyl salicylate 

from the priority code words in Fig. 6 along with the approximation error )(13 nε . 

9. Figure 9. Five spectral signatures of chemical data from NIST 

10. Figure 10. (a) A HYDICE panel scene which contains 15 panels; (b) Ground truth map of 

spatial locations of the 15 panels; (c) Spectral signatures of p1, p2, p3, p4 and p5 
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